WO2020019678A1 - 背光模组及其led光源组切换方法 - Google Patents

背光模组及其led光源组切换方法 Download PDF

Info

Publication number
WO2020019678A1
WO2020019678A1 PCT/CN2019/070068 CN2019070068W WO2020019678A1 WO 2020019678 A1 WO2020019678 A1 WO 2020019678A1 CN 2019070068 W CN2019070068 W CN 2019070068W WO 2020019678 A1 WO2020019678 A1 WO 2020019678A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
source group
led light
backlight module
quantum dot
Prior art date
Application number
PCT/CN2019/070068
Other languages
English (en)
French (fr)
Inventor
肖士元
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/340,141 priority Critical patent/US10788702B2/en
Publication of WO2020019678A1 publication Critical patent/WO2020019678A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a backlight module and a method for switching an LED light source group thereof.
  • the color gamut value of the display needs to be increased.
  • the display effect is usually achieved by mixing quantum dots into white light High color gamut to meet the application needs of high color gamut display.
  • the higher the color gamut the lower the brightness of the display device.
  • the power consumption of the backlight module needs to be increased.
  • the power consumption of the module causes unnecessary waste of energy.
  • the high color gamut display status is only used when watching high-definition movies and televisions, and other situations often do not require the use of high color gamut display status, and only the conventional color gamut display status can meet the needs. .
  • a high color gamut display state and a conventional color gamut display state cannot be freely switched.
  • the present disclosure provides a backlight module and an LED light source group switching method thereof, which can solve the technical problem that free switching between the high color gamut display state and the conventional color gamut display state in the prior art is not possible.
  • An embodiment of the present disclosure provides a backlight module.
  • the backlight module at least includes a light guide plate, a light bar substrate, and a plurality of quantum dot layers.
  • the light bar substrate is disposed on the light incident side of the light guide plate.
  • the light bar substrate includes a first LED light source group and a second LED light source group, the first LED light source group and the second LED light source group.
  • the quantum dot layer is selectively lit according to different color gamut display states.
  • the quantum dot layer is disposed on a light incident side of the light guide plate.
  • the first LED light source group is lit, the first LED light source group
  • the emitted light can enter the light guide plate after falling into the quantum dot layer.
  • the second LED light source group is lit, the light emitted by the second LED light source group does not pass through the quantum dot layer.
  • the size and length of the quantum dot layer correspond to the range of light emitted by the first LED light source group.
  • the first LED light source group includes a plurality of blue LEDs
  • the second LED light source group includes a plurality of white LEDs.
  • the blue LEDs and the white LEDs are arranged at intervals along the same straight line direction, and the separation distance between the adjacent blue and white LEDs is equal.
  • the plurality of quantum dot layers are disposed at intervals.
  • the first LED light source group is arranged opposite to the quantum dot layer, and a gap portion between the second LED light source group and the quantum dot layer is opposite to each other. Arrange settings.
  • the quantum dot layer is disposed on the blue LED.
  • a flexible circuit board is connected to the first LED light source group and the second LED light source group.
  • the quantum dot layer includes red quantum dots, green quantum dots, and blue quantum dots.
  • the backlight module further includes an optical film group and a reflection sheet.
  • An embodiment of the present disclosure provides a backlight module.
  • the backlight module at least includes a light guide plate, a light bar substrate, and a plurality of quantum dot layers.
  • the light bar substrate is disposed on the light incident side of the light guide plate.
  • the light bar substrate includes a first LED light source group and a second LED light source group, the first LED light source group and the second LED light source group.
  • the quantum dot layer is selectively lit according to different color gamut display states.
  • the quantum dot layer is disposed on a light incident side of the light guide plate.
  • the first LED light source group is lit, the first LED light source group
  • the emitted light can enter the light guide plate after falling into the quantum dot layer.
  • the second LED light source group is lit, the light emitted by the second LED light source group does not pass through the quantum dot layer. Directly enter the light guide plate.
  • the first LED light source group includes a plurality of blue LEDs
  • the second LED light source group includes a plurality of white LEDs.
  • the number of the blue LEDs and the white LEDs is determined according to the type of display device and the screen size to which the LEDs are applied.
  • the blue LEDs and the white LEDs are arranged at intervals along the same straight line direction, and the separation distance between the adjacent blue and white LEDs is equal.
  • the plurality of quantum dot layers are disposed at intervals.
  • the first LED light source group is arranged opposite to the quantum dot layer, and a gap portion between the second LED light source group and the quantum dot layer is opposite to each other. Arrange settings.
  • the quantum dot layer is disposed on the blue LED.
  • a flexible circuit board is connected to the first LED light source group and the second LED light source group.
  • the quantum dot layer includes red quantum dots, green quantum dots, and blue quantum dots.
  • the backlight module further includes an optical film group and a reflection sheet.
  • An embodiment of the present disclosure provides a method for switching an LED light source group of a backlight module of a display device.
  • the method for switching an LED light source group includes the following steps:
  • step S10 The backlight module with a driving circuit, a first LED light source group and a second LED light source group detects that a current display device needs to display a picture in a first display state or a second display state, wherein the first LED light source group The second LED light source set operates when the first display state is used. If it is detected that the display device currently needs to display a picture in the first display state, step S20 is performed. If it is detected that the demand of the screen to be displayed by the display device is the second display state, step S30 is performed;
  • step S20 the driving circuit of the backlight module performs a power-on operation on the first LED light source group, a power-off operation on the second LED light source group, and then proceeds to step S40;
  • step S30 the driving circuit of the backlight module performs a power-on operation on the second LED light source group, a power-off operation on the first LED light source group, and then proceeds to step S40;
  • the backlight module controls the first LED light source group and the second LED light source group according to the display state requirements of the screen to be displayed by the display device.
  • the beneficial effects of the embodiments of the present disclosure provide a plurality of quantum dot layers on a light guide plate by setting a first LED light source group and a second LED light source group on a backlight module light bar substrate.
  • the first LED light source group and the second LED light source group are selectively lighted according to different color gamut display states. Only the first LED light source group is turned on to form a high color gamut display screen, and only the second LED light source group points. When it is on, it forms a regular color gamut display screen.
  • the user can freely switch between high color gamut display status and normal color gamut display status according to different needs.
  • When switching to the high color gamut display state users can obtain high-quality visual enjoyment.
  • the power consumption of the backlight module can be reduced, and the product's function and market competitiveness can be improved.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of the operation of a backlight module in a high color gamut display state according to an embodiment of the disclosure
  • FIG. 4 is a schematic diagram of the operation structure of a backlight module in a conventional color gamut display state according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a backlight module according to another embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the display device includes a backlight module and a display module, wherein the backlight module includes a light guide plate 101 and a light bar.
  • the substrate 102 and the light guide plate 101 include a light incident side 110 and a light exit side 110 '.
  • the backlight module further includes an optical film group and a reflection sheet.
  • An optical film group 103 is provided on the light-emitting side 110 'of the light guide plate 101.
  • the optical film group 103 includes a diffusion plate or a prism sheet.
  • a reflective sheet 104 is disposed on a side of the light guide plate 101 far from the light exit side 110 '.
  • the display device may be a liquid crystal panel display device or other types of panel display devices.
  • the display module is provided with a lower polarizer 105, a thin film transistor TFT (Thin A film transistor (substrate) 106, a color filter (CF) substrate 107, and an upper polarizer 108.
  • TFT Thin A film transistor
  • CF color filter
  • the light bar substrate 102 includes an LED light source 109.
  • the light emitted by the LED light source 109 first enters from the light incident side 110 of the light guide plate 101, and a part of the light is emitted from the light exit side 110 'of the light guide plate 101.
  • the optical film group 103 another part of the light is reflected by the reflection sheet 104 and enters the light guide plate 101, and then is incident from the light exit side 110 'of the light guide plate 101 toward the optical film group 103, and finally
  • the light is emitted from the optical film group 103 to the lower polarizer 105, passes through the thin film transistor TFT substrate 106, the color filter CF substrate 107 in this order, and is emitted from the upper polarizer 108.
  • FIG. 2 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure. Referring to FIG. 2,
  • a high color gamut display state can be obtained in various ways.
  • the most common and widely used method is a combination of blue LEDs with quantum dots.
  • the quantum dots When the quantum dots are illuminated by light of a specific wavelength, they emit monochromatic light. , Can increase the color gamut value of the display device.
  • the first LED light source group 214 includes a plurality of blue LEDs 214 '
  • the second LED light source group 215 includes a plurality of white LEDs 215'
  • the blue LEDs 214 'and the white LEDs 215' are arranged at intervals along the same straight line direction.
  • the distance between adjacent blue LEDs 214 ′ and white LEDs 215 ′ is equal, so that not only the first LED light source group 214 and the second LED light source group 215 can be arranged closely, but also the light emitted by the blue LED 214 ′ and the white LED 215 ′ can be relatively Even.
  • the number of the blue-light LEDs 214 'and the white-light LEDs 215' is determined according to the type of display device and the screen size of the display device.
  • a larger number of blue LEDs 214 'and white LEDs 215' can be set; for phones and tablets with smaller screen sizes, a relatively small number of blue LEDs 214 'and white lights can be set LED215 '.
  • the surface of the light incident side 210 of the light guide plate 201 is provided with a plurality of spaced-apart quantum dot layers 213.
  • the quantum dot layers 213 may be provided on the light guide plate 201 by coating, evaporation, or sputtering.
  • the surface of the light incident side 210 is provided with a plurality of spaced-apart quantum dot layers 213.
  • the first LED light source group 214 is disposed opposite to the quantum dot layer 213, and the gap portion between the second LED light source group 215 and the adjacent quantum dot layer 213 is disposed opposite.
  • a gap portion between the quantum dot layer 213 and an adjacent quantum dot layer 213 covers the entire surface of the light incident side 210 of the light guide plate 201.
  • the size and length of the quantum dot layer 213 correspond to the range of the light emitted by the first LED light source group 214, which enables the blue LED 214 'emitted by the first LED light source group 214 to fall into the quantum dots.
  • the number of the quantum dot layers 213 can be made equal to the number of the blue LEDs 214 ', so that each individual blue LED 214' corresponds to each individual quantum dot layer 213.
  • a flexible circuit board FPC Flexible
  • FPC Flexible
  • (Printed Circuit) 216 which provides a connection with a driving circuit for the on and off operations of the first LED light source group 214 and the second LED light source group 215, and controls the working state thereof.
  • FIG. 3 is a schematic diagram of the operation structure of a backlight module in a high color gamut display state provided by an embodiment of the present disclosure.
  • the first LED light source group 214 when a high color gamut display state is required, only the first LED light source group 214 can be powered on to work, the first LED light source group is lit, and the blue LED 214 in the first LED light source group 214 is turned on.
  • the emitted blue light can all fall into the quantum dot layer 213, and the light emitted from the excited quantum dot layer 213 is mixed with the blue light to form white light, and then the white light is incident on the light guide plate 201 to form a high color gamut display screen.
  • the quantum dot layer 213 includes red quantum dots, green quantum dots, and blue quantum dots.
  • the quantum dot layer 213 is formed only by mixing red quantum dots and green quantum dots; the red quantum dots and green quantum dots emit blue light at the blue LED 214 '. Red light and green light are emitted under excitation, which are mixed with a part of blue light to form white light.
  • the wavelengths of the red quantum dots and the green quantum dots are both larger than the light emitting wavelength of the blue light, so that the blue light emitted by the blue LED 214 'in the first LED light source group 214 and the excited red light and green light can be made. Blended white light is better and has a higher color gamut. Specifically, an emission wavelength of blue light emitted by the blue LED 214 ′ is 435 nm to 455 nm, an emission wavelength of the red quantum dot is 610 nm to 640 nm, and an emission wavelength of the green quantum dot is 510 nm to 540 nm. .
  • FIG. 4 is a schematic diagram showing the operation structure of a backlight module in a conventional color gamut display state according to an embodiment of the present disclosure.
  • the first LED light source group 214 can be powered off and not operated, and the second LED light source group 215 is powered on and operated.
  • the second LED light source group 215 is turned on, and all the white light emitted by the white LED 215 'in the second LED light source group 215 falls into a gap portion between two adjacent quantum dot layers 213 without passing through the quantum.
  • the dot layer 213 directly enters the light guide plate 201 to form a normal color gamut display screen.
  • the backlight module in this embodiment provides a connection between the first LED light source group 214 and the second LED light source group 215 and the driving circuit through the flexible circuit board 216, and controls the working states of the on and off states to achieve high color performance.
  • FIG. 5 is a schematic structural diagram of a backlight module according to another embodiment of the present disclosure.
  • the quantum dot layer 213 can also be provided on the first LED light source group 214 to solve the technical problem that the high color gamut display state and the conventional color gamut display state cannot be switched freely.
  • the backlight module includes at least a light guide plate 201 and a light bar substrate 202 disposed on a light incident side 210 of the light guide plate 201.
  • the light bar substrate 202 includes a first LED light source group 214 and a second LED.
  • the first LED light source group 214 and the second LED light source group 215 are connected through a flexible circuit board FPC216.
  • the first LED light source group 214 includes a plurality of blue LEDs 214 '
  • the second LED light source group 215 includes a plurality of white LEDs 215'
  • the plurality of blue LEDs 214 'and the plurality of white LEDs 215' are arranged at intervals from each other, and The distance between the adjacent blue LEDs 214 'and white LEDs 215' is equal, and at the same time, a quantum dot layer 213 is provided on the light outlets of the multiple blue LEDs 214 'in the first light source group 214.
  • the quantum dot layer 213 may cover the entire light-emitting port of the blue LED 214 'by coating, evaporation, or sputtering, so that only the first LED light source group 214 is powered on, and the first LED light source The group 214 is lit, and all the blue light emitted by the blue LED 214 'can fall into the quantum dot layer 213, and after mixing with the light formed by exciting the quantum dot layer 213, it forms white light and enters the light guide plate 201 to form High color gamut display.
  • the second LED light source group 215 When it is necessary to switch to the conventional color gamut display screen, only the second LED light source group 215 is powered on, the second LED light source group 215 is lit, and the light emitted by the white LED 215 'does not pass through the quantum dot layer. 213 directly enters the light guide plate 201 to form a normal color gamut display screen.
  • the backlight module in this embodiment provides a connection between the blue LED 214 ′ and the white LED 215 ′ and the driving circuit through the flexible circuit board 216, and controls the working state of the on-off and power-off to achieve the high-gamut display state and the conventional The purpose of free switching between color gamut display states.
  • the present disclosure provides another embodiment of a method for switching an LED light source group of a backlight module of a display device.
  • the method for switching the light source group includes the following steps:
  • the backlight module with the driving circuit, the first LED light source group and the second LED light source group detects the demand of the screen currently being displayed by the display module, and is in a high color gamut display state or a conventional color gamut display state, in which the first LED The light source group is used to operate when displaying a high color gamut picture, and the second LED light source group is used to operate when displaying a normal color gamut picture. If it is detected that the current display module needs to display a picture with a high color gamut display state, perform steps S20. If it is detected that the current display module needs to display a picture in a normal color gamut display state, step S30 is performed;
  • step S20 The driving circuit of the backlight module performs a power-on operation on the first LED light source group and a power-off operation on the second LED light source group, and then proceeds to step S40;
  • step S30 The driving circuit of the backlight module performs a power-on operation on the second LED light source group, a power-off operation on the first LED light source group, and then proceeds to step S40;
  • the backlight module responds to the requirements of the color gamut display state of the screen to be displayed by the display module, and the driving circuit controls the first LED light source group and the second LED light source group.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组及其LED光源组切换方法,背光模组包括:导光板(101)、灯条基板(102)以及多个量子点层(213),灯条基板(102)包括第一LED光源组(214)、第二LED光源组(215),第一LED光源组(214)被点亮时,其发出的光线落入量子点层(213)后射入导光板(201),第二LED光源组(215)被点亮时,其发出的光线不经过量子点层(213)直接射入导光板(201),可根据不同需求进行色域显示状态之间的切换。

Description

背光模组及其LED光源组切换方法 技术领域
本揭示涉及显示技术领域,尤其涉及一种背光模组及其LED光源组切换方法。
背景技术
随着显示技术的发展、应用场合越来越多,用户对显示效果要求也随之增高,因此需要提高显示器的色域值,目前通常采用通过激发量子点混合成白光的方式来实现显示效果的高色域,以此来满足高色域显示的应用需求。
但是色域越高会导致显示装置的亮度降低,在进行高色域显示时,为了保持亮度不变,则需增加背光模组的功耗,若一直保持高色域显示状态则会大大增加背光模组的功耗,造成不必要的能源浪费。然而在人们平时生活中,高色域显示状态仅在观看高清影视的时候用到,而除此之外的其他情况往往无需使用高色域显示状态,仅需要常规色域显示状态即可满足需要。目前已知的技术中,高色域显示状态与常规色域显示状态之间无法自由切换。
因此,需要提供一种新的背光模组及其LED光源组切换方法,来解决上述问题。
技术问题
本揭示提供一种背光模组及其LED光源组切换方法,能够解决现有技术中在高色域显示状态与常规色域显示状态之间无法进行自由切换的技术问题。
技术解决方案
为解决上述问题,本揭示提供的技术方案如下:
本揭示的实施例提供一种背光模组,所述背光模组至少包括:导光板、灯条基板以及多个量子点层;
其中所述灯条基板设置于所述导光板的入光侧,所述灯条基板包括第一LED光源组以及第二LED光源组,所述第一LED光源组与所述第二LED光源组对应不同的色域显示状态而选择性被点亮,所述量子点层设置于所述导光板的入光侧,当所述第一LED光源组被点亮时,所述第一LED光源组发出的光线能够落入所述量子点层后射入所述导光板,当所述第二LED光源组被点亮时,所述第二LED光源组发出的光线不经过所述量子点层而直接射入所述导光板,所述量子点层的尺寸长度对应所述第一LED光源组发出光线的范围大小。
在本揭示的实施例所述的背光模组中,所述第一LED光源组包括多个蓝光LED,所述第二LED光源组包括多个白光LED。
在本揭示的实施例所述的背光模组中,所述蓝光LED与所述白光LED沿同一直线方向间隔排列设置,所述相邻蓝光LED、白光LED之间间隔距离相等。
在本揭示的实施例所述的背光模组中,所述多个量子点层间隔设置。
在本揭示的实施例所述的背光模组中,所述第一LED光源组与所述量子点层相对排列设置,所述第二LED光源组与所述量子点层之间的间隙部分相对排列设置。
在本揭示的实施例所述的背光模组中,所述量子点层设置于所述蓝光LED上。
在本揭示的实施例所述的背光模组中,所述第一LED光源组与所述第二LED光源组连接有柔性电路板。
在本揭示的实施例所述的背光模组中,所述量子点层包括红色量子点、绿色量子点及蓝色量子点。
在本揭示的实施例所述的背光模组中,所述背光模组还包括光学膜片组及反射片。
本揭示的实施例提供一种背光模组,所述背光模组至少包括:导光板、灯条基板以及多个量子点层;
其中所述灯条基板设置于所述导光板的入光侧,所述灯条基板包括第一LED光源组以及第二LED光源组,所述第一LED光源组与所述第二LED光源组对应不同的色域显示状态而选择性被点亮,所述量子点层设置于所述导光板的入光侧,当所述第一LED光源组被点亮时,所述第一LED光源组发出的光线能够落入所述量子点层后射入所述导光板,当所述第二LED光源组被点亮时,所述第二LED光源组发出的光线不经过所述量子点层而直接射入所述导光板。
在本揭示的实施例所述的背光模组中,所述第一LED光源组包括多个蓝光LED,所述第二LED光源组包括多个白光LED。
在本揭示的实施例所述的背光模组中,所述蓝光LED与所述白光LED的数量根据其应用的显示装置的种类及屏幕尺寸确定。
在本揭示的实施例所述的背光模组中,所述蓝光LED与所述白光LED沿同一直线方向间隔排列设置,所述相邻蓝光LED、白光LED之间间隔距离相等。
在本揭示的实施例所述的背光模组中,所述多个量子点层间隔设置。
在本揭示的实施例所述的背光模组中,所述第一LED光源组与所述量子点层相对排列设置,所述第二LED光源组与所述量子点层之间的间隙部分相对排列设置。
在本揭示的实施例所述的背光模组中,所述量子点层设置于所述蓝光LED上。
在本揭示的实施例所述的背光模组中,所述第一LED光源组与所述第二LED光源组连接有柔性电路板。
在本揭示的实施例所述的背光模组中,所述量子点层包括红色量子点、绿色量子点及蓝色量子点。
在本揭示的实施例所述的背光模组中,所述背光模组还包括光学膜片组及反射片。
本揭示的实施例提供一种显示装置的背光模组的LED光源组切换方法,所述LED光源组切换方法包括以下步骤:
S10:具有驱动电路、第一LED光源组及第二LED光源组的背光模块侦测目前显示装置将显示的画面的需求为第一显示状态或第二显示状态,其中所述第一LED光源组用于第一显示状态时运作,所述第二LED光源组用于第二显示状态时运作,若侦测目前所述显示装置将显示的画面的需求为第一显示状态时,进行步骤S20,若侦测目前所述显示装置将显示的画面的需求为第二显示状态时,则进行步骤S30;
S20:所述背光模块的所述驱动电路对所述第一LED光源组进行通电操作,对所述第二LED光源组进行断电操作,接着进行步骤S40;
S30:所述背光模块的所述驱动电路对所述第二LED光源组进行通电操作,对所述第一LED光源组进行断电操作,接着进行步骤S40;
S40:所述背光模块对应所述显示装置将显示的画面对显示状态的需求,由所述驱动电路对所述第一LED光源组及所述第二LED光源组进行控制。
有益效果
本揭示的实施例的有益效果:本揭示的实施例通过在背光模组灯条基板上设置第一LED光源组与第二LED光源组,在导光板上设置多个量子点层。其中,第一LED光源组以及第二LED光源组对应不同的色域显示状态而选择性被点亮,仅第一LED光源组点亮时形成高色域显示画面,仅第二LED光源组点亮时形成常规色域显示画面,用户可根据不同的需求可进行高色域显示状态、常规色域显示状态之间的自由切换。当切换为高色域显示状态时,用户可获得高品质的视觉享受,当切换成常规色域显示状态时,可降低背光模组的功耗,提升了产品的功能和市场竞争力。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本揭示的实施例提供的一种显示装置的结构示意图。
图2为本揭示的实施例提供的一种背光模组的结构示意图。
图3为本揭示的实施例提供的一种背光模组在高色域显示状态下的运作结构示意图;
图4为本揭示的实施例提供的一种背光模组在常规色域显示状态下的运作结构示意图。
图5为本揭示的另一实施例提供的一种背光模组的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以实例本揭示可用以实施的特定实施例。本揭示的实施例所提到的方向用语,例如[上]、[下 ]、[前]、 [后]、 [左]、 [右]、[内]、 [外]、 [侧面 ]、[竖直]、[水平]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示的实施例,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
实施例一
图1所示为本揭示的实施例提供的一种显示装置的结构示意图,参考图1,所述显示装置包括背光模组和显示模组,其中所述背光模组包括导光板101、灯条基板102,所述导光板101包括入光侧110及出光侧110'。所述背光模组还包括光学膜片组及反射片,在所述导光板101的出光侧110'设置有光学膜片组103,所述光学膜片组103包括扩散板或棱镜片等,其能够导引光线、聚集光线并调整光线发散角度。同时,在所述导光板101远离出光侧110'的一侧设置有反射片104。所述显示装置可以是液晶面板显示装置或其他类型的面板显示装置。
所述显示模组从下至上依次设置有下偏光片105、薄膜晶体管TFT(Thin Film Transistor)基板106、彩膜CF(color filter)基板107、上偏光片108。
所述灯条基板102包括LED光源109,所述LED光源109发出的光线首先从所述导光板101的入光侧110射入,其中一部分光线从所述导光板101的出光侧110'射向所述光学膜片组103,另一部分光线经所述反射片104反射后射入所述导光板101,之后从所述导光板101的出光侧110'射向所述光学膜片组103,最后从所述光学膜片组103射出至所述下偏光片105,依次经过所述薄膜晶体管TFT基板106、彩膜CF基板107之后从所述上偏光片108射出。
图2所示为本揭示的实施例提供的一种背光模组的结构示意图,参考图2,
在实际应用中可通过多种方式获得高色域显示状态,目前最常见、应用最广泛的为蓝光LED组合量子点的方式,其中当量子点受到特定波长的光线照射后,会发出单色光,能够提高显示装置的色域值。
所述第一LED光源组214包括多个蓝光LED214',所述第二LED光源组215包括多个白光LED215',所述蓝光LED214'与所述白光LED215'沿同一直线方向间隔排列设置,所述相邻蓝光LED214'、白光LED215'之间间隔距离相等,这样不仅能够使第一LED光源组214与第二LED光源组215排列紧密,还可使蓝光LED214'、白光LED215'发出的光线较为均匀。其中,所述蓝光LED214'与白光LED215'的数量根据其应用的显示装置的种类及屏幕尺寸确定。例如,对于屏幕尺寸较大的高清电视,可设置较多数量的蓝光LED214'与白光LED215';而对于屏幕尺寸较小的手机、平板电脑,可设置数量相对较少数量的蓝光LED214'与白光LED215'。
所述导光板201的入光侧210的表面设置有多个间隔设置的量子点层213,所述量子点层213可通过涂覆、蒸镀或溅射等方式设置于所述导光板201的入光侧210的表面。
所述第一LED光源组214与所述量子点层213相对设置,所述第二LED光源组215与相邻所述量子点层213之间的间隙部分相对设置。所述量子点层213与相邻所述量子点层213之间的间隙部分共同布满整个所述导光板201的入光侧210的表面。其中,所述量子点层213的尺寸长度对应所述第一LED光源组214发出光线的范围大小,能够使所述第一LED光源组214中的蓝光LED214'发出光线恰好落入所述量子点层213上。
例如,可使所述量子点层213的数目与所述蓝光LED 214'的数目相等,以使每个单独的蓝光LED214'均与每个单独的量子点层213相互对应。
所述蓝光         LED214'与所述白光LED 215'连接有柔性电路板FPC (Flexible Printed Circuit)216,为所述第一LED光源组214与所述第二LED光源组215的通、断电操作提供与驱动电路的连接,控制其工作状态。
如图3为本揭示的实施例提供的一种背光模组在高色域显示状态下的运作结构示意图。参考图3,当需要高色域显示状态时,可仅使所述第一LED光源组214通电工作,所述第一LED光源组被点亮,所述第一LED光源组214中的蓝光LED214'所发出的蓝光可全部落入所述量子点层213,通过激发量子点层213发出的光线与蓝光相混合形成白光,之后所述白光射入导光板201,以形成高色域显示画面。其中,所述量子点层213包括红色量子点、绿色量子点及蓝色量子点。优选的,为了节省量子点层213材料的用量,所述量子点层213仅由红色量子点与绿色量子点混合形成;所述红色量子点与绿色量子点在所述蓝光LED214'发射的蓝光的激发下分别发出红光和绿光,其与一部分蓝光相混合之后形成白光。
例如,所述红色量子点及绿色量子点的波长均大于所述蓝光的发光波长,可使所述第一LED光源组214中的蓝光LED 214'发出的蓝光与激发出的红光、绿光混合形成的白光效果更好,色域更高。具体的,所述蓝光LED 214'发出的蓝光的发射波长为435纳米~ 455纳米,所述红色量子点的发射波长为 610纳米~640纳米,所述绿色量子点发射波长为510纳米~540纳米。
如图4为本揭示的实施例提供的一种背光模组在常规色域显示状态下的运作结构示意图。参考图4,当不需要高色域显示画面,仅需要以常规色域显示画面时,可使所述第一LED光源组214断电不工作、所述第二LED光源组215通电工作,所述第二LED光源组215被点亮,所述第二LED光源组215中的白色LED215'所发出的白光全部落入相邻两个量子点层213之间的间隙部分,不经过所述量子点层213而直接射入导光板201,以形成常规色域显示画面。
因此,该实施例中的背光模组通过柔性电路板216提供第一LED光源组214与第二LED光源组215与驱动电路的连接,控制其通、断电的工作状态,以达到在高色域显示状态与常规色域显示状态之间自由切换的目的。
实施例二
如图5所示为本揭示的另一实施例提供的一种背光模组的结构示意图。除了上述实施例一中描述的在所述导光板201的入光侧210表面设置量子点层213的方式之外,还可通过将所述量子点层213设在所述第一LED光源组214中的蓝色LED上的方式来解决在高色域显示状态与常规色域显示状态之间无法进行自由切换的技术问题。
参考图5,所述背光模组至少包括导光板201,以及设置在所述导光板201入光侧210的灯条基板202,所述灯条基板202包括第一LED光源组214与第二LED光源组215,所述第一LED光源组214与第二LED光源组215通过柔性电路板FPC216连接。其中,所述第一LED光源组214包括多个蓝光LED214',所述第二LED光源组215包含多个白光LED215',所述多个蓝光LED214'与多个白光LED215'间隔排列设置,且所述相邻蓝光LED214'、白光LED215'之间间隔距离相等,所述同时,在所述第一光源组214中的多个蓝光LED214'的出光口上均设置有量子点层213。
例如,所述量子点层213可通过涂覆、蒸镀或溅射的方式,覆盖整个所述蓝光LED214'的出光口,使仅所述第一LED光源组214通电,所述第一LED光源组214被点亮,所述蓝光LED214'发出的全部蓝光均能够落入所述量子点层213,与激发所述量子点层213形成的光线混合之后形成白光,射入导光板201,以形成高色域显示画面。当需要切换成常规色域显示画面时,使仅所述第二LED光源组215通电,所述第二LED光源组215被点亮,所述白光LED215'发出的光线不经过所述量子点层213上而直接射入导光板201,以形成常规色域显示画面。
因此,该实施例中的背光模组通过柔性电路板216提供蓝光LED214'与白光 LED 215'与驱动电路的连接,控制其通、断电的工作状态,以达到在高色域显示状态与常规色域显示状态之间自由切换的目的。
实施例三
本揭示另提供一实施例为显示装置的背光模组的LED光源组切换方法,所述光源组切换方法包括以下步骤:
S10:具有驱动电路、第一LED光源组及第二LED光源组的背光模块侦测目前显示模组将显示的画面的需求,为高色域显示状态或常规色域显示状态,其中第一LED光源组用于显示高色域画面时运作,第二LED光源组用于显示常规色域画面时运作,若侦测目前显示模组将显示的画面的需求为高色域显示状态时,进行步骤S20,若侦测目前显示模组将显示的画面的需求为常规色域显示状态时,则进行步骤S30;
S20:背光模块的驱动电路对所述第一LED光源组进行通电操作,对所述第二LED光源组进行断电操作,接着进行步骤S40;
S30:背光模块的驱动电路对所述第二LED光源组进行通电操作,对所述第一LED光源组进行断电操作,接着进行步骤S40;
S40:背光模块对应显示模组将显示的画面对色域显示状态的需求,由所述驱动电路对第一LED光源组及第二LED光源组进行控制。
综上所述,虽然本揭示已以优选实施例揭露如上,但上述优选实施例并非用以限制本揭示,本领域的普通技术人员,在不脱离本揭示的精神和范围内,均可作各种更动与润饰,因此本揭示的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种背光模组,其中包括:导光板、灯条基板以及多个量子点层;
    其中所述灯条基板设置于所述导光板的入光侧,所述灯条基板包括第一LED光源组以及第二LED光源组,所述第一LED光源组与所述第二LED光源组对应不同的色域显示状态而选择性被点亮,所述量子点层设置于所述导光板的入光侧,当所述第一LED光源组被点亮时,所述第一LED光源组发出的光线能够落入所述量子点层后射入所述导光板,当所述第二LED光源组被点亮时,所述第二LED光源组发出的光线不经过所述量子点层而直接射入所述导光板,所述量子点层的尺寸长度对应所述第一LED光源组发出光线的范围大小。
  2. 根据权利要求1所述的背光模组,其中所述第一LED光源组包括多个蓝光LED,所述第二LED光源组包括多个白光LED。
  3. 根据权利要求2所述的背光模组,其中所述蓝光LED与所述白光LED沿同一直线方向间隔排列设置,所述相邻蓝光LED、白光LED之间间隔距离相等。
  4. 根据权利要求1所述的背光模组,其中所述多个量子点层间隔设置。
  5. 根据权利要求4所述的背光模组,其中所述第一LED光源组与所述量子点层相对排列设置,所述第二LED光源组与所述量子点层之间的间隙部分相对排列设置。
  6. 根据权利要求4所述的背光模组,其中所述量子点层设置于所述蓝光LED上。
  7. 根据权利要求1所述的背光模组,其中所述第一LED光源组与所述第二LED光源组连接有柔性电路板。
  8. 根据权利要求1所述的背光模组,其中所述量子点层包括红色量子点、绿色量子点及蓝色量子点。
  9. 根据权利要求1所述的背光模组,其中所述背光模组还包括光学膜片组及反射片。
  10. 一种背光模组,其中包括:导光板、灯条基板以及多个量子点层;
    其中所述灯条基板设置于所述导光板的入光侧,所述灯条基板包括第一LED光源组以及第二LED光源组,所述第一LED光源组与所述第二LED光源组对应不同的色域显示状态而选择性被点亮,所述量子点层设置于所述导光板的入光侧,当所述第一LED光源组被点亮时,所述第一LED光源组发出的光线能够落入所述量子点层后射入所述导光板,当所述第二LED光源组被点亮时,所述第二LED光源组发出的光线不经过所述量子点层而直接射入所述导光板。
  11. 根据权利要求10所述的背光模组,其中所述第一LED光源组包括多个蓝光LED,所述第二LED光源组包括多个白光LED。
  12. 根据权利要求11所述的背光模组,其中所述蓝光LED与所述白光LED的数量根据其应用的显示装置的种类及屏幕尺寸确定。
  13. 根据权利要求11所述的背光模组,其中所述蓝光LED与所述白光LED沿同一直线方向间隔排列设置,所述相邻蓝光LED、白光LED之间间隔距离相等。
  14. 根据权利要求10所述的背光模组,其中所述多个量子点层间隔设置。
  15. 根据权利要求14所述的背光模组,其中所述第一LED光源组与所述量子点层相对排列设置,所述第二LED光源组与所述量子点层之间的间隙部分相对排列设置。
  16. 根据权利要求14所述的背光模组,其中所述量子点层设置于所述蓝光LED上。
  17. 根据权利要求10所述的背光模组,其中所述第一LED光源组与所述第二LED光源组连接有柔性电路板。
  18. 根据权利要求10所述的背光模组,其中所述量子点层包括红色量子点、绿色量子点及蓝色量子点。
  19. 根据权利要求10所述的背光模组,其中所述背光模组还包括光学膜片组及反射片。
  20. 一种显示装置的背光模组的LED光源组切换方法,其中所述LED光源组切换方法包括以下步骤:
    S10:具有驱动电路、第一LED光源组及第二LED光源组的背光模块侦测目前显示装置将显示的画面的需求为第一显示状态或第二显示状态,其中所述第一LED光源组用于第一显示状态时运作,所述第二LED光源组用于第二显示状态时运作,若侦测目前所述显示装置将显示的画面的需求为第一显示状态时,进行步骤S20,若侦测目前所述显示装置将显示的画面的需求为第二显示状态时,则进行步骤S30;
    S20:所述背光模块的所述驱动电路对所述第一LED光源组进行通电操作,对所述第二LED光源组进行断电操作,接着进行步骤S40;
    S30:所述背光模块的所述驱动电路对所述第二LED光源组进行通电操作,对所述第一LED光源组进行断电操作,接着进行步骤S40;
    S40:所述背光模块对应所述显示装置将显示的画面对显示状态的需求,由所述驱动电路对所述第一LED光源组及所述第二LED光源组进行控制。
PCT/CN2019/070068 2018-07-26 2019-01-02 背光模组及其led光源组切换方法 WO2020019678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/340,141 US10788702B2 (en) 2018-07-26 2019-01-02 Backlight module and method of switching LED light source groups

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810830992.9A CN109031780A (zh) 2018-07-26 2018-07-26 背光模组、显示装置及其led光源组切换方法
CN201810830992.9 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020019678A1 true WO2020019678A1 (zh) 2020-01-30

Family

ID=64646303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070068 WO2020019678A1 (zh) 2018-07-26 2019-01-02 背光模组及其led光源组切换方法

Country Status (3)

Country Link
US (1) US10788702B2 (zh)
CN (1) CN109031780A (zh)
WO (1) WO2020019678A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031780A (zh) * 2018-07-26 2018-12-18 武汉华星光电技术有限公司 背光模组、显示装置及其led光源组切换方法
CN110596954B (zh) * 2019-09-25 2022-04-12 京东方科技集团股份有限公司 背光模组、显示面板及显示装置
WO2021118601A1 (en) * 2019-12-13 2021-06-17 Hewlett-Packard Development Company, L.P. High color gamut display panel
CN116841087B (zh) * 2023-08-30 2023-12-22 惠科股份有限公司 背光模组和显示设备
CN116819829A (zh) * 2023-08-30 2023-09-29 惠科股份有限公司 背光模组和显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150005743A (ko) * 2013-07-04 2015-01-15 희성전자 주식회사 백라이트 장치
CN104503137A (zh) * 2014-12-30 2015-04-08 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器
CN104930411A (zh) * 2015-06-30 2015-09-23 京东方科技集团股份有限公司 一种背光源模组
CN105278162A (zh) * 2015-11-11 2016-01-27 青岛海信电器股份有限公司 一种背光模组及液晶显示设备
CN108224367A (zh) * 2018-03-07 2018-06-29 京东方科技集团股份有限公司 光源切换装置以及显示装置
CN109031780A (zh) * 2018-07-26 2018-12-18 武汉华星光电技术有限公司 背光模组、显示装置及其led光源组切换方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029701A1 (ja) * 2010-09-03 2012-03-08 シャープ株式会社 液晶表示装置およびその発色方法
US8801260B2 (en) 2011-07-11 2014-08-12 Seiko Epson Corporation Display device, electronic apparatus and lighting device
KR101885929B1 (ko) * 2011-08-16 2018-08-07 엘지디스플레이 주식회사 백라이트 유닛 및 이를 구비한 액정표시장치
JP6388600B2 (ja) * 2013-01-04 2018-09-12 リアルディー インコーポレイテッド 多機能アクティブマトリクス型液晶ディスプレイ用の多原色バックライト
CN205827019U (zh) * 2016-05-31 2016-12-21 昆山龙腾光电有限公司 色域可切换的背光模组及液晶显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150005743A (ko) * 2013-07-04 2015-01-15 희성전자 주식회사 백라이트 장치
CN104503137A (zh) * 2014-12-30 2015-04-08 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器
CN104930411A (zh) * 2015-06-30 2015-09-23 京东方科技集团股份有限公司 一种背光源模组
CN105278162A (zh) * 2015-11-11 2016-01-27 青岛海信电器股份有限公司 一种背光模组及液晶显示设备
CN108224367A (zh) * 2018-03-07 2018-06-29 京东方科技集团股份有限公司 光源切换装置以及显示装置
CN109031780A (zh) * 2018-07-26 2018-12-18 武汉华星光电技术有限公司 背光模组、显示装置及其led光源组切换方法

Also Published As

Publication number Publication date
US10788702B2 (en) 2020-09-29
CN109031780A (zh) 2018-12-18
US20200209684A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2020019678A1 (zh) 背光模组及其led光源组切换方法
US7859609B2 (en) Backlight unit and liquid crystal display device having the same
JP4550638B2 (ja) 面照明装置及びそれを備えた液晶表示装置
US10197852B2 (en) Dual-mode liquid crystal display device, color filter substrate and array substrate
US8339426B2 (en) Illuminator and display having same
US20010035853A1 (en) Assembly of a display device and an illumination system
US20080170178A1 (en) Lighting Device, and Liquid Crystal Display Device Using Same
EP2211329A2 (en) Color display unit
WO2001084227A1 (en) Assembly of a display device and an illumination system
JP2004220031A (ja) 液晶表示装置
JP2010097909A (ja) バックライト及び液晶表示装置
US6781648B2 (en) Liquid-crystal display device
WO2016026181A1 (zh) 彩色液晶显示模组结构及其背光模组
JP2007200888A (ja) バックライトアセンブリ及びこれを有する液晶表示装置
US20080273147A1 (en) Liquid crystal display device having black/white LCD panel
KR101743480B1 (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
KR102342716B1 (ko) 표시장치 및 이의 구동방법
US20190245006A1 (en) Micro led display device
WO2015024335A1 (zh) 透明显示装置
JP2010021039A (ja) 照明装置、照明装置の制御方法、液晶装置及び電子機器
CN105676516A (zh) 显示装置、显示装置的驱动方法
JP2005251649A (ja) 照明装置及びカラー液晶表示装置
US20160266298A1 (en) Backlight systems containing downconversion film elements
KR100685433B1 (ko) 액정 표시 장치
US20130016133A1 (en) Backlight module and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840942

Country of ref document: EP

Kind code of ref document: A1