WO2020019141A1 - 一种垃圾焚烧炉低氮燃烧控制方法 - Google Patents
一种垃圾焚烧炉低氮燃烧控制方法 Download PDFInfo
- Publication number
- WO2020019141A1 WO2020019141A1 PCT/CN2018/096722 CN2018096722W WO2020019141A1 WO 2020019141 A1 WO2020019141 A1 WO 2020019141A1 CN 2018096722 W CN2018096722 W CN 2018096722W WO 2020019141 A1 WO2020019141 A1 WO 2020019141A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flue gas
- temperature
- furnace
- combustion
- value
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/04—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment drying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/44—Details; Accessories
Definitions
- the invention relates to a garbage processing equipment, in particular to a method for controlling low nitrogen combustion of a garbage incinerator.
- incineration treatment technology Compared with waste disposal technologies such as landfill and compost, incineration treatment technology has obvious effects of volume reduction and weight reduction, thorough harmlessness, small footprint, and waste heat can also be used for heating or power generation, secondary pollution Less and controllable advantages have gradually become the mainstream technology of urban domestic garbage treatment in China.
- incineration technology people's attention has shifted from incineration technology to how to deal with it, how to recover energy from waste as much as possible, improve utilization efficiency and how to reduce secondary pollutants Production and emissions.
- the existing grate type garbage incinerator grate can be divided into four stages: a drying section, a pyrolysis section, a combustion section and a burn-out section.
- the composition of flue gas produced by different furnace sections is very different.
- the flue gas temperature is relatively low, the oxygen content is high, and it contains CO and CH 4
- the drying section, the pyrolysis section, the combustion section and the burn-out section share one furnace, and the flue gases of different components generated in each furnace section are mixed and flowed in one furnace. Because of the high temperature and high oxygen state, nitrogen is easily generated. Hazardous gases such as oxides.
- the present invention proposes a low-nitrogen combustion waste incinerator.
- a water-cooled partition screen is provided in the hearth of the waste incinerator, and the hearth is divided into two parts, the front hearth and the rear hearth, in a horizontal direction, and the incinerator is generated.
- the flue gas is separated into front flue gas and rear flue gas, so that the front flue gas generated in the drying section and the pyrolysis section flows in the front furnace, and the rear flue gas generated in the combustion section and the burnout section flows in the rear furnace, so that the high temperature
- the rear flue gas is in a low-oxygen environment.
- a water-cooled desuperheater is also installed in the rear furnace, so that the temperature of the rear flue gas is further reduced when passing through the water-cooled desuperheater, and a secondary air is sprayed into the throat of the furnace to make the front After the flue gas, the rear flue gas is mixed with the secondary air, the mixed flue gas is further burned to further reduce the formation of harmful substances.
- the present invention also proposes a method for controlling low-nitrogen combustion in a waste incinerator.
- the temperature of the flue gas at the outlet of the front furnace By detecting the temperature of the flue gas at the outlet of the front furnace, the temperature of the flue gas at the outlet of the rear furnace, the temperature of the flue gas at the outlet of the mixing furnace, and the combustible components Content (CH 4 , CO, H 2, etc.) and the oxygen content of the flue gas O 21 and other data, calculate the flue gas temperature T and the mixed flue gas after the combustible components of the front furnace flue gas are completely burned (assuming 100% burnout)
- the temperature can be delayed or controlled in advance to achieve the purpose of suppressing and reducing NOx (nitride) formation.
- the solution provided by the present invention for solving the technical problem is a low-nitrogen combustion waste incinerator.
- the furnace body mainly includes a grate, a garbage inlet, an ash drop port and a hearth.
- the grate is divided into a drying section, a pyrolysis section and a combustion section. There are four stages in the burning and decomposing section.
- a primary air is connected to the underside of the drying section, pyrolysis section, combustion section and depletion section to play a combustion-supporting role. It is characterized by setting a water-cooled partition screen in the furnace.
- the water-cooled partition screen divides the hearth into two parts, the front hearth and the rear hearth in the transverse direction, separates the flue gas generated by the incinerator into the front smoke and the rear smoke, and makes the front smoke generated in the drying section and the pyrolysis section.
- the gas is restricted to flow in the front furnace, and the rear flue gas generated in the combustion section and the burn-out section is restricted to flow in the rear furnace, so that the high-temperature rear flue gas is in a low-oxygen environment, and water cooling is also provided in the rear furnace.
- a temperature reducer further reduces the temperature of the rear flue gas as it passes through the water-cooled desuperheater.
- the front flue gas and the rear flue gas meet at the upper part of the partition screen in the furnace, and the secondary air is sprayed into the throat of the furnace to make the Front and rear smoke mixed with secondary air
- the mixed flue gas after combustion further burns, further reducing the formation of harmful substances.
- the water-cooled desuperheater uses a serpentine tube heat exchanger.
- a method for controlling low nitrogen combustion in a garbage incinerator includes the following steps:
- step 1
- the detection point 2.1 is arranged at the 1.5A outlet of the front hearth, and the data of the temperature T 1 of the flue gas at the outlet of the front hearth, the combustible components CH 4 , CO, H 2 and O 21 in the flue gas are collected; At point 2.2, the data of the flue gas temperature T 2 and the flue gas oxygen O 22 at the outlet of the furnace are collected.
- the ignition of the garbage is judged in advance or delayed, and a signal is given to ensure that most of the dried and pyrolyzed flue gas can flow into the front hearth and burn.
- the exhausted flue gas can flow into the rear hearth, and the ignition position of the garbage is matched with the position of the partition screen through combustion adjustment.
- the current furnace 1.5A temperature T 1 is lower than the expected value T, and the oxygen content O 21 is higher than the expected value O.
- the bed is fired and delayed, and the combustion adjustment signal is given, including the air temperature and air volume in the drying section, the air volume in the combustion section, and the feed furnace.
- the operating frequency of the exhaust and combustion grate at the same time, the operation signal of the water-cooled desuperheater inlet adjustment valve is given to increase the heat transfer medium flow, increase the heat absorption of the water-cooled desuperheater, and control the furnace flue gas temperature T 2 not higher than the expected high value;
- the current furnace 1.5A temperature T 1 is higher than the set value T, and the oxygen amount O 21 is lower than the set value O.
- the bed garbage is fired in advance and a combustion adjustment signal is given, including the air temperature and air volume in the drying section and the air volume in the combustion section. Feeding grate and combustion grate operating frequency; at the same time, the water cooling desuperheater inlet adjustment valve action signal is given to reduce the flow of heat exchange medium, reduce the heat absorption of the water cooling desuperheater, and control the furnace flue gas temperature T 2 not lower than expected Low value.
- V CH4 , V CO , V H2 are the contents of combustible components in the front furnace flue gas, vol%;
- C 1 is the specific heat of the front furnace flue gas, kJ / kg °C;
- p is the density of the flue gas, kg / Nm 3 ;
- C 1 , C 2 , C SA , and C mix are the specific heat of the front hearth, rear hearth, secondary air, and mixed flue gas, respectively, kJ / kg °C;
- m 1 , m 2 , and m SA are the mass flow of the front furnace, rear furnace, and secondary air, respectively, kg / h;
- T 1j , T 2 , T SA and T mix are respectively the temperature of the front furnace, the rear furnace, the secondary air and the mixed flue gas, the unit is °C;
- Step 6 Arrange measurement point 2.3 at the outlet of the mixing area of the mixing furnace 1.5C, and collect data of the mixed flue gas temperature T 3 ;
- Step 7 The measured value T 3 and the calculated value T mix of the mixed flue gas temperature are respectively compared with a desired temperature range, and if it deviates from the expected range, an action signal is given.
- the present invention provides a method for controlling low-nitrogen combustion of a waste incinerator.
- the content of the combustible components (CH 4 , CO, H 2 etc.) and the oxygen content of the flue gas O 21 and other data are used to calculate the flue gas temperature T after mixing the combustible components of the front furnace flue gas (assuming 100% burnout) and after mixing
- the temperature of the flue gas can be delayed or controlled in advance to achieve the purpose of suppressing and reducing NOx (nitride) formation.
- FIG. 1 is a schematic structural layout diagram of an embodiment of the prior art.
- FIG. 2 is a schematic structural layout diagram of an embodiment of the present invention.
- FIG. 1 is a schematic structural layout diagram of an embodiment of the prior art.
- the figure shows a low nitrogen combustion waste incinerator.
- the furnace body 1 mainly includes a grate, a waste inlet 1.1, an ash drop opening 1.3, and a hearth 1.5.
- the grate is divided into a drying section 1.21, a pyrolysis section 1.22, a combustion section 1.23, and There are four stages in the burn-out section 1.24.
- a primary air of 1.8A is connected to the bottom of the drying section 1.21, the pyrolysis section 1.22, the combustion section 1.23, and the burn-out section 1.24 to play a combustion-supporting role.
- the composition of flue gas produced by different furnace sections is very different.
- the flue gas temperature is relatively low, the oxygen content is high, and it contains CO and CH 4
- Such as combustible gas it also contains corrosive gases such as HCl and Cl 2 which will corrode the heating surface of the waste heat boiler, and the corrosive gas is strong; while the combustion section and burn-out section have higher temperature, the flue gas temperature is higher, and the oxygen Lower content, less corrosive gas content, less corrosive.
- the figure shows that in the prior art, the drying section, the pyrolysis section, the combustion section and the burn-out section share a furnace 1.5, and the flue gas of different components generated in each furnace section is mixed in the furnace to form a flue gas 1.4, and the flue gas 1.4 is During the flow in the furnace 1.5. Because it is in a high temperature and high oxygen state, it is extremely easy to produce harmful gases such as nitrogen oxides.
- FIG. 2 is a schematic structural layout diagram of an embodiment of the present invention. The figure shows that, unlike the prior art, in this example, a water-cooled partition screen 1.6 is also provided in the furnace.
- the water-cooled partition screen 1.6 divides the hearth into two parts: a front hearth 1.5A and a rear hearth 1.5B.
- the front flue gas 1.4A and the rear flue gas 1.4B are located in the upper part of the water-cooled partition screen 1.6 in the furnace, and sprayed into the furnace throat
- the secondary air 1.8B further combusts the mixed flue gas after the front flue gas 1.4A, the rear flue gas 1.4B and the secondary air 1.8B are mixed, further reducing the formation of harmful substances.
- a cooler 1.7 is provided in the rear furnace 1.5B to control and reduce the temperature of the rear flue gas 1.4B, thereby controlling the temperature of the flue gas after the front flue gas 1.4A and the rear flue gas 1.4B are mixed.
- the front flue gas 1.4A and the cooled rear flue gas 1.4B meet at the upper part of the partition screen, and a secondary air is injected at the throat of the furnace 1.9, so that the front flue gas 1.4A, the rear flue gas 1.4B and the secondary air 1.8B mixed.
- the front flue gas 1.4A contains some unburned CO, CH 4 and other combustible gases
- these combustible gases will burn again.
- the flue gas temperature will rise again.
- the temperature of the flue gas after the mixed flue gas is recombusted and its temperature is avoided from the temperature range in which nitrogen oxides are generated.
- the flue gas temperature is controlled, the flue gas is isolated in the furnace. And staged combustion can effectively suppress and reduce the generation of nitrogen oxides.
- the water-cooled desuperheater 1.7 uses a serpentine tube heat exchanger.
- a method for controlling low nitrogen combustion in a garbage incinerator includes the following steps:
- step 1
- the detection point 2.1 is arranged at the 1.5A outlet of the front hearth, and the data of the temperature T 1 of the flue gas at the outlet of the front hearth, the combustible components CH 4 , CO, H 2 and O 21 in the flue gas are collected; the detection is arranged at the outlet 1.5B of the rear hearth 2.2 points collected after the furnace exit gas temperature T2, the flue gas oxygen O 22 data.
- the ignition of the garbage is judged in advance or delayed, and a signal is given to ensure that most of the dried and pyrolyzed flue gas can flow into the front hearth and burn.
- the exhausted flue gas can flow into the rear hearth, and the ignition position of the garbage is matched with the position of the partition screen through combustion adjustment.
- the current furnace 1.5A temperature T 1 is lower than the expected value T, and the oxygen content O 21 is higher than the expected value O.
- the bed is fired and delayed, and the combustion adjustment signal is given, including the air temperature and air volume in the drying section, the air volume in the combustion section, and the feed furnace.
- the operating frequency of the exhaust and combustion grate at the same time, the operation signal of the water-cooled desuperheater inlet adjustment valve is given to increase the heat transfer medium flow, increase the heat absorption of the water-cooled desuperheater, and control the furnace flue gas temperature T 2 not higher than the expected high value;
- the current furnace 1.5A temperature T 1 is higher than the set value T, and the oxygen amount O 21 is lower than the set value O.
- the bed garbage is fired in advance and a combustion adjustment signal is given, including the air temperature and air volume in the drying section and the air volume in the combustion section. Feeding grate and combustion grate operating frequency; at the same time, the water cooling desuperheater inlet adjustment valve action signal is given to reduce the flow of heat exchange medium, reduce the heat absorption of the water cooling desuperheater, and control the furnace flue gas temperature T 2 not lower than expected Low value.
- the main purpose of this step is to control the temperature of the flue gas and the amount of oxygen in the furnace region after the high temperature region of the incinerator, so as to achieve the suppression and reduction of NOx generation.
- V CH4 , V CO , V H2 are the contents of combustible components in the front furnace flue gas, vol%;
- C 1 is the specific heat of the front furnace flue gas, kJ / kg °C;
- p is the density of the flue gas, kg / Nm 3 ;
- C 1 , C 2 , C SA , and C mix are the specific heat of the front hearth, rear hearth, secondary air, and mixed flue gas, respectively, kJ / kg °C;
- m 1 , m 2 , and m SA are the mass flow of the front furnace, rear furnace, and secondary air, respectively, kg / h;
- T 1j , T 2 , T SA and T mix are respectively the temperature of the front furnace, the rear furnace, the secondary air and the mixed flue gas, the unit is °C;
- Step 6 Arrange measurement point 2.3 at the outlet of the mixing area of the mixing furnace 1.5C, and collect data of the mixed flue gas temperature T 3 ;
- Step 7 The measured value T 3 and the calculated value T mix of the mixed flue gas temperature are respectively compared with a desired temperature range, and if it deviates from the expected range, an action signal is given.
- the main purpose of this step is to control the temperature of the flue gas in the mixing area, so as to suppress and reduce the generation of NOx.
- the low-NOx combustion control method can realize the judgment and early warning of the ignition situation of the garbage, and the early warning of the combustion flue gas temperature and "850 ° C, 2S" and other indicators; at the same time, the high-temperature area of the incinerator, namely the rear furnace area and the The effective control of the flue gas temperature and oxygen amount in the mixed area, so as to achieve the suppression and reduction of NOx generation.
- the high-temperature area of the incinerator namely the rear furnace area and the The effective control of the flue gas temperature and oxygen amount in the mixed area, so as to achieve the suppression and reduction of NOx generation.
- NOx while controlling NOx, it can ensure that the smoke meets the "850 ° C, 2S" control index.
- the combustion control method can be directly embedded into an existing incinerator automatic combustion control (ACC) system, or it can be used as a control sub-module system in the DCS system of a power plant, outputting related signals to the ACC system, and the ACC system completes the related control.
- ACC incinerator automatic combustion control
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Incineration Of Waste (AREA)
Abstract
一种垃圾焚烧炉低氮燃烧控制方法,在垃圾焚烧炉膛(1.5)内设置水冷分隔屏(1.6),将炉膛(1.5)沿横向方向分割成前炉膛(1.5A)、后炉膛(1.5B)两个部份,将焚烧炉产生的烟气(1.4)分隔成前烟气(1.4A)、后烟气(1.4B),使干燥段(1.21)、热解段(1.22)产生的前烟气(1.4A)在前炉膛(1.5A)中流动,燃烧段(1.23)、燃尽段(1.24)产生的后烟气(1.4B)在后炉膛(1.5B)中流动,使高温的后烟气(1.4B)处于低氧的环境中,通过检测前炉膛(1.5A)出口烟气温度、后炉膛(1.5B)出口烟气温度、混合炉膛出口烟气温度以及前、后炉膛(1.5A;1.5B)出口烟气中可燃成分含量以及烟气氧量O 21数据等数据,计算出前炉膛(1.5A)烟气可燃成分完全燃烧后的烟气温度T和混合后的烟气温度,进行床层垃圾着火延后或提前控制,达到抑制、减少NOx生成的目的。
Description
本发明涉及垃圾处理设备,尤其涉及一种垃圾焚烧炉低氮燃烧控制方法。
与垃圾填埋、堆肥等垃圾处理技术相比,焚烧处理技术具有减容、减重效果明显,无害化彻底,且占地面积小,另外余热还能用于供热或发电,二次污染较少且可控等优点,已逐渐成为我国城市生活垃圾处理的主流技术。随着焚烧技术的大规模运用和发展,人们关注的焦点已经从焚烧技术可以处理转到了如何才能处理好,如何才能尽可能地回收垃圾中的能源,提高利用效率以及如何才能减少二次污染物的生产和排放。
现有炉排式垃圾焚烧炉炉排可划分为干燥段、热解段、燃烧段和燃尽段四个阶段。在垃圾焚烧过程中,不同炉段产生的烟气成份差异很大,如干燥段、热解段由于温度较低,其产生的烟气温度相对较低,氧含量较高,含有CO、CH
4等可燃气体;而燃烧段和燃尽段由于温度较高,产生的烟气温度较高,氧含量较低,腐蚀性气体含量少,腐蚀性弱。现有技术中,干燥段、热解段、燃烧段和燃尽段共用一个炉膛,各个炉段产生的不同成份的烟气在一个炉膛内混合流动,由于处于高温高氧状态,极易产生氮氧化物等有害气体。
现有的技术主要是通过还原剂将烟气中的氮氧化物还原为氮气,主要有选择性非催化还原技术(SNCR)和选择性催化还原技术(SCR),但是这两种技术运行成本较高,需要消耗还原剂和催化剂。中国专利CN105371282A通过抽取炉排尾段的烟气,经旋风除尘后,从焚烧炉喉口位置送入焚烧炉,达到抑制氮氧化物的目的。该专利虽解决了锅炉出口烟气飞灰量增加的风险,但是此种技术与从余热锅炉或布袋除尘器出口抽取烟气送入焚烧炉的烟气再循环技术并无太大不同,均存在循环烟气管道需要保温,防止低温腐蚀,同时增加的设备较多,运行维护工作量大、费用高,运行控制也较为复杂。
发明内容
为了解决现有技术问题,本发明提出一种低氮燃烧垃圾焚烧炉,在垃圾焚烧炉膛内设置水冷分隔屏,将炉膛沿横向方向分割成前炉膛、后炉膛两个部份,将焚烧炉产生的烟气分隔成前烟气、后烟气,使干燥段、热解段产生的前烟气在前炉膛中流动,燃烧段、燃尽段产生的后烟气在后炉膛中流动,使高温的后烟气处于低氧的环境中,在后炉膛中还设置水冷降温器,使后烟气经过所述水冷降温器时温度进一步降低,并且在炉膛喉口处喷入二次风,使前烟气、后烟气与二次风混合之后的混合烟气进一步燃烧,进一步减少有害物质的形成。同时,本发明还提出一种垃圾焚烧炉低氮燃烧控制方法,通过检测前炉膛出口烟气温度、后炉膛出口烟气温度、混合炉膛出口烟气温度以及前、后炉膛出口烟气中可燃成分含量(CH
4、CO、H
2等)以及烟气氧量O
21数据等数据,计算出前炉膛烟气可燃成分完全燃烧后(假设100%燃尽)的烟气温度T和混合后的烟气温度,进行床层垃圾着火延后或提前控制,达到抑制、减少NOx(氮化物)生成的目的。
本发明解决技术问题所提供方案是,一种低氮燃烧垃圾焚烧炉,炉体主要包括炉排、垃圾入口、落灰口 及炉膛,所述炉排分为干燥段、热解段、燃烧段和燃尽段四个阶段,在所述干燥段、热解段、燃烧段和燃尽段下侧分别接入一次风发挥助燃作用,其特征是,在所述炉膛内设置水冷分隔屏,所述水冷分隔屏将炉膛沿横向方向分割成前炉膛、后炉膛两个部份,将焚烧炉产生的烟气分隔成前烟气和后烟气,并使干燥段、热解段产生的前烟气被限制在前炉膛中流动,而燃烧段、燃尽段产生的后烟气被限制在后炉膛中流动,使高温的后烟气处于低氧的环境中,并且在后炉膛中还设置水冷降温器,使后烟气经过所述水冷降温器时温度进一步降低,所述前烟气与后烟气在炉膛内位于分隔屏上部汇合,在炉膛喉口处喷入二次风,使所述前烟气、后烟气与二次风混合之后的混合烟气进一步燃烧,进一步减少有害物质的形成。
本发明的优选方案,所述水冷降温器采用蛇形管换热器。
一种垃圾焚烧炉低氮燃烧控制方法,包括以下步骤:
步骤1:
在前炉膛1.5A出口布置检测点2.1,采集前炉膛出口烟气温度T
1、烟气中可燃成分CH
4、CO、H
2以及烟气氧量O
21数据;在后炉膛1.5B出口布置检测点2.2,采集后炉膛出口烟气温度T
2、烟气氧量O
22数据。
步骤2:
根据前炉膛1.5A烟气温度T
1和氧量O
21数据,进行垃圾着火提前或延后判断,并给出信号,为保证垃圾干燥、热解的烟气大部分能流入前炉膛,而燃烧和燃尽的烟气能流入后炉膛,通过燃烧调整保证垃圾着火位置与分隔屏的位置相匹配。
当前炉膛1.5A温度T
1低于期望值T、氧量O
21高于期望值O,进行床层垃圾着火延后预警,给出燃烧调整信号,包括干燥段风温和风量,燃烧段风量,给料炉排以及燃烧炉排动作频率;同时,给出水冷降温器入口调节阀动作信号,提高换热介质流量,增加水冷降温器吸热量,控制后炉膛烟气温度T
2不高于期望高值;
当前炉膛1.5A温度T
1高于设定值T、氧量O
21低于设定值O,进行床层垃圾着火提前预警,给出燃烧调整信号,包括干燥段风温和风量,燃烧段风量,给料炉排以及燃烧炉排动作频率;同时,给出水冷降温器入口调节阀动作信号,降低换热介质流量,减少水冷降温器吸热量,控制后炉膛烟气温度T
2不低于期望低值。
步骤3:
根据前炉膛1.5A烟气中可燃成分CH
4、CO、H
2数据,以100%燃尽计算前炉膛烟气可燃成分完全燃烧后的烟气温度T
1j;
计算公式:
其中:
V
CH4、V
CO、V
H2分别为前炉膛烟气中可燃成分含量,vol%;
C
1为前炉膛烟气的比热,kJ/kg℃;
p为烟气密度,kg/Nm
3;
步骤4:
采集二次风流量、温度数据;
步骤5:
根据前炉膛1.5A的计算温度T
1j和后炉膛1.5B的测量温度T
2,以及二次风流量数据,计算混合后的烟气温度T
mix;
其中:
C
1、C
2、C
SA、C
mix分别为前炉膛、后炉膛、二次风及混合后烟气的比热,kJ/kg℃;
m
1、m
2、m
SA分别为前炉膛、后炉膛、二次风的质量流量,kg/h;
T
1j、T
2、T
SA、T
mix分别为前炉膛、后炉膛、二次风及混合后烟气的温度,单位为℃;
步骤6:在混合炉膛1.5C的混合区域出口布置测点2.3,采集混合烟气温度T
3数据;
步骤7:将混合烟气温度的测量值T
3、计算值T
mix分别与期望的温度范围进行比较,若偏离期望范围,给出动作信号。
当计算值T
mix、测量值T
3与期望值的比值均超出期望范围的高值,进行混合后烟气温度T
3超高预警,给出水冷降温器入口调节阀动作信号,提高换热介质流量,增加水冷降温器吸热量,控制混合后烟气温度T
3不高于期望高值;
当计算值T
mix、测量值T
3与期望值的比值均超出期望范围的低值,进行混合后烟气温度T
3超低预警,给出水冷降温器入口调节阀动作信号,降低换热介质流量,减少水冷降温器吸热量,控制混合后烟气温度T
3不低于期望低值。该期望低值,是保证烟气满足“850℃、2S”控制指标的最低值。
本发明的有益效果:本发明提出一种垃圾焚烧炉低氮燃烧控制方法,通过检测前炉膛出口烟气温度、后炉膛出口烟气温度、混合炉膛出口烟气温度以及前、后炉膛出口烟气中可燃成分含量(CH
4、CO、H
2等)以及烟气氧量O
21数据等数据,计算出前炉膛烟气可燃成分完全燃烧后(假设100%燃尽)的烟气温度T和混合后的烟气温度,进行床层垃圾着火延后或提前控制,达到抑制、减少NOx(氮化物)生成的目的。
图1为现有技术一个实施例的结构布置示意图。
图2为本发明一个实施例的结构布置示意图。
图中:
1炉体,
1.1垃圾入口,
1.21干燥段、1.22热解段、1.23燃烧段、1.24燃尽段,
1.3落灰口,
1.4烟气,1.4A前烟气,1.4B后烟气,
1.5炉膛,1.5A前炉膛,1.5B后炉膛,1.5C烟气混合炉膛,
1.6水冷分隔屏,
1.7水冷降温器,
1.8A一次风,1.8B二次风,
1.9炉膛喉口处,
2.1前炉膛烟气温度检测点,
2.2后炉膛烟气温度检测点,
2.3温合炉膛烟气温度检测点。
图1为现有技术一个实施例的结构布置示意图。图中显示,一种低氮燃烧垃圾焚烧炉,炉体1主要包括炉排、垃圾入口1.1、落灰口1.3及炉膛1.5,炉排分为干燥段1.21、热解段1.22、燃烧段1.23和燃尽段1.24四个阶段,在干燥段1.21、热解段1.22、燃烧段1.23和燃尽段1.24下侧分别接入一次风1.8A发挥助燃作用。
在垃圾焚烧过程中,不同炉段产生的烟气成份差异很大,如干燥段、热解段由于温度较低,其产生的烟气温度相对较低,氧含量较高,含有CO、CH
4等可燃气体,同时也含有会对余热锅炉受热面产生腐蚀的HCl、Cl
2等腐蚀气体,腐蚀性强;而燃烧段和燃尽段由于温度较高,因此产生的烟气温度较高,氧含量较低,腐蚀性气体含量少,腐蚀性弱。图中显示,现有技术中,干燥段、热解段、燃烧段和燃尽段共用一个炉膛1.5,各个炉段产生的不同成份的烟气在炉膛内混合形成烟气1.4,烟气1.4在炉膛1.5内流动过程中。由于处于高温高氧状态,因此极易产生氮氧化物等有害气体。
图2为本发明一个实施例的结构布置示意图。图中显示,与现有技术不同的是,本例中,在炉膛内还设置水冷分隔屏1.6,水冷分隔屏1.6将炉膛沿横向方向分割成前炉膛1.5A、后炉膛1.5B两个部份,将焚烧炉产生的烟气分隔成前烟气1.4A和后烟气1.4B,并使干燥段1.21、热解段1.22产生的前烟气1.4A被限制在前炉膛1.5A中流动,而燃烧段1.23、燃尽段1.24产生的后烟气1.4B被限制在后炉膛1.5B中流动,使高温的后烟气1.4B处于低氧的环境中,并且在后炉膛1.5B中还设置水冷降温器1.7,使后烟气1.4B经过水冷降温器1.7时温度进一步降低,前烟气1.4A与后烟气1.4B在炉膛内位于水冷分隔屏1.6上部汇合,在炉膛喉口处1.9喷入二次风1.8B,使前烟气1.4A、后烟气1.4B与二次风1.8B混合之后的混合烟气进一步燃烧,进一步减少有害物质的形成。
本例中,在后炉膛1.5B中设置降温器1.7的是控制、降低后烟气1.4B的温度,从而控制前烟气1.4A 和后烟气1.4B混合后烟气的温度。前烟气1.4A与经降温后的后烟气1.4B于分隔屏上部汇合,并在炉膛喉口处1.9喷入二次风,使前烟气1.4A、后烟气1.4B与二次风1.8B混合。因为前烟气1.4A中含有部分未燃尽的CO、CH
4等可燃气体,在与后烟气1.4B和二次风1.8B于炉膛喉口处1.9混合时,这些可燃气体会再次燃烧,烟气温度会再次升高。通过降低后烟气1.4B的温度,控制混合烟气再次燃烧后烟气温度,并使其温度避开氮氧化物生成的温度区间,由于烟气温度受到控制,实现烟气在炉膛内实现隔离并分级燃烧,有效抑制、减少氮氧化物的生成。
本发明提示,本例中,水冷降温器1.7采用蛇形管换热器。
一种垃圾焚烧炉低氮燃烧控制方法,包括以下步骤:
步骤1:
在前炉膛1.5A出口布置检测点2.1,采集前炉膛出口烟气温度T
1、烟气中可燃成分CH
4、CO、H
2以及烟气氧量O
21数据;在后炉膛1.5B出口布置检测点2.2,采集后炉膛出口烟气温度T2、烟气氧量O
22数据。
步骤2:
根据前炉膛1.5A烟气温度T
1和氧量O
21数据,进行垃圾着火提前或延后判断,并给出信号,为保证垃圾干燥、热解的烟气大部分能流入前炉膛,而燃烧和燃尽的烟气能流入后炉膛,通过燃烧调整保证垃圾着火位置与分隔屏的位置相匹配。
当前炉膛1.5A温度T
1低于期望值T、氧量O
21高于期望值O,进行床层垃圾着火延后预警,给出燃烧调整信号,包括干燥段风温和风量,燃烧段风量,给料炉排以及燃烧炉排动作频率;同时,给出水冷降温器入口调节阀动作信号,提高换热介质流量,增加水冷降温器吸热量,控制后炉膛烟气温度T
2不高于期望高值;
当前炉膛1.5A温度T
1高于设定值T、氧量O
21低于设定值O,进行床层垃圾着火提前预警,给出燃烧调整信号,包括干燥段风温和风量,燃烧段风量,给料炉排以及燃烧炉排动作频率;同时,给出水冷降温器入口调节阀动作信号,降低换热介质流量,减少水冷降温器吸热量,控制后炉膛烟气温度T
2不低于期望低值。
本步骤的主要目的是对焚烧炉高温区域后炉膛区域烟气温度和氧量进行控制,从而达到抑制、减少NOx的生成。
步骤3:
根据前炉膛1.5A烟气中可燃成分CH
4、CO、H
2数据,以100%燃尽计算前炉膛烟气可燃成分完全燃烧后的烟气温度T
1j;
计算公式:
其中:
V
CH4、V
CO、V
H2分别为前炉膛烟气中可燃成分含量,vol%;
C
1为前炉膛烟气的比热,kJ/kg℃;
p为烟气密度,kg/Nm
3;
步骤4:
采集二次风流量、温度数据;
步骤5:
根据前炉膛1.5A的计算温度T
1j和后炉膛1.5B的测量温度T
2,以及二次风流量数据,计算混合后的烟气温度T
mix;
其中:
C
1、C
2、C
SA、C
mix分别为前炉膛、后炉膛、二次风及混合后烟气的比热,kJ/kg℃;
m
1、m
2、m
SA分别为前炉膛、后炉膛、二次风的质量流量,kg/h;
T
1j、T
2、T
SA、T
mix分别为前炉膛、后炉膛、二次风及混合后烟气的温度,单位为℃;
步骤6:在混合炉膛1.5C的混合区域出口布置测点2.3,采集混合烟气温度T
3数据;
步骤7:将混合烟气温度的测量值T
3、计算值T
mix分别与期望的温度范围进行比较,若偏离期望范围,给出动作信号。
当计算值T
mix、测量值T
3与期望值的比值均超出期望范围的高值,进行混合后烟气温度T
3超高预警,给出水冷降温器入口调节阀动作信号,提高换热介质流量,增加水冷降温器吸热量,控制混合后烟气温度T
3不高于期望高值;
当计算值T
mix、测量值T
3与期望值的比值均超出期望范围的低值,进行混合后烟气温度T
3超低预警,给出水冷降温器入口调节阀动作信号,降低换热介质流量,减少水冷降温器吸热量,控制混合后烟气温度T
3不低于期望低值。该期望低值,是保证烟气满足“850℃、2S”控制指标的最低值。
本步骤的主要目的在于控制混合区域的烟气温度,达到抑制、减少NOx的生成。
本低NOx燃烧控制方法,可对实现垃圾着火情况的判断和预警,对燃烧烟气温度以及“850℃、2S”等指标的进行预警;同时,通过对焚烧炉膛高温区域,即后炉膛区域和混合区域的烟气温度、氧量的有效控制,从而达到抑制、减少NOx的生成。另外,在控制NOx的同时,能保证烟气满足“850℃、2S”控制指标。
本燃烧控制方法可直接嵌入现有焚烧炉自动燃烧控制(ACC)系统中,也可单独作为电厂DCS系统中的一个控制子模块系统,向ACC系统输出相关信号,由ACC系统完成相关控制。
Claims (3)
- 一种垃圾焚烧炉低氮燃烧控制方法,其特征是,包括以下步骤:步骤1:在前炉膛1.5A出口布置检测点2.1,采集前炉膛出口烟气温度T 1、烟气中可燃成分CH 4、CO、H 2以及烟气氧量O 21数据;在后炉膛1.5B出口布置检测点2.2,采集后炉膛出口烟气温度T 2、烟气氧量O 22数据;步骤2:根据前炉膛1.5A烟气温度T 1和氧量O 21数据,进行垃圾着火提前或延后判断,并给出信号,为保证垃圾干燥、热解的烟气大部分能流入前炉膛,而燃烧和燃尽的烟气能流入后炉膛,通过燃烧调整保证垃圾着火位置与分隔屏的位置相匹配;步骤3:根据前炉膛1.5A烟气中可燃成分CH 4、CO、H 2数据,以100%燃尽计算前炉膛烟气可燃成分完全燃烧后的烟气温度T 1;计算公式:其中:V CH4、V CO、V H2分别为前炉膛烟气中可燃成分含量,vol%;C 1为前炉膛烟气的比热,kJ/kg℃;步骤4:采集二次风流量、温度数据;步骤5:根据前炉膛1.5A的计算温度T 1j和后炉膛1.5B的测量温度T 2,以及二次风流量数据,计算混合后的烟气温度T mix;其中:C 1、C 2、C SA、C mix分别为前炉膛、后炉膛、二次风及混合后烟气的比热,kJ/kg℃;m 1、m 2、m SA分别为前炉膛、后炉膛、二次风的质量流量,kg/h;T 1j、T 2、T SA、T mix分别为前炉膛、后炉膛、二次风及混合后烟气的温度,单位为℃;步骤6:在混合炉膛1.5C的混合区域出口布置测点2.3,采集混合烟气温度T 3数据;步骤7:将混合烟气温度的测量值T 3、计算值T mix分别与期望的温度范围进行比较,若偏离期望范围,给出动作信号。
- 根据权利要求1所述的一种垃圾焚烧炉低氮燃烧控制方法,其特征是,在步骤2中,当前炉膛1.5A温度T 1低于期望值T、氧量O 21高于期望值O,进行床层垃圾着火延后预警,给出燃烧调整信号,包括干燥段风温和风量,燃烧段风量,给料炉排以及燃烧炉排动作频率;同时,给出水冷降温器入口调节阀动作信号,提高换热介质流量,增加水冷降温器吸热量,控制后炉膛烟气温度T 2不高于期望高值;当前炉膛1.5A温度T 1高于设定值T、氧量O 21低于设定值O,进行床层垃圾着火提前预警,给出燃烧调整信号,包括干燥段风温和风量,燃烧段风量,给料炉排以及燃烧炉排动作频率;同时,给出水冷降温器入口调节阀动作信号,降低换热介质流量,减少水冷降温器吸热量,控制后炉膛烟气温度T 2不低于期望低值。
- 根据权利要求1所述的一种垃圾焚烧炉低氮燃烧控制方法,其特征是,在步骤7中,当计算值T mix、测量值T 3与期望值的比值均超出期望范围的高值,进行混合后烟气温度T 3超高预警,给出水冷降温器入口调节阀动作信号,提高换热介质流量,增加水冷降温器吸热量,控制混合后烟气温度T 3不高于期望高值;当计算值T mix、测量值T 3与期望值的比值均超出期望范围的低值,进行混合后烟气温度T 3超低预警,给出水冷降温器入口调节阀动作信号,降低换热介质流量,减少水冷降温器吸热量,控制混合后烟气温度T 3不低于期望低值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/096722 WO2020019141A1 (zh) | 2018-07-23 | 2018-07-23 | 一种垃圾焚烧炉低氮燃烧控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/096722 WO2020019141A1 (zh) | 2018-07-23 | 2018-07-23 | 一种垃圾焚烧炉低氮燃烧控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020019141A1 true WO2020019141A1 (zh) | 2020-01-30 |
Family
ID=69181115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/096722 WO2020019141A1 (zh) | 2018-07-23 | 2018-07-23 | 一种垃圾焚烧炉低氮燃烧控制方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020019141A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0581918B1 (de) * | 1992-02-26 | 1998-11-11 | KÜNSTLER, Hans | Verfahren zum einschmelzen von verbrennungsrückständen in schlacke |
CN1777776A (zh) * | 2003-04-18 | 2006-05-24 | 杰富意工程株式会社 | 炉箅式废弃物焚烧炉及其燃烧控制方法 |
CN207122904U (zh) * | 2017-08-16 | 2018-03-20 | 深圳市能源环保有限公司 | 一种低氮燃烧的垃圾焚烧炉 |
CN109099434A (zh) * | 2018-07-23 | 2018-12-28 | 深圳市能源环保有限公司 | 一种垃圾焚烧炉低氮燃烧控制方法 |
-
2018
- 2018-07-23 WO PCT/CN2018/096722 patent/WO2020019141A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0581918B1 (de) * | 1992-02-26 | 1998-11-11 | KÜNSTLER, Hans | Verfahren zum einschmelzen von verbrennungsrückständen in schlacke |
CN1777776A (zh) * | 2003-04-18 | 2006-05-24 | 杰富意工程株式会社 | 炉箅式废弃物焚烧炉及其燃烧控制方法 |
CN207122904U (zh) * | 2017-08-16 | 2018-03-20 | 深圳市能源环保有限公司 | 一种低氮燃烧的垃圾焚烧炉 |
CN109099434A (zh) * | 2018-07-23 | 2018-12-28 | 深圳市能源环保有限公司 | 一种垃圾焚烧炉低氮燃烧控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106594713B (zh) | 一种防结渣的生物质梯级转化燃烧装置 | |
CN104100979B (zh) | 一种垃圾焚烧炉排炉富氧燃烧改造方法和装置 | |
CN102537975A (zh) | 循环流化床垃圾焚烧锅炉及其污染控制系统 | |
JP2017223395A (ja) | 廃棄物焼却装置及び廃棄物焼却方法 | |
CN207122904U (zh) | 一种低氮燃烧的垃圾焚烧炉 | |
CN204042867U (zh) | 一种低氮燃烧锅炉系统 | |
CN106352343B (zh) | 适用于高热值生活垃圾的气化焚烧炉 | |
CN102878569B (zh) | 一种适用于低热值混合垃圾的高温空气强化燃烧装置及方法 | |
CN109099434B (zh) | 一种垃圾焚烧炉低氮燃烧控制方法 | |
US9927119B2 (en) | Dual-bed system for preventing boiler heating surface from being contaminated | |
CN205619331U (zh) | 一种垃圾焚烧烟气环保处理系统 | |
CN207422244U (zh) | 带炭黑干燥废气处理的炭黑尾气焚烧锅炉 | |
CN102128446B (zh) | 炭黑尾气与煤混合燃烧的锅炉 | |
CN102072499B (zh) | 烟气低温脱氮与干燥煤泥联合循环系统 | |
WO2020019141A1 (zh) | 一种垃圾焚烧炉低氮燃烧控制方法 | |
CN207486807U (zh) | 一种燃用低热值燃料的流化床热能中心 | |
CN206055643U (zh) | 一种有机废液焚烧装置 | |
CN104990072A (zh) | 一种高效低NOx排放的流化床锅炉 | |
CN107860011A (zh) | 一种带炭黑干燥废气处理的炭黑尾气焚烧锅炉 | |
CN204756912U (zh) | 一种高效低NOx排放的流化床锅炉 | |
CN204534544U (zh) | 生物质锅炉脱硝燃烧装置及双燃烧器生物质锅炉 | |
CN107965773A (zh) | 一种燃用低热值燃料的流化床热能中心及其使用方法 | |
CN106090893A (zh) | 一种燃煤锅炉的高效洁净燃烧方法 | |
CN208269119U (zh) | 热解气化燃烧锅炉 | |
CN107339701A (zh) | 一种低氮燃烧的垃圾焚烧炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18927771 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18927771 Country of ref document: EP Kind code of ref document: A1 |