WO2020017524A1 - Copper foil processing method, copper foil, laminate, copper-clad laminated plate, printed wiring board, and module corresponding to high-speed communication - Google Patents

Copper foil processing method, copper foil, laminate, copper-clad laminated plate, printed wiring board, and module corresponding to high-speed communication Download PDF

Info

Publication number
WO2020017524A1
WO2020017524A1 PCT/JP2019/028003 JP2019028003W WO2020017524A1 WO 2020017524 A1 WO2020017524 A1 WO 2020017524A1 JP 2019028003 W JP2019028003 W JP 2019028003W WO 2020017524 A1 WO2020017524 A1 WO 2020017524A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
tin
group
layer
resin
Prior art date
Application number
PCT/JP2019/028003
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 城野
正幸 中野
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020531327A priority Critical patent/JP7371628B2/en
Priority to CN201980047293.XA priority patent/CN112585004B/en
Publication of WO2020017524A1 publication Critical patent/WO2020017524A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a method for treating a copper foil, a copper foil, a laminate, a copper-clad laminate, a printed wiring board, and a module for high-speed communication.
  • the surface of the conductive layer has few irregularities, that is, the surface roughness of the conductive layer is small.
  • the resin laminated thereon may be used.
  • the adhesion between the transmission loss is insufficient and the low transmission loss and the adhesion are in a trade-off relationship.
  • a "flat bond process" has been used in which the surface roughness of the conductive layer is kept small and the adhesion to the resin laminated thereon is sufficient (Patent Reference 1).
  • a tin layer or a tin alloy layer having high adhesion to the conductive layer is formed on the conductive layer, and a coupling agent layer is formed by performing a coupling treatment to roughen the surface of the conductive layer. This is a process that can increase the adhesion to the resin layer without changing the state.
  • an object of the present invention is to provide a method for treating a copper foil, which makes it difficult for the resin layer to peel off even after passing through a reflow step, regardless of the type of the resin or the resin composition of the resin layer laminated on the conductive layer. Is to provide. Further, an object of the present invention is to provide a copper foil obtained by performing the copper foil processing method, and to provide a laminate using the copper foil, a copper-clad laminate, a printed wiring board, and a high-speed communication compatible module. To provide.
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, after forming a tin layer or a tin alloy layer in a flat bond process, and before performing a coupling process, the tin layer Alternatively, the present inventors have found that the problem can be solved by converting tin present on the surface of the tin alloy layer to tin oxide, and have completed the present invention.
  • a tin layer or a tin alloy layer on a copper foil, a tin oxide film on a surface of the tin layer or the tin alloy layer opposite to the copper foil, and a coupling on the tin oxide film A laminate having an agent layer.
  • the laminate according to the above [8] or [9] further comprising an acidic resin layer having a pH of 3.0 to 5.0 or a prepreg containing the acidic resin layer on the coupling agent layer.
  • a method for treating a copper foil which makes it difficult for the resin layer to peel even after a reflow step, regardless of the type of the resin or the resin composition of the resin layer laminated on the conductive layer. can do. Furthermore, it is possible to provide a copper foil obtained by performing the method for treating the copper foil, and to provide a laminate, a copper-clad laminate, a printed wiring board, and a high-speed communication compatible module using the copper foil. it can.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • the lower limit and the upper limit of the numerical range are arbitrarily combined with the lower limit and the upper limit of the other numerical ranges, respectively.
  • An embodiment in which the items described in this specification are arbitrarily combined is also included in the present invention.
  • the “solid content” refers to a non-volatile content excluding a volatile substance such as a solvent, and indicates a component that remains without volatilization when the resin composition is dried, and is a liquid at room temperature. , Syrupy and waxy ones.
  • room temperature refers to 25 ° C. in this specification.
  • the “resin component” is a component used in the production of a resin or a resin, excluding an inorganic filler, and specifically, among components contained in a resin composition described below, an inorganic filler It is a component excluding materials.
  • the processing method of the copper foil of the present invention Forming a tin layer or a tin alloy layer on the surface of the copper foil (1), Converting tin existing on the surface of the tin layer or tin alloy layer into tin oxide (2), A step (3) of performing a coupling treatment on the tin oxide;
  • This is a method for treating a copper foil.
  • the resin layer is less likely to be separated even after the reflow step. Become. In particular, the effect is exhibited through the above step (2).
  • a flat bond process is performed by combining the step of forming a tin layer or a tin alloy layer on the surface of a copper foil [the step (1)] and the step of performing a coupling treatment [the step (3)]. It may be called a process.
  • each step will be described in detail.
  • Step (1) is a step of forming a tin layer or a tin alloy layer on the surface of the copper foil.
  • the copper foil may be formed with a circuit, and is preferably formed with a circuit.
  • a copper foil even when a copper foil is formed on a circuit, it may be simply referred to as a copper foil. In such a case, “copper foil” can be read as “circuit”.
  • a tin layer or a tin alloy layer is formed not only on the surface of the copper foil but also between circuits. The tin layer or the tin alloy layer has a high affinity for the copper foil.
  • the adhesion between the copper foil and the tin layer or the tin alloy layer can be ensured without roughening the surface of the copper foil. Therefore, the surface roughness of the copper foil is kept small.
  • the surface roughness (Rz) of the surface of the copper foil on the tin layer or tin alloy layer side can be 0.2 to 2.0 ⁇ m. , 0.5 to 2.0 ⁇ m, or 1.0 to 1.8 ⁇ m.
  • the “surface roughness” of the copper foil is a ten-point average surface roughness (Rz), which is a value measured according to JIS B0601 (1994).
  • the tin layer or the tin alloy layer may be a tin layer or a tin alloy layer usually formed in a so-called flat bond process.
  • a tin layer or a tin alloy layer can be formed by performing a tin-based treatment on the surface of a copper foil using a “Flat Bond” series of Mec Corporation.
  • the tin-based treatment include substitution tin plating, immersion in a treatment solution containing at least one selected from the group consisting of a tin salt, an organic acid, an inorganic acid, a reducing agent, and the like.
  • the tin layer or the tin alloy layer formed on the surface of the copper foil may be either, but is preferably a tin alloy layer from the viewpoint of suppressing the ionization and diffusion of tin into the copper foil.
  • the tin alloy layer is preferably an alloy layer containing tin and nickel, and more preferably an alloy layer containing tin, copper and nickel.
  • the thickness of the tin layer or the tin alloy layer is not particularly limited, but is usually preferably 0.01 to 1.0 ⁇ m, more preferably 0.03 to 0.7 ⁇ m, and still more preferably 0.05 to 0.5 ⁇ m. And particularly preferably 0.05 to 0.3 ⁇ m.
  • the step (2) is a step of converting tin existing on the surface of the tin layer or the tin alloy layer into tin oxide.
  • the tin oxide is not particularly limited, but is preferably at least one selected from the group consisting of tin (II) oxide [SnO] and tin (IV) oxide [SnO 2 ].
  • a known method capable of converting metal tin to tin oxide can be used, and is not particularly limited.
  • a method of heat-treating the surface of the tin layer or the tin alloy layer and (b) a method of oxidizing air by leaving the tin layer or the tin alloy layer at room temperature.
  • the method (a) is preferable from the viewpoint of sufficiently converting tin to tin oxide in a short time.
  • the heating temperature is not particularly limited, but is preferably a temperature that promotes oxidation of the surface of the tin layer or the tin alloy layer, for example, preferably 35 to 200 ° C. , More preferably 35 to 160 ° C, further preferably 60 to 140 ° C, particularly preferably 80 to 135 ° C, and most preferably 100 to 135 ° C.
  • the heating time is not particularly limited, but from the viewpoint of sufficiently oxidizing the surface of the tin layer or the tin alloy layer, preferably 5 seconds to 60 minutes, more preferably 10 seconds to 40 minutes, and still more preferably 1 minute.
  • the heating means is not particularly limited, and for example, a heater, a warm bath, or the like can be used.
  • tin existing on the surface of the tin layer or the tin alloy layer could be converted to tin oxide was determined by analyzing the composition of the surface of the tin layer or the tin alloy layer by X-ray photoelectron spectroscopy (XPS). It can be recognized by confirming its existence.
  • the X-ray photoelectron spectroscopy (XPS) may use Al-K ⁇ radiation as an X-ray source and measure at a detection angle of 45 °, and there is no particular limitation on the XPS measuring apparatus, but it is described in Examples. What is necessary is just to measure with an apparatus of. The mechanism by which the effect of the present invention is exhibited by the step (2) will be described with reference to FIG.
  • the tin oxide film 3 is formed on the surface of the tin layer or the tin alloy layer 2 on the copper foil 1 in the step (2) (see FIG. 1A), the tin oxide film 3 and the step ( The coupling agent layer 4 is sufficiently formed due to high affinity with the coupling agent used in the coupling treatment performed in 3), and the pH is adjusted to 3.0 to 5 as shown in FIG. It is presumed that the oxidation effect 6 by the acidic resin layer 5 of 0.0 was suppressed, and as a result, as shown in FIG. 1C, the peeling did not occur even after the reflow treatment, leading to the effect of the present invention. On the other hand, if the step (3) is performed without passing through the step (2) (see FIG. 2), as shown in FIG.
  • the tin layer on the copper foil 1 or the tin alloy layer 2 is formed.
  • the formation of the coupling agent layer 4 is not always sufficient.
  • the acidic resin layer 5 having a pH of 3.0 to 5.0 is provided on the coupling agent layer 4, as shown in FIG.
  • tin ions Sn +
  • the tin ions migrate to the acidic resin layer 5 as shown in FIG.
  • FIG. c it is presumed that there is a portion 7 in which the adhesion between the tin layer or the tin alloy layer 2 and the acidic resin layer 5 is reduced, and this causes peeling.
  • Step (3) the tin oxide (tin oxide film) formed in the step (2) is subjected to a coupling treatment.
  • the coupling treatment forms a coupling agent layer.
  • a coupling agent used in the coupling treatment a coupling agent used in a known flat bond treatment step can be used.
  • the coupling agent layer has high adhesion to the tin oxide film and also has excellent adhesion to the resin layer.
  • the coupling agent is not particularly limited, and examples thereof include a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent.
  • a silane coupling agent is preferable, and examples of the silane coupling agent include an aminosilane-based coupling agent, an epoxysilane-based coupling agent, and a styrene-silane-based coupling agent.
  • the coupling treatment can be performed by dipping in a coupling agent, showering using the coupling agent, or the like.
  • the present invention also provides a copper foil obtained by subjecting a copper foil to the method for treating a copper foil of the present invention.
  • the copper foil may be formed with a circuit, and is preferably formed with a circuit.
  • the present invention has a tin layer or a tin alloy layer on a copper foil, a tin oxide film on a surface of the tin layer or the tin alloy layer opposite to the copper foil, and a cup on the tin oxide film.
  • a laminate having a ring agent layer is also provided.
  • the copper foil, tin layer, tin alloy layer, tin oxide film, and coupling agent layer are as described above.
  • the laminate of the present invention can be manufactured by treating a copper foil by the above-described method for treating a copper foil of the present invention.
  • the laminate of the present invention may have a resin layer (may be a prepreg) on the coupling agent layer.
  • the resin layer may be an acidic resin layer having a pH of 3.0 to 5.0.
  • the pH of the resin layer is a value obtained by measuring an extract obtained by storing the substrate at 130 ° C. for 200 hours with a pH meter, and more specifically a value measured according to the method described in Examples.
  • the resin layer can be manufactured using a resin film formed from a resin composition or a prepreg containing the resin composition.
  • thermosetting resin composition As the resin composition contained in the resin film and the prepreg, a thermosetting resin composition is preferable.
  • the thermosetting resin composition is not particularly limited as long as it contains a thermosetting resin.
  • resin composition can be read as “thermosetting resin composition”.
  • thermosetting resin As the thermosetting resin, a known thermosetting resin used as an insulating material for a printed wiring board can be used. For example, polyphenylene ether derivatives, epoxy resins, cyanate resins, isocyanate resins, bisallylnadiimide resins, benzoxazine resins, allyl resins, dicyclopentadiene resins, silicone resins, triazine resins, polymaleimide compounds and modified maleimide compounds [(1) Addition reaction product of polymaleimide compound and monoamine compound, (2) addition reaction product of polymaleimide compound and diamine compound (polymer), (3) addition reaction product of polymaleimide compound with monoamine compound and diamine compound (polymerization) Material) etc.].
  • examples in which the resin composition becomes an acidic resin composition having a pH of 3.0 to 5.0 are not particularly limited, but are selected from the group consisting of the polymaleimide compound and the modified maleimide compound.
  • a case where an organic phosphorus-based compound described below is contained as a curing accelerator together with at least one kind is exemplified.
  • One thermosetting resin may be used alone, or two or more thermosetting resins may be used in combination.
  • the polyphenylene ether derivative is used in combination with at least one selected from the group consisting of the polymaleimide compound and the modified maleimide compound is exemplified.
  • the modified maleimide compound is preferably an addition reaction product (polymer) of a polymaleimide compound and a diamine compound.
  • thermosetting resin a thermoplastic resin, a thermoplastic elastomer, an inorganic filler, a copolymer resin, a curing accelerator, an organic filler, a flame retardant, an ultraviolet absorber , An antioxidant, a photopolymerization initiator, a fluorescent brightener, an adhesion improver and the like, and may contain at least one selected from the group consisting of these.
  • polyphenylene ether derivative As the polyphenylene ether derivative, a polyphenylene ether derivative having at least one N-substituted maleimide structure-containing group is preferable. Resin composition having excellent high-frequency characteristics, high adhesiveness to copper foil, high glass transition temperature, low coefficient of thermal expansion, and high flame retardancy because the polyphenylene ether derivative has at least one group containing an N-substituted maleimide structure It tends to be a thing.
  • the coefficient of thermal expansion referred to in this specification is a value also called a coefficient of linear expansion.
  • the N-substituted maleimide structure-containing group is not particularly limited as long as it contains an N-substituted maleimide group.
  • the polyphenylene ether derivative preferably has at least one N-substituted maleimide structure-containing group and a structural unit represented by the following general formula (I).
  • R 1 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • X is an integer of 0 to 4.
  • Examples of the aliphatic hydrocarbon group represented by R 1 in the general formula (I) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and n -A pentyl group and the like.
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the halogen atom is preferably a fluorine atom from the viewpoint of being halogen-free.
  • R 1 is preferably an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • x is an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 2.
  • R 1 may be substituted at the ortho position on the benzene ring (however, based on the substitution position of the oxygen atom).
  • x is 2 or more, a plurality of R 1 may be the same or different.
  • the structural unit represented by the general formula (I) is preferably a structural unit represented by the following general formula (I ′).
  • the N-substituted maleimide structure-containing group contained in the polyphenylene ether derivative includes nitrogen atoms of two maleimide groups from the viewpoint of high-frequency characteristics, adhesion to a copper foil, heat resistance, glass transition temperature, coefficient of thermal expansion, and flame retardancy.
  • a bismaleimide structure in which they are bonded via an organic group (however, a structure derived from the structure is also included.
  • the structure derived from the structure means that a carbon-carbon double bond of the maleimide group is A functional group (e.g., a structure that has reacted with an amino group)), and is preferably a group represented by the following general formula (Z).
  • the polyphenylene ether derivative having a group represented by the following general formula (Z) is obtained, for example, by reacting a polyphenylene ether (1) with an aminophenol compound (2) to obtain a polyphenylene ether compound having a primary amino group at a molecular terminal. Thus, it can be easily produced by reacting this with the bismaleimide compound (3).
  • each R 2 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • Y is an integer of 0 to 4.
  • a 1 is an organic group, which is preferably described later.
  • It is a group represented by the general formula (II), (III), (IV) or (V).
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 2 are the same as described for R 1 .
  • y is an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0. If y is an integer of 2 or more, plural R 2 together may be different even in the same.
  • the groups represented by the general formulas (II), (III), (IV) or (V) as preferred organic groups represented by A 1 are as follows.
  • R 3 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • P is an integer of 0 to 4.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 3 are the same as described for R 1 .
  • p is an integer of 0 to 4, and is preferably an integer of 0 to 2, more preferably 0 or 1, and further preferably 0 from the viewpoint of availability.
  • p is an integer of 2 or more, a plurality of R 3 may be the same or different.
  • R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms.
  • Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 4 and R 5 include the same as those in the case of R 1 .
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably an ethyl group.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by A 2 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like. Is mentioned.
  • the alkylene group is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoints of high-frequency characteristics, adhesion to a copper foil, heat resistance, glass transition temperature, coefficient of thermal expansion, and flame retardancy, and a methylene group. Is more preferable.
  • an isopropylidene group is preferred from the viewpoints of high-frequency characteristics, adhesiveness to copper foil, heat resistance, glass transition temperature, coefficient of thermal expansion, and flame retardancy.
  • a 2 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms among the above options.
  • q and r are each independently an integer of 0 to 4, and from the viewpoint of availability, each is preferably an integer of 0 to 2, and more preferably 0 or 2.
  • q or r is an integer of 2 or more, a plurality of R 4 or R 5 may be the same or different.
  • the group represented by the general formula represented by A 2 (III-1) are as follows.
  • R 6 and R 7 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 3 is an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, A sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, or a single bond.
  • S and t are each independently an integer of 0 to 4.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 6 and R 7 are described in the same manner as in the case of R 4 and R 5 .
  • alkylene group having 1 to 5 carbon atoms represented by A 3 the same alkylene group having 1 to 5 carbon atoms represented by A 2 can be mentioned.
  • a 3 is preferably an alkylidene group having 2 to 5 carbon atoms among the above options.
  • s and t are each an integer of 0 to 4, and from the viewpoint of availability, each is preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0. .
  • s or t is an integer of 2 or more, a plurality of R 6 or R 7 may be the same or different.
  • n is an integer of 0 to 10.
  • ⁇ n is preferably 0 to 5, more preferably 0 to 3, from the viewpoint of availability.
  • R 8 and R 9 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • U is an integer of 1 to 8.
  • aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 8 and R 9 are the same as those described for R 1 .
  • u is an integer of 1 to 8, preferably 1 to 3, and more preferably 1.
  • any of the following formulas Is more preferably a group represented by
  • the polyphenylene ether derivative is preferably a polyphenylene ether derivative represented by the following general formula (Z ′). (In the formula, A 1 , R 1 , R 2 , x and y are as defined above. M is an integer of 1 or more.)
  • M is preferably an integer of 1 to 300, more preferably an integer of 10 to 300, further preferably an integer of 30 to 200, and particularly preferably an integer of 50 to 150.
  • the polyphenylene ether derivative is preferably a polyphenylene ether derivative represented by any of the following formulas (Z′-1) to (Z′-4).
  • a polyphenylene ether derivative represented by the above formula (Z'-1) is preferable, and from the viewpoint of excellent dielectric properties and low water absorption, the above formula (Z'- The polyphenylene ether derivative represented by 2) is preferable, and from the viewpoint of excellent adhesiveness to copper foil and mechanical properties (elongation, breaking strength, etc.), the above formula (Z′-3) or the above formula (Z ′) It is preferably a polyphenylene ether derivative represented by '-4). Therefore, the polyphenylene ether derivative represented by any of the above formulas (Z'-1) to (Z'-4) may be used alone or in combination of two or more in accordance with the desired properties. You may.
  • the number average molecular weight of the polyphenylene ether derivative is preferably from 4,000 to 14,000, more preferably from 4,500 to 12,000, and still more preferably from 7,000 to 12,000. , 7,000 to 10,000.
  • the number average molecular weight is 4,000 or more, a better glass transition temperature tends to be obtained in the resin composition. If the number average molecular weight is 14,000 or less, the moldability of the resin composition tends to be good.
  • the number average molecular weight is a value converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC), and more specifically, the measurement of the number average molecular weight described in Examples. It is a value obtained by the method.
  • modified maleimide compound examples include (1) an addition reaction product of a polymaleimide compound and a monoamine compound, (2) an addition reaction product (polymer) of a polymaleimide compound and a diamine compound, and (3) a polymaleimide compound and a monoamine compound.
  • An addition reaction product (polymer) of a diamine compound with a diamine compound is preferable.
  • an addition reaction product of the (2) polymaleimide compound and a diamine compound is preferable from the viewpoint of heat resistance and reliability.
  • Examples of the addition reaction product of the polymaleimide compound and the diamine compound include a maleimide compound (b1) having at least two N-substituted maleimide groups in one molecule, and at least two primary amino groups in one molecule.
  • An addition reaction product with the amine compound (b2) is preferred.
  • the maleimide compound (b1) having at least two N-substituted maleimide groups in one molecule has at least two N-substituted maleimide groups in one molecule.
  • the structure is not particularly limited as long as it is a structure, but a maleimide compound having two N-substituted maleimide groups in one molecule is preferable, and a compound represented by the following general formula (b1-1) is more preferable.
  • X B1 is a group represented by the following general formula (b1-2), (b1-3), (b1-4) or (b1-5).
  • R B1 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • P1 is an integer of 0 to 4.
  • R B2 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • X B2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group, A carbonyloxy group, a keto group, a single bond or a group represented by the following general formula (b1-3 ′).
  • Q1 is independently an integer of 0 to 4.
  • R B3 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • X B3 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group. , A carbonyloxy group, a keto group or a single bond.
  • R1 is each independently an integer of 0 to 4.
  • n1 is an integer of 1 to 10.
  • R B4 is each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • U1 is an integer of 1 to 8.
  • examples of the aliphatic hydrocarbon group represented by R B1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and a An alkyl group having 1 to 5 carbon atoms such as a pentyl group.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B2 include the same as those in the case of R B1 .
  • the alkylene group having a carbon number of 1 to 5 X B2 represents, methylene group, 1,2-dimethylene group, a 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like
  • X B2 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms, among the above options.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B3 include the same as those in the case of R B2 .
  • the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X B3 the same as the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X B2 can be mentioned.
  • n1 is an integer of 1 to 10, but is preferably 0 to 5 and more preferably 0 to 3 from the viewpoint of availability.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B4 include the same as those in the case of R B1 in the general formula (b1-2).
  • the component (b1) one type may be used alone, or two or more types may be used in combination.
  • a maleimide compound having a phenoxy group is preferable from the viewpoint of excellent solubility in a solvent, and bis (4-maleimidophenyl) methane, 2,2- Bis [4- (4-maleimidophenoxy) phenyl] propane is preferred.
  • the amine compound (b2) having at least two primary amino groups in one molecule (hereinafter also referred to as “component (b2)”) is preferably an amine compound having two primary amino groups in one molecule. And a compound represented by the following general formula (b2-1) is more preferable.
  • Y B1 is a group represented by the following general formula (b2-2), (b2-3) or (b2-4).
  • R B5 each independently, .P2 an aliphatic hydrocarbon group having 1 to 5 carbon atoms is an integer of 0-4.
  • R B6 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • Y B2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group.
  • R B7 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • Y B3 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group. , Carbonyloxy, keto, or a single bond.
  • S1 is each independently an integer of 0 to 4.
  • Y B4 and Y B6 are each independently an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms.
  • Y B5 is an aromatic hydrocarbon having 6 to 12 ring carbon atoms. It is a hydrogen group.
  • R B8 is each independently an alkyl group having 1 to 5 carbon atoms, a phenyl group or a substituted phenyl group.
  • R B9 is each independently a divalent organic group.
  • M2 is 1 It is an integer of 100100.
  • examples of the aliphatic hydrocarbon group represented by R B5 include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a t-butyl group, and a An alkyl group having 1 to 5 carbon atoms such as a pentyl group.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B6 include the same as those in the case of R B5 .
  • examples of the alkylene group having 1 to 5 carbon atoms represented by Y B2 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like.
  • Y B2 represented, ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group, and the like.
  • examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B7 include the same as those in the case of R B6 .
  • examples of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by Y B3 include an alkylene group having 1 to 5 carbon atoms represented by Y B2 and The same as the 2 to 5 alkylidene groups can be mentioned.
  • examples of the alkylene group having 1 to 5 carbon atoms represented by Y B4 and Y B6 and the alkylidene group having 2 to 5 carbon atoms include alkylene groups having 1 to 5 carbon atoms represented by Y B2. And the same as the alkylidene group having 2 to 5 carbon atoms. Among them, an alkylidene group having 2 to 5 carbon atoms is preferable, and an isopropylidene group is more preferable.
  • Y B4 and Y B6 may be the same or different, but are preferably the same.
  • the aromatic hydrocarbon group having ring carbon atoms 6-12 represented by Y B5, 1,3-phenylene group, a phenylene group such as 1,4-phenylene group; A naphthylene group; a biphenylylene group and the like.
  • a phenylene group is preferred.
  • the alkyl group having 1 to 5 carbon atoms represented by R B8 is more preferably an alkyl group having 1 to 3 carbon atoms.
  • the alkyl group represented by RB8 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups are preferred.
  • the substituent in the substituted phenyl group represented by RB8 include an alkyl group, an alkenyl group, and an alkynyl group. Among them, the alkyl group is preferable.
  • Examples of the alkyl group include the same as the alkyl group represented by RB8 .
  • Examples of the divalent organic group represented by RB9 include an alkylene group, an alkylidene group, an alkenylene group, an alkynylene group, an arylene group, —O—, and a divalent linking group obtained by combining these. Among these, an alkylene group and an arylene group are preferable.
  • Examples of the alkylene group include an alkylene group having 1 to 5 carbon atoms such as a methylene group, an ethylene group, and a propylene group.
  • arylene group examples include an arylene group having 6 to 12 ring carbon atoms such as a phenylene group and a naphthylene group.
  • m2 is an integer of 1 to 100, preferably an integer of 2 to 50, more preferably an integer of 3 to 40, still more preferably an integer of 5 to 30, and further preferably an integer of 7 to 30; It may be an integer of 30 or an integer of 15 to 30.
  • a modified siloxane having an amino group at a terminal diaminobenzidine, diaminodiphenylmethane, 3,3′-diethyl-4,4′-diaminodiphenylmethane, diaminodiphenylether, 3,3′-dimethoxy-4,4 '-Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 1,3'-bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl ] Propane, 4,4'-bis (4-aminophenoxy) biphenyl, 1,4'-bis (4-aminophenoxy) benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4 ' -Diamino-3,3'-biphenyldiol, 4,4 '-[1,3-phen
  • Examples of the commercially available product include “X-22-161A” (functional group equivalent: 800 g / mol) and “X- 22-161B "(functional group equivalent: 1,500 g / mol) (above, manufactured by Shin-Etsu Chemical Co., Ltd.),” BY16-853U "(functional group equivalent: 460 g / mol) (above, manufactured by Dow Corning Toray), “XF42-C5379” (functional group equivalent: 750 g / mol) (all manufactured by Momentive Performance Materials Japan GK) and the like.
  • the component (b2) contains a modified siloxane having an amino group at a terminal and an amine compound other than the modified siloxane having an amino group at a terminal from the viewpoint of achieving low thermal expansion, high elasticity, and high heat resistance. It is also preferable to do so.
  • the mass ratio [modified siloxane having an amino group at the end / modified siloxane at the end] is preferably 3/97 to 90/10, more preferably 10/90 to 80/20, and still more preferably 20/80 to 70/30.
  • the modified maleimide compound which is an addition reaction product of the component (b1) and the component (b2) has, for example, a structural unit represented by the following general formula (B-1).
  • cyanate resin is not particularly limited, for example, 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3,5-dimethyl-4-cyclohexane) Anatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, ⁇ , ⁇ ′-bis (4-cyanatophenyl) -m- Examples include diisopropylbenzene, a cyanate compound of a phenol-added dicyclopentadiene polymer, a phenol novolak type cyanate compound, and a cresol novolak type cyanate compound.
  • One type of cyanate resin may be used alone, or two or more types may be used in combination. Among these, it is preferable to use 2,2-bis (4-cyanatophenyl) propane from the viewpoint of the production cost and the total balance of the high frequency characteristics and other characteristics.
  • a curing agent for the cyanate resin When a cyanate resin is used, a curing agent for the cyanate resin, a curing assistant, and the like can be used in combination, if necessary. These are not particularly restricted but include, for example, monophenol compounds, polyphenol compounds, amine compounds, alcohol compounds, acid anhydrides, carboxylic acid compounds and the like. These may be used alone or in combination of two or more.
  • the amounts of the curing agent and the curing aid are not particularly limited, and can be appropriately adjusted depending on the purpose. Among these, it is preferable to use a monophenol compound from the viewpoints of high-frequency characteristics, heat resistance, moisture absorption resistance and storage stability.
  • the monophenol compound it is preferable to adopt a method of preliminarily reacting with a cyanate resin and using it as a phenol-modified cyanate prepolymer from the viewpoint of solubility in an organic solvent.
  • the monophenol compound to be used in combination may be blended in a prescribed amount when pre-polymerized, or may be blended separately before and after pre-polymerization. Can be adopted.
  • the epoxy resin is preferably an epoxy resin having two or more epoxy groups.
  • the epoxy resin is classified into a glycidyl ether type epoxy resin, a glycidylamine type epoxy resin, a glycidyl ester type epoxy resin, and the like.
  • a glycidyl ether type epoxy resin may be selected.
  • Epoxy resins are classified into various epoxy resins according to the difference in the main skeleton.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin and other bisphenol type epoxy resins.
  • Epoxy resin may be used alone or in combination of two or more.
  • a naphthalene skeleton-containing epoxy resin from the viewpoint of high-frequency characteristics, heat resistance, glass transition temperature, coefficient of thermal expansion, flame retardancy, and the like, a naphthalene skeleton-containing epoxy resin, a biphenylaralkyl-type epoxy resin is preferable, and a naphthalene skeleton-containing epoxy resin is more preferable.
  • a naphthol novolak type epoxy resin is more preferable.
  • a curing agent for the epoxy resin When an epoxy resin is used, a curing agent for the epoxy resin, a curing aid, and the like can be used in combination, if necessary.
  • polyamine compounds such as diethylenetriamine, triethylenetetramine, diaminodiphenylmethane, m-phenylenediamine, dicyandiamide; bisphenol A, phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, phenol Polyphenol compounds such as aralkyl resins; acid anhydrides such as phthalic anhydride and pyromellitic anhydride; carboxylic acid compounds; and active ester compounds. These may be used alone or in combination of two or more. The amount used is not particularly limited, and can be appropriately adjusted depending on the purpose.
  • inorganic filler examples include silica, alumina, titanium oxide, mica, barium titanate, strontium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, calcium carbonate silicon nitride, boron nitride, talc, silicon carbide, Quartz powder, short glass fiber, fine glass powder, hollow glass and the like can be used.
  • Preferred examples of the glass include E glass, T glass, and D glass.
  • silica is preferred from the viewpoint of dielectric properties, heat resistance and low thermal expansion.
  • silica examples include, for example, precipitated silica having a high water content produced by a wet method and dry-process silica which is produced by a dry method and hardly contains bound water, and the like. , Crushed silica, fumed silica, fused spherical silica and the like. Among these, fused spherical silica is preferred from the viewpoints of low thermal expansion and fluidity when filled in a resin.
  • the average particle diameter of the inorganic filler is preferably 0.1 to 10 ⁇ m, more preferably 0.3 to 8 ⁇ m.
  • the average particle diameter is 0.1 ⁇ m or more, there is a tendency that the fluidity at the time of highly filling the resin can be kept good, and when the average particle diameter is 10 ⁇ m or less, the mixing probability of coarse particles is reduced, and coarse particles are caused. Tends to suppress the occurrence of defects.
  • the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is determined with the total volume of the particles being 100%. Can be measured by a particle size distribution measuring device or the like.
  • the inorganic filler may be surface-treated with a coupling agent.
  • the method of surface treatment with the coupling agent may be a method of performing a dry or wet surface treatment on the inorganic filler before being blended into the resin composition, and the surface-untreated inorganic filler may be treated with other components. And then adding a silane coupling agent to the composition after mixing to form a composition, that is, a so-called integral blending method.
  • the coupling agent include a silane coupling agent, a titanate coupling agent, and a silicone oligomer.
  • the content is preferably from 10 to 300 parts by mass, more preferably from 50 to 250 parts by mass, per 100 parts by mass of the resin component in the resin composition.
  • the content of the inorganic filler is within the above range, the moldability and the low thermal expansion property tend to be good.
  • the resin composition contains an inorganic filler
  • the resin composition may contain a curing accelerator from the viewpoint of promoting the curing reaction.
  • the curing accelerator include organic phosphorus compounds such as triphenylphosphine, triphenylphosphonium, tetraphenylphosphonium tetra-p-tolylborate, and triphenylphosphine-triphenylborane; 2-methylimidazole, 2-ethyl-4-methyl Imidazole, 1-benzyl-2-methylimidazole, 2-undecylimidazole, isocyanate mask imidazole (addition reaction product of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole), 2,4-diamino-6- [2 '-Methylimidazolyl- (1')]-ethyl-s-triazine, isocyanuric acid adducts and the like; imidazoles and derivatives thereof; secondary amines, ter
  • Nitrogen compounds dicumyl peroxide 2,5-dimethyl-2,5-bis (t-butylperoxy) -3-hexyne, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, bis (1-phenyl-1)
  • Organic peroxides such as -methylethyl) peroxide, diisopropylbenzene hydroperoxide, ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene; zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate And the like.
  • the curing accelerator one type may be used alone, or two or more types may be used in combination.
  • the content is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 13 parts by mass, based on 100 parts by mass of the resin component in the resin composition. It is more preferably from 2 to 13 parts by mass.
  • organic fillers examples include a resin filler made of polyethylene, polypropylene resin and the like, a resin filler having a core-shell structure, and the like.
  • flame retardant examples include aromatic phosphoric ester compounds, phosphazene compounds, phosphinic esters, metal salts of phosphinic acid compounds, red phosphorus, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide And flame retardants such as melamine sulfate and melamine polyphosphate; and inorganic flame retardants such as antimony trioxide.
  • Examples of the ultraviolet absorber include a benzotriazole-based ultraviolet absorber.
  • Examples of the antioxidant include a hindered phenol antioxidant and a hindered amine antioxidant.
  • Examples of the photopolymerization initiator include benzophenones, benzylketals, and thioxanthone-based photopolymerization initiators.
  • Examples of the fluorescent whitening agent include a fluorescent whitening agent of a stilbene derivative.
  • Examples of the adhesion improver include a urea compound such as urea silane, and the coupling agent.
  • the prepreg is obtained by impregnating a fiber base material with the resin composition.
  • the prepreg can be produced by impregnating the fiber base material with the resin composition of the present invention and semi-curing (B-stage) by heating or the like.
  • the fiber base material well-known ones used for various laminated boards for electric insulating materials can be used. Examples of the material include inorganic fibers such as E glass, S glass, low dielectric glass, and Q glass; low dielectric glass organic fibers such as polyimide, polyester, and tetrafluoroethylene; and mixtures thereof.
  • These fiber base materials have, for example, a shape such as a woven fabric, a nonwoven fabric, a roving, a chopped strand mat, and a surfacing mat. Thus, one kind may be used alone, or two or more kinds of materials and shapes may be combined.
  • the thickness of the fiber base material can be, for example, about 0.03 to 0.5 mm.
  • These fiber base materials are preferably surface-treated with a silane coupling agent or the like or mechanically subjected to fiber opening treatment, from the viewpoint of heat resistance, moisture resistance, workability, and the like.
  • the prepreg is usually impregnated with the fiber base material so that the amount of the resin composition adhering to the fiber base material (content of the resin composition in the prepreg) is 20 to 90% by mass. It can be obtained by heating and drying at a temperature of 200 ° C. for 1 to 30 minutes and semi-curing (B stage).
  • the copper-clad laminate of the present invention is obtained by laminating and forming a laminate of the present invention with a configuration in which a copper foil is disposed via the resin layer or the prepreg.
  • the molding conditions the molding conditions for the laminated board for electric insulating material and the multilayer board can be applied. For example, using a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine, or the like, molding can be performed at a temperature of 100 to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours.
  • the printed wiring board of the present invention is obtained by processing a circuit on the copper-clad laminate of the present invention.
  • the copper foil of the copper-clad laminate may be subjected to wiring processing by an ordinary etching method, a plurality of laminated boards subjected to wiring processing via a prepreg may be laminated, and hot pressing may be performed to form a multilayer at once. Thereafter, a multilayer printed wiring board can be manufactured through formation of through holes or blind via holes by drilling or laser processing, and formation of interlayer wiring by plating or conductive paste.
  • the high-speed communication compatible module of the present invention is a high-speed communication compatible module manufactured using the printed wiring board of the present invention.
  • the high-speed communication-compatible module of the present invention is, for example, a communication module or the like in which a semiconductor chip or the like is mounted on the printed wiring board of the present invention. It is suitable for applications where the amount of information communication and the speed are large.
  • a polyphenylene ether derivative was produced according to the following procedure and the blending amount in Table 1.
  • a polyphenylene ether compound (a) having the following formula: was obtained.
  • GPC gel permeation chromatography
  • the number average molecular weight was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC).
  • the calibration curve is standard polystyrene: TSKstandard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation, [Product Name] was used to approximate by a cubic equation.
  • TSKstandard POLYSTYRENE Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40
  • Tosoh Corporation Tosoh Corporation, [Product Name] was used to approximate by a cubic equation.
  • the measurement conditions of GPC are shown below.
  • polyphenylene ether derivative (A-1) a polyphenylene ether derivative [referred to as polyphenylene ether derivative (A-1)].
  • Modified maleimide compounds (B-1) to (B-3) and phenol-modified cyanate prepolymer (C-1) Modified maleimide compounds (B-1) to (B-3), which are thermosetting resins, and a phenol-modified cyanate prepolymer (C-1) were produced according to the following procedure and the blending amounts shown in Table 2.
  • Examples 1 to 21, Comparative Examples 1 to 21 Preparation of resin composition
  • the components shown in Tables 3 to 6 are stirred and mixed while heating at room temperature or at 50 to 80 ° C. according to the blending amounts (unit: parts by mass) shown in Tables 3 to 6 to obtain a solid content concentration of 55 to 60% by mass.
  • the compounding amount of the inorganic filler the density of the resin composition (excluding the inorganic filler) is usually 1.20 to 1.25 g / cm 3 , and the density of the inorganic filler used is 2.
  • the formed tin alloy layer was subjected to a coupling process as a second step of the flat bond process [step (3)].
  • a stack of six prepregs is placed between two copper foils that have been treated in this way, and heated and pressed under the conditions of a temperature of 230 ° C., a pressure of 3.9 MPa, and a time of 180 minutes.
  • a double-sided copper-clad laminate was produced.
  • This double-sided copper-clad laminate is referred to as “normal double-sided copper-clad laminate”.
  • the operation of passing the thus obtained normal double-sided copper-clad laminate through a constant temperature bath over 300 seconds so that the substrate temperature reached a maximum of 260 ° C. was performed six times.
  • the copper-clad laminate after the treatment is referred to as “double-sided copper-clad laminate after six 260 ° C. reflow treatments”.
  • Double-sided copper-clad laminate after six 260 ° C. reflow treatments Each measurement and evaluation were performed using the double-sided copper-clad laminate obtained as described above according to the methods described below. The results are shown in Tables 3 and 4.
  • the pH of each liquid was measured by using a liquid heat treated with a test piece and ultrapure water as an extract, and a liquid heat treated with only ultrapure water as a control liquid.
  • the pH of the control solution was 7.
  • Tables 3 to 6 show the pH of the extract.
  • the abbreviations of the respective materials in Tables 3 to 6 are as follows.
  • (Thermosetting resin) (1) Polyphenylene ether derivative A-1: The polyphenylene ether derivative (A-1) obtained in Production Example A-1 was added to the table by appropriately removing the organic solvent or adding toluene and propylene glycol monomethyl ether. The solid content concentration described.
  • A-3 The polyphenylene ether derivative (A-3) obtained in Production Example A-3 was appropriately subjected to removal of an organic solvent or addition of toluene and propylene glycol monomethyl ether to obtain a solid content concentration shown in the table.
  • (2) Modified maleimide compound ⁇ B-1 The modified maleimide compound (B-1) obtained in Production Example B-1 is described in the table by appropriately removing the organic solvent or adding propylene glycol monomethyl ether. Solids concentration.
  • B-2 The modified maleimide compound (B-2) obtained in Production Example B-2 was adjusted to a solid content concentration shown in the table by appropriately removing the organic solvent or adding propylene glycol monomethyl ether. thing.
  • Tables 3 to 6 show that the laminates according to Examples 1 to 21 can significantly suppress the decrease in the peel strength after the reflow treatment and the tin adhesion amount on the peeled surface as compared with Comparative Examples 1 to 21. Significantly less.
  • Tables 3 to 6 show that the laminates according to Examples 1 to 21 can significantly suppress the decrease in the peel strength after the reflow treatment and the tin adhesion amount on the peeled surface as compared with Comparative Examples 1 to 21. Significantly less.
  • Table 7 shows that the resin composition was less affected by the acidity of the resin composition.
  • the copper foil, copper-clad laminate, and printed wiring board obtained by using the copper foil processing method of the present invention can be suitably used for electronic parts such as multilayer printed wiring boards and high-speed communication compatible modules.

Abstract

Provided is a copper foil processing method by which, regardless of the type of resin composition or the type of resin of a resin layer to be laminated on a conductive layer, peeling off of the resin layer is unlikely to occur even after a reflow step. Further provided are a copper foil obtained by performing the copper foil processing method, and a laminate using the copper foil, a copper-clad laminated plate, a printed wiring board, and a module suitable for high-speed communication. Specifically, provided is a copper foil processing method including: a step (1) for forming a tin layer or a tin alloy layer on the surface of a copper foil; a step (2) for converting, to a tin oxide, tin present on the surface of the tin layer or the tin alloy layer; and a step (3) for performing a coupling process on the tin oxide.

Description

銅箔の処理方法、銅箔、積層体、銅張積層板、プリント配線板及び高速通信対応モジュールCopper foil processing method, copper foil, laminate, copper-clad laminate, printed wiring board, and high-speed communication compatible module
 本発明は、銅箔の処理方法、銅箔、積層体、銅張積層板、プリント配線板及び高速通信対応モジュールに関する。 The present invention relates to a method for treating a copper foil, a copper foil, a laminate, a copper-clad laminate, a printed wiring board, and a module for high-speed communication.
 近年の電子機器の小型化及び高性能化の流れに伴い、プリント配線板では配線密度の高度化及び高集積化が進展しており、これに伴って、プリント配線板用の積層板には、耐熱性の向上等による信頼性向上の要求が強まっている。また、ネットワークインフラ機器及び大型コンピュータ等における情報通信量及び通信速度の著しい向上に伴い、これらの電子機器に搭載される半導体パッケージには高周波化対応が必要となり、低伝送損失の基板が求められている。 With the trend of miniaturization and high performance of electronic devices in recent years, higher wiring density and higher integration have been developed in printed wiring boards, and with this, laminated boards for printed wiring boards have There is an increasing demand for improved reliability by improving heat resistance. In addition, with the remarkable improvement in information communication volume and communication speed in network infrastructure devices and large-sized computers, semiconductor packages mounted on these electronic devices need to be compatible with high frequencies, and substrates with low transmission loss are required. I have.
 低伝送損失とするためには、導電層表面の凹凸が少ない、つまり導電層の表面粗さが小さいことが有効であるが、導電層の表面粗さが小さいと、その上に積層される樹脂との密着性が不十分になるという問題があり、低伝送損失と密着性とが二律背反の関係にある。
 この問題を解決すべく、近年は、導電層の表面粗さを小さくしたまま、その上に積層される樹脂との密着性を十分なものとする「フラットボンド処理」が利用されている(特許文献1参照)。フラットボンド処理は、導電層上に導電層と密着性の高いスズ層又はスズ合金層を形成し、さらにカップリング処理を行うことによってカップリング剤層を形成することで、導電層の表面を粗化することなく、樹脂層との密着性を高めることができる処理である。
In order to reduce the transmission loss, it is effective that the surface of the conductive layer has few irregularities, that is, the surface roughness of the conductive layer is small. However, if the surface roughness of the conductive layer is small, the resin laminated thereon may be used. However, there is a problem that the adhesion between the transmission loss is insufficient and the low transmission loss and the adhesion are in a trade-off relationship.
In order to solve this problem, in recent years, a "flat bond process" has been used in which the surface roughness of the conductive layer is kept small and the adhesion to the resin laminated thereon is sufficient (Patent Reference 1). In the flat bond treatment, a tin layer or a tin alloy layer having high adhesion to the conductive layer is formed on the conductive layer, and a coupling agent layer is formed by performing a coupling treatment to roughen the surface of the conductive layer. This is a process that can increase the adhesion to the resin layer without changing the state.
特開2016-072306号公報JP 2016-072306 A
 しかしながら、本発明者らがさらなる検討を行ったところ、導電層上にフラットボンド処理を行ってから、その上に樹脂層を形成し、次いでプレス成形して作製した積層体の中には、クリームはんだを溶かして実装部品をはんだ付けする「リフロー工程」を経た後に樹脂層の剥離が生じるものがあることが判明した。さらに検討を進めていくと、特定の樹脂又は樹脂組成物を使用する場合に高い確率で当該問題が生じることが分かったが、耐熱性、低熱膨張率及び低誘電性等のプリント配線板に求められる特性に応じてそのような樹脂を選択する必要性が生じることもあるというのが実情である。 However, when the present inventors further studied, after performing a flat bond treatment on the conductive layer, a resin layer is formed thereon, and then, in the laminate produced by press molding, cream It has been found that the resin layer may peel off after a “reflow process” in which the solder is melted and the mounted components are soldered. Further study revealed that the problem would occur with a high probability when using a specific resin or resin composition.However, heat resistance, low coefficient of thermal expansion, and low dielectric constant required printed wiring boards. In fact, it may be necessary to select such a resin depending on the properties to be obtained.
 そこで、本発明の課題は、導電層上に積層する樹脂層の樹脂又は樹脂組成物の種類に因らずに、リフロー工程を経た後でも樹脂層の剥離を生じにくくする、銅箔の処理方法を提供することにある。さらに、本発明の課題は、該銅箔の処理方法を施すことによって得られる銅箔を提供すること、該銅箔を用いた積層体、銅張積層板、プリント配線板及び高速通信対応モジュールを提供することにある。 Therefore, an object of the present invention is to provide a method for treating a copper foil, which makes it difficult for the resin layer to peel off even after passing through a reflow step, regardless of the type of the resin or the resin composition of the resin layer laminated on the conductive layer. Is to provide. Further, an object of the present invention is to provide a copper foil obtained by performing the copper foil processing method, and to provide a laminate using the copper foil, a copper-clad laminate, a printed wiring board, and a high-speed communication compatible module. To provide.
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、フラットボンド処理において、スズ層又はスズ合金層を形成した後であって、カップリング処理を行う前に、前記スズ層又は前記スズ合金層の表面に存在するスズを酸化スズへ変換することで、前記課題が解決し得ることを見出し、本発明を完成するに至った。 The present inventors have conducted intensive studies in order to achieve the above object, and as a result, after forming a tin layer or a tin alloy layer in a flat bond process, and before performing a coupling process, the tin layer Alternatively, the present inventors have found that the problem can be solved by converting tin present on the surface of the tin alloy layer to tin oxide, and have completed the present invention.
 すなわち、本発明は、以下の[1]~[14]に関する。
[1]銅箔の表面に、スズ層又はスズ合金層を形成する工程(1)、
 前記スズ層又はスズ合金層の表面に存在するスズを酸化スズに変換する工程(2)、
 前記酸化スズに対してカップリング処理をする工程(3)、
を有する、銅箔の処理方法。
[2]前記スズ合金層が、スズ及びニッケルを含有する合金層である、上記[1]に記載の銅箔の処理方法。
[3]前記工程(2)において、前記スズが加熱処理又は空気酸化によって酸化スズに変換される、上記[1]又は[2]に記載の銅箔の処理方法。
[4]前記加熱処理の温度が35~200℃である、上記[3]に記載の銅箔の処理方法。
[5]前記工程(1)において、前記銅箔が回路形成されたものである、上記[1]~[4]のいずれかに記載の銅箔の処理方法。
[6]前記工程(1)を経た後の、前記スズ層又は前記スズ合金層側の銅箔の面の表面粗さ(Rz)が0.2~2.0μmである、上記[1]~[5]のいずれかに記載の銅箔の処理方法。
[7]銅箔に、上記[1]~[6]のいずれかに記載の銅箔の処理方法を施すことによって得られる銅箔。
[8]銅箔上にスズ層又はスズ合金層を有し、前記スズ層又は前記スズ合金層における銅箔とは反対側の面に酸化スズ皮膜を有し、前記酸化スズ皮膜上にカップリング剤層を有する積層体。
[9]前記スズ層又はスズ合金層の厚みが0.01~1.0μmである、上記[8]に記載の積層体。
[10]前記カップリング剤層上にpHが3.0~5.0の酸性樹脂層又は該酸性樹脂層を含有するプリプレグを有する、上記[8]又は[9]に記載の積層体。
[11]前記スズ層又は前記スズ合金層側の前記銅箔の面の表面粗さ(Rz)が0.2~2.0μmである、上記[8]~[10]のいずれかに記載の積層体。
[12]上記[8]~[11]のいずれかに記載の積層体の少なくとも一方の表面に銅箔を有する、銅張積層板。
[13]上記[12]に記載の銅張積層板に回路加工してなるプリント配線板。
[14]上記[13]に記載のプリント配線板を用いて製造される高速通信対応モジュール。
That is, the present invention relates to the following [1] to [14].
[1] Step (1) of forming a tin layer or a tin alloy layer on the surface of a copper foil,
Converting tin existing on the surface of the tin layer or tin alloy layer into tin oxide (2),
A step (3) of performing a coupling treatment on the tin oxide;
A method for treating a copper foil.
[2] The method for treating a copper foil according to [1], wherein the tin alloy layer is an alloy layer containing tin and nickel.
[3] The method for treating a copper foil according to the above [1] or [2], wherein in the step (2), the tin is converted into tin oxide by heat treatment or air oxidation.
[4] The method for treating a copper foil according to the above [3], wherein the temperature of the heat treatment is 35 to 200 ° C.
[5] The method for treating a copper foil according to any one of the above [1] to [4], wherein in the step (1), the copper foil is formed with a circuit.
[6] The above [1] to [1], wherein the surface roughness (Rz) of the surface of the copper foil on the tin layer or tin alloy layer side after the step (1) is 0.2 to 2.0 μm. The method for treating a copper foil according to any one of [5].
[7] A copper foil obtained by subjecting the copper foil to the method for treating a copper foil according to any one of the above [1] to [6].
[8] A tin layer or a tin alloy layer on a copper foil, a tin oxide film on a surface of the tin layer or the tin alloy layer opposite to the copper foil, and a coupling on the tin oxide film A laminate having an agent layer.
[9] The laminate according to the above [8], wherein the tin layer or the tin alloy layer has a thickness of 0.01 to 1.0 μm.
[10] The laminate according to the above [8] or [9], further comprising an acidic resin layer having a pH of 3.0 to 5.0 or a prepreg containing the acidic resin layer on the coupling agent layer.
[11] The method according to any one of [8] to [10], wherein the surface roughness (Rz) of the surface of the copper foil on the tin layer or tin alloy layer side is 0.2 to 2.0 μm. Laminate.
[12] A copper-clad laminate having a copper foil on at least one surface of the laminate according to any one of [8] to [11].
[13] A printed wiring board obtained by performing circuit processing on the copper-clad laminate according to the above [12].
[14] A high-speed communication-compatible module manufactured using the printed wiring board according to the above [13].
 本発明によれば、導電層上に積層する樹脂層の樹脂又は樹脂組成物の種類に因らずに、リフロー工程を経た後でも樹脂層の剥離を生じにくくする、銅箔の処理方法を提供することができる。さらに、該銅箔の処理方法を施すことによって得られる銅箔を提供することができ、該銅箔を用いた積層体、銅張積層板、プリント配線板及び高速通信対応モジュールを提供することができる。 According to the present invention, there is provided a method for treating a copper foil, which makes it difficult for the resin layer to peel even after a reflow step, regardless of the type of the resin or the resin composition of the resin layer laminated on the conductive layer. can do. Furthermore, it is possible to provide a copper foil obtained by performing the method for treating the copper foil, and to provide a laminate, a copper-clad laminate, a printed wiring board, and a high-speed communication compatible module using the copper foil. it can.
本発明の銅箔の処理方法を採用したときの、本発明の効果が発現する推定メカニズムを説明するための概略図である。It is a schematic diagram for explaining the presumed mechanism where the effect of the present invention appears when the processing method of the copper foil of the present invention is adopted. 従来の銅箔の処理方法を採用したときの、樹脂層が剥離する推定メカニズムを説明するための概略図である。It is the schematic for demonstrating the estimation mechanism which a resin layer peels when the conventional copper foil processing method is employ | adopted.
 本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値又は上限値と任意に組み合わせられる。
 本明細書における記載事項を任意に組み合わせた態様も本発明に含まれる。
 また、本明細書において、「固形分」とは、溶媒等の揮発する物質を除いた不揮発分を指し、樹脂組成物を乾燥させた際に、揮発せずに残る成分を示し、室温で液状、水飴状及びワックス状のものも含む。ここで、本明細書において室温とは25℃を指す。
 本明細書において、「樹脂成分」とは、無機充填材を除く、樹脂又は樹脂の製造に使用される成分であり、具体的には、後述する樹脂組成物が含有する成分のうち、無機充填材を除く成分のことである。
In the numerical ranges described in this specification, the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment. In addition, the lower limit and the upper limit of the numerical range are arbitrarily combined with the lower limit and the upper limit of the other numerical ranges, respectively.
An embodiment in which the items described in this specification are arbitrarily combined is also included in the present invention.
Further, in the present specification, the “solid content” refers to a non-volatile content excluding a volatile substance such as a solvent, and indicates a component that remains without volatilization when the resin composition is dried, and is a liquid at room temperature. , Syrupy and waxy ones. Here, room temperature refers to 25 ° C. in this specification.
In the present specification, the “resin component” is a component used in the production of a resin or a resin, excluding an inorganic filler, and specifically, among components contained in a resin composition described below, an inorganic filler It is a component excluding materials.
[銅箔の処理方法]
 本発明の銅箔の処理方法は、
 銅箔の表面に、スズ層又はスズ合金層を形成する工程(1)、
 前記スズ層又はスズ合金層の表面に存在するスズを酸化スズに変換する工程(2)、
 前記酸化スズに対してカップリング処理をする工程(3)、
を有する、銅箔の処理方法である。
 本発明の銅箔の処理方法により、銅箔上に積層する樹脂層の樹脂の種類(又は樹脂組成物の種類)に因らずに、リフロー工程を経た後でも当該樹脂層の剥離が生じにくくなる。特に、上記工程(2)を経ることによって当該効果が発現する。なお、一般的に、銅箔の表面にスズ層又はスズ合金層を形成する工程[前記工程(1)]とカップリング処理をする工程[前記工程(3)]とを併せて、フラットボンド処理工程と称されることがある。
 以下、各工程について詳述する。
[Treatment method of copper foil]
The processing method of the copper foil of the present invention,
Forming a tin layer or a tin alloy layer on the surface of the copper foil (1),
Converting tin existing on the surface of the tin layer or tin alloy layer into tin oxide (2),
A step (3) of performing a coupling treatment on the tin oxide;
This is a method for treating a copper foil.
According to the method for treating a copper foil of the present invention, regardless of the type of the resin (or the type of the resin composition) of the resin layer to be laminated on the copper foil, the resin layer is less likely to be separated even after the reflow step. Become. In particular, the effect is exhibited through the above step (2). In general, a flat bond process is performed by combining the step of forming a tin layer or a tin alloy layer on the surface of a copper foil [the step (1)] and the step of performing a coupling treatment [the step (3)]. It may be called a process.
Hereinafter, each step will be described in detail.
(工程(1))
 工程(1)は、銅箔の表面に、スズ層又はスズ合金層を形成する工程である。本発明では、該銅箔は回路形成されたものであってもよく、また、回路形成されたものであることが好ましい。本発明では、銅箔が回路形成されたものであっても単に銅箔と称することがあるため、その場合は「銅箔」を「回路」へ読み替えることができる。なお、銅箔が回路形成されている場合は、銅箔の表面のみならず、回路と回路の間にもスズ層又はスズ合金層が形成されることとなる。
 スズ層又はスズ合金層は銅箔との親和性が高い。そのため、銅箔の表面の粗化を行わずに、銅箔とスズ層又はスズ合金層との密着性を確保することができる。ゆえに、銅箔の表面粗さは小さく維持され、例えば、前記スズ層又は前記スズ合金層側の銅箔の面の表面粗さ(Rz)は、0.2~2.0μmとすることができ、0.5~2.0μmとすることもでき、1.0~1.8μmとすることもできる。
 ここで、本明細書において、銅箔の「表面粗さ」は十点平均表面粗さ(Rz)のことであり、JIS B0601(1994年)に準じて測定した値である。
(Step (1))
Step (1) is a step of forming a tin layer or a tin alloy layer on the surface of the copper foil. In the present invention, the copper foil may be formed with a circuit, and is preferably formed with a circuit. In the present invention, even when a copper foil is formed on a circuit, it may be simply referred to as a copper foil. In such a case, “copper foil” can be read as “circuit”. When a copper foil is formed on a circuit, a tin layer or a tin alloy layer is formed not only on the surface of the copper foil but also between circuits.
The tin layer or the tin alloy layer has a high affinity for the copper foil. Therefore, the adhesion between the copper foil and the tin layer or the tin alloy layer can be ensured without roughening the surface of the copper foil. Therefore, the surface roughness of the copper foil is kept small. For example, the surface roughness (Rz) of the surface of the copper foil on the tin layer or tin alloy layer side can be 0.2 to 2.0 μm. , 0.5 to 2.0 μm, or 1.0 to 1.8 μm.
Here, in this specification, the “surface roughness” of the copper foil is a ten-point average surface roughness (Rz), which is a value measured according to JIS B0601 (1994).
 前記スズ層又は前記スズ合金層は、いわゆるフラットボンド処理において通常形成するスズ層又はスズ合金層であればよい。例えば、メック株式会社の「フラットボンド」シリーズを使用して銅箔の表面にスズ系処理を行うことで、スズ層又はスズ合金層を形成することができる。スズ系処理とは、例えば、置換スズメッキ、スズ塩、有機酸、無機酸及び還元剤等からなる群から選択される少なくとも1種を含む処理液等による浸漬などが挙げられる。
 銅箔の表面に形成するスズ層又はスズ合金層はいずれであってもよいが、スズがイオン化して銅箔内へ拡散することを抑制する観点から、スズ合金層であることが好ましい。スズ合金層は、スズ及びニッケルを含有する合金層であることが好ましく、スズ、銅及びニッケルを含有する合金層であることがより好ましい。
The tin layer or the tin alloy layer may be a tin layer or a tin alloy layer usually formed in a so-called flat bond process. For example, a tin layer or a tin alloy layer can be formed by performing a tin-based treatment on the surface of a copper foil using a “Flat Bond” series of Mec Corporation. Examples of the tin-based treatment include substitution tin plating, immersion in a treatment solution containing at least one selected from the group consisting of a tin salt, an organic acid, an inorganic acid, a reducing agent, and the like.
The tin layer or the tin alloy layer formed on the surface of the copper foil may be either, but is preferably a tin alloy layer from the viewpoint of suppressing the ionization and diffusion of tin into the copper foil. The tin alloy layer is preferably an alloy layer containing tin and nickel, and more preferably an alloy layer containing tin, copper and nickel.
 前記スズ層又は前記スズ合金層の厚みに特に制限はないが、通常、好ましくは0.01~1.0μm、より好ましくは0.03~0.7μm、さらに好ましくは0.05~0.5μm、特に好ましくは0.05~0.3μmである。 The thickness of the tin layer or the tin alloy layer is not particularly limited, but is usually preferably 0.01 to 1.0 μm, more preferably 0.03 to 0.7 μm, and still more preferably 0.05 to 0.5 μm. And particularly preferably 0.05 to 0.3 μm.
(工程(2))
 工程(2)は、前記スズ層又はスズ合金層の表面に存在するスズを酸化スズに変換する工程である。酸化スズとしては、特に制限されるものではないが、酸化スズ(II)[SnO]及び酸化スズ(IV)[SnO]からなる群から選択される少なくとも1種であることが好ましい。
(Step (2))
The step (2) is a step of converting tin existing on the surface of the tin layer or the tin alloy layer into tin oxide. The tin oxide is not particularly limited, but is preferably at least one selected from the group consisting of tin (II) oxide [SnO] and tin (IV) oxide [SnO 2 ].
 前記スズ層又はスズ合金層の表面に存在するスズを酸化スズに変換する方法としては、金属スズを酸化スズに変換し得る公知の方法を利用することができ、特に制限されるものではない。例えば、(a)前記スズ層又は前記スズ合金層の表面を加熱処理する方法、(b)前記スズ層又はスズ合金層を常温で放置することにより空気酸化する方法等が挙げられる。これらの中でも、スズを酸化スズに短時間で十分に変換するという観点からは、方法(a)が好ましい。
 前記方法(a)において、加熱温度としては特に制限されるものではないが、前記スズ層又は前記スズ合金層の表面の酸化を促進する温度であることが好ましく、例えば、好ましくは35~200℃、より好ましくは35~160℃、さらに好ましくは60~140℃、特に好ましくは80~135℃、最も好ましくは100~135℃である。加熱温度がこの範囲であると、リフロー工程を経た後における樹脂層の剥離の抑制効果が大きい。
 加熱時間に特に制限はないが、前記スズ層又は前記スズ合金層の表面の酸化を十分に行う観点から、好ましくは5秒~60分、より好ましくは10秒~40分、さらに好ましくは1分~40分、特に好ましくは5分~35分である。
 加熱処理は1回実施すればよいが、必要に応じて2回以上実施してもよい。
 前記方法(a)において、加熱手段に特に制限はなく、例えば、ヒーター、温浴等を用いることができる。
As a method of converting tin existing on the surface of the tin layer or the tin alloy layer to tin oxide, a known method capable of converting metal tin to tin oxide can be used, and is not particularly limited. For example, (a) a method of heat-treating the surface of the tin layer or the tin alloy layer, and (b) a method of oxidizing air by leaving the tin layer or the tin alloy layer at room temperature. Among them, the method (a) is preferable from the viewpoint of sufficiently converting tin to tin oxide in a short time.
In the method (a), the heating temperature is not particularly limited, but is preferably a temperature that promotes oxidation of the surface of the tin layer or the tin alloy layer, for example, preferably 35 to 200 ° C. , More preferably 35 to 160 ° C, further preferably 60 to 140 ° C, particularly preferably 80 to 135 ° C, and most preferably 100 to 135 ° C. When the heating temperature is in this range, the effect of suppressing the separation of the resin layer after passing through the reflow step is large.
The heating time is not particularly limited, but from the viewpoint of sufficiently oxidizing the surface of the tin layer or the tin alloy layer, preferably 5 seconds to 60 minutes, more preferably 10 seconds to 40 minutes, and still more preferably 1 minute. -40 minutes, particularly preferably 5 minutes to 35 minutes.
The heat treatment may be performed once, but may be performed twice or more as necessary.
In the method (a), the heating means is not particularly limited, and for example, a heater, a warm bath, or the like can be used.
 前記スズ層又は前記スズ合金層の表面に存在するスズを酸化スズに変換できたかどうかは、前記スズ層又は前記スズ合金層の表面のX線光電子分光法(XPS)による組成分析によって酸化スズの存在を確認することで認識できる。該X線光電子分光法(XPS)は、X線源としてAl-Kα線を使用し、検出角度45°の条件にて測定すればよく、XPS測定装置に特に制限はないが、実施例に記載の装置によって測定すればよい。
 当該工程(2)によって本発明の効果が発現する推定メカニズムについて、図1を用いて説明する。工程(2)によって、銅箔1上の前記スズ層又は前記スズ合金層2の表面に酸化スズ皮膜3が形成されると(図1(a)参照)、該酸化スズ皮膜3と、工程(3)で実施するカップリング処理に使用されるカップリング剤との親和性が高いためにカップリング剤層4が十分に形成され、図1(b)が示すようにpHが3.0~5.0の酸性樹脂層5による酸化作用6が抑制され、その結果、図1(c)が示すように、リフロー処理後も剥離が生じないという本発明の効果につながったものと推察する。
 一方、当該工程(2)を経ずに工程(3)を行うと(図2参照)、図2(a)が示すように、銅箔1上のスズ層又は前記スズ合金層2上へのカップリング剤層4の形成は必ずしも十分なものとはならず、カップリング剤層4上にpHが3.0~5.0の酸性樹脂層5を設ける場合、図2(b)が示すように、前記酸性樹脂層5による酸化作用6によって前記スズ層又は前記スズ合金層2からスズイオン(Sn)が形成され、該スズイオンが前記酸性樹脂層5へ移行することが原因で、図2(c)が示すように、スズ層又は前記スズ合金層2と前記酸性樹脂層5との密着性が低下した部位7ができ、これが剥離の原因になるものと推察する。
Whether tin existing on the surface of the tin layer or the tin alloy layer could be converted to tin oxide was determined by analyzing the composition of the surface of the tin layer or the tin alloy layer by X-ray photoelectron spectroscopy (XPS). It can be recognized by confirming its existence. The X-ray photoelectron spectroscopy (XPS) may use Al-Kα radiation as an X-ray source and measure at a detection angle of 45 °, and there is no particular limitation on the XPS measuring apparatus, but it is described in Examples. What is necessary is just to measure with an apparatus of.
The mechanism by which the effect of the present invention is exhibited by the step (2) will be described with reference to FIG. When the tin oxide film 3 is formed on the surface of the tin layer or the tin alloy layer 2 on the copper foil 1 in the step (2) (see FIG. 1A), the tin oxide film 3 and the step ( The coupling agent layer 4 is sufficiently formed due to high affinity with the coupling agent used in the coupling treatment performed in 3), and the pH is adjusted to 3.0 to 5 as shown in FIG. It is presumed that the oxidation effect 6 by the acidic resin layer 5 of 0.0 was suppressed, and as a result, as shown in FIG. 1C, the peeling did not occur even after the reflow treatment, leading to the effect of the present invention.
On the other hand, if the step (3) is performed without passing through the step (2) (see FIG. 2), as shown in FIG. 2A, the tin layer on the copper foil 1 or the tin alloy layer 2 is formed. The formation of the coupling agent layer 4 is not always sufficient. When the acidic resin layer 5 having a pH of 3.0 to 5.0 is provided on the coupling agent layer 4, as shown in FIG. In addition, tin ions (Sn + ) are formed from the tin layer or the tin alloy layer 2 by the oxidizing action 6 of the acidic resin layer 5, and the tin ions migrate to the acidic resin layer 5 as shown in FIG. As shown in c), it is presumed that there is a portion 7 in which the adhesion between the tin layer or the tin alloy layer 2 and the acidic resin layer 5 is reduced, and this causes peeling.
(工程(3))
 前記工程(2)で形成した酸化スズ(酸化スズ皮膜)に対してカップリング処理をする工程である。カップリング処理により、カップリング剤層が形成される。カップリング処理に使用されるカップリング剤としては、公知のフラットボンド処理工程で使用されるカップリング剤を用いることができる。カップリング剤層は酸化スズ皮膜との密着性が高く、且つ、樹脂層との密着性にも優れる。
 カップリング剤としては、特に制限されるものではないが、例えば、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等が挙げられる。これらの中でも、好ましくはシランカップリング剤であり、シランカップリング剤としては、例えば、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、スチレンシラン系カップリング剤等が挙げられる。
 カップリング処理は、カップリング剤に浸漬するか、又はカップリング剤を用いてシャワーリングを行うこと等によって実施できる。
(Step (3))
In this step, the tin oxide (tin oxide film) formed in the step (2) is subjected to a coupling treatment. The coupling treatment forms a coupling agent layer. As the coupling agent used in the coupling treatment, a coupling agent used in a known flat bond treatment step can be used. The coupling agent layer has high adhesion to the tin oxide film and also has excellent adhesion to the resin layer.
The coupling agent is not particularly limited, and examples thereof include a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent. Among these, a silane coupling agent is preferable, and examples of the silane coupling agent include an aminosilane-based coupling agent, an epoxysilane-based coupling agent, and a styrene-silane-based coupling agent.
The coupling treatment can be performed by dipping in a coupling agent, showering using the coupling agent, or the like.
 本発明は、銅箔に、前記本発明の銅箔の処理方法を施すことによって得られる銅箔も提供する。該銅箔は、前述のとおり、回路形成されたものであってもよく、回路形成されたものであることが好ましい。 The present invention also provides a copper foil obtained by subjecting a copper foil to the method for treating a copper foil of the present invention. As described above, the copper foil may be formed with a circuit, and is preferably formed with a circuit.
[積層体]
 本発明は、銅箔上にスズ層又はスズ合金層を有し、前記スズ層又は前記スズ合金層における銅箔とは反対側の面に酸化スズ皮膜を有し、前記酸化スズ皮膜上にカップリング剤層を有する積層体も提供する。銅箔、スズ層、スズ合金層、酸化スズ皮膜及びカップリング剤層については前記説明のとおりである。本発明の当該積層体は、前述した本発明の銅箔の処理方法によって銅箔を処理することによって製造することができる。
 本発明の積層体は、前記カップリング剤層上に樹脂層(プリプレグであってもよい。)を有していてもよく、特に、前記樹脂層がpH3.0~5.0の酸性樹脂層であってもよい点で有利である。本発明の積層体は、カップリング剤層上に有する樹脂層がpH3.0~5.0の酸性樹脂層であっても、リフロー工程後の樹脂層の剥離が生じにくい。ここで、樹脂層のpHは、基板を130℃で200時間保管して得られた抽出液をpHメータによって測定した値であり、より詳細には実施例に記載の方法に従って測定した値である。
 前記樹脂層は、樹脂組成物から形成される樹脂フィルム又は樹脂組成物を含有してなるプリプレグを用いて製造することができる。
[Laminate]
The present invention has a tin layer or a tin alloy layer on a copper foil, a tin oxide film on a surface of the tin layer or the tin alloy layer opposite to the copper foil, and a cup on the tin oxide film. A laminate having a ring agent layer is also provided. The copper foil, tin layer, tin alloy layer, tin oxide film, and coupling agent layer are as described above. The laminate of the present invention can be manufactured by treating a copper foil by the above-described method for treating a copper foil of the present invention.
The laminate of the present invention may have a resin layer (may be a prepreg) on the coupling agent layer. In particular, the resin layer may be an acidic resin layer having a pH of 3.0 to 5.0. This is advantageous in that In the laminate of the present invention, even if the resin layer on the coupling agent layer is an acidic resin layer having a pH of 3.0 to 5.0, the resin layer hardly peels off after the reflow step. Here, the pH of the resin layer is a value obtained by measuring an extract obtained by storing the substrate at 130 ° C. for 200 hours with a pH meter, and more specifically a value measured according to the method described in Examples. .
The resin layer can be manufactured using a resin film formed from a resin composition or a prepreg containing the resin composition.
<樹脂組成物>
 前記樹脂フィルム及び前記プリプレグが含有する樹脂組成物としては、熱硬化性樹脂組成物が好ましい。該熱硬化性樹脂組成物としては、熱硬化性樹脂を含有していれば特に制限はない。以下、「樹脂組成物」は「熱硬化性樹脂組成物」へと読み替えることができる。
<Resin composition>
As the resin composition contained in the resin film and the prepreg, a thermosetting resin composition is preferable. The thermosetting resin composition is not particularly limited as long as it contains a thermosetting resin. Hereinafter, “resin composition” can be read as “thermosetting resin composition”.
(熱硬化性樹脂)
 熱硬化性樹脂としては、プリント配線板の絶縁材料として使用される公知の熱硬化性樹脂を使用することができる。例えば、ポリフェニレンエーテル誘導体、エポキシ樹脂、シアネート樹脂、イソシアネート樹脂、ビスアリルナジイミド樹脂、ベンゾオキサジン樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、ポリマレイミド化合物及び変性マレイミド化合物[(1)ポリマレイミド化合物とモノアミン化合物との付加反応物、(2)ポリマレイミド化合物とジアミン化合物との付加反応物(重合物)、(3)ポリマレイミド化合物とモノアミン化合物とジアミン化合物との付加反応物(重合物)等]などが挙げられる。
 特に、樹脂組成物がpH3.0~5.0の酸性の樹脂組成物となる例としては、特に制限されるものではないが、前記ポリマレイミド化合物及び前記変性マレイミド化合物からなる群から選択される少なくとも1種と共に、硬化促進剤として後述の有機リン系化合物を含有させた場合等が挙げられる。
 熱硬化性樹脂は、1種を単独で使用してもよいし、2種以上を併用してもよい。例えば、前記ポリフェニレンエーテル誘導体と、前記ポリマレイミド化合物及び前記変性マレイミド化合物からなる群から選択される少なくとも1種と、を併用する態様等が挙げられる。さらに、前記ポリフェニレンエーテル誘導体と前記イソシアネート樹脂とを併用する態様、前記ポリフェニレンエーテル誘導体と前記エポキシ樹脂とを併用する態様等も挙げられる。
 なお、前記変性マレイミド化合物としては、いずれの場合も、ポリマレイミド化合物とジアミン化合物との付加反応物(重合物)が好ましい。
(Thermosetting resin)
As the thermosetting resin, a known thermosetting resin used as an insulating material for a printed wiring board can be used. For example, polyphenylene ether derivatives, epoxy resins, cyanate resins, isocyanate resins, bisallylnadiimide resins, benzoxazine resins, allyl resins, dicyclopentadiene resins, silicone resins, triazine resins, polymaleimide compounds and modified maleimide compounds [(1) Addition reaction product of polymaleimide compound and monoamine compound, (2) addition reaction product of polymaleimide compound and diamine compound (polymer), (3) addition reaction product of polymaleimide compound with monoamine compound and diamine compound (polymerization) Material) etc.].
In particular, examples in which the resin composition becomes an acidic resin composition having a pH of 3.0 to 5.0 are not particularly limited, but are selected from the group consisting of the polymaleimide compound and the modified maleimide compound. A case where an organic phosphorus-based compound described below is contained as a curing accelerator together with at least one kind is exemplified.
One thermosetting resin may be used alone, or two or more thermosetting resins may be used in combination. For example, an embodiment in which the polyphenylene ether derivative is used in combination with at least one selected from the group consisting of the polymaleimide compound and the modified maleimide compound is exemplified. Furthermore, an embodiment in which the polyphenylene ether derivative is used in combination with the isocyanate resin, an embodiment in which the polyphenylene ether derivative is used in combination with the epoxy resin, and the like are also included.
In any case, the modified maleimide compound is preferably an addition reaction product (polymer) of a polymaleimide compound and a diamine compound.
(その他の成分)
 樹脂組成物が含有し得る成分としては、前記熱硬化性樹脂以外にも、熱可塑性樹脂、熱可塑性エラストマー、無機充填材、共重合樹脂、硬化促進剤、有機充填材、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、接着性向上剤等が挙げられ、これらからなる群から選択される少なくとも1種を含有していてもよい。
(Other components)
As components that can be contained in the resin composition, in addition to the thermosetting resin, a thermoplastic resin, a thermoplastic elastomer, an inorganic filler, a copolymer resin, a curing accelerator, an organic filler, a flame retardant, an ultraviolet absorber , An antioxidant, a photopolymerization initiator, a fluorescent brightener, an adhesion improver and the like, and may contain at least one selected from the group consisting of these.
(ポリフェニレンエーテル誘導体)
 前記ポリフェニレンエーテル誘導体としては、少なくとも1個のN-置換マレイミド構造含有基を有するポリフェニレンエーテル誘導体が好ましい。ポリフェニレンエーテル誘導体が少なくとも1個のN-置換マレイミド構造含有基を有することにより、優れた高周波特性、銅箔との高接着性、高ガラス転移温度、低熱膨張率及び高難燃性を有する樹脂組成物となる傾向がある。ここで、本明細書でいう熱膨張率は、線膨張率とも呼ばれる値である。また、N-置換マレイミド構造含有基はN-置換マレイミド基を含有していれば特に限定されない。
(Polyphenylene ether derivative)
As the polyphenylene ether derivative, a polyphenylene ether derivative having at least one N-substituted maleimide structure-containing group is preferable. Resin composition having excellent high-frequency characteristics, high adhesiveness to copper foil, high glass transition temperature, low coefficient of thermal expansion, and high flame retardancy because the polyphenylene ether derivative has at least one group containing an N-substituted maleimide structure It tends to be a thing. Here, the coefficient of thermal expansion referred to in this specification is a value also called a coefficient of linear expansion. The N-substituted maleimide structure-containing group is not particularly limited as long as it contains an N-substituted maleimide group.
 ポリフェニレンエーテル誘導体は、上記と同様の観点から、少なくとも1個のN-置換マレイミド構造含有基及び下記一般式(I)で表される構造単位を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000001

(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。xは0~4の整数である。)
From the same viewpoint as described above, the polyphenylene ether derivative preferably has at least one N-substituted maleimide structure-containing group and a structural unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001

(In the formula, R 1 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. X is an integer of 0 to 4.)
 前記一般式(I)中のRが表す脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であることが好ましく、メチル基であることが好ましい。また、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。ハロゲン原子としては、ハロゲンフリーとする観点から、フッ素原子であることが好ましい。
 以上の中でも、Rとしては炭素数1~5の脂肪族炭化水素基であることが好ましい。
Examples of the aliphatic hydrocarbon group represented by R 1 in the general formula (I) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and n -A pentyl group and the like. The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and more preferably a methyl group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The halogen atom is preferably a fluorine atom from the viewpoint of being halogen-free.
Among them, R 1 is preferably an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
 xは0~4の整数であり、0~2の整数であることが好ましく、2であることが好ましい。なお、xが1又は2である場合、Rはベンゼン環上のオルト位(但し、酸素原子の置換位置を基準とする。)に置換していてもよい。また、xが2以上である場合、複数のR同士は同一であっても異なっていてもよい。 x is an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 2. When x is 1 or 2, R 1 may be substituted at the ortho position on the benzene ring (however, based on the substitution position of the oxygen atom). When x is 2 or more, a plurality of R 1 may be the same or different.
 前記一般式(I)で表される構造単位としては、具体的には、下記一般式(I’)で表される構造単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
Specifically, the structural unit represented by the general formula (I) is preferably a structural unit represented by the following general formula (I ′).
Figure JPOXMLDOC01-appb-C000002
 ポリフェニレンエーテル誘導体が有するN-置換マレイミド構造含有基としては、高周波特性、銅箔との接着性、耐熱性、ガラス転移温度、熱膨張率及び難燃性の観点から、2つのマレイミド基の窒素原子同士が有機基を介して結合しているビスマレイミド構造(但し、該構造に由来する構造も含まれる。ここで、該構造に由来する構造とは、マレイミド基が有する炭素-炭素二重結合が官能基(アミノ基等)と反応した構造等である。)を含有する基であることが好ましく、下記一般式(Z)で表される基であることが好ましい。下記一般式(Z)で表される基を有するポリフェニレンエーテル誘導体は、例えば、ポリフェニレンエーテル(1)とアミノフェノール化合物(2)を反応させて分子末端に第一級アミノ基を有するポリフェニレンエーテル化合物を得、これとビスマレイミド化合物(3)とを反応させることによって容易に製造できる。
Figure JPOXMLDOC01-appb-C000003

(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。yは0~4の整数である。Aは有機基であり、好ましくは後述する一般式(II)、(III)、(IV)又は(V)で表される基である。)
The N-substituted maleimide structure-containing group contained in the polyphenylene ether derivative includes nitrogen atoms of two maleimide groups from the viewpoint of high-frequency characteristics, adhesion to a copper foil, heat resistance, glass transition temperature, coefficient of thermal expansion, and flame retardancy. A bismaleimide structure in which they are bonded via an organic group (however, a structure derived from the structure is also included. Here, the structure derived from the structure means that a carbon-carbon double bond of the maleimide group is A functional group (e.g., a structure that has reacted with an amino group)), and is preferably a group represented by the following general formula (Z). The polyphenylene ether derivative having a group represented by the following general formula (Z) is obtained, for example, by reacting a polyphenylene ether (1) with an aminophenol compound (2) to obtain a polyphenylene ether compound having a primary amino group at a molecular terminal. Thus, it can be easily produced by reacting this with the bismaleimide compound (3).
Figure JPOXMLDOC01-appb-C000003

(In the formula, each R 2 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. Y is an integer of 0 to 4. A 1 is an organic group, which is preferably described later.) It is a group represented by the general formula (II), (III), (IV) or (V).)
 Rが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。 The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 2 are the same as described for R 1 .
 yは0~4の整数であり、0~2の整数であることが好ましく、0であることがより好ましい。yが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。 y is an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0. If y is an integer of 2 or more, plural R 2 together may be different even in the same.
 Aが表す好ましい有機基としての、一般式(II)、(III)、(IV)又は(V)で表される基は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000004
The groups represented by the general formulas (II), (III), (IV) or (V) as preferred organic groups represented by A 1 are as follows.
Figure JPOXMLDOC01-appb-C000004
(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。pは0~4の整数である。)
 Rが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
(In the formula, R 3 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. P is an integer of 0 to 4.)
The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 3 are the same as described for R 1 .
 pは0~4の整数であり、入手容易性の観点から、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることがさらに好ましい。pが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。 p is an integer of 0 to 4, and is preferably an integer of 0 to 2, more preferably 0 or 1, and further preferably 0 from the viewpoint of availability. When p is an integer of 2 or more, a plurality of R 3 may be the same or different.
Figure JPOXMLDOC01-appb-C000005

(式中、R及びRは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、単結合又は下記一般式(III-1)で表される基である。q及びrは各々独立に0~4の整数である。)
Figure JPOXMLDOC01-appb-C000005

(In the formula, R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. A 2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms. A group, an ether group, a sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, a single bond or a group represented by the following general formula (III-1), wherein q and r are each independently an integer of 0 to 4. is there.)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であることが好ましく、メチル基、エチル基であることがより好ましく、エチル基であることがさらに好ましい。 Examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 4 and R 5 include the same as those in the case of R 1 . The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and further preferably an ethyl group.
 Aが表す炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、高周波特性、銅箔との接着性、耐熱性、ガラス転移温度、熱膨張率及び難燃性の観点から、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。 Examples of the alkylene group having 1 to 5 carbon atoms represented by A 2 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like. Is mentioned. The alkylene group is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoints of high-frequency characteristics, adhesion to a copper foil, heat resistance, glass transition temperature, coefficient of thermal expansion, and flame retardancy, and a methylene group. Is more preferable.
 Aが表す炭素数2~5のアルキリデン基としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高周波特性、銅箔との接着性、耐熱性、ガラス転移温度、熱膨張率及び難燃性の観点から、イソプロピリデン基であることが好ましい。
 Aとしては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基であることが好ましい。
The alkylidene group having 2 to 5 carbon atoms which A 2 represents, for example, ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group, and the like. Among these, an isopropylidene group is preferred from the viewpoints of high-frequency characteristics, adhesiveness to copper foil, heat resistance, glass transition temperature, coefficient of thermal expansion, and flame retardancy.
A 2 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms among the above options.
 q及びrは各々独立に0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であることが好ましく、0又は2であることがより好ましい。q又はrが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。 q and r are each independently an integer of 0 to 4, and from the viewpoint of availability, each is preferably an integer of 0 to 2, and more preferably 0 or 2. When q or r is an integer of 2 or more, a plurality of R 4 or R 5 may be the same or different.
 なお、Aが表す一般式(III-1)で表される基は以下のとおりである。
Figure JPOXMLDOC01-appb-C000006

(式中、R及びRは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1~5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。s及びtは各々独立に0~4の整数である。)
Incidentally, the group represented by the general formula represented by A 2 (III-1) are as follows.
Figure JPOXMLDOC01-appb-C000006

(Wherein, R 6 and R 7 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. A 3 is an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, A sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, or a single bond. S and t are each independently an integer of 0 to 4.)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、R及びRの場合と同様に説明される。 The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 6 and R 7 are described in the same manner as in the case of R 4 and R 5 .
 Aが表す炭素数1~5のアルキレン基としては、Aが表す炭素数1~5のアルキレン基と同じものが挙げられる。
 Aとしては、上記選択肢の中でも、炭素数2~5のアルキリデン基が好ましい。
As the alkylene group having 1 to 5 carbon atoms represented by A 3 , the same alkylene group having 1 to 5 carbon atoms represented by A 2 can be mentioned.
A 3 is preferably an alkylidene group having 2 to 5 carbon atoms among the above options.
 s及びtは0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることがさらに好ましい。s又はtが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000007

(式中、nは0~10の整数である。)
s and t are each an integer of 0 to 4, and from the viewpoint of availability, each is preferably an integer of 0 to 2, more preferably 0 or 1, and even more preferably 0. . When s or t is an integer of 2 or more, a plurality of R 6 or R 7 may be the same or different.
Figure JPOXMLDOC01-appb-C000007

(In the formula, n is an integer of 0 to 10.)
 nは、入手容易性の観点から、0~5であることが好ましく、0~3であることがより好ましい。 Δn is preferably 0 to 5, more preferably 0 to 3, from the viewpoint of availability.
Figure JPOXMLDOC01-appb-C000008

(式中、R及びRは各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。uは1~8の整数である。)
Figure JPOXMLDOC01-appb-C000008

(In the formula, R 8 and R 9 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. U is an integer of 1 to 8.)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
 uは1~8の整数であり、1~3の整数であることが好ましく、1であることが好ましい。
The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 8 and R 9 are the same as those described for R 1 .
u is an integer of 1 to 8, preferably 1 to 3, and more preferably 1.
 一般式(Z)で表される基の中のAとしては、高周波特性、銅箔との接着性、耐熱性、ガラス転移温度、熱膨張率及び難燃性の観点から、下記式のいずれかで表される基であることが好ましい。 The A 1 in the group represented by the general formula (Z), the high frequency characteristics, adhesion to a copper foil, heat resistance, glass transition temperature, in view of thermal expansion and flame retardancy, any of the following formulas Is preferably a group represented by
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(Z)で表される基の中のAとしては、高周波特性、銅箔との接着性、耐熱性、ガラス転移温度、熱膨張率及び難燃性の観点から、下記式のいずれかで表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000010
The A 1 in the group represented by the general formula (Z), the high frequency characteristics, adhesion to a copper foil, heat resistance, glass transition temperature, in view of thermal expansion and flame retardancy, any of the following formulas Is more preferably a group represented by
Figure JPOXMLDOC01-appb-C000010
 ポリフェニレンエーテル誘導体は、下記一般式(Z’)で表されるポリフェニレンエーテル誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000011

(式中、A、R、R、x及びyは前記定義のとおりである。mは1以上の整数である。)
The polyphenylene ether derivative is preferably a polyphenylene ether derivative represented by the following general formula (Z ′).
Figure JPOXMLDOC01-appb-C000011

(In the formula, A 1 , R 1 , R 2 , x and y are as defined above. M is an integer of 1 or more.)
 mは、1~300の整数であることが好ましく、10~300の整数であることがより好ましく、30~200の整数であることがさらに好ましく、50~150の整数であることが特に好ましい。 M is preferably an integer of 1 to 300, more preferably an integer of 10 to 300, further preferably an integer of 30 to 200, and particularly preferably an integer of 50 to 150.
 ポリフェニレンエーテル誘導体は、下記式(Z’-1)~(Z’-4)のいずれかで表されるポリフェニレンエーテル誘導体であることが好ましい。 The polyphenylene ether derivative is preferably a polyphenylene ether derivative represented by any of the following formulas (Z′-1) to (Z′-4).
Figure JPOXMLDOC01-appb-C000012

(式中、mは前記一般式(Z’)中のmと同じであり、好ましい範囲も同じである。)
Figure JPOXMLDOC01-appb-C000012

(In the formula, m is the same as m in the general formula (Z ′), and the preferred range is also the same.)
 原材料が安価であるという観点から、上記式(Z’-1)で表されるポリフェニレンエーテル誘導体であることが好ましく、誘電特性に優れ、低吸水性であるという観点から、上記式(Z’-2)で表されるポリフェニレンエーテル誘導体であることが好ましく、銅箔との接着性及び機械特性(伸び、破断強度等)に優れるという観点から、上記式(Z'-3)又は上記式(Z'-4)で表されるポリフェニレンエーテル誘導体であることが好ましい。従って、目的とする特性に合わせて、上記式(Z’-1)~(Z’-4)のいずれかで表されるポリフェニレンエーテル誘導体を単独で用いてもよいし、2種以上を併用してもよい。 From the viewpoint that the raw material is inexpensive, a polyphenylene ether derivative represented by the above formula (Z'-1) is preferable, and from the viewpoint of excellent dielectric properties and low water absorption, the above formula (Z'- The polyphenylene ether derivative represented by 2) is preferable, and from the viewpoint of excellent adhesiveness to copper foil and mechanical properties (elongation, breaking strength, etc.), the above formula (Z′-3) or the above formula (Z ′) It is preferably a polyphenylene ether derivative represented by '-4). Therefore, the polyphenylene ether derivative represented by any of the above formulas (Z'-1) to (Z'-4) may be used alone or in combination of two or more in accordance with the desired properties. You may.
 ポリフェニレンエーテル誘導体の数平均分子量としては、4,000~14,000であることが好ましく、4,500~12,000であることがより好ましく、7,000~12,000であることがさらに好ましく、7,000~10,000であることが特に好ましい。数平均分子量が4,000以上であれば、樹脂組成物において、より良好なガラス転移温度が得られる傾向にある。また、数平均分子量が、14,000以下であれば、樹脂組成物の成形性が良好となる傾向にある。
 なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した値であり、より詳細には実施例に記載の数平均分子量の測定方法により求めた値である。
The number average molecular weight of the polyphenylene ether derivative is preferably from 4,000 to 14,000, more preferably from 4,500 to 12,000, and still more preferably from 7,000 to 12,000. , 7,000 to 10,000. When the number average molecular weight is 4,000 or more, a better glass transition temperature tends to be obtained in the resin composition. If the number average molecular weight is 14,000 or less, the moldability of the resin composition tends to be good.
In the present specification, the number average molecular weight is a value converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC), and more specifically, the measurement of the number average molecular weight described in Examples. It is a value obtained by the method.
(変性マレイミド化合物)
 前記変性マレイミド化合物としては、(1)ポリマレイミド化合物とモノアミン化合物との付加反応物、(2)ポリマレイミド化合物とジアミン化合物との付加反応物(重合物)、(3)ポリマレイミド化合物とモノアミン化合物とジアミン化合物との付加反応物(重合物)が好ましく挙げられるが、これらの中でも、耐熱性及び信頼性の観点から、(2)ポリマレイミド化合物とジアミン化合物との付加反応物が好ましい。
 ポリマレイミド化合物とジアミン化合物との付加反応物としては、1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(b1)と、1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(b2)との付加反応物が好ましい。
(Modified maleimide compound)
Examples of the modified maleimide compound include (1) an addition reaction product of a polymaleimide compound and a monoamine compound, (2) an addition reaction product (polymer) of a polymaleimide compound and a diamine compound, and (3) a polymaleimide compound and a monoamine compound. An addition reaction product (polymer) of a diamine compound with a diamine compound is preferable. Among these, an addition reaction product of the (2) polymaleimide compound and a diamine compound is preferable from the viewpoint of heat resistance and reliability.
Examples of the addition reaction product of the polymaleimide compound and the diamine compound include a maleimide compound (b1) having at least two N-substituted maleimide groups in one molecule, and at least two primary amino groups in one molecule. An addition reaction product with the amine compound (b2) is preferred.
(1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(b1))
 1分子中に少なくとも2個のN-置換マレイミド基を有するマレイミド化合物(b1)(以下、「(b1)成分」ともいう)は、1分子中に少なくとも2個のN-置換マレイミド基を有している構造であれば、特に限定はされないが、1分子中に2個のN-置換マレイミド基を有するマレイミド化合物が好ましく、下記一般式(b1-1)で表される化合物がより好ましい。
(Maleimide compound (b1) having at least two N-substituted maleimide groups in one molecule)
The maleimide compound (b1) having at least two N-substituted maleimide groups in one molecule (hereinafter also referred to as “component (b1)”) has at least two N-substituted maleimide groups in one molecule. The structure is not particularly limited as long as it is a structure, but a maleimide compound having two N-substituted maleimide groups in one molecule is preferable, and a compound represented by the following general formula (b1-1) is more preferable.
Figure JPOXMLDOC01-appb-C000013

(式中、XB1は、下記一般式(b1-2)、(b1-3)、(b1-4)又は(b1-5)で表される基である。)
Figure JPOXMLDOC01-appb-C000013

(In the formula, X B1 is a group represented by the following general formula (b1-2), (b1-3), (b1-4) or (b1-5).)
Figure JPOXMLDOC01-appb-C000014

(式中、RB1は、各々独立に、炭素数1~5の脂肪族炭化水素基である。p1は、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000014

(In the formula, R B1 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms. P1 is an integer of 0 to 4.)
Figure JPOXMLDOC01-appb-C000015

(式中、RB2は、各々独立に、炭素数1~5の脂肪族炭化水素基ある。XB2は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボニルオキシ基、ケト基、単結合又は下記一般式(b1-3’)で表される基である。q1は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000015

(Wherein, R B2 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms. X B2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group, A carbonyloxy group, a keto group, a single bond or a group represented by the following general formula (b1-3 ′). Q1 is independently an integer of 0 to 4.)
Figure JPOXMLDOC01-appb-C000016

(式中、RB3は、各々独立に、炭素数1~5の脂肪族炭化水素基である。XB3は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボニルオキシ基、ケト基又は単結合である。r1は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000016

(Wherein, R B3 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms. X B3 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group. , A carbonyloxy group, a keto group or a single bond. R1 is each independently an integer of 0 to 4.)
Figure JPOXMLDOC01-appb-C000017

(式中、n1は、1~10の整数である。)
Figure JPOXMLDOC01-appb-C000017

(In the formula, n1 is an integer of 1 to 10.)
Figure JPOXMLDOC01-appb-C000018

(式中、RB4は、各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。u1は、1~8の整数である。)
Figure JPOXMLDOC01-appb-C000018

(In the formula, R B4 is each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. U1 is an integer of 1 to 8.)
 前記一般式(b1-2)中、RB1が表す脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基などが挙げられる。 In the general formula (b1-2), examples of the aliphatic hydrocarbon group represented by R B1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and a An alkyl group having 1 to 5 carbon atoms such as a pentyl group.
 前記一般式(b1-3)中、RB2が表す炭素数1~5の脂肪族炭化水素基としては、RB1の場合と同じものが挙げられる。
 XB2が表す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 XB2が表す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
 XB2としては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基であることが好ましい。
In the general formula (b1-3), examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B2 include the same as those in the case of R B1 .
The alkylene group having a carbon number of 1 to 5 X B2 represents, methylene group, 1,2-dimethylene group, a 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like Can be
The alkylidene group having 2 to 5 carbon atoms which X B2 represents, ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group, and the like.
X B2 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms, among the above options.
 前記一般式(b1-3’)中、RB3が表す炭素数1~5の脂肪族炭化水素基としては、RB2の場合と同じものが挙げられる。
 XB3が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、XB2が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。
 XB3としては、上記選択肢の中でも、炭素数2~5のアルキリデン基であることが好ましい。
In the formula (b1-3 ′), examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B3 include the same as those in the case of R B2 .
As the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X B3, the same as the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by X B2 can be mentioned. Can be
The X B3, Among the alternatives is preferably alkylidene group having 2 to 5 carbon atoms.
 前記一般式(b1-4)中、n1は1~10の整数であるが、入手容易性の観点から、0~5であることが好ましく、0~3であることがより好ましい。
 前記一般式(b1-5)中、RB4が表す炭素数1~5の脂肪族炭化水素基としては、前記一般式(b1-2)中のRB1の場合と同じものが挙げられる。
In the general formula (b1-4), n1 is an integer of 1 to 10, but is preferably 0 to 5 and more preferably 0 to 3 from the viewpoint of availability.
In the general formula (b1-5), examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B4 include the same as those in the case of R B1 in the general formula (b1-2).
 (b1)成分としては、N,N’-エチレンビスマレイミド、N,N’-ヘキサメチレンビスマレイミド、N,N’-(1,3-フェニレン)ビスマレイミド、N,N’-[1,3-(2-メチルフェニレン)]ビスマレイミド、N,N’-[1,3-(4-メチルフェニレン)]ビスマレイミド、N,N’-(1,4-フェニレン)ビスマレイミド、ビス(4-マレイミドフェニル)メタン、ビス(3-メチル-4-マレイミドフェニル)メタン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)ケトン、ビス(4-マレイミドシクロヘキシル)メタン、1,4-ビス(4-マレイミドフェニル)シクロヘキサン、1,4-ビス(マレイミドメチル)シクロヘキサン、1,4-ビス(マレイミドメチル)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、ビス[4-(3-マレイミドフェノキシ)フェニル]メタン、ビス[4-(4-マレイミドフェノキシ)フェニル]メタン、1,1-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(3-マレイミドフェノキシ)フェニル]エタン、1,2-ビス[4-(4-マレイミドフェノキシ)フェニル]エタン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-マレイミドフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ブタン、4,4’-ビス(3-マレイミドフェノキシ)ビフェニル、4,4’-ビス(4-マレイミドフェノキシ)ビフェニル、ビス[4-(3-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(4-マレイミドフェノキシ)フェニル]ケトン、ビス[4-(3-マレイミドフェノキシ)フェニル]エーテル、ビス[4-(4-マレイミドフェノキシ)フェニル]エーテル等が挙げられる。(b1)成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 これらの中でも、溶媒への溶解性が優れる観点から、フェノキシ基を有するマレイミド化合物が好ましく、反応率が高く、より高耐熱性化できる観点から、ビス(4-マレイミドフェニル)メタン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンが好ましい。
As the component (b1), N, N′-ethylenebismaleimide, N, N′-hexamethylenebismaleimide, N, N ′-(1,3-phenylene) bismaleimide, N, N ′-[1,3 -(2-methylphenylene)] bismaleimide, N, N '-[1,3- (4-methylphenylene)] bismaleimide, N, N'-(1,4-phenylene) bismaleimide, bis (4- Maleimidophenyl) methane, bis (3-methyl-4-maleimidophenyl) methane, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide, bis (4-maleimidophenyl) ether, Bis (4-maleimidophenyl) ketone, bis (4-maleimidocyclohexyl) methane, 1,4-bis (4-maleimidophenyl) cyclohexane, 1,4-bis (male Imidomethyl) cyclohexane, 1,4-bis (maleimidomethyl) benzene, 1,3-bis (4-maleimidophenoxy) benzene, 1,3-bis (3-maleimidophenoxy) benzene, bis [4- (3-maleimidophenoxy) benzene ) Phenyl] methane, bis [4- (4-maleimidophenoxy) phenyl] methane, 1,1-bis [4- (3-maleimidophenoxy) phenyl] ethane, 1,1-bis [4- (4-maleimidophenoxy) ) Phenyl] ethane, 1,2-bis [4- (3-maleimidophenoxy) phenyl] ethane, 1,2-bis [4- (4-maleimidophenoxy) phenyl] ethane, 2,2-bis [4- ( 3-maleimidophenoxy) phenyl] propane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] p Bread, 2,2-bis [4- (3-maleimidophenoxy) phenyl] butane, 2,2-bis [4- (4-maleimidophenoxy) phenyl] butane, 4,4'-bis (3-maleimidophenoxy) Biphenyl, 4,4′-bis (4-maleimidophenoxy) phenyl] ketone, bis [4- (3-maleimidophenoxy) phenyl] ketone, bis [4- (4-maleimidophenoxy) phenyl] ketone, bis [4- (3 -Maleimidophenoxy) phenyl] ether, bis [4- (4-maleimidophenoxy) phenyl] ether and the like. As the component (b1), one type may be used alone, or two or more types may be used in combination.
Among these, a maleimide compound having a phenoxy group is preferable from the viewpoint of excellent solubility in a solvent, and bis (4-maleimidophenyl) methane, 2,2- Bis [4- (4-maleimidophenoxy) phenyl] propane is preferred.
(1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(b2))
 1分子中に少なくとも2個の1級アミノ基を有するアミン化合物(b2)(以下、「(b2)成分」ともいう)は、1分子中に2個の1級アミノ基を有するアミン化合物が好ましく、下記一般式(b2-1)で表される化合物がより好ましい。
(Amine compound (b2) having at least two primary amino groups in one molecule)
The amine compound (b2) having at least two primary amino groups in one molecule (hereinafter also referred to as “component (b2)”) is preferably an amine compound having two primary amino groups in one molecule. And a compound represented by the following general formula (b2-1) is more preferable.
Figure JPOXMLDOC01-appb-C000019

(式中、YB1は、下記一般式(b2-2)、(b2-3)又は(b2-4)で表される基である。)
Figure JPOXMLDOC01-appb-C000019

(In the formula, Y B1 is a group represented by the following general formula (b2-2), (b2-3) or (b2-4).)
Figure JPOXMLDOC01-appb-C000020

(式中、RB5は、各々独立に、炭素数1~5の脂肪族炭化水素基である。p2は、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000020

(Wherein, R B5 each independently, .P2 an aliphatic hydrocarbon group having 1 to 5 carbon atoms is an integer of 0-4.)
Figure JPOXMLDOC01-appb-C000021

(式中、RB6は、各々独立に、炭素数1~5の脂肪族炭化水素基である。YB2は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボニルオキシ基、ケト基、単結合、下記一般式(b2-3’)で表される基又は下記一般式(b2-3'')で表される基である。q2は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000021

(Wherein, R B6 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Y B2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group. , A carbonyloxy group, a keto group, a single bond, a group represented by the following general formula (b2-3 ′) or a group represented by the following general formula (b2-3 ″). , 0 to 4).
Figure JPOXMLDOC01-appb-C000022

(式中、RB7は、各々独立に、炭素数1~5の脂肪族炭化水素基である。YB3は、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、カルボニルオキシ基、ケト基又は単結合である。s1は、各々独立に、0~4の整数である。)
Figure JPOXMLDOC01-appb-C000022

(Wherein, R B7 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms. Y B3 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, an ether group. , Carbonyloxy, keto, or a single bond. S1 is each independently an integer of 0 to 4.)
Figure JPOXMLDOC01-appb-C000023

(式中、YB4及びYB6は、各々独立に、炭素数1~5のアルキレン基又は炭素数2~5のアルキリデン基である。YB5は、環形成炭素数6~12の芳香族炭化水素基である。)
Figure JPOXMLDOC01-appb-C000023

( Wherein Y B4 and Y B6 are each independently an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms. Y B5 is an aromatic hydrocarbon having 6 to 12 ring carbon atoms. It is a hydrogen group.)
Figure JPOXMLDOC01-appb-C000024

(式中、RB8は、各々独立に、炭素数1~5のアルキル基、フェニル基又は置換フェニル基である。RB9は、各々独立に、2価の有機基である。m2は、1~100の整数である。)
Figure JPOXMLDOC01-appb-C000024

(Wherein, R B8 is each independently an alkyl group having 1 to 5 carbon atoms, a phenyl group or a substituted phenyl group. R B9 is each independently a divalent organic group. M2 is 1 It is an integer of 100100.)
 前記一般式(b2-2)中、RB5が表す脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等の炭素数1~5のアルキル基などが挙げられる。 In the general formula (b2-2), examples of the aliphatic hydrocarbon group represented by R B5 include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a t-butyl group, and a An alkyl group having 1 to 5 carbon atoms such as a pentyl group.
 前記一般式(b2-3)中、RB6が表す炭素数1~5の脂肪族炭化水素基としては、RB5の場合と同じものが挙げられる。
 YB2が表す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。
 YB2が表す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。
In the general formula (b2-3), examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B6 include the same as those in the case of R B5 .
Examples of the alkylene group having 1 to 5 carbon atoms represented by Y B2 include a methylene group, 1,2-dimethylene group, 1,3-trimethylene group, 1,4-tetramethylene group, 1,5-pentamethylene group and the like. Can be
The alkylidene group having 2 to 5 carbon atoms which Y B2 represented, ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, isopentylidene group, and the like.
 前記一般式(b2-3’)中、RB7が表す炭素数1~5の脂肪族炭化水素基としては、RB6の場合と同じものが挙げられる。
 前記一般式(b2-3’)中、YB3が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、YB2が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。
 前記一般式(b2-3'')中、YB4及びYB6が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基としては、YB2が表す炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基と同じものが挙げられる。それらの中でも、炭素数2~5のアルキリデン基が好ましく、イソプロピリデン基がより好ましい。YB4とYB6は同一であってもよいし、異なっていてもよいが、同一であることが好ましい。
 前記一般式(b2-3'')中、YB5が表す環形成炭素数6~12の芳香族炭化水素基としては、1,3-フェニレン基、1,4-フェニレン基等のフェニレン基;ナフチレン基;ビフェニリレン基などが挙げられる。これらの中でも、フェニレン基が好ましい。
In the formula (b2-3 ′), examples of the aliphatic hydrocarbon group having 1 to 5 carbon atoms represented by R B7 include the same as those in the case of R B6 .
In the formula (b2-3 ′), examples of the alkylene group having 1 to 5 carbon atoms and the alkylidene group having 2 to 5 carbon atoms represented by Y B3 include an alkylene group having 1 to 5 carbon atoms represented by Y B2 and The same as the 2 to 5 alkylidene groups can be mentioned.
In the general formula (b2-3 ″), examples of the alkylene group having 1 to 5 carbon atoms represented by Y B4 and Y B6 and the alkylidene group having 2 to 5 carbon atoms include alkylene groups having 1 to 5 carbon atoms represented by Y B2. And the same as the alkylidene group having 2 to 5 carbon atoms. Among them, an alkylidene group having 2 to 5 carbon atoms is preferable, and an isopropylidene group is more preferable. Y B4 and Y B6 may be the same or different, but are preferably the same.
In formula (b2-3 ''), the aromatic hydrocarbon group having ring carbon atoms 6-12 represented by Y B5, 1,3-phenylene group, a phenylene group such as 1,4-phenylene group; A naphthylene group; a biphenylylene group and the like. Among these, a phenylene group is preferred.
 前記一般式(b2-4)中、RB8が表す炭素数1~5のアルキル基としては、炭素数1~3のアルキル基がより好ましい。RB8が表すアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基等が挙げられ、これらの中でも、メチル基が好ましい。
 RB8が表す置換フェニル基における置換基としては、アルキル基、アルケニル基、アルキニル基等が挙げられ、これらの中でも、アルキル基が好ましい。該アルキル基としては、RB8が表すアルキル基と同様のものが挙げられる。
 RB9が表す2価の有機基としては、アルキレン基、アルキリデン基、アルケニレン基、アルキニレン基、アリーレン基、-O-又はこれらが組み合わされた2価の連結基等が挙げられる。これらの中でも、アルキレン基、アリーレン基が好ましい。アルキレン基としては、メチレン基、エチレン基、プロピレン基等の炭素数1~5のアルキレン基が挙げられる。アリーレン基としては、フェニレン基、ナフチレン基等の環形成炭素数6~12のアリーレン基が挙げられる。
 m2は、1~100の整数であり、好ましくは2~50の整数、より好ましくは3~40の整数、さらに好ましくは5~30の整数、さらに好ましくは7~30の整数であり、12~30の整数であってもよいし、15~30の整数であってもよい。
In the formula (b2-4), the alkyl group having 1 to 5 carbon atoms represented by R B8 is more preferably an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group represented by RB8 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, and an n-pentyl group. Groups are preferred.
Examples of the substituent in the substituted phenyl group represented by RB8 include an alkyl group, an alkenyl group, and an alkynyl group. Among them, the alkyl group is preferable. Examples of the alkyl group include the same as the alkyl group represented by RB8 .
Examples of the divalent organic group represented by RB9 include an alkylene group, an alkylidene group, an alkenylene group, an alkynylene group, an arylene group, —O—, and a divalent linking group obtained by combining these. Among these, an alkylene group and an arylene group are preferable. Examples of the alkylene group include an alkylene group having 1 to 5 carbon atoms such as a methylene group, an ethylene group, and a propylene group. Examples of the arylene group include an arylene group having 6 to 12 ring carbon atoms such as a phenylene group and a naphthylene group.
m2 is an integer of 1 to 100, preferably an integer of 2 to 50, more preferably an integer of 3 to 40, still more preferably an integer of 5 to 30, and further preferably an integer of 7 to 30; It may be an integer of 30 or an integer of 15 to 30.
 (b2)成分としては、末端にアミノ基を有する変性シロキサン、ジアミノベンジジン、ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、ジアミノジフェニルエーテル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、1,3’-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,4’-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-3,3’-ビフェニルジオール、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン等が挙げられる。(b2)成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。 As the component (b2), a modified siloxane having an amino group at a terminal, diaminobenzidine, diaminodiphenylmethane, 3,3′-diethyl-4,4′-diaminodiphenylmethane, diaminodiphenylether, 3,3′-dimethoxy-4,4 '-Diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 1,3'-bis (4-aminophenoxy) benzene, 2,2'-bis [4- (4-aminophenoxy) phenyl ] Propane, 4,4'-bis (4-aminophenoxy) biphenyl, 1,4'-bis (4-aminophenoxy) benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4 ' -Diamino-3,3'-biphenyldiol, 4,4 '-[1,3-phenylenebis (1-methylethylidene)] bi Aniline, 4,4 '- [1,4-phenylene bis (1-methylethylidene)] bisaniline, and the like. As the component (b2), one type may be used alone, or two or more types may be used in combination.
 これらの中でも、高弾性及び高耐熱性が得られる観点からは、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパンが好ましい。
 また、低熱膨張性の観点からは、末端にアミノ基を有する変性シロキサンが好ましい。末端にアミノ基を有する変性シロキサンは、市販品を用いてもよく、市販品としては、両末端にアミノ基を有する、「X-22-161A」(官能基当量800g/mol)、「X-22-161B」(官能基当量1,500g/mol)(以上、信越化学工業株式会社製)、「BY16-853U」(官能基当量460g/mol)(以上、東レ・ダウコーニング株式会社製)、「XF42-C5379」(官能基当量750g/mol)(以上、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられる。
Among these, from the viewpoint of obtaining high elasticity and high heat resistance, 3,3′-diethyl-4,4′-diaminodiphenylmethane, 4,4 ′-[1,3-phenylenebis (1-methylethylidene) Bisaniline, 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline and 2,2'-bis [4- (4-aminophenoxy) phenyl] propane are preferred.
In addition, from the viewpoint of low thermal expansion, a modified siloxane having an amino group at a terminal is preferable. As the modified siloxane having an amino group at the terminal, a commercially available product may be used. Examples of the commercially available product include “X-22-161A” (functional group equivalent: 800 g / mol) and “X- 22-161B "(functional group equivalent: 1,500 g / mol) (above, manufactured by Shin-Etsu Chemical Co., Ltd.)," BY16-853U "(functional group equivalent: 460 g / mol) (above, manufactured by Dow Corning Toray), "XF42-C5379" (functional group equivalent: 750 g / mol) (all manufactured by Momentive Performance Materials Japan GK) and the like.
 また、(b2)成分は、低熱膨張性、高弾性及び高耐熱性を両立させる観点から、末端にアミノ基を有する変性シロキサンと、末端にアミノ基を有する変性シロキサン以外のアミン化合物と、を含有することも好ましい。
 (b2)成分として、末端にアミノ基を有する変性シロキサンと、末端にアミノ基を有する変性シロキサン以外のアミン化合物と、を併用する場合、その質量比〔末端にアミノ基を有する変性シロキサン/末端にアミノ基を有する変性シロキサン以外のアミン化合物〕は、3/97~90/10が好ましく、10/90~80/20がより好ましく、20/80~70/30がさらに好ましい。
Further, the component (b2) contains a modified siloxane having an amino group at a terminal and an amine compound other than the modified siloxane having an amino group at a terminal from the viewpoint of achieving low thermal expansion, high elasticity, and high heat resistance. It is also preferable to do so.
When a modified siloxane having an amino group at the end and an amine compound other than the modified siloxane having an amino group at the end are used in combination as the component (b2), the mass ratio [modified siloxane having an amino group at the end / modified siloxane at the end] The amine compound other than the modified siloxane having an amino group] is preferably 3/97 to 90/10, more preferably 10/90 to 80/20, and still more preferably 20/80 to 70/30.
 前記(b1)成分と前記(b2)成分との付加反応物である変性マレイミド化合物は、例えば、下記一般式(B-1)で表される構造単位を有するものである。 変 性 The modified maleimide compound which is an addition reaction product of the component (b1) and the component (b2) has, for example, a structural unit represented by the following general formula (B-1).
Figure JPOXMLDOC01-appb-C000025

(式中、XB1は、前記一般式(b1-1)におけるXB1と同様であり、YB1は、前記一般式(b2-1)におけるYB1と同様である。)
Figure JPOXMLDOC01-appb-C000025

(Wherein, X B1 is the same as X B1 in the formula (b1-1), Y B1 is the same as Y B1 in the formula (b2-1).)
(シアネート樹脂)
 前記シアネート樹脂は特に限定されるものではないが、例えば、2,2-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エタン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネート化合物、フェノールノボラック型シアネート化合物、クレゾールノボラック型シアネート化合物等が挙げられる。シアネート樹脂は1種を単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、製造コストの観点、並びに高周波特性及びその他特性の総合バランスの観点から、2,2-ビス(4-シアナトフェニル)プロパンを用いることが好ましい。
(Cyanate resin)
Although the cyanate resin is not particularly limited, for example, 2,2-bis (4-cyanatophenyl) propane, bis (4-cyanatophenyl) ethane, bis (3,5-dimethyl-4-cyclohexane) Anatophenyl) methane, 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, α, α′-bis (4-cyanatophenyl) -m- Examples include diisopropylbenzene, a cyanate compound of a phenol-added dicyclopentadiene polymer, a phenol novolak type cyanate compound, and a cresol novolak type cyanate compound. One type of cyanate resin may be used alone, or two or more types may be used in combination. Among these, it is preferable to use 2,2-bis (4-cyanatophenyl) propane from the viewpoint of the production cost and the total balance of the high frequency characteristics and other characteristics.
 また、シアネート樹脂を用いる場合、必要に応じて、シアネート樹脂の硬化剤、硬化助剤等を併用することができる。これらは特に限定されるものではないが、例えば、モノフェノール化合物、ポリフェノール化合物、アミン化合物、アルコール化合物、酸無水物、カルボン酸化合物等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。該硬化剤及び該硬化助剤の使用量は特に制限されるものではなく、目的に応じて、適宜調整することができる。これらの中でも、高周波特性、耐熱性、耐吸湿性及び保存安定性の観点から、モノフェノール化合物を用いることが好ましい。 When a cyanate resin is used, a curing agent for the cyanate resin, a curing assistant, and the like can be used in combination, if necessary. These are not particularly restricted but include, for example, monophenol compounds, polyphenol compounds, amine compounds, alcohol compounds, acid anhydrides, carboxylic acid compounds and the like. These may be used alone or in combination of two or more. The amounts of the curing agent and the curing aid are not particularly limited, and can be appropriately adjusted depending on the purpose. Among these, it is preferable to use a monophenol compound from the viewpoints of high-frequency characteristics, heat resistance, moisture absorption resistance and storage stability.
 前記モノフェノール化合物を用いる場合、有機溶媒への溶解性の観点から、シアネート樹脂と予備反応させてフェノール変性シアネートプレポリマーとして用いる方法を採用することが好ましい。併用するモノフェノール化合物はプレポリマー化する時に規定量の全てを配合してもよく、又はプレポリマー化前後で規定量を分けて配合してもよいが、保存安定性の観点から、分けて配合する方法を採用できる。 In the case of using the monophenol compound, it is preferable to adopt a method of preliminarily reacting with a cyanate resin and using it as a phenol-modified cyanate prepolymer from the viewpoint of solubility in an organic solvent. The monophenol compound to be used in combination may be blended in a prescribed amount when pre-polymerized, or may be blended separately before and after pre-polymerization. Can be adopted.
(エポキシ樹脂)
 前記エポキシ樹脂としては、2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。ここで、エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂を選択してもよい。
(Epoxy resin)
The epoxy resin is preferably an epoxy resin having two or more epoxy groups. Here, the epoxy resin is classified into a glycidyl ether type epoxy resin, a glycidylamine type epoxy resin, a glycidyl ester type epoxy resin, and the like. Among them, a glycidyl ether type epoxy resin may be selected.
 エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;脂肪族鎖状エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂などに分類される。 Epoxy resins are classified into various epoxy resins according to the difference in the main skeleton. Among the above types of epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin and other bisphenol type epoxy resins. Epoxy resin; alicyclic epoxy resin; aliphatic chain epoxy resin; phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin and other novolak type epoxy resins; phenol aralkyl Epoxy resin; stilbene epoxy resin; dicyclopentadiene epoxy resin; naphthalene skeleton such as naphthol novolak epoxy resin and naphthol aralkyl epoxy resin It is classified into dicyclopentadiene type epoxy resin; type epoxy resins; biphenyl type epoxy resins; biphenyl aralkyl type epoxy resins; xylylene-type epoxy resins; dihydroanthracene type epoxy resin.
 エポキシ樹脂は、1種を単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、高周波特性、耐熱性、ガラス移転温度、熱膨張係数及び難燃性等の観点から、ナフタレン骨格含有型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂が好ましく、ナフタレン骨格含有型エポキシ樹脂がより好ましく、ナフトールノボラック型エポキシ樹脂がさらに好ましい。 Epoxy resin may be used alone or in combination of two or more. Among these, from the viewpoint of high-frequency characteristics, heat resistance, glass transition temperature, coefficient of thermal expansion, flame retardancy, and the like, a naphthalene skeleton-containing epoxy resin, a biphenylaralkyl-type epoxy resin is preferable, and a naphthalene skeleton-containing epoxy resin is more preferable. And a naphthol novolak type epoxy resin.
 また、エポキシ樹脂を用いる場合、必要に応じて、エポキシ樹脂の硬化剤、硬化助剤等を併用することができる。これらは特に限定されるものではないが、例えば、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジシアンジアミド等のポリアミン化合物;ビスフェノールA、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、フェノールアラルキル樹脂等のポリフェノール化合物;無水フタル酸、無水ピロメリット酸等の酸無水物;カルボン酸化合物;活性エステル化合物などが挙げられる。これらは1種を単独で用いてもよいし、2種以上を併用してもよい。その使用量は特に制限されるものではなく、目的に応じて、適宜調整することができる。 When an epoxy resin is used, a curing agent for the epoxy resin, a curing aid, and the like can be used in combination, if necessary. Although these are not particularly limited, for example, polyamine compounds such as diethylenetriamine, triethylenetetramine, diaminodiphenylmethane, m-phenylenediamine, dicyandiamide; bisphenol A, phenol novolak resin, cresol novolak resin, bisphenol A novolak resin, phenol Polyphenol compounds such as aralkyl resins; acid anhydrides such as phthalic anhydride and pyromellitic anhydride; carboxylic acid compounds; and active ester compounds. These may be used alone or in combination of two or more. The amount used is not particularly limited, and can be appropriately adjusted depending on the purpose.
(無機充填材)
 前記無機充填材としては、例えば、シリカ、アルミナ、酸化チタン、マイカ、チタン酸バリウム、チタン酸ストロンチウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、炭酸カルシウム窒化ケイ素、窒化ホウ素、タルク、炭化ケイ素、石英粉末、ガラス短繊維、ガラス微粉末、中空ガラス等が挙げられる。ガラスとしては、Eガラス、Tガラス、Dガラス等が好ましく挙げられる。無機充填材は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 これらの中でも、誘電特性、耐熱性及び低熱膨張性の観点から、シリカが好ましい。シリカとしては、例えば、湿式法で製造され含水率の高い沈降シリカと、乾式法で製造され結合水等をほとんど含まない乾式法シリカが挙げられ、乾式法シリカとしてはさらに、製造法の違いにより、破砕シリカ、フュームドシリカ、溶融球状シリカ等に分類される。これらの中でも、低熱膨張性及び樹脂に充填した際の流動性の観点から、溶融球状シリカが好ましい。
(Inorganic filler)
Examples of the inorganic filler include silica, alumina, titanium oxide, mica, barium titanate, strontium titanate, aluminum carbonate, magnesium hydroxide, aluminum hydroxide, calcium carbonate silicon nitride, boron nitride, talc, silicon carbide, Quartz powder, short glass fiber, fine glass powder, hollow glass and the like can be used. Preferred examples of the glass include E glass, T glass, and D glass. As the inorganic filler, one type may be used alone, or two or more types may be used in combination.
Among these, silica is preferred from the viewpoint of dielectric properties, heat resistance and low thermal expansion. Examples of the silica include, for example, precipitated silica having a high water content produced by a wet method and dry-process silica which is produced by a dry method and hardly contains bound water, and the like. , Crushed silica, fumed silica, fused spherical silica and the like. Among these, fused spherical silica is preferred from the viewpoints of low thermal expansion and fluidity when filled in a resin.
 無機充填材の平均粒子径は、0.1~10μmが好ましく、0.3~8μmがより好ましい。平均粒子径が0.1μm以上であると、樹脂に高充填した際の流動性を良好に保つことができる傾向があり、10μm以下であると、粗大粒子の混入確率を低減し、粗大粒子起因の不良の発生を抑えやすい傾向がある。ここで、平均粒子径とは、粒子の全体積を100%として粒子径による累積度数分布曲線を求めたとき、体積50%に相当する点の粒子径のことであり、レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。 (4) The average particle diameter of the inorganic filler is preferably 0.1 to 10 μm, more preferably 0.3 to 8 μm. When the average particle diameter is 0.1 μm or more, there is a tendency that the fluidity at the time of highly filling the resin can be kept good, and when the average particle diameter is 10 μm or less, the mixing probability of coarse particles is reduced, and coarse particles are caused. Tends to suppress the occurrence of defects. Here, the average particle diameter is a particle diameter at a point corresponding to a volume of 50% when a cumulative frequency distribution curve based on the particle diameter is determined with the total volume of the particles being 100%. Can be measured by a particle size distribution measuring device or the like.
 無機充填材は、カップリング剤で表面処理されたものであってもよい。カップリング剤による表面処理の方式は、樹脂組成物に配合する前の無機充填材に対して乾式又は湿式で表面処理する方式であってもよく、表面未処理の無機充填材を、他の成分と混合して組成物とした後、該組成物にシランカップリング剤を添加する、いわゆるインテグラルブレンド処理方式であってもよい。前記カップリング剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、シリコーンオリゴマー等が挙げられる。 The inorganic filler may be surface-treated with a coupling agent. The method of surface treatment with the coupling agent may be a method of performing a dry or wet surface treatment on the inorganic filler before being blended into the resin composition, and the surface-untreated inorganic filler may be treated with other components. And then adding a silane coupling agent to the composition after mixing to form a composition, that is, a so-called integral blending method. Examples of the coupling agent include a silane coupling agent, a titanate coupling agent, and a silicone oligomer.
 樹脂組成物が無機充填材を含有する場合、その含有量は、樹脂組成物中の樹脂成分100質量部に対して、10~300質量部が好ましく、50~250質量部がより好ましい。無機充填材の含有量が前記範囲内であると、成形性及び低熱膨張性が良好となる傾向がある。 (4) When the resin composition contains an inorganic filler, the content is preferably from 10 to 300 parts by mass, more preferably from 50 to 250 parts by mass, per 100 parts by mass of the resin component in the resin composition. When the content of the inorganic filler is within the above range, the moldability and the low thermal expansion property tend to be good.
 なお、樹脂組成物が無機充填材を含有する場合、必要に応じて、三本ロール、ビーズミル、ナノマイザー等の分散機で処理を行って、無機充填材の分散性を改善することが好ましい。 When the resin composition contains an inorganic filler, it is preferable to improve the dispersibility of the inorganic filler by performing a treatment with a dispersing machine such as a three-roll mill, a bead mill, or a nanomizer, if necessary.
(硬化促進剤)
 樹脂組成物は、硬化反応を促進する観点から、硬化促進剤を含有していてもよい。
 硬化促進剤としては、トリフェニルホスフィン、トリフェニルホスホニウム、テトラフェニルホスホニウム テトラ-p-トリルボレート、トリフェニルホスフィン-トリフェニルボラン等の有機リン系化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ウンデシルイミダゾール、イソシアネートマスクイミダゾール(ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンのイソシアヌル酸付加物等の、イミダゾール類及びその誘導体;第二級アミン類、第三級アミン類、第四級アンモニウム塩等の含窒素化合物;ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)-3-ヘキシン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ビス(1-フェニル-1-メチルエチル)パーオキサイド、ジイソプロピルベンゼンヒドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン等の有機過酸化物;ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等の有機金属塩などが挙げられる。硬化促進剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 樹脂組成物が硬化促進剤を含有する場合、その含有量は、樹脂組成物中の樹脂成分100質量部に対して、0.1~15質量部が好ましく、0.3~13質量部がより好ましく、2~13質量部がさらに好ましい。
(Curing accelerator)
The resin composition may contain a curing accelerator from the viewpoint of promoting the curing reaction.
Examples of the curing accelerator include organic phosphorus compounds such as triphenylphosphine, triphenylphosphonium, tetraphenylphosphonium tetra-p-tolylborate, and triphenylphosphine-triphenylborane; 2-methylimidazole, 2-ethyl-4-methyl Imidazole, 1-benzyl-2-methylimidazole, 2-undecylimidazole, isocyanate mask imidazole (addition reaction product of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole), 2,4-diamino-6- [2 '-Methylimidazolyl- (1')]-ethyl-s-triazine, isocyanuric acid adducts and the like; imidazoles and derivatives thereof; secondary amines, tertiary amines, quaternary ammonium salts and the like. Nitrogen compounds; dicumyl peroxide 2,5-dimethyl-2,5-bis (t-butylperoxy) -3-hexyne, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, bis (1-phenyl-1) Organic peroxides such as -methylethyl) peroxide, diisopropylbenzene hydroperoxide, α, α'-bis (t-butylperoxy) diisopropylbenzene; zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate And the like. As the curing accelerator, one type may be used alone, or two or more types may be used in combination.
When the resin composition contains a curing accelerator, the content is preferably 0.1 to 15 parts by mass, more preferably 0.3 to 13 parts by mass, based on 100 parts by mass of the resin component in the resin composition. It is more preferably from 2 to 13 parts by mass.
(有機充填材、難燃剤、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、接着性向上剤)
 有機充填材としては、例えば、ポリエチレン、ポリプロピレン樹脂等からなる樹脂フィラー、コアシェル構造の樹脂フィラーなどが挙げられる。
 難燃剤としては、例えば、芳香族リン酸エステル化合物、ホスファゼン化合物、ホスフィン酸エステル、ホスフィン酸化合物の金属塩、赤リン、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド及びその誘導体等のリン系難燃剤;硫酸メラミン、ポリリン酸メラミン等の窒素系難燃剤;三酸化アンチモン等の無機系難燃剤などが挙げられる。
 紫外線吸収剤としては、例えば、ベンゾトリアゾール系紫外線吸収剤が挙げられる。
 酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤等が挙げられる。
 光重合開始剤としては、例えば、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤が挙げられる。
 蛍光増白剤としては、例えば、スチルベン誘導体の蛍光増白剤等が挙げられる。
 接着性向上剤としては、例えば、尿素シラン等の尿素化合物、前記カップリング剤などが挙げられる。
(Organic fillers, flame retardants, ultraviolet absorbers, antioxidants, photopolymerization initiators, optical brighteners, adhesion improvers)
Examples of the organic filler include a resin filler made of polyethylene, polypropylene resin and the like, a resin filler having a core-shell structure, and the like.
Examples of the flame retardant include aromatic phosphoric ester compounds, phosphazene compounds, phosphinic esters, metal salts of phosphinic acid compounds, red phosphorus, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide And flame retardants such as melamine sulfate and melamine polyphosphate; and inorganic flame retardants such as antimony trioxide.
Examples of the ultraviolet absorber include a benzotriazole-based ultraviolet absorber.
Examples of the antioxidant include a hindered phenol antioxidant and a hindered amine antioxidant.
Examples of the photopolymerization initiator include benzophenones, benzylketals, and thioxanthone-based photopolymerization initiators.
Examples of the fluorescent whitening agent include a fluorescent whitening agent of a stilbene derivative.
Examples of the adhesion improver include a urea compound such as urea silane, and the coupling agent.
(プリプレグ)
 前記プリプレグは、前記樹脂組成物を繊維基材に含浸させてなるものである。
 プリプレグは、本発明の樹脂組成物を、繊維基材に含浸し、加熱等により半硬化(Bステージ化)して製造することができる。
 繊維基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Sガラス、低誘電ガラス、Qガラス等の無機物繊維;低誘電ガラスポリイミド、ポリエステル、テトラフルオロエチレン等の有機繊維;並びにそれらの混合物などが挙げられる。
(Prepreg)
The prepreg is obtained by impregnating a fiber base material with the resin composition.
The prepreg can be produced by impregnating the fiber base material with the resin composition of the present invention and semi-curing (B-stage) by heating or the like.
As the fiber base material, well-known ones used for various laminated boards for electric insulating materials can be used. Examples of the material include inorganic fibers such as E glass, S glass, low dielectric glass, and Q glass; low dielectric glass organic fibers such as polyimide, polyester, and tetrafluoroethylene; and mixtures thereof.
 これらの繊維基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット、サーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途、性能等により選択され、必要により、1種を単独で使用してもよいし、2種以上の材質及び形状を組み合わせることもできる。繊維基材の厚さは、例えば、約0.03~0.5mmのものを使用することができる。これらの繊維基材は、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性、耐湿性、加工性等の面から好適である。 These fiber base materials have, for example, a shape such as a woven fabric, a nonwoven fabric, a roving, a chopped strand mat, and a surfacing mat. Thus, one kind may be used alone, or two or more kinds of materials and shapes may be combined. The thickness of the fiber base material can be, for example, about 0.03 to 0.5 mm. These fiber base materials are preferably surface-treated with a silane coupling agent or the like or mechanically subjected to fiber opening treatment, from the viewpoint of heat resistance, moisture resistance, workability, and the like.
 プリプレグは、例えば、繊維基材に対する樹脂組成物の付着量(プリプレグ中の樹脂組成物の含有量)が、20~90質量%となるように、繊維基材に含浸した後、通常、100~200℃の温度で1~30分間加熱乾燥し、半硬化(Bステージ化)させて得ることができる。 The prepreg is usually impregnated with the fiber base material so that the amount of the resin composition adhering to the fiber base material (content of the resin composition in the prepreg) is 20 to 90% by mass. It can be obtained by heating and drying at a temperature of 200 ° C. for 1 to 30 minutes and semi-curing (B stage).
[銅張積層板]
 本発明の銅張積層板は、本発明の積層体に前記樹脂層又は前記プリプレグを介して銅箔を配置した構成で積層成形することで得られるものである。
 成形条件は、電気絶縁材料用積層板及び多層板の成形条件を適用できる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100~250℃、圧力0.2~10MPa、加熱時間0.1~5時間の範囲で成形することができる。
[Copper clad laminate]
The copper-clad laminate of the present invention is obtained by laminating and forming a laminate of the present invention with a configuration in which a copper foil is disposed via the resin layer or the prepreg.
As the molding conditions, the molding conditions for the laminated board for electric insulating material and the multilayer board can be applied. For example, using a multi-stage press, a multi-stage vacuum press, continuous molding, an autoclave molding machine, or the like, molding can be performed at a temperature of 100 to 250 ° C., a pressure of 0.2 to 10 MPa, and a heating time of 0.1 to 5 hours.
[プリント配線板]
 本発明のプリント配線板は、本発明の銅張積層板に回路加工してなるものである。銅張積層板の銅箔を通常のエッチング法によって配線加工し、プリプレグを介して配線加工した積層板を複数積層し、加熱プレス加工することによって一括して多層化することもできる。その後、ドリル加工又はレーザ加工によるスルーホール又はブラインドビアホールの形成と、メッキ又は導電性ペーストによる層間配線の形成を経て多層プリント配線板を製造することができる。
[Printed wiring board]
The printed wiring board of the present invention is obtained by processing a circuit on the copper-clad laminate of the present invention. The copper foil of the copper-clad laminate may be subjected to wiring processing by an ordinary etching method, a plurality of laminated boards subjected to wiring processing via a prepreg may be laminated, and hot pressing may be performed to form a multilayer at once. Thereafter, a multilayer printed wiring board can be manufactured through formation of through holes or blind via holes by drilling or laser processing, and formation of interlayer wiring by plating or conductive paste.
[高速通信対応モジュール]
 本発明の高速通信対応モジュールは、本発明のプリント配線板を用いて製造される高速通信対応モジュールである。
 本発明の高速通信対応モジュールは、例えば、本発明のプリント配線板に半導体チップ等を実装してなる通信モジュール等であり、特にワイヤレス通信機器、ネットワークインフラ機器等の高周波域の信号を利用し、情報通信量及び速度が大きい用途に好適である。
[High-speed communication compatible module]
The high-speed communication compatible module of the present invention is a high-speed communication compatible module manufactured using the printed wiring board of the present invention.
The high-speed communication-compatible module of the present invention is, for example, a communication module or the like in which a semiconductor chip or the like is mounted on the printed wiring board of the present invention. It is suitable for applications where the amount of information communication and the speed are large.
 次に、下記の実施例により本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。 Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention.
[ポリフェニレンエーテル誘導体の製造]
 下記手順、表1の配合量に従って、ポリフェニレンエーテル誘導体を製造した。
[Production of polyphenylene ether derivative]
A polyphenylene ether derivative was produced according to the following procedure and the blending amount in Table 1.
(製造例A-1:ポリフェニレンエーテル誘導体(A-1)の製造)
 温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積2Lのガラス製フラスコ容器に、トルエン、数平均分子量が約16,000のポリフェニレンエーテル及びp-アミノフェノールを投入し、90℃で撹拌しながら溶解した。
 溶解したことを目視で確認後、t-ブチルペルオキシイソプロピルモノカーボネート及びナフテン酸マンガンを添加し、溶液温度90℃で4時間反応させた後、70℃に冷却して分子末端に第一級アミノ基を有するポリフェニレンエーテル化合物(a)を得た。
 この反応溶液を少量取り出し、ゲルパーミエーションクロマトグラフィー(GPC)により測定を行ったところ、p-アミノフェノールに由来するピークが消失し、かつ前記ポリフェニレンエーテル化合物(a)の数平均分子量は約9,200であった。また少量取り出した反応溶液をメタノール/ベンゼン混合溶媒(混合質量比:1/1)に滴下し、再沈殿させて精製した固形分(反応生成物)のFT-IR測定を行ったところ、3,400cm-1付近の第一級アミノ基由来ピークの出現が確認された。
(Production Example A-1: Production of polyphenylene ether derivative (A-1))
Toluene, polyphenylene ether having a number average molecular weight of about 16,000, and p-aminophenol were charged into a 2 L-capacity glass flask capable of heating and cooling equipped with a thermometer, a reflux condenser, and a stirrer. And dissolved with stirring.
After visual confirmation of dissolution, t-butyl peroxyisopropyl monocarbonate and manganese naphthenate were added and reacted at a solution temperature of 90 ° C. for 4 hours. After cooling to 70 ° C., a primary amino group was added to the molecular terminal. A polyphenylene ether compound (a) having the following formula: was obtained.
When a small amount of the reaction solution was taken out and measured by gel permeation chromatography (GPC), the peak derived from p-aminophenol disappeared, and the number average molecular weight of the polyphenylene ether compound (a) was about 9, It was 200. Also, a small amount of the reaction solution was dropped into a methanol / benzene mixed solvent (mixing mass ratio: 1/1), reprecipitated, and the purified solid (reaction product) was subjected to FT-IR measurement. The appearance of a peak derived from a primary amino group at around 400 cm -1 was confirmed.
 ここで、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製、商品名]を用いて3次式で近似した。GPCの測定条件を、以下に示す。
<装置>
 ポンプ:L-6200型[株式会社日立ハイテクノロジーズ製]
 検出器:L-3300型RI[株式会社日立ハイテクノロジーズ製]
 カラムオーブン:L-655A-52[株式会社日立ハイテクノロジーズ製]
 カラム:ガードカラム;TSK Guardcolumn HHR-L+カラム;TSKgel G4000HHR+TSKgel G2000HHR[すべて東ソー株式会社製、商品名]
 カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
 溶離液:テトラヒドロフラン
 試料濃度:30mg/5mL
 注入量:20μL
 流量:1.00mL/分
 測定温度:40℃
Here, the number average molecular weight was converted from a calibration curve using standard polystyrene by gel permeation chromatography (GPC). The calibration curve is standard polystyrene: TSKstandard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation, [Product Name] was used to approximate by a cubic equation. The measurement conditions of GPC are shown below.
<Apparatus>
Pump: L-6200 type [manufactured by Hitachi High-Technologies Corporation]
Detector: L-3300 type RI [manufactured by Hitachi High-Technologies Corporation]
Column oven: L-655A-52 [manufactured by Hitachi High-Technologies Corporation]
Column: guard column; TSK Guardcolumn HHR-L + column; TSKgel G4000HHR + TSKgel G2000HHR [all manufactured by Tosoh Corporation, trade name]
Column size: 6.0 × 40 mm (guard column), 7.8 × 300 mm (column)
Eluent: tetrahydrofuran Sample concentration: 30 mg / 5 mL
Injection volume: 20 μL
Flow rate: 1.00 mL / min Measurement temperature: 40 ° C
 次に、上記反応溶液に、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド及びプロピレングリコールモノメチルエーテルを加えて、攪拌しながら液温を昇温し、120℃で保温しながら4時間反応させた。その後、冷却してから200メッシュフィルターを通して濾過することにより、ポリフェニレンエーテル誘導体[ポリフェニレンエーテル誘導体(A-1)と称する]を製造した。 Next, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide and propylene glycol monomethyl ether were added to the reaction solution, and the temperature of the solution was increased with stirring. The reaction was carried out for 4 hours while keeping the temperature at ° C. Thereafter, the mixture was cooled and filtered through a 200 mesh filter to produce a polyphenylene ether derivative [referred to as polyphenylene ether derivative (A-1)].
 こうして得られた反応溶液を少量取り出し、上記同様に再沈殿して、精製した固形物のFT-IR測定を行い、3,400cm-1付近の第一級アミノ基由来ピークの消失と、1,700~1,730cm-1のマレイミドのカルボニル基由来ピークの出現が確認された。また、この固形物のGPC(上記と同条件)を測定したところ、数平均分子量は約9,400であった。 A small amount of the reaction solution thus obtained was taken out, reprecipitated in the same manner as described above, and the purified solid was subjected to FT-IR measurement. The disappearance of the peak derived from the primary amino group at around 3,400 cm −1 , The appearance of a peak derived from the carbonyl group of maleimide at 700 to 1,730 cm -1 was confirmed. GPC of the solid (under the same conditions as above) was measured to find that the number average molecular weight was about 9,400.
(製造例A-2~A-3:ポリフェニレンエーテル誘導体(A-2)~(A-3)の製造)
 製造例A-1において、各原料及び配合量を表1に示すとおりに変更した以外は、製造例A-1と同様にして、ポリフェニレンエーテル誘導体(A-2)~(A-3)を製造した。ポリフェニレンエーテル誘導体(A-2)~(A-3)の数平均分子量を表1に示す。
(Production Examples A-2 to A-3: Production of Polyphenylene Ether Derivatives (A-2) to (A-3))
Polyphenylene ether derivatives (A-2) to (A-3) were produced in the same manner as in Production Example A-1, except that the raw materials and the amounts added in Production Example A-1 were changed as shown in Table 1. did. Table 1 shows the number average molecular weights of the polyphenylene ether derivatives (A-2) to (A-3).
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表1における各材料の略号は、以下のとおりである。
[1]ポリフェニレンエーテル(1)
・PPO640:ポリフェニレンエーテル、数平均分子量=約16,000、商品名(SABICイノベーティブプラスチックス社製)
[2]アミノフェノール化合物(2)
・p-アミノフェノール
[3]ビスマレイミド化合物(3)
・3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド
・2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン
・1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン
[4]反応触媒
・t-ブチルペルオキシイソプロピルモノカーボネート
・ナフテン酸マンガン
[5]有機溶媒
・トルエン
・プロピレングリコールモノメチルエーテル
Abbreviations of each material in Table 1 are as follows.
[1] Polyphenylene ether (1)
-PPO640: polyphenylene ether, number average molecular weight = about 16,000, trade name (manufactured by SABIC Innovative Plastics)
[2] Aminophenol compound (2)
-P-Aminophenol [3] bismaleimide compound (3)
3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethanebismaleimide ・ 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane ・ 1,6-bismaleimide- ( 2,2,4-trimethyl) hexane [4] reaction catalyst, t-butyl peroxyisopropyl monocarbonate, manganese naphthenate [5] organic solvent, toluene, propylene glycol monomethyl ether
[変性マレイミド化合物(B-1)~(B-3)及びフェノール変性シアネートプレポリマー(C-1)の製造]
 下記手順、表2の配合量に従って、熱硬化性樹脂である変性マレイミド化合物(B-1)~(B-3)及びフェノール変性シアネートプレポリマー(C-1)を製造した。
[Production of modified maleimide compounds (B-1) to (B-3) and phenol-modified cyanate prepolymer (C-1)]
Modified maleimide compounds (B-1) to (B-3), which are thermosetting resins, and a phenol-modified cyanate prepolymer (C-1) were produced according to the following procedure and the blending amounts shown in Table 2.
[製造例B-1:変性マレイミド化合物(B-1)の製造]
 温度計、還流冷却管、撹拌装置を備えた加熱及び冷却可能な容積1Lのガラス製フラスコ容器に、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン及びプロピレングリコールモノメチルエーテルを投入し、液温を120℃に保ったまま、撹拌しながら3時間反応させた後、冷却してから200メッシュフィルターを通して濾過することにより、変性マレイミド化合物(B-1)を製造した。
[Production Example B-1: Production of Modified Maleimide Compound (B-1)]
A 2-L (2- (4-maleimidophenoxy) phenyl) propane, 2,2-bis (2-bis (4-maleimidophenoxy) phenyl) propane 4- (4-Aminophenoxy) phenyl) propane and propylene glycol monomethyl ether are added, and the mixture is reacted for 3 hours while stirring while keeping the liquid temperature at 120 ° C., and then cooled and filtered through a 200 mesh filter. Thus, a modified maleimide compound (B-1) was produced.
[製造例B-2~B-3:変性マレイミド化合物(B-2)~(B-3)の製造]
 製造例B-1において、各原料及びその配合量を表2に示すとおりに変更した以外は、製造例B-1と同様にして、変性マレイミド化合物(B-2)~(B-3)を製造した。
[Production Examples B-2 to B-3: Production of Modified Maleimide Compounds (B-2) to (B-3)]
The modified maleimide compounds (B-2) to (B-3) were prepared in the same manner as in Production Example B-1, except that the raw materials and the amounts thereof were changed as shown in Table 2 in Production Example B-1. Manufactured.
[製造例C-1:フェノール変性シアネートプレポリマー(C-1)の製造]
 温度計、還流冷却管、攪拌装置を備えた加熱及び冷却可能な容積1Lのガラス製フラスコ容器に、トルエン、2,2-ビス(4-シアナトフェニル)プロパン、p-(α-クミル)フェノールを投入し、溶解したことを目視で確認した後に、液温を110℃に保ったまま、攪拌しながら反応触媒としてナフテン酸マンガンを投入して3時間反応させた。その後、冷却してから200メッシュフィルターを通して濾過することにより、フェノール変性シアネートプレポリマー(C-1)を製造した。
[Production Example C-1: Production of phenol-modified cyanate prepolymer (C-1)]
Toluene, 2,2-bis (4-cyanatophenyl) propane and p- (α-cumyl) phenol were placed in a heatable and coolable 1 L glass flask equipped with a thermometer, a reflux condenser, and a stirrer. Was added and manganese naphthenate was added as a reaction catalyst with stirring while keeping the liquid temperature at 110 ° C., and the mixture was reacted for 3 hours. Thereafter, the mixture was cooled and filtered through a 200 mesh filter to produce a phenol-modified cyanate prepolymer (C-1).
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表2における各材料の略号は、以下のとおりである。
(1)ポリマレイミド化合物
・3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド
・2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン
(2)芳香族ジアミン化合物
・2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン
・4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン
・4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン
(3)シアネート樹脂
・BADCy:Primaset(登録商標)BADCy、2,2-ビス(4-シアナトフェニル)プロパン(ロンザ社製)
(4)モノフェノール化合物
・p-(α-クミル)フェノール
(5)反応触媒
・ナフテン酸マンガン
(6)有機溶媒
・トルエン
・プロピレングリコールモノメチルエーテル
The symbol of each material in Table 2 is as follows.
(1) Polymaleimide compound, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane (2) Aromatic diamine compound, 2,2-bis (4- (4-aminophenoxy) phenyl) propane / 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline / 4,4'-[ 1,3-phenylenebis (1-methylethylidene)] bisaniline (3) cyanate resin / BADCy: Primaset (registered trademark) BADCy, 2,2-bis (4-cyanatophenyl) propane (manufactured by Lonza)
(4) Monophenol compound, p- (α-cumyl) phenol (5) Reaction catalyst, manganese naphthenate (6) Organic solvent, toluene, propylene glycol monomethyl ether
[実施例1~21、比較例1~21]
(樹脂組成物の調製)
 表3~6に記載の各成分を表3~6に記載の配合量(単位:質量部)に従って室温又は50~80℃で加熱しながら攪拌及び混合して、固形分濃度55~60質量%の樹脂組成物を調製した。
 ここで、無機充填材の配合量としては、通常、樹脂組成物(無機充填材を除く)の密度が1.20~1.25g/cmであり、用いた無機充填材の密度が2.2~3.01g/cmであることから、無機充填材を樹脂組成物(無機充填材を除く)156質量部に対して109質量部配合した場合、21~27体積%程度となる。
 なお、前記製造例にて用いた原料及び中間生成物は極微量であるか失活しており、樹脂組成物中に残存していたとしても無視できる。
(プリプレグの製造)
 上記のようにして調製した各樹脂組成物を、厚さ0.1mmのガラス布(Eガラス、日東紡績株式会社製)に塗工した後、160℃で7分間加熱乾燥して、樹脂含有量(樹脂分)約54質量%のプリプレグを作製した。
[Examples 1 to 21, Comparative Examples 1 to 21]
(Preparation of resin composition)
The components shown in Tables 3 to 6 are stirred and mixed while heating at room temperature or at 50 to 80 ° C. according to the blending amounts (unit: parts by mass) shown in Tables 3 to 6 to obtain a solid content concentration of 55 to 60% by mass. Was prepared.
Here, as the compounding amount of the inorganic filler, the density of the resin composition (excluding the inorganic filler) is usually 1.20 to 1.25 g / cm 3 , and the density of the inorganic filler used is 2. Since it is 2 to 3.01 g / cm 3 , when 109 parts by mass of the inorganic filler is mixed with 156 parts by mass of the resin composition (excluding the inorganic filler), the amount is about 21 to 27% by volume.
It should be noted that the raw materials and intermediate products used in the above production examples are extremely small or inactivated, and can be ignored even if they remain in the resin composition.
(Manufacture of prepreg)
Each resin composition prepared as described above was applied to a 0.1 mm thick glass cloth (E glass, manufactured by Nitto Boseki Co., Ltd.), and then heated and dried at 160 ° C. for 7 minutes to obtain a resin content. (Resin content) A prepreg of about 54% by mass was produced.
(実施例1~21における銅箔の処理)
 厚さ35μmのロープロファイル銅箔「FV-WS」[商品名、M面(マット面)の表面粗さ(Rz):1.5μm、古河電気工業株式会社製]のS面(シャイニー面)に、フラットボンド処理の第一工程であるスズ系処理を施す[工程(1)]ことによって、厚み0.05~0.1μmのスズ合金層を形成した。
 その後、スズ合金層が形成された銅箔をヒーターによって120℃で20分加熱処理をした[工程(2)]。
 さらに、形成されたスズ合金層に、フラットボンド処理の第二工程であるカップリング処理を行った[工程(3)]。このようにして銅箔の処理がなされた銅箔2枚の間に、前記プリプレグを6枚重ねたものを配置し、温度230℃、圧力3.9MPa、時間180分間の条件で加熱加圧成形して、両面銅張積層板を作製した。この両面銅張積層板を「常態の両面銅張積層板」と称する。
 また、こうして得られた常態の両面銅張積層板を、基板温度が最大260℃になるよう恒温槽に300秒かけて通過させる操作を6回行った。当該処理後の銅張積層板を、「260℃リフロー6回処理後の両面銅張積層板」と称する。
 以上のようにして得られた両面銅張積層板を用いて、後述の方法に従って各測定及び評価を行った。結果を表3及び4に示す。
(Treatment of Copper Foil in Examples 1 to 21)
35 μm thick low-profile copper foil “FV-WS” [trade name, M surface (mat surface) surface roughness (Rz): 1.5 μm, Furukawa Electric Co., Ltd.] S surface (shiny surface) Then, a tin-based treatment, which is the first step of the flat bond treatment, was performed [Step (1)] to form a tin alloy layer having a thickness of 0.05 to 0.1 μm.
Thereafter, the copper foil on which the tin alloy layer was formed was subjected to a heat treatment at 120 ° C. for 20 minutes using a heater [step (2)].
Further, the formed tin alloy layer was subjected to a coupling process as a second step of the flat bond process [step (3)]. A stack of six prepregs is placed between two copper foils that have been treated in this way, and heated and pressed under the conditions of a temperature of 230 ° C., a pressure of 3.9 MPa, and a time of 180 minutes. Thus, a double-sided copper-clad laminate was produced. This double-sided copper-clad laminate is referred to as “normal double-sided copper-clad laminate”.
In addition, the operation of passing the thus obtained normal double-sided copper-clad laminate through a constant temperature bath over 300 seconds so that the substrate temperature reached a maximum of 260 ° C. was performed six times. The copper-clad laminate after the treatment is referred to as “double-sided copper-clad laminate after six 260 ° C. reflow treatments”.
Each measurement and evaluation were performed using the double-sided copper-clad laminate obtained as described above according to the methods described below. The results are shown in Tables 3 and 4.
(比較例1~21における銅箔の処理)
 実施例1~21において、工程(2)を実施しなかったこと以外は同様にして、両面銅張積層板を作製した。次いで、得られた両面銅張積層板を、基板温度が最大260℃になるよう恒温槽に300秒かけて通過させる操作を6回行い、260℃リフロー6回処理後の両面銅張積層板を作製した。
 以上のようにして得られた両面銅張積層板を用いて、後述の方法に従って各測定及び評価を行った。結果を表5及び6に示す。
(Treatment of copper foil in Comparative Examples 1 to 21)
A double-sided copper-clad laminate was produced in the same manner as in Examples 1 to 21 except that step (2) was not performed. Then, the obtained double-sided copper-clad laminate is passed through a thermostat bath for 300 seconds so that the substrate temperature becomes 260 ° C. at the maximum, six times, and the double-sided copper-clad laminate after the reflow treatment at 260 ° C. is performed six times. Produced.
Each measurement and evaluation were performed using the double-sided copper-clad laminate obtained as described above according to the methods described below. The results are shown in Tables 5 and 6.
[評価測定方法]
(1)樹脂組成物のpHの分析
 各例で作製した常態の両面銅張積層板の両面の銅箔をエッチングした40×30mmサイズの試験片を用いて、超純水50mlと共にテフロン(登録商標)容器Aに入れた。一方で、別のテフロン容器Bに超純水50mlのみを入れたものも用意した。
 それぞれのテフロン容器A及びBにテフロンの蓋をしてテフロン容器を密閉した後、これらのテフロン容器A及びBを専用のステンレス製容器に収納した。その状態で、130℃に設定した乾燥機の中で200時間保管した。試験片と超純水を入れて加熱処理した液を抽出液、超純水のみを加熱処理した液を対照液とし、それぞれのpHを測定した。対照液のpHは7であった。抽出液のpHについては表3~6に示す。
[Evaluation measurement method]
(1) Analysis of pH of Resin Composition Using a test piece of 40 × 30 mm size obtained by etching copper foil on both sides of a normal double-sided copper-clad laminate prepared in each example, using Teflon (registered trademark) together with 50 ml of ultrapure water ) Put in container A. On the other hand, another Teflon container B containing only 50 ml of ultrapure water was also prepared.
After each Teflon container A and B was covered with a Teflon lid and the Teflon container was sealed, these Teflon containers A and B were stored in dedicated stainless steel containers. In that state, it was stored in a dryer set at 130 ° C. for 200 hours. The pH of each liquid was measured by using a liquid heat treated with a test piece and ultrapure water as an extract, and a liquid heat treated with only ultrapure water as a control liquid. The pH of the control solution was 7. Tables 3 to 6 show the pH of the extract.
(2)ピール強度の測定
 各例で作製した常態の両面銅張積層板又は260℃リフロー6回処理後の両面銅張積層板を用いて、JIS C6481(1996年)「5.7 引きはがし強さ」に準拠して、ピール強度を測定した。
(2) Measurement of peel strength Using a normal double-sided copper-clad laminate prepared in each example or a double-sided copper-clad laminate subjected to 260 ° C. reflow six times treatment, JIS C6481 (1996) “5.7 Peel strength The peel strength was measured in accordance with "Sasa".
(3)銅箔引き剥がし後の引き剥がし面のスズ付着量の測定
 上記(2)ピール強度の測定によって銅箔を引き剥がした後のプリプレグの表面を走査型電子顕微鏡/エネルギー分散型X線分光法(SEM/EDX)で観察し、銅箔を引き剥がした後のプリプレグの表面へのスズ付着量(単位:質量%)を測定した。スズ付着量が多い場合、スズ合金層中のスズがプリプレグ中の樹脂組成物へ移行したと考えられ、その分、樹脂層の剥離が生じ易い状態にあるといえる。
(3) Measurement of tin adhesion amount on peeled surface after peeling copper foil (2) Scanning electron microscope / energy dispersive X-ray spectroscopy of the surface of prepreg after peeling copper foil by measuring peel strength described above (2) Observed by a method (SEM / EDX), the amount of tin adhering to the surface of the prepreg after peeling off the copper foil (unit: mass%) was measured. When the amount of tin adhesion is large, it is considered that tin in the tin alloy layer has migrated to the resin composition in the prepreg, and it can be said that the resin layer is in a state where peeling of the resin layer easily occurs.
(4)スズ合金層表面の元素存在比の測定
 実施例1で得た260℃リフロー6回処理後の両面銅張積層板の中心部分から1cm角のサンプルを切り出し、X線光電子分光法(XPS)を用いて下記測定条件にて導体表面の元素定量分析を行った。結果を表7に示す。
(XPS測定条件)
 装置  :VersaProbe2(アルバック・ファイ製)
 X線源 :Al-Kα線
 検出角度:45°
(4) Measurement of element abundance ratio on tin alloy layer surface A 1 cm square sample was cut out from the center of the double-sided copper-clad laminate obtained in Example 1 after the reflow treatment at 260 ° C. six times, and subjected to X-ray photoelectron spectroscopy (XPS). ) Was used to perform elemental quantitative analysis of the conductor surface under the following measurement conditions. Table 7 shows the results.
(XPS measurement conditions)
Equipment: VersaProbe2 (made by ULVAC-PHI)
X-ray source: Al-Kα ray Detection angle: 45 °
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 なお、表3~6における各材料の略号等は、以下のとおりである。
(熱硬化性樹脂)
(1)ポリフェニレンエーテル誘導体
・A-1:製造例A-1で得たポリフェニレンエーテル誘導体(A-1)を、適宜、有機溶媒の除去、もしくはトルエン及びプロピレングリコールモノメチルエーテルの添加によって、表中に記載された固形分濃度としたもの。
・A-2:製造例A-2で得たポリフェニレンエーテル誘導体(A-2)を、適宜、有機溶媒の除去、もしくはトルエン及びプロピレングリコールモノメチルエーテルの添加によって、表中に記載された固形分濃度としたもの。
・A-3:製造例A-3で得たポリフェニレンエーテル誘導体(A-3)を、適宜、有機溶媒の除去、もしくはトルエン及びプロピレングリコールモノメチルエーテルの添加によって、表中に記載された固形分濃度としたもの。
(2)変性マレイミド化合物
・B-1:製造例B-1で得た変性マレイミド化合物(B-1)を、適宜、有機溶媒の除去、又はプロピレングリコールモノメチルエーテルの添加によって、表中に記載された固形分濃度としたもの。
・B-2:製造例B-2で得た変性マレイミド化合物(B-2)を、適宜、有機溶媒の除去、又はプロピレングリコールモノメチルエーテルの添加によって、表中に記載された固形分濃度としたもの。
・B-3:製造例B-3で得た変性マレイミド化合物(B-3)を、適宜、有機溶媒の除去、又はプロピレングリコールモノメチルエーテルの添加によって、表中に記載された固形分濃度としたもの。
(3)シアネート樹脂
・C-1:製造例C-1で得たフェノール変性シアネートプレポリマー(C-1)を、適宜、有機溶媒の除去、又はトルエンの添加によって、表中に記載された固形分濃度としたもの。
(4)エポキシ樹脂
・NC-7000L:ナフトールノボラック型エポキシ樹脂、商品名(日本化薬株式会社製)
The abbreviations of the respective materials in Tables 3 to 6 are as follows.
(Thermosetting resin)
(1) Polyphenylene ether derivative A-1: The polyphenylene ether derivative (A-1) obtained in Production Example A-1 was added to the table by appropriately removing the organic solvent or adding toluene and propylene glycol monomethyl ether. The solid content concentration described.
A-2: The polyphenylene ether derivative (A-2) obtained in Production Example A-2 was subjected to removal of an organic solvent or addition of toluene and propylene glycol monomethyl ether as appropriate to obtain a solid content concentration shown in the table. And what.
A-3: The polyphenylene ether derivative (A-3) obtained in Production Example A-3 was appropriately subjected to removal of an organic solvent or addition of toluene and propylene glycol monomethyl ether to obtain a solid content concentration shown in the table. And what.
(2) Modified maleimide compound · B-1: The modified maleimide compound (B-1) obtained in Production Example B-1 is described in the table by appropriately removing the organic solvent or adding propylene glycol monomethyl ether. Solids concentration.
B-2: The modified maleimide compound (B-2) obtained in Production Example B-2 was adjusted to a solid content concentration shown in the table by appropriately removing the organic solvent or adding propylene glycol monomethyl ether. thing.
B-3: The modified maleimide compound (B-3) obtained in Production Example B-3 was adjusted to a solid concentration shown in the table by appropriately removing the organic solvent or adding propylene glycol monomethyl ether. thing.
(3) Cyanate resin C-1: The phenol-modified cyanate prepolymer (C-1) obtained in Production Example C-1 was appropriately removed by removing an organic solvent or adding toluene to obtain a solid described in the table. What is a partial concentration.
(4) Epoxy resin / NC-7000L: naphthol novolak type epoxy resin, trade name (manufactured by Nippon Kayaku Co., Ltd.)
(5)硬化促進剤
<有機化酸化物>
・α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン
・ビス(1-フェニル-1-メチルエチル)ペルオキシド
・ジイソプロピルベンゼンヒドロパーオキサイド
<イミダゾール系硬化剤>
・G-8009L:イソシアネートマスクイミダゾール(ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物)、商品名(第一工業製薬株式会社製)
・2-メチルイミダゾール
・2-エチル-4-メチルイミダゾール
・1-ベンジル-2-メチルイミダゾール
・2-ウンデシルイミダゾール
・2MA-OK:2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンのイソシアヌル酸付加物、商品名(四国化成株式会社製)
<リン系硬化促進剤>
・テトラフェニルホスホニウム テトラ-p-トリルボレート
・トリフェニルホスフィン-トリフェニルボラン
(6)無機充填材(D)
・球状溶融シリカ、平均粒子径:0.5μm、密度2.2g/cm3
(7)難燃剤(E)
・OP-930:ジアルキルホスフィン酸アルミニウム塩、2置換ホスフィン酸の金属塩、リン含有量:23.5質量%、商品名(クラリアント社製)
・環状有機リン化合物:10-(2,5-ジヒドロキシフェニル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド、リン含有量:9.6質量%
(5) Hardening accelerator <organic oxide>
・ Α, α'-bis (t-butylperoxy) diisopropylbenzene ・ bis (1-phenyl-1-methylethyl) peroxide ・ diisopropylbenzene hydroperoxide <imidazole curing agent>
G-809L: isocyanate mask imidazole (addition reaction product of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole), trade name (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
2-methylimidazole 2-ethyl-4-methylimidazole 1-benzyl-2-methylimidazole 2-undecylimidazole 2MA-OK: 2,4-diamino-6- [2'-methylimidazolyl- ( 1 ′)]-Ethyl-s-triazine isocyanuric acid adduct, trade name (manufactured by Shikoku Chemicals Co., Ltd.)
<Phosphorus curing accelerator>
・ Tetraphenylphosphonium tetra-p-tolylborate ・ Triphenylphosphine-triphenylborane (6) Inorganic filler (D)
Spherical fused silica, average particle size: 0.5 μm, density 2.2 g / cm 3
(7) Flame retardant (E)
OP-930: aluminum dialkyl phosphinate, metal salt of disubstituted phosphinic acid, phosphorus content: 23.5% by mass, trade name (manufactured by Clariant)
Cyclic organic phosphorus compound: 10- (2,5-dihydroxyphenyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, phosphorus content: 9.6% by mass
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表3~表6より、実施例1~21に係る積層板は、比較例1~21よりも、リフロー処理後のピール強度の低下を大幅に抑制できており、引き剥がし面のスズ付着量も大幅に少なくなっている。このように、本発明により、酸性度の高い樹脂組成物を含有するプリプレグを銅箔上に積層した場合であっても、リフロー処理後のピール強度低下の懸念が解消した。これは、表7が示すように、本発明中の工程(2)によってスズ合金層上にカップリング剤と親和性の高い酸化スズ皮膜が形成され、その皮膜上にカップリング剤層が十分に形成されたため、樹脂組成物の酸性度の影響を受けにくくなったことによるものと推察される。 Tables 3 to 6 show that the laminates according to Examples 1 to 21 can significantly suppress the decrease in the peel strength after the reflow treatment and the tin adhesion amount on the peeled surface as compared with Comparative Examples 1 to 21. Significantly less. As described above, according to the present invention, even when a prepreg containing a resin composition having a high acidity is laminated on a copper foil, concern about a decrease in peel strength after a reflow treatment has been solved. This is because, as shown in Table 7, the tin oxide film having a high affinity for the coupling agent is formed on the tin alloy layer by the step (2) in the present invention, and the coupling agent layer is sufficiently formed on the film. It is presumed that the resin composition was less affected by the acidity of the resin composition.
 本発明の銅箔の処理方法を利用して得られる銅箔、銅張積層体及びプリント配線板は、多層プリント配線板及び高速通信対応モジュール等の電子部品用途に好適に使用することができる。 銅 The copper foil, copper-clad laminate, and printed wiring board obtained by using the copper foil processing method of the present invention can be suitably used for electronic parts such as multilayer printed wiring boards and high-speed communication compatible modules.
1 銅箔
2 スズ又はスズ合金層
3 酸化スズ皮膜
4 カップリング剤層
5 pH3.0~5.0の酸性樹脂層
6 pH3.0~5.0の酸性樹脂層による酸化作用
7 密着性が低下した部位
Reference Signs List 1 Copper foil 2 Tin or tin alloy layer 3 Tin oxide film 4 Coupling agent layer 5 Acidic resin layer at pH 3.0 to 5.0 6 Oxidation action by acidic resin layer at pH 3.0 to 5.0 7 Adhesion decreases Part

Claims (14)

  1.  銅箔の表面に、スズ層又はスズ合金層を形成する工程(1)、
     前記スズ層又はスズ合金層の表面に存在するスズを酸化スズに変換する工程(2)、
     前記酸化スズに対してカップリング処理をする工程(3)、
    を有する、銅箔の処理方法。
    Forming a tin layer or a tin alloy layer on the surface of the copper foil (1),
    Converting tin existing on the surface of the tin layer or tin alloy layer into tin oxide (2),
    A step (3) of performing a coupling treatment on the tin oxide;
    A method for treating a copper foil.
  2.  前記スズ合金層が、スズ及びニッケルを含有する合金層である、請求項1に記載の銅箔の処理方法。 The method for treating a copper foil according to claim 1, wherein the tin alloy layer is an alloy layer containing tin and nickel.
  3.  前記工程(2)において、前記スズが加熱処理又は空気酸化によって酸化スズに変換される、請求項1又は2に記載の銅箔の処理方法。 処理 The copper foil treatment method according to claim 1 or 2, wherein in the step (2), the tin is converted into tin oxide by heat treatment or air oxidation.
  4.  前記加熱処理の温度が35~200℃である、請求項3に記載の銅箔の処理方法。 方法 The method for treating a copper foil according to claim 3, wherein the temperature of the heat treatment is 35 to 200 ° C.
  5.  前記工程(1)において、前記銅箔が回路形成されたものである、請求項1~4のいずれか1項に記載の銅箔の処理方法。 (5) The method for treating a copper foil according to any one of the above (1) to (4), wherein in the step (1), the copper foil is formed with a circuit.
  6.  前記工程(1)を経た後の、前記スズ層又は前記スズ合金層側の銅箔の面の表面粗さ(Rz)が0.2~2.0μmである、請求項1~5のいずれか1項に記載の銅箔の処理方法。 6. The surface roughness (Rz) of the surface of the copper foil on the side of the tin layer or the tin alloy layer after the step (1) is 0.2 to 2.0 μm. 2. The method for treating a copper foil according to claim 1.
  7.  銅箔に、請求項1~6のいずれか1項に記載の銅箔の処理方法を施すことによって得られる銅箔。 銅 A copper foil obtained by subjecting the copper foil to the method for treating a copper foil according to any one of claims 1 to 6.
  8.  銅箔上にスズ層又はスズ合金層を有し、前記スズ層又は前記スズ合金層における銅箔とは反対側の面に酸化スズ皮膜を有し、前記酸化スズ皮膜上にカップリング剤層を有する積層体。 Having a tin layer or a tin alloy layer on the copper foil, having a tin oxide film on the surface of the tin layer or the tin alloy layer opposite to the copper foil, and forming a coupling agent layer on the tin oxide film. Having a laminate.
  9.  前記スズ層又はスズ合金層の厚みが0.01~1.0μmである、請求項8に記載の積層体。 The laminate according to claim 8, wherein the thickness of the tin layer or the tin alloy layer is 0.01 to 1.0 μm.
  10.  前記カップリング剤層上にpHが3.0~5.0の酸性樹脂層又は該酸性樹脂層を含有するプリプレグを有する、請求項8又は9に記載の積層体。 10. The laminate according to claim 8 or 9, further comprising an acidic resin layer having a pH of 3.0 to 5.0 or a prepreg containing the acidic resin layer on the coupling agent layer.
  11.  前記スズ層又は前記スズ合金層側の前記銅箔の面の表面粗さ(Rz)が0.2~2.0μmである、請求項8~10のいずれか1項に記載の積層体。 The laminate according to any one of claims 8 to 10, wherein the surface roughness (Rz) of the surface of the copper foil on the tin layer or tin alloy layer side is 0.2 to 2.0 μm.
  12.  請求項8~11のいずれか1項に記載の積層体の少なくとも一方の表面に銅箔を有する、銅張積層板。 A copper-clad laminate having a copper foil on at least one surface of the laminate according to any one of claims 8 to 11.
  13.  請求項12に記載の銅張積層板に回路加工してなるプリント配線板。 A printed wiring board obtained by processing a circuit on the copper-clad laminate according to claim 12.
  14.  請求項13に記載のプリント配線板を用いて製造される高速通信対応モジュール。 A high-speed communication-compatible module manufactured using the printed wiring board according to claim 13.
PCT/JP2019/028003 2018-07-17 2019-07-17 Copper foil processing method, copper foil, laminate, copper-clad laminated plate, printed wiring board, and module corresponding to high-speed communication WO2020017524A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020531327A JP7371628B2 (en) 2018-07-17 2019-07-17 Copper foil processing method, copper foil, laminate, copper-clad laminate, printed wiring board, and high-speed communication module
CN201980047293.XA CN112585004B (en) 2018-07-17 2019-07-17 Copper foil processing method, copper foil, laminate, copper-clad laminate, printed wiring board, and high-speed communication module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-134447 2018-07-17
JP2018134447 2018-07-17

Publications (1)

Publication Number Publication Date
WO2020017524A1 true WO2020017524A1 (en) 2020-01-23

Family

ID=69164891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028003 WO2020017524A1 (en) 2018-07-17 2019-07-17 Copper foil processing method, copper foil, laminate, copper-clad laminated plate, printed wiring board, and module corresponding to high-speed communication

Country Status (4)

Country Link
JP (1) JP7371628B2 (en)
CN (1) CN112585004B (en)
TW (1) TWI825128B (en)
WO (1) WO2020017524A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4276219A1 (en) * 2022-05-09 2023-11-15 Atotech Deutschland GmbH & Co. KG Process for wet-chemical formation of a stable tin oxide layer for printed circuit boards (pcbs)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363095A (en) * 1989-12-05 1992-12-15 E I Du Pont De Nemours & Co Formation of multilayer printed circuit board
JP2004266170A (en) * 2003-03-04 2004-09-24 Showa Denko Kk Method for manufacturing laminate for printed wiring board
JP2011091066A (en) * 2009-10-20 2011-05-06 Hitachi Ltd Low dielectric loss wiring board, multilayer wiring board, and copper foil and laminate used for the same
JP2013170266A (en) * 2012-02-23 2013-09-02 Hitachi Cable Ltd Thermosetting adhesive composition, and heat-resistant adhesive film and wiring film each using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007535A (en) 1999-06-17 2001-01-12 Mitsubishi Gas Chem Co Inc Manufacture of multilayer printed wiring board with through-hole of high reliability
SG10201600443SA (en) * 2011-03-07 2016-02-26 Mitsubishi Gas Chemical Co Resin composition, and prepreg as well as laminate using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04363095A (en) * 1989-12-05 1992-12-15 E I Du Pont De Nemours & Co Formation of multilayer printed circuit board
JP2004266170A (en) * 2003-03-04 2004-09-24 Showa Denko Kk Method for manufacturing laminate for printed wiring board
JP2011091066A (en) * 2009-10-20 2011-05-06 Hitachi Ltd Low dielectric loss wiring board, multilayer wiring board, and copper foil and laminate used for the same
JP2013170266A (en) * 2012-02-23 2013-09-02 Hitachi Cable Ltd Thermosetting adhesive composition, and heat-resistant adhesive film and wiring film each using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4276219A1 (en) * 2022-05-09 2023-11-15 Atotech Deutschland GmbH & Co. KG Process for wet-chemical formation of a stable tin oxide layer for printed circuit boards (pcbs)
WO2023217652A1 (en) * 2022-05-09 2023-11-16 Atotech Deutschland GmbH & Co. KG Process for wet-chemical formation of a stable tin oxide layer for printed circuit boards

Also Published As

Publication number Publication date
JPWO2020017524A1 (en) 2021-08-12
JP7371628B2 (en) 2023-10-31
CN112585004A (en) 2021-03-30
CN112585004B (en) 2023-11-03
TW202018124A (en) 2020-05-16
TWI825128B (en) 2023-12-11

Similar Documents

Publication Publication Date Title
JP6705447B2 (en) Resin composition, prepreg, laminated board and multilayer printed wiring board
JP6079930B2 (en) N-substituted maleimide group-containing polyphenylene ether derivative, and thermosetting resin composition, resin varnish, prepreg, metal-clad laminate, and multilayer printed wiring board using the same
CN107531992B (en) Thermosetting resin composition, prepreg, laminate, and multilayer printed wiring board
JP6805338B2 (en) Resin material, laminated structure and multi-layer printed wiring board
JP7332479B2 (en) Resin material, laminated structure and multilayer printed wiring board
JP6863126B2 (en) Resin composition, prepreg, laminated board, multilayer printed wiring board and semiconductor package
JP2021025053A (en) Resin material and multilayer printed wiring board
WO2021020563A1 (en) Resin material and multilayer printed wiring board
JP2017071689A (en) Resin composition, prepreg, laminate, multilayer printed board and method for manufacturing multilayer printed board
JP7106819B2 (en) Resin varnish, resin composition, prepreg, laminate, multilayer printed wiring board, and storage method for resin varnish
CN115279808A (en) Resin material and multilayer printed wiring board
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
WO2020017524A1 (en) Copper foil processing method, copper foil, laminate, copper-clad laminated plate, printed wiring board, and module corresponding to high-speed communication
KR20180134845A (en) Resin composition and method for producing the same, prepreg, resin sheet, laminate, metal foil clad laminate,
CN111819218A (en) Prepreg, laminate, multilayer printed wiring board, semiconductor package, resin composition, and methods for producing prepreg, laminate, and multilayer printed wiring board
JP2021025051A (en) Resin material and multilayer printed wiring board
JP7176186B2 (en) Thermosetting resin compositions, prepregs, laminates, printed wiring boards, and high-speed communication modules
JP2017066280A (en) Thermosetting resin composition and manufacturing method therefor, and prepreg, metal-clad laminate and multilayer printed board having the thermosetting resin composition
JP2020094213A (en) Resin material and multilayer printed wiring board
JP2021028368A (en) Resin composition, cured product of resin composition, resin sheet, printed wiring board, and semiconductor device
JP7474064B2 (en) Resin materials and multilayer printed wiring boards
WO2022004756A1 (en) Resin composition
WO2023243676A1 (en) Resin composition, prepreg, laminate, resin film, printed wiring board, and semiconductor package
JP2017057347A (en) Resin composition, prepreg, laminate and multilayer printed wiring board
JP2022109003A (en) resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837457

Country of ref document: EP

Kind code of ref document: A1