WO2020017483A1 - Water absorbing resin particles, and absorbent body and absorbent article containing same - Google Patents

Water absorbing resin particles, and absorbent body and absorbent article containing same Download PDF

Info

Publication number
WO2020017483A1
WO2020017483A1 PCT/JP2019/027845 JP2019027845W WO2020017483A1 WO 2020017483 A1 WO2020017483 A1 WO 2020017483A1 JP 2019027845 W JP2019027845 W JP 2019027845W WO 2020017483 A1 WO2020017483 A1 WO 2020017483A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weight
absorbent resin
resin particles
crosslinked polymer
Prior art date
Application number
PCT/JP2019/027845
Other languages
French (fr)
Japanese (ja)
Inventor
武 南里
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Priority to CN201980043449.7A priority Critical patent/CN112334517B/en
Priority to JP2020531306A priority patent/JP7339253B2/en
Publication of WO2020017483A1 publication Critical patent/WO2020017483A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels

Definitions

  • the present invention relates to a water-absorbent resin particle, an absorbent containing the same, and an absorbent article.
  • water-absorbent resins mainly composed of hydrophilic fibers such as pulp and acrylic acid (salt) are widely used as absorbers.
  • hydrophilic fibers such as pulp and acrylic acid (salt)
  • consumers have been demanding more comfort, and the demand has shifted to more dry and thinner ones. Reduction has become desired. Therefore, the role of the water-absorbent resin itself has been required to have the role of the high absorption rate and liquid diffusivity in the early stage that the hydrophilic fiber has played so far.
  • a method of physically increasing the surface area of the water-absorbent resin is generally used.
  • a method of increasing the drying rate of the water-absorbent resin to reduce the apparent density Patent Document 1
  • a method of increasing the absorption rate by reducing the particle size of the water-absorbent resin particles in the sieving step Patent Document 2
  • the content of the hydrophilic fiber is larger than the content of the water-absorbent resin particles in the absorbent in which these water-absorbent resin particles are applied to an absorbent article (paper diaper or the like).
  • JP 2013-132434 A JP-A-2006-143972 Japanese Patent No. 5448699
  • An object of the present invention is to exhibit a high absorption rate and liquid diffusivity in the initial stage in contact with the liquid to be absorbed, to have excellent dryness, and to further eliminate problems such as rash, an absorbent body containing the water-absorbent resin particles, and an absorbent. To provide goods.
  • the present invention relates to a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis (in other words, a water-soluble vinyl monomer (a1) and a water-soluble vinyl monomer by hydrolysis.
  • the absorption amount (M1) after 1 minute by the DW (Demand Wetability) method is 10 to 15 ml / g, and the absorption amount (M2) after 5 minutes is 45 to 55 ml / g.
  • SPAN [D (90%)-D (10%)] / D (50%) ⁇ 1.0 (Equation 1)
  • D (10%) is a particle whose cumulative weight fraction from the particle having the smallest particle size is 10% by weight, where the total weight of the water-absorbent resin particles classified using a standard sieve is 100% by weight.
  • D (50%) is the particle diameter at which the cumulative weight fraction is 50% by weight
  • D (90%) is the particle diameter at which the cumulative weight fraction is 90% by weight.
  • the absorber of the present invention contains the above water-absorbent resin particles and a fibrous material.
  • the absorbent article of the present invention is provided with the above-mentioned absorber.
  • the water-absorbent resin particles of the present invention have a specific particle size distribution and absorption rate pattern. Therefore, when the water-absorbent resin particles of the present invention are applied to absorbent articles (such as disposable diapers and sanitary napkins), they exhibit an initial high absorption rate and liquid diffusivity when they come in contact with the liquid to be absorbed, and exhibit dryness. And no problems such as rash. That is, the absorbent article using the water-absorbent resin particles having a DW absorption pattern of the present invention exhibits excellent liquid diffusivity because of having an absorption pattern that is appropriately delayed at the initial stage, and exhibits dryness over the entire absorber. Excellent.
  • the liquid drainage property from the surface nonwoven fabric (to absorb and absorb the liquid; the same applies hereinafter) is improved, and therefore, a more excellent dry property is exhibited. I do.
  • the water-soluble vinyl monomer (a1) is not particularly limited and is known (for example, vinyl monomers disclosed in Japanese Patent Nos. 3648553, 2003-165883, 2005-75982, and 2005-95759). Etc. can be used.
  • the vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis (hereinafter also referred to as a hydrolyzable vinyl monomer) (a2) is not particularly limited and is known.
  • a hydrolyzable vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C.
  • hydrolyzable means the property of being hydrolyzed by the action of water at 50 ° C. and, if necessary, a catalyst (acid or base, etc.).
  • the hydrolysis of the hydrolyzable vinyl monomer may be carried out during the polymerization, after the polymerization, or both of them, but is preferably performed after the polymerization from the viewpoint of the molecular weight of the obtained water-absorbent resin particles.
  • a water-soluble vinyl monomer (a1) is preferable, an anionic vinyl monomer is more preferable, and a carboxy (salt) group, a sulfo (salt) group, an amino group, and a carbamoyl group are more preferable.
  • the “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”.
  • (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylic acid
  • (meth) acrylamide means acrylamide or methacrylamide.
  • the salt include an alkali metal (such as lithium, sodium, and potassium) salt, an alkaline earth metal (such as magnesium and calcium) salt, and an ammonium (NH 4 ) salt.
  • alkali metal salts and ammonium salts are preferred from the viewpoint of absorption characteristics and the like, more preferably alkali metal salts, and particularly preferably sodium salts.
  • the constituent unit may be used alone, or two or more kinds may be used as necessary. The same applies to the case where the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units.
  • the content molar ratio (a1 / a2) thereof is preferably 75/25 to 99/1, and more preferably. 85/15 to 95/5, particularly preferably 90/10 to 93/7, most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.
  • the water-absorbent resin particles in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), another vinyl monomer (a3) copolymerizable therewith can be used as a constituent unit. .
  • the other copolymerizable vinyl monomer (a3) is not particularly limited and is known.
  • JP-A-3648553, JP-A-2003-165883, JP-A-2005-75982, and JP-A-2005-95759. ⁇ ⁇ hydrophobic vinyl monomers and the like can be used, and the following vinyl monomers (i) to (iii) can be used.
  • (I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene.
  • (Iii) alicyclic ethylene monomers having 5 to 15 carbon atoms, monoethylenically unsaturated monomers such as pinene, limonene and indene; and polyethylene-based vinyl polymerizable monomers such as cyclopentadiene, bicyclopentadiene and ethylidene norbornene.
  • the content (mol%) of the other vinyl monomer (a3) unit is determined based on the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Based on the number of moles, it is preferably from 0.01 to 5, more preferably from 0.05 to 3, then preferably from 0.08 to 2, particularly preferably from 0.1 to 1.5. From the viewpoint of absorption characteristics and the like, the content of the other vinyl monomer (a3) unit is most preferably 0 mol%.
  • the crosslinking agent (b) is not particularly limited and is known in the art (for example, crosslinking agents disclosed in Japanese Patent Nos. 3648553, 2003-165883, 2005-75982, and 2005-95759). Can be used. Among these, a crosslinking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption characteristics and the like, more preferably a poly (meth) allyl ether of a polyol having 2 to 10 carbon atoms, and particularly preferably triallyl sialic acid. Nurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferably pentaerythritol triallyl ether.
  • the content (mol%) of the crosslinking agent (b) unit is based on the number of moles of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit, and other vinyl monomers (a3) are also used. In this case, it is preferably 0.001 to 5, more preferably 0.005 to 3, and particularly preferably 0.01 to 1, based on the total number of moles of (a1) to (a3) units. Within this range, the absorption characteristics are further improved.
  • the crosslinked polymer (A1) may be a single type or a mixture of two or more types.
  • the crosslinked polymer (A1) can be prepared by a known aqueous polymerization method (adiabatic polymerization, thin film polymerization, spray polymerization method, etc .; JP-A-55-133413, etc.) or a known reversed-phase suspension polymerization (Japanese Patent Publication No. 54-30710). And JP-A-56-26909 and JP-A-1-5808.
  • a solution polymerization method is preferable, and an aqueous solution polymerization method is particularly preferable because there is no need to use an organic solvent or the like and the production cost is advantageous.
  • ⁇ Hydrogel obtained by polymerization >> Consists of a crosslinked polymer and water.
  • the size (longest diameter) of the gel after shredding is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
  • Shredding can be performed by a known method, and can be shredded using a known shredding device ⁇ for example, Vex Mill, Rubber Chopper, Pharma Mill, Minch Machine, Impact Grinding Machine and Roll Grinding Machine ⁇ or the like. .
  • a known shredding device for example, Vex Mill, Rubber Chopper, Pharma Mill, Minch Machine, Impact Grinding Machine and Roll Grinding Machine ⁇ or the like.
  • the solvent organic solvent, water, etc.
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, and particularly preferably 0 to 5, based on the weight of the water-absorbent resin particles. -3, most preferably 0-1. Within this range, the water-absorbing resin particles will have better absorption performance (particularly, water retention).
  • the water content (% by weight) after distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, and most preferably 2 to 20, based on the weight of the crosslinked polymer. 3 to 8. Within this range, the absorption performance and the breakability of the water-absorbent resin particles after drying are further improved.
  • the content and water content of the organic solvent were measured using an infrared moisture meter @ JE400 manufactured by KETT Co., Ltd .: 120 ⁇ 5 ° C., 30 minutes, atmosphere humidity before heating 50 ⁇ 10% RH, lamp specification 100V, 40W It is determined from the weight loss of the measurement sample before and after heating when heating according to ⁇ .
  • a method of distilling off the solvent including water
  • a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C. a method of drying a thin film by a drum dryer or the like heated to 100 to 230 ° C.
  • a vacuum drying method, a freeze drying method, a drying method using infrared rays, decantation, filtration and the like can be applied.
  • the crosslinked polymer (A1) can be pulverized after drying.
  • the pulverizing method is not particularly limited, and a known pulverizing apparatus (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, a shed air pulverizer) and the like can be used.
  • the particle size of the pulverized crosslinked polymer can be adjusted by sieving or the like, if necessary.
  • the weight average particle diameter ( ⁇ m) of the crosslinked polymer (A1) when sieved as required is preferably 200 to 400, particularly preferably 210 to 390, and most preferably 230 to 380. Within this range, the absorption performance is further improved.
  • the weight-average particle diameter was measured using a low tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), 6th edition of Perry's Chemical Engineers Handbook (Mac Glow Hill Book Company, 1984). , Page 21). That is, JIS standard sieves are combined from the top in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and the pan in the order from the top. About 50 g of the particles to be measured is put into the uppermost sieve and shaken with a low tap test sieve shaker for 5 minutes.
  • the weights of the particles measured on each sieve and the pan are weighed, and the weight fraction of the particles on each sieve is determined by taking the total as 100% by weight.
  • the vertical axis is plotted as the weight fraction ⁇ , and a line connecting the points is drawn to obtain a particle diameter [D (50%)] corresponding to the weight fraction of 50% by weight, and this is calculated as the weight average particle diameter.
  • D particle diameter
  • the particle diameter corresponding to the above weight fraction of 10% by weight is D (10%), and the particle diameter corresponding to the weight fraction of 90% by weight is D (90%). .
  • the content of the fine particles of 106 ⁇ m or less (preferably 150 ⁇ m or less) in all the particles is preferably 3% by weight or less, more preferably 1% by weight or less. It is.
  • the content of the fine particles can be determined using a plot created when the above-mentioned weight average particle size is determined.
  • the span value of the crosslinked polymer (A1) is preferably 1.0 or less, particularly preferably 0.9 or less, and most preferably 0.8 or less. Within this range, the initial absorption rate is further improved, and the dryness is improved.
  • SPAN is a parameter representing the particle size distribution.
  • the span value can be determined by measuring the particle size distribution of the water absorbent resin particles.
  • D (10%), D (50%), and D (90%) are all particle diameters represented by “ ⁇ m” and can be measured by a sieving particle size measurement method using a standard sieve.
  • D (10%) is such that when the water-absorbent resin particles are classified by a standard sieve and the water-absorbent resin particles are arranged in order of particle diameter, the total weight of the classified particles is 100% by weight, and the particle diameter is the smallest. It means the particle diameter at which the cumulative weight fraction from the particles becomes 10% by weight.
  • D (50%) means a particle diameter at which the cumulative weight fraction becomes 50% by weight, and further, a particle diameter at which the D (90%) cumulative weight fraction becomes 90% by weight.
  • the particle size distribution may be adjusted after classifying the crosslinked polymer (A1), or may be adjusted after classifying with the water absorbent resin particles.
  • the method of adjusting the particle size distribution is not particularly limited, and can be adjusted by, for example, a method of mixing particles on each sieve at a predetermined ratio.
  • the apparent density (g / ml) of the crosslinked polymer (A1) is preferably 0.55 to 0.65, more preferably 0.56 to 0.64, and particularly preferably 0.57 to 0.63. Within this range, the absorption performance is further improved.
  • the apparent density is measured at 25 ° C. in accordance with JIS K7365: 1999.
  • the shape of the crosslinked polymer (A1) is not particularly limited, and examples thereof include irregularly crushed, scaly, pearl, and rice grain shapes. Of these, the irregularly crushed shape is preferred from the viewpoint that it is well entangled with fibrous materials for use in disposable diapers, and there is no fear of falling off from the fibrous materials.
  • the crosslinked polymer (A) preferably contains a hydrophobic substance (C) from the viewpoint of liquid diffusibility.
  • a hydrophobic substance (C) include a hydrophobic substance (C1) having a hydrocarbon group and a hydrophobic substance (C2) having a polysiloxane structure.
  • hydrocarbon group-containing hydrophobic substance (C1) examples include polyolefin resin, polyolefin resin derivative, polystyrene resin, polystyrene resin derivative, wax, long-chain fatty acid ester, long-chain fatty acid and its salt, long-chain aliphatic alcohol, and long-chain aliphatic alcohol. Chain fatty acid amides and mixtures of two or more of these.
  • an olefin having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and isoprene is used as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin).
  • Polymers having an average molecular weight of 1,000 to 1,000,000 ⁇ for example, polyethylene, polypropylene, polyisobutylene, poly (ethylene-isobutylene), isoprene and the like) can be mentioned.
  • polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin ⁇ for example, polyethylene Degradation products, polypropylene thermal degradation products, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated Polybutadiene, ethylene-vinyl acetate copolymer, maleic product of ethylene-vinyl acetate copolymer, and the like.
  • a carboxy group —COOH
  • COOCO— 1,3-oxo-2-oxapropylene
  • polystyrene resin a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
  • polystyrene resin derivative a polymer having a weight-average molecular weight of 10 to 1,000,000 containing styrene as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) ⁇ for example, styrene- Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, and the like.
  • waxes having a melting point of 50 to 200 ° C. for example, paraffin wax, beeswax, carnauba wax, tallow, etc.
  • long-chain fatty acid ester examples include an ester of a fatty acid containing an alkyl group having 8 to 25 carbon atoms and an alcohol having 1 to 12 carbon atoms such as methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, oleic acid Methyl, ethyl oleate, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin oleic acid monoester, pentaerythritol laurate monoester, pentaerythritol stearic acid monoester, pentaerythritol oleic acid monoester, sorbitol lauric acid Acid monoester, sorbitol stearic acid monoester, sorbit oleic acid monoester, sucrose palmitate (sucrose palmitate monoester, sucrose palmitate diester
  • sucrose stearic acid esters sucrose stearic acid monoester, sucrose stearic acid diester, sucrose stearic acid triester, etc.
  • sucrose palmitate Sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, etc.
  • sucrose erucic acid ester sucrose stearic acid ester is more preferable. Diester, sucrose stearic acid triester and the like) and sucrose erucic acid ester.
  • Examples of long-chain fatty acids and salts thereof include fatty acids containing an alkyl group having 8 to 25 carbon atoms, such as lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid.
  • Examples of the salt include salts with calcium, magnesium, or aluminum (hereinafter abbreviated as Ca, Mg, Al), such as Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, and the like. From the viewpoint of the liquid diffusibility of the absorbent article, Ca stearate, Mg stearate, and Al stearate are preferred, and Mg stearate is more preferred.
  • Examples of long-chain aliphatic alcohols include aliphatic alcohols containing an alkyl group having 8 to 25 carbon atoms, such as lauryl alcohol, palmityl alcohol, stearyl alcohol, and oleyl alcohol. From the viewpoint of the liquid diffusibility of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferred, and stearyl alcohol is more preferred.
  • Examples of the long-chain fatty acid amide include fatty acid amides containing an alkyl group having 8 to 25 carbon atoms such as lauric amide, palmitic amide, stearic amide, oleic amide, erucamide, etc.
  • Fatty acid bisamides such as ethylenebislauric acid amide, ethylenebisstearic acid amide, hexamethylenebisstearic acid amide, N, N'-distearyladipamide, ethylenebisoleic acid amide, ethylenebiserucic acid amide, etc.
  • Can be Ethylenebisstearic acid amide is preferred from the viewpoint of the liquid diffusibility of the absorbent article.
  • Examples of the mixture of two or more of these include a mixture of a long-chain fatty acid ester and a long-chain aliphatic alcohol (for example, a mixture of sucrose stearic acid ester and stearyl alcohol), a long-chain fatty acid ester and a long-chain fatty acid, and a mixture thereof.
  • a mixture of salts for example, a mixture of sucrose stearic acid ester and Mg stearylate ⁇ may be mentioned.
  • hydrophobic substance (C2) having a polysiloxane structure examples include polydimethylsiloxane, polyether-modified polysiloxane ⁇ polyoxyethylene-modified polysiloxane and poly (oxyethylene-oxypropylene) -modified polysiloxane and the like ⁇ , carboxy-modified polysiloxane, Organic polysiloxanes such as epoxy-modified polysiloxane, amino-modified polysiloxane, alkoxy-modified polysiloxane and the like and mixtures thereof are included.
  • the position of the organic group (modified group) of the modified silicone is not particularly limited, but the side chain of polysiloxane, polysiloxane , One end of polysiloxane, or both the side chain and both ends of polysiloxane.
  • both the side chain of polysiloxane and both the side chain and both ends of the polysiloxane are preferable, and more preferably both the side chain and both ends of the polysiloxane.
  • the organic group (modified group) of the polyether-modified polysiloxane includes a group containing a polyoxyethylene group or a poly (oxyethylene-oxypropylene) group.
  • the content (number) of oxyethylene groups and / or oxypropylene groups contained in the polyether-modified polysiloxane is preferably 2 to 40, more preferably 5 to 30, and particularly preferably 5 per molecule of the polyether-modified polysiloxane. It is 7-20, most preferably 10-15. Within this range, the absorption characteristics are further improved.
  • the content (% by weight) of the oxyethylene group is preferably 1 to 30, more preferably 3 to 25, and particularly preferably 5 to 25, based on the weight of the polysiloxane. ⁇ 20. Within this range, the absorption characteristics are further improved.
  • the polyether-modified polysiloxane can be easily obtained from the market.
  • the following products ⁇ modified position, type of oxyalkylene ⁇ can be preferably exemplified.
  • -KF-945 side chain, oxyethylene and oxypropylene, KF-6020 side chain, oxyethylene and oxypropylene, X-22-6191 side chain, oxyethylene and oxypropylene manufactured by Shin-Etsu Chemical Co., Ltd. X-22-4954 ⁇ side chain, oxyethylene and oxypropylene ⁇ , X-22-4272 ⁇ side chain, oxyethylene and oxypropylene ⁇ , X-22-6266 ⁇ side chain, oxyethylene and oxypropylene ⁇
  • FZ-2110 both terminals, oxyethylene and oxypropylene ⁇
  • FZ-2122 both terminals, oxyethylene and oxypropylene ⁇
  • FZ-7006 ⁇ both terminals, oxyethylene and oxypropylene ⁇
  • FZ-2166 ⁇ terminals, oxyethylene and oxypropylene ⁇
  • FZ-2164 ⁇ terminals, oxyethylene and oxypropylene ⁇
  • FZ-2154 ⁇ terminals, oxyethylene and oxypropylene ⁇
  • FZ-2203 ⁇ terminals, oxy Ethylene and oxypropylene ⁇ and FZ-2207 ⁇ both terminals, oxyethylene and oxypropylene ⁇
  • the organic group (modifying group) of the carboxy-modified polysiloxane includes a group containing a carboxy group
  • the organic group (modifying group) of the epoxy-modified polysiloxane includes a group containing an epoxy group.
  • Examples of the organic group (modifying group) of the polysiloxane include a group containing an amino group (a primary, secondary, or tertiary amino group).
  • the content (g / mol) of the organic group (modified group) of these modified silicones is preferably 200 to 11000, more preferably 600 to 8000, particularly preferably 1000 to 4000 as carboxy equivalent, epoxy equivalent or amino equivalent. It is. Within this range, the absorption characteristics are further improved.
  • the carboxy equivalent is measured in accordance with JIS C2101: 1999 “16. Total acid value test”.
  • the epoxy equivalent is determined in accordance with JIS K7236: 2001.
  • the amino equivalent is measured according to JIS K2501: 2003, “8. Potentiometric titration method (base number / hydrochloric acid method)”.
  • the carboxy-modified polysiloxane can be easily obtained from the market.
  • the following products ⁇ modified position, carboxy equivalent (g / mol) ⁇ can be preferably exemplified.
  • Epoxy-modified polysiloxane can be easily obtained from the market.
  • the following products ⁇ modified position, epoxy equivalent ⁇ can be preferably exemplified.
  • ⁇ Shin-Etsu Chemical Co., Ltd. X-22-343 ⁇ side chain, 525 ⁇ , KF-101 ⁇ side chain, 350 ⁇ , KF-1001 ⁇ side chain, 3500 ⁇ , X-22-2000 ⁇ side chain, 620 ⁇ , X-22-2046 ⁇ side chain, 600 ⁇ , KF-102 ⁇ side chain, 3600 ⁇ , X-22-4741 ⁇ side chain, 2500 ⁇ , KF-1002 ⁇ side chain, 4300 ⁇ , X-22-3000T ⁇ Side chain, 250 ⁇ , both ends of X-22-163 ⁇ , 200 ⁇ , both ends of KF-105 ⁇ 490 ⁇ , both ends of X-22-163A, both ends of 1000 ⁇ , X-22-163B ⁇ both ends, 1750 ⁇ , X-22-163C ⁇ both ends, 2700 ⁇ ,
  • Amino-modified silicone can be easily obtained from the market.
  • the following products ⁇ modified position, amino equivalent ⁇ can be preferably exemplified.
  • mixtures include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane, and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
  • the viscosity (mPa ⁇ s, 25 ° C.) of the hydrophobic substance having a polysiloxane structure is preferably from 10 to 5,000, more preferably from 15 to 3,000, and particularly preferably from 20 to 1500. Within this range, the absorption characteristics are further improved.
  • the viscosity is measured in accordance with JIS Z8803-1991 “Viscosity of liquid”. Cone and cone-measured in accordance with a viscosity measurement method using a flat plate type viscometer. For example, an E-type viscometer temperature-controlled to 25.0 ⁇ 0.5 ° C. (RE80L, radius 7 mm, manufactured by Toki Sangyo Co., Ltd.) , An angle of 5.24 ⁇ 10 ⁇ 2 rad). ⁇
  • the water-absorbent resin of the present invention contains a hydrophobic substance (C).
  • the absorption rate pattern of the water-absorbent resin particles can be arbitrarily adjusted depending on the hydrophobicity and the amount of the hydrophobic substance (C).
  • the hydrophobicity can be determined by a known method such as a hydrophilic-hydrophobic balance (HLB value).
  • the HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method (introduction to surfactants, page 212, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., published in 2007).
  • long-chain fatty acid esters, long-chain fatty acids and salts thereof, and long-chain fatty acid amides are preferred from the viewpoint of the liquid diffusibility of the absorbent article, and more preferably sucrose stearate. , Mg stearate and ethylene bisstearic acid amide. Since long-chain fatty acids generally have a carbon number distribution, stearic acid means a modified long-chain fatty acid containing stearic acid as a main component.
  • the content (% by weight) of the hydrophobic substance (C) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A1). Is 0.08 to 0.50. Within this range, the liquid diffusibility of the absorbent article and the liquid drainage property from the nonwoven fabric are easily compatible, and the antifogging property is excellent.
  • the water-absorbent resin particles of the present invention preferably contain a hydrophobic substance (C) and a penetrant (D).
  • a hydrophobic substance (C) and a penetrant (D) it is preferable to use the hydrophobic substance (C) and the penetrant (D) at the same time.
  • the penetrant (D) is used in combination with the hydrophobic substance (C)
  • the amount of absorption by the DW method and the absorption rate by the lock-up method can be easily compatible.
  • the penetrant (D) include a nonionic surfactant (D1) and an anionic surfactant (D2).
  • the structure of the surfactant having excellent permeability that is, a surfactant having an appropriate number of carbon atoms (8 to 18). It preferably has a long-chain alkyl structure.
  • the content (% by weight) of the penetrant (D) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A1). 0.08 to 0.50. Within this range, the absorption rate can be adjusted appropriately.
  • the method of mixing the crosslinked polymer (A1) with the hydrophobic substance (C) is such that the hydrophobic substance (C) is present inside the water-absorbent resin particles.
  • the hydrophobic substance (C) is not a dried product of the crosslinked polymer (A1), but is mixed with the hydrogel of (A1) or the polymerization solution of (A1), and more preferably of (A1). It is to be mixed with a hydrogel. In addition, it is preferable to mix uniformly so that it may be kneaded.
  • the crosslinked polymer (A1) is obtained by the aqueous solution polymerization method
  • crushing (mincing) and during drying of the hydrogel there is no particular limitation on the timing of mixing and kneading the hydrophobic substances (C) and (A1).
  • the timing of mixing the hydrophobic substances (C) and (A1) is not particularly limited.
  • (A1) is produced in the presence of ⁇ .
  • the dehydration step Immediately after the polymerization step, during the dehydration step (during the step of dehydrating to about 10% by weight of water), immediately after the dehydration step, during the step of separating and distilling off the organic solvent used for the polymerization. And during the drying of the hydrogel.
  • the polymerization step immediately after the polymerization step, during the dehydration step, immediately after the dehydration step, preferably during the step of separating and distilling off the organic solvent used for the polymerization, more preferably Is immediately after the polymerization step during the polymerization step.
  • a known device such as a Vex mill, a rubber chopper, a pharma mill, a mincing machine, an impact mill or a roll mill can be used.
  • a device having relatively high stirring power such as a homomixer or a biomixer can be used.
  • a kneading device such as an SV mixer can be used.
  • the mixing temperature is preferably 20 to 100, more preferably 40 to 90, and particularly preferably 50 to 80. Within this range, uniform mixing becomes easier, and the absorption characteristics are further improved.
  • the hydrophobic substance (C) is dissolved or emulsified (dispersed) in a polymerization solution of the crosslinked polymer (A1).
  • the connecting portion can be formed while depositing (C) with the progress of the polymerization of (A1).
  • the polymerization method is the same as in the case of the crosslinked polymer (A1), except that the polymerization is performed in the presence of the hydrophobic substance (C).
  • the connecting portion means a sandwich structure composed of (A1)-(C)-(A1) formed by contacting the hydrophobic substance (C) and the crosslinked polymer (A1). In this case, the crosslinked polymer (A1) existing inside the absorbent resin particles is linked to another crosslinked polymer (A1) via the hydrophobic substance (C) existing on the surface. Structure.
  • the penetrant (D) When the penetrant (D) is used in combination with the hydrophobic substance (C), the penetrant (D) can be used simultaneously with the timing of mixing the hydrophobic substance (C).
  • the penetrant (D) may be used after being mixed with the hydrophobic substance (C) in advance, or may be added separately and used at the same time.
  • the hydrogel containing the hydrophobic substance (C) and, if necessary, the penetrant (D) can be cut into pieces as needed.
  • the size (longest diameter) of the hydrogel particles after shredding is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
  • the shredding method the same method as in the case of the crosslinked polymer (A1) can be adopted.
  • the solvent can be distilled off after the polymerization.
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, and particularly preferably 0 to 5, based on the weight of the water-absorbent resin particles. -3, most preferably 0-1. It is. Within this range, the water-absorbing resin particles will have better absorption performance (particularly, water retention).
  • the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the water-absorbent resin particles. Most preferably, it is 3 to 8. Within this range, the absorption performance (particularly the water retention amount) and the breakability of the water-absorbent resin particles after drying are further improved.
  • the method for measuring the content and water content of the organic solvent and the method for distilling off the solvent are the same as those for the crosslinked polymer (A1).
  • the crosslinked polymer (A1) can be subjected to a surface crosslinking treatment with a surface crosslinking agent, if necessary.
  • a surface crosslinking agent examples include those disclosed in JP-A-59-189103, JP-A-58-180233, JP-A-61-16903, JP-A-61-211305, and JP-A-61-252212. Nos. 1, JP-A-51-136588 and JP-A-61-257235, etc.
  • ⁇ Surface crosslinking agents Polyhydric glycidyl, polyhydric alcohols, polyamines, polyaziridines, polyisocyanates, silane coupling Agents and polyvalent metals can be used.
  • polyhydric glycidyl, polyhydric alcohol and polyhydric amine are preferable from the viewpoint of economy and absorption properties, more preferably polyhydric glycidyl and polyhydric alcohol, particularly preferably polyhydric glycidyl, Preferred is ethylene glycol diglycidyl ether.
  • the amount (% by weight) of the surface cross-linking agent can be variously changed depending on the type of the surface cross-linking agent, cross-linking conditions, target performance, and the like.
  • the total of (a1) to (a3) and the crosslinking agent (b) Is preferably from 0.001 to 3, more preferably from 0.005 to 2, particularly preferably from 0.01 to 1, based on the weight of
  • the method of the surface cross-linking treatment is known, for example, the method described in Japanese Patent No. 3648553, JP-A-2003-165883, JP-A-2005-75982, and JP-A-2005-95759. Can be applied.
  • the weight average particle size ( ⁇ m) of the water-absorbent resin particles is 200 to 400, preferably 270 to 390, more preferably 290 to 380, and particularly preferably 320 to 370.
  • the water-absorbent resin particles can be pulverized. When the water-absorbent resin particles contain a solvent, it is preferable that the solvent is distilled off (dried) before pulverization.
  • the weight average particle size ( ⁇ m) after pulverization is also preferably 200 to 400, more preferably 270 to 390, further preferably 290 to 380, and particularly preferably 290 to 370.
  • the handling properties (powder fluidity of the water-absorbent resin particles) after pulverization and the absorption rate of the water-absorbent resin particles become appropriate, so that the dryness of the absorbent article is further improved.
  • the weight average particle size can be measured in the same manner as in the case of the crosslinked polymer (A1).
  • the content of the fine particles of 106 ⁇ m or less in the total particles is preferably 3% by weight or less, more preferably the content of the fine particles of 150 ⁇ m or less in the total particles is 3% by weight. It is as follows.
  • the content of the fine particles can be determined using a plot created when the above-mentioned weight average particle size is determined. The same method as in the case of the crosslinked polymer (A1) can be employed for pulverization and particle size adjustment.
  • the span value after the pulverization is preferably 1.0 or less, particularly preferably 0.9 or less, and most preferably 0.8 or less. Within this range, the particle size distribution of the water-absorbent resin particles becomes narrow, so that it becomes difficult for spot absorption to occur or particles that do not absorb are difficult to be produced, so that the liquid drainage property from the surface of the nonwoven fabric is improved.
  • the span value can be measured in the same manner as in the case of the crosslinked polymer (A1).
  • the apparent density (g / ml) of the water-absorbent resin particles of the present invention is preferably 0.55 to 0.65, more preferably 0.56 to 0.64, and particularly preferably 0.57 to 0.63. . Within this range, the antifogging property of the absorbent article is further improved.
  • the apparent density can be measured in the same manner as in the case of the crosslinked polymer (A1).
  • the apparent density can be appropriately adjusted by gel pulverizing method, production conditions such as drying conditions.
  • the shape of the water-absorbent resin particles is not particularly limited, and examples thereof include irregular crushed shapes, scaly shapes, pearl shapes, and rice grain shapes. Of these, the irregularly crushed shape is preferred from the viewpoint that it is well entangled with fibrous materials for use in disposable diapers, and there is no fear of falling off from the fibrous materials.
  • the absorption amount (M) (ml / g) of the water-absorbent resin particles of the present invention by the DW method is preferably from 10 to 15 after 1 minute from the viewpoint of the dryness of the absorbent article. Is 11 to 14, more preferably 12 to 13.
  • the absorption amount (M2) after 5 minutes is from 45 to 55, preferably from 46 to 54, more preferably from 47 to 53. Within this range, the dryness of the absorbent article is further improved.
  • the absorption amount by the DW method is adjusted by adjusting the SPAN, the apparent density of the water-absorbent resin particles, the weight average particle diameter of the water-absorbent resin particles, the hydrophobic substance, the surfactant, and the like to the preferable ranges described above.
  • the absorption amount When the absorption amount is higher than 15, the initial absorption amount is too high and the absorption when the absorbent is used. And the dryness deteriorates. When the absorption amount after 5 minutes is less than 45, the dryness deteriorates because the absorption amount is insufficient, and when it is higher than 55, the absorption amount in the absorber is biased, and the dryness deteriorates.
  • the DW (Demand Wetability) method is a measurement method performed using a device shown in FIG. 1 in a room at 25 ⁇ 2 ° C. and 50 ⁇ 10% humidity.
  • the measuring device shown in FIG. 1 comprises a burette part (2) ⁇ scale volume 50 ml, length 86 cm, inner diameter 1.05 cm, ⁇ , conduit ⁇ inner diameter 7 mm ⁇ , measuring table (6).
  • the buret part (2) is connected with a rubber stopper (1) at the upper part, a suction inlet pipe (9) ⁇ tip inner diameter 3 mm ⁇ and a cock (7) at the lower part, and furthermore, an upper part of the suction inlet pipe (9).
  • a conduit is attached from the burette section (2) to the measuring table (6).
  • a hole having a diameter of 3 mm is provided as a physiological saline supply part, and a conduit is connected thereto.
  • the cock (7) of the burette part (2) and the cock (8) of the air introduction pipe (9) are first closed, and a predetermined amount of physiological saline (salt) adjusted to 25 ° C. (Concentration: 0.9% by weight) from the upper part of the burette part (2), plug the upper part of the burette with a rubber stopper (1), and then stop the cock (7) of the burette part (2) and the cock of the air inlet pipe (9). Open (8).
  • the upper surface of the measuring table (6) and the surface of the physiological saline coming out from the conduit port in the center of the measuring table (6) were moved.
  • the height of the measuring table (6) is adjusted so as to have the same height. While wiping the physiological saline from the physiological saline supply unit, the surface of the physiological saline in the burette unit (2) is adjusted to the top (0 ml line) of the buret unit (2) scale.
  • the cock (7) of the burette section (2) and the cock (8) of the air introduction pipe (9) are closed, and a plain woven nylon mesh (5) is placed on the measuring table (6) so that the physiological saline supply section becomes the center. 5) Place (opening 63 ⁇ m, 5 cm ⁇ 5 cm), and further, on this plain-woven nylon mesh (5), 0.50 g in a range of 2.7 cm in diameter centering on the physiological saline supply part of the measuring table (6).
  • the water-absorbent resin particles (4) are uniformly dispersed.
  • the cock (7) of the burette part (2) and the cock (8) of the air introduction pipe (9) are opened.
  • the water retention amount (g / g) of the water-absorbent resin particles of the present invention is preferably from 35 to 40, more preferably from 36 to 39, from the viewpoint of the dryness of the absorbent article.
  • the water retention of the water-absorbent resin particles is measured by the following method.
  • ⁇ Method for measuring water retention of water-absorbent resin particles 1.00 g of a measurement sample is placed in a tea bag (length 20 cm, width 10 cm) made of nylon mesh having a mesh size of 63 ⁇ m (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (salt concentration: 0.9% by weight) is added. After being immersed in the solution for 1 hour without stirring, it was suspended for 15 minutes and drained. Then, the whole tea bag is put in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, the weight (h1) including the tea bag is measured, and the water retention amount is calculated from the following equation.
  • the temperature of the physiological saline used and the measurement atmosphere is set to 25 ° C. ⁇ 2 ° C.
  • the weight of the tea bag after centrifugal dehydration is measured in the same manner as described above except that the measurement sample is not used, and is defined as (h2).
  • the absorption rate measured by the lock-up method of the water-absorbent resin particles of the present invention is preferably 25 seconds or less, more preferably 24 seconds or less, and particularly preferably 23 seconds or less, from the viewpoint of liquid drainage from the nonwoven fabric surface. .
  • the absorption rate of the water-absorbent resin particles by the lock-up method is measured by the following method.
  • ⁇ Absorption rate of water-absorbent resin by lock-up method 1.000 g of a measurement sample is put into a 100 ml tall beaker having a flat bottom surface specified in JIS R 3503. At this time, the upper surface of the water-absorbent resin placed in the beaker is horizontal. Next, 50 g of deionized water adjusted to 23 ° C. ⁇ 2 ° C. is weighed into a 100 ml glass beaker, and carefully poured quickly into a 100 ml beaker containing a water absorbent resin. The time measurement is started at the same time when the poured deionized water comes into contact with the water absorbent resin.
  • the water-absorbent resin particles of the present invention can be used as an absorber together with a nonwoven fabric.
  • the nonwoven fabric used in the present invention is not particularly limited as long as it is a known nonwoven fabric, but from the viewpoint of liquid permeability, flexibility and strength when used as an absorbent, polyolefins such as polyethylene (PE) and polypropylene (PP)
  • PE polyethylene
  • PP polypropylene
  • Non-woven fabrics made of fibers, polyester fibers such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyamide fibers such as nylon, rayon fiber, other synthetic fibers, cotton, silk, Nonwoven fabrics produced by mixing hemp, pulp (cellulose) fibers and the like are included.
  • nonwoven fabrics from the viewpoint of increasing the strength of the absorber, a nonwoven fabric made of synthetic fibers is preferable, and a nonwoven fabric made of rayon fiber, polyolefin fiber, and polyester fiber is more preferable.
  • These nonwoven fabrics may be a single nonwoven fabric of the above fibers or a nonwoven fabric combining two or more fibers.
  • the nonwoven fabric used in the present invention is suitably bulky and has a large basis weight from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorber and increasing the liquid penetration rate of the absorber.
  • the basis weight is preferably from 5 to 300 g / m 2 , more preferably from 8 to 200 g / m 2 , still more preferably from 10 to 100 g / m 2 , and still more preferably from 11 to 50 g / m 2. It is.
  • the thickness of the nonwoven fabric is preferably in the range of 20 to 800 ⁇ m, more preferably in the range of 50 to 600 ⁇ m, and still more preferably in the range of 80 to 450 ⁇ m.
  • the absorbent layer contains a water-absorbent resin, a nonwoven fabric, and an adhesive if necessary, and optionally further contains a hydrophilic fiber such as fluff pulp.
  • the nonwoven fabric to which the adhesive is applied is further laminated if necessary, and if necessary, the nonwoven fabric is formed by heating under pressure. It is also formed by uniformly spreading a mixed powder of a water-absorbent resin and an adhesive on a non-woven fabric, further laminating the non-woven fabric, and heating at a temperature around the melting temperature of the adhesive, and if necessary, heating under pressure.
  • the fluff pulp can be uniformly dispersed between the nonwoven fabric and the water-absorbent resin particles.
  • two or more absorption layers can be stacked.
  • Examples of the adhesive used in the present invention include rubber adhesives such as natural rubber, butyl rubber, and polyisoprene; styrene-isoprene block copolymer (SIS), styrene-butadiene block copolymer (SBS), Styrene-based elastomer adhesives such as styrene-isobutylene block copolymer (SIBS) and styrene-ethylene-butylene-styrene block copolymer (SEBS); ethylene-vinyl acetate copolymer (EVA) adhesive; ethylene-acrylic acid Ethylene-acrylic acid derivative copolymer-based adhesives such as ethyl copolymer (EEA) and ethylene-butyl acrylate copolymer (EBA); ethylene-acrylic acid copolymer (EAA) adhesive; copolymerized nylon and dimer Polyamide adhesives such as acid-based polyamides; polyethylene, polyprop
  • an ethylene-vinyl acetate copolymer adhesive, a styrene-based elastomer adhesive, and a polyolefin are preferred from the viewpoint that the adhesive strength is strong and the nonwoven fabric can be prevented from peeling off and the water-absorbing resin can be prevented from dissipating in the water-absorbent sheet structure.
  • Adhesives and polyester adhesives are preferred. These adhesives may be used alone or in combination of two or more.
  • the melting temperature (softening temperature) of the adhesive is from 60 to 180 ° C. from the viewpoint of sufficiently fixing the water-absorbent resin to the nonwoven fabric and preventing thermal deterioration and deformation of the nonwoven fabric. Is preferably 70 to 150 ° C., and more preferably 75 to 125 ° C.
  • the content of the adhesive in the absorbent is preferably in the range of 0.05 to 2.0 times, more preferably in the range of 0.08 to 1.5 times, the content of the water-absorbent resin (based on mass). A range of 1 to 1.0 times is more preferable. From the viewpoint of preventing peeling of the nonwoven fabric and dissipation of the water-absorbent resin by sufficient adhesion, and enhancing the shape retention of the absorber, the content ratio of the adhesive is preferably 0.05 times or more, and the adhesion becomes too strong.
  • the content ratio of the adhesive is preferably 2.0 times or less from the viewpoint of avoiding the swelling inhibition of the water-absorbent resin due to this and improving the permeation rate and liquid leakage of the water-absorbent sheet structure.
  • the weight% of the water-absorbent resin particles based on the weight of the water-absorbent resin particles of the present invention and the above-described nonwoven fabric ⁇ the weight of the absorbent resin particles / (the weight of the water-absorbent resin particles + the weight of the nonwoven fabric) ⁇ is 40% by weight or more. Is more preferably 60% by weight or more, and particularly preferably 80% by weight.
  • the above-mentioned absorber constitutes an absorbent article ⁇ paper diaper, sanitary napkin, etc. ⁇ .
  • the method of manufacturing an absorbent article is the same as that described in JP-A-2003-225565, JP-A-2006-131767, and JP-A-2005-097569, except that the above-mentioned absorber is changed. Is similar.
  • Example 1 While 100 parts by weight of the crosslinked polymer particles (A1-1) obtained in Production Example 1 were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), ethylene glycol distilling agent as a surface crosslinking agent was added thereto. A mixed solution obtained by mixing 0.04 parts by weight of glycidyl ether and 3.0 parts by weight of a 50% aqueous propylene glycol solution as a solvent was added, and after uniform mixing, the mixture was dried by standing at 130 ° C. for 30 minutes. The dried product was sieved to obtain a water-absorbent resin (P-1) of the present invention having a weight average particle size of 366 ⁇ m and a SPAN of 0.8.
  • P-1 water-absorbent resin
  • Example 2 “100 parts by weight of crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of crosslinked polymer particles (A1-2)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” is changed to “ethylene glycol diglycidyl ether”.
  • a water-absorbent resin (P-2) of the present invention having a weight average particle diameter of 384 ⁇ m and a SPAN of 0.6 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.03 parts by weight.
  • Example 3 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-3)”, the weight average particle diameter was 299 ⁇ m and SPAN0 was the same as in Example 1. 2.9 was obtained.
  • Example 4 “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-4)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” was changed to “ethylene glycol diglycidyl ether”.
  • a water-absorbent resin (P-4) of the present invention having a weight average particle diameter of 210 ⁇ m and a SPAN of 0.9 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.03 parts by weight.
  • Example 5 “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-5)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” was changed to “ethylene glycol diglycidyl ether”.
  • a water-absorbent resin (P-5) of the present invention having a weight average particle diameter of 323 ⁇ m and a SPAN of 0.8 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.02 parts by weight.
  • Example 6 Except that "100 parts by weight of crosslinked polymer particles (A1-1)” was changed to "100 parts by weight of crosslinked polymer particles (A1-B1)", a weight average particle diameter of 367 ⁇ m and SPAN0 were obtained in the same manner as in Example 1. Thus, the water-absorbent resin (P-6) of the present invention having a pH of 0.8 was obtained.
  • Example 7 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B2)”, a weight average particle diameter of 333 ⁇ m, SPAN0 was obtained in the same manner as in Example 1. Water-absorbent resin (P-7) of the present invention having a pH of 0.8 was obtained.
  • Example 8 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B3)”, a weight average particle diameter of 359 ⁇ m, SPAN0 was obtained in the same manner as in Example 1.
  • the water-absorbent resin (P-8) of the present invention having a pH of 0.7 was obtained.
  • Example 9 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B4)”, the weight average particle diameter was 331 ⁇ m and SPAN0 was the same as in Example 1.
  • the water-absorbent resin (P-9) of the present invention having a pH of 0.7 was obtained.
  • Example 10 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B5)”, a weight average particle diameter of 372 ⁇ m, SPAN0 was obtained in the same manner as in Example 1.
  • Water-absorbent resin (P-10) of the present invention having a pH of 0.7.
  • Example 11 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B6)”, a weight average particle diameter of 362 ⁇ m, SPAN0 was obtained in the same manner as in Example 1. Water-absorbent resin (P-11) of the present invention having a pH of 0.8 was obtained.
  • Example 12 Except that "100 parts by weight of crosslinked polymer particles (A1-1)” was changed to "100 parts by weight of crosslinked polymer particles (A1-B7)", a weight average particle diameter of 332 ⁇ m, SPAN0 was obtained in the same manner as in Example 1. Thus, a water-absorbent resin (P-12) of the present invention having a pH of 0.8 was obtained.
  • Example 13 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B8)”, a weight average particle diameter of 335 ⁇ m, SPAN0 was obtained in the same manner as in Example 1. 0.8 was obtained.
  • Example 14 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B9)”, a weight average particle diameter of 334 ⁇ m, SPAN0 was obtained in the same manner as in Example 1.
  • Water-absorbent resin (P-14) of the present invention having a pH of 0.8.
  • Example 15 Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B10)”, the weight average particle diameter was 330 ⁇ m and SPAN0 was the same as in Example 1. 0.8 was obtained.
  • Example 16 Except that "100 parts by weight of crosslinked polymer particles (A1-1)” was changed to "100 parts by weight of crosslinked polymer particles (A1-B11)", a weight average particle diameter of 332 ⁇ m, SPAN0 was obtained in the same manner as in Example 1. Thus, a water-absorbent resin (P-16) of the present invention having a pH of 0.8 was obtained.
  • Table 1 shows the absorption rate ⁇ .
  • M1 and M2 indicate the absorption after 1 minute and the absorption after 5 minutes, respectively, by the DW method, and% is the content (% by weight) based on the weight of the crosslinked polymer (A1). Is shown.
  • the water-absorbing resin particles of the present invention (Examples 1 to 16) have a small SPAN (narrow particle size distribution) and an appropriate weight average particle size and absorption rate pattern.
  • SPAN narrow particle size distribution
  • an appropriate absorption rate pattern was obtained by appropriately setting the weight average particle diameter and SPAN.
  • the absorption rate pattern due to the difference in the weight average particle diameter can be controlled to a specific range by adjusting the content of the hydrophobic substance.
  • Examples 6 to 11 illustrate examples using other suitable hydrophobic substances.
  • Comparative Examples 1 and 7 tend to have a higher SPAN and therefore a broader particle size distribution, a lower M2 and a lower absorption rate by the lock-up method than Example 1.
  • Comparative Example 2 although the SPAN was low, the weight average particle diameter was large, and the absorption rate by the lock-up method was low.
  • Comparative Example 4 uses a highly hydrophobic “carboxy-modified polysiloxane (X-22-3701E, manufactured by Shin-Etsu Chemical Co., Ltd.)” for surface cross-linking, decreases M2, and decreases the absorption rate by the lock-up method. I have.
  • the weight average particle diameter was reduced without using a hydrophobic substance, and M1 was excessively high.
  • Comparative Example 6 has a high weight average particle diameter and also uses a hydrophobic substance, has a low M1, and has a low absorption rate by the lock-up method.
  • M1 is excessively high because the weight average particle diameter is small and SPAN is high.
  • a styrene-butadiene-styrene copolymer (SBS; softening point: 85 ° C.) was used as an adhesive on a nonwoven fabric A (basis weight: 40 g / m 2 , thickness: 0.5 mm, made of polypropylene) cut into rectangular pieces of 10 cm ⁇ 40 cm.
  • a hot melt coater (AD41, manufactured by Nordson) is used to uniformly apply to a basis weight of 2.85 g / m 2 .
  • the acrylic plate on the nonwoven fabric A side is removed, the adhesive, the water-absorbent resin, and the nonwoven fabric B are laminated in the same manner as described above, sandwiched again with the acrylic plate, and pressed at a pressure of 5 kg / cm 2 for 30 seconds.
  • An absorber was prepared.
  • An absorbent article is provided by disposing a polyethylene sheet (polyethylene film UB-1 manufactured by Tamapoli) on one surface of the absorber and a nonwoven fabric (20 g / m 2 basis weight, Eltas Guard manufactured by Asahi Kasei Corporation) on the other surface.
  • a polyethylene sheet polyethylene film UB-1 manufactured by Tamapoli
  • a nonwoven fabric (20 g / m 2 basis weight, Eltas Guard manufactured by Asahi Kasei Corporation
  • the absorber prepared above was placed in a box (made of stainless steel) having a width of 11 cm ⁇ a length of 41 cm ⁇ a height of 4 cm and an open upper portion (11 cm ⁇ 41 cm).
  • 500 ml of deionized water adjusted to 32 ⁇ 2 ° C. was prepared and poured into the box containing the absorber at a stretch. Time measurement was started as soon as the deionized water came in contact with the absorber. The time (whitening time) until the deionized water retained on the surface nonwoven fabric was absorbed by the water-absorbent resin and the area where the surface nonwoven fabric appeared white became half of the nonwoven fabric was recorded.
  • ⁇ Surface dryness value by SDME method A disposable diaper in which the detector of an SDME (Surface Dryness Measurement Equipment) tester (manufactured by WK system) is sufficiently moistened. Artificial urine (0.03% by weight of potassium chloride, 0.08% by weight of magnesium sulfate, 0.8% by weight of sodium chloride) % And 99.09% by weight of deionized water) to prepare a paper diaper. SD, and a 0% dryness value was set. Then, the detector of the SDME tester was prepared by drying and drying the paper diaper at 80 ° C. for 2 hours. The sample was placed on the ⁇ , 100% dryness was set, and the SDME tester was calibrated.
  • SDME Surface Dryness Measurement Equipment
  • the dryness value of the central detector is the surface dryness value (1-1) ⁇ center ⁇
  • the dryness values of the remaining two SDME detectors are the surface dryness values (1-2). ⁇ Left ⁇ , surface dryness value (1-3) ⁇ right ⁇ . The measurement was performed at 25 ⁇ 5 ° C. and 65 ⁇ 10% RH in artificial urine, measurement atmosphere and standing atmosphere.
  • the absorbent and the absorbent article using the water-absorbent resin particles of the present invention have a whitening time and a surface dryness value, as compared with the absorbent and the absorbent article using the comparative water-absorbent resin particles.
  • (1-1), (1-2) and (1-3) have no bias and are excellent in dryness.
  • Comparative Examples 1, 7, and 8 had a high SPAN
  • Comparative Examples 2 and 6 had a large weight average particle diameter
  • Comparative Example 4 had a low absorption amount (M2) after 5 minutes, and thus had a whitening time, that is, a nonwoven fabric. Poor liquid drainage from the surface.
  • the water-absorbent resin particles of the present invention can be applied to an absorber containing the water-absorbent resin particles and a fibrous material, and an absorbent article provided with the absorber, a disposable diaper, a sanitary napkin, and a medical blood retention. It is useful for agents and the like.
  • pet urine absorbent, urine gelling agent for portable toilets, freshness preserving agent for fruits and vegetables, drip absorbing agent for meat and seafood, cooling agent, disposable body warmer, gelling agent for batteries, water retaining agent for plants and soil, dew condensation It can also be used for various applications such as inhibitors, waterproofing agents, packing agents and artificial snow.

Abstract

Provided are water absorbing resin particles that exhibit a high initial absorption speed and liquid diffusion properties when brought into contact with a liquid to be absorbed, have excellent dry properties and cause no problem such as skin rash. The water absorbing resin particles according to the present invention comprise a crosslinked polymer (A1) which has an essential constituting unit comprising a water-soluble vinyl monomer and/or a hydrolyzable vinyl monomer and a crosslinking agent, wherein: the weight-average particle diameter (μm) is 200-400; the SPAN value represented by the formula SPAN=[D(90%)-D(10%)]/D(50%) [wherein D(10%), D(50%) and D(90%) stand for the particle diameters at which the cumulative weight fraction attains 10 wt%, 50 wt% and 90 wt% respectively] is not more than 1.0; and, when measured by the DW method, (A1) shows water absorption amounts of 10-15 ml/g and 45-55 ml/g after 1 minute and after 5 minutes respectively.

Description

吸水性樹脂粒子、これを含む吸収体及び吸収性物品Water-absorbing resin particles, absorber containing the same, and absorbent article
 本発明は吸水性樹脂粒子、これを含む吸収体及び吸収性物品に関するものである。 {Circle over (1)} The present invention relates to a water-absorbent resin particle, an absorbent containing the same, and an absorbent article.
 紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維とアクリル酸(塩)等とを主原料とする吸水性樹脂が吸収体として幅広く利用されている。近年の消費者は、より快適性を求める傾向にあり、よりドライ性が高くかつより薄型のものへと需要が遷移しており、これに伴ってドライ性が高く、更に親水性繊維の使用量低減が望まれるようになってきた。そのため、これまで親水性繊維が担ってきた初期の高い吸収速度や液拡散性の役割を吸水性樹脂それ自体に求められるようになった。 衛生 As sanitary materials such as disposable diapers, sanitary napkins, incontinence pads, etc., water-absorbent resins mainly composed of hydrophilic fibers such as pulp and acrylic acid (salt) are widely used as absorbers. In recent years, consumers have been demanding more comfort, and the demand has shifted to more dry and thinner ones. Reduction has become desired. Therefore, the role of the water-absorbent resin itself has been required to have the role of the high absorption rate and liquid diffusivity in the early stage that the hydrophilic fiber has played so far.
 吸水性樹脂粒子の吸収速度を向上させる手段としては、吸水性樹脂の表面積を物理的に大きくする方法が一般的である。例えば、吸水性樹脂の乾燥速度を上げて見掛け密度を低下させる方法(特許文献1)や篩分工程で吸水性樹脂粒子の粒度を小さくすることで吸収速度を向上させる方法(特許文献2)が知られている。しかし、これらの吸水性樹脂粒子を吸収性物品(紙おむつ等)に適用した吸収体において、親水性繊維の含有量が吸水性樹脂粒子の含有量よりも多い場合には問題ないが、親水性繊維の含有量が少ないもしくは含有しない場合には、吸収体の部位により吸水性樹脂の吸収率に偏りが起こり吸収体物品を有効に活用することができず、吸収させる液体の残存している部位ではカブレ等の問題を生じやすい。
 上記課題を解決する方法しては、吸収させる液体と接触した以後の時間経過に対する吸収速度(以下、吸収速度パターン)をコントロールした吸水性樹脂粒子(特許文献3)が知られているが、この吸水性樹脂粒子を吸収性物品に適用したとき、吸収性物品に使用されている表面不織布からの吸収させる液体の液引きが遅くなり、ドライ性が悪化する問題がある。
 したがって、親水性繊維の使用量が少ない吸収体においても、初期の高い吸収速度や液拡散性を発揮し、ドライ性に優れ、更にカブレ等の問題がない吸収性物品、これに使用し得る吸水性樹脂粒子が強く望まれている。
As a means for improving the absorption speed of the water-absorbent resin particles, a method of physically increasing the surface area of the water-absorbent resin is generally used. For example, a method of increasing the drying rate of the water-absorbent resin to reduce the apparent density (Patent Document 1) and a method of increasing the absorption rate by reducing the particle size of the water-absorbent resin particles in the sieving step (Patent Document 2) Are known. However, there is no problem in the case where the content of the hydrophilic fiber is larger than the content of the water-absorbent resin particles in the absorbent in which these water-absorbent resin particles are applied to an absorbent article (paper diaper or the like). If the content of is small or does not contain, the absorption rate of the water-absorbent resin is biased depending on the location of the absorber, it is not possible to effectively use the absorbent article, and in the portion where the liquid to be absorbed remains Problems such as rash are likely to occur.
As a method for solving the above-mentioned problem, a water-absorbent resin particle (Patent Document 3) in which the absorption rate (hereinafter, absorption rate pattern) with respect to the passage of time after contact with the liquid to be absorbed is controlled is known. When the water-absorbent resin particles are applied to the absorbent article, there is a problem in that the liquid to be absorbed from the surface nonwoven fabric used in the absorbent article is slowly drained, and dryness is deteriorated.
Therefore, even in an absorber using a small amount of hydrophilic fiber, it exhibits an initial high absorption rate and liquid diffusivity, is excellent in dryness, and further has no problem such as fogging. Resin particles are strongly desired.
特開2013-132434号公報JP 2013-132434 A 特開2006-143972号公報JP-A-2006-143972 特許第5448699号公報Japanese Patent No. 5448699
 本発明の目的は、吸収させる液体と接触した初期の高い吸収速度や液拡散性を発揮し、ドライ性が優れ、更にカブレ等の問題がない吸水性樹脂粒子、これを含む吸収体及び吸収性物品を提供することである。 An object of the present invention is to exhibit a high absorption rate and liquid diffusivity in the initial stage in contact with the liquid to be absorbed, to have excellent dryness, and to further eliminate problems such as rash, an absorbent body containing the water-absorbent resin particles, and an absorbent. To provide goods.
 本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)(換言すれば、水溶性ビニルモノマー(a1)及び加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)からなる群から選択される少なくとも1種のビニルモノマー)、並びに架橋剤(b)を必須構成単位とする架橋重合体(A1)を含んでなる吸水性樹脂粒子であって、吸水性樹脂粒子の重量平均粒子径(μm)が200~400であり、下記の数式1で表されるスパン値(SPAN)が1.0以下であり、(A1)のDW(Demand Wettability)法による1分後の吸収量(M1)が10~15ml/gであり、5分後の吸収量(M2)が45~55ml/gである吸水性樹脂粒子である。
SPAN=[D(90%)-D(10%)]/D(50%)≦1.0   (数式1)
 前記数式1において、D(10%)は、標準ふるいを用いて分級した吸水性樹脂粒子の全体重量を100重量%として粒子径が最も小さい粒子からの累積重量分率が10重量%となる粒子径であり、D(50%)は、累積重量分率が50重量%となる粒子径であり、D(90%)は累積重量分率が90重量%となる粒子径である。
The present invention relates to a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis (in other words, a water-soluble vinyl monomer (a1) and a water-soluble vinyl monomer by hydrolysis. At least one vinyl monomer selected from the group consisting of vinyl monomers (a2) to be monomers (a1)) and a crosslinked polymer (A1) containing a crosslinking agent (b) as an essential constituent unit. Resin particles having a weight average particle size (μm) of 200 to 400, a span value (SPAN) represented by the following formula 1 of 1.0 or less, The absorption amount (M1) after 1 minute by the DW (Demand Wetability) method is 10 to 15 ml / g, and the absorption amount (M2) after 5 minutes is 45 to 55 ml / g. An aqueous resin particles.
SPAN = [D (90%)-D (10%)] / D (50%) ≦ 1.0 (Equation 1)
In the above formula 1, D (10%) is a particle whose cumulative weight fraction from the particle having the smallest particle size is 10% by weight, where the total weight of the water-absorbent resin particles classified using a standard sieve is 100% by weight. D (50%) is the particle diameter at which the cumulative weight fraction is 50% by weight, and D (90%) is the particle diameter at which the cumulative weight fraction is 90% by weight.
 本発明の吸収体は、上記の吸水性樹脂粒子と繊維状物とを含有してなる。 吸収 The absorber of the present invention contains the above water-absorbent resin particles and a fibrous material.
 本発明の吸収性物品は、上記の吸収体を備えてなる。 吸収 The absorbent article of the present invention is provided with the above-mentioned absorber.
 本発明の吸水性樹脂粒子は、ある特定の粒度分布と吸収速度パターンを有する。したがって、本発明の吸水性樹脂粒子を吸収性物品(紙おむつ及び生理用ナプキン等)に適用したとき、吸収させる液体と接触したときの、初期の高い吸収速度や液拡散性を発揮し、ドライ性が優れ、更にカブレ等の問題がない。すなわち、本発明のDW吸収パターンを有する吸水性樹脂粒子を用いた吸収性物品は、初期に適度に遅延した吸収パターンを持つために優れた液拡散性を発揮し、吸収体全体でのドライ性に優れる。また、重量平均粒径とスパン値を本発明の範囲にすることにより、表面不織布からの液引き性(液体を吸引・吸収すること。以下おなじ)がよくなることから、更に優れたドライ性を発揮する。 水性 The water-absorbent resin particles of the present invention have a specific particle size distribution and absorption rate pattern. Therefore, when the water-absorbent resin particles of the present invention are applied to absorbent articles (such as disposable diapers and sanitary napkins), they exhibit an initial high absorption rate and liquid diffusivity when they come in contact with the liquid to be absorbed, and exhibit dryness. And no problems such as rash. That is, the absorbent article using the water-absorbent resin particles having a DW absorption pattern of the present invention exhibits excellent liquid diffusivity because of having an absorption pattern that is appropriately delayed at the initial stage, and exhibits dryness over the entire absorber. Excellent. In addition, by setting the weight average particle size and the span value within the ranges of the present invention, the liquid drainage property from the surface nonwoven fabric (to absorb and absorb the liquid; the same applies hereinafter) is improved, and therefore, a more excellent dry property is exhibited. I do.
DW法による吸収量を測定するための装置を模式的に表した図である。It is the figure which represented typically the apparatus for measuring the absorption amount by the DW method.
 水溶性ビニルモノマー(a1)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報}のビニルモノマー等が使用できる。 The water-soluble vinyl monomer (a1) is not particularly limited and is known (for example, vinyl monomers disclosed in Japanese Patent Nos. 3648553, 2003-165883, 2005-75982, and 2005-95759). Etc. can be used.
 加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(以降、加水分解性ビニルモノマーともいう)(a2)は、特に限定はなく公知{たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報}のビニルモノマー等が使用できる。なお、水溶性ビニルモノマーとは、25℃の水100gに少なくとも100g溶解する性質を持つビニルモノマーを意味する。また、加水分解性とは、50℃の水及び必要により触媒(酸又は塩基等)の作用により加水分解され水溶性になる性質を意味する。加水分解性ビニルモノマーの加水分解は、重合中、重合後及びこれらの両方のいずれでもよいが、得られる吸水性樹脂粒子の分子量の観点等から重合後が好ましい。 The vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis (hereinafter also referred to as a hydrolyzable vinyl monomer) (a2) is not particularly limited and is known. For example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883. JP-A-2005-75982, JP-A-2005-95759, and the like. The water-soluble vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C. The term "hydrolyzable" means the property of being hydrolyzed by the action of water at 50 ° C. and, if necessary, a catalyst (acid or base, etc.). The hydrolysis of the hydrolyzable vinyl monomer may be carried out during the polymerization, after the polymerization, or both of them, but is preferably performed after the polymerization from the viewpoint of the molecular weight of the obtained water-absorbent resin particles.
 これらのうち、吸収特性の観点等から、水溶性ビニルモノマー(a1)が好ましく、さらに好ましくはアニオン性ビニルモノマー、次に好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマー、次に好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、特に好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、次に特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。 Among these, from the viewpoint of absorption characteristics and the like, a water-soluble vinyl monomer (a1) is preferable, an anionic vinyl monomer is more preferable, and a carboxy (salt) group, a sulfo (salt) group, an amino group, and a carbamoyl group are more preferable. A vinyl monomer having an, ammonium or mono-, di- or tri-alkylammonio group, then preferably a carboxy (salt) group or a vinyl monomer having a carbamoyl group, particularly preferably (meth) acrylic acid (salt) and (Meth) acrylamide, then particularly preferably (meth) acrylic acid (salt), most preferably acrylic acid (salt).
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が含まれる。これらの塩のうち、吸収特性の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、さらに好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。 The “carboxy (salt) group” means “carboxy group” or “carboxylate group”, and the “sulfo (salt) group” means “sulfo group” or “sulfonate group”. Also, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylic acid, and (meth) acrylamide means acrylamide or methacrylamide. Examples of the salt include an alkali metal (such as lithium, sodium, and potassium) salt, an alkaline earth metal (such as magnesium and calcium) salt, and an ammonium (NH 4 ) salt. Among these salts, alkali metal salts and ammonium salts are preferred from the viewpoint of absorption characteristics and the like, more preferably alkali metal salts, and particularly preferably sodium salts.
 水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成単位とする場合、それぞれ単独で構成単位としてもよく、また、必要により2種以上を構成単位としてもよい。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合、これらの含有モル比(a1/a2)は、75/25~99/1が好ましく、さらに好ましくは85/15~95/5、特に好ましくは90/10~93/7、最も好ましくは91/9~92/8である。この範囲であると、吸収性能がさらに良好となる。 (4) When any one of the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) is used as a constituent unit, the constituent unit may be used alone, or two or more kinds may be used as necessary. The same applies to the case where the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units. When the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are the constituent units, the content molar ratio (a1 / a2) thereof is preferably 75/25 to 99/1, and more preferably. 85/15 to 95/5, particularly preferably 90/10 to 93/7, most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.
 吸水性樹脂粒子の構成単位として、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成単位とすることができる。 As a constituent unit of the water-absorbent resin particles, in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), another vinyl monomer (a3) copolymerizable therewith can be used as a constituent unit. .
 共重合可能なその他のビニルモノマー(a3)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報}の疎水性ビニルモノマー等が使用でき、下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレンモノマー
 アルケン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等];並びにアルカジエン[ブタジエン及びイソプレン等]等。
(iii)炭素数5~15の脂環式エチレンモノマー
 モノエチレン性不飽和モノマー[ピネン、リモネン及びインデン等];並びにポリエチレン性ビニル重合性モノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The other copolymerizable vinyl monomer (a3) is not particularly limited and is known. For example, JP-A-3648553, JP-A-2003-165883, JP-A-2005-75982, and JP-A-2005-95759.疎 水 hydrophobic vinyl monomers and the like can be used, and the following vinyl monomers (i) to (iii) can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene.
(Ii) C2-C20 aliphatic ethylene monomers alkenes [ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.]; and alkadienes [butadiene, isoprene, etc.] and the like.
(Iii) alicyclic ethylene monomers having 5 to 15 carbon atoms, monoethylenically unsaturated monomers such as pinene, limonene and indene; and polyethylene-based vinyl polymerizable monomers such as cyclopentadiene, bicyclopentadiene and ethylidene norbornene.
 その他のビニルモノマー(a3)を構成単位とする場合、その他のビニルモノマー(a3)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位のモル数に基づいて、0.01~5が好ましく、さらに好ましくは0.05~3、次に好ましくは0.08~2、特に好ましくは0.1~1.5である。なお、吸収特性の観点等から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。 When the other vinyl monomer (a3) is a constituent unit, the content (mol%) of the other vinyl monomer (a3) unit is determined based on the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Based on the number of moles, it is preferably from 0.01 to 5, more preferably from 0.05 to 3, then preferably from 0.08 to 2, particularly preferably from 0.1 to 1.5. From the viewpoint of absorption characteristics and the like, the content of the other vinyl monomer (a3) unit is most preferably 0 mol%.
 架橋剤(b)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報}の架橋剤等が使用できる。これらのうち、吸収特性の観点等から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、さらに好ましくは炭素数2~10のポリオールのポリ(メタ)アリルエーテル、特に好ましくはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン及びペンタエリスリトールトリアリルエーテル、最も好ましくはペンタエリスリトールトリアリルエーテルである。 The crosslinking agent (b) is not particularly limited and is known in the art (for example, crosslinking agents disclosed in Japanese Patent Nos. 3648553, 2003-165883, 2005-75982, and 2005-95759). Can be used. Among these, a crosslinking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption characteristics and the like, more preferably a poly (meth) allyl ether of a polyol having 2 to 10 carbon atoms, and particularly preferably triallyl sialic acid. Nurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferably pentaerythritol triallyl ether.
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位のモル数に基づいて、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)単位の合計モル数に基づいて、0.001~5が好ましく、さらに好ましくは0.005~3、特に好ましくは0.01~1である。この範囲であると、吸収特性がさらに良好となる。 The content (mol%) of the crosslinking agent (b) unit is based on the number of moles of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit, and other vinyl monomers (a3) are also used. In this case, it is preferably 0.001 to 5, more preferably 0.005 to 3, and particularly preferably 0.01 to 1, based on the total number of moles of (a1) to (a3) units. Within this range, the absorption characteristics are further improved.
 架橋重合体(A1)は1種でもよいし、2種以上の混合物であってもよい。 The crosslinked polymer (A1) may be a single type or a mixture of two or more types.
 架橋重合体(A1)は、公知の水溶液重合{断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等}や、公知の逆相懸濁重合{特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等}と同様にして製造することができる。重合方法のうち、好ましくは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましくは水溶液重合法である。 The crosslinked polymer (A1) can be prepared by a known aqueous polymerization method (adiabatic polymerization, thin film polymerization, spray polymerization method, etc .; JP-A-55-133413, etc.) or a known reversed-phase suspension polymerization (Japanese Patent Publication No. 54-30710). And JP-A-56-26909 and JP-A-1-5808. Among the polymerization methods, a solution polymerization method is preferable, and an aqueous solution polymerization method is particularly preferable because there is no need to use an organic solvent or the like and the production cost is advantageous.
 重合によって得られる含水ゲル{架橋重合体と水とからなる。}は、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、さらに好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性がさらに良好となる。 << Hydrogel obtained by polymerization >> Consists of a crosslinked polymer and water. } Can be shredded as needed. The size (longest diameter) of the gel after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
 細断は、公知の方法で行うことができ、公知の細断装置{たとえば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機}等を使用して細断できる。 Shredding can be performed by a known method, and can be shredded using a known shredding device {for example, Vex Mill, Rubber Chopper, Pharma Mill, Minch Machine, Impact Grinding Machine and Roll Grinding Machine} or the like. .
 重合に溶媒(有機溶媒、水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、吸水性樹脂粒子の重量に基づいて、0~10が好ましく、さらに好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。この範囲であると、吸水性樹脂粒子の吸収性能(特に保水量)がさらに良好となる。 場合 When a solvent (organic solvent, water, etc.) is used for the polymerization, it is preferable to distill off the solvent after the polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, and particularly preferably 0 to 5, based on the weight of the water-absorbent resin particles. -3, most preferably 0-1. Within this range, the water-absorbing resin particles will have better absorption performance (particularly, water retention).
 溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体の重量に基づいて、0~20が好ましく、さらに好ましくは1~10、特に好ましくは2~9、最も好ましくは3~8である。この範囲であると、吸収性能及び乾燥後の吸水性樹脂粒子の壊れ性がさらに良好となる。 When water is contained in the solvent, the water content (% by weight) after distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, and most preferably 2 to 20, based on the weight of the crosslinked polymer. 3 to 8. Within this range, the absorption performance and the breakability of the water-absorbent resin particles after drying are further improved.
 なお、有機溶媒の含有量及び水分は、赤外水分測定器{(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W}により加熱したときの加熱前後の測定試料の重量減量から求められる。 The content and water content of the organic solvent were measured using an infrared moisture meter @ JE400 manufactured by KETT Co., Ltd .: 120 ± 5 ° C., 30 minutes, atmosphere humidity before heating 50 ± 10% RH, lamp specification 100V, 40W It is determined from the weight loss of the measurement sample before and after heating when heating according to}.
 溶媒(水を含む。)を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 As a method of distilling off the solvent (including water), a method of distilling (drying) with hot air at a temperature of 80 to 230 ° C., a method of drying a thin film by a drum dryer or the like heated to 100 to 230 ° C., ) A vacuum drying method, a freeze drying method, a drying method using infrared rays, decantation, filtration and the like can be applied.
 架橋重合体(A1)は、乾燥後に粉砕することができる。粉砕方法については、特に限定はなく、公知の粉砕装置{たとえば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機}等が使用できる。粉砕された架橋重合体は、必要によりふるい分け等により粒度調整できる。 The crosslinked polymer (A1) can be pulverized after drying. The pulverizing method is not particularly limited, and a known pulverizing apparatus (for example, a hammer pulverizer, an impact pulverizer, a roll pulverizer, a shed air pulverizer) and the like can be used. The particle size of the pulverized crosslinked polymer can be adjusted by sieving or the like, if necessary.
 必要によりふるい分けした場合の架橋重合体(A1)の重量平均粒子径(μm)は、200~400が好ましく、特に好ましくは210~390、最も好ましくは230~380である。この範囲であると、吸収性能がさらに良好となる。 架橋 The weight average particle diameter (μm) of the crosslinked polymer (A1) when sieved as required is preferably 200 to 400, particularly preferably 210 to 390, and most preferably 230 to 380. Within this range, the absorption performance is further improved.
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿の順等に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙{横軸がふるいの目開き(粒子径)、縦軸が重量分率}にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径[D(50%)]を求め、これを重量平均粒子径とする。 The weight-average particle diameter was measured using a low tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), 6th edition of Perry's Chemical Engineers Handbook (Mac Glow Hill Book Company, 1984). , Page 21). That is, JIS standard sieves are combined from the top in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and the pan in the order from the top. About 50 g of the particles to be measured is put into the uppermost sieve and shaken with a low tap test sieve shaker for 5 minutes. The weights of the particles measured on each sieve and the pan are weighed, and the weight fraction of the particles on each sieve is determined by taking the total as 100% by weight. The logarithmic probability paper {the horizontal axis indicates the sieve aperture (particle size) ), The vertical axis is plotted as the weight fraction 、, and a line connecting the points is drawn to obtain a particle diameter [D (50%)] corresponding to the weight fraction of 50% by weight, and this is calculated as the weight average particle diameter. And
 なお、以下に説明するように、上記の重量分率が10重量%に対応する粒子径をD(10%)、重量分率が90重量%に対応する粒子径をD(90%)とする。 As described below, the particle diameter corresponding to the above weight fraction of 10% by weight is D (10%), and the particle diameter corresponding to the weight fraction of 90% by weight is D (90%). .
 また、微粒子の含有量は少ない方が吸収性能が良好となるため、全粒子に占める106μm以下(好ましくは150μm以下)の微粒子の含有量が3重量%以下が好ましく、さらに好ましくは1重量%以下である。微粒子の含有量は、上記の重量平均粒径を求める際に作成するプロットを用いて求めることができる。 Further, since the smaller the content of the fine particles, the better the absorption performance, the content of the fine particles of 106 μm or less (preferably 150 μm or less) in all the particles is preferably 3% by weight or less, more preferably 1% by weight or less. It is. The content of the fine particles can be determined using a plot created when the above-mentioned weight average particle size is determined.
 架橋重合体(A1)のスパン値は、1.0以下が好ましく、特に好ましくは0.9以下、最も好ましくは0.8以下である。この範囲であると、初期の吸収速度がさらに良好となり、ドライ性が向上する。 (4) The span value of the crosslinked polymer (A1) is preferably 1.0 or less, particularly preferably 0.9 or less, and most preferably 0.8 or less. Within this range, the initial absorption rate is further improved, and the dryness is improved.
 SPAN(スパン値)は、粒子径分布を表すパラメータである。スパン値は吸水性樹脂粒子の粒子径分布測定により定めることができる。前記数式1において、D(10%)、D(50%)及びD(90%)はいずれも「μm」で表される粒子径であり、標準ふるいを用いたふるい分け粒度測定法で測定できる。D(10%)は、吸水性樹脂粒子を標準ふるいで分級した後、前記吸水性樹脂粒子を粒子径の順に並べた時、前記分級した粒子の全体重量を100重量%として粒子径が最も小さい粒子からの累積重量分率が10重量%となる粒子径を意味する。同様に、D(50%)は、累積重量分率が50重量%となる粒子径を意味し、さらに、D(90%)累積重量分率が90重量%となる粒子径を意味する。 SPAN (span value) is a parameter representing the particle size distribution. The span value can be determined by measuring the particle size distribution of the water absorbent resin particles. In Formula 1, D (10%), D (50%), and D (90%) are all particle diameters represented by “μm” and can be measured by a sieving particle size measurement method using a standard sieve. D (10%) is such that when the water-absorbent resin particles are classified by a standard sieve and the water-absorbent resin particles are arranged in order of particle diameter, the total weight of the classified particles is 100% by weight, and the particle diameter is the smallest. It means the particle diameter at which the cumulative weight fraction from the particles becomes 10% by weight. Similarly, D (50%) means a particle diameter at which the cumulative weight fraction becomes 50% by weight, and further, a particle diameter at which the D (90%) cumulative weight fraction becomes 90% by weight.
 粒子径分布は、架橋重合体(A1)を分級した後、調整してもよく、さらに吸水性樹脂粒子で分級した後、調整してもよい。
 粒子径分布の調整方法については、特に限定はなく、各ふるい上の粒子を所定の割合で混合する方法等で調整できる。
The particle size distribution may be adjusted after classifying the crosslinked polymer (A1), or may be adjusted after classifying with the water absorbent resin particles.
The method of adjusting the particle size distribution is not particularly limited, and can be adjusted by, for example, a method of mixing particles on each sieve at a predetermined ratio.
 架橋重合体(A1)の見掛け密度(g/ml)は、0.55~0.65が好ましく、さらに好ましくは0.56~0.64、特に好ましくは0.57~0.63である。この範囲であると、吸収性能がさらに良好となる。
 なお、見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。
The apparent density (g / ml) of the crosslinked polymer (A1) is preferably 0.55 to 0.65, more preferably 0.56 to 0.64, and particularly preferably 0.57 to 0.63. Within this range, the absorption performance is further improved.
The apparent density is measured at 25 ° C. in accordance with JIS K7365: 1999.
 架橋重合体(A1)の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 形状 The shape of the crosslinked polymer (A1) is not particularly limited, and examples thereof include irregularly crushed, scaly, pearl, and rice grain shapes. Of these, the irregularly crushed shape is preferred from the viewpoint that it is well entangled with fibrous materials for use in disposable diapers, and there is no fear of falling off from the fibrous materials.
 架橋重合体(A)は、液拡散性の観点から疎水性物質(C)を含有することが好ましい。疎水性物質(C)としては、炭化水素基を含有する疎水性物質(C1)及びポリシロキサン構造をもつ疎水性物質(C2)等が含まれる。 The crosslinked polymer (A) preferably contains a hydrophobic substance (C) from the viewpoint of liquid diffusibility. Examples of the hydrophobic substance (C) include a hydrophobic substance (C1) having a hydrocarbon group and a hydrophobic substance (C2) having a polysiloxane structure.
 炭化水素基を含有する疎水性物質(C1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール、長鎖脂肪酸アミド及びこれらの2種以上の混合物等が含まれる。 Examples of the hydrocarbon group-containing hydrophobic substance (C1) include polyolefin resin, polyolefin resin derivative, polystyrene resin, polystyrene resin derivative, wax, long-chain fatty acid ester, long-chain fatty acid and its salt, long-chain aliphatic alcohol, and long-chain aliphatic alcohol. Chain fatty acid amides and mixtures of two or more of these.
 ポリオレフィン樹脂としては、炭素数2~4のオレフィン{エチレン、プロピレン、イソブチレン及びイソプレン等}を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン-イソブチレン)及びイソプレン等}が挙げられる。 As the polyolefin resin, an olefin having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and isoprene is used as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin). Polymers having an average molecular weight of 1,000 to 1,000,000 {for example, polyethylene, polypropylene, polyisobutylene, poly (ethylene-isobutylene), isoprene and the like) can be mentioned.
 ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(-COOH)や1,3-オキソ-2-オキサプロピレン(-COOCO-)等を導入した重量平均分子量1000~100万の重合体{たとえば、ポリエチレン熱減成体、ポリプロピレン熱減成体、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン-アクリル酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン-酢酸ビニル共重合体及びエチレン-酢酸ビニル共重合体のマレイン化物等}が挙げられる。 As the polyolefin resin derivative, a polymer having a weight average molecular weight of 1,000 to 1,000,000 obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin {for example, polyethylene Degradation products, polypropylene thermal degradation products, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated Polybutadiene, ethylene-vinyl acetate copolymer, maleic product of ethylene-vinyl acetate copolymer, and the like.
 ポリスチレン樹脂としては、重量平均分子量1000~100万の重合体等が使用できる。 As the polystyrene resin, a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
 ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びスチレン-イソブチレン共重合体等}が挙げられる。 As the polystyrene resin derivative, a polymer having a weight-average molecular weight of 10 to 1,000,000 containing styrene as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) {for example, styrene- Maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, and the like.
 ワックスとしては、融点50~200℃のワックス{たとえば、パラフィンワックス、ミツロウ、カルナウバワックス及び牛脂等}が挙げられる。 Examples of the wax include waxes having a melting point of 50 to 200 ° C. {for example, paraffin wax, beeswax, carnauba wax, tallow, etc.).
 長鎖脂肪酸エステルとしては、炭素数8~25のアルキル基を含む脂肪酸と炭素数1~12のアルコールとのエステル{たとえば、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸メチル、オレイン酸エチル、グリセリンラウリン酸モノエステル、グリセリンステアリン酸モノエステル、グリセリンオレイン酸モノエステル、ペンタエリスリットラウリン酸モノエステル、ペンタエリスリットステアリン酸モノエステル、ペンタエリスリットオレイン酸モノエステル、ソルビットラウリン酸モノエステル、ソルビットステアリン酸モノエステル、ソルビットオレイン酸モノエステル、ショ糖パルミチン酸エステル(ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル等)、ショ糖ステアリン酸エステル(ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル等)、ショ糖エルカ酸エステル及び牛脂等}が挙げられる。これらのうち、吸収性物品の液拡散性の観点等から、ショ糖ステアリン酸エステル(ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル等)、ショ糖パルミチン酸エステル(ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル等)、ショ糖エルカ酸エステルが好ましく、さらに好ましくはショ糖ステアリン酸エステル(ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル等)及びショ糖エルカ酸エステルである。 Examples of the long-chain fatty acid ester include an ester of a fatty acid containing an alkyl group having 8 to 25 carbon atoms and an alcohol having 1 to 12 carbon atoms such as methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, oleic acid Methyl, ethyl oleate, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin oleic acid monoester, pentaerythritol laurate monoester, pentaerythritol stearic acid monoester, pentaerythritol oleic acid monoester, sorbitol lauric acid Acid monoester, sorbitol stearic acid monoester, sorbit oleic acid monoester, sucrose palmitate (sucrose palmitate monoester, sucrose palmitate diester, sucrose palmitate) Michin acid triester, etc.), sucrose stearate (sucrose stearic acid monoester, sucrose stearic acid diester, sucrose stearic acid triester, etc.), sucrose erucic acid ester, and beef tallow} and the like. Among them, sucrose stearic acid esters (sucrose stearic acid monoester, sucrose stearic acid diester, sucrose stearic acid triester, etc.), sucrose palmitate ( Sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, etc.) and sucrose erucic acid ester are preferable, and sucrose stearic acid ester (sucrose stearic acid monoester, sucrose stearic acid) is more preferable. Diester, sucrose stearic acid triester and the like) and sucrose erucic acid ester.
 長鎖脂肪酸及びその塩としては、炭素数8~25のアルキル基を含む脂肪酸{たとえば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ダイマー酸及びベヘニン酸等}が挙げられる。塩としてはカルシウム、マグネシウム又はアルミニウム(以下、Ca、Mg、Alと略す)との塩{たとえば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等}が挙げられる。吸収性物品の液拡散性の観点等から、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Alが好ましく、さらに好ましくはステアリン酸Mgである。 {Examples of long-chain fatty acids and salts thereof include fatty acids containing an alkyl group having 8 to 25 carbon atoms, such as lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, and behenic acid. Examples of the salt include salts with calcium, magnesium, or aluminum (hereinafter abbreviated as Ca, Mg, Al), such as Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, and the like. From the viewpoint of the liquid diffusibility of the absorbent article, Ca stearate, Mg stearate, and Al stearate are preferred, and Mg stearate is more preferred.
 長鎖脂肪族アルコールとしては、炭素数8~25のアルキル基を含む脂肪族アルコール{たとえば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール等}が挙げられる。吸収性物品の液拡散性の観点等から、パルミチルアルコール、ステアリルアルコール、オレイルアルコールが好ましく、さらに好ましくはステアリルアルコールである。 {Examples of long-chain aliphatic alcohols include aliphatic alcohols containing an alkyl group having 8 to 25 carbon atoms, such as lauryl alcohol, palmityl alcohol, stearyl alcohol, and oleyl alcohol. From the viewpoint of the liquid diffusibility of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferred, and stearyl alcohol is more preferred.
 長鎖脂肪酸アミドとしては炭素数8~25のアルキル基を含む脂肪酸アミド{たとえば、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、等}や、炭素数8~25の脂肪酸ビスアミド{エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、ヘキサメチレンビスステアリン酸アミド、N,N‘-ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、等}が挙げられる。吸収性物品の液拡散性の観点等からエチレンビスステアリン酸アミドが好ましい。 Examples of the long-chain fatty acid amide include fatty acid amides containing an alkyl group having 8 to 25 carbon atoms such as lauric amide, palmitic amide, stearic amide, oleic amide, erucamide, etc. Fatty acid bisamides such as ethylenebislauric acid amide, ethylenebisstearic acid amide, hexamethylenebisstearic acid amide, N, N'-distearyladipamide, ethylenebisoleic acid amide, ethylenebiserucic acid amide, etc. Can be Ethylenebisstearic acid amide is preferred from the viewpoint of the liquid diffusibility of the absorbent article.
 これらの2種以上の混合物としては、長鎖脂肪酸エステルと長鎖脂肪族アルコールとの混合物{たとえば、ショ糖ステアリン酸エステルとステアリルアルコールとの混合物等}や長鎖脂肪酸エステルと長鎖脂肪酸及びその塩の混合物{たとえば、ショ糖ステアリン酸エステルとステアリル酸Mgとの混合物}が挙げられる。 Examples of the mixture of two or more of these include a mixture of a long-chain fatty acid ester and a long-chain aliphatic alcohol (for example, a mixture of sucrose stearic acid ester and stearyl alcohol), a long-chain fatty acid ester and a long-chain fatty acid, and a mixture thereof. A mixture of salts {for example, a mixture of sucrose stearic acid ester and Mg stearylate} may be mentioned.
 ポリシロキサン構造をもつ疎水性物質(C2)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン{ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等}、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン等及びこれらの混合物等の有機ポリシロキサンが含まれる。 Examples of the hydrophobic substance (C2) having a polysiloxane structure include polydimethylsiloxane, polyether-modified polysiloxane {polyoxyethylene-modified polysiloxane and poly (oxyethylene-oxypropylene) -modified polysiloxane and the like}, carboxy-modified polysiloxane, Organic polysiloxanes such as epoxy-modified polysiloxane, amino-modified polysiloxane, alkoxy-modified polysiloxane and the like and mixtures thereof are included.
 変性シリコーン{ポリエーテル変性ポリシロキサン、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン及びアミノ変性ポリシロキサン等}の有機基(変性基)の位置としては特に限定はしないが、ポリシロキサンの側鎖、ポリシロキサンの両末端、ポリシロキサンの片末端、ポリシロキサンの側鎖と両末端との両方のいずれでもよい。これらのうち、吸収特性の観点等から、ポリシロキサンの側鎖及びポリシロキサンの側鎖と両末端との両方が好ましく、さらに好ましくはポリシロキサンの側鎖と両末端との両方である。 The position of the organic group (modified group) of the modified silicone (polyether-modified polysiloxane, carboxy-modified polysiloxane, epoxy-modified polysiloxane, amino-modified polysiloxane, etc.) is not particularly limited, but the side chain of polysiloxane, polysiloxane , One end of polysiloxane, or both the side chain and both ends of polysiloxane. Of these, from the viewpoint of absorption characteristics and the like, both the side chain of polysiloxane and both the side chain and both ends of the polysiloxane are preferable, and more preferably both the side chain and both ends of the polysiloxane.
 ポリエーテル変性ポリシロキサンの有機基(変性基)としては、ポリオキシエチレン基又はポリ(オキシエチレン・オキシプロピレン)基を含有する基等が含まれる。ポリエーテル変性ポリシロキサンに含まれるオキシエチレン基及び/又はオキシプロピレン基の含有量(個)は、ポリエーテル変性ポリシロキサン1分子あたり、2~40が好ましく、さらに好ましくは5~30、特に好ましくは7~20、最も好ましくは10~15である。この範囲であると、吸収特性がさらに良好となる。また、オキシエチレン基及びオキシプロピレン基を含む場合、オキシエチレン基の含有量(重量%)は、ポリシロキサンの重量に基づいて、1~30が好ましく、さらに好ましくは3~25、特に好ましくは5~20である。この範囲であると、吸収特性がさらに良好となる。 有機 The organic group (modified group) of the polyether-modified polysiloxane includes a group containing a polyoxyethylene group or a poly (oxyethylene-oxypropylene) group. The content (number) of oxyethylene groups and / or oxypropylene groups contained in the polyether-modified polysiloxane is preferably 2 to 40, more preferably 5 to 30, and particularly preferably 5 per molecule of the polyether-modified polysiloxane. It is 7-20, most preferably 10-15. Within this range, the absorption characteristics are further improved. In the case of containing an oxyethylene group and an oxypropylene group, the content (% by weight) of the oxyethylene group is preferably 1 to 30, more preferably 3 to 25, and particularly preferably 5 to 25, based on the weight of the polysiloxane. ~ 20. Within this range, the absorption characteristics are further improved.
 ポリエーテル変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、オキシアルキレンの種類}が好ましく例示できる。
・信越化学工業株式会社製
 KF-945{側鎖、オキシエチレン及びオキシプロピレン}、KF-6020{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6191{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4952{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4272{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6266{側鎖、オキシエチレン及びオキシプロピレン}
The polyether-modified polysiloxane can be easily obtained from the market. For example, the following products {modified position, type of oxyalkylene} can be preferably exemplified.
-KF-945 side chain, oxyethylene and oxypropylene, KF-6020 side chain, oxyethylene and oxypropylene, X-22-6191 side chain, oxyethylene and oxypropylene manufactured by Shin-Etsu Chemical Co., Ltd. , X-22-4954 {side chain, oxyethylene and oxypropylene}, X-22-4272 {side chain, oxyethylene and oxypropylene}, X-22-6266 {side chain, oxyethylene and oxypropylene}
・東レ・ダウコーニング株式会社製
 FZ-2110{両末端、オキシエチレン及びオキシプロピレン}、FZ-2122{両末端、オキシエチレン及びオキシプロピレン}、FZ-7006{両末端、オキシエチレン及びオキシプロピレン}、FZ-2166{両末端、オキシエチレン及びオキシプロピレン}、FZ-2164{両末端、オキシエチレン及びオキシプロピレン}、FZ-2154{両末端、オキシエチレン及びオキシプロピレン}、FZ-2203{両末端、オキシエチレン及びオキシプロピレン}及びFZ-2207{両末端、オキシエチレン及びオキシプロピレン}
-Toray Dow Corning Co., Ltd. FZ-2110 {both terminals, oxyethylene and oxypropylene}, FZ-2122 {both terminals, oxyethylene and oxypropylene}, FZ-7006 {both terminals, oxyethylene and oxypropylene}, FZ-2166 {terminals, oxyethylene and oxypropylene}, FZ-2164 {terminals, oxyethylene and oxypropylene}, FZ-2154 {terminals, oxyethylene and oxypropylene}, FZ-2203 {terminals, oxy Ethylene and oxypropylene {and FZ-2207 {both terminals, oxyethylene and oxypropylene}
 カルボキシ変性ポリシロキサンの有機基(変性基)としてはカルボキシ基を含有する基等が含まれ、エポキシ変性ポリシロキサンの有機基(変性基)としてはエポキシ基を含有する基等が含まれ、アミノ変性ポリシロキサンの有機基(変性基)としてはアミノ基(1、2,3級アミノ基)を含有する基等が含まれる。これらの変性シリコーン の有機基(変性基)の含有量(g/mol)は、カルボキシ当量、エポキシ当量又はアミノ当量として、200~11000が好ましく、さらに好ましくは600~8000、特に好ましくは1000~4000である。この範囲であると、吸収特性がさらに良好となる。なお、カルボキシ当量は、JIS C2101:1999の「16.全酸価試験」に準拠して測定される。また、エポキシ当量は、JIS K7236:2001に準拠して求められる。また、アミノ当量は、JIS K2501:2003の「8.電位差滴定法(塩基価・塩酸法)」に準拠して測定される。 The organic group (modifying group) of the carboxy-modified polysiloxane includes a group containing a carboxy group, and the organic group (modifying group) of the epoxy-modified polysiloxane includes a group containing an epoxy group. Examples of the organic group (modifying group) of the polysiloxane include a group containing an amino group (a primary, secondary, or tertiary amino group). The content (g / mol) of the organic group (modified group) of these modified silicones is preferably 200 to 11000, more preferably 600 to 8000, particularly preferably 1000 to 4000 as carboxy equivalent, epoxy equivalent or amino equivalent. It is. Within this range, the absorption characteristics are further improved. The carboxy equivalent is measured in accordance with JIS C2101: 1999 “16. Total acid value test”. The epoxy equivalent is determined in accordance with JIS K7236: 2001. The amino equivalent is measured according to JIS K2501: 2003, “8. Potentiometric titration method (base number / hydrochloric acid method)”.
 カルボキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、カルボキシ当量(g/mol)}が好ましく例示できる。
・信越化学工業株式会社製
 X-22-3701E{側鎖、4000}、X-22-162C{両末端、2300}、X-22-3710{片末端、1450}
The carboxy-modified polysiloxane can be easily obtained from the market. For example, the following products {modified position, carboxy equivalent (g / mol)} can be preferably exemplified.
・ Shin-Etsu Chemical Co., Ltd. X-22-3701E {side chain, 4000}, X-22-162C {both terminals, 2300}, X-22-3710 {one terminal, 1450}
・東レ・ダウコーニング株式会社製
 BY 16-880{側鎖、3500}、BY 16-750{両末端、750}、BY 16-840{側鎖、3500}、SF8418{側鎖、3500}
・ Toray Dow Corning Co., Ltd. BY 16-880 {side chain, 3500}, BY 16-750 {both ends, 750}, BY 16-840 {side chain, 3500}, SF8418 {side chain, 3500}
 エポキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、エポキシ当量}が好ましく例示できる。
・信越化学工業株式会社製
 X-22-343{側鎖、525}、KF-101{側鎖、350}、KF-1001{側鎖、3500}、X-22-2000{側鎖、620}、X-22-2046{側鎖、600}、KF-102{側鎖、3600}、X-22-4741{側鎖、2500}、KF-1002{側鎖、4300}、X-22-3000T{側鎖、250}、X-22-163{両末端、200}、KF-105{両末端、490}、X-22-163A{両末端、1000}、X-22-163B{両末端、1750}、X-22-163C{両末端、2700}、X-22-169AS{両末端、500}、X-22-169B{両末端、1700}、X-22-173DX{片末端、4500}、X-22-9002{側鎖・両末端、5000}
Epoxy-modified polysiloxane can be easily obtained from the market. For example, the following products {modified position, epoxy equivalent} can be preferably exemplified.
・ Shin-Etsu Chemical Co., Ltd. X-22-343 {side chain, 525}, KF-101 {side chain, 350}, KF-1001 {side chain, 3500}, X-22-2000 {side chain, 620} , X-22-2046 {side chain, 600}, KF-102 {side chain, 3600}, X-22-4741 {side chain, 2500}, KF-1002 {side chain, 4300}, X-22-3000T {Side chain, 250}, both ends of X-22-163}, 200}, both ends of KF-105 {490}, both ends of X-22-163A, both ends of 1000}, X-22-163B} both ends, 1750}, X-22-163C {both ends, 2700}, X-22-169AS {both ends, 500}, X-22-169B {both ends, 1700}, X-22-173DX {one end, 4500} , X-22-9002} Side chain, both ends, 5000}
・東レ・ダウコーニング株式会社製
 FZ-3720{側鎖、1200}、BY 16-839{側鎖、3700}、SF 8411{側鎖、3200}、SF 8413{側鎖、3800}、SF 8421{側鎖、11000}、BY 16-876{側鎖、2800}、FZ-3736{側鎖、5000}、BY 16-855D{側鎖、180}、BY 16-8{側鎖、3700}
・ Toray Dow Corning FZ-3720} side chain, 1200}, BY 16-839 {side chain, 3700}, SF 8411 {side chain, 3200}, SF 8413 {side chain, 3800}, SF 8421 { Side chain, 11000}, BY 16-876 {side chain, 2800}, FZ-3736 {side chain, 5000}, BY 16-855D {side chain, 180}, BY 16-8 {side chain, 3700}
 アミノ変性シリコーンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、アミノ当量}が好ましく例示できる。
・信越化学工業株式会社製
 KF-865{側鎖、5000}、KF-864{側鎖、3800}、KF-859{側鎖、6000}、KF-393{側鎖、350}、KF-860{側鎖、7600}、KF-880{側鎖、1800}、KF-8004{側鎖、1500}、KF-8002{側鎖、1700}、KF-8005{側鎖、11000}、KF-867{側鎖、1700}、X-22-3820W{側鎖、55000}、KF-869{側鎖、8800}、KF-861{側鎖、2000}、X-22-3939A{側鎖、1500}、KF-877{側鎖、5200}、PAM-E{両末端、130}、KF-8010{両末端、430}、X-22-161A{両末端、800}、X-22-161B{両末端、1500}、KF-8012{両末端、2200}、KF-8008{両末端、5700}、X-22-1660B-3{両末端、2200}、KF-857{側鎖、2200}、KF-8001{側鎖、1900}、KF-862{側鎖、1900}、X-22-9192{側鎖、6500}
Amino-modified silicone can be easily obtained from the market. For example, the following products {modified position, amino equivalent} can be preferably exemplified.
・ Shin-Etsu Chemical KF-865 {side chain, 5000 {, KF-864 {side chain, 3800}, KF-859 {side chain, 6000}, KF-393 {side chain, 350}, KF-860 {Side chain, 7600}, KF-880} side chain, 1800, KF-8004 {Side chain, 1500}, KF-8002 {Side chain, 1700}, KF-8005} Side chain, 11000%, KF-867 {Side chain, 1700}, X-22-3820W {Side chain, 55000}, KF-869} Side chain, 8800}, KF-861} Side chain, 2000 #, X-22-3939A {Side chain, 1500} , KF-877 {side chain, 5200}, PAM-E {both ends, 130}, KF-8010 {both ends, 430}, X-22-161A {both ends, 800}, X-22-161B { End 1500 }, KF-8012 {both ends, 2200K, KF-8008 {both ends, 5700}, X-22-1660B-3 {both ends, 2200}, KF-857 {side chain, 2200}, KF-8001 { Side chain, 1900}, KF-862 {side chain, 1900}, X-22-9192 {side chain, 6500}
・東レ・ダウコーニング株式会社製
 FZ-3707{側鎖、1500}、FZ-3504{側鎖、1000}、BY 16-205{側鎖、4000}、FZ-3760{側鎖、1500}、FZ-3705{側鎖、4000}、BY 16-209{側鎖、1800}、FZ-3710{側鎖、1800}、SF 8417{側鎖、1800}、BY 16-849{側鎖、600}、BY 16-850{側鎖、3300}、BY 16-879B{側鎖、8000}、BY 16-892{側鎖、2000}、FZ-3501{側鎖、3000}、FZ-3785{側鎖、6000}、BY 16-872{側鎖、1800}、BY 16-213{側鎖、2700}、BY 16-203{側鎖、1900}、BY 16-898{側鎖、2900}、BY 16-890{側鎖、1900}、BY 16-893{側鎖、4000}、FZ-3789{側鎖、1900}、BY 16-871{両末端、130}、BY 16-853C{両末端、360}、BY 16-853U{両末端、450}
・ Toray Dow Corning Co., Ltd. FZ-3707 {side chain, 1500}, FZ-3504 {side chain, 1000}, BY 16-205 {side chain, 4000}, FZ-3760 {side chain, 1500}, FZ -3705 {side chain, 4000}, BY 16-209 {side chain, 1800}, FZ-3710 {side chain, 1800}, SF 8417 {side chain, 1800}, BY 16-849 {side chain, 600}, BY 16-850 {side chain, 3300}, BY 16-879B {side chain, 8000}, BY 16-892 {side chain, 2000}, FZ-3501 {side chain, 3000}, FZ-3785 {side chain, 6000}, BY 16-872 {side chain, 1800}, BY 16-213 {side chain, 2700}, BY 16-203 {side chain, 1900}, BY 16-898 {side chain, 2900 , BY 16-890 {side chain, 1900}, BY 16-893 {side chain, 4000}, FZ-3789 {side chain, 1900}, BY 16-871 {both ends, 130}, BY 16-853C { End, 360 °, BY 16-853U {both ends, 450 °
 これらの混合物としては、ポリジメチルシロキサンとカルボキシル変性ポリシロキサンとの混合物、及びポリエーテル変性ポリシロキサンとアミノ変性ポリシロキサンとの混合物等が挙げられる。 Examples of these mixtures include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane, and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
 ポリシロキサン構造を持つ疎水性物質の粘度(mPa・s、25℃)は、10~5000が好ましく、さらに好ましくは15~3000、特に好ましくは20~1500である。この範囲であると、吸収特性がさらに良好となる。なお、粘度は、JIS Z8803-1991「液体の粘度」9.円すい及び円すい-平板形回転粘度計による粘度測定法に準拠して測定される{たとえば、25.0±0.5℃に温度調節したE型粘度計(東機産業株式会社製RE80L、半径7mm、角度5.24×10-2radの円すい型コーン)を用いて測定される。} The viscosity (mPa · s, 25 ° C.) of the hydrophobic substance having a polysiloxane structure is preferably from 10 to 5,000, more preferably from 15 to 3,000, and particularly preferably from 20 to 1500. Within this range, the absorption characteristics are further improved. The viscosity is measured in accordance with JIS Z8803-1991 “Viscosity of liquid”. Cone and cone-measured in accordance with a viscosity measurement method using a flat plate type viscometer. For example, an E-type viscometer temperature-controlled to 25.0 ± 0.5 ° C. (RE80L, radius 7 mm, manufactured by Toki Sangyo Co., Ltd.) , An angle of 5.24 × 10 −2 rad). }
 吸水性樹脂粒子に上記疎水性物質(C)を含有させることで、吸水性樹脂粒子の吸収速度パターン(DW法による1分後及び5分後の吸収量)を容易にコントロールすることができることから、本発明の吸水性樹脂が疎水性物質(C)を含有していることが好ましい。吸水性樹脂粒子の吸収速度パターンは、疎水性物質(C)の疎水性の強さや添加量によって任意に調整することができる。疎水性の強さは親疎水性バランス(HLB値)等の公知の手法により求めることができる。
 なお、HLB値は、親水性-疎水性バランス(HLB)値を意味し、小田法(界面活性剤入門、212頁、藤本武彦、三洋化成工業株式会社発行、2007年発行)により求められる。
By including the hydrophobic substance (C) in the water-absorbent resin particles, it is possible to easily control the absorption rate pattern of the water-absorbent resin particles (the amount of absorption after 1 minute and 5 minutes by the DW method). Preferably, the water-absorbent resin of the present invention contains a hydrophobic substance (C). The absorption rate pattern of the water-absorbent resin particles can be arbitrarily adjusted depending on the hydrophobicity and the amount of the hydrophobic substance (C). The hydrophobicity can be determined by a known method such as a hydrophilic-hydrophobic balance (HLB value).
The HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method (introduction to surfactants, page 212, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., published in 2007).
 これらの疎水性物質(C)のうち、吸収性物品の液拡散性の観点等から、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪酸アミドが好ましく、さらに好ましくはショ糖ステアリン酸エステル、ステアリン酸Mg、エチレンビスステアリン酸アミドである。なお、長鎖脂肪酸は一般的に炭素数分布を持つため、ステアリン酸と表現した場合にはステアリン酸を主成分として含む長鎖脂肪酸変性物であることを意味する。 Among these hydrophobic substances (C), long-chain fatty acid esters, long-chain fatty acids and salts thereof, and long-chain fatty acid amides are preferred from the viewpoint of the liquid diffusibility of the absorbent article, and more preferably sucrose stearate. , Mg stearate and ethylene bisstearic acid amide. Since long-chain fatty acids generally have a carbon number distribution, stearic acid means a modified long-chain fatty acid containing stearic acid as a main component.
 疎水性物質(C)の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.001~5.0が好ましく、さらに好ましくは0.08~1.0、特に好ましくは0.08~0.50である。この範囲であると、吸収性物品の液拡散性と不織布からの液引き性が両立しやすくなり、耐カブレ性に優れるため好ましい。 The content (% by weight) of the hydrophobic substance (C) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A1). Is 0.08 to 0.50. Within this range, the liquid diffusibility of the absorbent article and the liquid drainage property from the nonwoven fabric are easily compatible, and the antifogging property is excellent.
 更に、本発明の吸水性樹脂粒子は、疎水性物質(C)と浸透剤(D)を含有していることが好ましい。また、吸水性樹脂粒子に疎水性物質(C)と浸透剤(D)を含有する場合、疎水性物質(C)と浸透剤(D)は同時に使用することが好ましい。疎水性物質(C)に浸透剤(D)を併用することで、DW法による吸収量とロックアップ法による吸収速度が両立しやすくなる。浸透剤(D)としてはノニオン性界面活性剤(D1)、アニオン性界面活性剤(D2)が挙げられ、浸透性に優れる界面活性剤の構造、つまり、適度な炭素数(8~18)の長鎖アルキル構造を持つことが好ましい。 Furthermore, the water-absorbent resin particles of the present invention preferably contain a hydrophobic substance (C) and a penetrant (D). When the water-absorbent resin particles contain the hydrophobic substance (C) and the penetrant (D), it is preferable to use the hydrophobic substance (C) and the penetrant (D) at the same time. When the penetrant (D) is used in combination with the hydrophobic substance (C), the amount of absorption by the DW method and the absorption rate by the lock-up method can be easily compatible. Examples of the penetrant (D) include a nonionic surfactant (D1) and an anionic surfactant (D2). The structure of the surfactant having excellent permeability, that is, a surfactant having an appropriate number of carbon atoms (8 to 18). It preferably has a long-chain alkyl structure.
 ノニオン性界面活性剤(D1)としては、具体的には例えば脂肪族系アルコール(アルキル基の炭素数8~18)アルキレンオキサイド(AO)(炭素数2~8)付加物(重合度=1~100)[ラウリルアルコールエチレンオキサイド付加物、セチルアルコールエチレンオキサイド付加物等]、ポリオキシアルキレン(炭素数2~8、重合度=1~100)高級脂肪酸(アルキル基の炭素数8~24)エステル[モノラウリン酸ポリエチレングリコール、モノパルミチン酸ポリエチレングリコール、ジラウリン酸ポリエチレングリコール等]、等が挙げられる。 Specific examples of the nonionic surfactant (D1) include, for example, an aliphatic alcohol (alkyl group having 8 to 18 carbon atoms) alkylene oxide (AO) (2 to 8 carbon atoms) adduct (polymerization degree = 1 to 1) 100) [lauryl alcohol ethylene oxide adduct, cetyl alcohol ethylene oxide adduct, etc.], polyoxyalkylene (2-8 carbon atoms, polymerization degree = 1-100) higher fatty acid (alkyl group having 8-24 carbon atoms) ester [ Polyethylene glycol monolaurate, polyethylene glycol monopalmitate, polyethylene glycol dilaurate, etc.].
 ノニオン性界面活性剤(D1)のうち、吸収速度制御の観点から好ましいのは、脂肪族系アルコール(アルキル基の炭素数8~18)アルキレンオキサイド(AO)(炭素数2~8)付加物(重合度=1~100)である。 Among the nonionic surfactants (D1), from the viewpoint of controlling the absorption rate, preferred are aliphatic alcohols (8 to 18 carbon atoms in the alkyl group) alkylene oxide (AO) (2 to 8 carbon atoms) adduct ( (Degree of polymerization = 1 to 100).
 アニオン性界面活性剤(D2)としては、アルキル基炭素数8~18の炭化水素系エーテルカルボン酸またはその塩、[ポリオキシエチレン(重合度=1~100)ラウリルエーテル酢酸ナトリウム、ポリオキシエチレン(重合度=1~100)ラウリルスルホコハク酸2ナトリウム等]、炭素数8~18の炭化水素系硫酸エステル塩[ラウリル硫酸ナトリウム、ポリオキシエチレン(重合度=1~100)ラウリル硫酸ナトリウム、ポリオキシエチレン(重合度=1~100)ラウリル硫酸トリエタノールアミン]、アルキル基炭素数8~18の炭化水素系スルホン酸塩[ドデシルベンゼンスルホン酸ナトリウム等]及び炭素数8~18の炭化水素系リン酸エステル塩[ラウリルリン酸ナトリウム、ポリオキシエチレン(重合度=1~100)ラウリルエーテルリン酸ナトリウム等]、脂肪酸塩[ラウリン酸ナトリウム、ラウリン酸トリエタノールアミン等]等が挙げられる。 Examples of the anionic surfactant (D2) include a hydrocarbon ether carboxylic acid having an alkyl group having 8 to 18 carbon atoms or a salt thereof, [polyoxyethylene (degree of polymerization = 1 to 100) sodium lauryl ether acetate, polyoxyethylene ( Degree of polymerization = 1 to 100) disodium lauryl sulfosuccinate], hydrocarbon sulfate having 8 to 18 carbon atoms [sodium lauryl sulfate, polyoxyethylene (degree of polymerization = 1 to 100) sodium lauryl sulfate, polyoxyethylene (Degree of polymerization = 1 to 100) triethanolamine lauryl sulfate], a hydrocarbon sulfonate having 8 to 18 carbon atoms [sodium dodecylbenzenesulfonate] and a hydrocarbon phosphate having 8 to 18 carbon atoms Salt [sodium lauryl phosphate, polyoxyethylene (degree of polymerization = 1 to 1) 0) lauryl ether sodium phosphate, etc.], sodium fatty acid salts [laurate, triethanolamine laurate etc.] and the like.
 浸透剤(D)の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.001~5.0が好ましく、さらに好ましくは0.08~1.0、特に好ましくは0.08~0.50である。この範囲であると、吸収速度を適切に調整できる。 The content (% by weight) of the penetrant (D) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A1). 0.08 to 0.50. Within this range, the absorption rate can be adjusted appropriately.
 架橋重合体(A1)と疎水性物質(C)との混合方法としては、疎水性物質(C)が吸水性樹脂粒子の内部に存在するように{すなわち、例えば、架橋重合体(A1)と疎水性物質(C)とがサンドイッチ構造となるように}混合されれば制限がない。しかし、疎水性物質(C)は、架橋重合体(A1)の乾燥体ではなく、(A1)の含水ゲル又は(A1)の重合液と混合されることが好ましく、さらに好ましくは(A1)の含水ゲルと混合されることである。なお、混合は、練り込むように均一混合することが好ましい。水溶液重合法により架橋重合体(A1)を得るとき、疎水性物質(C)と(A1)とを混合・混練するタイミングとしては特に制限はないが、重合工程中、重合工程直後、含水ゲルの破砕(ミンチ)中及び含水ゲルの乾燥中等が挙げられる。これらのうち、吸収性物品の耐モレ性等の観点から、重合工程直後及び含水ゲルの破砕(ミンチ)工程中が好ましく、さらに好ましくは含水ゲルの破砕(ミンチ)工程中である。 The method of mixing the crosslinked polymer (A1) with the hydrophobic substance (C) is such that the hydrophobic substance (C) is present inside the water-absorbent resin particles. There is no limitation as long as it is mixed with the hydrophobic substance (C) so as to form a sandwich structure. However, it is preferable that the hydrophobic substance (C) is not a dried product of the crosslinked polymer (A1), but is mixed with the hydrogel of (A1) or the polymerization solution of (A1), and more preferably of (A1). It is to be mixed with a hydrogel. In addition, it is preferable to mix uniformly so that it may be kneaded. When the crosslinked polymer (A1) is obtained by the aqueous solution polymerization method, there is no particular limitation on the timing of mixing and kneading the hydrophobic substances (C) and (A1). During crushing (mincing) and during drying of the hydrogel. Among these, from the viewpoint of the moisture resistance and the like of the absorbent article, it is preferable immediately after the polymerization step and during the crushing (mincing) step of the hydrogel, more preferably during the crushing (mincing) step of the hydrogel.
 逆相懸濁重合法又は乳化重合により架橋重合体(A1)を得るとき、疎水性物質(C)と(A1)とを混合するタイミングとしては特に制限はないが、重合工程中{(C)の存在下で、(A1)を製造する}、重合工程直後、脱水工程中(水分10重量%前後まで脱水する工程中)、脱水工程直後、重合に用いた有機溶媒を分離留去する工程中、含水ゲルの乾燥中等が挙げられる。これらのうち、吸収性物品の耐モレ性等の観点から、重合工程中、重合工程直後、脱水工程中、脱水工程直後、重合に用いた有機溶媒を分離留去する工程中が好ましく、さらに好ましくは重合工程中、重合工程直後である。 When the crosslinked polymer (A1) is obtained by the reverse phase suspension polymerization method or emulsion polymerization, the timing of mixing the hydrophobic substances (C) and (A1) is not particularly limited. (A1) is produced in the presence of}. Immediately after the polymerization step, during the dehydration step (during the step of dehydrating to about 10% by weight of water), immediately after the dehydration step, during the step of separating and distilling off the organic solvent used for the polymerization. And during the drying of the hydrogel. Among these, from the viewpoint of the moisture resistance of the absorbent article, during the polymerization step, immediately after the polymerization step, during the dehydration step, immediately after the dehydration step, preferably during the step of separating and distilling off the organic solvent used for the polymerization, more preferably Is immediately after the polymerization step during the polymerization step.
 含水ゲルの乾燥中に混合する場合、混合装置としては、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機等の公知の装置が使用できる。重合液中で混合する場合、ホモミキサー、バイオミキサー等の比較的攪拌力の高い装置を使用できる。また、含水ゲルの乾燥中で混合する場合、SVミキサー等の混練装置も使用できる。 混合 In the case of mixing during the drying of the hydrogel, as the mixing device, a known device such as a Vex mill, a rubber chopper, a pharma mill, a mincing machine, an impact mill or a roll mill can be used. When mixing in the polymerization solution, a device having relatively high stirring power such as a homomixer or a biomixer can be used. When mixing during the drying of the hydrogel, a kneading device such as an SV mixer can be used.
 混合温度(℃)は、20~100が好ましく、さらに好ましくは40~90、特に好ましくは50~80である。この範囲であると、さらに均一混合しやすくなり、吸収特性がさらに良好となる。 The mixing temperature (° C) is preferably 20 to 100, more preferably 40 to 90, and particularly preferably 50 to 80. Within this range, uniform mixing becomes easier, and the absorption characteristics are further improved.
 また、疎水性物質(C)の存在下で、架橋重合体(A1)を製造する方法において、架橋重合体(A1)の重合液に疎水性物質(C)を溶解又は乳化(分散)させておき、(A1)の重合の進行と共に(C)を析出させながら、連結部を形成することもできる。疎水性物質(C)の存在下で重合を行うこと以外、重合方法は、架橋重合体(A1)の場合と同様である。なお、連結部とは、疎水性物質(C)と架橋重合体(A1)とが接触して形成される(A1)-(C)-(A1)からなるサンドイッチ構造を意味する。この場合、吸収性樹脂粒子の内部に存在している架橋重合体(A1)は、その表面に存在している疎水性物質(C)を介して、別の架橋重合体(A1)と連結している構造となる。 Further, in the method for producing the crosslinked polymer (A1) in the presence of the hydrophobic substance (C), the hydrophobic substance (C) is dissolved or emulsified (dispersed) in a polymerization solution of the crosslinked polymer (A1). Alternatively, the connecting portion can be formed while depositing (C) with the progress of the polymerization of (A1). The polymerization method is the same as in the case of the crosslinked polymer (A1), except that the polymerization is performed in the presence of the hydrophobic substance (C). The connecting portion means a sandwich structure composed of (A1)-(C)-(A1) formed by contacting the hydrophobic substance (C) and the crosslinked polymer (A1). In this case, the crosslinked polymer (A1) existing inside the absorbent resin particles is linked to another crosslinked polymer (A1) via the hydrophobic substance (C) existing on the surface. Structure.
 なお、疎水性物質(C)に浸透剤(D)を併用する場合は、前述した疎水性物質(C)の混合するタイミングと同時に浸透剤(D)を使用することができる。浸透剤(D)はあらかじめ疎水性物質(C)と混合してから使用してもよいし、同時に別々に添加して使用しても良い。 When the penetrant (D) is used in combination with the hydrophobic substance (C), the penetrant (D) can be used simultaneously with the timing of mixing the hydrophobic substance (C). The penetrant (D) may be used after being mixed with the hydrophobic substance (C) in advance, or may be added separately and used at the same time.
 疎水性物質(C)、必要により浸透剤(D)を含有する含水ゲルは、必要に応じて、この含水ゲルを細断することができる。細断後の含水ゲル粒子の大きさ(最長径)は50μm~10cmが好ましく、さらに好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性がさらに良好となる。細断方法は、架橋重合体(A1)の場合と同様の方法が採用できる。 水 The hydrogel containing the hydrophobic substance (C) and, if necessary, the penetrant (D) can be cut into pieces as needed. The size (longest diameter) of the hydrogel particles after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved. As the shredding method, the same method as in the case of the crosslinked polymer (A1) can be adopted.
 吸水性樹脂粒子の製造に溶媒(有機溶媒及び/又は水を含む)を使用する場合、重合後に溶媒を留去することができる。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、吸水性樹脂粒子の重量に基づいて、0~10が好ましく、さらに好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。である。この範囲であると、吸水性樹脂粒子の吸収性能(特に保水量)がさらに良好となる。 溶媒 When a solvent (including an organic solvent and / or water) is used for the production of the water-absorbent resin particles, the solvent can be distilled off after the polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, and particularly preferably 0 to 5, based on the weight of the water-absorbent resin particles. -3, most preferably 0-1. It is. Within this range, the water-absorbing resin particles will have better absorption performance (particularly, water retention).
 また、溶媒に水を含む場合、留去後の水分(重量%)は、吸水性樹脂粒子の重量に基づいて、0~20が好ましく、さらに好ましくは1~10、特に好ましくは2~9、最も好ましくは3~8である。この範囲であると、吸収性能(特に保水量)及び乾燥後の吸水性樹脂粒子の壊れ性がさらに良好となる。なお、有機溶媒の含有量及び水分の測定法、並びに溶媒の留去方法は、架橋重合体(A1)の場合と同様である。 When the solvent contains water, the water content (% by weight) after the distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, based on the weight of the water-absorbent resin particles. Most preferably, it is 3 to 8. Within this range, the absorption performance (particularly the water retention amount) and the breakability of the water-absorbent resin particles after drying are further improved. The method for measuring the content and water content of the organic solvent and the method for distilling off the solvent are the same as those for the crosslinked polymer (A1).
 架橋重合体(A1)は、必要に応じて、表面架橋剤により表面架橋処理を行うことができる。表面架橋剤としては、公知{特開昭59-189103号公報、特開昭58-180233号公報、特開昭61-16903号公報、特開昭61-211305号公報、特開昭61-252212号公報、特開昭51-136588号公報及び特開昭61-257235号公報等}の表面架橋剤{多価グリシジル、多価アルコール、多価アミン、多価アジリジン、多価イソシアネート、シランカップリング剤及び多価金属等}等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル、多価アルコール及び多価アミンが好ましく、さらに好ましくは多価グリシジル及び多価アルコール、特に好ましくは多価グリシジル、最も好ましくはエチレングリコールジグリシジルエーテルである。 The crosslinked polymer (A1) can be subjected to a surface crosslinking treatment with a surface crosslinking agent, if necessary. Examples of the surface cross-linking agent include those disclosed in JP-A-59-189103, JP-A-58-180233, JP-A-61-16903, JP-A-61-211305, and JP-A-61-252212. Nos. 1, JP-A-51-136588 and JP-A-61-257235, etc. {Surface crosslinking agents} Polyhydric glycidyl, polyhydric alcohols, polyamines, polyaziridines, polyisocyanates, silane coupling Agents and polyvalent metals can be used. Among these surface cross-linking agents, polyhydric glycidyl, polyhydric alcohol and polyhydric amine are preferable from the viewpoint of economy and absorption properties, more preferably polyhydric glycidyl and polyhydric alcohol, particularly preferably polyhydric glycidyl, Preferred is ethylene glycol diglycidyl ether.
 表面架橋処理をする場合、表面架橋剤の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、水溶性ビニルモノマー(a1)、加水分解性ビニルモノマー(a2)、その他のビニルモノマー(a3)も使用する場合は(a1)~(a3)の合計、及び架橋剤(b)の重量に基づいて、0.001~3が好ましく、さらに好ましくは0.005~2、特に好ましくは0.01~1である。 When the surface cross-linking treatment is performed, the amount (% by weight) of the surface cross-linking agent can be variously changed depending on the type of the surface cross-linking agent, cross-linking conditions, target performance, and the like. From the viewpoint of the above, when a water-soluble vinyl monomer (a1), a hydrolyzable vinyl monomer (a2), and other vinyl monomers (a3) are also used, the total of (a1) to (a3) and the crosslinking agent (b) Is preferably from 0.001 to 3, more preferably from 0.005 to 2, particularly preferably from 0.01 to 1, based on the weight of
 表面架橋処理をする場合、表面架橋処理の方法は、公知{たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報}の方法が適用できる。 In the case of performing the surface cross-linking treatment, the method of the surface cross-linking treatment is known, for example, the method described in Japanese Patent No. 3648553, JP-A-2003-165883, JP-A-2005-75982, and JP-A-2005-95759. Can be applied.
 吸水性樹脂粒子の重量平均粒径(μm)は、200~400であり、好ましくは270~390、より好ましくは290~380、特に好ましくは320~370である。吸水性樹脂粒子は、粉砕することができる。吸水性樹脂粒子が溶媒を含む場合、溶媒を留去(乾燥)してから粉砕することが好ましい。粉砕する場合、粉砕後の重量平均粒径(μm)もまた、200~400が好ましく、より好ましくは270~390、更に好ましくは290~380、特に好ましくは290~370である。この範囲であると、粉砕後のハンドリング性(吸水性樹脂粒子の粉体流動性等)及び吸水性樹脂粒子の吸収速度が適切になるため、吸収性物品のドライ性がさらに良好となる。なお、重量平均粒径は架橋重合体(A1)の場合と同様にして測定できる。 (4) The weight average particle size (μm) of the water-absorbent resin particles is 200 to 400, preferably 270 to 390, more preferably 290 to 380, and particularly preferably 320 to 370. The water-absorbent resin particles can be pulverized. When the water-absorbent resin particles contain a solvent, it is preferable that the solvent is distilled off (dried) before pulverization. In the case of pulverization, the weight average particle size (μm) after pulverization is also preferably 200 to 400, more preferably 270 to 390, further preferably 290 to 380, and particularly preferably 290 to 370. Within this range, the handling properties (powder fluidity of the water-absorbent resin particles) after pulverization and the absorption rate of the water-absorbent resin particles become appropriate, so that the dryness of the absorbent article is further improved. The weight average particle size can be measured in the same manner as in the case of the crosslinked polymer (A1).
 微粒子の含有量は少ない方が吸収性能がよく、全粒子に占める106μm以下の微粒子の含有量が3重量%以下が好ましく、さらに好ましくは全粒子に占める150μm以下の微粒子の含有量が3重量%以下である。微粒子の含有量は、上記の重量平均粒径を求める際に作成するプロットを用いて求めることができる。粉砕及び粒度調整は、架橋重合体(A1)の場合と同様の方法が採用できる。 The smaller the content of the fine particles, the better the absorption performance. The content of the fine particles of 106 μm or less in the total particles is preferably 3% by weight or less, more preferably the content of the fine particles of 150 μm or less in the total particles is 3% by weight. It is as follows. The content of the fine particles can be determined using a plot created when the above-mentioned weight average particle size is determined. The same method as in the case of the crosslinked polymer (A1) can be employed for pulverization and particle size adjustment.
 粉砕する場合、粉砕後のスパン値は、1.0以下が好ましく、特に好ましくは0.9以下、最も好ましくは0.8以下である。この範囲であると吸水性樹脂粒子の粒子径の分布が狭くなるために、スポット吸収が生じにくくなったり吸収しない粒子ができにくくなることから、不織布表面からの液引き性が良好になる。なお、スパン値は架橋重合体(A1)の場合と同様に測定できる。 In the case of pulverization, the span value after the pulverization is preferably 1.0 or less, particularly preferably 0.9 or less, and most preferably 0.8 or less. Within this range, the particle size distribution of the water-absorbent resin particles becomes narrow, so that it becomes difficult for spot absorption to occur or particles that do not absorb are difficult to be produced, so that the liquid drainage property from the surface of the nonwoven fabric is improved. The span value can be measured in the same manner as in the case of the crosslinked polymer (A1).
 本発明の吸水性樹脂粒子の見掛け密度(g/ml)は、0.55~0.65が好ましく、さらに好ましくは0.56~0.64、特に好ましくは0.57~0.63である。この範囲であると、吸収性物品の耐カブレ性がさらに良好となる。なお、見掛け密度は架橋重合体(A1)の場合と同様にして測定できる。見かけ密度は、ゲルの粉砕方法、乾燥条件等の生産条件で適宜調整できる。 The apparent density (g / ml) of the water-absorbent resin particles of the present invention is preferably 0.55 to 0.65, more preferably 0.56 to 0.64, and particularly preferably 0.57 to 0.63. . Within this range, the antifogging property of the absorbent article is further improved. The apparent density can be measured in the same manner as in the case of the crosslinked polymer (A1). The apparent density can be appropriately adjusted by gel pulverizing method, production conditions such as drying conditions.
 吸水性樹脂粒子の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 形状 The shape of the water-absorbent resin particles is not particularly limited, and examples thereof include irregular crushed shapes, scaly shapes, pearl shapes, and rice grain shapes. Of these, the irregularly crushed shape is preferred from the viewpoint that it is well entangled with fibrous materials for use in disposable diapers, and there is no fear of falling off from the fibrous materials.
 本発明の吸水性樹脂粒子のDW法による吸収量(M)(ml/g)は、吸収性物品のドライ性の観点から、1分後の吸収量(M1)は10~15であり、好ましくは11~14、さらに好ましくは12~13である。5分後の吸収量(M2)は45~55であり、好ましくは46~54、さらに好ましくは47~53である。この範囲であると吸収性物品のドライ性がさらに良好になる。DW法による吸収量は、SPAN、吸水性樹脂粒子の見掛け密度及び吸水性樹脂粒子の重量平均粒径、疎水性物質、界面活性剤等を前記好ましい範囲に調整することで、DW法による吸収量を好ましい範囲に調整できる。具体的には、重量平均粒径を大きく、見かけ密度を高く、疎水性物質の含有量もしくは疎水性を高く、疎水性物質と併用する浸透剤の使用を少なくすると、それぞれの作用がほぼ独立に1分後の吸収量(M1)を低くする効果があり、適宜調整することができる。5分後の吸収量(M2)は1分後吸収量(M1)の操作因子に加え、保水量が高いと高くなる傾向がある。1分後の吸収量(M1)が10未満の場合、初期の吸収量が不足してドライ性が悪化し、15よりも高い場合は、初期の吸収量が高すぎ、吸収体とした時に吸収の偏りができ、ドライ性が悪化する。5分後の吸収量が45未満の場合、吸収量が不足しているためドライ性が悪化、55よりも高い場合は、吸収体中の吸収量の偏りができ、ドライ性が悪化する。 The absorption amount (M) (ml / g) of the water-absorbent resin particles of the present invention by the DW method is preferably from 10 to 15 after 1 minute from the viewpoint of the dryness of the absorbent article. Is 11 to 14, more preferably 12 to 13. The absorption amount (M2) after 5 minutes is from 45 to 55, preferably from 46 to 54, more preferably from 47 to 53. Within this range, the dryness of the absorbent article is further improved. The absorption amount by the DW method is adjusted by adjusting the SPAN, the apparent density of the water-absorbent resin particles, the weight average particle diameter of the water-absorbent resin particles, the hydrophobic substance, the surfactant, and the like to the preferable ranges described above. Can be adjusted to a preferable range. Specifically, when the weight average particle size is large, the apparent density is high, the content or hydrophobicity of the hydrophobic substance is high, and the use of the penetrant used in combination with the hydrophobic substance is reduced, the actions of each are almost independent. It has the effect of reducing the amount of absorption (M1) after one minute, and can be adjusted as appropriate. The absorption amount after 5 minutes (M2) tends to increase as the water retention amount increases, in addition to the operation factor of the absorption amount after 1 minute (M1). When the absorption amount (M1) after 1 minute is less than 10, the initial absorption amount is insufficient and the dryness is deteriorated. When the absorption amount is higher than 15, the initial absorption amount is too high and the absorption when the absorbent is used. And the dryness deteriorates. When the absorption amount after 5 minutes is less than 45, the dryness deteriorates because the absorption amount is insufficient, and when it is higher than 55, the absorption amount in the absorber is biased, and the dryness deteriorates.
 DW(Demand Wettability)法は、25±2℃、湿度50±10%の室内で、図1に示す装置を用いて行う測定方法である。図1に示した測定装置は、ビュレット部(2){目盛容量50ml、長さ86cm、内径1.05cm、}と導管{内径7mm}、測定台(6)からなっている。ビュレット部(2)は、上部にゴム栓(1)、下部に吸気導入管(9){先端内径3mm}とコック(7)が連結されており、さらに、吸気導入管(9)の上部はコック(8)がある。ビュレット部(2)から測定台(6)までは、導管が取り付けられている。測定台(6)の中央部には、生理食塩水供給部として直径3ミリの穴があいており、導管が連結されている。 The DW (Demand Wetability) method is a measurement method performed using a device shown in FIG. 1 in a room at 25 ± 2 ° C. and 50 ± 10% humidity. The measuring device shown in FIG. 1 comprises a burette part (2) {scale volume 50 ml, length 86 cm, inner diameter 1.05 cm,}, conduit {inner diameter 7 mm}, measuring table (6). The buret part (2) is connected with a rubber stopper (1) at the upper part, a suction inlet pipe (9) {tip inner diameter 3 mm} and a cock (7) at the lower part, and furthermore, an upper part of the suction inlet pipe (9). There is a cook (8). A conduit is attached from the burette section (2) to the measuring table (6). At the center of the measuring table (6), a hole having a diameter of 3 mm is provided as a physiological saline supply part, and a conduit is connected thereto.
 この構成の測定装置を使用して、まずビュレット部(2)のコック(7)と空気導入管(9)のコック(8)を閉め、25℃に調節された所定量の生理食塩水(食塩濃度0.9重量%)をビュレット部(2)上部から入れ、ゴム栓(1)でビュレット上部の栓をした後、ビュレット部(2)のコック(7)および空気導入管(9)のコック(8)を開ける。次に、測定台(6)に溢れ出た生理食塩水を拭き取ってから、測定台(6)の上面と、測定台(6)中心部の導管口から出てくる生理食塩水の水面とが同じ高さになるように測定台(6)の高さの調整を行う。生理食塩水供給部から生理食塩水を拭き取りながら、ビュレット部(2)内の生理食塩水の水面をビュレット部(2)目盛の一番上(0mlライン)に調整する。 Using the measuring device having this configuration, the cock (7) of the burette part (2) and the cock (8) of the air introduction pipe (9) are first closed, and a predetermined amount of physiological saline (salt) adjusted to 25 ° C. (Concentration: 0.9% by weight) from the upper part of the burette part (2), plug the upper part of the burette with a rubber stopper (1), and then stop the cock (7) of the burette part (2) and the cock of the air inlet pipe (9). Open (8). Next, after spilling the physiological saline which overflowed into the measuring table (6), the upper surface of the measuring table (6) and the surface of the physiological saline coming out from the conduit port in the center of the measuring table (6) were moved. The height of the measuring table (6) is adjusted so as to have the same height. While wiping the physiological saline from the physiological saline supply unit, the surface of the physiological saline in the burette unit (2) is adjusted to the top (0 ml line) of the buret unit (2) scale.
 引き続き、ビュレット部(2)のコック(7)と空気導入管(9)のコック(8)を閉め、測定台(6)上に、生理食塩水供給部が中心になるように平織りナイロンメッシュ(5)(目開き63μm、5cm×5cm)をのせ、さらにこの平織りナイロンメッシュ(5)の上に、測定台(6)の生理食塩水供給部を中心に直径2.7cmの範囲に0.50gの吸水性樹脂粒子(4)を均一に散布する。その後、ビュレット部(2)のコック(7)および空気導入管(9)のコック(8)を開ける。 Subsequently, the cock (7) of the burette section (2) and the cock (8) of the air introduction pipe (9) are closed, and a plain woven nylon mesh (5) is placed on the measuring table (6) so that the physiological saline supply section becomes the center. 5) Place (opening 63 μm, 5 cm × 5 cm), and further, on this plain-woven nylon mesh (5), 0.50 g in a range of 2.7 cm in diameter centering on the physiological saline supply part of the measuring table (6). The water-absorbent resin particles (4) are uniformly dispersed. Thereafter, the cock (7) of the burette part (2) and the cock (8) of the air introduction pipe (9) are opened.
 吸水性樹脂粒子(4)が吸水し始め、空気導入管(9)から導入された一つ目の泡がビュレット部(2)内の生理食塩水の水面に到達した時点(ビュレット部(2)内の生理食塩水の水面が下がった時点)を測定開始時間とし、継続的に、ビュレット部(2)内の生理食塩水(3)の減少量(吸水性樹脂粒子(4)が吸水した生理食塩水量)M(ml)を読み取る。吸水開始から所定時間経過後における吸水性樹脂粒子(4)の吸収量を、以下の式により求める。 When the water-absorbent resin particles (4) begin to absorb water and the first foam introduced from the air introduction pipe (9) reaches the surface of the physiological saline in the burette part (2) (the burette part (2) The time when the level of the physiological saline in the sample falls) is defined as the measurement start time, and the amount of decrease in the physiological saline (3) in the burette portion (2) (physiological conditions in which the water-absorbing resin particles (4) absorb water) is continuously measured. Read M (ml of saline). The absorption amount of the water-absorbent resin particles (4) after a predetermined time has elapsed from the start of water absorption is determined by the following equation.
 DW法による吸収量(ml/g)=M÷0.50 吸収 Absorbed amount by DW method (ml / g) = M ÷ 0.50
 本発明の吸水性樹脂粒子の保水量(g/g)は、吸収性物品のドライ性の観点から、35~40が好ましく、さらに好ましくは36~39である。なお、吸水性樹脂粒子の保水量は以下の方法により測定される。 水 The water retention amount (g / g) of the water-absorbent resin particles of the present invention is preferably from 35 to 40, more preferably from 36 to 39, from the viewpoint of the dryness of the absorbent article. The water retention of the water-absorbent resin particles is measured by the following method.
<吸水性樹脂粒子の保水量の測定法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9重量%)1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求める。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とする。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバックの重量を測定し(h2)とする。
<Method for measuring water retention of water-absorbent resin particles>
1.00 g of a measurement sample is placed in a tea bag (length 20 cm, width 10 cm) made of nylon mesh having a mesh size of 63 μm (JIS Z8801-1: 2006), and 1,000 ml of physiological saline (salt concentration: 0.9% by weight) is added. After being immersed in the solution for 1 hour without stirring, it was suspended for 15 minutes and drained. Then, the whole tea bag is put in a centrifuge, centrifuged at 150 G for 90 seconds to remove excess physiological saline, the weight (h1) including the tea bag is measured, and the water retention amount is calculated from the following equation. In addition, the temperature of the physiological saline used and the measurement atmosphere is set to 25 ° C. ± 2 ° C. The weight of the tea bag after centrifugal dehydration is measured in the same manner as described above except that the measurement sample is not used, and is defined as (h2).
 保水量(g/g)=(h1)-(h2) 水 Water retention (g / g) = (h1)-(h2)
 本発明の吸水性樹脂粒子のロックアップ法で測定される吸収速度は、不織布表面からの液引きの観点から、25秒以下が好ましく、さらに好ましくは24秒以下、特に好ましくは23秒以下である。なお。吸水性樹脂粒子のロックアップ法による吸収速度は、以下の方法により測定される。 The absorption rate measured by the lock-up method of the water-absorbent resin particles of the present invention is preferably 25 seconds or less, more preferably 24 seconds or less, and particularly preferably 23 seconds or less, from the viewpoint of liquid drainage from the nonwoven fabric surface. . In addition. The absorption rate of the water-absorbent resin particles by the lock-up method is measured by the following method.
 <吸水性樹脂のロックアップ法による吸収速度>
 測定試料1.000gをJIS R 3503に規定する底面が平らな100mlのトールビーカーに入れる。この際、ビーカーに入れた吸水性樹脂の上面が水平となるようにする。次に、23℃±2℃に調温した脱イオン水50gを100mlのガラス製ビーカーに量り取り、吸水性樹脂の入った100mlビーカーに丁寧に素早く注ぐ。注ぎ込んだ脱イオン水が吸水性樹脂と接触したと同時に時間測定を開始する。そして、脱イオン水を注ぎ込んだビーカーを約90゜の角度で横に向けた際、流動物が吸水性樹脂表面から浸出しなくなった点を終点とし、この時間(単位:秒)をロックアップ法で測定される吸収速度とする。
<Absorption rate of water-absorbent resin by lock-up method>
1.000 g of a measurement sample is put into a 100 ml tall beaker having a flat bottom surface specified in JIS R 3503. At this time, the upper surface of the water-absorbent resin placed in the beaker is horizontal. Next, 50 g of deionized water adjusted to 23 ° C. ± 2 ° C. is weighed into a 100 ml glass beaker, and carefully poured quickly into a 100 ml beaker containing a water absorbent resin. The time measurement is started at the same time when the poured deionized water comes into contact with the water absorbent resin. When the beaker into which deionized water is poured is turned sideways at an angle of about 90 °, the point at which the fluid does not leach from the surface of the water-absorbent resin is determined as the end point, and this time (unit: seconds) is determined by the lock-up method. It is the absorption rate measured in.
 本発明の吸水性樹脂粒子は、不織布と共に吸収体とすることができる。 水性 The water-absorbent resin particles of the present invention can be used as an absorber together with a nonwoven fabric.
 本発明に用いられる不織布としては、公知の不織布であれば特に限定されないが、液体浸透性、柔軟性及び吸収体とした際の強度の観点から、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン繊維、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル繊維、ナイロン等のポリアミド繊維、レーヨン繊維、その他の合成繊維製からなる不織布や、綿、絹、麻、パルプ(セルロース)繊維等が混合されて製造された不織布等が挙げられる。これらの不織布のなかでも、吸収体の強度を高める等の観点から、合成繊維の不織布が好ましく、更に好ましくはレーヨン繊維、ポリオレフィン繊維、ポリエステル繊維からなる不織布である。これらの不織布は、前記繊維の単独の不織布でもよく、2種以上の繊維を組み合わせた不織布でもよい。 The nonwoven fabric used in the present invention is not particularly limited as long as it is a known nonwoven fabric, but from the viewpoint of liquid permeability, flexibility and strength when used as an absorbent, polyolefins such as polyethylene (PE) and polypropylene (PP) Non-woven fabrics made of fibers, polyester fibers such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyamide fibers such as nylon, rayon fiber, other synthetic fibers, cotton, silk, Nonwoven fabrics produced by mixing hemp, pulp (cellulose) fibers and the like are included. Among these nonwoven fabrics, from the viewpoint of increasing the strength of the absorber, a nonwoven fabric made of synthetic fibers is preferable, and a nonwoven fabric made of rayon fiber, polyolefin fiber, and polyester fiber is more preferable. These nonwoven fabrics may be a single nonwoven fabric of the above fibers or a nonwoven fabric combining two or more fibers.
 本発明に用いられる不織布は吸収体に、良好な液体浸透性、柔軟性、強度やクッション性を付与すること及び吸収体の液体浸透速度を速める観点から、適度に嵩高く、目付量が大きい不織布が好ましい。その目付量は、好ましくは5~300g/m2であり、より好ましくは8~200g/m2であり、さらに好ましくは10~100g/m2であり、よりさらに好ましくは11~50g/m2である。また、不織布の厚さとしては、20~800μmの範囲が好ましく、50~600μmの範囲がより好ましく、80~450μmの範囲がさらに好ましい。 The nonwoven fabric used in the present invention is suitably bulky and has a large basis weight from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorber and increasing the liquid penetration rate of the absorber. Is preferred. The basis weight is preferably from 5 to 300 g / m 2 , more preferably from 8 to 200 g / m 2 , still more preferably from 10 to 100 g / m 2 , and still more preferably from 11 to 50 g / m 2. It is. Further, the thickness of the nonwoven fabric is preferably in the range of 20 to 800 μm, more preferably in the range of 50 to 600 μm, and still more preferably in the range of 80 to 450 μm.
 本発明の吸収体において、吸収層は、吸水性樹脂、不織布及び必要により接着剤を含有し、所望によりさらにフラッフパルプ等の親水性繊維を含有してなるものであり、例えば、接着剤を塗布した不織布上に、吸水性樹脂を均一に散布した後、要すれば接着剤を塗布した不織布をさらに重ねて、要すれば圧力下で加熱することにより形成される。また、不織布上で吸水性樹脂と接着剤の混合粉末を均一に散布し、さらに不織布を重ねて、接着剤の溶融温度付近で加熱すること、要すれば圧力下で加熱することによっても形成される。上記不織布と吸水性樹脂粒子の間にフラッフパルプを均一に散布することができる。
 本発明の吸収体において、吸収層を重ねて、2層以上にすることもできる。
In the absorbent body of the present invention, the absorbent layer contains a water-absorbent resin, a nonwoven fabric, and an adhesive if necessary, and optionally further contains a hydrophilic fiber such as fluff pulp. After uniformly dispersing the water-absorbing resin on the nonwoven fabric thus obtained, the nonwoven fabric to which the adhesive is applied is further laminated if necessary, and if necessary, the nonwoven fabric is formed by heating under pressure. It is also formed by uniformly spreading a mixed powder of a water-absorbent resin and an adhesive on a non-woven fabric, further laminating the non-woven fabric, and heating at a temperature around the melting temperature of the adhesive, and if necessary, heating under pressure. You. The fluff pulp can be uniformly dispersed between the nonwoven fabric and the water-absorbent resin particles.
In the absorber of the present invention, two or more absorption layers can be stacked.
 本発明に用いられる接着剤としては、例えば、天然ゴム系、ブチルゴム系、ポリイソプレン等のゴム系接着剤;スチレン-イソプレンブロック共重合体(SIS)、スチレン-ブタジエンブロック共重合体(SBS)、スチレン-イソブチレンブロック共重合体(SIBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)等のスチレン系エラストマー接着剤;エチレン-酢酸ビニル共重合体(EVA)接着剤;エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸ブチル共重合体(EBA)等のエチレン-アクリル酸誘導体共重合系接着剤;エチレン-アクリル酸共重合体(EAA)接着剤;共重合ナイロン、ダイマー酸ベースポリアミド等のポリアミド系接着剤;ポリエチレン、ポリプロピレン、アタクチックポリプロピレン、共重合ポリオレフィン等のポリオレフィン系接着剤;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、共重合ポリエステル等のポリエステル系接着剤等、及びアクリル系接着剤が挙げられる。本発明においては、接着力が強く、吸水シート構成体における不織布の剥離や吸水性樹脂の散逸を防ぐことができるという観点から、エチレン-酢酸ビニル共重合体接着剤、スチレン系エラストマー接着剤、ポリオレフィン系接着剤及びポリエステル系接着剤が好ましい。これらの接着剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the adhesive used in the present invention include rubber adhesives such as natural rubber, butyl rubber, and polyisoprene; styrene-isoprene block copolymer (SIS), styrene-butadiene block copolymer (SBS), Styrene-based elastomer adhesives such as styrene-isobutylene block copolymer (SIBS) and styrene-ethylene-butylene-styrene block copolymer (SEBS); ethylene-vinyl acetate copolymer (EVA) adhesive; ethylene-acrylic acid Ethylene-acrylic acid derivative copolymer-based adhesives such as ethyl copolymer (EEA) and ethylene-butyl acrylate copolymer (EBA); ethylene-acrylic acid copolymer (EAA) adhesive; copolymerized nylon and dimer Polyamide adhesives such as acid-based polyamides; polyethylene, polypropylene Ren, atactic polypropylene, polyolefin-based adhesive such as a copolymer polyolefin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyester-based adhesives such as a copolymerized polyester, and acrylic-based adhesive. In the present invention, an ethylene-vinyl acetate copolymer adhesive, a styrene-based elastomer adhesive, and a polyolefin are preferred from the viewpoint that the adhesive strength is strong and the nonwoven fabric can be prevented from peeling off and the water-absorbing resin can be prevented from dissipating in the water-absorbent sheet structure. Adhesives and polyester adhesives are preferred. These adhesives may be used alone or in combination of two or more.
 熱溶融型の接着剤を使用する場合、接着剤の溶融温度(軟化温度)は、吸水性樹脂を不織布に十分に固定するとともに、不織布の熱劣化や変形を防止する観点から、60~180℃が好ましく、70~150℃がより好ましく、75~125℃がさらに好ましい。 When a hot-melt adhesive is used, the melting temperature (softening temperature) of the adhesive is from 60 to 180 ° C. from the viewpoint of sufficiently fixing the water-absorbent resin to the nonwoven fabric and preventing thermal deterioration and deformation of the nonwoven fabric. Is preferably 70 to 150 ° C., and more preferably 75 to 125 ° C.
 吸収体における接着剤の含有割合は、吸水性樹脂の含有量(質量基準)の0.05~2.0倍の範囲が好ましく、0.08~1.5倍の範囲がより好ましく、0.1~1.0倍の範囲がさらに好ましい。十分な接着によって不織布の剥離や吸水性樹脂の散逸を防止し、吸収体の形態保持性を高める観点から、接着剤の含有割合は0.05倍以上であることが好ましく、接着が強くなり過ぎることによる吸水性樹脂の膨潤阻害を回避し、吸水シート構成体の浸透速度や液漏れを改善する観点から、接着剤の含有割合は2.0倍以下であることが好ましい。 The content of the adhesive in the absorbent is preferably in the range of 0.05 to 2.0 times, more preferably in the range of 0.08 to 1.5 times, the content of the water-absorbent resin (based on mass). A range of 1 to 1.0 times is more preferable. From the viewpoint of preventing peeling of the nonwoven fabric and dissipation of the water-absorbent resin by sufficient adhesion, and enhancing the shape retention of the absorber, the content ratio of the adhesive is preferably 0.05 times or more, and the adhesion becomes too strong. The content ratio of the adhesive is preferably 2.0 times or less from the viewpoint of avoiding the swelling inhibition of the water-absorbent resin due to this and improving the permeation rate and liquid leakage of the water-absorbent sheet structure.
 本発明の吸水性樹脂粒子と上述の不織布の重量を基準とした吸水性樹脂粒子の重量%{吸収性樹脂粒子の重量/(吸水性樹脂粒子の重量+不織布の重量)}は40重量%以上が好ましく、さらに好ましくは60重量%以上、特に好ましくは80重量%である。 The weight% of the water-absorbent resin particles based on the weight of the water-absorbent resin particles of the present invention and the above-described nonwoven fabric {the weight of the absorbent resin particles / (the weight of the water-absorbent resin particles + the weight of the nonwoven fabric)} is 40% by weight or more. Is more preferably 60% by weight or more, and particularly preferably 80% by weight.
 また、上記の吸収体は吸収性物品{紙おむつや生理用ナプキン等}を構成することが好ましい。吸収性物品の製造方法等は、公知のもの{特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等}の吸収体を上記の吸収体を変更する以外は同様である。 It is preferable that the above-mentioned absorber constitutes an absorbent article {paper diaper, sanitary napkin, etc.}. The method of manufacturing an absorbent article is the same as that described in JP-A-2003-225565, JP-A-2006-131767, and JP-A-2005-097569, except that the above-mentioned absorber is changed. Is similar.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。なお、特に定めない限り、部は重量部、%は重量%を示す。なお、DW法による吸収量、吸水性樹脂粒子の保水量、吸水性樹脂粒子のロックアップ法による吸収速度は前述した方法により測定した。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, “part” indicates “part by weight” and “%” indicates “% by weight”. The absorption amount by the DW method, the water retention amount of the water-absorbent resin particles, and the absorption rate of the water-absorbent resin particles by the lock-up method were measured by the methods described above.
<製造例1>
 水溶性ビニルモノマー(a1-1){アクリル酸、三菱化学株式会社製、純度100%}155部(2.15モル部)、架橋剤(b1){ペンタエリスリトールトリアリルエーテル、ダイソ-株式会社製}0.6225部(0.0024モル部)及び脱イオン水340.27部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.62部、2%アスコルビン酸水溶液1.1625部及び2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]水溶液2.325部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲル(1)を得た。
<Production Example 1>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 155 parts (2.15 mol part), crosslinking agent (b1) {pentaerythritol triallyl ether, manufactured by Daiso Corporation 0.6225 parts (0.0024 mole part) and 350.27 parts of deionized water were maintained at 3 ° C. with stirring and mixing. After introducing nitrogen into the mixture to reduce the dissolved oxygen content to 1 ppm or less, 0.62 parts of a 1% aqueous hydrogen peroxide solution, 1.1625 parts of a 2% aqueous ascorbic acid solution, and 2% 2,2′-azobis [ 2.325 parts of an aqueous solution of [2-methyl-N- (2-hydroxyethyl) -propionamide] was added and mixed to initiate polymerization. After the temperature of the mixture reached 90 ° C., polymerization was carried out at 90 ± 2 ° C. for about 5 hours to obtain a hydrogel (1).
 次にこの含水ゲル(1)502.27部をミンチ機(ROYAL社製12VR-400K)で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、引き続き疎水性物質(C-1){ステアリン酸Mg}0.19部を添加して混合し、4回細断後、通気型乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、各ふるい上の乾燥体を別々に採取し、重量平均粒子径を350μm、SPANが0.8となるよう各ふるい上の乾燥体を混合することで架橋重合体粒子(A1-1)を得た。 Next, while shredding 502.27 parts of this hydrogel (1) with a mincing machine (12VR-400K manufactured by ROYAL), 128.42 parts of a 48.5% aqueous sodium hydroxide solution was added and mixed. The substance (C-1) {Mg stearate} 0.19 parts was added and mixed. After chopping four times, the resultant was dried with a ventilation dryer {150 ° C, wind speed 2m / sec} to obtain a dried product. . After the dried product is pulverized with a juicer mixer (OSTERIZER @ BLENDER manufactured by Oster), the dried product is sieved, and the dried product on each sieve is separately collected so that the weight average particle diameter is 350 μm and the SPAN is 0.8. The dried polymer on the sieve was mixed to obtain crosslinked polymer particles (A1-1).
 <製造例2>
 「疎水性物質(C-1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を370μm、SPANを0.6」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-2)を得た。
<Production Example 2>
"The hydrophobic substance (C-1) 0.19 parts" was not used, and "weight average particle diameter 350 μm, SPAN 0.8" was changed to "weight average particle diameter 370 μm, SPAN 0.6". In the same manner as in Production Example 1, except that the above conditions were changed, crosslinked polymer particles (A1-2) were obtained.
 <製造例3>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-1)0.29部」に変更し、「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を270μm、SPANが0.9」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-3)を得た。
<Production Example 3>
Change "0.19 parts of hydrophobic substance (C-1)" to "0.29 parts of hydrophobic substance (C-1)", and change "weight average particle diameter 350 μm, SPAN 0.8" to "weight Crosslinked polymer particles (A1-3) were obtained in the same manner as in Production Example 1, except that the average particle diameter was changed to 270 μm and the SPAN to 0.9 ”.
 <製造例4>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-1)0.38部」に変更し、「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を200μm、SPANが0.9」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-4)を得た。
<Production Example 4>
Changed “hydrophobic substance (C-1) 0.19 parts” to “hydrophobic substance (C-1) 0.38 parts” and changed “weight average particle diameter to 350 μm, SPAN 0.8” to “weight Crosslinked polymer particles (A1-4) were obtained in the same manner as in Production Example 1, except that the average particle diameter was changed to 200 μm and the SPAN to 0.9 ”.
 <製造例5>
 「疎水性物質(C-1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を315μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-5)を得た。
<Production Example 5>
"The hydrophobic substance (C-1) 0.19 parts" was not used, and "the weight average particle diameter was 350 μm and SPAN was 0.8" was changed to "the weight average particle diameter was 315 μm and SPAN was 0.8" In the same manner as in Production Example 1, except that the above conditions were changed, crosslinked polymer particles (A1-5) were obtained.
 <製造例6>
 「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を350μm、SPANが1.2」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-6)を得た。
<Production Example 6>
Crosslinked polymer particles (A1-6) in the same manner as in Production Example 1, except that “weight average particle diameter was 350 μm, SPAN was 0.8” was changed to “weight average particle diameter was 350 μm, SPAN was 1.2”. I got
 <製造例7>
 「疎水性物質(C-1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を420μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-7)を得た。
<Production Example 7>
"The hydrophobic substance (C-1) 0.19 parts" was not used, and "the weight average particle diameter was 350 μm and SPAN was 0.8" was changed to "the weight average particle diameter was 420 μm and SPAN was 0.8" In the same manner as in Production Example 1, except that the above conditions were changed, crosslinked polymer particles (A1-7) were obtained.
 <製造例8>
 「疎水性物質(C-1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を160μm、SPANが1.0」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-8)を得た。
<Production Example 8>
"The hydrophobic substance (C-1) 0.19 parts" was not used, and "the weight average particle diameter was 350 μm and SPAN was 0.8" was changed to "the weight average particle diameter was 160 μm and SPAN was 1.0" In the same manner as in Production Example 1, except that the above conditions were changed, crosslinked polymer particles (A1-8) were obtained.
 <製造例9>
 「疎水性物質(C-1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を330μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-9)を得た。
<Production Example 9>
"The hydrophobic substance (C-1) 0.19 part" was not used, and "the weight average particle diameter was 350 μm and SPAN was 0.8" was changed to "the weight average particle diameter was 330 μm and SPAN was 0.8" In the same manner as in Production Example 1, except that the above conditions were changed, crosslinked polymer particles (A1-9) were obtained.
 <製造例10>
 「疎水性物質(C-1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を290μm、SPANが0.9」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-10)を得た。
<Production Example 10>
"The hydrophobic substance (C-1) 0.19 part" was not used, and "the weight average particle diameter was 350 μm and SPAN was 0.8" was changed to "the weight average particle diameter was 290 μm and SPAN was 0.9" In the same manner as in Production Example 1, except that the above conditions were changed, crosslinked polymer particles (A1-10) were obtained.
 <製造例11>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-1)0.29部」に変更し、「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を450μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-11)を得た。
<Production Example 11>
Change "0.19 parts of hydrophobic substance (C-1)" to "0.29 parts of hydrophobic substance (C-1)", and change "weight average particle diameter 350 μm, SPAN 0.8" to "weight Crosslinked polymer particles (A1-11) were obtained in the same manner as in Production Example 1, except that the average particle diameter was changed to 450 μm and the SPAN to 0.7 ”.
 <製造例12>
 「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を370μm、SPANが1.2」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-12)を得た。
<Production Example 12>
Crosslinked polymer particles (A1-12) in the same manner as in Production Example 1, except that the “weight average particle diameter was 350 μm and SPAN was 0.8” was changed to “the weight average particle diameter was 370 μm and SPAN was 1.2”. I got
 <製造例13>
 「疎水性物質(C-1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を240μm、SPANが1.5」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-13)を得た。
<Production Example 13>
"The hydrophobic substance (C-1) 0.19 part" was not used, and "the weight average particle diameter was 350 μm and SPAN was 0.8" was changed to "the weight average particle diameter was 240 μm and SPAN was 1.5" In the same manner as in Production Example 1, except that the above conditions were changed, crosslinked polymer particles (A1-13) were obtained.
 <製造例B1>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-2){ショ糖エルカ酸エステル,三菱ケミカルフーズ社製 リョートー(登録商標。以下、表示を省略)シュガーエステルER-290}0.10部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B1)を得た。
<Production Example B1>
0.19 parts of "hydrophobic substance (C-1)" was replaced with "hydrophobic substance (C-2) @sucrose erucic acid ester, Ryoto (registered trademark) manufactured by Mitsubishi Chemical Foods Co., Ltd. Sugar ester ER Production Example 1 except that "-290 粒子 0.10 parts" was changed, and "weight average particle diameter was 350 μm, SPAN was 0.8" and "weight average particle diameter was 355 μm, SPAN was 0.7". In the same manner as in the above, crosslinked polymer particles (A1-B1) were obtained.
 <製造例B2>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-2){ショ糖エルカ酸エステル,三菱ケミカルフーズ社製 リョートーシュガーエステルER-290}0.30部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B2)を得た。
<Production Example B2>
"Hydrophobic substance (C-1) 0.19 parts" is changed to "Hydrophobic substance (C-2) @ sucrose erucate ester, Ryoto Sugar Ester ER-290 @ 0.30 parts manufactured by Mitsubishi Chemical Foods, Inc." In the same manner as in Production Example 1, except that the weight-average particle diameter was 350 μm and SPAN was 0.8, and the weight-average particle diameter was 321 μm and SPAN was 0.8. A1-B2) was obtained.
 <製造例B3>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-3){ショ糖ステアリン酸エステル,三菱ケミカルフーズ社製 リョートーシュガーエステルS-370}0.10部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B3)を得た。
<Production Example B3>
"Hydrophobic substance (C-1) 0.19 parts" is changed to "Hydrophobic substance (C-3) @ sucrose stearic acid ester, Ryoto Sugar Ester S-370 @ 0.10 parts by Mitsubishi Chemical Foods, Inc." In the same manner as in Production Example 1, except that the weight-average particle diameter was 350 μm and SPAN was 0.8, and the weight-average particle diameter was 355 μm and SPAN was 0.7. A1-B3) was obtained.
 <製造例B4>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-3){ショ糖ステアリン酸エステル,三菱ケミカルフーズ社製 リョートーシュガーエステルS-370}0.30部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B4)を得た。
<Production Example B4>
"Hydrophobic substance (C-1) 0.19 parts" is changed to "Hydrophobic substance (C-3) @ sucrose stearic acid ester, Ryoto Sugar Ester S-370 @ 0.30 parts manufactured by Mitsubishi Chemical Foods, Inc." In the same manner as in Production Example 1, except that the weight-average particle diameter was 350 μm and SPAN was 0.8, and the weight-average particle diameter was 321 μm and SPAN was 0.8. A1-B4) was obtained.
 <製造例B5>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-4){エチレンビスジステアリン酸アミド,三菱ケミカル社製 スリパックス(登録商標)E}0.20部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B5)を得た。
<Production Example B5>
Changed "hydrophobic substance (C-1) 0.19 parts" to "hydrophobic substance (C-4) @ ethylene bis distearic acid amide, Slipax (registered trademark) E @ 0.20 parts by Mitsubishi Chemical Corporation" And the weight-average particle diameter was changed to 350 μm and SPAN was changed to “355 μm and the SPAN was changed to 0.7”, and the crosslinked polymer particles (A1- B5) was obtained.
 <製造例B6>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-5){ソルビタンオレイン酸モノエステル,三洋化成社製 イオネットS-80}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B6)を得た。
<Production Example B6>
"Hydrophobic substance (C-1) 0.19 parts" was changed to "hydrophobic substance (C-5) @ sorbitan oleic acid monoester, IONET S-80 @ Sanyo Chemical Co., Ltd. 0.20 parts", and Crosslinked polymer particles (A1-B6) in the same manner as in Production Example 1, except that "the weight average particle diameter was 340 μm and SPAN was 0.8" was changed to "the weight average particle diameter was 355 μm and SPAN was 0.7". I got
 <製造例B7>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-1)0.30部と浸透剤(D-1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL-20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B7)を得た。
<Production Example B7>
"0.19 parts of hydrophobic substance (C-1)" is replaced with "0.30 parts of hydrophobic substance (C-1) and penetrant (D-1) @polyoxyethylene alkyl ether, NAROACTY CL manufactured by Sanyo Chemical Co., Ltd. Production Example 1 except that “−20} 0.20 parts” was changed and “weight average particle diameter was 340 μm, SPAN was 0.8” was changed to “weight average particle diameter was 321 μm, SPAN was 0.8”. In the same manner as in the above, crosslinked polymer particles (A1-B7) were obtained.
 <製造例B8>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-2)0.30部と浸透剤(D-1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL-20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B8)を得た。
<Production Example B8>
"0.19 part of hydrophobic substance (C-1)" is replaced with "0.30 part of hydrophobic substance (C-2) and penetrant (D-1) @polyoxyethylene alkyl ether, NAROACTY CL manufactured by Sanyo Chemical Co., Ltd." Production Example 1 except that “−20} 0.20 parts” was changed and “weight average particle diameter was 340 μm, SPAN was 0.8” was changed to “weight average particle diameter was 321 μm, SPAN was 0.8”. In the same manner as in the above, crosslinked polymer particles (A1-B8) were obtained.
 <製造例B9>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-3)0.30部と浸透剤(D-1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティ―CL-20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B9)を得た。
<Production Example B9>
"0.19 parts of hydrophobic substance (C-1)" is replaced with "0.30 parts of hydrophobic substance (C-3) and penetrant (D-1) @polyoxyethylene alkyl ether, NAROACTY-CL manufactured by Sanyo Chemical Co., Ltd. Production Example 1 except that “−20} 0.20 parts” was changed and “weight average particle diameter was 340 μm, SPAN was 0.8” was changed to “weight average particle diameter was 321 μm, SPAN was 0.8”. In the same manner as in the above, crosslinked polymer particles (A1-B9) were obtained.
 <製造例B10>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-4)0.30部と浸透剤(D-1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL-20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B10)を得た。
<Production Example B10>
"0.19 parts of hydrophobic substance (C-1)" is replaced with "0.30 parts of hydrophobic substance (C-4) and penetrant (D-1) @polyoxyethylene alkyl ether, NAROACTY CL manufactured by Sanyo Chemical Co., Ltd." Production Example 1 except that “−20} 0.20 parts” was changed and “weight average particle diameter was 340 μm, SPAN was 0.8” was changed to “weight average particle diameter was 321 μm, SPAN was 0.8”. In the same manner as in the above, crosslinked polymer particles (A1-B10) were obtained.
 <製造例B11>
 「疎水性物質(C-1)0.19部」を「疎水性物質(C-5)0.30部と浸透剤(D-1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL-20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1-B11)を得た。
<Production Example B11>
"0.19 part of hydrophobic substance (C-1)" is replaced with "0.30 part of hydrophobic substance (C-5) and penetrant (D-1) @polyoxyethylene alkyl ether, NAROACTY CL manufactured by Sanyo Chemical Co., Ltd." Production Example 1 except that “−20} 0.20 parts” was changed and “weight average particle diameter was 340 μm, SPAN was 0.8” was changed to “weight average particle diameter was 321 μm, SPAN was 0.8”. In the same manner as in the above, crosslinked polymer particles (A1-B11) were obtained.
 <実施例1>
 製造例1で得られた架橋重合体粒子(A1-1)100重量部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としてのエチレングリコールジグリシジルエーテル0.04重量部及び溶剤としての50%プロピレングリコール水溶液3.0重量部を混合した混合溶液を添加し、均一混合した後、130℃で30分間静置することで乾燥して、その乾燥体をふるい分けすることで、重量平均粒子径366μm、SPAN0.8である本発明の吸水性樹脂(P-1)を得た。
<Example 1>
While 100 parts by weight of the crosslinked polymer particles (A1-1) obtained in Production Example 1 were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: 2,000 rpm), ethylene glycol distilling agent as a surface crosslinking agent was added thereto. A mixed solution obtained by mixing 0.04 parts by weight of glycidyl ether and 3.0 parts by weight of a 50% aqueous propylene glycol solution as a solvent was added, and after uniform mixing, the mixture was dried by standing at 130 ° C. for 30 minutes. The dried product was sieved to obtain a water-absorbent resin (P-1) of the present invention having a weight average particle size of 366 μm and a SPAN of 0.8.
 <実施例2>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-2)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径384μm、SPAN0.6である本発明の吸水性樹脂(P-2)を得た。
<Example 2>
“100 parts by weight of crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of crosslinked polymer particles (A1-2)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” is changed to “ethylene glycol diglycidyl ether”. A water-absorbent resin (P-2) of the present invention having a weight average particle diameter of 384 μm and a SPAN of 0.6 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.03 parts by weight.
 <実施例3>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-3)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径299μm、SPAN0.9である本発明の吸水性樹脂(P-3)を得た。
<Example 3>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-3)”, the weight average particle diameter was 299 μm and SPAN0 was the same as in Example 1. 2.9 was obtained.
 <実施例4>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-4)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径210μm、SPAN0.9である本発明の吸水性樹脂(P-4)を得た。
<Example 4>
“100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-4)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” was changed to “ethylene glycol diglycidyl ether”. A water-absorbent resin (P-4) of the present invention having a weight average particle diameter of 210 μm and a SPAN of 0.9 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.03 parts by weight.
 <実施例5>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-5)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.02重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径323μm、SPAN0.8である本発明の吸水性樹脂(P-5)を得た。
<Example 5>
“100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-5)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” was changed to “ethylene glycol diglycidyl ether”. A water-absorbent resin (P-5) of the present invention having a weight average particle diameter of 323 μm and a SPAN of 0.8 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.02 parts by weight.
 <実施例6>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B1)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径367μm、SPAN0.8である本発明の吸水性樹脂(P-6)を得た。
<Example 6>
Except that "100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-B1)", a weight average particle diameter of 367 μm and SPAN0 were obtained in the same manner as in Example 1. Thus, the water-absorbent resin (P-6) of the present invention having a pH of 0.8 was obtained.
 <実施例7>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B2)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径333μm、SPAN0.8である本発明の吸水性樹脂(P-7)を得た。
<Example 7>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B2)”, a weight average particle diameter of 333 μm, SPAN0 was obtained in the same manner as in Example 1. Water-absorbent resin (P-7) of the present invention having a pH of 0.8 was obtained.
 <実施例8>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B3)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径359μm、SPAN0.7である本発明の吸水性樹脂(P-8)を得た。
<Example 8>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B3)”, a weight average particle diameter of 359 μm, SPAN0 was obtained in the same manner as in Example 1. The water-absorbent resin (P-8) of the present invention having a pH of 0.7 was obtained.
 <実施例9>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B4)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径331μm、SPAN0.7である本発明の吸水性樹脂(P-9)を得た。
<Example 9>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B4)”, the weight average particle diameter was 331 μm and SPAN0 was the same as in Example 1. The water-absorbent resin (P-9) of the present invention having a pH of 0.7 was obtained.
 <実施例10>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B5)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径372μm、SPAN0.7である本発明の吸水性樹脂(P-10)を得た。
<Example 10>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B5)”, a weight average particle diameter of 372 μm, SPAN0 was obtained in the same manner as in Example 1. Water-absorbent resin (P-10) of the present invention having a pH of 0.7.
 <実施例11>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B6)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径362μm、SPAN0.8である本発明の吸水性樹脂(P-11)を得た。
<Example 11>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B6)”, a weight average particle diameter of 362 μm, SPAN0 was obtained in the same manner as in Example 1. Water-absorbent resin (P-11) of the present invention having a pH of 0.8 was obtained.
 <実施例12>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B7)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径332μm、SPAN0.8である本発明の吸水性樹脂(P-12)を得た。
<Example 12>
Except that "100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-B7)", a weight average particle diameter of 332 μm, SPAN0 was obtained in the same manner as in Example 1. Thus, a water-absorbent resin (P-12) of the present invention having a pH of 0.8 was obtained.
 <実施例13>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B8)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径335μm、SPAN0.8である本発明の吸水性樹脂(P-13)を得た。
<Example 13>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B8)”, a weight average particle diameter of 335 μm, SPAN0 was obtained in the same manner as in Example 1. 0.8 was obtained.
 <実施例14>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B9)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径334μm、SPAN0.8である本発明の吸水性樹脂(P-14)を得た。
<Example 14>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B9)”, a weight average particle diameter of 334 μm, SPAN0 was obtained in the same manner as in Example 1. Water-absorbent resin (P-14) of the present invention having a pH of 0.8.
 <実施例15>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B10)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径330μm、SPAN0.8である本発明の吸水性樹脂(P-15)を得た。
<Example 15>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-B10)”, the weight average particle diameter was 330 μm and SPAN0 was the same as in Example 1. 0.8 was obtained.
 <実施例16>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-B11)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径332μm、SPAN0.8である本発明の吸水性樹脂(P-16)を得た。
<Example 16>
Except that "100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-B11)", a weight average particle diameter of 332 μm, SPAN0 was obtained in the same manner as in Example 1. Thus, a water-absorbent resin (P-16) of the present invention having a pH of 0.8 was obtained.
<比較例1>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-6)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径365μm、SPAN1.2である比較用の吸水性樹脂(R-1)を得た。
<Comparative Example 1>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-6)”, a weight average particle diameter of 365 μm was obtained in the same manner as in Example 1. 2 was obtained as a comparative water-absorbent resin (R-1).
<比較例2>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-7)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径428μm、SPAN0.8である比較用の吸水性樹脂(R-2)を得た。
<Comparative Example 2>
“100 parts by weight of crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of crosslinked polymer particles (A1-7)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” is changed to “ethylene glycol diglycidyl ether”. A comparative water-absorbent resin (R-2) having a weight average particle size of 428 μm and a SPAN of 0.8 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.03 parts by weight.
<比較例3>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-8)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径180μm、SPAN1.0である比較用の吸水性樹脂(R-3)を得た。
<Comparative Example 3>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-8)”, a weight average particle diameter of 180 μm and SPAN1 were obtained in the same manner as in Example 1. Water absorbent resin (R-3) for comparison was obtained.
<比較例4>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-9)100重量部」に変更し、表面架橋剤の混合溶液に「カルボキシ変性ポリシロキサン(信越化学工業株式会社製:X-22-3701E)0.01重量部」を追加したこと以外、実施例1と同様にして、重量平均粒子径346μm、SPAN0.8である比較用の吸水性樹脂(R-4)を得た。
<Comparative Example 4>
"100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-9)", and "carboxy-modified polysiloxane (Shin-Etsu Chemical Co., Ltd.) Company: X-22-3701E) in the same manner as in Example 1 except that 0.01 part by weight) was added, and a comparative water-absorbent resin (R-4) having a weight average particle size of 346 μm and a SPAN of 0.8 was used. ) Got.
<比較例5>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-10)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径305μm、SPAN0.9である比較用の吸水性樹脂(R-5)を得た。
<Comparative Example 5>
“100 parts by weight of crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of crosslinked polymer particles (A1-10)”, and “0.04 parts by weight of ethylene glycol diglycidyl ether” is changed to “ethylene glycol diglycidyl ether”. A comparative water-absorbent resin (R-5) having a weight average particle diameter of 305 μm and a SPAN of 0.9 was obtained in the same manner as in Example 1, except that the glycidyl ether was changed to 0.03 parts by weight.
<比較例6>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-11)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径458μm、SPAN0.7である比較用の吸水性樹脂(R-6)を得た。
<Comparative Example 6>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-11)”, a weight average particle diameter of 458 μm, SPAN0 was obtained in the same manner as in Example 1. Thus, a comparative water-absorbent resin (R-6) having a weight ratio of 0.7 was obtained.
<比較例7>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-12)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径382μm、SPAN1.2である比較用の吸水性樹脂(R-7)を得た。
<Comparative Example 7>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-12)”, a weight average particle diameter of 382 μm, SPAN1 was obtained in the same manner as in Example 1. 2 was obtained as a comparative water absorbent resin (R-7).
<比較例8>
 「架橋重合体粒子(A1-1)100重量部」を「架橋重合体粒子(A1-13)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径261μm、SPAN1.5である比較用の吸水性樹脂(R-8)を得た。
<Comparative Example 8>
Except that “100 parts by weight of crosslinked polymer particles (A1-1)” was changed to “100 parts by weight of crosslinked polymer particles (A1-13)”, a weight average particle diameter of 261 μm and SPAN1 were obtained in the same manner as in Example 1. Thus, a comparative water-absorbent resin (R-8) was obtained.
 実施例1~16および比較例1~8で得た吸水性樹脂について、測定した物理的性質{重量平均粒子径、SPAN}および性能評価結果{DW法による吸収量、保水量、ロックアップ法による吸収速度}を表1に示す。なお、表1中、M1およびM2は、それぞれDW法による1分後の吸収量および5分後の吸収量を示し、%は架橋重合体(A1)の重量に基づく、含有量(重量%)を示す。 For the water-absorbent resins obtained in Examples 1 to 16 and Comparative Examples 1 to 8, measured physical properties {weight average particle size, SPAN} and performance evaluation results {absorption amount by DW method, water retention amount, lock-up method Table 1 shows the absorption rate}. In Table 1, M1 and M2 indicate the absorption after 1 minute and the absorption after 5 minutes, respectively, by the DW method, and% is the content (% by weight) based on the weight of the crosslinked polymer (A1). Is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から判るように、本発明の吸水樹脂粒子(実施例1~16)は、SPANが小さく(粒度分布が狭い)、重量平均粒子径及び吸収速度パターンが適切である。具体的には、実施例2,5では疎水性物質を用いていないが、重量平均粒子径とSPANを適切に設定することで適切な吸収速度パターンとなっている。実施例1、3、4では重量平均粒子径の違いによる吸収速度パターンの変化を、疎水性物質の含有量を調整することにより、吸収速度パターンを特定範囲に制御できていることが分かる。また、実施例6~11では他の好適な疎水性物質を用いた例を例示している。さらに、実施例12~16では、疎水性物質(C)と浸透剤(D)を併用することにより、更にロックアップ法による吸収速度が改良できていることが分かる。一方、比較例1、7は実施例1と比べて、SPANが高いため粒度分布が広く、M2が低くロックアップ法による吸収速度が遅い傾向にある。比較例2はSPANが低いものの、重量平均粒子径が大きく、ロックアップ法による吸収速度が遅い。比較例4は疎水性の強い「カルボキシ変性ポリシロキサン(信越化学工業株式会社製:X-22-3701E)」を表面架橋に用いておりM2が低下し、ロックアップ法による吸収速度が遅くなっている。比較例5では疎水性物質を用いずに重量平均粒子径を下げており、M1が過剰に高くなっている。比較例6では重量平均粒子径が高く疎水性物質も用いており、M1が低く、ロックアップ法による吸収速度が低下している。比較例3、8では重量平均粒子径が小さく、かつSPANが高いためM1が過剰に高くなっている。 判 As can be seen from Table 1, the water-absorbing resin particles of the present invention (Examples 1 to 16) have a small SPAN (narrow particle size distribution) and an appropriate weight average particle size and absorption rate pattern. Specifically, in Examples 2 and 5, no hydrophobic substance was used, but an appropriate absorption rate pattern was obtained by appropriately setting the weight average particle diameter and SPAN. In Examples 1, 3, and 4, it can be seen that the absorption rate pattern due to the difference in the weight average particle diameter can be controlled to a specific range by adjusting the content of the hydrophobic substance. Examples 6 to 11 illustrate examples using other suitable hydrophobic substances. Furthermore, in Examples 12 to 16, it can be seen that the combined use of the hydrophobic substance (C) and the penetrant (D) further improved the absorption rate by the lock-up method. On the other hand, Comparative Examples 1 and 7 tend to have a higher SPAN and therefore a broader particle size distribution, a lower M2 and a lower absorption rate by the lock-up method than Example 1. In Comparative Example 2, although the SPAN was low, the weight average particle diameter was large, and the absorption rate by the lock-up method was low. Comparative Example 4 uses a highly hydrophobic “carboxy-modified polysiloxane (X-22-3701E, manufactured by Shin-Etsu Chemical Co., Ltd.)” for surface cross-linking, decreases M2, and decreases the absorption rate by the lock-up method. I have. In Comparative Example 5, the weight average particle diameter was reduced without using a hydrophobic substance, and M1 was excessively high. Comparative Example 6 has a high weight average particle diameter and also uses a hydrophobic substance, has a low M1, and has a low absorption rate by the lock-up method. In Comparative Examples 3 and 8, M1 is excessively high because the weight average particle diameter is small and SPAN is high.
 引き続き、SPANが低く、吸収速度パターンが適切であると、吸収性物品に適用したとき、どのような吸収特性を示すか評価した。実施例1~16および比較例1~8で得た吸水性樹脂粒子を用いて、以下のようにして、吸収性物品(紙おむつ)を調製し、表面不織布からの液引きによるドライ性およびSDME法による表面ドライネス値を評価し、この結果を表2に示した。 Subsequently, when the SPAN was low and the absorption rate pattern was appropriate, what kind of absorption characteristics when applied to an absorbent article was evaluated. Using the water-absorbent resin particles obtained in Examples 1 to 16 and Comparative Examples 1 to 8, an absorbent article (paper diaper) was prepared as follows, and the dryness and the SDME method by liquid drainage from a surface nonwoven fabric were performed. The surface dryness value was evaluated, and the results are shown in Table 2.
<吸収体の調製>
 10cm×40cmの長方形に細断した不織布A(目付量40g/m、厚さ0.5mm、ポリプロピレン製)に、接着剤としてスチレン-ブタジエン-スチレン共重合体(SBS;軟化点85℃)をホットメルト塗布機(AD41、Nordson製)で目付量2.85g/mとなるように均一に塗布する。接着剤を塗布した面に、評価試料{吸水性樹脂粒子}10.6g(目付量265g/m)を均一に散布した後、10cm×40cmの長方形に細断した不織布B(目付量45g/m、厚さ7.0mm、ポリプロピレン製)を重ねた。その不織布A-吸水性樹脂-不織布Bとなったシートをアクリル板(厚み4mm)で挟み、5kg/cmの圧力で30秒間プレスした。プレス後、不織布A側のアクリル板を取り外し、上記と同様の方法で、接着剤と吸水性樹脂および不織布Bを積層し、再びアクリル板で挟み、5kg/cmの圧力で30秒間プレスし、吸収体を調製した。
<Preparation of absorber>
A styrene-butadiene-styrene copolymer (SBS; softening point: 85 ° C.) was used as an adhesive on a nonwoven fabric A (basis weight: 40 g / m 2 , thickness: 0.5 mm, made of polypropylene) cut into rectangular pieces of 10 cm × 40 cm. A hot melt coater (AD41, manufactured by Nordson) is used to uniformly apply to a basis weight of 2.85 g / m 2 . An evaluation sample {water-absorbent resin particles} 10.6 g (basis weight 265 g / m 2 ) was evenly spread on the surface to which the adhesive was applied, and then nonwoven fabric B (basis weight 45 g / m 2 , thickness 7.0 mm, made of polypropylene). Its nonwoven A- absorbent resin - sandwiching sheets became nonwoven B in the acrylic plate (thickness 4 mm), and pressed for 30 seconds at a pressure of 5 kg / cm 2. After pressing, the acrylic plate on the nonwoven fabric A side is removed, the adhesive, the water-absorbent resin, and the nonwoven fabric B are laminated in the same manner as described above, sandwiched again with the acrylic plate, and pressed at a pressure of 5 kg / cm 2 for 30 seconds. An absorber was prepared.
<吸収性物品の調製>
 上記吸収体の片方の面に、ポリエチレンシート(タマポリ社製ポリエチレンフィルムUB-1)、反対側の面に不織布(坪量20g/m、旭化成社製エルタスガード)を配置することにより吸収性物品を調製した。
<Preparation of absorbent article>
An absorbent article is provided by disposing a polyethylene sheet (polyethylene film UB-1 manufactured by Tamapoli) on one surface of the absorber and a nonwoven fabric (20 g / m 2 basis weight, Eltas Guard manufactured by Asahi Kasei Corporation) on the other surface. Was prepared.
<表面不織布からの液引きによるドライ性試験>
 横11cm×縦41cm×高さ4cmで上部(11cm×41cmの面)が空いた箱(ステンレス製)の中に上記で作成した吸収体を入れた。32±2℃に調整した脱イオン水500mlを用意し、吸収体を入れた箱の中へ一気に流し込んだ。脱イオン水が吸収体と接触したと同時に時間の計測を開始した。表面不織布に保持された脱イオン水が吸水性樹脂に吸収され、表面不織布が白く見える範囲が不織布の半分になるまでの時間(白化時間)を記録した。
<Dry test by liquid drainage from surface nonwoven fabric>
The absorber prepared above was placed in a box (made of stainless steel) having a width of 11 cm × a length of 41 cm × a height of 4 cm and an open upper portion (11 cm × 41 cm). 500 ml of deionized water adjusted to 32 ± 2 ° C. was prepared and poured into the box containing the absorber at a stretch. Time measurement was started as soon as the deionized water came in contact with the absorber. The time (whitening time) until the deionized water retained on the surface nonwoven fabric was absorbed by the water-absorbent resin and the area where the surface nonwoven fabric appeared white became half of the nonwoven fabric was recorded.
<SDME法による表面ドライネス値>
 SDME(Surface Dryness Measurement Equipment)試験器(WK system社製)の検出器を十分に湿らした紙おむつ{人工尿(塩化カリウム0.03重量%、硫酸マグネシウム0.08重量%、塩化ナトリウム0.8重量%及び脱イオン水99.09重量%)の中に紙おむつを浸し、60分放置して調製した。}の上に置き、0%ドライネス値を設定し、次に、SDME試験器の検出器を乾いた紙おむつ{紙おむつを80℃、2時間加熱乾燥して調製した。}の上に置き100%ドライネスを設定し、SDME試験器の校正を行った。次に、測定する紙おむつの中央に金属リング(内径70mm、長さ50mm)をセットし、人工尿80mlを注入し、人工尿を吸収し終えたら{人工尿による光沢が確認できなくなったら}、直ちに金属リングを取り去り、紙おむつの中央及びその左右{紙おむつ40cmの端から10cmの等間隔に3箇所}にSDME検出器を3つ載せて、表面ドライネス値の測定を開始し、測定開始から5分後の値を3つのSDME検出器のうち、中央の検出器のドライネス値を表面ドライネス値(1-1){中央}、残りの2つのSDME検出器のドライネス値を表面ドライネス値(1-2){左}、表面ドライネス値(1-3){右}とした。なお、人工尿、測定雰囲気及び放置雰囲気は、25±5℃、65±10%RHで行った。
<Surface dryness value by SDME method>
A disposable diaper in which the detector of an SDME (Surface Dryness Measurement Equipment) tester (manufactured by WK system) is sufficiently moistened. Artificial urine (0.03% by weight of potassium chloride, 0.08% by weight of magnesium sulfate, 0.8% by weight of sodium chloride) % And 99.09% by weight of deionized water) to prepare a paper diaper. SD, and a 0% dryness value was set. Then, the detector of the SDME tester was prepared by drying and drying the paper diaper at 80 ° C. for 2 hours. The sample was placed on the}, 100% dryness was set, and the SDME tester was calibrated. Next, set a metal ring (inner diameter 70 mm, length 50 mm) in the center of the disposable diaper to be measured, inject 80 ml of artificial urine, and when absorption of the artificial urine is completed {if the gloss due to the artificial urine cannot be confirmed}, immediately Remove the metal ring, place three SDME detectors at the center of the disposable diaper and on the left and right sides (3 places at equal intervals of 10 cm from the end of the disposable diaper), start measuring the surface dryness value, and 5 minutes after the start of measurement Of the three SDME detectors, the dryness value of the central detector is the surface dryness value (1-1) {center}, and the dryness values of the remaining two SDME detectors are the surface dryness values (1-2). {Left}, surface dryness value (1-3) {right}. The measurement was performed at 25 ± 5 ° C. and 65 ± 10% RH in artificial urine, measurement atmosphere and standing atmosphere.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から判るように、本発明の吸水性樹脂粒子を使用した吸収体および吸収性物品は、比較用の吸水性樹脂粒子を使用した吸収体および吸収性物品に比べ、白化時間および表面ドライネス値(1-1)、(1-2)、(1-3)に偏りがなくドライ性に優れている。一方、比較例1、7、8はSPANが高いため、比較例2、6は重量平均粒子径が大きいため、比較例4では5分後吸収量(M2)が低いために白化時間、即ち不織布表面からの液引き性が劣っている。比較例3、5および8ではM1が過剰に高くなっているために液拡散性が劣りスポット吸収を起こすために表面ドライネス値の偏りが生じドライ性が悪くなっている。なお、比較例1、2、4および6~8ではロックアップ法による吸収速度も遅いことからも白化時間が低下する傾向にあることが分かる。すなわち、本発明の吸水性樹脂粒子は、吸収体および吸収性物品に適用したとき、不織布からの液引き性および表面ドライ性に優れ、カブレ等の心配がないことが容易に予測される。 As can be seen from Table 2, the absorbent and the absorbent article using the water-absorbent resin particles of the present invention have a whitening time and a surface dryness value, as compared with the absorbent and the absorbent article using the comparative water-absorbent resin particles. (1-1), (1-2) and (1-3) have no bias and are excellent in dryness. On the other hand, Comparative Examples 1, 7, and 8 had a high SPAN, Comparative Examples 2 and 6 had a large weight average particle diameter, and Comparative Example 4 had a low absorption amount (M2) after 5 minutes, and thus had a whitening time, that is, a nonwoven fabric. Poor liquid drainage from the surface. In Comparative Examples 3, 5 and 8, since M1 was excessively high, the liquid diffusibility was poor, and spot absorption was caused, so that the surface dryness value was biased and the dryness was poor. In Comparative Examples 1, 2, 4, and 6 to 8, the absorption speed by the lock-up method is also slow, which indicates that the whitening time tends to decrease. That is, when the water-absorbent resin particles of the present invention are applied to an absorbent body and an absorbent article, it is easily predicted that the non-woven fabric is excellent in liquid drainage and surface dryness, and there is no fear of rash and the like.
 本発明の吸水性樹脂粒子は、吸水性樹脂粒子と繊維状物とを含有してなる吸収体に適用でき、この吸収体を備えてなる吸収性物品{紙おむつ、生理用ナプキンおよび医療用保血剤等}に有用である。また、ペット尿吸収剤、携帯トイレ用尿ゲル化剤、青果物用鮮度保持剤、肉類・魚介類用ドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物・土壌用保水剤、結露防止剤、止水剤、パッキング剤および人口雪等の種々の用途にも使用できる。 The water-absorbent resin particles of the present invention can be applied to an absorber containing the water-absorbent resin particles and a fibrous material, and an absorbent article provided with the absorber, a disposable diaper, a sanitary napkin, and a medical blood retention. It is useful for agents and the like. In addition, pet urine absorbent, urine gelling agent for portable toilets, freshness preserving agent for fruits and vegetables, drip absorbing agent for meat and seafood, cooling agent, disposable body warmer, gelling agent for batteries, water retaining agent for plants and soil, dew condensation It can also be used for various applications such as inhibitors, waterproofing agents, packing agents and artificial snow.
1 ゴム栓
2 ビュレット部
3 生理食塩水
4 吸水性樹脂粒子
5 平織りナイロンメッシュ
6 測定台
7 コック
8 コック
9 空気導入管

 
DESCRIPTION OF SYMBOLS 1 Rubber stopper 2 Bullet part 3 Physiological saline 4 Water-absorbing resin particles 5 Plain-woven nylon mesh 6 Measurement table 7 Cock 8 Cock 9 Air introduction pipe

Claims (6)

  1.  水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)、並びに架橋剤(b)を必須構成単位とする架橋重合体(A1)を含んでなる吸水性樹脂粒子であって、吸水性樹脂粒子の重量平均粒子径(μm)が200~400であり、下記の数式1で表されるスパン値(SPAN)が1.0以下であり、吸水性樹脂粒子のDW(Demand Wettability)法による1分後の吸収量(M1)が10~15ml/gであり、5分後の吸収量(M2)が45~55ml/gである吸水性樹脂粒子。
     SPAN=[D(90%)-D(10%)]/D(50%)≦1.0  (数式1)
    (数式1中、D(10%)は、標準ふるいを用いて分級した吸水性樹脂粒子の全体重量を100重量%として粒子径が最も小さい粒子からの累積重量分率が10重量%となる粒子径であり、D(50%)は、累積重量分率が50重量%となる粒子径であり、D(90%)は累積重量分率が90重量%となる粒子径である。)
    It comprises a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis, and a crosslinked polymer (A1) having a crosslinker (b) as an essential constituent unit. Water-absorbent resin particles, the weight-average particle size (μm) of the water-absorbent resin particles is 200 to 400, the span value (SPAN) represented by the following formula 1 is 1.0 or less, Water-absorbent resin particles having an absorption (M1) of 1 to 15 ml / g after 1 minute and an absorption (M2) of 45 to 55 ml / g after 5 minutes according to a DW (Demand Wetability) method.
    SPAN = [D (90%)-D (10%)] / D (50%) ≦ 1.0 (Equation 1)
    (In Formula 1, D (10%) is a particle having a cumulative weight fraction of 10% by weight from the particle having the smallest particle size, with the total weight of the water-absorbent resin particles classified using a standard sieve being 100% by weight. D (50%) is the particle size at which the cumulative weight fraction is 50% by weight, and D (90%) is the particle size at which the cumulative weight fraction is 90% by weight.)
  2.  前記吸水性樹脂粒子が疎水性物質(C)を含有している請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1, wherein the water-absorbent resin particles contain a hydrophobic substance (C).
  3.  前記吸水性樹脂粒子のイオン交換水のロックアップ法による吸収速度が25秒以下である請求項1又は2に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1 or 2, wherein the water-absorbent resin particles have an absorption rate of 25 seconds or less by a lock-up method of ion-exchanged water.
  4.  前記吸水性樹脂粒子の生理食塩水の保水量が35~40g/gである請求項1~3のいずれかに記載の吸水性樹脂粒子。 (4) The water-absorbent resin particles according to any one of (1) to (3), wherein the water-absorbent resin particles have a water retention capacity of physiological saline of 35 to 40 g / g.
  5.  請求項1~4のいずれかに記載の吸水性樹脂粒子と不織布とを含有してなる吸収体。 An absorbent body comprising the water-absorbent resin particles according to any one of claims 1 to 4 and a nonwoven fabric.
  6.  請求項5に記載の吸収体を備えてなる吸収性物品。

     
    An absorbent article comprising the absorber according to claim 5.

PCT/JP2019/027845 2018-07-19 2019-07-16 Water absorbing resin particles, and absorbent body and absorbent article containing same WO2020017483A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980043449.7A CN112334517B (en) 2018-07-19 2019-07-16 Water-absorbent resin particles, absorbent body comprising same, and absorbent article
JP2020531306A JP7339253B2 (en) 2018-07-19 2019-07-16 Water absorbent resin particles, absorbent body and absorbent article containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018135677 2018-07-19
JP2018-135677 2018-07-19

Publications (1)

Publication Number Publication Date
WO2020017483A1 true WO2020017483A1 (en) 2020-01-23

Family

ID=69163782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027845 WO2020017483A1 (en) 2018-07-19 2019-07-16 Water absorbing resin particles, and absorbent body and absorbent article containing same

Country Status (3)

Country Link
JP (1) JP7339253B2 (en)
CN (1) CN112334517B (en)
WO (1) WO2020017483A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089525A (en) * 2004-09-21 2006-04-06 Sumitomo Seika Chem Co Ltd Method for producing water-absorbing resin particle
JP2010116548A (en) * 2008-10-14 2010-05-27 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, absorbent containing the same and absorptive article
JP2012143755A (en) * 2004-03-29 2012-08-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water absorbing resin as main component
JP2014014666A (en) * 2012-06-11 2014-01-30 Kao Corp Absorber, and absorbent article using the same
JP2015515534A (en) * 2012-04-25 2015-05-28 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same
WO2015146603A1 (en) * 2014-03-26 2015-10-01 住友精化株式会社 Method for producing water-absorbing resin particle
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2018050835A (en) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 Absorbent article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2260876B1 (en) 2003-09-19 2021-08-04 Nippon Shokubai Co., Ltd. Water absorbent product and method for producing the same
CN103272571B (en) 2004-08-06 2015-05-13 株式会社日本触媒 Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
JP2010065107A (en) 2008-09-10 2010-03-25 San-Dia Polymer Ltd Absorbable resin particles and absorbable article
EP3312218A4 (en) 2015-06-19 2018-06-27 Nippon Shokubai Co., Ltd. Poly (meth) acrylic acid (salt) granular water absorbent and method for producing same
CN109310986B (en) 2016-03-28 2022-03-15 株式会社日本触媒 Particulate water absorbent
EP3586957B1 (en) 2017-02-22 2022-03-30 Nippon Shokubai Co., Ltd. Absorbent article comprising water-absorbing sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143755A (en) * 2004-03-29 2012-08-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water absorbing resin as main component
JP2006089525A (en) * 2004-09-21 2006-04-06 Sumitomo Seika Chem Co Ltd Method for producing water-absorbing resin particle
JP2010116548A (en) * 2008-10-14 2010-05-27 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, absorbent containing the same and absorptive article
JP2015515534A (en) * 2012-04-25 2015-05-28 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same
JP2014014666A (en) * 2012-06-11 2014-01-30 Kao Corp Absorber, and absorbent article using the same
WO2015146603A1 (en) * 2014-03-26 2015-10-01 住友精化株式会社 Method for producing water-absorbing resin particle
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2018050835A (en) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 Absorbent article

Also Published As

Publication number Publication date
CN112334517B (en) 2023-10-24
CN112334517A (en) 2021-02-05
JPWO2020017483A1 (en) 2021-08-12
JP7339253B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
KR102577371B1 (en) Process for producing aqueous-liquid-absorbing resin particles, aqueous-liquid-absorbing resin particles, absorbent, and absorbent article
JP6013729B2 (en) Water-absorbent resin powder and absorbent body and absorbent article using the same
WO2018147317A1 (en) Water-absorbent resin particles, and absorber and absorbent article in which same are used
KR20110114535A (en) Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
JP2013132434A (en) Absorbent article
US20180044487A1 (en) Method for producing aqueous-liquid absorbent resin particles, absorbent body, and absorbent article
JP2023099531A (en) Production method of water-absorbing resin particle
TW201836653A (en) Absorbent body and absorbent article comprising the same
JP2020125472A (en) Water-absorbing resin particles and method for producing the same
WO2016114245A1 (en) Absorbent article
WO2018181277A1 (en) Absorbent article
WO2020017483A1 (en) Water absorbing resin particles, and absorbent body and absorbent article containing same
JP7120739B2 (en) Absorbent resin composition particles and method for producing the same
JP7448301B2 (en) Water absorbent resin particles, absorbent bodies and absorbent articles containing the same
WO2020144948A1 (en) Water absorbent resin particles and production method therefor
JP7108422B2 (en) Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
JP2018039924A (en) Method for producing aqueous liquid absorptive resin particle
JP2018021090A (en) Absorptive resin particle and method for producing the same
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JPWO2018225815A1 (en) Water-absorbing resin particles and method for producing the same
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
JP6979759B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using the same
WO2019059019A1 (en) Water-absorbing resin composition and production method therefor
JP2018202170A (en) Absorbent article
JP2018202165A (en) Absorbent article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838568

Country of ref document: EP

Kind code of ref document: A1