JP2006089525A - Method for producing water-absorbing resin particle - Google Patents

Method for producing water-absorbing resin particle Download PDF

Info

Publication number
JP2006089525A
JP2006089525A JP2004273503A JP2004273503A JP2006089525A JP 2006089525 A JP2006089525 A JP 2006089525A JP 2004273503 A JP2004273503 A JP 2004273503A JP 2004273503 A JP2004273503 A JP 2004273503A JP 2006089525 A JP2006089525 A JP 2006089525A
Authority
JP
Japan
Prior art keywords
water
stage
phase suspension
suspension polymerization
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004273503A
Other languages
Japanese (ja)
Inventor
Hidenobu Kakimoto
英伸 垣本
Masaya Matsuda
賢哉 松田
Kimihiko Kondo
公彦 近藤
Yasuhiro Nawata
康博 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2004273503A priority Critical patent/JP2006089525A/en
Publication of JP2006089525A publication Critical patent/JP2006089525A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/14Organic medium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a water-absorbing resin particle comprising small amounts of fine powder and coarse powder and having a narrow particle size distribution. <P>SOLUTION: The method for producing a water-absorbing resin particle by subjecting a water-soluble ethylenic unsaturated monomer to reversed phase suspension polymerization comprises (A) subjecting an aqueous solution of a water-soluble ethylenic unsaturated monomer to first-stage reversed phase suspension polymerization in the presence of a surfactant and/or a polymer protective colloid and, if necessary, an internal crosslinking agent by using a water-soluble radical polymerization initiator in a hydrocarbon-based solvent, (B) adding an aqueous solution of a water-soluble ethylenic unsaturated monomer, which comprises a water-soluble radical polymerization initiator, 1.2-2.5 mols of a water-soluble ethylenic unsaturated monomer based on 1 mol of the water-soluble ethylenic unsaturated monomer subjected to the first-stage polymerization and optionally an internal crosslinking agent to the reaction mixture after the first-stage reversed phase suspension polymerization in a state in which the surfactant and/or the polymer protective colloid are dissolved in the hydrocarbon-based solvent and (C) then precipitating the surfactant and/or the polymer protective colloid and carrying out second-stage reversed phase suspension polymerization. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吸水性樹脂粒子の製造方法に関する。さらに詳しくは、微粉および粗粉が少なく、粒度分布が狭い吸水性樹脂粒子の製造方法に関する。   The present invention relates to a method for producing water absorbent resin particles. More specifically, the present invention relates to a method for producing water-absorbing resin particles with a small amount of fine powder and coarse powder and a narrow particle size distribution.

吸水性樹脂は、紙おむつ、生理用品等の衛生材料、保水材、土壌改良材等の農園芸材料、ケーブル用止水材、結露防止材等の工業資材等の種々の分野に広く使用されている。   Water-absorbing resins are widely used in various fields such as sanitary materials such as disposable diapers and sanitary items, agricultural and horticultural materials such as water retention materials and soil improvement materials, water-proofing materials for cables, and industrial materials such as anti-condensation materials. .

このような吸水性樹脂としては、例えば、澱粉−アクリロニトリルグラフト共重合体の加水分解物、澱粉−アクリル酸グラフト共重合体の中和物、酢酸ビニル−アクリル酸エステル共重合体のケン化物、ポリアクリル酸部分中和物等が知られている。   Examples of such a water-absorbing resin include a hydrolyzate of starch-acrylonitrile graft copolymer, a neutralized product of starch-acrylic acid graft copolymer, a saponified product of vinyl acetate-acrylic ester copolymer, A partially neutralized acrylic acid is known.

近年、紙おむつ等の吸収性物品は、薄型化が進んでおり、嵩高く吸水量が少ない親水性繊維の含有量を少なくし、吸水量が多い吸水性樹脂の割合を多くする傾向がある。吸水性樹脂を高濃度に含有する吸収体中の吸水性樹脂には、吸水倍率が高いことに加えて液拡散性に優れていることが求められ、さらに吸収体自体として、その肌触りが良好であり、柔軟性があることも求められている。   In recent years, absorbent articles such as paper diapers are becoming thinner, and tend to reduce the content of hydrophilic fibers that are bulky and have a small amount of water absorption, and to increase the proportion of water-absorbing resin that has a large amount of water absorption. The water-absorbent resin in the absorber containing the water-absorbent resin at a high concentration is required to have high liquid diffusibility in addition to a high water absorption ratio, and further, the absorbent body itself has a good touch. There is also a need for flexibility.

前記液拡散性は、一般的に吸水性樹脂中の微粉の割合が大きくなると低下する傾向がある。すなわち、吸水性樹脂粒子中の微粉は、膨潤すると体液等が拡散するための通り道を塞ぎやすく、いわゆる「ゲルブロッキング」を起こしやすい。ゲルブロッキングを起こした吸収体は、液体の拡散性が悪くなるため、本来の吸収体の性能が十分に発揮されずに液体の逆戻り量も多くなる。   The liquid diffusibility generally tends to decrease as the proportion of fine powder in the water absorbent resin increases. That is, the fine powder in the water-absorbent resin particles tends to block the path for body fluid to diffuse when swollen, and so-called “gel blocking” is likely to occur. Since the absorber that has caused gel blocking has poor liquid diffusibility, the performance of the original absorber is not fully exhibited, and the amount of liquid reversion increases.

一方、薄型化された吸収体は、親水性繊維の含有量が少なく吸水性樹脂粒子の割合が大きいため、大きい粒径の割合が大きい吸水性樹脂粒子を使用した場合、吸収体が非常にごつごつしたものとなり、その柔軟性が大きく損なわれる。このような吸収体は、肌触りの感触を重視する紙おむつ等の使用に耐えるものではない。そのため、吸水性能と触感に優れた薄型化吸収体に使用する吸水性樹脂粒子には、微粉および粗粉が少なく、粒度分布が狭い吸水性樹脂粒子が好ましい。   On the other hand, the thinned absorbent body has a low content of hydrophilic fibers and a large proportion of water-absorbent resin particles. Therefore, when water-absorbent resin particles having a large proportion of large particle diameter are used, the absorbent body is very rugged. And its flexibility is greatly impaired. Such an absorber does not endure the use of a paper diaper or the like that places an emphasis on the feel of the touch. Therefore, the water-absorbing resin particles used in the thinned absorbent body excellent in water-absorbing performance and tactile sensation are preferably water-absorbing resin particles with few fine powders and coarse powders and a narrow particle size distribution.

このような吸収性物品に適した粒径の吸水性樹脂粒子を製造する方法としては、逆相懸濁重合法による製造方法において、第1段目モノマーによって吸水性樹脂粒子を生成した後、ポリマー粒子が懸濁した重合反応液に重合性単量体を添加し、これを重合させることによって第1段目粒子を造粒させる方法(例えば、特許文献1参照)、逆相懸濁重合法によって第1段目重合後、ポリマー粒子が懸濁した重合反応液に、HLB7以上の界面活性剤を添加し、第2段目モノマーを第1段目ポリマーゲルに吸収させて重合し、造粒する方法(例えば、特許文献2参照)、第1段目重合後、ポリマー粒子が懸濁した重合反応液に、無機粉末存在下、第2段目モノマーを第1段目ポリマーゲルに吸収させて重合し、造粒する方法(例えば、特許文献3参照)等が提案されている。   As a method for producing water-absorbing resin particles having a particle size suitable for such an absorbent article, a polymer after producing water-absorbing resin particles by the first-stage monomer in the production method by the reverse phase suspension polymerization method is used. By adding a polymerizable monomer to the polymerization reaction liquid in which the particles are suspended and polymerizing the monomer, the first stage particles are granulated (for example, refer to Patent Document 1), or by reverse phase suspension polymerization. After the first stage polymerization, a surfactant of HLB7 or higher is added to the polymerization reaction liquid in which the polymer particles are suspended, the second stage monomer is absorbed into the first stage polymer gel, polymerized, and granulated. Method (for example, refer to Patent Document 2), after the first stage polymerization, the second stage monomer is absorbed in the first stage polymer gel in the presence of the inorganic powder in the polymerization reaction liquid in which the polymer particles are suspended to polymerize. And granulating method (for example, Patent Document 3) Irradiation), and the like have been proposed.

しかしながら、これらの吸水性樹脂粒子は、いずれも、微粉または粗粉が比較的多く、また粒径分布が広く満足しうるものであるとは言い難い。   However, it is difficult to say that any of these water-absorbing resin particles is relatively satisfactory in fine powder or coarse powder and has a wide particle size distribution.

特開平5−17509号公報Japanese Patent Laid-Open No. 5-17509 特開平9−12613号公報JP-A-9-12613 特開平9−77810号公報JP-A-9-77810

本発明の目的は、微粉および粗粉が少なく、粒度分布が狭い吸水性樹脂粒子の製造方法を提供することにある。   An object of the present invention is to provide a method for producing water-absorbing resin particles with a small amount of fine powder and coarse powder and a narrow particle size distribution.

すなわち、本発明は、水溶性エチレン性不飽和単量体を逆相懸濁重合させて吸水性樹脂粒子を製造する方法であって、
(A)界面活性剤および/または高分子保護コロイド、ならびに必要に応じて内部架橋剤の存在下、水溶性ラジカル重合開始剤を用いて、炭化水素系溶媒中で水溶性エチレン性不飽和単量体水溶液を第1段目の逆相懸濁重合に付し、
(B)界面活性剤および/または高分子保護コロイドが炭化水素系溶媒に溶解している状態で、第1段目の逆相懸濁重合が終了した反応混合物に、水溶性ラジカル重合開始剤、第1段目の重合に付した水溶性エチレン性不飽和単量体1モルに対して1.2〜2.5モルの水溶性エチレン性不飽和単量体、および必要に応じて内部架橋剤を含む水溶性エチレン性不飽和単量体水溶液を添加し、
(C)次いで界面活性剤および/または高分子保護コロイドを析出させた後、第2段目の逆相懸濁重合を行うことを特徴とする吸水性樹脂粒子の製造方法に関する。
That is, the present invention is a method for producing water-absorbent resin particles by reverse-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer,
(A) A water-soluble ethylenically unsaturated monomer in a hydrocarbon solvent using a water-soluble radical polymerization initiator in the presence of a surfactant and / or polymer protective colloid and, if necessary, an internal crosslinking agent Subject the aqueous body solution to the first-stage reverse phase suspension polymerization,
(B) In the state where the surfactant and / or the polymer protective colloid is dissolved in the hydrocarbon solvent, a water-soluble radical polymerization initiator is added to the reaction mixture in which the first-stage reversed-phase suspension polymerization is completed, 1.2 to 2.5 moles of water-soluble ethylenically unsaturated monomer with respect to 1 mole of water-soluble ethylenically unsaturated monomer subjected to the first stage polymerization, and, if necessary, an internal crosslinking agent Add a water-soluble ethylenically unsaturated monomer aqueous solution containing
(C) Next, the present invention relates to a method for producing water-absorbing resin particles, characterized in that a surfactant and / or polymer protective colloid is deposited, and then second-phase reversed-phase suspension polymerization is performed.

本発明によれば、微粉および粗粉が少なく、粒度分布が狭い吸水性樹脂粒子が提供される。   According to the present invention, water-absorbent resin particles with a small amount of fine powder and coarse powder and a narrow particle size distribution are provided.

本発明においては、まず、界面活性剤および/または高分子保護コロイド、ならびに必要に応じて内部架橋剤の存在下、水溶性ラジカル重合開始剤を用いて、炭化水素系溶媒中で水溶性エチレン性不飽和単量体水溶液を第1段目の逆相懸濁重合に付する。   In the present invention, first, a water-soluble ethylenic acid is used in a hydrocarbon solvent using a water-soluble radical polymerization initiator in the presence of a surfactant and / or a polymer protective colloid and, if necessary, an internal crosslinking agent. The unsaturated monomer aqueous solution is subjected to the first-stage reverse phase suspension polymerization.

水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸〔「(メタ)アクリ」とは「アクリ」または「メタクリ」を意味する。以下同じ〕、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸またはそのアルカリ金属塩;(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド等のノニオン性モノマー;ジエチルアミノエチル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート等のアミノ基含有不飽和モノマーまたはその四級化物等が挙げられ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。なお、アルカリ金属塩におけるアルカリ金属としては、例えば、リチウム、ナトリウム、カリウム等が挙げられる。   Examples of the water-soluble ethylenically unsaturated monomer include (meth) acrylic acid [“(meth) acryl” means “acryl” or “methacryl”. The same shall apply hereinafter), 2- (meth) acrylamide-2-methylpropanesulfonic acid or alkali metal salts thereof; (meth) acrylamide, N, N-dimethylacrylamide, 2-hydroxyethyl (meth) acrylate, N-methylol (meth) Nonionic monomers such as acrylamide; amino group-containing unsaturated monomers such as diethylaminoethyl (meth) acrylate and diethylaminopropyl (meth) acrylate, or quaternized products thereof may be used. You may mix and use a seed | species or more. In addition, as an alkali metal in an alkali metal salt, lithium, sodium, potassium etc. are mentioned, for example.

水溶性エチレン性不飽和単量体のうち好ましいものは、工業的に入手が容易な点で、(メタ)アクリル酸またはそのアルカリ金属塩、(メタ)アクリルアミドおよびN,N−ジメチルアクリルアミドが挙げられる。   Preferred among the water-soluble ethylenically unsaturated monomers are (meth) acrylic acid or alkali metal salts thereof, (meth) acrylamide and N, N-dimethylacrylamide, because they are easily available industrially. .

水溶性エチレン性不飽和単量体は、水溶液として用いられる。水溶性エチレン性不飽和単量体水溶液における水溶性エチレン性不飽和単量体の濃度は、25重量%〜飽和濃度であることが好ましい。   The water-soluble ethylenically unsaturated monomer is used as an aqueous solution. The concentration of the water-soluble ethylenically unsaturated monomer in the water-soluble ethylenically unsaturated monomer aqueous solution is preferably 25% by weight to the saturated concentration.

水溶性エチレン性不飽和単量体が酸基を含む場合、その酸基をアルカリ金属によって中和してもよい。アルカリ金属による中和度は、得られる吸水性樹脂粒子の浸透圧を大きくし、吸水速度を速くし、余剰のアルカリ金属の存在により安全性等に問題が生じないようにする観点から、中和前の水溶性エチレン性不飽和単量体の酸基の10〜100モル%の範囲内にあることが好ましい。アルカリ金属としては、例えば、リチウム、ナトリウム、カリウム等を挙げることができる。これらの中では、ナトリウムおよびカリウムが好ましい。   When the water-soluble ethylenically unsaturated monomer contains an acid group, the acid group may be neutralized with an alkali metal. The degree of neutralization with alkali metal is neutralized from the viewpoint of increasing the osmotic pressure of the resulting water-absorbent resin particles, increasing the water absorption rate, and preventing problems such as safety due to the presence of excess alkali metal. It is preferable that it exists in the range of 10-100 mol% of the acid group of the previous water-soluble ethylenically unsaturated monomer. Examples of the alkali metal include lithium, sodium, and potassium. Of these, sodium and potassium are preferred.

界面活性剤としては、例えば、ソルビタン脂肪酸エステル、(ポリ)グリセリン脂肪酸エステル〔「(ポリ)」とは「ポリ」の接頭語がある場合とない場合の双方を意味する。以下同じ〕、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ヘキサグリセリルモノベヘレート等のノニオン系界面活性剤;脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルメチルタウリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキルエーテルスルホン酸塩等のアニオン系界面活性剤等を挙げることができ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの中では、粒度分布制御のしやすさの観点から、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびショ糖脂肪酸エステルからなる群より選ばれた少なくとも1種が好ましい。   As the surfactant, for example, sorbitan fatty acid ester, (poly) glycerin fatty acid ester [“(poly)” means both with and without the prefix “poly”. The same shall apply hereinafter), nonionic surfactants such as sucrose fatty acid ester, sorbitol fatty acid ester, polyoxyethylene alkylphenyl ether, hexaglyceryl monobeherate; fatty acid salt, alkylbenzene sulfonate, alkylmethyl taurate, polyoxyethylene Anionic surfactants such as alkylphenyl ether sulfates and polyoxyethylene alkyl ether sulfonates can be mentioned, and these may be used alone or in combination of two or more. Good. Among these, at least one selected from the group consisting of sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester is preferable from the viewpoint of ease of particle size distribution control.

高分子保護コロイドとしては、例えば、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレンオキサイド、ポリエチレン−ポリアクリル酸共重合体、無水マレイン化ポリエチレン、無水マレイン化ポリブタジエン、無水マレイン化EPDM(エチレン−プロピレン−ジエン−メチレン共重合体)、無水マレイン化ポリプロピレン等が挙げられる。これらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。   Examples of the polymer protective colloid include, for example, ethyl cellulose, ethyl hydroxyethyl cellulose, polyethylene oxide, polyethylene-polyacrylic acid copolymer, anhydrous maleated polyethylene, anhydrous maleated polybutadiene, and anhydrous maleated EPDM (ethylene-propylene-diene-methylene copolymer). Polymer) and anhydrous maleated polypropylene. These may be used alone or in combination of two or more.

界面活性剤および/または高分子保護コロイドの量は、吸水性樹脂粒子の粒径制御のしやすさおよび重合時の懸濁安定性の観点から、第1段目の逆相懸濁重合に付される水溶性エチレン性不飽和単量体水溶液100重量部に対して、好ましくは0.05〜5重量部、より好ましくは0.1〜3重量部である。界面活性剤および/または高分子保護コロイドの量が0.05重量部よりも少ない場合、重合時の懸濁安定性が低くなる傾向があり、5重量部よりも多い場合、その量に見合うだけの効果が得られず、かえって経済的に不利となる傾向がある。   The amount of the surfactant and / or the polymer protective colloid is determined in the first-stage reversed-phase suspension polymerization from the viewpoint of easy control of the particle size of the water-absorbent resin particles and suspension stability during polymerization. Preferably it is 0.05-5 weight part with respect to 100 weight part of water-soluble ethylenically unsaturated monomer aqueous solution made, More preferably, it is 0.1-3 weight part. When the amount of the surfactant and / or polymer protective colloid is less than 0.05 parts by weight, the suspension stability during polymerization tends to be low, and when it is more than 5 parts by weight, the amount is only commensurate with the amount. However, there is a tendency that it is economically disadvantageous.

内部架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のポリオール類のジまたはトリ(メタ)アクリル酸エステル類;前記ポリオール類とマレイン酸、フマール酸等の不飽和酸とを反応させて得られる不飽和ポリエステル類;N,N' −メチレンビスアクリルアミド等のビスアクリルアミド類;ポリエポキシドと(メタ)アクリル酸とを反応させて得られるジまたはトリ(メタ)アクリル酸エステル類;トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のポリイソシアネートと(メタ)アクリル酸ヒドロキシエチルとを反応させて得られるジ(メタ)アクリル酸カルバミルエステル類;ジアリル化澱粉、ジアリル化セルロース、ジアリルフタレート、N,N' ,N''−トリアリルイソシアネート、ジビニルベンゼン等の重合性不飽和基を2個以上有する化合物;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジルエーテル化合物;エピクロルヒドリン、エピブロムヒドリン、α−メチルエピクロルヒドリン等のハロエポキシ化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物;3−メチル−3−オキセタンメタノール、3−エチル−3−オキセタンメタノール、3−ブチル−3−オキセタンメタノール、3−メチル−3−オキセタンエタノール、3−エチル−3−オキセタンエタノール、3−ブチル−3−オキセタンエタノール等のオキセタン化合物等を挙げることができ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。それらの中では、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリグリセリンジグリシジルエーテルおよびN,N' −メチレンビスアクリルアミドが、低温での反応性に優れているので好ましい。   Examples of the internal crosslinking agent include di- or tri (meth) acrylic esters of polyols such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin; Polyesters obtained by reacting alcohols with unsaturated acids such as maleic acid and fumaric acid; bisacrylamides such as N, N′-methylenebisacrylamide; and reacting polyepoxides with (meth) acrylic acid Di- or tri (meth) acrylic acid esters obtained; carbamyl ester of di (meth) acrylic acid obtained by reacting polyisocyanate such as tolylene diisocyanate or hexamethylene diisocyanate with hydroxyethyl (meth) acrylate Tels; compounds having two or more polymerizable unsaturated groups such as diallylized starch, diallylized cellulose, diallyl phthalate, N, N ′, N ″ -triallyl isocyanate, and divinylbenzene; (poly) ethylene glycol diglycidyl Diglycidyl ether compounds such as ether, (poly) propylene glycol diglycidyl ether, (poly) glycerin diglycidyl ether; haloepoxy compounds such as epichlorohydrin, epibromhydrin, α-methylepichlorohydrin; 2,4-tolylene diisocyanate, hexa Compounds having two or more reactive functional groups such as isocyanate compounds such as methylene diisocyanate; 3-methyl-3-oxetanemethanol, 3-ethyl-3-oxetanemethanol, 3-butyl-3-oxetanemethanol, Examples include oxetane compounds such as 3-methyl-3-oxetaneethanol, 3-ethyl-3-oxetaneethanol, and 3-butyl-3-oxetaneethanol, and these may be used alone or in combination of two kinds. You may mix and use the above. Among them, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerin diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polyglycerin diglycidyl ether and N, N′-methylenebisacrylamide are It is preferable because of its excellent reactivity at low temperatures.

内部架橋剤の量は、得られる重合体の水溶性が適度な架橋により抑制され、該重合体が十分な吸水性を示すようにする観点から、第1段目の逆相懸濁重合に付される水溶性エチレン性不飽和単量体100重量部に対して、好ましくは3重量部以下、より好ましくは0.001〜1重量部である。   The amount of the internal cross-linking agent is selected for the first-stage reverse phase suspension polymerization from the viewpoint that the water solubility of the resulting polymer is suppressed by appropriate cross-linking and that the polymer exhibits sufficient water absorption. The amount is preferably 3 parts by weight or less, more preferably 0.001 to 1 part by weight based on 100 parts by weight of the water-soluble ethylenically unsaturated monomer.

水溶性ラジカル重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩;2,2' −アゾビス(2−アミジノプロパン)2塩酸塩、アゾビス(シアノ吉草酸)等のアゾ化合物等を挙げることができ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの中では、入手が容易で保存安定性が良好である観点から、過硫酸カリウム、過硫酸アンモニウムおよび過硫酸ナトリウムが好ましい。なお、ラジカル重合開始剤は、亜硝酸塩等と併用することにより、レドックス系重合開始剤として用いることができる。   Examples of the water-soluble radical polymerization initiator include persulfates such as potassium persulfate, ammonium persulfate, and sodium persulfate; 2,2′-azobis (2-amidinopropane) dihydrochloride, azobis (cyanovaleric acid), and the like. These azo compounds may be used, and these may be used alone or in admixture of two or more. Among these, potassium persulfate, ammonium persulfate, and sodium persulfate are preferable from the viewpoint of easy availability and good storage stability. In addition, a radical polymerization initiator can be used as a redox-type polymerization initiator by using together with nitrite etc.

水溶性ラジカル重合開始剤の量は、重合反応の時間を短縮し、急激な重合反応を防ぐ観点から、通常、第1段目の逆相懸濁重合に付される水溶性エチレン性不飽和単量体1モルあたり、好ましくは0.00001〜0.02モル、より好ましくは0.0001〜0.01モルである。   The amount of the water-soluble radical polymerization initiator is usually determined from the viewpoint of shortening the polymerization reaction time and preventing a rapid polymerization reaction. Preferably it is 0.00001-0.02 mol, More preferably, it is 0.0001-0.01 mol per mol of a monomer.

炭化水素系溶媒としては、例えば、n−ヘキサン、n−ヘプタン、リグロイン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等を挙げることができ、それらは、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの中では、工業的に入手が容易で、品質が安定し、かつ安価である観点から、n−ヘキサン、n−ヘプタンおよびシクロヘキサンが好ましい。   Examples of the hydrocarbon solvent include aliphatic hydrocarbons such as n-hexane, n-heptane, and ligroin; alicyclic hydrocarbons such as cyclopentane, methylcyclopentane, cyclohexane, and methylcyclohexane; benzene, toluene, xylene, and the like These may be used alone, or may be used alone or in admixture of two or more. Among these, n-hexane, n-heptane, and cyclohexane are preferable from the viewpoint of industrial availability, stable quality, and low cost.

炭化水素系溶媒の量は、重合熱を除去し、重合温度を制御しやすくする観点から、通常、第1段目の逆相懸濁重合に付される水溶性エチレン性不飽和単量体100重量部に対して、好ましくは50〜600重量部、より好ましくは100〜550重量部である。   The amount of the hydrocarbon-based solvent is usually the water-soluble ethylenically unsaturated monomer 100 that is subjected to the first-stage reversed-phase suspension polymerization from the viewpoint of removing the heat of polymerization and easily controlling the polymerization temperature. Preferably it is 50-600 weight part with respect to a weight part, More preferably, it is 100-550 weight part.

第1段目の逆相懸濁重合は、水溶性エチレン性不飽和単量体水溶液、界面活性剤および/または高分子保護コロイド、水溶性ラジカル重合開始剤ならびに必要に応じて内部架橋剤を炭化水素系溶媒中で攪拌下で加熱することによって行うことができる。   The first-stage reversed-phase suspension polymerization involves carbonizing a water-soluble ethylenically unsaturated monomer aqueous solution, a surfactant and / or polymer protective colloid, a water-soluble radical polymerization initiator, and an internal crosslinking agent as necessary. It can carry out by heating under stirring in a hydrogen-based solvent.

逆相懸濁重合の際の反応温度は、使用する水溶性ラジカル重合開始剤によって異なるので一概には決定することができないが、重合が迅速に進行し、重合時間が短くなって経済性に優れ、重合熱を容易に除去し、円滑に反応を行う観点から、好ましくは20〜110℃、より好ましくは40〜80℃である。反応時間は、通常、0.5〜4時間である。   The reaction temperature during reverse-phase suspension polymerization varies depending on the water-soluble radical polymerization initiator used, so it cannot be determined unconditionally, but the polymerization proceeds rapidly and the polymerization time is shortened, resulting in excellent economic efficiency. From the viewpoint of easily removing the heat of polymerization and performing the reaction smoothly, it is preferably 20 to 110 ° C, more preferably 40 to 80 ° C. The reaction time is usually 0.5 to 4 hours.

第1段目の逆相懸濁重合の終了は、重合反応温度が最高点に達し、反応温度が下降し始めることによって確認することができる。   The completion of the first-stage reversed-phase suspension polymerization can be confirmed by the polymerization reaction temperature reaching the highest point and the reaction temperature starting to decrease.

かくして、第1段目の逆相懸濁重合が終了した反応混合物は、第2段目の逆相懸濁重合に供される。   Thus, the reaction mixture in which the first-stage reversed-phase suspension polymerization is completed is subjected to the second-stage reversed-phase suspension polymerization.

なお、本発明においては、逆相懸濁重合は、2段以上の多段で行なってもよいが、その段数は、吸水性樹脂粒子の粒径制御を容易に行い、さらに生産性を高める観点から、通常、2段であることが好ましい。   In the present invention, the reverse phase suspension polymerization may be performed in two or more stages, but the number of stages is from the viewpoint of easily controlling the particle diameter of the water-absorbent resin particles and further increasing the productivity. Usually, it is preferably two stages.

本発明の特徴は、第1段目で得られた反応混合物に含まれている界面活性剤および/または高分子保護コロイドが炭化水素系溶媒中に溶解している状態で、第1段目の逆相懸濁重合が終了した反応混合物に、水溶性ラジカル重合開始剤、特定量の水溶性エチレン性不飽和単量体、および必要に応じて内部架橋剤を含む水溶性エチレン性不飽和単量体水溶液を添加し、次いで、界面活性剤および/または高分子保護コロイドを一旦析出させた後、引き続き、第2段目の逆相懸濁重合反応を行う点にある。   The feature of the present invention is that the surfactant and / or polymer protective colloid contained in the reaction mixture obtained in the first stage is dissolved in the hydrocarbon solvent, and the first stage. A water-soluble ethylenically unsaturated monomer containing a water-soluble radical polymerization initiator, a specific amount of a water-soluble ethylenically unsaturated monomer, and, if necessary, an internal crosslinking agent, in the reaction mixture after the reverse phase suspension polymerization is completed The body aqueous solution is added, and then the surfactant and / or polymer protective colloid is once precipitated, and then the second-stage reversed-phase suspension polymerization reaction is performed.

界面活性剤および/または高分子保護コロイドが炭化水素系溶媒中に溶解している状態を保持したり、界面活性剤および/または高分子保護コロイドを析出させた状態とするためには、反応混合物の温度を制御すればよい。   In order to keep the surfactant and / or polymer protective colloid dissolved in the hydrocarbon solvent, or to deposit the surfactant and / or polymer protective colloid, the reaction mixture is used. What is necessary is just to control the temperature.

第2段目の水溶性エチレン性不飽和単量体水溶液を反応混合物に添加する際の反応混合物の温度は、界面活性剤および/または高分子保護コロイドが溶解している温度であればよく、例えば、30℃を超えて60℃以下、好ましくは35〜60℃、より好ましくは40〜60℃であることが望ましい。水溶性エチレン性不飽和単量体水溶液を反応混合物に添加する際の温度が、30℃以下の場合、界面活性剤および/または高分子保護コロイドが炭化水素系溶媒中に析出する傾向があり、また、60℃を超える場合、水溶性エチレン性不飽和単量体水溶液が炭化水素系溶媒中に十分に混合される前に重合反応が進行する傾向がある。   The temperature of the reaction mixture when adding the water-soluble ethylenically unsaturated monomer aqueous solution in the second stage to the reaction mixture may be any temperature at which the surfactant and / or the polymer protective colloid are dissolved, For example, it is desirable that the temperature is higher than 30 ° C and lower than 60 ° C, preferably 35-60 ° C, more preferably 40-60 ° C. When the temperature when adding the water-soluble ethylenically unsaturated monomer aqueous solution to the reaction mixture is 30 ° C. or less, the surfactant and / or the polymer protective colloid tends to precipitate in the hydrocarbon solvent, Moreover, when it exceeds 60 degreeC, there exists a tendency for a polymerization reaction to advance before water-soluble ethylenically unsaturated monomer aqueous solution is fully mixed in a hydrocarbon-type solvent.

水溶性エチレン性不飽和単量体水溶液を反応混合物に添加した後、界面活性剤および/または高分子保護コロイドを析出させる際の反応混合物の温度は、例えば、30℃以下、好ましくは10〜30℃であることが望ましい。反応混合物の温度が30℃を超える場合、界面活性剤および/または高分子保護コロイドが炭化水素系溶媒中に溶解したり、水溶性エチレン性不飽和単量体水溶液が炭化水素系溶媒中に十分に混合される前に重合反応が進行する傾向がある。   After adding the water-soluble ethylenically unsaturated monomer aqueous solution to the reaction mixture, the temperature of the reaction mixture when depositing the surfactant and / or polymer protective colloid is, for example, 30 ° C. or less, preferably 10-30. It is desirable that the temperature be When the temperature of the reaction mixture exceeds 30 ° C., the surfactant and / or polymer protective colloid is dissolved in the hydrocarbon solvent, or the water-soluble ethylenically unsaturated monomer aqueous solution is sufficient in the hydrocarbon solvent. The polymerization reaction tends to proceed before being mixed.

かくして、第1段目の逆相懸濁重合が終了した反応混合物に、水溶性エチレン性不飽和単量体水溶液を添加し、反応混合物から界面活性剤および/または高分子保護コロイドを析出させた後、第2段目の逆相懸濁重合を行うことにより、微粉および粗粉が少なく、粒度分布が狭い吸水性樹脂粒子が得られる。このように、微粉および粗粉が少なく、粒度分布が狭い吸水性樹脂粒子が得られる理由は、詳らかではないが、以下の理由に基づくものと推測される。   Thus, a water-soluble ethylenically unsaturated monomer aqueous solution was added to the reaction mixture after the reverse phase suspension polymerization in the first stage was completed, and a surfactant and / or polymer protective colloid was precipitated from the reaction mixture. Thereafter, by performing reverse-phase suspension polymerization in the second stage, water-absorbent resin particles with a small amount of fine powder and coarse powder and a narrow particle size distribution are obtained. Thus, although the reason why the water-absorbent resin particles having a small amount of fine powder and coarse powder and a narrow particle size distribution are obtained is not clear, it is presumed to be based on the following reason.

すなわち、界面活性剤および/または高分子保護コロイドが溶解している状態で、反応混合物に添加された第2段目の水溶性エチレン性不飽和単量体水溶液は、第1段目の重合反応で生成した含水ゲルに吸収されずに、反応混合物中で液滴の状態で分散している。次に、この分散状態を保ったまま反応混合物を冷却し、界面活性剤および/または高分子保護コロイドを析出させると、第2段目の水溶性エチレン性不飽和単量体水溶液が分散状態のまま第1段目で生成した含水ゲルに均一に吸収されて第1段目の粒子が凝集し、これを重合させることにより、微粉および粗粉が少なく、粒度分布が狭い吸水性樹脂粒子が生成するものと推測される。   That is, the second-stage water-soluble ethylenically unsaturated monomer aqueous solution added to the reaction mixture in a state where the surfactant and / or the polymer protective colloid are dissolved is the first-stage polymerization reaction. In the reaction mixture, it is dispersed in the form of droplets without being absorbed by the water-containing gel produced in (1). Next, the reaction mixture is cooled while maintaining this dispersed state, and the surfactant and / or polymer protective colloid is precipitated, so that the water-soluble ethylenically unsaturated monomer aqueous solution in the second stage is in a dispersed state. As it is, it is uniformly absorbed in the hydrogel produced in the first stage, and the first stage particles agglomerate. By polymerizing this, water-absorbent resin particles with less fine powder and coarse powder and narrow particle size distribution are generated. Presumed to be.

第1段目の逆相懸濁重合が終了した反応混合物に添加する水溶性ラジカル重合開始剤、内部架橋剤および水溶性エチレン性不飽和単量体水溶液は、第1段目の逆相懸濁重合の際に用いたものと同様であってもよく、異なっていてもよい。   The water-soluble radical polymerization initiator, the internal cross-linking agent, and the water-soluble ethylenically unsaturated monomer aqueous solution added to the reaction mixture after completion of the first-stage reversed-phase suspension polymerization are the first-stage reversed-phase suspension. It may be the same as that used in the polymerization, or may be different.

水溶性エチレン性不飽和単量体水溶液における水溶性ラジカル重合開始剤の量は、重合反応の時間を短縮し、急激な重合反応を防ぐ観点から、通常、第2段目以降の各段階の重合に付される水溶性エチレン性不飽和単量体1モルあたり、好ましくは0.00001〜0.02モル、より好ましくは0.0001〜0.01モルである。   The amount of the water-soluble radical polymerization initiator in the water-soluble ethylenically unsaturated monomer aqueous solution is usually the polymerization of each stage after the second stage from the viewpoint of shortening the polymerization reaction time and preventing a rapid polymerization reaction. The amount is preferably 0.00001 to 0.02 mol, and more preferably 0.0001 to 0.01 mol, per 1 mol of the water-soluble ethylenically unsaturated monomer to be attached.

また、水溶性エチレン性不飽和単量体水溶液における内部架橋剤の量は、得られる重合体の水溶性が適度な架橋によって抑制され、該重合体が十分な吸水性を示すようにする観点から、第2段目以降の各段階の重合に付される水溶性エチレン性不飽和単量体100重量部に対して、好ましくは3重量部以下、より好ましくは0.001〜1重量部である。   Further, the amount of the internal crosslinking agent in the water-soluble ethylenically unsaturated monomer aqueous solution is from the viewpoint that the water solubility of the obtained polymer is suppressed by appropriate crosslinking, and that the polymer exhibits sufficient water absorption. , Preferably 3 parts by weight or less, more preferably 0.001 to 1 part by weight with respect to 100 parts by weight of the water-soluble ethylenically unsaturated monomer to be subjected to polymerization in each stage after the second stage. .

第1段目の逆相懸濁重合で得られた反応混合物に添加する水溶性エチレン性不飽和単量体の量は、第1段目で用いられた水溶性エチレン性不飽和単量体1モルに対して、好ましくは1.2〜2.5モル、より好ましくは1.3〜2.3モル、さらに好ましくは1.4〜2.2モルである。第1段目で用いられた水溶性エチレン性不飽和単量体1モルに対する水溶性エチレン性不飽和単量体の量が1.2モル未満の場合、第1段目の重合反応で生成した樹脂粒子を凝集させるのに必要な水溶性エチレン性不飽和単量体量が不足し、微粉が増加する傾向があり、2.5モルを超える場合、水溶性エチレン性不飽和単量体の量が過剰になるため、凝集が進み過ぎて粗粉が多くなる傾向がある。   The amount of the water-soluble ethylenically unsaturated monomer added to the reaction mixture obtained by the reverse phase suspension polymerization in the first stage is the same as that of the water-soluble ethylenically unsaturated monomer 1 used in the first stage. Preferably it is 1.2-2.5 mol with respect to mol, More preferably, it is 1.3-2.3 mol, More preferably, it is 1.4-2.2 mol. When the amount of the water-soluble ethylenically unsaturated monomer relative to 1 mol of the water-soluble ethylenically unsaturated monomer used in the first stage is less than 1.2 mol, it was generated by the polymerization reaction in the first stage. If the amount of water-soluble ethylenically unsaturated monomer required to agglomerate resin particles is insufficient and the amount of fine powder tends to increase and exceeds 2.5 mol, the amount of water-soluble ethylenically unsaturated monomer Therefore, the agglomeration proceeds too much and the coarse powder tends to increase.

第1段目の逆相懸濁重合によって得られた反応混合物に、水溶性ラジカル重合開始剤および必要に応じて内部架橋剤を含む水溶性エチレン性不飽和単量体水溶液を添加した後に行う逆相懸濁重合は、前記第1段目の逆相懸濁重合と同様の条件で行うことができる。前記操作は、前述したように、1段以上で行われる。   Reverse reaction after adding a water-soluble ethylenically unsaturated monomer aqueous solution containing a water-soluble radical polymerization initiator and, if necessary, an internal crosslinking agent, to the reaction mixture obtained by the first-stage reversed-phase suspension polymerization. The phase suspension polymerization can be carried out under the same conditions as in the first-stage reverse phase suspension polymerization. As described above, the operation is performed in one or more stages.

かくして得られた吸水性樹脂粒子は、必要に応じて重合後に後架橋剤により後架橋させてもよい。   The water absorbent resin particles thus obtained may be post-crosslinked with a post-crosslinking agent after polymerization, if necessary.

後架橋剤としては、例えば、エチレングリコール、プロピレングリコール、トリメチロールプロパン、グリセリン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリグリセリン等のジオール、トリオールまたはポリオール類;(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等のジグリシジルエーテル化合物;エピクロルヒドリン、エピブロムヒドリン、α−メチルエピクロルヒドリン等のエピハロヒドリン化合物;2,4−トリレンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネート化合物等の反応性官能基を2個以上有する化合物を挙げることができ、これらの後架橋剤は、それぞれ単独で用いてもよく、2種以上を混合して用いてもよい。これらの中では、低温での反応性に優れている観点から、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルおよびポリグリセリンジグリシジルエーテルが好ましい。   Examples of the post-crosslinking agent include ethylene glycol, propylene glycol, trimethylol propane, glycerin, polyoxyethylene glycol, polyoxypropylene glycol, polyglycerin and other diols, triols and polyols; (poly) ethylene glycol diglycidyl ether, Diglycidyl ether compounds such as (poly) propylene glycol diglycidyl ether and (poly) glycerin diglycidyl ether; epihalohydrin compounds such as epichlorohydrin, epibromhydrin and α-methylepichlorohydrin; 2,4-tolylene diisocyanate, hexamethylene diisocyanate And compounds having two or more reactive functional groups, such as isocyanate compounds, and the like. May be used, it may be used as a mixture of two or more. Among these, from the viewpoint of excellent reactivity at low temperatures, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, glycerin diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether and polyglycerin diglycidyl. Ether is preferred.

後架橋剤の添加量は、吸水量を制御し、さらに吸水時のゲル強度を十分に保つ観点から、重合に付された水溶性エチレン性不飽和単量体の総量100重量部に対して、好ましくは0.01〜5重量部、より好ましくは0.02〜4重量部、さらに好ましくは0.03〜3重量部である。後架橋剤の添加量が、0.01重量部未満の場合、得られる吸水性樹脂粒子の保水能力が高くなりすぎてゲル強度が弱くなる傾向があり、5重量部を超える場合、吸水性樹脂粒子の架橋が過度となるため、吸水性樹脂粒子が十分な吸水性を示さなくなる傾向がある。   The amount of the post-crosslinking agent added is controlled from the viewpoint of controlling the amount of water absorption and further maintaining the gel strength at the time of water absorption, with respect to 100 parts by weight of the total amount of the water-soluble ethylenically unsaturated monomer subjected to polymerization. Preferably it is 0.01-5 weight part, More preferably, it is 0.02-4 weight part, More preferably, it is 0.03-3 weight part. When the added amount of the post-crosslinking agent is less than 0.01 parts by weight, the water-absorbing resin particles obtained have a tendency to weaken the gel strength and the water-absorbing resin particles have a tendency to weaken the gel strength. Since the particles are excessively crosslinked, the water-absorbent resin particles tend not to exhibit sufficient water absorption.

後架橋剤による吸水性樹脂粒子の後架橋は、最終段の逆相懸濁重合の終了後に行わうことが好ましい。   The post-crosslinking of the water-absorbing resin particles with the post-crosslinking agent is preferably performed after the end of the reverse phase suspension polymerization in the final stage.

吸水性樹脂粒子と後架橋剤との混合は、水の存在下で行うことが好ましい。吸水性樹脂粒子と後架橋剤とを混合する際の水の量は、吸水性樹脂粒子の種類、粒度および含水率によって異なるが、通常、重合に付された水溶性エチレン性不飽和単量体の総量100重量部に対して、好ましくは10〜30重量部である。なお、水の量は、重合反応の際に含まれる水と後架橋剤を添加する際に必要に応じて用いられる水との合計量を意味する。   The mixing of the water absorbent resin particles and the postcrosslinking agent is preferably performed in the presence of water. The amount of water when mixing the water-absorbent resin particles and the post-crosslinking agent varies depending on the type, particle size and water content of the water-absorbent resin particles, but is usually a water-soluble ethylenically unsaturated monomer subjected to polymerization. The total amount is preferably 10 to 30 parts by weight with respect to 100 parts by weight. The amount of water means the total amount of water contained in the polymerization reaction and water used as necessary when adding the post-crosslinking agent.

このように、吸水性樹脂粒子と後架橋剤との混合時の水分量を制御することにより、吸水性樹脂粒子の表面近傍における後架橋反応をより好適に進行させることができる。   Thus, the post-crosslinking reaction in the vicinity of the surface of the water-absorbent resin particles can be more suitably advanced by controlling the amount of water during mixing of the water-absorbent resin particles and the post-crosslinker.

吸水性樹脂粒子と後架橋剤との混合の際には、必要に応じて、溶媒として親水性有機溶媒を用いてもよい。   When mixing the water-absorbent resin particles and the post-crosslinking agent, a hydrophilic organic solvent may be used as a solvent, if necessary.

親水性有機溶媒としては、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール等の低級アルコール類、アセトン、メチルエチルケトン等のケトン類、ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類、N,N−ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類等が挙げられ、これらの親水性有機溶媒は、単独で用いてもよく、2種以上を併用してもよい。   Examples of the hydrophilic organic solvent include lower alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as diethyl ether, dioxane and tetrahydrofuran, N, N -Amides such as dimethylformamide, sulfoxides such as dimethyl sulfoxide, and the like. These hydrophilic organic solvents may be used alone or in combination of two or more.

吸水性樹脂粒子を後架橋剤で架橋反応させる際の反応温度は、好ましくは30〜170℃、より好ましくは40〜150℃である。反応温度が30℃未満の場合、架橋反応が進みにくくなって架橋反応に過大な時間を要する傾向があり、また反応温度が170℃を超える場合、得られる吸水性樹脂粒子が分解する傾向がある。   The reaction temperature when the water-absorbing resin particles are subjected to a crosslinking reaction with a post-crosslinking agent is preferably 30 to 170 ° C, more preferably 40 to 150 ° C. When the reaction temperature is less than 30 ° C., the crosslinking reaction is difficult to proceed and the crosslinking reaction tends to take an excessive amount of time. When the reaction temperature exceeds 170 ° C., the resulting water-absorbent resin particles tend to decompose. .

反応時間は、反応温度、架橋剤の種類およびその量、溶媒の種類等によって異なるので一概には決定することができないが、通常、1〜300分間、好ましくは5〜200分間である。   The reaction time varies depending on the reaction temperature, the type and amount of the crosslinking agent, the type of solvent and the like, and thus cannot be determined unconditionally, but is usually 1 to 300 minutes, preferably 5 to 200 minutes.

かくして、本発明の吸水性樹脂粒子が得られる。かかる吸水性樹脂粒子は、重量平均粒径200〜500μmを有し、微粉および粗粉の含有量が少なく、粒度分布が狭いものである。吸水性樹脂粒子の重量平均粒径は、後述する実施例に記載の測定方法によって測定したときの値である。   Thus, the water absorbent resin particles of the present invention are obtained. Such water-absorbent resin particles have a weight average particle size of 200 to 500 μm, a small content of fine powder and coarse powder, and a narrow particle size distribution. The weight average particle diameter of the water-absorbent resin particles is a value when measured by the measurement method described in Examples described later.

なお、本発明の吸水性樹脂粒子には、さらに目的に応じて、滑剤、消臭剤、抗菌剤等の添加剤を添加してもよい。   In addition, you may add additives, such as a lubricant, a deodorant, and an antibacterial agent, to the water absorbing resin particle of this invention further according to the objective.

添加剤の量は、吸水性樹脂粒子の用途、添加剤の種類等によって異なるが、重合に付された水溶性エチレン性不飽和単量体の総量100重量部に対して、好ましくは0.001〜10重量部、より好ましくは0.01〜5重量部である。   The amount of the additive varies depending on the use of the water-absorbent resin particles, the kind of the additive, etc., but is preferably 0.001 with respect to 100 parts by weight of the total amount of the water-soluble ethylenically unsaturated monomer subjected to polymerization. -10 parts by weight, more preferably 0.01-5 parts by weight.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited to such examples.

実施例1
内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液92g(1.02モル)を入れ、氷冷しながら21.0重量%水酸化ナトリウム水溶液146.1gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度38重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N' −メチレンビスアクリルアミド18.4mg(119μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム92mg(0.34ミリモル)を添加し、これを第1段目の逆相懸濁重合用の単量体水溶液(a1)とした。
Example 1
Into a 500 mL Erlenmeyer flask, 92 g (1.02 mol) of 80 wt% aqueous acrylic acid solution was added, and 146.1 g of 21.0 wt% aqueous sodium hydroxide solution was added dropwise with ice cooling to add 75 mol acrylic resin. Acid neutralization was performed to prepare a partially neutralized acrylic acid salt solution with a monomer concentration of 38% by weight. To the resulting aqueous solution of partially neutralized acrylic acid, 18.4 mg (119 μmol) of N, N′-methylenebisacrylamide as an internal crosslinking agent and 92 mg (0.34 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added. This was added to obtain a monomer aqueous solution (a1) for reverse phase suspension polymerization in the first stage.

攪拌機、2段パドル翼、還流冷却器、滴下ロートおよび窒素ガス導入管を備えた内容量2Lの五つ口円筒型丸底フラスコ内に、n−ヘプタン340g(500mL)と、界面活性剤としてポリグリセリン脂肪酸エステル〔太陽化学(株)製、商品名:サンソフトQ−185S〕0.92gを加えてn−ヘプタンに溶解させた後、内温を35℃にした。その後、内温を35℃に保ちながら、前記第1段目重合用の単量体水溶液(a1)を加えて攪拌下で懸濁させ、系内を窒素ガスで置換した。引き続き70℃に昇温して第1段目の逆相懸濁重合を行った。   In a 2 L five-necked cylindrical round bottom flask equipped with a stirrer, two-stage paddle blade, reflux condenser, dropping funnel and nitrogen gas introduction tube, 340 g (500 mL) of n-heptane and poly (surfactant) as a surfactant 0.92 g of glycerin fatty acid ester [manufactured by Taiyo Kagaku Co., Ltd., trade name: Sunsoft Q-185S] was added and dissolved in n-heptane, and the internal temperature was adjusted to 35 ° C. Thereafter, while maintaining the internal temperature at 35 ° C., the monomer aqueous solution (a1) for the first stage polymerization was added and suspended under stirring, and the system was replaced with nitrogen gas. Subsequently, the temperature was raised to 70 ° C., and the first-stage reversed-phase suspension polymerization was performed.

これとは別に、内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液147.2g(1.64モル)を入れ、氷冷しながら27.0重量%水酸化ナトリウム水溶液181.8gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度44重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N' −メチレンビスアクリルアミド29.4mg(191μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム147mg(0.54ミリモル)を添加し、これを第2段目の逆相懸濁重合用の単量体水溶液(b1)とした。   Separately, 147.2 g (1.64 mol) of 80 wt% aqueous acrylic acid solution was placed in a 500 mL Erlenmeyer flask, and 181.8 g of 27.0 wt% sodium hydroxide aqueous solution was added dropwise while cooling with ice. Then, 75 mol% of acrylic acid was neutralized to prepare a partially neutralized aqueous solution of acrylic acid having a monomer concentration of 44% by weight. To the resulting partially neutralized acrylic acid aqueous solution, 29.4 mg (191 μmol) of N, N′-methylenebisacrylamide as an internal crosslinking agent and 147 mg (0.54 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added. This was added to obtain a monomer aqueous solution (b1) for the second-phase reversed phase suspension polymerization.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、第2段目重合用の単量体水溶液(b1)を系内に添加した。次いで、反応混合物を13℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。   After the completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b1) was added to the system. Subsequently, the reaction mixture was cooled to 13 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.

逆相懸濁重合の終了後、再び加熱することによって、n−へプタンと水との共沸混合物から水280gを抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテル120mg(0.69ミリモル)を添加し、80℃で2時間、水52gの存在下で後架橋反応を行った。架橋反応後、系内のn−ヘプタンと水を加熱留去することにより、吸水性樹脂粒子248gを得た。   After completion of the reverse phase suspension polymerization, 280 g of water was extracted from the azeotrope of n-heptane and water by heating again, and then 120 mg (0.69 mmol) of ethylene glycol diglycidyl ether as a post-crosslinking agent. And a post-crosslinking reaction was carried out at 80 ° C. for 2 hours in the presence of 52 g of water. After the crosslinking reaction, n-heptane and water in the system were distilled off with heating to obtain 248 g of water-absorbing resin particles.

実施例2
攪拌機、2段パドル翼、還流冷却器、滴下ロートおよび窒素ガス導入管を備えた内容量2Lの五つ口円筒型丸底フラスコ内に、n−ヘプタン340g(500mL)と、界面活性剤としてソルビタン脂肪酸エステル〔日本油脂(株)製、商品名:ノニオンSP−60R〕0.92gを加えてn−ヘプタンに溶解させた後、内温を35℃にした。その後、内温を35℃に保ちながら、実施例1と同様にして調製した第1段目重合用の単量体水溶液(a1)を加えて、攪拌下で懸濁し、系内を窒素ガスで置換した。引き続き70℃に昇温して第1段目の逆相懸濁重合を行った。
Example 2
In a 2 L five-neck cylindrical round bottom flask equipped with a stirrer, two-stage paddle blade, reflux condenser, dropping funnel and nitrogen gas introduction tube, 340 g (500 mL) of n-heptane and sorbitan as a surfactant After adding 0.92 g of fatty acid ester (Nippon Yushi Co., Ltd., trade name: Nonion SP-60R) and dissolving it in n-heptane, the internal temperature was set to 35 ° C. Thereafter, while maintaining the internal temperature at 35 ° C., the monomer aqueous solution (a1) for the first stage polymerization prepared in the same manner as in Example 1 was added, suspended under stirring, and the system was filled with nitrogen gas. Replaced. Subsequently, the temperature was raised to 70 ° C., and the first-stage reversed-phase suspension polymerization was performed.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、第2段目重合用の単量体水溶液(b1)を系内に添加した。次いで、反応混合物を15℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。
逆相懸濁重合の終了後、実施例1と同様に処理して吸水性樹脂粒子249gを得た。
After the completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b1) was added to the system. Subsequently, the reaction mixture was cooled to 15 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.
After completion of the reverse phase suspension polymerization, the same treatment as in Example 1 was performed to obtain 249 g of water absorbent resin particles.

実施例3
攪拌機、2段パドル翼、還流冷却器、滴下ロートおよび窒素ガス導入管を備えた内容量2Lの五つ口円筒型丸底フラスコ内に、n−ヘプタン340g(500mL)と、界面活性剤としてショ糖脂肪酸エステル〔三菱化学フーズ(株)製、商品名:S−370〕0.92gを加えてn−ヘプタンに溶解させた後、内温を35℃にした。その後、内温を35℃に保ちながら、実施例1と同様にして調製した第1段目重合用の単量体水溶液(a1)を加えて、攪拌下で懸濁し、系内を窒素ガスで置換した。引き続き70℃に昇温して第1段目の逆相懸濁重合を行った。
Example 3
In a 2 L five-necked cylindrical round bottom flask equipped with a stirrer, two-stage paddle blade, reflux condenser, dropping funnel, and nitrogen gas inlet tube, 340 g (500 mL) of n-heptane and a surfactant as a surfactant were added. 0.92 g of sugar fatty acid ester [Mitsubishi Chemical Foods, trade name: S-370] was added and dissolved in n-heptane, and the internal temperature was adjusted to 35 ° C. Thereafter, while maintaining the internal temperature at 35 ° C., the monomer aqueous solution (a1) for the first stage polymerization prepared in the same manner as in Example 1 was added, suspended under stirring, and the system was filled with nitrogen gas. Replaced. Subsequently, the temperature was raised to 70 ° C., and the first-stage reversed-phase suspension polymerization was performed.

これとは別に、内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液128.8g(1.43モル)を入れ、氷冷しながら27.0重量%水酸化ナトリウム水溶液159.0gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度44重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N' −メチレンビスアクリルアミド25.8mg(167μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム129mg(0.48ミリモル)を添加し、これを第2段目の逆相懸濁重合用の単量体水溶液(b2)とした。   Separately, 128.8 g (1.43 mol) of 80 wt% aqueous acrylic acid solution was placed in a 500 mL Erlenmeyer flask, and 159.0 g of 27.0 wt% aqueous sodium hydroxide solution was added dropwise while cooling with ice. Then, 75 mol% of acrylic acid was neutralized to prepare a partially neutralized aqueous solution of acrylic acid having a monomer concentration of 44% by weight. To the obtained partially neutralized acrylic acid aqueous solution, 25.8 mg (167 μmol) of N, N′-methylenebisacrylamide as an internal crosslinking agent and 129 mg (0.48 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added. This was added to obtain a monomer aqueous solution (b2) for reverse phase suspension polymerization in the second stage.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、第2段目重合用の単量体水溶液(b2)を系内に添加した。次いで、反応混合物を24℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。   After the completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b2) was added to the system. Subsequently, the reaction mixture was cooled to 24 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.

逆相懸濁重合の終了後、再び加熱することによって、n−へプタンと水との共沸混合物から水261gを抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテル111mg(0.63ミリモル)を添加し、80℃で2時間、水48gの存在下で後架橋反応を行った。架橋反応後、系内のn−ヘプタンと水を加熱留去することにより吸水性樹脂粒子228gを得た。   After completion of the reverse phase suspension polymerization, 261 g of water was extracted from the azeotrope of n-heptane and water by heating again, and then 111 mg (0.63 mmol) of ethylene glycol diglycidyl ether as a post-crosslinking agent. And a post-crosslinking reaction was carried out at 80 ° C. for 2 hours in the presence of 48 g of water. After the crosslinking reaction, n-heptane and water in the system were distilled off by heating to obtain 228 g of water absorbent resin particles.

実施例4
実施例3と同様にして第1段目の逆相懸濁重合を行った。
第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、第2段目重合用の単量体水溶液(b1)を系内に添加した。次いで、反応混合物を26℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。逆相懸濁重合の終了後、実施例1と同様に処理して吸水性樹脂粒子250gを得た。
Example 4
In the same manner as in Example 3, reverse phase suspension polymerization of the first stage was performed.
After the completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b1) was added to the system. Subsequently, the reaction mixture was cooled to 26 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed. After the completion of the reverse phase suspension polymerization, the same treatment as in Example 1 was performed to obtain 250 g of water absorbent resin particles.

実施例5
実施例3と同様にして第1段目の逆相懸濁重合を行った。
これとは別に、内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液165.6g(1.84モル)を入れ、氷冷しながら27.0重量%水酸化ナトリウム水溶液204.5gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度44重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N' −メチレンビスアクリルアミド33.1mg(215μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム166mg(0.61ミリモル)を添加し、これを第2段目の逆相懸濁重合用の単量体水溶液(b3)とした。
Example 5
In the same manner as in Example 3, reverse phase suspension polymerization of the first stage was performed.
Separately, 165.6 g (1.84 mol) of 80 wt% aqueous acrylic acid solution was placed in a 500 mL Erlenmeyer flask, and 204.5 g of 27.0 wt% sodium hydroxide aqueous solution was added dropwise while cooling with ice. Then, 75 mol% of acrylic acid was neutralized to prepare a partially neutralized aqueous solution of acrylic acid having a monomer concentration of 44% by weight. The resulting aqueous solution of partially neutralized acrylic acid salt was charged with 33.1 mg (215 μmol) of N, N′-methylenebisacrylamide as an internal cross-linking agent and 166 mg (0.61 mmol) of potassium persulfate as a water-soluble radical polymerization initiator. This was added to obtain a monomer aqueous solution (b3) for the second-phase reversed phase suspension polymerization.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、前記第2段目重合用の単量体水溶液(b3)を系内に添加した。次いで、反応混合物を26℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。   After completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b3) was added to the system. Subsequently, the reaction mixture was cooled to 26 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.

逆相懸濁重合の終了後、再び加熱することによって、n−へプタンと水との共沸混合物から水299gを抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテル129mg(0.74ミリモル)を添加し、80℃で2時間、水56gの存在下で後架橋反応を行った。架橋反応後、系内のn−ヘプタンと水を加熱留去することにより吸水性樹脂粒子267gを得た。   After completion of the reverse phase suspension polymerization, 299 g of water was extracted from the azeotropic mixture of n-heptane and water by heating again, and then 129 mg (0.74 mmol) of ethylene glycol diglycidyl ether as a post-crosslinking agent. And a post-crosslinking reaction was performed in the presence of 56 g of water at 80 ° C. for 2 hours. After the crosslinking reaction, n-heptane and water in the system were distilled off with heating to obtain 267 g of water absorbent resin particles.

実施例6
実施例3と同様にして第1段目の逆相懸濁重合を行った。
これとは別に、内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液184.0g(2.04モル)を入れ、氷冷しながら27.0重量%水酸化ナトリウム水溶液227.2gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度44重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてエチレングリコールジグリシジルエーテル36.8mg(211μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム184mg(0.68ミリモル)を添加し、これを第2段目の逆相懸濁重合用の単量体水溶液(b4)とした。
Example 6
In the same manner as in Example 3, reverse phase suspension polymerization of the first stage was performed.
Separately, 184.0 g (2.04 mol) of 80% by weight acrylic acid aqueous solution was placed in a 500 mL Erlenmeyer flask, and 227.2 g of 27.0% by weight sodium hydroxide aqueous solution was dropped while cooling with ice. Then, 75 mol% of acrylic acid was neutralized to prepare a partially neutralized aqueous solution of acrylic acid having a monomer concentration of 44% by weight. To the resulting aqueous solution of partially neutralized acrylic acid salt, 36.8 mg (211 μmol) of ethylene glycol diglycidyl ether as an internal crosslinking agent and 184 mg (0.68 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added, This was designated as a monomer aqueous solution (b4) for the reverse phase suspension polymerization in the second stage.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、前記第2段目重合用の単量体水溶液(b4)を系内に添加した。次いで、反応混合物を27℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した後、70℃に昇温して第2段目の逆相懸濁重合を行った。   After completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b4) was added to the system. Next, the reaction mixture is cooled to 27 ° C., a surfactant is precipitated, and the mixture is stirred for 30 minutes, and at the same time, the system is replaced with nitrogen gas. Reverse phase suspension polymerization was performed.

逆相懸濁重合の終了後、再び加熱することによって、n−へプタンと水との共沸混合物から水318gを抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテル138mg(0.79ミリモル)を添加し、80℃で2時間、水60gの存在下で後架橋反応を行った。架橋反応後、系内のn−ヘプタンと水を加熱留去することにより吸水性樹脂粒子291gを得た。   After the reverse-phase suspension polymerization was completed, 318 g of water was extracted from the azeotropic mixture of n-heptane and water by heating again, and then 138 mg (0.79 mmol) of ethylene glycol diglycidyl ether as a post-crosslinking agent. And a post-crosslinking reaction was carried out at 80 ° C. for 2 hours in the presence of 60 g of water. After the crosslinking reaction, n-heptane and water in the system were distilled off with heating to obtain 291 g of water-absorbing resin particles.

実施例7
内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液89g(0.99モル)を入れ、氷冷しながら21.0重量%水酸化ナトリウム水溶液141.3gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度38重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N’−メチレンビスアクリルアミド17.8mg(115μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム89mg(0.33ミリモル)を添加し、これを第1段目の逆相懸濁重合用の単量体水溶液(a2)とした。
Example 7
In an Erlenmeyer flask with an internal volume of 500 mL, 89 g (0.99 mol) of an 80 wt% acrylic acid aqueous solution was added, and 141.3 g of a 21.0 wt% aqueous sodium hydroxide solution was added dropwise with ice cooling to add 75 mol acrylic. Acid neutralization was performed to prepare a partially neutralized acrylic acid salt solution with a monomer concentration of 38% by weight. In the obtained aqueous solution of partially neutralized acrylic acid, 17.8 mg (115 μmol) of N, N′-methylenebisacrylamide as an internal crosslinking agent and 89 mg (0.33 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added. This was added to prepare a monomer aqueous solution (a2) for reverse phase suspension polymerization in the first stage.

攪拌機、2段パドル翼、還流冷却器、滴下ロートおよび窒素ガス導入管を備えた内容量2Lの五つ口円筒型丸底フラスコ内に、n−ヘプタン340g(500mL)と、ショ糖脂肪酸エステル〔三菱化学フーズ(株)製、商品名:S−370〕0.89gを加えてn−ヘプタンに溶解させた後、内温を35℃にした。その後、内温を35℃に保ちながら前記第1段目重合用の単量体水溶液(a2)を加えて、攪拌下で懸濁し、系内を窒素ガスで置換した。引き続き70℃に昇温して第1段目の逆相懸濁重合を行った。   In a 2 L five-necked cylindrical round bottom flask equipped with a stirrer, two-stage paddle blade, reflux condenser, dropping funnel and nitrogen gas introduction tube, 340 g (500 mL) of n-heptane and sucrose fatty acid ester [ Mitsubishi Chemical Foods, Inc., trade name: S-370] 0.89 g was added and dissolved in n-heptane, and the internal temperature was adjusted to 35 ° C. Thereafter, the monomer aqueous solution (a2) for the first stage polymerization was added while maintaining the internal temperature at 35 ° C., suspended under stirring, and the system was replaced with nitrogen gas. Subsequently, the temperature was raised to 70 ° C., and the first-stage reversed-phase suspension polymerization was performed.

これとは別に、内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液195.8g(2.18モル)を入れ、氷冷しながら27.0重量%水酸化ナトリウム水溶液241.8gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度44重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてエチレングリコールジグリシジルエーテル39.2mg(225μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム196mg(0.73ミリモル)を添加し、これを第2段目の逆相懸濁重合用の単量体水溶液(b5)とした。   Separately, 195.8 g (2.18 mol) of 80 wt% acrylic acid aqueous solution was placed in a 500 mL Erlenmeyer flask, and 241.8 g of 27.0 wt% sodium hydroxide aqueous solution was dropped while cooling with ice. Then, 75 mol% of acrylic acid was neutralized to prepare a partially neutralized aqueous solution of acrylic acid having a monomer concentration of 44% by weight. To the resulting aqueous solution of partially neutralized acrylic acid salt, 39.2 mg (225 μmol) of ethylene glycol diglycidyl ether as an internal crosslinking agent and 196 mg (0.73 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added, This was designated as a monomer aqueous solution (b5) for reverse phase suspension polymerization in the second stage.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、前記第2段目重合用の単量体水溶液(b5)を系内に添加した。次いで、反応混合物を27℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。   After completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b5) was added to the system. Subsequently, the reaction mixture was cooled to 27 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.

逆相懸濁重合の終了後、再び加熱することによって、n−へプタンと水との共沸混合物から水326gを抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテル142mg(0.82ミリモル)を添加し、80℃で2時間、水62gの存在下で後架橋反応を行った。架橋反応後、系内のn−ヘプタンと水を加熱留去することにより吸水性樹脂粒子301gを得た。   After completion of the reverse phase suspension polymerization, 326 g of water was extracted from the azeotropic mixture of n-heptane and water by heating again, and then 142 mg (0.82 mmol) of ethylene glycol diglycidyl ether as a post-crosslinking agent. And a post-crosslinking reaction was carried out at 80 ° C. for 2 hours in the presence of 62 g of water. After the crosslinking reaction, 301 g of water-absorbent resin particles were obtained by heating and distilling off n-heptane and water in the system.

比較例1
実施例3と同様にして第1段目の逆相懸濁重合を行った。
第1段目の逆相懸濁重合の終了後、反応混合物を24℃に冷却し、界面活性剤を析出させた。反応混合物の温度を24℃に保持しながら、界面活性剤が析出している状態で、実施例1と同様に調製した第2段目重合用の単量体水溶液(b1)を系内に添加し、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。
逆相懸濁重合の終了後、実施例1と同様に処理して吸水性樹脂粒子255gを得た。
Comparative Example 1
In the same manner as in Example 3, reverse phase suspension polymerization of the first stage was performed.
After completion of the first-stage reversed-phase suspension polymerization, the reaction mixture was cooled to 24 ° C. to precipitate the surfactant. While maintaining the temperature of the reaction mixture at 24 ° C., the aqueous monomer solution (b1) for the second stage polymerization prepared in the same manner as in Example 1 was added to the system while the surfactant was precipitated. In this state, stirring was performed for 30 minutes, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.
After completion of the reverse phase suspension polymerization, the same treatment as in Example 1 was performed to obtain 255 g of water absorbent resin particles.

比較例2
実施例3と同様にして第1段目の逆相懸濁重合を行った。
第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が50℃以下にならないように制御しながら、実施例1と同様に調製した第2段目重合用の単量体水溶液(b1)を系内に添加し、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。
逆相懸濁重合の終了後、実施例1と同様に処理して吸水性樹脂粒子249gを得た。
Comparative Example 2
In the same manner as in Example 3, reverse phase suspension polymerization of the first stage was performed.
After completion of the reverse phase suspension polymerization in the first stage, the temperature of the reaction mixture was controlled so as not to be 50 ° C. or lower in order to keep the surfactant dissolved, as in Example 1. The prepared monomer aqueous solution (b1) for the second stage polymerization was added to the system, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.
After completion of the reverse phase suspension polymerization, the same treatment as in Example 1 was performed to obtain 249 g of water absorbent resin particles.

比較例3
実施例3と同様にして第1段目の逆相懸濁重合を行った。
これとは別に、内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液92.0g(1.02モル)を入れ、氷冷しながら27.0重量%水酸化ナトリウム水溶液113.6gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度44重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N' −メチレンビスアクリルアミド18.4mg(119μモルおよび水溶性ラジカル重合開始剤として過硫酸カリウム92mg(0.34ミリモル)を添加し、これを第2段目の逆相懸濁重合用の単量体水溶液(b6)とした。
Comparative Example 3
In the same manner as in Example 3, reverse phase suspension polymerization of the first stage was performed.
Separately, 92.0 g (1.02 mol) of 80 wt% aqueous acrylic acid solution was placed in a 500 mL Erlenmeyer flask, and 113.6 g of 27.0 wt% sodium hydroxide aqueous solution was added dropwise while cooling with ice. Then, 75 mol% of acrylic acid was neutralized to prepare a partially neutralized aqueous solution of acrylic acid having a monomer concentration of 44% by weight. 18.4 mg (119 μmol of N, N′-methylenebisacrylamide as an internal cross-linking agent and 92 mg (0.34 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added to the resulting partially neutralized acrylic acid aqueous solution. This was used as the monomer aqueous solution (b6) for the reverse phase suspension polymerization in the second stage.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、前記第2段目重合用の単量体水溶液(b6)を系内に添加した。次いで、反応混合物を19℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。   After completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b6) was added to the system. Subsequently, the reaction mixture was cooled to 19 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in that state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.

逆相懸濁重合の終了後、再び加熱することによって、n−へプタンと水との共沸混合物から水223gを抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテル92mg(0.53ミリモル)を添加し、80℃で2時間、水40gの存在下で後架橋反応を行った。架橋反応後、系内のn−ヘプタンと水を加熱留去することにより吸水性樹脂粒子194gを得た。   After completion of the reverse phase suspension polymerization, 223 g of water was extracted from the azeotropic mixture of n-heptane and water by heating again, and then 92 mg (0.53 mmol) of ethylene glycol diglycidyl ether as a post-crosslinking agent. And a post-crosslinking reaction was performed in the presence of 40 g of water at 80 ° C. for 2 hours. After the crosslinking reaction, 194 g of water-absorbent resin particles were obtained by heating and distilling off n-heptane and water in the system.

比較例4
内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液79g(0.88モル)を入れ、氷冷しながら21.0重量%水酸化ナトリウム水溶液125.7gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度38重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N’−メチレンビスアクリルアミド15.8mg(102μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム79.2mg(0.29ミリモル)を添加し、これを第1段目の逆相懸濁重合用の単量体水溶液(a3)とした。
Comparative Example 4
Into a 500 mL Erlenmeyer flask, 79 g (0.88 mol) of 80 wt% acrylic acid aqueous solution was added, and 125.7 g of 21.0 wt% aqueous sodium hydroxide solution was added dropwise with ice cooling to add 75 mol acrylic acid. Acid neutralization was performed to prepare a partially neutralized acrylic acid salt solution with a monomer concentration of 38% by weight. To the obtained partially neutralized acrylic acid aqueous solution, 15.8 mg (102 μmol) of N, N′-methylenebisacrylamide as an internal crosslinking agent and 79.2 mg (0.29 mmol) of potassium persulfate as a water-soluble radical polymerization initiator. This was used as the monomer aqueous solution (a3) for reverse phase suspension polymerization in the first stage.

攪拌機、2段パドル翼、還流冷却器、滴下ロートおよび窒素ガス導入管を備えた内容量2Lの五つ口円筒型丸底フラスコ内に、n−ヘプタン340g(500mL)と、界面活性剤としてショ糖脂肪酸エステル〔三菱化学フーズ(株)製、商品名:S−370〕0.79gを加えてn−ヘプタンに溶解させた後、内温を35℃にした。その後、内温を35℃に保ちながら前記第1段目重合用の単量体水溶液(a3)を加えて、攪拌下で懸濁し、系内を窒素ガスで置換した。引き続き、70℃に昇温して第1段目の逆相懸濁重合を行った。   Into a 2 L five-necked cylindrical round bottom flask equipped with a stirrer, two-stage paddle blade, reflux condenser, dropping funnel and nitrogen gas introduction tube, 340 g (500 mL) of n-heptane and a surfactant as a surfactant were added. After adding 0.79g of sugar fatty acid ester [Mitsubishi Chemical Foods Co., Ltd., brand name: S-370] and making it melt | dissolve in n-heptane, internal temperature was 35 degreeC. Thereafter, while maintaining the internal temperature at 35 ° C., the monomer aqueous solution (a3) for the first stage polymerization was added and suspended under stirring, and the system was replaced with nitrogen gas. Subsequently, the temperature was raised to 70 ° C., and the first-stage reversed-phase suspension polymerization was performed.

これとは別に、内容量500mLの三角フラスコ内に、80重量%アクリル酸水溶液205.9g(2.29モル)を入れ、氷冷しながら27.0重量%水酸化ナトリウム水溶液254.3gを滴下して75モル%のアクリル酸の中和を行い、単量体濃度44重量%のアクリル酸部分中和塩水溶液を調製した。得られたアクリル酸部分中和塩水溶液に、内部架橋剤としてN,N' −メチレンビスアクリルアミド41.2mg(267μモル)および水溶性ラジカル重合開始剤として過硫酸カリウム206mg(0.76ミリモル)を添加し、これを第2段目の逆相懸濁重合用の単量体水溶液(b7)とした。   Separately, 205.9 g (2.29 mol) of 80 wt% aqueous acrylic acid solution was placed in a 500 mL Erlenmeyer flask, and 254.3 g of 27.0 wt% aqueous sodium hydroxide solution was added dropwise while cooling with ice. Then, 75 mol% of acrylic acid was neutralized to prepare a partially neutralized aqueous solution of acrylic acid having a monomer concentration of 44% by weight. In the obtained aqueous solution of partially neutralized acrylic acid, 41.2 mg (267 μmol) of N, N′-methylenebisacrylamide as an internal crosslinking agent and 206 mg (0.76 mmol) of potassium persulfate as a water-soluble radical polymerization initiator were added. This was added to obtain a monomer aqueous solution (b7) for the reverse phase suspension polymerization in the second stage.

第1段目の逆相懸濁重合の終了後、界面活性剤が溶解している状態を保持するため、反応混合物の温度が40℃以下にならないように制御しながら、前記第2段目重合用の単量体水溶液(b7)を系内に添加した。次いで、反応混合物を30℃に冷却し、界面活性剤を析出させ、その状態で30分間攪拌を行うと同時に系内を窒素ガスで置換した。その後、70℃に昇温して第2段目の逆相懸濁重合を行った。   After completion of the first-stage reversed-phase suspension polymerization, the second-stage polymerization is performed while controlling the temperature of the reaction mixture so as not to be 40 ° C. or lower in order to keep the surfactant dissolved. A monomer aqueous solution (b7) was added to the system. Subsequently, the reaction mixture was cooled to 30 ° C. to precipitate a surfactant, and the system was stirred for 30 minutes in this state, and at the same time, the system was replaced with nitrogen gas. Thereafter, the temperature was raised to 70 ° C., and the second-stage reversed-phase suspension polymerization was performed.

逆相懸濁重合の終了後、再び加熱することによって、n−へプタンと水との共沸混合物から水323gを抜き出した後、後架橋剤としてエチレングリコールジグリシジルエーテル143mg(0.82ミリモル)を添加し、80℃で2時間、水62gの存在下で後架橋反応を行った。架橋反応後、系内のn−ヘプタンと水を加熱留去することにより吸水性樹脂粒子300gを得た。   After the reverse phase suspension polymerization was completed, 323 g of water was extracted from the azeotropic mixture of n-heptane and water by heating again, and then 143 mg (0.82 mmol) of ethylene glycol diglycidyl ether as a post-crosslinking agent. And a post-crosslinking reaction was carried out at 80 ° C. for 2 hours in the presence of 62 g of water. After the crosslinking reaction, 300 g of water-absorbent resin particles were obtained by heating and distilling off n-heptane and water in the system.

なお、各実施例および各比較例で得られた吸水性樹脂粒子の吸水量、平均粒径および粒径分布は、下記に示す方法により測定した。吸水性樹脂粒子の性能結果を表1に示す。   In addition, the water absorption amount, average particle diameter, and particle size distribution of the water absorbent resin particles obtained in each Example and each Comparative Example were measured by the following methods. The performance results of the water absorbent resin particles are shown in Table 1.

(1)吸水量
500mL容のビーカー中で、吸水性樹脂粒子2gを0.9重量%生理食塩水500gに分散させ、60分間攪拌して十分に膨潤させた。予め重量Wa(g)を測定しておいた目開き75μmの標準篩で、膨潤ゲルを含んだ0.9重量%生理食塩水を濾過し、篩を水平に対して約30度程度の傾斜角となるように傾けた状態で30分間放置して、膨潤ゲルから余剰水を除いた。その後、膨潤ゲルを含んだ篩の重量Wb(g)を測定し、式:
〔吸水量(g/g)〕=(Wb−Wa)÷2
により、吸水量(g/g)を求めた。
(1) Water absorption amount In a 500 mL beaker, 2 g of water-absorbent resin particles were dispersed in 500 g of 0.9 wt% physiological saline, and stirred for 60 minutes to swell sufficiently. A 0.9% by weight physiological saline solution containing a swollen gel was filtered with a standard sieve having a mesh size of 75 μm and the weight Wa (g) was measured in advance. The inclination angle of the sieve was about 30 degrees with respect to the horizontal. And left for 30 minutes in an inclined state to remove excess water from the swollen gel. Thereafter, the weight Wb (g) of the sieve containing the swollen gel was measured, and the formula:
[Water absorption (g / g)] = (Wb−Wa) / 2
Thus, the amount of water absorption (g / g) was determined.

(2)重量平均粒径および粒度分布
JIS標準篩を上から、目開き850μmの篩、目開き600μmの篩、目開き425μmの篩、目開き300μmの篩、目開き150μmの篩、目開き75μmの篩および受け皿の順に組み合わせ、最上の篩に吸水性樹脂粒子約100gを入れ、ロータップ式振とう器を用いて、20分間振盪させた。
(2) Weight average particle diameter and particle size distribution From the top, a JIS standard sieve is sieved with an opening of 850 μm, a sieve with an opening of 600 μm, a sieve with an opening of 425 μm, a sieve with an opening of 300 μm, a sieve with an opening of 150 μm, and an opening of 75 μm. In this order, about 100 g of the water-absorbent resin particles were put in the uppermost sieve and shaken for 20 minutes using a low-tap shaker.

次に、各篩上に残った吸水性樹脂粒子の重量を全量に対する重量百分率として計算し、粒径の小さい方から順に積算することにより、篩の目開きと篩上に残った重量百分率の積算値との関係を対数確率紙にプロットした。確率紙上のプロットを直線で結ぶことにより、積算重量百分率50重量%に相当する粒径を重量平均粒径とした。   Next, the weight of the water-absorbent resin particles remaining on each sieve is calculated as a percentage by weight with respect to the total amount, and by integrating in order from the smaller particle size, the sieve weight and the weight percentage remaining on the sieve are integrated. The relationship with values was plotted on a logarithmic probability paper. By connecting the plots on the probability paper with a straight line, the particle size corresponding to an integrated weight percentage of 50% by weight was taken as the weight average particle size.

また、目開き75μmの篩および受け皿、目開き150μm、目開き300μmと目開き425μm、目開き600μmと目開き850μmの各篩い上に残った吸水性樹脂粒子の重量を全量に対する重量百分率として計算し、その値から粒度分布を求めた。   In addition, the weight of the water-absorbent resin particles remaining on each sieve having a sieve with a mesh opening of 75 μm, a mesh opening of 150 μm, a mesh opening of 300 μm and a mesh opening of 425 μm, and a mesh opening of 600 μm and a mesh opening of 850 μm is calculated as a percentage by weight. The particle size distribution was determined from the value.

Figure 2006089525
Figure 2006089525

表1に記載の結果から明らかなように、各実施例で得られた吸水性樹脂粒子は、いずれも、微粉および粗粉が少なく、粒度分布が狭いことがわかる。一方、各比較例で得られた吸水性樹脂粒子は、微粉または粗粉が多いことがわかる。   As is clear from the results shown in Table 1, it can be seen that all of the water-absorbent resin particles obtained in each Example had few fine and coarse powders and a narrow particle size distribution. On the other hand, it can be seen that the water-absorbent resin particles obtained in the respective comparative examples are rich in fine powder or coarse powder.

本発明の製造方法で得られた吸水性樹脂粒子は、微粉および粗粉が少なく、粒度分布が狭いので、特に薄型化された生理用品や紙おむつ等の衛生材料に好適に用いることができる。   Since the water-absorbent resin particles obtained by the production method of the present invention have few fine powders and coarse powders and have a narrow particle size distribution, they can be suitably used particularly for sanitary materials such as sanitary products and paper diapers that have been made thinner.

Claims (3)

水溶性エチレン性不飽和単量体を逆相懸濁重合させて吸水性樹脂粒子を製造する方法であって、
(A)界面活性剤および/または高分子保護コロイド、ならびに必要に応じて内部架橋剤の存在下、水溶性ラジカル重合開始剤を用いて、炭化水素系溶媒中で水溶性エチレン性不飽和単量体水溶液を第1段目の逆相懸濁重合に付し、
(B)界面活性剤および/または高分子保護コロイドが炭化水素系溶媒に溶解している状態で、第1段目の逆相懸濁重合が終了した反応混合物に、水溶性ラジカル重合開始剤、第1段目の重合に付した水溶性エチレン性不飽和単量体1モルに対して1.2〜2.5モルの水溶性エチレン性不飽和単量体、および必要に応じて内部架橋剤を含む水溶性エチレン性不飽和単量体水溶液を添加し、
(C)次いで界面活性剤および/または高分子保護コロイドを析出させた後、第2段目の逆相懸濁重合を行うことを特徴とする吸水性樹脂粒子の製造方法。
A method for producing water-absorbent resin particles by reverse-phase suspension polymerization of a water-soluble ethylenically unsaturated monomer,
(A) A water-soluble ethylenically unsaturated monomer in a hydrocarbon solvent using a water-soluble radical polymerization initiator in the presence of a surfactant and / or polymer protective colloid and, if necessary, an internal crosslinking agent Subject the aqueous body solution to the first-stage reverse phase suspension polymerization,
(B) In the state where the surfactant and / or the polymer protective colloid is dissolved in the hydrocarbon solvent, a water-soluble radical polymerization initiator is added to the reaction mixture in which the first-stage reversed-phase suspension polymerization is completed, 1.2 to 2.5 moles of water-soluble ethylenically unsaturated monomer with respect to 1 mole of water-soluble ethylenically unsaturated monomer subjected to the first stage polymerization, and, if necessary, an internal crosslinking agent Add a water-soluble ethylenically unsaturated monomer aqueous solution containing
(C) Next, after depositing a surfactant and / or polymer protective colloid, the second-stage reversed-phase suspension polymerization is performed, and the method for producing water-absorbing resin particles is characterized in that
界面活性剤が、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステルおよびショ糖脂肪酸エステルから選ばれた少なくとも1種の界面活性剤である請求項1記載の吸水性樹脂粒子の製造方法。   The method for producing water-absorbent resin particles according to claim 1, wherein the surfactant is at least one surfactant selected from sorbitan fatty acid ester, polyglycerin fatty acid ester and sucrose fatty acid ester. 重量平均粒径が200〜500μmである請求項1または2記載の製造方法によって得られた吸水性樹脂粒子。   The water-absorbent resin particles obtained by the production method according to claim 1 or 2, wherein the weight average particle diameter is 200 to 500 µm.
JP2004273503A 2004-09-21 2004-09-21 Method for producing water-absorbing resin particle Pending JP2006089525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273503A JP2006089525A (en) 2004-09-21 2004-09-21 Method for producing water-absorbing resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273503A JP2006089525A (en) 2004-09-21 2004-09-21 Method for producing water-absorbing resin particle

Publications (1)

Publication Number Publication Date
JP2006089525A true JP2006089525A (en) 2006-04-06

Family

ID=36230813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273503A Pending JP2006089525A (en) 2004-09-21 2004-09-21 Method for producing water-absorbing resin particle

Country Status (1)

Country Link
JP (1) JP2006089525A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123188A1 (en) * 2006-04-24 2007-11-01 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbable resin particle, and water-absorbable resin particle produced by the process
JP2008179759A (en) * 2006-12-26 2008-08-07 Kao Corp Production method of water-absorbing polymer
JP2011006413A (en) * 2009-06-24 2011-01-13 L'oreal Sa Cosmetic composition containing superabsorbent polymer and organic uv screening agent
WO2012014748A1 (en) * 2010-07-28 2012-02-02 住友精化株式会社 Production method for water absorbent resin
WO2012014749A1 (en) * 2010-07-28 2012-02-02 住友精化株式会社 Process for production of water-absorbable resin
WO2012023433A1 (en) * 2010-08-19 2012-02-23 住友精化株式会社 Water-absorbing resin
CN102516695A (en) * 2011-12-08 2012-06-27 天津大学 Functional material for purifying air and regulating humidity and its preparation method
JP2012236898A (en) * 2011-05-11 2012-12-06 Sumitomo Seika Chem Co Ltd Water-absorbing resin and method of producing the same
WO2013051417A1 (en) * 2011-10-06 2013-04-11 住友精化株式会社 Method for producing water absorbent resin particles
WO2014038324A1 (en) * 2012-09-10 2014-03-13 住友精化株式会社 Water-absorbing resin, water-absorbing body, and water-absorbing product
JPWO2012108253A1 (en) * 2011-02-08 2014-07-03 住友精化株式会社 Method for producing water absorbent resin
US8841395B2 (en) 2010-07-28 2014-09-23 Sumitomo Seika Chemicals Co., Ltd. Method for producing a water-absorbent resin
US8883944B2 (en) 2010-07-28 2014-11-11 Sumitomo Seika Chemicals Co., Ltd. Method for producing a water-absorbent resin
US9074022B2 (en) 2006-04-27 2015-07-07 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbent resin
JP2017502094A (en) * 2013-10-30 2017-01-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing absorbent polymer particles by suspension polymerization
EP3124502A4 (en) * 2014-03-26 2018-01-03 Sumitomo Seika Chemicals CO. LTD. Method for producing water-absorbing resin particle
WO2019189325A1 (en) * 2018-03-27 2019-10-03 住友精化株式会社 Water-absorbing exfoliator, method for producing same, and cosmetic
WO2020017483A1 (en) * 2018-07-19 2020-01-23 Sdpグローバル株式会社 Water absorbing resin particles, and absorbent body and absorbent article containing same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8378033B2 (en) 2006-04-24 2013-02-19 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbable resin particle, and water-absorbable resin particle produced by the process
JP5219804B2 (en) * 2006-04-24 2013-06-26 住友精化株式会社 Method for producing water absorbent resin particles, and water absorbent resin particles obtained thereby
WO2007123188A1 (en) * 2006-04-24 2007-11-01 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbable resin particle, and water-absorbable resin particle produced by the process
US9074022B2 (en) 2006-04-27 2015-07-07 Sumitomo Seika Chemicals Co., Ltd. Process for production of water-absorbent resin
JP2008179759A (en) * 2006-12-26 2008-08-07 Kao Corp Production method of water-absorbing polymer
JP2011006413A (en) * 2009-06-24 2011-01-13 L'oreal Sa Cosmetic composition containing superabsorbent polymer and organic uv screening agent
WO2012014748A1 (en) * 2010-07-28 2012-02-02 住友精化株式会社 Production method for water absorbent resin
US8859700B2 (en) 2010-07-28 2014-10-14 Sumitomo Seika Chemicals Co., Ltd. Method for producing a water-absorbent resin
US8883944B2 (en) 2010-07-28 2014-11-11 Sumitomo Seika Chemicals Co., Ltd. Method for producing a water-absorbent resin
US9132413B2 (en) 2010-07-28 2015-09-15 Sumitomo Seika Chemicals Co., Ltd. Method for producing a water-absorbent resin
WO2012014749A1 (en) * 2010-07-28 2012-02-02 住友精化株式会社 Process for production of water-absorbable resin
US8841395B2 (en) 2010-07-28 2014-09-23 Sumitomo Seika Chemicals Co., Ltd. Method for producing a water-absorbent resin
JPWO2012014749A1 (en) * 2010-07-28 2013-09-12 住友精化株式会社 Method for producing water absorbent resin
JPWO2012014748A1 (en) * 2010-07-28 2013-09-12 住友精化株式会社 Method for producing water absorbent resin
CN103080140A (en) * 2010-08-19 2013-05-01 住友精化株式会社 Water-absorbing resin
JP5901524B2 (en) * 2010-08-19 2016-04-13 住友精化株式会社 Water absorbent resin
JPWO2012023433A1 (en) * 2010-08-19 2013-10-28 住友精化株式会社 Water absorbent resin
KR101760768B1 (en) 2010-08-19 2017-07-24 스미토모 세이카 가부시키가이샤 Water-absorbing resin
WO2012023433A1 (en) * 2010-08-19 2012-02-23 住友精化株式会社 Water-absorbing resin
JP6050685B2 (en) * 2011-02-08 2016-12-21 住友精化株式会社 Method for producing water absorbent resin
JPWO2012108253A1 (en) * 2011-02-08 2014-07-03 住友精化株式会社 Method for producing water absorbent resin
JP2012236898A (en) * 2011-05-11 2012-12-06 Sumitomo Seika Chem Co Ltd Water-absorbing resin and method of producing the same
WO2013051417A1 (en) * 2011-10-06 2013-04-11 住友精化株式会社 Method for producing water absorbent resin particles
US9605094B2 (en) 2011-10-06 2017-03-28 Sumitomo Seika Chemicals Co., Ltd. Method for producing water absorbent resin particles
CN103857705B (en) * 2011-10-06 2015-08-26 住友精化株式会社 The manufacture method of water-absorbing resin particles
JPWO2013051417A1 (en) * 2011-10-06 2015-03-30 住友精化株式会社 Method for producing water absorbent resin particles
CN103857705A (en) * 2011-10-06 2014-06-11 住友精化株式会社 Method for producing water absorbent resin particles
CN102516695A (en) * 2011-12-08 2012-06-27 天津大学 Functional material for purifying air and regulating humidity and its preparation method
JPWO2014038324A1 (en) * 2012-09-10 2016-08-08 住友精化株式会社 Water absorbent resin, absorber and absorbent article
WO2014038324A1 (en) * 2012-09-10 2014-03-13 住友精化株式会社 Water-absorbing resin, water-absorbing body, and water-absorbing product
KR20150054796A (en) * 2012-09-10 2015-05-20 스미토모 세이카 가부시키가이샤 Water-absorbing resin, water-absorbing body, and water-absorbing product
US10265226B2 (en) 2012-09-10 2019-04-23 Sumitomo Seika Chemicals Co., Ltd. Water-absorbent resin, water-absorbent material, and water-absorbent article
KR102073446B1 (en) 2012-09-10 2020-02-05 스미토모 세이카 가부시키가이샤 Water-absorbing resin, water-absorbing body, and water-absorbing product
JP2017502094A (en) * 2013-10-30 2017-01-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for producing absorbent polymer particles by suspension polymerization
EP3124502A4 (en) * 2014-03-26 2018-01-03 Sumitomo Seika Chemicals CO. LTD. Method for producing water-absorbing resin particle
WO2019189325A1 (en) * 2018-03-27 2019-10-03 住友精化株式会社 Water-absorbing exfoliator, method for producing same, and cosmetic
WO2020017483A1 (en) * 2018-07-19 2020-01-23 Sdpグローバル株式会社 Water absorbing resin particles, and absorbent body and absorbent article containing same
JPWO2020017483A1 (en) * 2018-07-19 2021-08-12 Sdpグローバル株式会社 Water-absorbent resin particles, absorbers containing them, and absorbent articles
JP7339253B2 (en) 2018-07-19 2023-09-05 Sdpグローバル株式会社 Water absorbent resin particles, absorbent body and absorbent article containing the same

Similar Documents

Publication Publication Date Title
JP5027414B2 (en) Method for producing water absorbent resin particles
JP2006089525A (en) Method for producing water-absorbing resin particle
JP3415036B2 (en) Method for granulating hydrogel crosslinked polymer
JP2938920B2 (en) Method for producing water absorbent resin
JP3967358B2 (en) Method for producing water-absorptive resin and water-absorptive resin
EP0751159B1 (en) Method of preparing water-absorbing resin
JP2008522003A (en) Cross-linking agent for super absorbent polymer
JP5855012B2 (en) Method for producing water absorbent resin
JP2901368B2 (en) Method for producing salt-resistant water-absorbent resin
JP2002105125A (en) Method for producing water-absorbing resin
JPH0848721A (en) Preparation of water-absorptive resin
JP3328649B2 (en) Method for producing salt-resistant water-absorbent resin
JP3439234B2 (en) Hydrophilic resin and method for producing the same
JP4583080B2 (en) Method for producing water absorbent resin
JPWO2006068067A1 (en) Method for producing water absorbent resin particles
JPS6036534A (en) Manufacture of highly functional water-absorptive resin
JP3059236B2 (en) Granulation of superabsorbent polymer
JP4817485B2 (en) Method for producing water absorbent resin
CN113906056A (en) Water-absorbent resin and water-blocking material
JPH03195708A (en) Production of polymer having high water absorption property
JPH0445850A (en) Salt-resistant water absorbent
CN112969529A (en) Process for producing superabsorbers
JPS5981319A (en) Production of highly water-absorptive resin
JPH0234607A (en) Manufacture of highly water-absorptive polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090928