WO2020019832A1 - 光线调节装置和照明设备 - Google Patents

光线调节装置和照明设备 Download PDF

Info

Publication number
WO2020019832A1
WO2020019832A1 PCT/CN2019/086831 CN2019086831W WO2020019832A1 WO 2020019832 A1 WO2020019832 A1 WO 2020019832A1 CN 2019086831 W CN2019086831 W CN 2019086831W WO 2020019832 A1 WO2020019832 A1 WO 2020019832A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
substrate
liquid crystal
strips
Prior art date
Application number
PCT/CN2019/086831
Other languages
English (en)
French (fr)
Inventor
李忠孝
王维
梁蓬霞
赵文卿
陈小川
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/624,287 priority Critical patent/US11002428B2/en
Publication of WO2020019832A1 publication Critical patent/WO2020019832A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/003Controlling the distribution of the light emitted by adjustment of elements by interposition of elements with electrically controlled variable light transmissivity, e.g. liquid crystal elements or electrochromic devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/14Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 asymmetric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/15Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 periodic

Definitions

  • the present disclosure relates to the field of lighting technology, and in particular, to a light adjusting device and a lighting device.
  • Lighting equipment applied to vehicles can be made by the mechanical structure provided on the car lights.
  • the car light rotates a certain angle, so the light output direction of the light emitted by the car light can be changed.
  • This method of changing the light output direction of the lighting device through a mechanical structure requires the installation of a mechanical mechanism, which increases the volume of the lighting device and weighs more. bulky.
  • the present disclosure provides a light adjusting device and a lighting device to solve the deficiencies in the related art.
  • a light adjustment device including:
  • a second substrate on which a second electrode layer is provided is provided;
  • a side of the first substrate on which the first electrode layer is provided is opposite to a side of the second substrate on which the second electrode layer is provided;
  • Liquid crystal sandwiched between the first substrate and the second substrate
  • the first electrode layer includes a plurality of electrode units, each of the electrode units includes a plurality of electrode bars, each electrode bar is used to load a different driving voltage signal, and the second electrode layer is used to load a common voltage signal;
  • the light emitting direction of the liquid crystal passing through the corresponding position of each of the electrode units is deflected in the same direction.
  • the driving voltage signal loaded on each of the electrode strips gradually increases or decreases gradually.
  • the first electrode layer includes an upper electrode layer and a lower electrode layer, and an insulating layer is provided between the upper electrode layer and the lower electrode layer;
  • the upper electrode layer includes a plurality of first electrode bars, and the lower electrode layer includes a plurality of second electrode bars;
  • One of the second electrode strips is provided at each position between two adjacent two of the first electrode strips;
  • Each of the electrode units includes at least one of the first electrode strips and at least one of the second electrode strips continuously distributed.
  • the projection of the first electrode strip on the first substrate and the projection of the second electrode strip on the first substrate at adjacent positions are connected.
  • a grating layer is further provided on the second substrate, and the light is deflected after passing through the grating layer to increase the deflection angle of the light.
  • the grating layer includes a plurality of spaced-apart light shielding strips, or the grating layer includes two dielectric layers having different refractive indices, and the two dielectric layers are alternately arranged.
  • the grating layer is located between the second substrate and the second electrode layer, and a flat layer is further disposed on the grating layer.
  • the optical adjustment device includes a plurality of regions, and the light deflection directions of the regions are different;
  • Each region includes at least one electrode unit, and the electrode strips in the same region extend in the same direction, and the electrode strips in at least two regions extend in different directions;
  • the deflection angle of the liquid crystal at the corresponding position of the electrode unit in the area where the electrode strips extend in the same direction has different trends
  • the extending direction of the electrode strips in the same region is the same as the extending direction of the light-shielding strips in the region or the extending direction of the electrode strips in the same region is the same as the extending direction of the dielectric layer in the region.
  • the alignment direction of the liquid crystal and the extending direction of the electrode strip are mutually perpendicular or mutually parallel.
  • a lighting device including a collimated light source and any one of the light adjustment devices described above, the light adjustment device is disposed in a light emission direction of the collimated light source.
  • the light from the collimated light source is polarized light.
  • the light of the collimated light source is natural light
  • a polarizer is further provided between the liquid crystal of the optical adjustment device and the collimated light source.
  • the light of the collimated light source is natural light
  • the light adjustment device includes a first light adjustment device and a second light adjustment device superimposed on a light emission direction of the collimated light source;
  • the orientation direction of the liquid crystal of the first light adjustment device and the extension direction of the electrode strips are parallel to each other, and the orientation direction of the liquid crystal of the second light adjustment device and the extension direction of the electrode strips are perpendicular to each other.
  • the second substrate of the first light adjusting device and the first substrate of the second light adjusting device are the same common substrate;
  • the first surface of the common substrate is provided with a second electrode layer of the first light adjusting device, and the second surface of the common substrate is provided with a first electrode layer of the second light adjusting device, and the second The surface is a surface opposite to the first surface.
  • the light adjustment device can adjust the light emitting direction through the structure of the liquid crystal box, without using a mechanical structure.
  • the light adjustment device is relatively thin and light, and it is beneficial to reduce the lighting when it is used in a lighting setting.
  • the volume and weight of the device make the lighting device lighter and thinner.
  • Fig. 1 is a schematic cross-sectional structure diagram and a light path diagram of a light adjusting device according to an exemplary embodiment of the present disclosure
  • Fig. 2 is a schematic cross-sectional structure diagram and a light path diagram of a light adjusting device according to another exemplary embodiment of the present disclosure
  • Fig. 3 is a light path diagram of a triangular oblique prism according to an exemplary embodiment of the present disclosure
  • Fig. 4 is a schematic cross-sectional structure diagram and a light path diagram of a light adjusting device according to still another exemplary embodiment of the present disclosure
  • Fig. 5 is a schematic structural plan view of a light adjustment device according to an exemplary embodiment of the present disclosure
  • Fig. 6 is a schematic cross-sectional structure diagram of a lighting device according to an exemplary embodiment of the present disclosure
  • Fig. 7 is a schematic cross-sectional structure diagram of a lighting device according to another exemplary embodiment of the present disclosure.
  • Fig. 8 is a schematic cross-sectional structure diagram of a lighting device according to another exemplary embodiment of the present disclosure.
  • the present disclosure provides a light adjustment device.
  • the optical adjustment device can change the light exit angle through the structure of the liquid crystal box without using a mechanical structure.
  • An exemplary embodiment of the present disclosure provides a light adjustment device, which includes:
  • a second substrate, and a second electrode layer is disposed on the second substrate;
  • a side of the first substrate on which the first electrode layer is provided is opposite to a side of the second substrate on which the second electrode layer is provided;
  • Liquid crystal sandwiched between a first substrate and the second substrate
  • the first electrode layer includes a plurality of electrode units, and each electrode unit includes a plurality of electrode bars, and each electrode bar is used to load different voltage signals;
  • the light emitting direction of the liquid crystal passing through the corresponding position of the electrode unit is deflected in the same direction.
  • the first substrate is a substrate for carrying a first electrode layer
  • the second substrate is a substrate for carrying a second electrode layer. Both the first substrate and the second substrate can transmit light, and the first substrate and the second substrate can be A rigid substrate or a flexible substrate, for example, a rigid substrate is a glass substrate, and a flexible substrate is, for example, a plastic substrate.
  • Liquid crystal molecules are rod-shaped. In a natural state, the arrangement of these rod-shaped molecules is random. There is no uniform alignment direction.
  • the alignment direction is the direction of the long axis of the liquid crystal molecules.
  • the external alignment can cause the liquid crystal molecules to have a specific alignment direction. For example, By laying a polymer layer (such as polyimide) on a substrate, and then orienting the polymer layer in one direction, the liquid crystal molecules distributed on the surface of the glass substrate can be aligned in the rubbing direction to form a fixed orientation. direction.
  • a polymer layer such as polyimide
  • the above liquid crystal may have an initial orientation direction.
  • the liquid crystal is disposed between the first substrate and the second substrate.
  • the first substrate and the second substrate are respectively provided with a first electrode layer and a second electrode layer.
  • the first electrode layer includes Multiple electrode units, each electrode unit includes multiple electrode bars, each electrode bar is used to load a different voltage signal, and the second electrode layer is used to load a common voltage signal, so for each electrode unit, each The electrode strip and the second electrode layer respectively form a vertical electric field perpendicular to the first substrate and the second substrate.
  • the liquid crystal tends to deflect in a direction perpendicular to the applied electric field, and the elastic properties of the liquid crystal
  • the liquid crystal also tends to return to the initial state.
  • the liquid crystal deflection angle at the corresponding position of each electrode strip is different. Therefore, the liquid crystal at the corresponding position of each electrode strip exhibits different refractive index values.
  • the optical path difference at different positions is different.
  • the deflection direction of the light can be emitted through the second substrate.
  • the final deflection angle of the light is related to the size of the refractive index difference ⁇ n of the liquid crystal and the optical path difference between the electrode strips in each electrode unit.
  • the refractive index difference of the liquid crystal The larger the value ⁇ n, the larger the optical path difference between the electrode strips, and the larger the deflection angle of the light.
  • the light adjustment device can adjust the light emitting direction through the structure of the liquid crystal box without using a mechanical structure.
  • the light adjustment device is relatively thin and light, and its application in lighting settings is beneficial to reducing the The volume and weight make the lighting device lighter and thinner.
  • the driving voltage signal loaded on each electrode strip is gradually increased or decreased along the arrangement direction of the electrode strips.
  • the voltage signals applied to each electrode strip are different, and along the arrangement direction of the electrode strips in the electrode unit, the driving voltage signals applied to each electrode strip gradually increase or decrease, so that each electrode
  • the deflection angle of the liquid crystal at the corresponding position of the strip is gradually increased or decreased, that is, the deflection angle of the liquid crystal at the corresponding position of each electrode strip is different. Therefore, the liquid crystal at the corresponding position of each electrode strip displays different refractive index values.
  • the liquid crystal at the corresponding position of the electrode strip has different optical path differences at different positions, and the optical path difference at different positions shows a decreasing or increasing trend
  • the liquid crystal at the corresponding position of each electrode unit can be equivalent to an oblique prism. The outgoing direction of the light from the liquid crystal at the corresponding position of the electrode unit is deflected.
  • the tilt angle of the equivalent oblique prism can be controlled, and the larger the tilt angle of the equivalent oblique prism, the larger the deflection angle of the light. Therefore, the deflection direction of the light can be controlled, that is, the direction of light exit can be adjusted.
  • FIG. 1 is a schematic cross-sectional structure diagram of a light adjusting device according to an exemplary embodiment. As shown in FIG. 1, the light adjusting device includes:
  • a second substrate 20, and a second electrode layer 21 is disposed on the second substrate 20;
  • a side of the first substrate 10 on which the first electrode layer 11 is provided is opposite to a side of the second substrate 21 on which the second electrode layer 21 is provided;
  • the liquid crystal 30 is interposed between the first substrate 10 and the second substrate 20;
  • the first electrode layer 11 includes a plurality of electrode units 12, and each electrode unit includes a plurality of electrode bars.
  • the first electrode layer 11 includes an upper electrode layer (such as the electrode layer located above the insulating layer 13 in FIG. 1) and a lower electrode layer (such as the electrode layer located below the insulating layer 13 in FIG. 1). Provided with an insulating layer 13;
  • the upper electrode layer includes a plurality of first electrode strips 121, and the lower electrode layer includes a plurality of second electrode strips 122;
  • a second electrode strip 122 is disposed at each position between two adjacent first electrode strips 121;
  • Each electrode unit 12 includes at least one first electrode strip 121 and at least one second electrode strip 122 continuously distributed.
  • the first electrode layer includes two electrode layers, which are an upper electrode layer and a lower electrode layer, respectively.
  • the two electrode layers are insulated from each other by an insulating layer, and the upper electrode layer includes a plurality of spaced apart first electrode strips.
  • the lower electrode layer includes a plurality of second electrode strips spaced apart from each other, and there is a second electrode strip between each adjacent two first electrode strips, that is, the first electrode strip and the second electrode strip are staggered Distribution, that is, each adjacent two of the first electrode strips have a projection of the second electrode strip on the first substrate between the projections of the first substrate, each electrode
  • the unit includes a plurality of first electrode bars and a plurality of second electrode bars which are continuously distributed.
  • the second electrode layer can be a planar electrode, that is, the second electrode layer does not need to be divided into a plurality of electrode bars, but is formed as a whole on the second substrate. Planar structure.
  • the first electrode layer includes two upper and lower electrode layers.
  • a plurality of first electrode strips and a plurality of second electrode strips arranged alternately and continuously can form an electrode unit. Including two first electrode strips and two second electrode strips as examples to illustrate the working principle of the light adjusting device.
  • each electrode unit 12 includes, for example, four electrode strips that are continuously distributed, namely two first electrode strips 121 and two second electrode strips 122, wherein the extending direction of each first electrode strip 121 is The extension direction is the same as that of each second electrode strip 122.
  • each first electrode strip 121 extends in the longitudinal direction of the first substrate 10
  • each second electrode strip 122 extends in the longitudinal direction of the second substrate 20, and the first substrate
  • the longitudinal direction of the 10 and the second substrate 20 is, for example, the direction toward the paper surface in FIG. 1. It is assumed that the initial alignment direction of the liquid crystal is a direction perpendicular to the extending direction of the electrode strip, for example, the direction shown by the double arrow A in the figure.
  • the two first electrode strips and the two second electrode strips in each electrode unit are respectively loaded with different voltage signals.
  • the first electrode strip and the second electrode strip are referred to as electrode strips here, that is,
  • the voltages of the voltage signals applied to the four electrode bars arranged from left to right in FIG. 1 are respectively V 1 , V 2 , V 3, and V 4 , and V 1 ⁇ V 2 ⁇ V 3 ⁇ V 4
  • the common voltage applied by the second electrode layer is V 0
  • each electrode strip forms a vertical electric field perpendicular to the first substrate and the second substrate with the second electrode layer, respectively. Therefore, the intensity of the vertical electric field formed by the electrode strips arranged from left to right and the second electrode layer gradually increases.
  • each electrode unit the deflection effect of the vertical electric field formed from left to right on the liquid crystal
  • the force gradually increases, the deflection angle of the liquid crystal gradually increases, and the optical path difference of each position decreases in turn.
  • the liquid crystal at the corresponding position of each electrode unit can be equivalent to a triangular oblique prism.
  • the oblique direction of the triangular oblique prism is shown in the figure. 1 is tilted to the left, The exit direction of the light rays passing through the liquid crystal at the corresponding position of each electrode unit is deflected to the left.
  • each electrode unit For each electrode unit, if the voltages of the voltage signals V 1 , V 2 , V 3, and V 4 applied from the four electrode strips arranged from left to right are sequentially reduced, that is, V 1 > V 2 > V 3 > V 4 ,
  • the liquid crystal at the corresponding position of each electrode unit can be equivalent to a triangular oblique prism inclined to the right as shown in FIG. 2. At this time, the exit direction of the light passing through the liquid crystal at the corresponding position of each electrode unit occurs to the right. deflection.
  • the projection of the first electrode strip 121 on the first substrate 10 and the projection of the second electrode strip 122 on the first substrate 10 at adjacent positions are connected, that is, the adjacent positions.
  • the edge of the second electrode strip 122 is flush with the edge of the first electrode strip 121.
  • a weak fringe electric field will be formed between two adjacent electrode bars due to different voltage signals applied between them.
  • the edges of adjacent first and second electrode strips are positioned on the same plane, so that the electric field formed between the adjacent first and second electrode strips will be Distributed along the direction perpendicular to the first substrate and the second substrate.
  • the electric field and the vertical electric field between the first electrode layer and the second electrode layer are superimposed on the liquid crystal molecules, which is beneficial to the corresponding position of the electrode unit.
  • the deflection angle of the liquid crystal changes gradually, so that the light emitted through each position is more uniform.
  • the liquid crystal at the corresponding position of each electrode unit can be equivalent to an oblique prism.
  • the experimental data further explains that when the bottom angles of the oblique prism are different angles, The effect on the deflection angle of light.
  • FIG. 3 shows a triangular oblique prism with a base angle of ⁇ , an incident angle of the light (the angle between the light and the normal) is ⁇ 1 , and the light is incident on the medium before the triangular prism.
  • the refractive index is n 1
  • the refractive index of the oblique prism is n 2
  • the light incident on the bottom surface of the oblique prism is refracted by the oblique prism
  • the exit angle is ⁇ 2.
  • the refracted light is refracted again by the oblique surface of the oblique prism, and the light is incident on the oblique surface.
  • the angle is ⁇ 3 and the exit angle is ⁇ 4 .
  • the above table indicate lateral oblique prism base angle [theta], represents the longitudinal direction of the optical angle of incidence ⁇ 1, for each angle of the table, the left side when the incident light normal to the incident angle ⁇ 1 is represented by a positive number, incident The incident angle ⁇ 1 when the light is on the right side of the normal is represented by a negative number, and the negative deflection angle ⁇ indicates that the outgoing light is deflected to the right along the normal.
  • the deflection angle ⁇ in the table is num! It means that the light has been totally reflected in the oblique prism and cannot be emitted from the oblique prism.
  • the light adjusting device of this embodiment can adjust the deflection angle of the light so that the light exits in different directions. Or, it can be deflected to two completely different directions, which can be applied to the lighting device to adjust the light emitting direction of the lighting device.
  • the incident angle ⁇ 1 of the light can be 0 °, that is, a collimated light source is used as the light source, and the light adjusting device can be set in the direction of light exit from the collimated light source, thereby forming a lighting device, and the collimated light source emits
  • the incident angle of the incident light is approximately equal to 0 °, and the light emitting direction is deflected by the light adjusting device, so that the light emitting direction of the lighting device can be adjusted.
  • a grating layer 22 may be further disposed on the second substrate 20, and light is deflected after passing through the grating layer 22 to increase the deflection angle of the light.
  • the deflection angle of the light When light passes through the interface between two different media, it will be refracted and deflected at a certain angle. For example, referring to FIG. 4, when the light is incident into the air through the second substrate 20, it will be transmitted between the second substrate 20 and the air. Refraction occurs at the interface of the air, which further deflects the light, but the deflection angle is small.
  • the first A grating layer 22 is provided on the two substrates 20. The diffraction angle of the grating layer can further increase the deflection angle of the light. After the grating layer 22 and the interface between the second substrate 20 and the air are refracted, the deflection angle of the light can be increased. Continuously adjustable within the angle range.
  • the above-mentioned grating layer 22 may include, for example, a plurality of light-shielding strips 221 spaced apart to form a multi-slit grating, or the grating layer may be a phase grating (also referred to as a dielectric grating), and the dielectric grating includes a refractive index.
  • the two kinds of dielectric layers are arranged alternately to form a grating layer structure, which can also achieve the diffraction of light and increase the deflection angle of light.
  • the use of dielectric gratings does not affect the transmittance of light, which is beneficial to improving the backlight Of brightness.
  • the light-shielding strips may extend along a certain direction of the second substrate, for example, extend laterally of the second substrate or extend longitudinally of the second substrate; or for a grating layer composed of two dielectric layers,
  • the extending direction is the same, and it can also extend along a certain direction of the second substrate, for example, extending along the lateral direction of the second substrate or extending along the longitudinal direction of the second substrate.
  • the above-mentioned grating layer 22 may be provided between the second substrate 20 and the second electrode layer 21, and in order to increase the flatness of the grating layer 22, a flat layer 23 may be provided on the grating layer 22.
  • the light adjusting device includes a plurality of regions, and the light deflection directions of the regions are different;
  • Each region includes at least one electrode unit, and the electrode strips in the same region extend in the same direction, and the electrode strips in at least two regions extend in different directions;
  • the deflection angle of the liquid crystal at the corresponding position of the electrode unit in the area where the electrode strips extend in the same direction has different trends
  • the extension direction of the electrode strips in the same region is the same as the extension direction of the light-shielding strips in the region, or the extension direction of the electrode strips in the same region is the same as the extension direction of the dielectric layer in the region.
  • the deflection directions of the light in different regions of the light adjusting device are different, and multiple deflection directions of the light can be controlled to meet the requirements of multi-directional light emission.
  • the light adjusting device includes four regions, which are a first region 41, a second region 42, a third region 42, and a fourth region 44, respectively.
  • the direction of light deflection in the area is different.
  • the center line of the thickness direction of the light adjustment device is used as the reference direction.
  • the direction in the figure toward the inside of the paper is the downward direction of the center line, and the direction outside the paper in the figure is the direction of the center line upward.
  • the light from the first region 41 is deflected to the left along the center line
  • the light from the second region 42 is deflected from the center line downward
  • the light from the third region 43 is deflected upward from the center line
  • the light from the fourth region 44 is deflected along the center.
  • the line deflects to the right.
  • the grating layer 22 including a plurality of light-shielding strips 22 arranged at intervals, the extending direction of the electrode strips (not shown in FIG. 5) in the first region 41 and the length of the light-shielding strips 221.
  • the extending direction is the same, it is along the longitudinal direction of the first substrate, and the electrode strips and the light-shielding strips 221 in the first region 41 and the fourth region 44 have the same extending direction; the extending direction of the electrode strips and the light-shielding strip in the second region 42
  • the extension direction of 221 is the same, which is along the lateral direction of the first substrate, and the extension directions of the electrode strips and the light shielding strips 221 in the second region 42 and the third region 43 are the same.
  • the change in the deflection angle of the liquid crystal at the position corresponding to the electrode unit in the first region 41 is different from the change in the deflection angle of the liquid crystal at the position corresponding to the electrode unit in the fourth region 44.
  • each of the first region 41 The electrode unit, along the arrangement direction of the electrode strips, gradually reduces the deflection angle of the liquid crystal from left to right, and each electrode unit in the fourth region 44 gradually increases the deflection angle of the liquid crystal from left to right.
  • the voltage signals V 1 , V 2 , V 3, and V 4 applied to the electrode units in the first region 4 gradually decrease from the electrode strips arranged from left to right.
  • the liquid crystal at the corresponding position of each electrode unit can be equivalent to the triangular oblique prism shown in Fig. 2.
  • the deflection angle of the liquid crystal gradually decreases from left to right.
  • the orientation direction of the liquid crystal is, for example, a direction perpendicular to the extending direction of the electrode strip.
  • the voltage signals V 1 , V 2 , V 3, and V 4 loaded on the electrode strips arranged from left to right gradually increase, and each electrode in the fourth region
  • the liquid crystal at the corresponding position of the cell can be equivalent to the triangular oblique prism shown in Figure 1.
  • the deflection angle of the liquid crystal increases from left to right.
  • the light passing through the liquid crystal at the corresponding position of each electrode cell will be deflected to the left along the center line. Therefore, the light passing through the fourth region is deflected to the left along the center line.
  • the change in the deflection angle of the liquid crystal at the position corresponding to the electrode unit in the second region is different from the change in the deflection angle of the liquid crystal at the position corresponding to the electrode unit in the third region.
  • the electrode units in the second region gradually decrease the deflection angle of the liquid crystal from top to bottom along the arrangement direction of the electrode strips, and the electrode units in the third region follow the arrangement direction of the electrode strips from top to bottom. The deflection angle of the lower liquid crystal gradually increases.
  • the orientation direction of the liquid crystal is, for example, a direction perpendicular to the extending direction of the electrode strips, and the extending direction of the electrode strips in the second region is along the lateral direction of the first substrate.
  • the voltage signals V 1 , V 2 , V 3, and V 4 loaded on the electrode strips arranged from top to bottom gradually increase, and each electrode in the third region
  • the deflection angle of the liquid crystal at the corresponding position of the cell increases from top to bottom, and the extension direction of the electrode strips in the fourth region is along the lateral direction of the first substrate, which is different from the extension of the electrode strips in the first and fourth regions.
  • the light passing through the liquid crystal at the corresponding position of each electrode unit is deflected upward along the center line, so the light passing through the fourth region is deflected upward along the center line.
  • the deflection direction of the light is not only related to the voltage of the voltage signal applied to the electrode strips of each electrode unit in the first electrode layer, that is, the change trend of the liquid crystal deflection angle, but also the extension direction of the electrode strips and the grating.
  • the direction in which the shading strips extend in the layer is related.
  • the deflection direction of the light can be changed by setting the extension direction of the electrode strip and the extension direction of the light shielding strip in the grating layer. Therefore, when a light adjustment device is required to control multiple deflection directions of the light, the light adjustment device can be divided into In multiple regions, the deflection directions of the light in each region are different, and multiple deflection directions of the light can be controlled to meet the needs of multi-directional light emission.
  • Liquid crystals can generally refract polarized light in one polarization direction and deflect light at a certain angle, for example, refract p-polarized light in the first polarization direction or s-deflected light in the second polarization direction, and what kind of deflection state
  • the refraction of polarized light is related to the orientation direction of the liquid crystal. Therefore, the orientation direction of the liquid crystal can be set to be perpendicular to or parallel to the extension direction of the electrode strip.
  • An embodiment of the present disclosure further provides a lighting device.
  • the lighting device includes a collimated light source 01 and the light adjusting device 02 according to any one of the foregoing embodiments.
  • the light adjusting device 02 is disposed on the collimated light source 01. Direction of light exit.
  • a collimated light source is used as the light source, and the light adjusting device is set in the light exit direction of the collimated light source.
  • the light emitted by the collimated light source is used as the incident light.
  • the incident angle of the incident light is approximately equal to 0 °.
  • the light is deflected to realize the adjustable light emitting direction of the lighting device.
  • the light from the collimated light source may be polarized light, and the polarized light is refracted by the liquid crystal in the light adjusting device to deflect the light by a certain angle.
  • the light from the collimated light source may also be natural light.
  • a polarizer 03 may be provided between the liquid crystal 30 of the optical adjustment device 02 and the collimated light source 01.
  • the light from the collimated light source is incident on the liquid crystal of the light adjusting device through the first substrate.
  • a polarizer between the collimated light source and the liquid crystal, the natural light emitted by the collimated light source can be converted into polarized light, and the polarized light can be further processed by the liquid crystal Refraction deflects light at a certain angle.
  • the above-mentioned polarizing plate may be disposed on a side of the first substrate close to the collimated light source, and may also be disposed on a side of the first substrate away from the collimated light source, for example, above the first electrode layer or below the first electrode layer. Examples are not limited to this.
  • the above-mentioned collimated light source may include a plurality of LEDs arranged in a matrix, and a reflector or a geometric lens may be provided on the LEDs.
  • the light from the collimated light source is natural light
  • the light adjustment device includes a first light adjustment device and a second light adjustment device superimposed on a light emission direction of the collimated light source;
  • the alignment direction of the liquid crystal of the first light adjusting device is parallel to the extending direction of the electrode strips therein, and the alignment direction of the liquid crystal of the second light adjusting device is parallel to the electrode strips (for example, the first electrode strip and the second electrode strip in FIG. 8)
  • the extending directions are perpendicular to each other.
  • two kinds of light adjusting devices are provided in the light emitting direction of the collimated light source, that is, a first light adjusting device and a second light adjusting device.
  • the orientation directions of the liquid crystals in the two light adjusting devices are different, and the two directions can be adjusted respectively.
  • the polarized light of two different polarization states in the light of the collimated light source is refracted, which is conducive to increasing the brightness of the lighting device.
  • the lighting device includes a collimated light source 01, a first optical adjustment device 021, and a second light adjustment device 022.
  • the device 021 and the second light adjusting device 022 are superimposed on a light emission direction of the collimated light source 01;
  • the first optical adjustment device 021 is, for example, the light adjustment device shown in FIG. 1, and specifically includes a first substrate 10 and a second substrate 20.
  • the first substrate 10 is provided with a first electrode layer 11, and the second substrate 20 is provided with The second electrode layer 21 is provided with a liquid crystal 31 between the first substrate 10 and the second substrate 20.
  • the first electrode layer 11 includes an upper electrode layer and a lower electrode layer.
  • An insulating layer 13 is provided between the upper electrode layer and the lower electrode layer. .
  • the second light adjustment device 022 has a similar structure to the first optical adjustment device 021, and includes a first substrate 10 'and a second substrate 20'.
  • the first substrate 10 ' is provided with a first electrode layer 11' and a second substrate 20 '.
  • 'A second electrode layer 21' is provided thereon, a liquid crystal 31 'is provided between the first substrate 10' and the second substrate 20 ', and the first electrode layer 11' includes an upper electrode layer and a lower electrode layer, and the upper electrode layer and the lower electrode layer An insulating layer 13 'is provided between the electrode layers.
  • the second light adjustment device 022 differs from the first optical adjustment device 021 in that the liquid crystal 31 'in the second light adjustment device 022 and the liquid crystal 31 in the first light adjustment device 021 have different orientation directions.
  • the first light adjustment device 021 The orientation direction of the liquid crystal 31 in is a direction parallel to the extending direction of the electrode strip therein, for example, the direction toward the paper surface in the figure, and the orientation direction of the liquid crystal 31 ′ in the second light adjustment device 022 is in alignment with the electrode strip therein.
  • the extending direction of the vertical direction is, for example, the horizontal direction in the figure.
  • the light from the collimated light source is natural light, including polarized light of two polarization directions, which are p-polarized light and s-deflected light.
  • the liquid crystal therein can p-polarized light. Refraction to deflect it, but for s-deflected light, s-deflected light can pass directly through the first light adjustment device; for the second light adjustment device, the liquid crystal in it can refract s-polarized light, so that It is deflected, and the p-polarized light is refracted by the first light adjusting device and then directly passes through the second light adjusting device. Therefore, the lighting device can align the polarized light in both directions of the light emitted by the straight light source and refract the light, thereby improving the light source.
  • the utilization rate is conducive to improving the brightness of lighting equipment.
  • the above-mentioned lighting device can be used as a vehicle lamp, and the deflection direction of the light emitted from the lamp can be adjusted according to needs. For example, when the vehicle turns left, the light emitted from the lamp can be controlled to deflect to the left, and when the vehicle turns right It can control the light emitted from the headlights to deflect to the right, which can meet the vehicle's needs for different light emission directions of the headlights, and is conducive to improving the user experience and product competitiveness.
  • the grating layer 22 ′ may be provided only on the second substrate 20 ′ of the second light adjustment device 022 far from the collimated backlight source 01, and Before exiting from the second light adjustment device 022 to the air, the deflection angle of the light is further increased through the grating layer 22 ′.
  • the second substrate of the first light adjustment device and the second substrate of the second light adjustment device may also be used.
  • a grating layer is provided on each, and this disclosure is not limited thereto.
  • the above lighting device is only an application scenario provided by this embodiment.
  • Those skilled in the art may set different combinations of the orientation directions of the grating layer, the electrode layer, and the liquid crystal in the optical adjustment device in the lighting device according to the needs of different application scenarios. In order to meet different lighting requirements, this disclosure is not limited to this.
  • the second substrate 20 of the first light adjusting device 021 and the first substrate 10 ′ of the second light adjusting device 022 may be the same common substrate (for example, the The second substrate 20), that is, the two substrates share a single substrate, and a second electrode layer 21 is provided on a first surface of the common substrate, which is a second electrode layer of the first light adjusting device 021, and on a second surface of the common substrate. (The side opposite to the first side on which the second electrode layer 21 is provided) is provided with a first electrode layer 11 ′, which is the first electrode layer 11 ′ of the second light adjustment device 022.
  • FIG. 8 shows only the structure of the lighting device provided by an exemplary embodiment.
  • the first light adjusting device and the second light adjusting device included in the lighting device may also adopt the light adjusting device provided by any of the above embodiments.
  • the present disclosure This is not limited.

Abstract

一种光线调节装置和照明设备,包括:第一基板(10),第一基板(10)上设置有第一电极层(11);第二基板(20),第二基板(20)上设置有第二电极层(21);液晶(30),夹设在第一基板(10)和第二基板(20)之间;第一电极层(11)包括多个电极单元(12),每个电极单元(12)包括多个电极条,每个电极条用于加载不同的驱动电压信号,第二电极层(21)用于加载公共电压信号,经过各电极单元(12)对应位置的液晶(30)的光线出射方向沿相同方向偏转。该光线调节装置较为轻薄,将其应用在照明设备中,有利于减小照明设备的体积和重量,使照明设备更加轻薄化。

Description

光线调节装置和照明设备
交叉引用
本申请要求于2018年7月25日提交的申请号为201810828917.9的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及照明技术领域,尤其涉及光线调节装置和照明设备。
背景技术
目前的照明设备有些可以改变其出射光线的亮暗变化,但是其出射光线的角度是不发生变化的,应用在车辆上的照明设备,例如车灯,可以通过设置在车灯上的机械结构使车灯转动一定角度,因此,可改变车灯出射光线的出光方向,这种通过机械结构改变照明设备的出光方向的方式,由于需要设置机械机构,增加了照明设备的体积,重量较大,较为笨重。
发明内容
本公开提供一种光线调节装置和照明设备,以解决相关技术中的不足。
根据本公开实施例的第一方面,提供一种光线调节装置,包括:
第一基板,所述第一基板上设置有第一电极层;
第二基板,所述第二基板上设置有第二电极层;
所述第一基板设置有所述第一电极层的一面与所述第二基板设置有所述第二电极层的一面相对设置;
液晶,夹设在所述第一基板和所述第二基板之间;
所述第一电极层包括多个电极单元,每个所述电极单元包括多个电极条,每个电极条用于加载不同的驱动电压信号,所述第二电极层用于加载公共电 压信号;
经过各所述电极单元对应位置的液晶的光线出射方向沿相同方向偏转。
可选的,对于每个所述电极单元,沿所述电极条的排列方向,各所述电极条上加载的驱动电压信号逐步增大或者逐步减小。
可选的,所述第一电极层包括上电极层和下电极层,所述上电极层和所述下电极层之间设置有绝缘层;
所述上电极层包括多个第一电极条,所述下电极层包括多个第二电极条;
每相邻的两个所述第一电极条之间的位置分别设置有一个所述第二电极条;
每个所述电极单元包括连续分布的至少一个所述第一电极条和至少一个所述第二电极条。
可选的,相邻位置的所述第一电极条在所述第一基板上的投影和所述第二电极条在所述第一基板上的投影相接。
可选的,所述第二基板上还设置有光栅层,光线经过所述光栅层后发生偏转以增大光线的偏转角度。
可选的,所述光栅层包括多个间隔设置遮光条,或者所述光栅层包括折射率不同的两种介质层,两种介质层交替排列。
可选的,所述光栅层位于所述第二基板与所述第二电极层之间,且所述光栅层上还设置有平坦层。
可选的,所述光学调节装置包括多个区域,各所述区域的光线偏转方向均不相同;
每个区域至少包括一个电极单元,相同区域中的电极条的延伸方向均相同,至少有两个区域中的电极条延伸方向不相同;
电极条的延伸方向相同的区域中的电极单元对应位置的液晶的偏转角度变化趋势不同;
相同区域中的电极条的延伸方向与该区域中的遮光条的延伸方向相同或者相同区域中的电极条的延伸方向与该区域中的介质层的延伸方向相同。
可选的,所述液晶的取向方向与所述电极条的延伸方向相互垂直或者相互平行。根据本公开实施例的第二方面,提供一种照明设备,包括准直光源和上述任一所述的光线调节装置,所述光线调节装置设置在所述准直光源的光线出射方向。
可选的,所述准直光源的光线为偏振光。
可选的,所述准直光源的光线为自然光,在所述光学调节装置的液晶和所述准直光源之间还设置有偏振片。
可选的,所述准直光源的光线为自然光;
所述光线调节装置包括叠加在所述准直光源的光线出射方向的第一光线调节装置和第二光线调节装置;
所述第一光线调节装置的液晶的取向方向与其中电极条的延伸方向相互平行,所述第二光线调节装置的液晶的取向方向与其中电极条的延伸方向相互垂直。
可选的,所述第一光线调节装置的第二基板和所述第二光线调节装置的第一基板为相同的共用基板;
所述共用基板的第一面设置有所述第一光线调节装置的第二电极层,所述共用基板的第二面设置有所述第二光线调节装置的第一电极层,所述第二面为与所述第一面相对的一面。
根据上述实施例可知,该光线调节装置,通过液晶盒结构可实现对光线的出光方向的调节,无需采用机械结构,该光线调节装置较为轻薄,将其应用在照明设置中,有利于减小照明设备的体积和重量,使照明装置更加轻薄化。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据本公开一示例性实施例示出的光线调节装置的截面结构示意图和光路图;
图2是根据本公开另一示例性实施例示出的光线调节装置的截面结构示意图和光路图;
图3是根据本公开一示例性实施例示出的三角形的斜棱镜的光路图;
图4是根据本公开又一示例性实施例示出的光线调节装置的截面结构示意图和光路图;
图5是根据本公开一示例性实施例示出的光线调节装置的俯视结构示意 图;
图6是根据本公开一示例性实施例示出的照明设备的截面结构示意图;
图7是根据本公开另一示例性实施例示出的照明设备的截面结构示意图;
图8是根据本公开又一示例性实施例示出的照明设备的截面结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
针对现有照明设备通过机械结构改变其出光方向,存在体积和重量较大的问题,本公开提供一种光线调节装置,该光学调节装置通过液晶盒结构可改变光线的出射角度,无需采用机械结构,可应用在照明设备中,有利于减小照明设备的体积和重量。
下面给出几个具体的实施例,用于详细介绍本申请的技术方案。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本公开一示例性实施例提供了一种光线调节装置,该装置包括:
第一基板,第一基板上设置有第一电极层;
第二基板,第二基板上设置有第二电极层;
第一基板设置有第一电极层的一面与第二基板设置有第二电极层的一面相对设置;
液晶,夹设在第一基板和所述第二基板之间;
第一电极层包括多个电极单元,每个电极单元包括多个电极条,每个电极条用于加载不同的电压信号;
对于每个电极单元,经过电极单元对应位置的液晶的光线出射方向沿相同方向偏转。
第一基板为用于承载第一电极层的基板,第二基板为用于承载第二电极层的基板,第一基板和第二基板均可以透过光线,第一基板和第二基板可以为硬质基板或者柔性基板等,硬质基板例如为玻璃基板,柔性基板例如为塑料基 板。
液晶是一种介于固体和液体之间的特殊物质,常态下呈液态,液晶是一种重要的光学材料,其具有光学各向异性,即具有双折射特性,通常用非常光折射率n e(即e光)和寻常光(即O光)折射率n o之差,即Δn=n e-n o来描述液晶双折射特性。
液晶分子呈棒状,在自然状态下,这些棒状分子的排列是随机的,没有统一的取向方向,取向方向即液晶分子的长轴所在方向,通过外部作用可使液晶分子产生特定的取向方向,例如,在一基板上铺设一聚合物层(例如聚酰亚胺),然后沿一个方向定向膜层该聚合物层,可使分布在该玻璃基板表面的液晶分子沿摩擦方向排列,形成固定的取向方向。
上述的液晶可以具有初始的取向方向,液晶设置在第一基板和第二基板之间,第一基板和第二基板上分别设置有第一电极层和第二电极层,而第一电极层包括多个电极单元,每个电极单元包括多个电极条,每个电极条用于加载不同的电压信号,第二电极层用于加载公共电压信号,这样,对于每个电极单元而言,每个电极条会分别与第二电极层形成垂直于第一基板和第二基板的垂直电场,液晶在外加电场的作用下,液晶有向与外加电场相互垂直的方向偏转的趋势,而液晶的弹性性质又使液晶有恢复到初始状态的趋势,这两种作用使液晶与初始的取向方向呈某一角度,该角度可称为液晶的偏转角度。
由于每个电极条上加载的电压信号不相同,对于每个电极单元而言,各电极条对应位置的液晶偏转角度不相同,因此,各电极条对应位置的液晶表现出不同的折射率值,当光线经过各电极条对应位置的液晶时,不同位置的光程差不同,通过控制各电极条上的电压大小,可使使经过每个电极单元对应位置的液晶的光线的出射方向发生偏转,并且,各电极单元对应位置的液晶的光线的出射方向沿相同方向偏转,可调节光线的出光方向。
光线的出射方向发生偏转后可经过第二基板出射,光线最后的偏转角度与液晶的折射率差值Δn的大小和各电极单元中各电极条之间的光程差有关,液晶的折射率差值Δn越大,各电极条之间的光程差越大,光线的偏转角度越大。
通过上述描述可知,该光线调节装置通过液晶盒结构可实现对光线的出光方向的调节,无需采用机械结构,该光线调节装置较为轻薄,将其应用在照明设置中,有利于减小照明设备的体积和重量,使照明装置更加轻薄化。
在一个可选的实施方式中,对于每个电极单元,沿电极条的排列方向,各电极条上加载的驱动电压信号逐步增大或者逐步减小。
本实施例中,每个电极条上加载的电压信号不相同,且在电极单元中的沿电极条的排列方向,各电极条上加载的驱动电压信号逐步增大或者逐步减小,这样各电极条对应位置的液晶的偏转角度逐步增大或逐步减小,即各电极条对应位置的液晶偏转角度不相同,因此,各电极条对应位置的液晶表现出不同的折射率值,当光线经过各电极条对应位置的液晶时,不同位置的光程差不同,并且,不同位置的光程差呈递减或者递增变化趋势,每个电极单元对应位置的液晶可等效为斜棱镜,使经过每个电极单元对应位置的液晶的光线的出射方向发生偏转。
通过控制加载在电极单元中的各电极条上的电压信号的电压值的大小,可以控制等效斜棱镜的倾斜角度,并且,等效斜棱镜的倾斜角度越大,光线的偏转角度越大,因此,可以实现对光线的偏转方向的控制,即可调节光线的出光方向。
图1所示为一示例性实施例提供的光线调节装置的截面结构示意图,如图1所示,该光线调节装置包括:
第一基板10,第一基板10上设置有第一电极层11;
第二基板20,第二基板20上设置有第二电极层21;
第一基板10设置有第一电极层11的一面与第二基板21设置有第二电极层21的一面相对设置;
液晶30,夹设在第一基板10和第二基板20之间;
第一电极层11包括多个电极单元12,每个电极单元包括多个电极条,
第一电极层11包括上电极层(例如图1中位于绝缘层13上方的电极层)和下电极层(例如图1中位于绝缘层13下方的电极层),上电极层和下电极层之间设置有绝缘层13;
上电极层包括多个第一电极条121,下电极层包括多个第二电极条122;
每相邻的两个第一电极条121之间的位置分别设置有一个第二电极条122;
每个电极单元12包括连续分布的至少一个第一电极条121和至少一个第二电极条122。
本实施例中,第一电极层包括两个电极层,分别为上电极层和下电极层, 两个电极层之间通绝缘层相互绝缘,上电极层包括多个相互间隔的第一电极条,下电极层包括多个相互间隔的第二电极条,并且,每相邻的两个第一电极条之间的位置分别有一个第二电极条,即第一电极条和第二电极条交错分布,也即是,每相邻的两个所述第一电极条在所述第一基板上的投影之间具有一个所述第二电极条在所述第一基板上的投影,每个电极单元包括连续分布的若干个第一电极条和若干个第二电极条。
由于第二电极层的各个位置可施加相同的公共电压信号,第二电极层可以为面状电极,即第二电极层不需要分割成多个电极条,而是形成在第二基板上的整体面状结构。
上述实施例的光线调节装置,第一电极层包括上下两个电极层,交错设置且连续分布的多个第一电极条和多个第二电极条可组成一个电极单元,下面以每个电极单元包括两个第一电极条和两个第二电极条为例,说明该光线调节装置的工作原理。
参照图1所示,每个电极单元12例如包括连续分布的四个电极条,分别为两个第一电极条121和两个第二电极条122,其中,各第一电极条121的延伸方向和各第二电极条122的延伸方向均相同,例如,各第一电极条121沿第一基板10的纵向方向延伸,各第二电极条122沿第二基板20的纵向方向延伸,第一基板10和第二基板20的纵向例如为图1中朝向纸面内的方向,假设液晶的初始的取向方向为与电极条的延伸方向垂直的方向,例如,为图中双箭头A所示方向。
分别向每个电极单元中的两个第一电极条和两个第二电极条加载不同的电压信号,为了描述方便,此处将第一电极条和第二电极条均称为电极条,即例如,对图1中自左向右排列的四个电极条施加的电压信号的电压为别为V 1、V 2、V 3和V 4,且V 1<V 2<V 3<V 4,第二电极层施加的公共电压为V 0,每个电极条会分别与第二电极层形成垂直于第一基板和第二基板的垂直电场,并且,由于每个电极条上加载的电压依次增大,因此,自左向右排列的各电极条与第二电极层形成的垂直电场的强度逐步增大,对于每个电极单元而言,自左向右形成的垂直电场对液晶施加的偏转作用力逐步增大,液晶的偏转角度逐步增加,各位置的光程差依次减小,每个电极单元对应位置的液晶可等效为一个三角形的斜棱镜,该三角形的斜棱镜的倾斜方向为图1所示的向左倾斜,使经过每个电极单元对应位置的液晶的光线的出射方向向左发生偏转。
对每个电极单元,若自左向右排列的四个电极条施加的电压信号的电压V 1、V 2、V 3和V 4依次减小,即V 1>V 2>V 3>V 4,则每个电极单元对应位置的液晶可等效为一个如图2所示的向右倾斜的三角形的斜棱镜,此时,经过每个电极单元对应位置的液晶的光线的出射方向向右发生偏转。
在一些例子中,参照图1所示,相邻位置的第一电极条121在第一基板10上的投影和第二电极条122在第一基板10上的投影相接,也即相邻位置的第一电极条121的边缘的第二电极条122的边缘是齐平的。
对于每个电极单元而言,相邻的两个电极条之间由于加载的不同的电压信号,在相邻的两个电极条之间会形成微弱的边缘电场,为了减小该边缘电场对液晶的偏转角度的影响,本实施例中,使相邻的第一电极条和第二电极条的边缘位于同一平面上,这样相邻的第一电极条和第二电极条之间形成的电场会沿垂直于第一基板和第二基板的方向分布,经过试验分析,该电场与第一电极层与第二电极层之间的垂直电场叠加共同作用于液晶分子,有利于使电极单元对应位置的液晶的偏转角度逐步变化,使经过各位置出射的光线更加均匀。
根据前述实施例的描述可知,每个电极单元对应位置的液晶可等效为斜棱镜,以斜棱镜为三角形的斜棱镜为例,通过实验数据进一步说明当斜棱镜的底角为不同角度时,对光线的偏转角度的影响。
如图3所示的光线偏转原理示意图,图3所示为三角形的斜棱镜,底角为θ,光线的入射角(光线与法线的夹角)为θ 1,光线入射至三棱镜之前介质的折射率为n 1,斜棱镜的折射率为n 2,光线入射至斜棱镜的底面后经过斜棱镜的折射后其出射角为θ 2,经斜棱镜的斜面再次折射,光线在斜面上的入射角为θ 3,出射角为θ 4
由折射原理可知,sinθ 1*n 1=sinθ 2*n 2,sinθ 3*n 2=sinθ 4*n 1,根据三角形内角原理,90-θ 2+90-θ 3+θ=180,则θ 2=θ-θ 3
光线经过斜棱镜的折射后,光线的偏转角度为β,该偏转角度β=θ 4312=θ 41-θ,该偏转角度表示斜棱镜对光线的偏转能力,由此可知,偏转角度与斜棱镜的底脚θ、光线的入射角θ 1和斜棱镜的折射率有关n 2有关。
下述表格为当液晶的折射率n e=1.8,n o=1.5,光线的入射角θ 1为不同角度,电极单元对应位置的液晶等效的三角形的斜棱镜的底角θ为不同角度时,光线的偏转角度β。
  10° 20° 30° 40° 50° 60°
-30° -2.98694 -7.45256 -18.0832 num! num! num!
-20° -2.4497 -5.62637 -10.614 num! num! num!
-10° -2.16002 -4.70005 -8.07915 -13.6693 num! num!
-2.0273 -4.23148 -6.8699 -10.4748 -16.82 num!
30° -2.01576 -4.05944 -6.31469 -9.06519 -12.94 -20.3
20° -2.12055 -4.12927 -6.19548 -8.51241 -11.4 -15.6
10° -2.36356 -4.44816 -6.455 -8.55267 -10.95 -14.01
上述表格中的横向表示斜棱镜的底角θ,纵向表示光学的入射角θ 1,对于上述表格中的各角度,当入射光线位于法线左侧时的入射角θ 1用正数表示,入射光线位于法线右侧时的入射角θ 1用负数表示,偏转角度β为负数表示出射光线沿法线向右发生偏转,表格中的偏转角度β为num!表示光线在斜棱镜内发生了全反射,无法从斜棱镜出射。由上述表格可知,当斜棱镜的底角θ位于一定范围内时,底角θ越大,光线的偏转角度越大,可以通过控制施加在电极单元中各电极条上的电压信号的电压大小改变等效斜棱镜的底角θ,并且,可以改变斜棱镜的倾斜方向,使光线向不同的方向偏转,因此,本实施例的光线调节装置可以调节光线的偏转角度,使光线沿不同的方向出射,或者向完全不同的两个方向偏转,可应用在照明装置中,调节照明装置的出光方向。
由上述表格可知,当光线的入射角θ 1不同时,光线偏转角度β也不同,为了使出射光线向两个不同的方向偏转时具有对称性,例如,向左偏转的角度和向右偏转的角度范围相当,可使光线的入射角度θ 1为0°,即采用准直光源作为光源,可将该光线调节装置设置在准直光源的光线出射方向,由此组成照明设备,准直光源发出的光线作为入射光线,入射光线的入射角度大致等于0°,经过光线调节装置使光线的出射方向发生偏转,实现照明设备的出光方向可调节。
在一些例子中,如图4所示,第二基板20上还可以设置光栅层22,光线经过光栅层22后发生偏转以增大光线的偏转角度。
当光线经过两个不同介质的界面时,会发生折射,也会发生一定角度的偏转,例如,参照图4所示,光线经第二基板20入射至空气中时,会在第二基板20与空气的界面处发生折射,使光线的进一步发生偏转,但是该偏转角度 较小,为了进一步增大光线的偏转角度,增加光线的出光方向的可调节范围,本实施例中,进一步的,在第二基板20上设置光栅层22,通过光栅层的衍射,可进一步的增大光线的偏转角度,经过光栅层22以及第二基板20和空气之间介面的折射后,光线的偏转角度可以在大角度范围内连续可调。
上述的光栅层22如图4所示,例如可包括多个间隔设置的遮光条221,形成多狭缝光栅,或者光栅层也可以是相位光栅(也称为介质光栅),介质光栅包括折射率不同的两种介质层,两种介质层交替排列,形成光栅层结构,也可以实现对光线的衍射,增大光线的偏转角度,采用介质光栅不影响光线的透过率,有利于提高背光源的亮度。
上述遮光条可以沿第二基板的某个方向延伸,例如沿第二基板的横向延伸或者沿第二基板的纵向延伸;或者是对于两种介质层组成的光栅层而言,两种介质层的延伸方向相同,也可以沿第二基板的某个方向延伸,例如沿第二基板的横向延伸或者沿第二基板的纵向延伸。
上述的光栅层22可以设置在第二基板20与第二电极层21之间,并且,为了增加光栅层22的平坦度,可在光栅层22上设置平坦层23。
在一个可选的实施方式中,光线调节装置包括多个区域,各区域的光线偏转方向均不相同;
每个区域至少包括一个电极单元,相同区域中的电极条的延伸方向均相同,至少有两个区域中的电极条延伸方向不相同;
电极条的延伸方向相同的区域中的电极单元对应位置的液晶的偏转角度变化趋势不同;
相同区域内的电极条的延伸方向与该区域内的遮光条的延伸方向相同,或者相同区域中的电极条的延伸方向与该区域中的介质层的延伸方向相同。
通过上述设置,光线调节装置的不同区域内的光线偏转方向均不相同,可实现对光线多个偏转方向的控制,满足多方向出光的需求。
参照图5所示的光线调节装置的平面结构示意图,该光线调节装置包括四个区域,分别为图中的第一区域41、第二区域42、第三区域42和第四区域44,每个区域的光线偏转方向均不相同,为了描述光线偏转方向,以光线调节装置的厚度方向的中心线为参考方向,图中左侧为中心线向左的方向,图中右侧为中心线向右的方向,图中朝向纸面内的方向为中心线向下的方向,图中朝向纸面外的方向为中心线向上的方向。
例如,上述的第一区域41的光线沿中心线向左偏转,第二区域42的光线沿中心线向下偏转,第三区域43的光线沿中心线向上偏转,第四区域44的光线沿中心线向右偏转。
具体而言,参照图5所示,以光栅层22包括多个间隔设置的遮光条22为例,第一区域41中的电极条(图5中未示出)的延伸方向和遮光条221的延伸方向相同,为沿第一基板的纵向,且第一区域41和第四区域44中的电极条和遮光条221的延伸方向均相同;第二区域42中的电极条的延伸方向和遮光条221的延伸方向相同,为沿第一基板的横向,且第二区域42和第三区域43中的电极条和遮光条221的延伸方向均相同。
进一步的,第一区域41中的电极单元对应位置的液晶的偏转角度变化趋势与第四区域44中的电极单元对应位置的液晶的偏转角度变化趋势不相同,例如,第一区域41中的各电极单元,沿电极条的排列方向,自左向右液晶的偏转角度逐步减小,而第四区域44中的各电极单元,自左向右液晶的偏转角度逐步增大。
参照图2所示,假设第一区域4中的各电极单元,自左向右排列的电极条上加载的电压信号V 1、V 2、V 3和V 4逐步减小,该第一区域中的每个电极单元对应位置的液晶可等效为图2所示的三角形的斜棱镜,自左向右液晶的偏转角度逐步减小,液晶的取向方向例如为与电极条的延伸方向垂直的方向,此时,经过每个电极单元对应位置的液晶的光线的出射方向会沿中心线向右偏转,因此,经过该第一区域的光线沿中心线向右偏转。
类似的,对于第四区域中的各电极单元,自左向右排列的电极条上加载的电压信号V 1、V 2、V 3和V 4逐步增大,该第四区域中的每个电极单元对应位置的液晶可等效为图1所示的三角形的斜棱镜,自左向右液晶的偏转角度依次增大,经过每个电极单元对应位置的液晶的光线的会沿中心线向左偏转,因此,经过该第四区域的光线沿中心线向左偏转。
同样的,对于第二区域和第四区域而言,第二区域中的电极单元对应位置的液晶的偏转角度变化趋势与第三区域中的电极单元对应位置的液晶的偏转角度变化趋势不相同,例如,第二区域中的各电极单元,沿电极条的排列方向,自上向下液晶的偏转角度逐步减小,而第三区域中的各电极单元,沿电极条的排列方向,自上向下液晶的偏转角度逐步增大。
假设第二区域中的各电极单元,自上向下排列的电极条上加载的电压信号 V 1、V 2、V 3和V 4逐步减小,该第二区域中的每个电极单元对应位置的液晶自上向下的偏转角度逐步减小,液晶的取向方向例如为与电极条的延伸方向垂直的方向,而该第二区域中的电极条的延伸方向为沿第一基板的横向,不同于第一区域和第四区域中电极条的延伸方向,此时,经过每个电极单元对应位置的液晶的光线的出射方向会沿中心线向下偏转(图中朝向纸面内的方向),因此,经过该第二区域的光线沿中心线向下偏转。
类似的,对于第三区域中的各电极单元,自上向下排列的电极条上加载的电压信号V 1、V 2、V 3和V 4逐步增大,该第三区域中的每个电极单元对应位置的液晶自上向下的偏转角度依次增大,而该第四区域中的电极条的延伸方向为沿第一基板的横向,不同于第一区域和第四区域中电极条的延伸方向,经过每个电极单元对应位置的液晶的光线的会沿中心线向上偏转,因此,经过该第四区域的光线沿中心线向上偏转。
由上述描述可知,光线的偏转方向不仅与第一电极层中各电极单元的电极条上加载电压信号的电压大小有关,即与液晶偏转角度的变化趋势有关,还与电极条的延伸方向、光栅层中遮光条的延伸方向有关。
通过设置电极条的延伸方向和光栅层中遮光条的延伸方向可以改变光线的偏转方向,因此,当需要采用光线调节装置实现对光线多个偏转方向的控制时,可将该光线调节装置分为多个区域,各区域的光线的偏转方向均不同,可实现对光线多个偏转方向的控制,满足多方向出光的需求。
上述图中只是示例性的说明各区域中电极条和遮光条的延伸方向,本领域技术人员可以根据需要设置电极条和遮光条(或者介质层)的其他延伸方向,并不限于图中所示的方向。
液晶通常可对一种偏振方向的偏振光进行折射,使光线偏转一定角度,例如,对第一偏振方向的p偏振光或者对第二偏振方向的s偏转光进行折射,而对何种偏转态的偏振光进行折射与液晶的取向方向有关,因此,可将液晶的取向方向设置为与电极条的延伸方向相互垂直或者相互平行。
本公开实施例还提供了一种照明设备,参照图6所示,该照明设备包括准直光源01和上述任一实施例所述的光线调节装置02,光线调节装置02设置在准直光源01的光线出射方向。
该照明设备中,采用准直光源作为光源,将光线调节装置设置在准直光源的光线出射方向,准直光源发出的光线作为入射光线,入射光线的入射角度大 致等于0°,经过光线调节装置使光线发生偏转,实现照明设备的出光方向可调节。
在一些例子中,准直光源的光线可以为偏振光,通过光线调节装置中的液晶对该偏振光进行折射,使光线偏转一定角度。
准直光源的光线也可以为自然光,此时,参照图7所示,该照明设置中,可在光学调节装置02的液晶30和准直光源01之间设置偏振片03。
准直光源的光线经第一基板入射至光线调节装置的液晶,通过在准直光源与液晶之间设置偏振片,可将准直光源发出的自然光转变成偏振光,进而通过液晶对偏振光进行折射,使光线偏转一定角度。
上述的偏振片可以设置在第一基板靠近准直光源的一侧;也可以设置在第一基板远离准直光源的一侧,例如设置在第一电极层上方或者第一电极层下方,本实施例对此并不限定。
上述的准直光源可以包括矩阵排列的多个LED,并且在LED上设置反射罩或者几何透镜等。
在一个可选的实施方式中,该照明设备中,准直光源的光线为自然光;
光线调节装置包括叠加在准直光源的光线出射方向的第一光线调节装置和第二光线调节装置;
第一光线调节装置的液晶的取向方向与其中电极条的延伸方向相互平行,第二光线调节装置的液晶的取向方向与其中电极条(例如图8中的第一电极条和第二电极条)的延伸方向相互垂直。
本实施例中,在准直光源的光线出射方向设置有两种光线调节装置,即第一光线调节装置和第二光线调节装置,两种光线调节装置中的液晶的取向方向不同,可分别对准直光源的光线中的两种不同偏振态的偏振光进行折射,这样有利于增加照明设备的亮度。
图8为一示例性实施例提供的照明设备的截面结构示意图,参照图8所示,该照明设备包括准直光源01,第一光学调节装置021和第二光线调节装置022,第一光学调节装置021和第二光线调节装置022叠加在准直光源01的光线出射方向;
第一光学调节装置021例如为图1所示的光线调节装置,具体包括:第一基板10和第二基板20,第一基板10上设置有第一电极层11,第二基板20上设置有第二电极层21,第一基板10和第二基板20之间设置有液晶31, 第一电极层11包括上电极层和下电极层,上电极层和下电极层之间设置有绝缘层13。
第二光线调节装置022与第一光学调节装置021的结构类似,也包括第一基板10'和第二基板20',第一基板10'上设置有第一电极层11',第二基板20'上设置有第二电极层21',第一基板10'和第二基板20'之间设置有液晶31',第一电极层11'包括上电极层和下电极层,上电极层和下电极层之间设置有绝缘层13'。
第二光线调节装置022与第一光学调节装置021不同之处在于,第二光线调节装置022中的液晶31'与第一光线调节装置021中的液晶31取向方向不同,第一光线调节装置021中的液晶31的取向方向为与其中电极条的延伸方向平行的方向,例如为图中朝向纸面内的方向,而第二光线调节装置022中的液晶31'的取向方向为与其中电极条的延伸方向垂直的方向,例如为图中的水平方向。
上述的照明设备中,准直光源的光线为自然光,包括两种偏振方向的偏振光,分别为p偏振光和s偏转光,对于第一光线调节装置而言,其中的液晶可对p偏振光进行折射,使其发生偏转,而对于s偏转光不发生折射,s偏转光可直接通过第一光线调节装置;对于第二光线调节装置而言,其中的液晶可对s偏振光进行折射,使其发生偏转,而p偏振光通过第一光线调节装置折射后直接通过第二光线调节装置,因此,该照明设备可对准直光源发出光线中的两种方向的偏振光均进行折射,提高光源的利用率,有利于提高照明设备的亮度。
上述的照明设备可作为车辆上的车灯,可根据需要调节从车灯出射的光线的偏转方向,例如,当车辆左转时,可控制车灯出射的光线向左偏转,当车辆右转时,可控制车灯出射的光线向右偏转,可满足车辆对车灯不同出光方向的需求,有利于提高用户体验和产品竞争力。
需要说明书的是,为了增大光线的偏转角度,如图8所述,可仅在远离准直背光源01的第二光线调节装置022的第二基板20'上设置光栅层22',在光线从第二光线调节装置022出射至空气之前,通过该光栅层22'进一步增大光线的偏转角度,当然,也可以在第一光线调节装置的第二基板和第二光线调节装置的第二基板上均设置光栅层,本公开对此并不限定。
上述照明设备只是本实施例提供的一种应用情景,本领域技术人员可以 根据不同的应用情景需要,设置照明设备中的光学调节装置中的光栅层、电极层、液晶的取向方向的不同组合,从而满足不同的照明需求,本公开对此并不限定。
为了进一步减少上述照明设备的厚度,参照图8所示,第一光线调节装置021的第二基板20和第二光线调节装置022的第一基板10'可以为相同的共用基板(例如图中的第二基板20),即二者共用一块基板,在该共用基板的第一面设置有第二电极层21,为第一光线调节装置021的第二电极层,在该共用基板的第二面(与设置第二电极层21的第一面相对的一面)设置有第一电极层11',该第一电极层11'为第二光线调节装置022的第一电极层11'。
上述图8所示仅为一示例性实施例提供的照明设备的结构,照明设备包括的第一光线调节装置和第二光线调节装置还可以采用上述任一实施例提供的光线调节装置,本公开对此并不限定。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种光线调节装置,包括:
    第一基板,所述第一基板上设置有第一电极层;
    第二基板,所述第二基板上设置有第二电极层;
    所述第一基板设置有所述第一电极层的一面与所述第二基板设置有所述第二电极层的一面相对设置;
    液晶,夹设在所述第一基板和所述第二基板之间;
    所述第一电极层包括多个电极单元,每个所述电极单元包括多个电极条,每个电极条用于加载不同的驱动电压信号,所述第二电极层用于加载公共电压信号;
    经过各所述电极单元对应位置的液晶的光线出射方向沿相同方向偏转。
  2. 根据权利要求1所述的装置,其中,
    对于每个所述电极单元,沿所述电极条的排列方向,各所述电极条上加载的驱动电压信号逐步增大或者逐步减小。
  3. 根据权利要求1所述的装置,其中,
    所述第一电极层包括上电极层和下电极层,所述上电极层和所述下电极层之间设置有绝缘层;
    所述上电极层包括多个第一电极条,所述下电极层包括多个第二电极条;
    每相邻的两个所述第一电极条在所述第一基板上的投影之间具有一个所述第二电极条在所述第一基板上的投影;
    每个所述电极单元包括连续分布的至少一个所述第一电极条和至少一个所述第二电极条。
  4. 根据权利要求3所述的装置,其中,
    所述每相邻的两个所述第一电极条在所述第一基板上的投影和所述一个所述第二电极条在所述第一基板上的投影相接。
  5. 根据权利要求1所述的装置,其中,
    所述第二基板上还设置有光栅层,光线经过所述光栅层后发生偏转以增大光线的偏转角度。
  6. 根据权利要求5所述的装置,其中,
    所述光栅层包括多个间隔设置遮光条,或者所述光栅层包括折射率不同的两种介质层,两种介质层交替排列。
  7. 根据权利要求6所述的装置,其中,
    所述光栅层位于所述第二基板与所述第二电极层之间,且所述光栅层上还设置有平坦层。
  8. 根据权利要求6所述的装置,其中,
    所述光学调节装置包括多个区域,各所述区域的光线偏转方向均不相同;
    每个区域至少包括一个电极单元,相同区域中的电极条的延伸方向均相同,至少有两个区域中的电极条延伸方向不相同;
    电极条的延伸方向相同的区域中的电极单元对应位置的液晶的偏转角度变化趋势不同;
    相同区域中的电极条的延伸方向与该区域中的遮光条的延伸方向相同或者相同区域中的电极条的延伸方向与该区域中的介质层的延伸方向相同。
  9. 根据权利要求1-8任一项所述的装置,其中,
    所述液晶的取向方向与所述电极条的延伸方向相互垂直或者相互平行。
  10. 一种照明设备,包括准直光源和权利要求1-9任一项所述的光线调节装置,所述光线调节装置设置在所述准直光源的光线出射方向。
  11. 根据权利要求10所述的照明设备,其中,
    所述准直光源的光线为偏振光。
  12. 根据权利要求10所述的照明设备,其中,
    所述准直光源的光线为自然光,在所述光学调节装置的液晶和所述准直光源之间还设置有偏振片。
  13. 根据权利要求10所述的照明设备,其中,
    所述准直光源的光线为自然光;
    所述光线调节装置包括叠加在所述准直光源的光线出射方向的第一光线调节装置和第二光线调节装置;
    所述第一光线调节装置的液晶的取向方向与其中电极条的延伸方向相互平行,所述第二光线调节装置的液晶的取向方向与其中电极条的延伸方向相互垂直。
  14. 根据权利要求13所述的照明设备,其中,所述第一光线调节装置的第二基板和所述第二光线调节装置的第一基板为相同的共用基板;
    所述共用基板的第一面设置有所述第一光线调节装置的第二电极层,所述共用基板的第二面设置有所述第二光线调节装置的第一电极层,所述第二 面为与所述第一面相对的一面。
PCT/CN2019/086831 2018-07-25 2019-05-14 光线调节装置和照明设备 WO2020019832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,287 US11002428B2 (en) 2018-07-25 2019-05-14 Light regulation device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810828917.9 2018-07-25
CN201810828917.9A CN108983530B (zh) 2018-07-25 2018-07-25 光线调节装置和照明设备

Publications (1)

Publication Number Publication Date
WO2020019832A1 true WO2020019832A1 (zh) 2020-01-30

Family

ID=64551160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086831 WO2020019832A1 (zh) 2018-07-25 2019-05-14 光线调节装置和照明设备

Country Status (3)

Country Link
US (1) US11002428B2 (zh)
CN (1) CN108983530B (zh)
WO (1) WO2020019832A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983530B (zh) 2018-07-25 2021-11-02 京东方科技集团股份有限公司 光线调节装置和照明设备
CN111092109B (zh) * 2020-01-02 2022-04-08 武汉天马微电子有限公司 显示面板及显示装置
CN113156719A (zh) * 2020-01-22 2021-07-23 京东方科技集团股份有限公司 调光面板及其制造方法
US11708020B2 (en) * 2021-01-19 2023-07-25 Federal Signal Corporation Lighting unit with electronically modulated beam configuration
CN115826280B (zh) * 2023-02-20 2023-07-18 重庆汉朗精工科技有限公司 一种具有独立分区的液晶型电控光束角度调控装置和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176308A (zh) * 2013-04-03 2013-06-26 上海交通大学 基于液晶棱镜阵列的全分辨率自由立体显示设备及方法
KR20130106719A (ko) * 2012-03-20 2013-09-30 엘지디스플레이 주식회사 액정 프리즘
CN105511179A (zh) * 2016-03-03 2016-04-20 京东方科技集团股份有限公司 一种液晶显示器
CN105676511A (zh) * 2016-04-01 2016-06-15 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN107945760A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN108983530A (zh) * 2018-07-25 2018-12-11 京东方科技集团股份有限公司 光线调节装置和照明设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6169594B1 (en) * 1998-08-24 2001-01-02 Physical Optics Corporation Beam deflector and scanner
CN101218467A (zh) * 2005-07-08 2008-07-09 皇家飞利浦电子股份有限公司 一种产生具有电可变散射图案的光的光模块及其作为多用途灯的用途
KR20110078788A (ko) * 2009-12-31 2011-07-07 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
CN103576399B (zh) * 2013-09-26 2016-06-01 西安空间无线电技术研究所 一种液晶光学相控阵天线实现方法
CN204009310U (zh) * 2014-06-25 2014-12-10 重庆卓美华视光电有限公司 3d分光器及立体显示装置
CN205281069U (zh) * 2016-01-08 2016-06-01 京东方科技集团股份有限公司 一种显示装置
CN105607379A (zh) * 2016-03-16 2016-05-25 京东方科技集团股份有限公司 液晶透镜及其驱动方法、显示装置
CN205877967U (zh) * 2016-05-20 2017-01-11 京东方科技集团股份有限公司 一种照明装置及交通工具
CN107942527A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶光栅及其控制方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130106719A (ko) * 2012-03-20 2013-09-30 엘지디스플레이 주식회사 액정 프리즘
CN103176308A (zh) * 2013-04-03 2013-06-26 上海交通大学 基于液晶棱镜阵列的全分辨率自由立体显示设备及方法
CN105511179A (zh) * 2016-03-03 2016-04-20 京东方科技集团股份有限公司 一种液晶显示器
CN105676511A (zh) * 2016-04-01 2016-06-15 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN107945760A (zh) * 2018-01-02 2018-04-20 京东方科技集团股份有限公司 液晶显示面板及其驱动方法、显示装置
CN108983530A (zh) * 2018-07-25 2018-12-11 京东方科技集团股份有限公司 光线调节装置和照明设备

Also Published As

Publication number Publication date
US11002428B2 (en) 2021-05-11
CN108983530B (zh) 2021-11-02
CN108983530A (zh) 2018-12-11
US20210010657A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2020019832A1 (zh) 光线调节装置和照明设备
US10747044B2 (en) Variable optical retarder
CN107037632B (zh) 显示装置
JP3900805B2 (ja) 照明装置及びそれを用いた液晶表示装置
US10386671B2 (en) Display device and illumination device
US10684529B2 (en) Display panel, method for adjusting grayscale of the same, and display device
US20140111741A1 (en) Liquid crystal display device
US8111338B2 (en) Beam shaping device
WO2014183397A1 (zh) 显示装置
US11226512B2 (en) Liquid crystal display device and display method
US11221539B2 (en) Liquid crystal beam control device generating flat-top distribution
US20120307178A1 (en) Display device
WO2017148010A1 (zh) 液晶显示器以及电子设备
KR20160024252A (ko) 액정을 포함한 광 변조 장치, 그 구동 방법, 그리고 이를 이용한 광학 장치
WO2018129998A1 (zh) 液晶显示器及其驱动方法
US20150085214A1 (en) Liquid crystal lens and image display apparatus including the same
US10310356B2 (en) Optical device and display device
WO2020093513A1 (zh) 显示面板组件及显示装置
US10481465B2 (en) Illumination device and display device
CN109307903B (zh) 一种出射偏振光的背光源及其制备方法和液晶显示装置
US9182639B2 (en) Liquid crystal display device
JP5508538B2 (ja) マルチビュー表示装置
JP2020204664A (ja) 光学装置
US20170082883A1 (en) Transflective type blue phase liquid crystal display device and liquid crystal display module of the same
KR101428571B1 (ko) 액정렌즈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840199

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19840199

Country of ref document: EP

Kind code of ref document: A1