JPWO2020017483A1 - Water-absorbent resin particles, absorbers containing them, and absorbent articles - Google Patents

Water-absorbent resin particles, absorbers containing them, and absorbent articles Download PDF

Info

Publication number
JPWO2020017483A1
JPWO2020017483A1 JP2020531306A JP2020531306A JPWO2020017483A1 JP WO2020017483 A1 JPWO2020017483 A1 JP WO2020017483A1 JP 2020531306 A JP2020531306 A JP 2020531306A JP 2020531306 A JP2020531306 A JP 2020531306A JP WO2020017483 A1 JPWO2020017483 A1 JP WO2020017483A1
Authority
JP
Japan
Prior art keywords
water
weight
absorbent resin
resin particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020531306A
Other languages
Japanese (ja)
Other versions
JP7339253B2 (en
Inventor
武 南里
武 南里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDP Global Co Ltd
Original Assignee
SDP Global Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SDP Global Co Ltd filed Critical SDP Global Co Ltd
Publication of JPWO2020017483A1 publication Critical patent/JPWO2020017483A1/en
Application granted granted Critical
Publication of JP7339253B2 publication Critical patent/JP7339253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels

Abstract

吸収させる液体と接触した初期の高い吸収速度や液拡散性を発揮し、ドライ性が優れ、更にカブレ等の問題がない吸水性樹脂粒子を提供する。本発明は水溶性ビニルモノマー及び/又は加水分解性ビニルモノマー並びに架橋剤を必須構成単位とする架橋重合体(A1)を含んでなり、重量平均粒子径(μm)が200〜400であり、下記式で表されるSPAN値が1.0以下であり、(A1)のDW法による1分後の吸収量が10〜15ml/gであり、5分後の吸収量が45〜55ml/gである吸水性樹脂粒子。SPAN=[D(90%)−D(10%)]/D(50%)≦1.0(D(10%)は、累積重量分率が10重量%となる粒子径、D(50%)は50重量%となる粒子径、D(90%)は90重量%となる粒子径。)Provided are water-absorbent resin particles that exhibit a high initial absorption rate and liquid diffusivity in contact with a liquid to be absorbed, have excellent dryness, and do not have problems such as fogging. The present invention comprises a water-soluble vinyl monomer and / or a hydrolyzable vinyl monomer and a cross-linked polymer (A1) containing a cross-linking agent as an essential constituent unit, and has a weight average particle size (μm) of 200 to 400, and is described below. The SPAN value represented by the formula is 1.0 or less, the absorption amount after 1 minute by the DW method of (A1) is 10 to 15 ml / g, and the absorption amount after 5 minutes is 45 to 55 ml / g. Some water-absorbent resin particles. SPAN = [D (90%) -D (10%)] / D (50%) ≤ 1.0 (D (10%) is a particle size with a cumulative weight fraction of 10% by weight, D (50%). ) Is a particle size of 50% by weight, and D (90%) is a particle size of 90% by weight.)

Description

本発明は吸水性樹脂粒子、これを含む吸収体及び吸収性物品に関するものである。 The present invention relates to water-absorbent resin particles, an absorber containing the same, and an absorbent article.

紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維とアクリル酸(塩)等とを主原料とする吸水性樹脂が吸収体として幅広く利用されている。近年の消費者は、より快適性を求める傾向にあり、よりドライ性が高くかつより薄型のものへと需要が遷移しており、これに伴ってドライ性が高く、更に親水性繊維の使用量低減が望まれるようになってきた。そのため、これまで親水性繊維が担ってきた初期の高い吸収速度や液拡散性の役割を吸水性樹脂それ自体に求められるようになった。 For sanitary materials such as disposable diapers, sanitary napkins, and incontinence pads, water-absorbent resins containing hydrophilic fibers such as pulp and acrylic acid (salt) as main raw materials are widely used as absorbers. In recent years, consumers have tended to seek more comfort, and the demand has shifted to those that are drier and thinner, which is accompanied by higher dryness and the amount of hydrophilic fibers used. Reduction has come to be desired. Therefore, the water-absorbent resin itself is required to play the role of the initial high absorption rate and liquid diffusivity that the hydrophilic fiber has played so far.

吸水性樹脂粒子の吸収速度を向上させる手段としては、吸水性樹脂の表面積を物理的に大きくする方法が一般的である。例えば、吸水性樹脂の乾燥速度を上げて見掛け密度を低下させる方法(特許文献1)や篩分工程で吸水性樹脂粒子の粒度を小さくすることで吸収速度を向上させる方法(特許文献2)が知られている。しかし、これらの吸水性樹脂粒子を吸収性物品(紙おむつ等)に適用した吸収体において、親水性繊維の含有量が吸水性樹脂粒子の含有量よりも多い場合には問題ないが、親水性繊維の含有量が少ないもしくは含有しない場合には、吸収体の部位により吸水性樹脂の吸収率に偏りが起こり吸収体物品を有効に活用することができず、吸収させる液体の残存している部位ではカブレ等の問題を生じやすい。
上記課題を解決する方法しては、吸収させる液体と接触した以後の時間経過に対する吸収速度(以下、吸収速度パターン)をコントロールした吸水性樹脂粒子(特許文献3)が知られているが、この吸水性樹脂粒子を吸収性物品に適用したとき、吸収性物品に使用されている表面不織布からの吸収させる液体の液引きが遅くなり、ドライ性が悪化する問題がある。
したがって、親水性繊維の使用量が少ない吸収体においても、初期の高い吸収速度や液拡散性を発揮し、ドライ性に優れ、更にカブレ等の問題がない吸収性物品、これに使用し得る吸水性樹脂粒子が強く望まれている。
As a means for improving the absorption rate of the water-absorbent resin particles, a method of physically increasing the surface area of the water-absorbent resin is common. For example, a method of increasing the drying rate of the water-absorbent resin to reduce the apparent density (Patent Document 1) and a method of improving the absorption rate by reducing the particle size of the water-absorbent resin particles in the sieving step (Patent Document 2). Are known. However, in an absorber in which these water-absorbent resin particles are applied to an absorbent article (paper diaper, etc.), there is no problem when the content of the hydrophilic fibers is larger than the content of the water-absorbent resin particles, but the hydrophilic fibers When the content of the absorbent is low or not, the absorption rate of the water-absorbent resin is biased depending on the part of the absorber, and the absorbent article cannot be effectively used. Problems such as fog are likely to occur.
As a method for solving the above problems, water-absorbent resin particles (Patent Document 3) in which the absorption rate (hereinafter, absorption rate pattern) with respect to the passage of time after contact with the liquid to be absorbed is controlled are known. When the water-absorbent resin particles are applied to the absorbent article, there is a problem that the liquid to be absorbed from the surface non-woven fabric used in the absorbent article is slowly drained and the dryness is deteriorated.
Therefore, even in an absorbent body in which the amount of hydrophilic fibers used is small, an absorbent article that exhibits a high initial absorption rate and liquid diffusivity, has excellent dryness, and does not have problems such as fogging, and water absorption that can be used for this. Sexual resin particles are strongly desired.

特開2013−132434号公報Japanese Unexamined Patent Publication No. 2013-132434 特開2006−143972号公報Japanese Unexamined Patent Publication No. 2006-143972 特許第5448699号公報Japanese Patent No. 5448699

本発明の目的は、吸収させる液体と接触した初期の高い吸収速度や液拡散性を発揮し、ドライ性が優れ、更にカブレ等の問題がない吸水性樹脂粒子、これを含む吸収体及び吸収性物品を提供することである。 An object of the present invention is a water-absorbent resin particle that exhibits a high initial absorption rate and liquid diffusivity in contact with a liquid to be absorbed, has excellent dryness, and does not have problems such as fogging, an absorber containing the same, and absorbency. To provide goods.

本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)(換言すれば、水溶性ビニルモノマー(a1)及び加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)からなる群から選択される少なくとも1種のビニルモノマー)、並びに架橋剤(b)を必須構成単位とする架橋重合体(A1)を含んでなる吸水性樹脂粒子であって、吸水性樹脂粒子の重量平均粒子径(μm)が200〜400であり、下記の数式1で表されるスパン値(SPAN)が1.0以下であり、(A1)のDW(Demand Wettability)法による1分後の吸収量(M1)が10〜15ml/gであり、5分後の吸収量(M2)が45〜55ml/gである吸水性樹脂粒子である。
SPAN=[D(90%)−D(10%)]/D(50%)≦1.0 (数式1)
前記数式1において、D(10%)は、標準ふるいを用いて分級した吸水性樹脂粒子の全体重量を100重量%として粒子径が最も小さい粒子からの累積重量分率が10重量%となる粒子径であり、D(50%)は、累積重量分率が50重量%となる粒子径であり、D(90%)は累積重量分率が90重量%となる粒子径である。
The present invention relates to a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis (in other words, a water-soluble vinyl monomer (a1) and a water-soluble vinyl by hydrolysis. Water absorption including at least one vinyl monomer selected from the group consisting of a vinyl monomer (a2) serving as a monomer (a1) and a crosslinked polymer (A1) containing a crosslinking agent (b) as an essential constituent unit. Among the resin particles, the weight average particle diameter (μm) of the water-absorbent resin particles is 200 to 400, the span value (SPAN) represented by the following formula 1 is 1.0 or less, and (A1). These are water-absorbent resin particles having an absorption amount (M1) after 1 minute and 45 to 55 ml / g after 5 minutes according to the DW (Polymer Wetability) method.
SPAN = [D (90%) -D (10%)] / D (50%) ≤ 1.0 (Formula 1)
In the above formula 1, D (10%) is a particle having a cumulative weight component of 10% by weight from the particle having the smallest particle size, where the total weight of the water-absorbent resin particles classified using a standard sieve is 100% by weight. In terms of diameter, D (50%) is a particle size having a cumulative weight component of 50% by weight, and D (90%) is a particle size having a cumulative weight component of 90% by weight.

本発明の吸収体は、上記の吸水性樹脂粒子と繊維状物とを含有してなる。 The absorber of the present invention contains the above-mentioned water-absorbent resin particles and a fibrous substance.

本発明の吸収性物品は、上記の吸収体を備えてなる。 The absorbent article of the present invention comprises the above absorber.

本発明の吸水性樹脂粒子は、ある特定の粒度分布と吸収速度パターンを有する。したがって、本発明の吸水性樹脂粒子を吸収性物品(紙おむつ及び生理用ナプキン等)に適用したとき、吸収させる液体と接触したときの、初期の高い吸収速度や液拡散性を発揮し、ドライ性が優れ、更にカブレ等の問題がない。すなわち、本発明のDW吸収パターンを有する吸水性樹脂粒子を用いた吸収性物品は、初期に適度に遅延した吸収パターンを持つために優れた液拡散性を発揮し、吸収体全体でのドライ性に優れる。また、重量平均粒径とスパン値を本発明の範囲にすることにより、表面不織布からの液引き性(液体を吸引・吸収すること。以下おなじ)がよくなることから、更に優れたドライ性を発揮する。 The water-absorbent resin particles of the present invention have a specific particle size distribution and absorption rate pattern. Therefore, when the water-absorbent resin particles of the present invention are applied to an absorbent article (paper diaper, sanitary napkin, etc.), they exhibit high initial absorption rate and liquid diffusivity when they come into contact with the liquid to be absorbed, and are dry. Is excellent, and there are no problems such as fogging. That is, the absorbent article using the water-absorbent resin particles having the DW absorption pattern of the present invention exhibits excellent liquid diffusivity because it has an absorption pattern that is appropriately delayed at the initial stage, and the dryness of the entire absorber is dry. Excellent for. Further, by setting the weight average particle size and the span value within the range of the present invention, the liquid drainability from the surface non-woven fabric (suction / absorption of the liquid; the same applies hereinafter) is improved, so that even better dryness is exhibited. do.

DW法による吸収量を測定するための装置を模式的に表した図である。It is a figure which represented typically the apparatus for measuring the absorption amount by the DW method.

水溶性ビニルモノマー(a1)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}のビニルモノマー等が使用できる。 The water-soluble vinyl monomer (a1) is not particularly limited and is known {for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982, Japanese Patent Application Laid-Open No. 2005-95759}. Etc. can be used.

加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(以降、加水分解性ビニルモノマーともいう)(a2)は、特に限定はなく公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}のビニルモノマー等が使用できる。なお、水溶性ビニルモノマーとは、25℃の水100gに少なくとも100g溶解する性質を持つビニルモノマーを意味する。また、加水分解性とは、50℃の水及び必要により触媒(酸又は塩基等)の作用により加水分解され水溶性になる性質を意味する。加水分解性ビニルモノマーの加水分解は、重合中、重合後及びこれらの両方のいずれでもよいが、得られる吸水性樹脂粒子の分子量の観点等から重合後が好ましい。 The vinyl monomer (hereinafter, also referred to as a hydrolyzable vinyl monomer) (a2) which becomes a water-soluble vinyl monomer (a1) by hydrolysis is known without particular limitation {for example, Japanese Patent Application Laid-Open No. 36485553, Japanese Patent Application Laid-Open No. 2003-165883. Japanese Patent Laying-Open No. 2005-75982, Japanese Unexamined Patent Publication No. 2005-59559} vinyl monomers and the like can be used. The water-soluble vinyl monomer means a vinyl monomer having a property of dissolving at least 100 g in 100 g of water at 25 ° C. Further, the hydrolyzable property means a property of being hydrolyzed by the action of water at 50 ° C. and, if necessary, a catalyst (acid, base, etc.) to become water-soluble. The hydrolyzable vinyl monomer may be hydrolyzed during polymerization, after polymerization, or both, but it is preferable after polymerization from the viewpoint of the molecular weight of the obtained water-absorbent resin particles.

これらのうち、吸収特性の観点等から、水溶性ビニルモノマー(a1)が好ましく、さらに好ましくはアニオン性ビニルモノマー、次に好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ−、ジ−若しくはトリ−アルキルアンモニオ基を有するビニルモノマー、次に好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、特に好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、次に特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。 Of these, a water-soluble vinyl monomer (a1) is preferable, an anionic vinyl monomer is more preferable, and then a carboxy (salt) group, a sulfo (salt) group, an amino group, and a carbamoyl group are preferable from the viewpoint of absorption characteristics and the like. , Ammonio group or vinyl monomer having mono-, di- or tri-alkylammonio group, then preferably vinyl monomer having carboxy (salt) group or carbamoyl group, especially preferably (meth) acrylic acid (salt) and (Meta) acrylamide, then particularly preferably (meth) acrylic acid (salt), most preferably acrylic acid (salt).

なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が含まれる。これらの塩のうち、吸収特性の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、さらに好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。The "carboxy (salt) group" means a "carboxy group" or a "carboxylate group", and the "sulfo (salt) group" means a "sulfo group" or a "sulfonate group". Further, (meth) acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid or methacrylic acid, and (meth) acrylamide means acrylamide or methacrylamide. The salt includes an alkali metal (lithium, sodium, potassium, etc.) salt, an alkaline earth metal (magnesium, calcium, etc.) salt, an ammonium (NH 4 ) salt, and the like. Among these salts, an alkali metal salt and an ammonium salt are preferable, and an alkali metal salt is particularly preferable, and a sodium salt is particularly preferable, from the viewpoint of absorption characteristics and the like.

水溶性ビニルモノマー(a1)又は加水分解性ビニルモノマー(a2)のいずれかを構成単位とする場合、それぞれ単独で構成単位としてもよく、また、必要により2種以上を構成単位としてもよい。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)を構成単位とする場合、これらの含有モル比(a1/a2)は、75/25〜99/1が好ましく、さらに好ましくは85/15〜95/5、特に好ましくは90/10〜93/7、最も好ましくは91/9〜92/8である。この範囲であると、吸収性能がさらに良好となる。 When either the water-soluble vinyl monomer (a1) or the hydrolyzable vinyl monomer (a2) is used as a constituent unit, each of them may be used alone as a constituent unit, or two or more thereof may be used as a constituent unit, if necessary. The same applies to the case where the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units. When the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2) are used as constituent units, the molar ratio (a1 / a2) of these is preferably 75/25 to 99/1, more preferably 75/25 to 99/1. It is 85/15 to 95/5, particularly preferably 90/10 to 93/7, and most preferably 91/9 to 92/8. Within this range, the absorption performance is further improved.

吸水性樹脂粒子の構成単位として、水溶性ビニルモノマー(a1)及び加水分解性ビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成単位とすることができる。 As a constituent unit of the water-absorbent resin particles, in addition to the water-soluble vinyl monomer (a1) and the hydrolyzable vinyl monomer (a2), another vinyl monomer (a3) copolymerizable with these can be used as the constituent unit. ..

共重合可能なその他のビニルモノマー(a3)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}の疎水性ビニルモノマー等が使用でき、下記の(i)〜(iii)のビニルモノマー等が使用できる。
(i)炭素数8〜30の芳香族エチレン性モノマー
スチレン、α−メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2〜20の脂肪族エチレンモノマー
アルケン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等];並びにアルカジエン[ブタジエン及びイソプレン等]等。
(iii)炭素数5〜15の脂環式エチレンモノマー
モノエチレン性不飽和モノマー[ピネン、リモネン及びインデン等];並びにポリエチレン性ビニル重合性モノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The other copolymerizable vinyl monomer (a3) is not particularly limited and is known {for example, Japanese Patent Application Laid-Open No. 36485553, JP-A-2003-165883, JP-A-2005-75982, JP-A-2005-595759. } Hydrophobic vinyl monomer and the like can be used, and the following vinyl monomers (i) to (iii) can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, halogen-substituted styrene such as vinylnaphthalene and dichlorostyrene and the like.
(Ii) Alkenes of aliphatic ethylene monomers having 2 to 20 carbon atoms [ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.]; and alkaziene [butadiene and isoprene, etc.] and the like.
(Iii) Alicyclic ethylene monomer having 5 to 15 carbon atoms Monoethylene unsaturated monomer [pinene, limonene, inden, etc.]; and polyethylene vinyl polymerizable monomer [cyclopentadiene, bicyclopentadiene, ethilidene norbornene, etc.] and the like.

その他のビニルモノマー(a3)を構成単位とする場合、その他のビニルモノマー(a3)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位のモル数に基づいて、0.01〜5が好ましく、さらに好ましくは0.05〜3、次に好ましくは0.08〜2、特に好ましくは0.1〜1.5である。なお、吸収特性の観点等から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。 When the other vinyl monomer (a3) is used as a constituent unit, the content (mol%) of the other vinyl monomer (a3) unit is the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit. Based on the number of moles, it is preferably 0.01 to 5, more preferably 0.05 to 3, then preferably 0.08 to 2, and particularly preferably 0.1 to 1.5. From the viewpoint of absorption characteristics and the like, the content of the other vinyl monomer (a3) unit is most preferably 0 mol%.

架橋剤(b)としては特に限定はなく公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}の架橋剤等が使用できる。これらのうち、吸収特性の観点等から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、さらに好ましくは炭素数2〜10のポリオールのポリ(メタ)アリルエーテル、特に好ましくはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン及びペンタエリスリトールトリアリルエーテル、最も好ましくはペンタエリスリトールトリアリルエーテルである。 The cross-linking agent (b) is not particularly limited, and known cross-linking agents (for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982, Japanese Patent Application Laid-Open No. 2005-95759} can be used. Can be used. Of these, a cross-linking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption characteristics and the like, more preferably a poly (meth) allyl ether of a polyol having 2 to 10 carbon atoms, and particularly preferably triallyl shear. Nurate, triallyl isocyanurate, tetraallyloxyetane and pentaerythritol triallyl ethers, most preferably pentaerythritol triallyl ethers.

架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解性ビニルモノマー(a2)単位のモル数に基づいて、その他のビニルモノマー(a3)も使用する場合は(a1)〜(a3)単位の合計モル数に基づいて、0.001〜5が好ましく、さらに好ましくは0.005〜3、特に好ましくは0.01〜1である。この範囲であると、吸収特性がさらに良好となる。 The content (mol%) of the cross-linking agent (b) unit is based on the number of moles of the water-soluble vinyl monomer (a1) unit and the hydrolyzable vinyl monomer (a2) unit, and other vinyl monomers (a3) are also used. In the case, 0.001 to 5, more preferably 0.005 to 3, and particularly preferably 0.01 to 1, based on the total number of moles of the units (a1) to (a3). Within this range, the absorption characteristics are further improved.

架橋重合体(A1)は1種でもよいし、2種以上の混合物であってもよい。 The crosslinked polymer (A1) may be one kind or a mixture of two or more kinds.

架橋重合体(A1)は、公知の水溶液重合{断熱重合、薄膜重合及び噴霧重合法等;特開昭55−133413号公報等}や、公知の逆相懸濁重合{特公昭54−30710号公報、特開昭56−26909号公報及び特開平1−5808号公報等}と同様にして製造することができる。重合方法のうち、好ましくは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましくは水溶液重合法である。 The crosslinked polymer (A1) can be a known aqueous solution polymerization {adiabatic polymerization, thin film polymerization, spray polymerization, etc .; JP-A-55-133413, etc.} or a known reverse phase suspension polymerization {Japanese Patent Publication No. 54-30710. It can be produced in the same manner as in Japanese Patent Application Laid-Open No. 56-26909, Japanese Patent Application Laid-Open No. 1-5808, etc.}. Of the polymerization methods, a solution polymerization method is preferable, and an aqueous solution polymerization method is particularly preferable because it is not necessary to use an organic solvent or the like and is advantageous in terms of production cost.

重合によって得られる含水ゲル{架橋重合体と水とからなる。}は、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm〜10cmが好ましく、さらに好ましくは100μm〜2cm、特に好ましくは1mm〜1cmである。この範囲であると、乾燥工程での乾燥性がさらに良好となる。 Hydrous gel obtained by polymerization {Consists of crosslinked polymer and water. } Can be shredded as needed. The size (longest diameter) of the gel after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.

細断は、公知の方法で行うことができ、公知の細断装置{たとえば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機}等を使用して細断できる。 Shredding can be performed by a known method and can be shredded using a known shredding device {for example, a Beck's mill, a rubber chopper, a pharma mill, a minced machine, an impact crusher and a roll crusher}. ..

重合に溶媒(有機溶媒、水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、吸水性樹脂粒子の重量に基づいて、0〜10が好ましく、さらに好ましくは0〜5、特に好ましくは0〜3、最も好ましくは0〜1である。この範囲であると、吸水性樹脂粒子の吸収性能(特に保水量)がさらに良好となる。 When a solvent (organic solvent, water, etc.) is used for the polymerization, it is preferable to distill off the solvent after the polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, and particularly preferably 0, based on the weight of the water-absorbent resin particles. ~ 3, most preferably 0 to 1. Within this range, the absorption performance (particularly the amount of water retention) of the water-absorbent resin particles is further improved.

溶媒に水を含む場合、留去後の水分(重量%)は、架橋重合体の重量に基づいて、0〜20が好ましく、さらに好ましくは1〜10、特に好ましくは2〜9、最も好ましくは3〜8である。この範囲であると、吸収性能及び乾燥後の吸水性樹脂粒子の壊れ性がさらに良好となる。 When water is contained in the solvent, the water content (% by weight) after distillation is preferably 0 to 20, more preferably 1 to 10, particularly preferably 2 to 9, and most preferably 2 to 9 based on the weight of the crosslinked polymer. It is 3 to 8. Within this range, the absorption performance and the breakability of the water-absorbent resin particles after drying are further improved.

なお、有機溶媒の含有量及び水分は、赤外水分測定器{(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W}により加熱したときの加熱前後の測定試料の重量減量から求められる。 The content and moisture of the organic solvent are determined by an infrared moisture measuring instrument {JE400 manufactured by KETT Co., Ltd .: 120 ± 5 ° C., 30 minutes, atmospheric humidity 50 ± 10% RH before heating, lamp specification 100V, 40W. } To obtain the weight loss of the measurement sample before and after heating.

溶媒(水を含む。)を留去する方法としては、80〜230℃の温度の熱風で留去(乾燥)する方法、100〜230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 As a method for distilling off the solvent (including water), a method of distilling off (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C., (heating). ) Vacuum drying method, freeze drying method, infrared drying method, decantation, filtration, etc. can be applied.

架橋重合体(A1)は、乾燥後に粉砕することができる。粉砕方法については、特に限定はなく、公知の粉砕装置{たとえば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機}等が使用できる。粉砕された架橋重合体は、必要によりふるい分け等により粒度調整できる。 The crosslinked polymer (A1) can be pulverized after drying. The crushing method is not particularly limited, and a known crushing device {for example, a hammer type crusher, an impact type crusher, a roll type crusher, a shet airflow type crusher} or the like can be used. The particle size of the pulverized crosslinked polymer can be adjusted by sieving or the like, if necessary.

必要によりふるい分けした場合の架橋重合体(A1)の重量平均粒子径(μm)は、200〜400が好ましく、特に好ましくは210〜390、最も好ましくは230〜380である。この範囲であると、吸収性能がさらに良好となる。 The weight average particle size (μm) of the crosslinked polymer (A1) when screened as necessary is preferably 200 to 400, particularly preferably 210 to 390, and most preferably 230 to 380. Within this range, the absorption performance is further improved.

なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801−1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿の順等に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙{横軸がふるいの目開き(粒子径)、縦軸が重量分率}にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径[D(50%)]を求め、これを重量平均粒子径とする。 The weight average particle size was determined by using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2006), Perry's Chemical Engineers Handbook 6th Edition (McGlow Hill Book Canvas, 1984). , Page 21). That is, the JIS standard sieves are combined in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and the saucer from the top. Place about 50 g of the measurement particles in the uppermost sieve and shake with a low-tap test sieve shaker for 5 minutes. Weigh the measured particles on each sieve and saucer, and take the total as 100% by weight to obtain the weight fraction of the particles on each sieve. ), The vertical axis is the weight fraction}, then a line connecting each point is drawn to obtain the particle diameter [D (50%)] corresponding to the weight fraction of 50% by weight, and this is the weight average particle diameter. And.

なお、以下に説明するように、上記の重量分率が10重量%に対応する粒子径をD(10%)、重量分率が90重量%に対応する粒子径をD(90%)とする。 As will be described below, the particle size corresponding to the above weight fraction of 10% by weight is D (10%), and the particle size corresponding to the weight fraction of 90% by weight is D (90%). ..

また、微粒子の含有量は少ない方が吸収性能が良好となるため、全粒子に占める106μm以下(好ましくは150μm以下)の微粒子の含有量が3重量%以下が好ましく、さらに好ましくは1重量%以下である。微粒子の含有量は、上記の重量平均粒径を求める際に作成するプロットを用いて求めることができる。 Further, since the absorption performance is better when the content of the fine particles is small, the content of the fine particles of 106 μm or less (preferably 150 μm or less) in the total particles is preferably 3% by weight or less, more preferably 1% by weight or less. Is. The content of the fine particles can be determined using the plot prepared when determining the weight average particle size described above.

架橋重合体(A1)のスパン値は、1.0以下が好ましく、特に好ましくは0.9以下、最も好ましくは0.8以下である。この範囲であると、初期の吸収速度がさらに良好となり、ドライ性が向上する。 The span value of the crosslinked polymer (A1) is preferably 1.0 or less, particularly preferably 0.9 or less, and most preferably 0.8 or less. Within this range, the initial absorption rate is further improved and the dryness is improved.

SPAN(スパン値)は、粒子径分布を表すパラメータである。スパン値は吸水性樹脂粒子の粒子径分布測定により定めることができる。前記数式1において、D(10%)、D(50%)及びD(90%)はいずれも「μm」で表される粒子径であり、標準ふるいを用いたふるい分け粒度測定法で測定できる。D(10%)は、吸水性樹脂粒子を標準ふるいで分級した後、前記吸水性樹脂粒子を粒子径の順に並べた時、前記分級した粒子の全体重量を100重量%として粒子径が最も小さい粒子からの累積重量分率が10重量%となる粒子径を意味する。同様に、D(50%)は、累積重量分率が50重量%となる粒子径を意味し、さらに、D(90%)累積重量分率が90重量%となる粒子径を意味する。 SPAN (span value) is a parameter representing the particle size distribution. The span value can be determined by measuring the particle size distribution of the water-absorbent resin particles. In the above formula 1, D (10%), D (50%) and D (90%) are all particle diameters represented by "μm" and can be measured by a sieving particle size measuring method using a standard sieve. D (10%) has the smallest particle size when the water-absorbent resin particles are classified by a standard sieve and then the water-absorbent resin particles are arranged in the order of particle size, with the total weight of the classified particles being 100% by weight. It means a particle size in which the cumulative weight fraction from the particles is 10% by weight. Similarly, D (50%) means a particle size having a cumulative weight fraction of 50% by weight, and D (90%) means a particle size having a cumulative weight fraction of 90% by weight.

粒子径分布は、架橋重合体(A1)を分級した後、調整してもよく、さらに吸水性樹脂粒子で分級した後、調整してもよい。
粒子径分布の調整方法については、特に限定はなく、各ふるい上の粒子を所定の割合で混合する方法等で調整できる。
The particle size distribution may be adjusted after classifying the crosslinked polymer (A1), or may be adjusted after further classifying with water-absorbent resin particles.
The method for adjusting the particle size distribution is not particularly limited, and the particle size distribution can be adjusted by a method of mixing the particles on each sieve at a predetermined ratio or the like.

架橋重合体(A1)の見掛け密度(g/ml)は、0.55〜0.65が好ましく、さらに好ましくは0.56〜0.64、特に好ましくは0.57〜0.63である。この範囲であると、吸収性能がさらに良好となる。
なお、見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。
The apparent density (g / ml) of the crosslinked polymer (A1) is preferably 0.55 to 0.65, more preferably 0.56 to 0.64, and particularly preferably 0.57 to 0.63. Within this range, the absorption performance is further improved.
The apparent density is measured at 25 ° C. in accordance with JIS K7365: 1999.

架橋重合体(A1)の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the crosslinked polymer (A1) is not particularly limited, and examples thereof include amorphous crushed form, phosphorus flaky form, pearl form, and rice granule. Of these, the amorphous crushed form is preferable from the viewpoint that it is easily entangled with the fibrous material for use in disposable diapers and the like and there is no concern that it will fall off from the fibrous material.

架橋重合体(A)は、液拡散性の観点から疎水性物質(C)を含有することが好ましい。疎水性物質(C)としては、炭化水素基を含有する疎水性物質(C1)及びポリシロキサン構造をもつ疎水性物質(C2)等が含まれる。 The crosslinked polymer (A) preferably contains a hydrophobic substance (C) from the viewpoint of liquid diffusibility. The hydrophobic substance (C) includes a hydrophobic substance (C1) containing a hydrocarbon group, a hydrophobic substance (C2) having a polysiloxane structure, and the like.

炭化水素基を含有する疎水性物質(C1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール、長鎖脂肪酸アミド及びこれらの2種以上の混合物等が含まれる。 Hydrocarbon-containing hydrophobic substances (C1) include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long-chain fatty acid esters, long-chain fatty acids and salts thereof, long-chain aliphatic alcohols, and long chains. Chain fatty acid amides and mixtures of two or more of these are included.

ポリオレフィン樹脂としては、炭素数2〜4のオレフィン{エチレン、プロピレン、イソブチレン及びイソプレン等}を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000〜100万の重合体{たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン−イソブチレン)及びイソプレン等}が挙げられる。 As the polyolefin resin, the weight of an olefin having 2 to 4 carbon atoms {ethylene, propylene, isobutylene, isoprene, etc.} as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin). Polymers having an average molecular weight of 10 to 1,000,000 {for example, polyethylene, polypropylene, polyisoprene, poly (ethylene-isoprene), isoprene, etc.} can be mentioned.

ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(−COOH)や1,3−オキソ−2−オキサプロピレン(−COOCO−)等を導入した重量平均分子量1000〜100万の重合体{たとえば、ポリエチレン熱減成体、ポリプロピレン熱減成体、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン−アクリル酸共重合体、エチレン−無水マレイン酸共重合体、イソブチレン−無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン−酢酸ビニル共重合体及びエチレン−酢酸ビニル共重合体のマレイン化物等}が挙げられる。 As the polyolefin resin derivative, a polymer having a weight average molecular weight of 10 to 1,000,000 in which a carboxy group (-COOH) or 1,3-oxo-2-oxapropylene (-COOCO-) is introduced into a polyolefin resin {for example, polyethylene heat Attenuated product, heat-attenuated polypropylene, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleic acid Polybutadiene, ethylene-vinyl acetate copolymer, and maleic acid of ethylene-vinyl acetate copolymer, etc.} can be mentioned.

ポリスチレン樹脂としては、重量平均分子量1000〜100万の重合体等が使用できる。 As the polystyrene resin, a polymer having a weight average molecular weight of 10 to 1,000,000 or the like can be used.

ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000〜100万の重合体{たとえば、スチレン−無水マレイン酸共重合体、スチレン−ブタジエン共重合体及びスチレン−イソブチレン共重合体等}が挙げられる。 As the polystyrene resin derivative, a polymer having a weight average molecular weight of 10 to 1,000,000 in which styrene is an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) {for example, styrene- Maleic anhydride copolymers, styrene-butadiene copolymers, styrene-isobutylene copolymers, etc.} can be mentioned.

ワックスとしては、融点50〜200℃のワックス{たとえば、パラフィンワックス、ミツロウ、カルナウバワックス及び牛脂等}が挙げられる。 Examples of the wax include waxes having a melting point of 50 to 200 ° C. {for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.}.

長鎖脂肪酸エステルとしては、炭素数8〜25のアルキル基を含む脂肪酸と炭素数1〜12のアルコールとのエステル{たとえば、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸メチル、オレイン酸エチル、グリセリンラウリン酸モノエステル、グリセリンステアリン酸モノエステル、グリセリンオレイン酸モノエステル、ペンタエリスリットラウリン酸モノエステル、ペンタエリスリットステアリン酸モノエステル、ペンタエリスリットオレイン酸モノエステル、ソルビットラウリン酸モノエステル、ソルビットステアリン酸モノエステル、ソルビットオレイン酸モノエステル、ショ糖パルミチン酸エステル(ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル等)、ショ糖ステアリン酸エステル(ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル等)、ショ糖エルカ酸エステル及び牛脂等}が挙げられる。これらのうち、吸収性物品の液拡散性の観点等から、ショ糖ステアリン酸エステル(ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル等)、ショ糖パルミチン酸エステル(ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル等)、ショ糖エルカ酸エステルが好ましく、さらに好ましくはショ糖ステアリン酸エステル(ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル等)及びショ糖エルカ酸エステルである。 Examples of long-chain fatty acid esters include esters of fatty acids containing an alkyl group having 8 to 25 carbon atoms and alcohols having 1 to 12 carbon atoms {for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, oleic acid. Methyl, ethyl oleate, glycerin lauric acid monoester, glycerin stearate monoester, glycerin oleic acid monoester, pentaerythlit lauric acid monoester, pentaerythlit stearate monoester, pentaerythlit oleic acid monoester, sorbit laurin Acid monoester, sorbit stearic acid monoester, sorbit oleic acid monoester, sucrose palmitate (sucrose palmitate monoester, sucrose palmitate diester, sucrose palmitate triester, etc.), sucrose palmitate (sucrose stearate) Sucrose stearic acid monoester, sucrose stearic acid diester, sucrose stearic acid triester, etc.), sucrose erucic acid ester, beef fat, etc.}. Of these, sucrose stearic acid esters (sucrose stearic acid monoesters, sucrose stearic acid diesters, sucrose stearic acid triesters, etc.) and sucrose palmitate (sucrose palmitate) (from the viewpoint of liquid diffusivity of absorbable articles, etc.) Sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, etc.), sucrose erucic acid ester are preferable, and sucrose stearic acid ester (sucrose stearic acid monoester, sucrose stearic acid) is more preferable. Diester, sucrose stearic acid triester, etc.) and sucrose erucic acid ester.

長鎖脂肪酸及びその塩としては、炭素数8〜25のアルキル基を含む脂肪酸{たとえば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ダイマー酸及びベヘニン酸等}が挙げられる。塩としてはカルシウム、マグネシウム又はアルミニウム(以下、Ca、Mg、Alと略す)との塩{たとえば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等}が挙げられる。吸収性物品の液拡散性の観点等から、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Alが好ましく、さらに好ましくはステアリン酸Mgである。 Examples of long-chain fatty acids and salts thereof include fatty acids containing an alkyl group having 8 to 25 carbon atoms {for example, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, behenic acid, etc.}. Examples of the salt include salts with calcium, magnesium or aluminum (hereinafter abbreviated as Ca, Mg, Al) {for example, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc.}. From the viewpoint of liquid diffusivity of the absorbent article, Ca stearate, Mg stearate, and Al stearate are preferable, and Mg stearate is more preferable.

長鎖脂肪族アルコールとしては、炭素数8〜25のアルキル基を含む脂肪族アルコール{たとえば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール等}が挙げられる。吸収性物品の液拡散性の観点等から、パルミチルアルコール、ステアリルアルコール、オレイルアルコールが好ましく、さらに好ましくはステアリルアルコールである。 Examples of the long-chain fatty alcohol include aliphatic alcohols containing an alkyl group having 8 to 25 carbon atoms {for example, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.}. From the viewpoint of liquid diffusivity of the absorbent article, palmityl alcohol, stearyl alcohol, and oleyl alcohol are preferable, and stearyl alcohol is more preferable.

長鎖脂肪酸アミドとしては炭素数8〜25のアルキル基を含む脂肪酸アミド{たとえば、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、等}や、炭素数8〜25の脂肪酸ビスアミド{エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、ヘキサメチレンビスステアリン酸アミド、N,N‘−ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、等}が挙げられる。吸収性物品の液拡散性の観点等からエチレンビスステアリン酸アミドが好ましい。 Examples of long-chain fatty acid amides include fatty acid amides containing an alkyl group having 8 to 25 carbon atoms {for example, lauric acid amide, palmitic acid amide, stearic acid amide, oleic acid amide, erucic acid amide, etc.} and 8 to 25 carbon atoms. Fatty acid bisamides {ethylene bislauric acid amides, ethylene bisstearic acid amides, hexamethylene bisstearic acid amides, N, N'-distearyl adipate amides, ethylene bisoleic acid amides, ethylene biserucic acid amides, etc.} Be done. Ethylene bisstearic acid amide is preferable from the viewpoint of liquid diffusivity of the absorbent article.

これらの2種以上の混合物としては、長鎖脂肪酸エステルと長鎖脂肪族アルコールとの混合物{たとえば、ショ糖ステアリン酸エステルとステアリルアルコールとの混合物等}や長鎖脂肪酸エステルと長鎖脂肪酸及びその塩の混合物{たとえば、ショ糖ステアリン酸エステルとステアリル酸Mgとの混合物}が挙げられる。 As a mixture of two or more of these, a mixture of a long-chain fatty acid ester and a long-chain fatty acid {for example, a mixture of a sucrose stearic acid ester and a stearyl alcohol}, a long-chain fatty acid ester and a long-chain fatty acid, and the like thereof. Examples include a mixture of salts {for example, a mixture of sucrose stearic acid ester and Mg stearyl acid}.

ポリシロキサン構造をもつ疎水性物質(C2)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン{ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等}、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン等及びこれらの混合物等の有機ポリシロキサンが含まれる。 Examples of the hydrophobic substance (C2) having a polysiloxane structure include polydimethylsiloxane, polyether-modified polysiloxane {polyoxyethylene-modified polysiloxane and poly (oxyethylene / oxypropylene) -modified polysiloxane, etc.}, carboxy-modified polysiloxane, and the like. Includes organic polysiloxanes such as epoxy-modified polysiloxanes, amino-modified polysiloxanes, alkoxy-modified polysiloxanes and mixtures thereof.

変性シリコーン{ポリエーテル変性ポリシロキサン、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン及びアミノ変性ポリシロキサン等}の有機基(変性基)の位置としては特に限定はしないが、ポリシロキサンの側鎖、ポリシロキサンの両末端、ポリシロキサンの片末端、ポリシロキサンの側鎖と両末端との両方のいずれでもよい。これらのうち、吸収特性の観点等から、ポリシロキサンの側鎖及びポリシロキサンの側鎖と両末端との両方が好ましく、さらに好ましくはポリシロキサンの側鎖と両末端との両方である。 The position of the organic group (modifying group) of the modified silicone {polyether-modified polysiloxane, carboxy-modified polysiloxane, epoxy-modified polysiloxane, amino-modified polysiloxane, etc.} is not particularly limited, but is a side chain of polysiloxane, polysiloxane. It may be either both ends of, one end of polysiloxane, or both side chains and both ends of polysiloxane. Of these, from the viewpoint of absorption characteristics and the like, both the side chain of polysiloxane and the side chain of polysiloxane and both ends are preferable, and more preferably both the side chain of polysiloxane and both ends.

ポリエーテル変性ポリシロキサンの有機基(変性基)としては、ポリオキシエチレン基又はポリ(オキシエチレン・オキシプロピレン)基を含有する基等が含まれる。ポリエーテル変性ポリシロキサンに含まれるオキシエチレン基及び/又はオキシプロピレン基の含有量(個)は、ポリエーテル変性ポリシロキサン1分子あたり、2〜40が好ましく、さらに好ましくは5〜30、特に好ましくは7〜20、最も好ましくは10〜15である。この範囲であると、吸収特性がさらに良好となる。また、オキシエチレン基及びオキシプロピレン基を含む場合、オキシエチレン基の含有量(重量%)は、ポリシロキサンの重量に基づいて、1〜30が好ましく、さらに好ましくは3〜25、特に好ましくは5〜20である。この範囲であると、吸収特性がさらに良好となる。 Examples of the organic group (modifying group) of the polyether-modified polysiloxane include a polyoxyethylene group, a group containing a poly (oxyethylene / oxypropylene) group, and the like. The content (pieces) of the oxyethylene group and / or the oxypropylene group contained in the polyether-modified polysiloxane is preferably 2 to 40, more preferably 5 to 30, and particularly preferably 5 to 30 per molecule of the polyether-modified polysiloxane. 7 to 20, most preferably 10 to 15. Within this range, the absorption characteristics are further improved. When an oxyethylene group and an oxypropylene group are contained, the content (% by weight) of the oxyethylene group is preferably 1 to 30, more preferably 3 to 25, and particularly preferably 5 based on the weight of the polysiloxane. ~ 20. Within this range, the absorption characteristics are further improved.

ポリエーテル変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、オキシアルキレンの種類}が好ましく例示できる。
・信越化学工業株式会社製
KF−945{側鎖、オキシエチレン及びオキシプロピレン}、KF−6020{側鎖、オキシエチレン及びオキシプロピレン}、X−22−6191{側鎖、オキシエチレン及びオキシプロピレン}、X−22−4952{側鎖、オキシエチレン及びオキシプロピレン}、X−22−4272{側鎖、オキシエチレン及びオキシプロピレン}、X−22−6266{側鎖、オキシエチレン及びオキシプロピレン}
The polyether-modified polysiloxane is easily available on the market, and for example, the following products {modified position, type of oxyalkylene} can be preferably exemplified.
-KF-945 {side chain, oxyethylene and oxypropylene}, KF-6020 {side chain, oxyethylene and oxypropylene}, X-22-6191 {side chain, oxyethylene and oxypropylene} manufactured by Shin-Etsu Chemical Industry Co., Ltd. , X-22-4952 {side chain, oxyethylene and oxypropylene}, X-22-4272 {side chain, oxyethylene and oxypropylene}, X-22-6266 {side chain, oxyethylene and oxypropylene}

・東レ・ダウコーニング株式会社製
FZ−2110{両末端、オキシエチレン及びオキシプロピレン}、FZ−2122{両末端、オキシエチレン及びオキシプロピレン}、FZ−7006{両末端、オキシエチレン及びオキシプロピレン}、FZ−2166{両末端、オキシエチレン及びオキシプロピレン}、FZ−2164{両末端、オキシエチレン及びオキシプロピレン}、FZ−2154{両末端、オキシエチレン及びオキシプロピレン}、FZ−2203{両末端、オキシエチレン及びオキシプロピレン}及びFZ−2207{両末端、オキシエチレン及びオキシプロピレン}
FZ-2110 {both ends, oxyethylene and oxypropylene}, FZ-2122 {both ends, oxyethylene and oxypropylene}, FZ-7006 {both ends, oxyethylene and oxypropylene}, manufactured by Toray Dow Corning Co., Ltd. FZ-2166 {both ends, oxyethylene and oxypropylene}, FZ-2164 {both ends, oxyethylene and oxypropylene}, FZ-2154 {both ends, oxyethylene and oxypropylene}, FZ-2203 {both ends, oxy Ethylene and oxypropylene} and FZ-2207 {both ends, oxyethylene and oxypropylene}

カルボキシ変性ポリシロキサンの有機基(変性基)としてはカルボキシ基を含有する基等が含まれ、エポキシ変性ポリシロキサンの有機基(変性基)としてはエポキシ基を含有する基等が含まれ、アミノ変性ポリシロキサンの有機基(変性基)としてはアミノ基(1、2,3級アミノ基)を含有する基等が含まれる。これらの変性シリコーン の有機基(変性基)の含有量(g/mol)は、カルボキシ当量、エポキシ当量又はアミノ当量として、200〜11000が好ましく、さらに好ましくは600〜8000、特に好ましくは1000〜4000である。この範囲であると、吸収特性がさらに良好となる。なお、カルボキシ当量は、JIS C2101:1999の「16.全酸価試験」に準拠して測定される。また、エポキシ当量は、JIS K7236:2001に準拠して求められる。また、アミノ当量は、JIS K2501:2003の「8.電位差滴定法(塩基価・塩酸法)」に準拠して測定される。 The organic group (modifying group) of the carboxy-modified polysiloxane includes a group containing a carboxy group, and the organic group (modifying group) of the epoxy-modified polysiloxane includes a group containing an epoxy group and is amino-modified. Examples of the organic group (modifying group) of the polysiloxane include a group containing an amino group (1, 2, 3rd-order amino group) and the like. The organic group (modifying group) content (g / mol) of these modified silicones is preferably 200 to 11000, more preferably 600 to 8000, and particularly preferably 1000 to 4000, as a carboxy equivalent, an epoxy equivalent or an amino equivalent. Is. Within this range, the absorption characteristics are further improved. The carboxy equivalent is measured according to "16. Total Acid Value Test" of JIS C2101: 1999. The epoxy equivalent is determined in accordance with JIS K7236: 2001. The amino equivalent is measured in accordance with JIS K2501: 2003 "8. Potentiometric titration method (base value / hydrochloric acid method)".

カルボキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、カルボキシ当量(g/mol)}が好ましく例示できる。
・信越化学工業株式会社製
X−22−3701E{側鎖、4000}、X−22−162C{両末端、2300}、X−22−3710{片末端、1450}
The carboxy-modified polysiloxane is easily available on the market, and for example, the following products {modified position, carboxy equivalent (g / mol)} can be preferably exemplified.
-Shin-Etsu Chemical Co., Ltd. X-22-3701E {side chain 4000}, X-22-162C {both ends 2300}, X-22-3710 {one end, 1450}

・東レ・ダウコーニング株式会社製
BY 16−880{側鎖、3500}、BY 16−750{両末端、750}、BY 16−840{側鎖、3500}、SF8418{側鎖、3500}
-Toray Dow Corning Co., Ltd. BY 16-880 {side chain, 3500}, BY 16-750 {both ends, 750}, BY 16-840 {side chain, 3500}, SF8418 {side chain, 3500}

エポキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、エポキシ当量}が好ましく例示できる。
・信越化学工業株式会社製
X−22−343{側鎖、525}、KF−101{側鎖、350}、KF−1001{側鎖、3500}、X−22−2000{側鎖、620}、X−22−2046{側鎖、600}、KF−102{側鎖、3600}、X−22−4741{側鎖、2500}、KF−1002{側鎖、4300}、X−22−3000T{側鎖、250}、X−22−163{両末端、200}、KF−105{両末端、490}、X−22−163A{両末端、1000}、X−22−163B{両末端、1750}、X−22−163C{両末端、2700}、X−22−169AS{両末端、500}、X−22−169B{両末端、1700}、X−22−173DX{片末端、4500}、X−22−9002{側鎖・両末端、5000}
Epoxy-modified polysiloxanes are readily available on the market, and for example, the following products {modified position, epoxy equivalent} can be preferably exemplified.
-Shinetsu Chemical Industry Co., Ltd. X-22-343 {side chain, 525}, KF-101 {side chain, 350}, KF-1001 {side chain, 3500}, X-22-2000 {side chain, 620} , X-22-2046 {side chain, 600}, KF-102 {side chain, 3600}, X-22-4741 {side chain, 2500}, KF-1002 {side chain, 4300}, X-22-3000T {Side chain, 250}, X-22-163 {both ends, 200}, KF-105 {both ends, 490}, X-22-163A {both ends, 1000}, X-22-163B {both ends, 1750}, X-22-163C {both ends 2700}, X-22-169AS {both ends, 500}, X-22-169B {both ends 1700}, X-22-173DX {one end, 4500} , X-22-9002 {side chain, both ends, 5000}

・東レ・ダウコーニング株式会社製
FZ−3720{側鎖、1200}、BY 16−839{側鎖、3700}、SF 8411{側鎖、3200}、SF 8413{側鎖、3800}、SF 8421{側鎖、11000}、BY 16−876{側鎖、2800}、FZ−3736{側鎖、5000}、BY 16−855D{側鎖、180}、BY 16−8{側鎖、3700}
FZ-3720 {side chain 1200}, BY 16-839 {side chain 3700}, SF 8411 {side chain 3200}, SF 8413 {side chain 3800}, SF 8421 {manufactured by Toray Dow Corning Co., Ltd. Side Chain 11000}, BY 16-876 {Side Chain 2800}, FZ-3736 {Side Chain 5000}, BY 16-855D {Side Chain, 180}, BY 16-8 {Side Chain, 3700}

アミノ変性シリコーンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、アミノ当量}が好ましく例示できる。
・信越化学工業株式会社製
KF−865{側鎖、5000}、KF−864{側鎖、3800}、KF−859{側鎖、6000}、KF−393{側鎖、350}、KF−860{側鎖、7600}、KF−880{側鎖、1800}、KF−8004{側鎖、1500}、KF−8002{側鎖、1700}、KF−8005{側鎖、11000}、KF−867{側鎖、1700}、X−22−3820W{側鎖、55000}、KF−869{側鎖、8800}、KF−861{側鎖、2000}、X−22−3939A{側鎖、1500}、KF−877{側鎖、5200}、PAM−E{両末端、130}、KF−8010{両末端、430}、X−22−161A{両末端、800}、X−22−161B{両末端、1500}、KF−8012{両末端、2200}、KF−8008{両末端、5700}、X−22−1660B−3{両末端、2200}、KF−857{側鎖、2200}、KF−8001{側鎖、1900}、KF−862{側鎖、1900}、X−22−9192{側鎖、6500}
Amino-modified silicones are readily available on the market, and for example, the following products {modified position, amino equivalent} can be preferably exemplified.
-KF-865 {side chain 5000}, KF-864 {side chain 3800}, KF-859 {side chain, 6000}, KF-393 {side chain, 350}, KF-860 manufactured by Shin-Etsu Chemical Industry Co., Ltd. {Side chain, 7600}, KF-880 {Side chain 1800}, KF-8004 {Side chain 1500}, KF-8002 {Side chain 1700}, KF-8005 {Side chain 11000}, KF-867 {Side chain, 1700}, X-22-3820W {Side chain, 55000}, KF-869 {Side chain, 8800}, KF-861 {Side chain, 2000}, X-22-3939A {Side chain, 1500} , KF-877 {side chain, 5200}, PAM-E {both ends, 130}, KF-8010 {both ends, 430}, X-22-161A {both ends, 800}, X-22-161B {both Ends 1500}, KF-8012 {both ends 2200}, KF-8008 {both ends 5700}, X-22-1660B-3 {both ends 2200}, KF-857 {side chains, 2200}, KF −8001 {side chain, 1900}, KF-862 {side chain, 1900}, X-22-9192 {side chain, 6500}

・東レ・ダウコーニング株式会社製
FZ−3707{側鎖、1500}、FZ−3504{側鎖、1000}、BY 16−205{側鎖、4000}、FZ−3760{側鎖、1500}、FZ−3705{側鎖、4000}、BY 16−209{側鎖、1800}、FZ−3710{側鎖、1800}、SF 8417{側鎖、1800}、BY 16−849{側鎖、600}、BY 16−850{側鎖、3300}、BY 16−879B{側鎖、8000}、BY 16−892{側鎖、2000}、FZ−3501{側鎖、3000}、FZ−3785{側鎖、6000}、BY 16−872{側鎖、1800}、BY 16−213{側鎖、2700}、BY 16−203{側鎖、1900}、BY 16−898{側鎖、2900}、BY 16−890{側鎖、1900}、BY 16−893{側鎖、4000}、FZ−3789{側鎖、1900}、BY 16−871{両末端、130}、BY 16−853C{両末端、360}、BY 16−853U{両末端、450}
-Toray Dow Corning Co., Ltd. FZ-3707 {side chain 1500}, FZ-3504 {side chain, 1000}, BY 16-205 {side chain 4000}, FZ-3760 {side chain 1500}, FZ -3705 {side chain 4000}, BY 16-209 {side chain 1800}, FZ-3710 {side chain 1800}, SF 8417 {side chain 1800}, BY 16-849 {side chain, 600}, BY 16-850 {side chain, 3300}, BY 16-879B {side chain, 8000}, BY 16-892 {side chain, 2000}, FZ-3501 {side chain, 3000}, FZ-3785 {side chain, 6000}, BY 16-872 {side chain 1800}, BY 16-213 {side chain 2700}, BY 16-203 {side chain 1900}, BY 16-898 {side chain 2900}, BY 16- 890 {side chain, 1900}, BY 16-893 {side chain 4000}, FZ-3789 {side chain, 1900}, BY 16-871 {both ends, 130}, BY 16-853C {both ends 360} , BY 16-853U {both ends, 450}

これらの混合物としては、ポリジメチルシロキサンとカルボキシル変性ポリシロキサンとの混合物、及びポリエーテル変性ポリシロキサンとアミノ変性ポリシロキサンとの混合物等が挙げられる。 Examples of these mixtures include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane, a mixture of polyether-modified polysiloxane and amino-modified polysiloxane, and the like.

ポリシロキサン構造を持つ疎水性物質の粘度(mPa・s、25℃)は、10〜5000が好ましく、さらに好ましくは15〜3000、特に好ましくは20〜1500である。この範囲であると、吸収特性がさらに良好となる。なお、粘度は、JIS Z8803−1991「液体の粘度」9.円すい及び円すい−平板形回転粘度計による粘度測定法に準拠して測定される{たとえば、25.0±0.5℃に温度調節したE型粘度計(東機産業株式会社製RE80L、半径7mm、角度5.24×10−2radの円すい型コーン)を用いて測定される。}The viscosity (mPa · s, 25 ° C.) of the hydrophobic substance having a polysiloxane structure is preferably 10 to 5000, more preferably 15 to 3000, and particularly preferably 20 to 1500. Within this range, the absorption characteristics are further improved. The viscosity is defined in JIS Z8803-1991 “Liquid Viscosity” 9. Conical and Conical-Measured according to the viscosity measurement method using a flat plate type rotational viscometer {For example, an E-type viscometer whose temperature is adjusted to 25.0 ± 0.5 ° C (RE80L manufactured by Toki Sangyo Co., Ltd., radius 7 mm) It is measured using a conical cone) angle 5.24 × 10 -2 rad. }

吸水性樹脂粒子に上記疎水性物質(C)を含有させることで、吸水性樹脂粒子の吸収速度パターン(DW法による1分後及び5分後の吸収量)を容易にコントロールすることができることから、本発明の吸水性樹脂が疎水性物質(C)を含有していることが好ましい。吸水性樹脂粒子の吸収速度パターンは、疎水性物質(C)の疎水性の強さや添加量によって任意に調整することができる。疎水性の強さは親疎水性バランス(HLB値)等の公知の手法により求めることができる。
なお、HLB値は、親水性−疎水性バランス(HLB)値を意味し、小田法(界面活性剤入門、212頁、藤本武彦、三洋化成工業株式会社発行、2007年発行)により求められる。
By including the hydrophobic substance (C) in the water-absorbent resin particles, the absorption rate pattern of the water-absorbent resin particles (absorption amount after 1 minute and 5 minutes by the DW method) can be easily controlled. , It is preferable that the water-absorbent resin of the present invention contains a hydrophobic substance (C). The absorption rate pattern of the water-absorbent resin particles can be arbitrarily adjusted according to the hydrophobic strength of the hydrophobic substance (C) and the amount of addition. The strength of hydrophobicity can be determined by a known method such as a hydrophilic balance (HLB value).
The HLB value means a hydrophilic-lipophilic balance (HLB) value, and is obtained by the Oda method (Introduction to Surfactants, p. 212, Takehiko Fujimoto, published by Sanyo Chemical Industries, Ltd., published in 2007).

これらの疎水性物質(C)のうち、吸収性物品の液拡散性の観点等から、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪酸アミドが好ましく、さらに好ましくはショ糖ステアリン酸エステル、ステアリン酸Mg、エチレンビスステアリン酸アミドである。なお、長鎖脂肪酸は一般的に炭素数分布を持つため、ステアリン酸と表現した場合にはステアリン酸を主成分として含む長鎖脂肪酸変性物であることを意味する。 Among these hydrophobic substances (C), long-chain fatty acid esters, long-chain fatty acids and salts thereof, and long-chain fatty acid amides are preferable, and sucrose stearic acid ester is more preferable, from the viewpoint of liquid diffusivity of the absorbent article. , Mg stearate, ethylene bisstearic acid amide. Since long-chain fatty acids generally have a carbon number distribution, when expressed as stearic acid, it means that they are modified long-chain fatty acids containing stearic acid as a main component.

疎水性物質(C)の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.001〜5.0が好ましく、さらに好ましくは0.08〜1.0、特に好ましくは0.08〜0.50である。この範囲であると、吸収性物品の液拡散性と不織布からの液引き性が両立しやすくなり、耐カブレ性に優れるため好ましい。 The content (% by weight) of the hydrophobic substance (C) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A1). Is 0.08 to 0.50. Within this range, the liquid diffusivity of the absorbent article and the liquid drainability from the non-woven fabric are likely to be compatible, and the anti-fog resistance is excellent, which is preferable.

更に、本発明の吸水性樹脂粒子は、疎水性物質(C)と浸透剤(D)を含有していることが好ましい。また、吸水性樹脂粒子に疎水性物質(C)と浸透剤(D)を含有する場合、疎水性物質(C)と浸透剤(D)は同時に使用することが好ましい。疎水性物質(C)に浸透剤(D)を併用することで、DW法による吸収量とロックアップ法による吸収速度が両立しやすくなる。浸透剤(D)としてはノニオン性界面活性剤(D1)、アニオン性界面活性剤(D2)が挙げられ、浸透性に優れる界面活性剤の構造、つまり、適度な炭素数(8〜18)の長鎖アルキル構造を持つことが好ましい。 Further, the water-absorbent resin particles of the present invention preferably contain a hydrophobic substance (C) and a penetrant (D). When the water-absorbent resin particles contain the hydrophobic substance (C) and the penetrant (D), it is preferable to use the hydrophobic substance (C) and the penetrant (D) at the same time. By using the penetrant (D) in combination with the hydrophobic substance (C), it becomes easy to achieve both the absorption amount by the DW method and the absorption rate by the lockup method. Examples of the penetrant (D) include a nonionic surfactant (D1) and an anionic surfactant (D2), which have a structure of a surfactant having excellent permeability, that is, an appropriate number of carbon atoms (8 to 18). It preferably has a long-chain alkyl structure.

ノニオン性界面活性剤(D1)としては、具体的には例えば脂肪族系アルコール(アルキル基の炭素数8〜18)アルキレンオキサイド(AO)(炭素数2〜8)付加物(重合度=1〜100)[ラウリルアルコールエチレンオキサイド付加物、セチルアルコールエチレンオキサイド付加物等]、ポリオキシアルキレン(炭素数2〜8、重合度=1〜100)高級脂肪酸(アルキル基の炭素数8〜24)エステル[モノラウリン酸ポリエチレングリコール、モノパルミチン酸ポリエチレングリコール、ジラウリン酸ポリエチレングリコール等]、等が挙げられる。 Specific examples of the nonionic surfactant (D1) include an aliphatic alcohol (alkyl group having 8 to 18 carbon atoms) and an alkylene oxide (AO) (carbon number 2 to 8) adduct (polymerization degree = 1 to 1). 100) [Lauryl alcohol ethylene oxide adduct, cetyl alcohol ethylene oxide adduct, etc.], Polyoxyalkylene (2 to 8 carbon atoms, degree of polymerization = 1 to 100) higher fatty acid (8 to 24 carbon atoms of alkyl group) ester [ Polyethylene glycol monolaurate, polyethylene glycol monopalmitate, polyethylene glycol dilaurate, etc.], and the like.

ノニオン性界面活性剤(D1)のうち、吸収速度制御の観点から好ましいのは、脂肪族系アルコール(アルキル基の炭素数8〜18)アルキレンオキサイド(AO)(炭素数2〜8)付加物(重合度=1〜100)である。 Among the nonionic surfactants (D1), preferred from the viewpoint of controlling the absorption rate are aliphatic alcohols (alkyl groups having 8 to 18 carbon atoms), alkylene oxides (AO) (carbon atoms 2 to 8) adducts (2 to 8 carbon atoms). Degree of polymerization = 1-100).

アニオン性界面活性剤(D2)としては、アルキル基炭素数8〜18の炭化水素系エーテルカルボン酸またはその塩、[ポリオキシエチレン(重合度=1〜100)ラウリルエーテル酢酸ナトリウム、ポリオキシエチレン(重合度=1〜100)ラウリルスルホコハク酸2ナトリウム等]、炭素数8〜18の炭化水素系硫酸エステル塩[ラウリル硫酸ナトリウム、ポリオキシエチレン(重合度=1〜100)ラウリル硫酸ナトリウム、ポリオキシエチレン(重合度=1〜100)ラウリル硫酸トリエタノールアミン]、アルキル基炭素数8〜18の炭化水素系スルホン酸塩[ドデシルベンゼンスルホン酸ナトリウム等]及び炭素数8〜18の炭化水素系リン酸エステル塩[ラウリルリン酸ナトリウム、ポリオキシエチレン(重合度=1〜100)ラウリルエーテルリン酸ナトリウム等]、脂肪酸塩[ラウリン酸ナトリウム、ラウリン酸トリエタノールアミン等]等が挙げられる。 Examples of the anionic surfactant (D2) include hydrocarbon-based ether carboxylic acids having 8 to 18 alkyl group carbon atoms or salts thereof, [polyoxyethylene (polymerization degree = 1 to 100) sodium lauryl ether acetate, and polyoxyethylene (polyoxyethylene). Degree of polymerization = 1-100) Sodium lauryl sulfosuccinate, etc.], Hydrocarbon sulfates with 8 to 18 carbon atoms [Sodium lauryl sulfate, polyoxyethylene (degree of polymerization = 1-100) Sodium lauryl sulfate, polyoxyethylene (Degree of polymerization = 1-100) Sodium lauryl sulfate triethanolamine], hydrocarbon sulfonates with alkyl group carbon number 8-18 [sodium dodecylbenzene sulfonate, etc.] and hydrocarbon phosphate esters with carbon number 8-18 Examples thereof include salts [sodium lauryl phosphate, polyoxyethylene (polymerization degree = 1 to 100) sodium lauryl ether phosphate, etc.], fatty acid salts [sodium lauryl sulfate, triethanolamine laurate, etc.] and the like.

浸透剤(D)の含有量(重量%)は、架橋重合体(A1)の重量に基づいて、0.001〜5.0が好ましく、さらに好ましくは0.08〜1.0、特に好ましくは0.08〜0.50である。この範囲であると、吸収速度を適切に調整できる。 The content (% by weight) of the penetrant (D) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A1). It is 0.08 to 0.50. Within this range, the absorption rate can be adjusted appropriately.

架橋重合体(A1)と疎水性物質(C)との混合方法としては、疎水性物質(C)が吸水性樹脂粒子の内部に存在するように{すなわち、例えば、架橋重合体(A1)と疎水性物質(C)とがサンドイッチ構造となるように}混合されれば制限がない。しかし、疎水性物質(C)は、架橋重合体(A1)の乾燥体ではなく、(A1)の含水ゲル又は(A1)の重合液と混合されることが好ましく、さらに好ましくは(A1)の含水ゲルと混合されることである。なお、混合は、練り込むように均一混合することが好ましい。水溶液重合法により架橋重合体(A1)を得るとき、疎水性物質(C)と(A1)とを混合・混練するタイミングとしては特に制限はないが、重合工程中、重合工程直後、含水ゲルの破砕(ミンチ)中及び含水ゲルの乾燥中等が挙げられる。これらのうち、吸収性物品の耐モレ性等の観点から、重合工程直後及び含水ゲルの破砕(ミンチ)工程中が好ましく、さらに好ましくは含水ゲルの破砕(ミンチ)工程中である。 As a method of mixing the crosslinked polymer (A1) and the hydrophobic substance (C), the hydrophobic substance (C) is present inside the water-absorbent resin particles {that is, for example, with the crosslinked polymer (A1). There is no limitation as long as it is mixed so that the hydrophobic substance (C) has a sandwich structure}. However, the hydrophobic substance (C) is preferably mixed with the hydrogel of (A1) or the polymer solution of (A1), not the dried product of the crosslinked polymer (A1), and more preferably of (A1). It is to be mixed with a hydrogel. It is preferable that the mixture is uniformly mixed so as to be kneaded. When the crosslinked polymer (A1) is obtained by the aqueous solution polymerization method, the timing of mixing and kneading the hydrophobic substance (C) and (A1) is not particularly limited, but during the polymerization step, immediately after the polymerization step, and the hydrogel. Examples thereof include during crushing (minced) and during drying of a hydrogel. Of these, from the viewpoint of leakage resistance of the absorbent article, it is preferable immediately after the polymerization step and during the crushing (mincing) step of the hydrogel, and more preferably during the crushing (mincing) step of the hydrogel.

逆相懸濁重合法又は乳化重合により架橋重合体(A1)を得るとき、疎水性物質(C)と(A1)とを混合するタイミングとしては特に制限はないが、重合工程中{(C)の存在下で、(A1)を製造する}、重合工程直後、脱水工程中(水分10重量%前後まで脱水する工程中)、脱水工程直後、重合に用いた有機溶媒を分離留去する工程中、含水ゲルの乾燥中等が挙げられる。これらのうち、吸収性物品の耐モレ性等の観点から、重合工程中、重合工程直後、脱水工程中、脱水工程直後、重合に用いた有機溶媒を分離留去する工程中が好ましく、さらに好ましくは重合工程中、重合工程直後である。 When the crosslinked polymer (A1) is obtained by the reverse phase suspension polymerization method or emulsion polymerization, the timing of mixing the hydrophobic substances (C) and (A1) is not particularly limited, but during the polymerization step {(C) In the presence of (A1)}, immediately after the polymerization step, during the dehydration step (during the step of dehydrating to about 10% by weight of water), immediately after the dehydration step, during the step of separating and distilling off the organic solvent used for the polymerization , Drying of hydrogel, etc. Of these, from the viewpoint of leakage resistance of the absorbent article, it is preferable, more preferably, during the polymerization step, immediately after the polymerization step, during the dehydration step, immediately after the dehydration step, and during the step of separating and distilling off the organic solvent used for the polymerization. Is during the polymerization step and immediately after the polymerization step.

含水ゲルの乾燥中に混合する場合、混合装置としては、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機等の公知の装置が使用できる。重合液中で混合する場合、ホモミキサー、バイオミキサー等の比較的攪拌力の高い装置を使用できる。また、含水ゲルの乾燥中で混合する場合、SVミキサー等の混練装置も使用できる。 When mixing during drying of the hydrogel, known devices such as a Beck's mill, a rubber chopper, a pharma mill, a minced machine, an impact crusher and a roll crusher can be used as the mixing device. When mixing in a polymer solution, a device having a relatively high stirring power such as a homomixer or a biomixer can be used. Further, when mixing while drying the hydrogel, a kneading device such as an SV mixer can also be used.

混合温度(℃)は、20〜100が好ましく、さらに好ましくは40〜90、特に好ましくは50〜80である。この範囲であると、さらに均一混合しやすくなり、吸収特性がさらに良好となる。 The mixing temperature (° C.) is preferably 20 to 100, more preferably 40 to 90, and particularly preferably 50 to 80. Within this range, uniform mixing becomes easier, and the absorption characteristics become even better.

また、疎水性物質(C)の存在下で、架橋重合体(A1)を製造する方法において、架橋重合体(A1)の重合液に疎水性物質(C)を溶解又は乳化(分散)させておき、(A1)の重合の進行と共に(C)を析出させながら、連結部を形成することもできる。疎水性物質(C)の存在下で重合を行うこと以外、重合方法は、架橋重合体(A1)の場合と同様である。なお、連結部とは、疎水性物質(C)と架橋重合体(A1)とが接触して形成される(A1)−(C)−(A1)からなるサンドイッチ構造を意味する。この場合、吸収性樹脂粒子の内部に存在している架橋重合体(A1)は、その表面に存在している疎水性物質(C)を介して、別の架橋重合体(A1)と連結している構造となる。 Further, in the method for producing the crosslinked polymer (A1) in the presence of the hydrophobic substance (C), the hydrophobic substance (C) is dissolved or emulsified (dispersed) in the polymer solution of the crosslinked polymer (A1). It is also possible to form a connecting portion while precipitating (C) as the polymerization of (A1) progresses. The polymerization method is the same as that of the crosslinked polymer (A1) except that the polymerization is carried out in the presence of the hydrophobic substance (C). The connecting portion means a sandwich structure composed of (A1)-(C)-(A1) formed by contacting the hydrophobic substance (C) and the crosslinked polymer (A1). In this case, the crosslinked polymer (A1) existing inside the absorbent resin particles is linked to another crosslinked polymer (A1) via the hydrophobic substance (C) existing on the surface thereof. It becomes a structure.

なお、疎水性物質(C)に浸透剤(D)を併用する場合は、前述した疎水性物質(C)の混合するタイミングと同時に浸透剤(D)を使用することができる。浸透剤(D)はあらかじめ疎水性物質(C)と混合してから使用してもよいし、同時に別々に添加して使用しても良い。 When the penetrant (D) is used in combination with the hydrophobic substance (C), the penetrant (D) can be used at the same time as the timing of mixing the hydrophobic substance (C) described above. The penetrant (D) may be used after being mixed with the hydrophobic substance (C) in advance, or may be added and used separately at the same time.

疎水性物質(C)、必要により浸透剤(D)を含有する含水ゲルは、必要に応じて、この含水ゲルを細断することができる。細断後の含水ゲル粒子の大きさ(最長径)は50μm〜10cmが好ましく、さらに好ましくは100μm〜2cm、特に好ましくは1mm〜1cmである。この範囲であると、乾燥工程での乾燥性がさらに良好となる。細断方法は、架橋重合体(A1)の場合と同様の方法が採用できる。 A hydrogel containing a hydrophobic substance (C) and, if necessary, a penetrant (D) can shred the hydrogel, if necessary. The size (longest diameter) of the hydrogel particles after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved. As the shredding method, the same method as in the case of the crosslinked polymer (A1) can be adopted.

吸水性樹脂粒子の製造に溶媒(有機溶媒及び/又は水を含む)を使用する場合、重合後に溶媒を留去することができる。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、吸水性樹脂粒子の重量に基づいて、0〜10が好ましく、さらに好ましくは0〜5、特に好ましくは0〜3、最も好ましくは0〜1である。である。この範囲であると、吸水性樹脂粒子の吸収性能(特に保水量)がさらに良好となる。 When a solvent (including an organic solvent and / or water) is used for producing the water-absorbent resin particles, the solvent can be distilled off after the polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10, more preferably 0 to 5, and particularly preferably 0, based on the weight of the water-absorbent resin particles. ~ 3, most preferably 0 to 1. Is. Within this range, the absorption performance (particularly the amount of water retention) of the water-absorbent resin particles is further improved.

また、溶媒に水を含む場合、留去後の水分(重量%)は、吸水性樹脂粒子の重量に基づいて、0〜20が好ましく、さらに好ましくは1〜10、特に好ましくは2〜9、最も好ましくは3〜8である。この範囲であると、吸収性能(特に保水量)及び乾燥後の吸水性樹脂粒子の壊れ性がさらに良好となる。なお、有機溶媒の含有量及び水分の測定法、並びに溶媒の留去方法は、架橋重合体(A1)の場合と同様である。 When water is contained in the solvent, the water content (% by weight) after distillation is preferably 0 to 20, more preferably 1 to 10, and particularly preferably 2 to 9, based on the weight of the water-absorbent resin particles. Most preferably, it is 3 to 8. Within this range, the absorption performance (particularly the amount of water retained) and the breakability of the water-absorbent resin particles after drying are further improved. The method for measuring the content and water content of the organic solvent and the method for distilling off the solvent are the same as in the case of the crosslinked polymer (A1).

架橋重合体(A1)は、必要に応じて、表面架橋剤により表面架橋処理を行うことができる。表面架橋剤としては、公知{特開昭59−189103号公報、特開昭58−180233号公報、特開昭61−16903号公報、特開昭61−211305号公報、特開昭61−252212号公報、特開昭51−136588号公報及び特開昭61−257235号公報等}の表面架橋剤{多価グリシジル、多価アルコール、多価アミン、多価アジリジン、多価イソシアネート、シランカップリング剤及び多価金属等}等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル、多価アルコール及び多価アミンが好ましく、さらに好ましくは多価グリシジル及び多価アルコール、特に好ましくは多価グリシジル、最も好ましくはエチレングリコールジグリシジルエーテルである。 The crosslinked polymer (A1) can be surface-crosslinked with a surface-crosslinking agent, if necessary. Known examples of the surface cross-linking agent include JP-A-59-189103, JP-A-58-180233, JP-A-61-16903, JP-A-61-21305, and JP-A-61-252212. No., JP-A-51-136588, JP-A-61-257235, etc.} Surface cross-linking agents {multivalent glycidyl, polyhydric alcohol, polyvalent amine, polyvalent aziridine, polyvalent isocyanate, silane coupling Agents and polyvalent metals, etc.} can be used. Of these surface cross-linking agents, polyhydric glycidyl, polyhydric alcohols and polyhydric amines are preferable, and polyhydric glycidyl and polyhydric alcohols are particularly preferable, and polyhydric glycidyl is most preferable, from the viewpoint of economic efficiency and absorption characteristics. Ethylene glycol diglycidyl ether is preferred.

表面架橋処理をする場合、表面架橋剤の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、水溶性ビニルモノマー(a1)、加水分解性ビニルモノマー(a2)、その他のビニルモノマー(a3)も使用する場合は(a1)〜(a3)の合計、及び架橋剤(b)の重量に基づいて、0.001〜3が好ましく、さらに好ましくは0.005〜2、特に好ましくは0.01〜1である。 When the surface cross-linking treatment is performed, the amount (% by weight) of the surface cross-linking agent used can be variously changed depending on the type of the surface cross-linking agent, the conditions for cross-linking, the target performance, etc. When water-soluble vinyl monomer (a1), hydrolyzable vinyl monomer (a2), and other vinyl monomers (a3) are also used, the total of (a1) to (a3) and the cross-linking agent (b) It is preferably 0.001 to 3, more preferably 0.005 to 2, and particularly preferably 0.01 to 1, based on the weight of the above.

表面架橋処理をする場合、表面架橋処理の方法は、公知{たとえば、特許第3648553号公報、特開2003−165883号公報、特開2005−75982号公報、特開2005−95759号公報}の方法が適用できる。 When the surface cross-linking treatment is performed, the method of the surface cross-linking treatment is a known method {for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982, Japanese Patent Application Laid-Open No. 2005-95759}. Can be applied.

吸水性樹脂粒子の重量平均粒径(μm)は、200〜400であり、好ましくは270〜390、より好ましくは290〜380、特に好ましくは320〜370である。吸水性樹脂粒子は、粉砕することができる。吸水性樹脂粒子が溶媒を含む場合、溶媒を留去(乾燥)してから粉砕することが好ましい。粉砕する場合、粉砕後の重量平均粒径(μm)もまた、200〜400が好ましく、より好ましくは270〜390、更に好ましくは290〜380、特に好ましくは290〜370である。この範囲であると、粉砕後のハンドリング性(吸水性樹脂粒子の粉体流動性等)及び吸水性樹脂粒子の吸収速度が適切になるため、吸収性物品のドライ性がさらに良好となる。なお、重量平均粒径は架橋重合体(A1)の場合と同様にして測定できる。 The weight average particle size (μm) of the water-absorbent resin particles is 200 to 400, preferably 270 to 390, more preferably 290 to 380, and particularly preferably 320 to 370. The water-absorbent resin particles can be pulverized. When the water-absorbent resin particles contain a solvent, it is preferable to distill off (dry) the solvent and then pulverize the particles. In the case of pulverization, the weight average particle diameter (μm) after pulverization is also preferably 200 to 400, more preferably 270 to 390, still more preferably 290 to 380, and particularly preferably 290 to 370. Within this range, the handling property after pulverization (powder fluidity of the water-absorbent resin particles, etc.) and the absorption rate of the water-absorbent resin particles become appropriate, so that the dry property of the absorbent article becomes further improved. The weight average particle size can be measured in the same manner as in the case of the crosslinked polymer (A1).

微粒子の含有量は少ない方が吸収性能がよく、全粒子に占める106μm以下の微粒子の含有量が3重量%以下が好ましく、さらに好ましくは全粒子に占める150μm以下の微粒子の含有量が3重量%以下である。微粒子の含有量は、上記の重量平均粒径を求める際に作成するプロットを用いて求めることができる。粉砕及び粒度調整は、架橋重合体(A1)の場合と同様の方法が採用できる。 The smaller the content of the fine particles, the better the absorption performance, and the content of the fine particles of 106 μm or less in the total particles is preferably 3% by weight or less, and more preferably the content of the fine particles of 150 μm or less in the total particles is 3% by weight. It is as follows. The content of the fine particles can be determined using the plot prepared when determining the weight average particle size described above. For pulverization and particle size adjustment, the same method as for the crosslinked polymer (A1) can be adopted.

粉砕する場合、粉砕後のスパン値は、1.0以下が好ましく、特に好ましくは0.9以下、最も好ましくは0.8以下である。この範囲であると吸水性樹脂粒子の粒子径の分布が狭くなるために、スポット吸収が生じにくくなったり吸収しない粒子ができにくくなることから、不織布表面からの液引き性が良好になる。なお、スパン値は架橋重合体(A1)の場合と同様に測定できる。 In the case of pulverization, the span value after pulverization is preferably 1.0 or less, particularly preferably 0.9 or less, and most preferably 0.8 or less. Within this range, the distribution of the particle size of the water-absorbent resin particles is narrowed, so that spot absorption is less likely to occur and particles that are not absorbed are less likely to be formed, so that the liquidability from the surface of the non-woven fabric is improved. The span value can be measured in the same manner as in the case of the crosslinked polymer (A1).

本発明の吸水性樹脂粒子の見掛け密度(g/ml)は、0.55〜0.65が好ましく、さらに好ましくは0.56〜0.64、特に好ましくは0.57〜0.63である。この範囲であると、吸収性物品の耐カブレ性がさらに良好となる。なお、見掛け密度は架橋重合体(A1)の場合と同様にして測定できる。見かけ密度は、ゲルの粉砕方法、乾燥条件等の生産条件で適宜調整できる。 The apparent density (g / ml) of the water-absorbent resin particles of the present invention is preferably 0.55 to 0.65, more preferably 0.56 to 0.64, and particularly preferably 0.57 to 0.63. .. Within this range, the anti-fog resistance of the absorbent article becomes even better. The apparent density can be measured in the same manner as in the case of the crosslinked polymer (A1). The apparent density can be appropriately adjusted depending on the production conditions such as the gel crushing method and the drying conditions.

吸水性樹脂粒子の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 The shape of the water-absorbent resin particles is not particularly limited, and examples thereof include amorphous crushed particles, phosphorus flakes, pearl particles, and rice granules. Of these, the amorphous crushed form is preferable from the viewpoint that it is easily entangled with the fibrous material for use in disposable diapers and the like and there is no concern that it will fall off from the fibrous material.

本発明の吸水性樹脂粒子のDW法による吸収量(M)(ml/g)は、吸収性物品のドライ性の観点から、1分後の吸収量(M1)は10〜15であり、好ましくは11〜14、さらに好ましくは12〜13である。5分後の吸収量(M2)は45〜55であり、好ましくは46〜54、さらに好ましくは47〜53である。この範囲であると吸収性物品のドライ性がさらに良好になる。DW法による吸収量は、SPAN、吸水性樹脂粒子の見掛け密度及び吸水性樹脂粒子の重量平均粒径、疎水性物質、界面活性剤等を前記好ましい範囲に調整することで、DW法による吸収量を好ましい範囲に調整できる。具体的には、重量平均粒径を大きく、見かけ密度を高く、疎水性物質の含有量もしくは疎水性を高く、疎水性物質と併用する浸透剤の使用を少なくすると、それぞれの作用がほぼ独立に1分後の吸収量(M1)を低くする効果があり、適宜調整することができる。5分後の吸収量(M2)は1分後吸収量(M1)の操作因子に加え、保水量が高いと高くなる傾向がある。1分後の吸収量(M1)が10未満の場合、初期の吸収量が不足してドライ性が悪化し、15よりも高い場合は、初期の吸収量が高すぎ、吸収体とした時に吸収の偏りができ、ドライ性が悪化する。5分後の吸収量が45未満の場合、吸収量が不足しているためドライ性が悪化、55よりも高い場合は、吸収体中の吸収量の偏りができ、ドライ性が悪化する。 The absorption amount (M) (ml / g) of the water-absorbent resin particles of the present invention by the DW method is preferably 10 to 15 after 1 minute from the viewpoint of the dryness of the absorbent article. Is 11 to 14, more preferably 12 to 13. The amount of absorption (M2) after 5 minutes is 45 to 55, preferably 46 to 54, and more preferably 47 to 53. Within this range, the dryness of the absorbent article becomes even better. The amount absorbed by the DW method can be determined by adjusting the SPAN, the apparent density of the water-absorbent resin particles, the weight average particle size of the water-absorbent resin particles, the hydrophobic substance, the surfactant, etc. within the above-mentioned preferable ranges. Can be adjusted to a preferable range. Specifically, if the weight average particle size is large, the apparent density is high, the content or hydrophobicity of the hydrophobic substance is high, and the use of the penetrant used in combination with the hydrophobic substance is reduced, the respective actions become almost independent. It has the effect of lowering the absorption amount (M1) after 1 minute, and can be adjusted as appropriate. The absorption amount (M2) after 5 minutes tends to increase as the water retention amount increases, in addition to the operating factor of the absorption amount (M1) after 1 minute. If the absorption amount (M1) after 1 minute is less than 10, the initial absorption amount is insufficient and the dryness deteriorates, and if it is higher than 15, the initial absorption amount is too high and is absorbed when it is used as an absorber. Is biased and the dryness deteriorates. If the amount of absorption after 5 minutes is less than 45, the dryness is deteriorated because the amount of absorption is insufficient, and if it is higher than 55, the amount of absorption in the absorber is biased and the dryness is deteriorated.

DW(Demand Wettability)法は、25±2℃、湿度50±10%の室内で、図1に示す装置を用いて行う測定方法である。図1に示した測定装置は、ビュレット部(2){目盛容量50ml、長さ86cm、内径1.05cm、}と導管{内径7mm}、測定台(6)からなっている。ビュレット部(2)は、上部にゴム栓(1)、下部に吸気導入管(9){先端内径3mm}とコック(7)が連結されており、さらに、吸気導入管(9)の上部はコック(8)がある。ビュレット部(2)から測定台(6)までは、導管が取り付けられている。測定台(6)の中央部には、生理食塩水供給部として直径3ミリの穴があいており、導管が連結されている。 The DW (Demand Wetting) method is a measurement method performed in a room at 25 ± 2 ° C. and a humidity of 50 ± 10% using the apparatus shown in FIG. The measuring device shown in FIG. 1 includes a burette portion (2) {scale capacity 50 ml, length 86 cm, inner diameter 1.05 cm,}, a conduit {inner diameter 7 mm}, and a measuring table (6). The burette portion (2) has a rubber stopper (1) at the upper part, an intake introduction pipe (9) {tip inner diameter 3 mm} and a cock (7) at the lower part, and further, the upper part of the intake introduction pipe (9) is connected. There is a cook (8). A duct is attached from the burette portion (2) to the measuring table (6). In the central part of the measuring table (6), there is a hole with a diameter of 3 mm as a physiological saline supply part, and a conduit is connected to the hole.

この構成の測定装置を使用して、まずビュレット部(2)のコック(7)と空気導入管(9)のコック(8)を閉め、25℃に調節された所定量の生理食塩水(食塩濃度0.9重量%)をビュレット部(2)上部から入れ、ゴム栓(1)でビュレット上部の栓をした後、ビュレット部(2)のコック(7)および空気導入管(9)のコック(8)を開ける。次に、測定台(6)に溢れ出た生理食塩水を拭き取ってから、測定台(6)の上面と、測定台(6)中心部の導管口から出てくる生理食塩水の水面とが同じ高さになるように測定台(6)の高さの調整を行う。生理食塩水供給部から生理食塩水を拭き取りながら、ビュレット部(2)内の生理食塩水の水面をビュレット部(2)目盛の一番上(0mlライン)に調整する。 Using the measuring device having this configuration, first, the cock (7) of the burette portion (2) and the cock (8) of the air introduction pipe (9) are closed, and a predetermined amount of physiological saline (salt) adjusted to 25 ° C. (Concentration 0.9% by weight) is inserted from the upper part of the burette part (2), the upper part of the burette is plugged with the rubber stopper (1), and then the cock (7) of the burette part (2) and the cock of the air introduction pipe (9). Open (8). Next, after wiping off the physiological saline overflowing on the measuring table (6), the upper surface of the measuring table (6) and the water surface of the physiological saline coming out from the conduit port in the center of the measuring table (6) are contacted. Adjust the height of the measuring table (6) so that the height is the same. While wiping the saline solution from the saline supply section, adjust the water level of the saline solution in the burette section (2) to the top of the burette section (2) scale (0 ml line).

引き続き、ビュレット部(2)のコック(7)と空気導入管(9)のコック(8)を閉め、測定台(6)上に、生理食塩水供給部が中心になるように平織りナイロンメッシュ(5)(目開き63μm、5cm×5cm)をのせ、さらにこの平織りナイロンメッシュ(5)の上に、測定台(6)の生理食塩水供給部を中心に直径2.7cmの範囲に0.50gの吸水性樹脂粒子(4)を均一に散布する。その後、ビュレット部(2)のコック(7)および空気導入管(9)のコック(8)を開ける。 Subsequently, the cock (7) of the burette part (2) and the cock (8) of the air introduction pipe (9) are closed, and a plain weave nylon mesh (on the measuring table (6) so that the physiological saline supply part is at the center) 5) Place (opening 63 μm, 5 cm × 5 cm) on this plain weave nylon mesh (5), and 0.50 g in a range of 2.7 cm in diameter centered on the physiological saline supply part of the measuring table (6). The water-absorbent resin particles (4) of No. 1 are uniformly sprayed. After that, the cock (7) of the burette portion (2) and the cock (8) of the air introduction pipe (9) are opened.

吸水性樹脂粒子(4)が吸水し始め、空気導入管(9)から導入された一つ目の泡がビュレット部(2)内の生理食塩水の水面に到達した時点(ビュレット部(2)内の生理食塩水の水面が下がった時点)を測定開始時間とし、継続的に、ビュレット部(2)内の生理食塩水(3)の減少量(吸水性樹脂粒子(4)が吸水した生理食塩水量)M(ml)を読み取る。吸水開始から所定時間経過後における吸水性樹脂粒子(4)の吸収量を、以下の式により求める。 When the water-absorbent resin particles (4) start to absorb water and the first bubble introduced from the air introduction pipe (9) reaches the water surface of the physiological saline in the burette portion (2) (burette portion (2)). The measurement start time is set as the measurement start time (when the water level of the physiological saline solution in the burette is lowered), and the amount of decrease in the physiological saline solution (3) in the burette portion (2) (the physiology of the water-absorbing resin particles (4) absorbing water) is continuously set. (Saline amount) M (ml) is read. The amount of water-absorbent resin particles (4) absorbed after a lapse of a predetermined time from the start of water absorption is calculated by the following formula.

DW法による吸収量(ml/g)=M÷0.50 Absorption amount by DW method (ml / g) = M ÷ 0.50

本発明の吸水性樹脂粒子の保水量(g/g)は、吸収性物品のドライ性の観点から、35〜40が好ましく、さらに好ましくは36〜39である。なお、吸水性樹脂粒子の保水量は以下の方法により測定される。 The water retention amount (g / g) of the water-absorbent resin particles of the present invention is preferably 35 to 40, more preferably 36 to 39, from the viewpoint of dryness of the absorbent article. The water retention amount of the water-absorbent resin particles is measured by the following method.

<吸水性樹脂粒子の保水量の測定法>
目開き63μm(JIS Z8801−1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水(食塩濃度0.9重量%)1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から保水量を求める。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とする。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバックの重量を測定し(h2)とする。
<Measurement method of water retention of water-absorbent resin particles>
Put 1.00 g of the measurement sample in a tea bag (length 20 cm, width 10 cm) made of a nylon net with an opening of 63 μm (JIS Z8801-1: 2006), and put 1,000 ml of physiological saline (salt concentration 0.9% by weight). After immersing the sample in it for 1 hour without stirring, it was hung for 15 minutes to drain water. Then, the tea bag is placed in a centrifuge and centrifuged at 150 G for 90 seconds to remove excess physiological saline, the weight (h1) including the tea bag is measured, and the amount of water retained is calculated from the following formula. The temperature of the physiological saline used and the measurement atmosphere shall be 25 ° C ± 2 ° C. The weight of the tea bag after centrifugal dehydration is measured in the same manner as above except that the measurement sample is not used (h2).

保水量(g/g)=(h1)−(h2) Water retention (g / g) = (h1)-(h2)

本発明の吸水性樹脂粒子のロックアップ法で測定される吸収速度は、不織布表面からの液引きの観点から、25秒以下が好ましく、さらに好ましくは24秒以下、特に好ましくは23秒以下である。なお。吸水性樹脂粒子のロックアップ法による吸収速度は、以下の方法により測定される。 The absorption rate measured by the lock-up method of the water-absorbent resin particles of the present invention is preferably 25 seconds or less, more preferably 24 seconds or less, and particularly preferably 23 seconds or less, from the viewpoint of liquidation from the surface of the non-woven fabric. .. note that. The absorption rate of the water-absorbent resin particles by the lock-up method is measured by the following method.

<吸水性樹脂のロックアップ法による吸収速度>
測定試料1.000gをJIS R 3503に規定する底面が平らな100mlのトールビーカーに入れる。この際、ビーカーに入れた吸水性樹脂の上面が水平となるようにする。次に、23℃±2℃に調温した脱イオン水50gを100mlのガラス製ビーカーに量り取り、吸水性樹脂の入った100mlビーカーに丁寧に素早く注ぐ。注ぎ込んだ脱イオン水が吸水性樹脂と接触したと同時に時間測定を開始する。そして、脱イオン水を注ぎ込んだビーカーを約90゜の角度で横に向けた際、流動物が吸水性樹脂表面から浸出しなくなった点を終点とし、この時間(単位:秒)をロックアップ法で測定される吸収速度とする。
<Absorption rate by lock-up method of water-absorbent resin>
Place 1.000 g of the measurement sample in a 100 ml tall beaker with a flat bottom specified in JIS R 3503. At this time, the upper surface of the water-absorbent resin placed in the beaker should be horizontal. Next, 50 g of deionized water whose temperature has been adjusted to 23 ° C. ± 2 ° C. is weighed in a 100 ml glass beaker, and carefully and quickly poured into a 100 ml beaker containing a water-absorbent resin. The time measurement is started at the same time when the poured deionized water comes into contact with the water-absorbent resin. Then, when the beaker into which the deionized water is poured is turned sideways at an angle of about 90 °, the end point is the point where the fluid does not seep out from the surface of the water-absorbent resin, and this time (unit: seconds) is used as the lock-up method. Let it be the absorption rate measured in.

本発明の吸水性樹脂粒子は、不織布と共に吸収体とすることができる。 The water-absorbent resin particles of the present invention can be used as an absorber together with the non-woven fabric.

本発明に用いられる不織布としては、公知の不織布であれば特に限定されないが、液体浸透性、柔軟性及び吸収体とした際の強度の観点から、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン繊維、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル繊維、ナイロン等のポリアミド繊維、レーヨン繊維、その他の合成繊維製からなる不織布や、綿、絹、麻、パルプ(セルロース)繊維等が混合されて製造された不織布等が挙げられる。これらの不織布のなかでも、吸収体の強度を高める等の観点から、合成繊維の不織布が好ましく、更に好ましくはレーヨン繊維、ポリオレフィン繊維、ポリエステル繊維からなる不織布である。これらの不織布は、前記繊維の単独の不織布でもよく、2種以上の繊維を組み合わせた不織布でもよい。 The non-woven fabric used in the present invention is not particularly limited as long as it is a known non-woven fabric, but from the viewpoint of liquid permeability, flexibility and strength when used as an absorber, polyolefins such as polyethylene (PE) and polypropylene (PP) are used. Fibers, polyester fibers such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyamide fibers such as nylon, rayon fibers, non-woven fabrics made of other synthetic fibers, cotton, silk, etc. Examples thereof include non-woven fabrics produced by mixing hemp, pulp (polyethylene) fibers and the like. Among these non-woven fabrics, synthetic fiber non-woven fabrics are preferable, and more preferably rayon fibers, polyolefin fibers, and polyester fibers, from the viewpoint of increasing the strength of the absorber. These non-woven fabrics may be a non-woven fabric of the fibers alone or a non-woven fabric in which two or more kinds of fibers are combined.

本発明に用いられる不織布は吸収体に、良好な液体浸透性、柔軟性、強度やクッション性を付与すること及び吸収体の液体浸透速度を速める観点から、適度に嵩高く、目付量が大きい不織布が好ましい。その目付量は、好ましくは5〜300g/m2であり、より好ましくは8〜200g/m2であり、さらに好ましくは10〜100g/m2であり、よりさらに好ましくは11〜50g/m2である。また、不織布の厚さとしては、20〜800μmの範囲が好ましく、50〜600μmの範囲がより好ましく、80〜450μmの範囲がさらに好ましい。The non-woven fabric used in the present invention is a non-woven fabric that is moderately bulky and has a large amount of grain from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning property to the absorber and accelerating the liquid permeation rate of the absorber. Is preferable. The basis weight is preferably 5 to 300 g / m 2 , more preferably 8 to 200 g / m 2 , still more preferably 10 to 100 g / m 2 , and even more preferably 11 to 50 g / m 2. Is. The thickness of the non-woven fabric is preferably in the range of 20 to 800 μm, more preferably in the range of 50 to 600 μm, and even more preferably in the range of 80 to 450 μm.

本発明の吸収体において、吸収層は、吸水性樹脂、不織布及び必要により接着剤を含有し、所望によりさらにフラッフパルプ等の親水性繊維を含有してなるものであり、例えば、接着剤を塗布した不織布上に、吸水性樹脂を均一に散布した後、要すれば接着剤を塗布した不織布をさらに重ねて、要すれば圧力下で加熱することにより形成される。また、不織布上で吸水性樹脂と接着剤の混合粉末を均一に散布し、さらに不織布を重ねて、接着剤の溶融温度付近で加熱すること、要すれば圧力下で加熱することによっても形成される。上記不織布と吸水性樹脂粒子の間にフラッフパルプを均一に散布することができる。
本発明の吸収体において、吸収層を重ねて、2層以上にすることもできる。
In the absorbent body of the present invention, the absorbent layer contains a water-absorbent resin, a non-woven fabric and, if necessary, an adhesive, and if desired, further contains hydrophilic fibers such as fluff pulp. For example, an adhesive is applied. After uniformly spraying the water-absorbent resin on the non-woven fabric, the non-woven fabric coated with the adhesive is further layered if necessary, and if necessary, it is formed by heating under pressure. It is also formed by uniformly spraying a mixed powder of a water-absorbent resin and an adhesive on a non-woven fabric, stacking the non-woven fabrics, and heating the non-woven fabric near the melting temperature of the adhesive, if necessary, under pressure. NS. Fluff pulp can be uniformly sprayed between the non-woven fabric and the water-absorbent resin particles.
In the absorber of the present invention, the absorption layers may be stacked to form two or more layers.

本発明に用いられる接着剤としては、例えば、天然ゴム系、ブチルゴム系、ポリイソプレン等のゴム系接着剤;スチレン−イソプレンブロック共重合体(SIS)、スチレン−ブタジエンブロック共重合体(SBS)、スチレン−イソブチレンブロック共重合体(SIBS)、スチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)等のスチレン系エラストマー接着剤;エチレン−酢酸ビニル共重合体(EVA)接着剤;エチレン−アクリル酸エチル共重合体(EEA)、エチレン−アクリル酸ブチル共重合体(EBA)等のエチレン−アクリル酸誘導体共重合系接着剤;エチレン−アクリル酸共重合体(EAA)接着剤;共重合ナイロン、ダイマー酸ベースポリアミド等のポリアミド系接着剤;ポリエチレン、ポリプロピレン、アタクチックポリプロピレン、共重合ポリオレフィン等のポリオレフィン系接着剤;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、共重合ポリエステル等のポリエステル系接着剤等、及びアクリル系接着剤が挙げられる。本発明においては、接着力が強く、吸水シート構成体における不織布の剥離や吸水性樹脂の散逸を防ぐことができるという観点から、エチレン−酢酸ビニル共重合体接着剤、スチレン系エラストマー接着剤、ポリオレフィン系接着剤及びポリエステル系接着剤が好ましい。これらの接着剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the adhesive used in the present invention include rubber-based adhesives such as natural rubber-based, butyl rubber-based, and polyisoprene; styrene-isoprene block copolymer (SIS), styrene-butadiene block copolymer (SBS), and the like. Styrene-based elastomer adhesives such as styrene-isobutylene block copolymer (SIBS), styrene-ethylene-butylene-styrene block copolymer (SEBS); ethylene-vinyl acetate copolymer (EVA) adhesive; ethylene-acrylic acid Ethylene-acrylic acid derivative copolymer adhesives such as ethyl copolymer (EEA) and ethylene-butyl acrylate copolymer (EBA); ethylene-acrylic acid copolymer (EAA) adhesives; copolymerized nylon, dimer Polyamide-based adhesives such as acid-based polyamides; polyolefin-based adhesives such as polyethylene, polypropylene, atactic polypropylene, and copolymerized polyolefins; polyester-based adhesives such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and copolymerized polyesters. Etc., and acrylic adhesives. In the present invention, an ethylene-vinyl acetate copolymer adhesive, a styrene-based elastomer adhesive, and a polyolefin can be obtained from the viewpoint that the adhesive strength is strong and the peeling of the non-woven fabric and the dissipation of the water-absorbent resin in the water-absorbent sheet structure can be prevented. Based adhesives and polyester adhesives are preferable. These adhesives may be used alone or in combination of two or more.

熱溶融型の接着剤を使用する場合、接着剤の溶融温度(軟化温度)は、吸水性樹脂を不織布に十分に固定するとともに、不織布の熱劣化や変形を防止する観点から、60〜180℃が好ましく、70〜150℃がより好ましく、75〜125℃がさらに好ましい。 When a heat-melt type adhesive is used, the melting temperature (softening temperature) of the adhesive is 60 to 180 ° C. from the viewpoint of sufficiently fixing the water-absorbent resin to the non-woven fabric and preventing thermal deterioration and deformation of the non-woven fabric. Is preferable, 70 to 150 ° C. is more preferable, and 75 to 125 ° C. is even more preferable.

吸収体における接着剤の含有割合は、吸水性樹脂の含有量(質量基準)の0.05〜2.0倍の範囲が好ましく、0.08〜1.5倍の範囲がより好ましく、0.1〜1.0倍の範囲がさらに好ましい。十分な接着によって不織布の剥離や吸水性樹脂の散逸を防止し、吸収体の形態保持性を高める観点から、接着剤の含有割合は0.05倍以上であることが好ましく、接着が強くなり過ぎることによる吸水性樹脂の膨潤阻害を回避し、吸水シート構成体の浸透速度や液漏れを改善する観点から、接着剤の含有割合は2.0倍以下であることが好ましい。 The content ratio of the adhesive in the absorber is preferably in the range of 0.05 to 2.0 times, more preferably 0.08 to 1.5 times the content of the water-absorbent resin (mass basis), and is 0. The range of 1 to 1.0 times is more preferable. From the viewpoint of preventing peeling of the non-woven fabric and dissipation of the water-absorbent resin by sufficient adhesion and enhancing the morphological retention of the absorber, the content ratio of the adhesive is preferably 0.05 times or more, and the adhesion becomes too strong. From the viewpoint of avoiding the inhibition of swelling of the water-absorbent resin and improving the permeation rate and liquid leakage of the water-absorbent sheet structure, the content ratio of the adhesive is preferably 2.0 times or less.

本発明の吸水性樹脂粒子と上述の不織布の重量を基準とした吸水性樹脂粒子の重量%{吸収性樹脂粒子の重量/(吸水性樹脂粒子の重量+不織布の重量)}は40重量%以上が好ましく、さらに好ましくは60重量%以上、特に好ましくは80重量%である。 Weight% of water-absorbent resin particles based on the weight of the water-absorbent resin particles of the present invention and the above-mentioned non-woven fabric {weight of absorbent resin particles / (weight of water-absorbent resin particles + weight of non-woven fabric)} is 40% by weight or more. Is more preferable, and more preferably 60% by weight or more, and particularly preferably 80% by weight.

また、上記の吸収体は吸収性物品{紙おむつや生理用ナプキン等}を構成することが好ましい。吸収性物品の製造方法等は、公知のもの{特開2003−225565号公報、特開2006−131767号公報及び特開2005−097569号公報等}の吸収体を上記の吸収体を変更する以外は同様である。 Further, it is preferable that the above-mentioned absorber constitutes an absorbent article {paper diaper, sanitary napkin, etc.}. As for the method for producing the absorbent article, the absorbers of known ones {Japanese Patent Laid-Open No. 2003-225565, JP-A-2006-131767, JP-A-2005-097569, etc.} are changed from the above-mentioned absorbers. Is similar.

以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。なお、特に定めない限り、部は重量部、%は重量%を示す。なお、DW法による吸収量、吸水性樹脂粒子の保水量、吸水性樹脂粒子のロックアップ法による吸収速度は前述した方法により測定した。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, parts indicate parts by weight and% indicates% by weight. The absorption amount by the DW method, the water retention amount of the water-absorbent resin particles, and the absorption rate by the lock-up method of the water-absorbent resin particles were measured by the above-mentioned methods.

<製造例1>
水溶性ビニルモノマー(a1−1){アクリル酸、三菱化学株式会社製、純度100%}155部(2.15モル部)、架橋剤(b1){ペンタエリスリトールトリアリルエーテル、ダイソ−株式会社製}0.6225部(0.0024モル部)及び脱イオン水340.27部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.62部、2%アスコルビン酸水溶液1.1625部及び2%の2,2’−アゾビス[2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド]水溶液2.325部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲル(1)を得た。
<Manufacturing example 1>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Co., Ltd., purity 100%} 155 parts (2.15 mol parts), cross-linking agent (b1) {pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd. } 0.6225 parts (0.0024 mol parts) and 340.27 parts of deionized water were kept at 3 ° C. while stirring and mixing. After influxing nitrogen into this mixture to reduce the amount of dissolved oxygen to 1 ppm or less, 0.62 parts of a 1% aqueous hydrogen peroxide solution and 1.1625 parts of a 2% ascorbic acid aqueous solution and 2% of 2,2'-azobis [ 2.325 parts of an aqueous solution of 2-methyl-N- (2-hydroxyethyl) -propionamide] was added and mixed to initiate polymerization. After the temperature of the mixture reached 90 ° C., a hydrogel (1) was obtained by polymerizing at 90 ± 2 ° C. for about 5 hours.

次にこの含水ゲル(1)502.27部をミンチ機(ROYAL社製12VR−400K)で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、引き続き疎水性物質(C−1){ステアリン酸Mg}0.19部を添加して混合し、4回細断後、通気型乾燥機{150℃、風速2m/秒}で乾燥し、乾燥体を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、ふるい分けして、各ふるい上の乾燥体を別々に採取し、重量平均粒子径を350μm、SPANが0.8となるよう各ふるい上の乾燥体を混合することで架橋重合体粒子(A1−1)を得た。 Next, 502.27 parts of this hydrogel (1) was shredded with a mincing machine (12VR-400K manufactured by ROYAL), and 128.42 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed, followed by hydrophobicity. 0.19 parts of the substance (C-1) {Mg stearate} was added and mixed, shredded four times, and then dried in a ventilation type dryer {150 ° C., wind speed 2 m / sec} to obtain a dried product. .. After crushing the dried product with a juicer mixer (OSTERIZER BLENDER manufactured by Oster), the dried product is sieved and the dried product on each sieve is collected separately so that the weight average particle size is 350 μm and the SPAN is 0.8. Crosslinked polymer particles (A1-1) were obtained by mixing the dried product on the sieve.

<製造例2>
「疎水性物質(C−1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を370μm、SPANを0.6」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−2)を得た。
<Manufacturing example 2>
"0.19 parts of hydrophobic substance (C-1)" was not used and "weight average particle size was 350 μm, SPAN was 0.8" and "weight average particle size was 370 μm, SPAN was 0.6". Crosslinked polymer particles (A1-2) were obtained in the same manner as in Production Example 1 except that the particles were changed to.

<製造例3>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−1)0.29部」に変更し、「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を270μm、SPANが0.9」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−3)を得た。
<Manufacturing example 3>
"0.19 parts of hydrophobic substance (C-1)" was changed to "0.29 parts of hydrophobic substance (C-1)", and "weight average particle size was 350 μm, SPAN was 0.8" was changed to "weight". Crosslinked polymer particles (A1-3) were obtained in the same manner as in Production Example 1 except that the average particle size was changed to 270 μm and the SPAN was changed to 0.9 ”.

<製造例4>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−1)0.38部」に変更し、「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を200μm、SPANが0.9」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−4)を得た。
<Manufacturing example 4>
"0.19 parts of hydrophobic substance (C-1)" was changed to "0.38 parts of hydrophobic substance (C-1)", and "weight average particle size was 350 μm, SPAN was 0.8" was changed to "weight". Crosslinked polymer particles (A1-4) were obtained in the same manner as in Production Example 1 except that the average particle size was changed to 200 μm and the SPAN was changed to 0.9 ”.

<製造例5>
「疎水性物質(C−1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を315μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−5)を得た。
<Manufacturing example 5>
"0.19 parts of hydrophobic substance (C-1)" was not used and "weight average particle size was 350 μm, SPAN was 0.8" and "weight average particle size was 315 μm, SPAN was 0.8". Crosslinked polymer particles (A1-5) were obtained in the same manner as in Production Example 1 except that the particles were changed to.

<製造例6>
「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を350μm、SPANが1.2」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−6)を得た。
<Manufacturing example 6>
Crosslinked polymer particles (A1-6) in the same manner as in Production Example 1 except that "weight average particle size is 350 μm and SPAN is 0.8" is changed to "weight average particle size is 350 μm and SPAN is 1.2". Got

<製造例7>
「疎水性物質(C−1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を420μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−7)を得た。
<Manufacturing example 7>
"0.19 parts of hydrophobic substance (C-1)" was not used and "weight average particle size was 350 μm, SPAN was 0.8" and "weight average particle size was 420 μm, SPAN was 0.8". Crosslinked polymer particles (A1-7) were obtained in the same manner as in Production Example 1 except that the particles were changed to.

<製造例8>
「疎水性物質(C−1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を160μm、SPANが1.0」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−8)を得た。
<Manufacturing example 8>
"0.19 parts of hydrophobic substance (C-1)" was not used and "weight average particle size was 350 μm, SPAN was 0.8" and "weight average particle size was 160 μm, SPAN was 1.0". Crosslinked polymer particles (A1-8) were obtained in the same manner as in Production Example 1 except that the particles were changed to.

<製造例9>
「疎水性物質(C−1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を330μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−9)を得た。
<Manufacturing example 9>
"0.19 parts of hydrophobic substance (C-1)" was not used and "weight average particle size was 350 μm, SPAN was 0.8" and "weight average particle size was 330 μm, SPAN was 0.8". Crosslinked polymer particles (A1-9) were obtained in the same manner as in Production Example 1 except that the particles were changed to.

<製造例10>
「疎水性物質(C−1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を290μm、SPANが0.9」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−10)を得た。
<Manufacturing example 10>
"0.19 parts of hydrophobic substance (C-1)" was not used and "weight average particle size was 350 μm, SPAN was 0.8" and "weight average particle size was 290 μm, SPAN was 0.9". Crosslinked polymer particles (A1-10) were obtained in the same manner as in Production Example 1 except that the particles were changed to.

<製造例11>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−1)0.29部」に変更し、「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を450μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−11)を得た。
<Manufacturing example 11>
"0.19 parts of hydrophobic substance (C-1)" was changed to "0.29 parts of hydrophobic substance (C-1)", and "weight average particle size was 350 μm, SPAN was 0.8" was changed to "weight". Crosslinked polymer particles (A1-11) were obtained in the same manner as in Production Example 1 except that the average particle size was changed to 450 μm and the SPAN was changed to 0.7 ”.

<製造例12>
「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を370μm、SPANが1.2」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−12)を得た。
<Manufacturing example 12>
Crosslinked polymer particles (A1-12) in the same manner as in Production Example 1 except that "weight average particle size is 350 μm and SPAN is 0.8" is changed to "weight average particle size is 370 μm and SPAN is 1.2". Got

<製造例13>
「疎水性物質(C−1)0.19部」を使用しなかったことおよび「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を240μm、SPANが1.5」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−13)を得た。
<Manufacturing example 13>
"0.19 parts of hydrophobic substance (C-1)" was not used and "weight average particle size was 350 μm, SPAN was 0.8" and "weight average particle size was 240 μm, SPAN was 1.5". Crosslinked polymer particles (A1-13) were obtained in the same manner as in Production Example 1 except that the particles were changed to.

<製造例B1>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−2){ショ糖エルカ酸エステル,三菱ケミカルフーズ社製 リョートー(登録商標。以下、表示を省略)シュガーエステルER−290}0.10部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B1)を得た。
<Manufacturing example B1>
"Hydrophobic substance (C-1) 0.19 part" is changed to "Hydrophobic substance (C-2) {sucrose erucic acid ester, Ryoto (registered trademark. Hereinafter, notation omitted) sugar ester ER manufactured by Mitsubishi Chemical Foods Co., Ltd.) Production Example 1 except that "-290} 0.10 part" was changed and "weight average particle size was changed to 350 μm and SPAN was 0.8" to "weight average particle size was changed to 355 μm and SPAN was 0.7". Crosslinked polymer particles (A1-B1) were obtained in the same manner as above.

<製造例B2>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−2){ショ糖エルカ酸エステル,三菱ケミカルフーズ社製 リョートーシュガーエステルER−290}0.30部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B2)を得た。
<Manufacturing example B2>
"Hydrophobic substance (C-1) 0.19 parts" changed to "Hydrophoic substance (C-2) {sucrose erucic acid ester, Ryoto sugar ester ER-290} 0.30 parts manufactured by Mitsubishi Chemical Foods Co., Ltd." The crosslinked polymer particles (weight average particle size: 350 μm, SPAN: 0.8” were changed to “weight average particle size: 321 μm, SPAN: 0.8” in the same manner as in Production Example 1. A1-B2) was obtained.

<製造例B3>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−3){ショ糖ステアリン酸エステル,三菱ケミカルフーズ社製 リョートーシュガーエステルS−370}0.10部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B3)を得た。
<Manufacturing example B3>
"0.19 part of hydrophobic substance (C-1)" to "0.10 part of hydrophobic substance (C-3) {sucrose stearic acid ester, Ryoto sugar ester S-370} manufactured by Mitsubishi Chemical Foods Co., Ltd." The crosslinked polymer particles (weight average particle size: 350 μm, SPAN: 0.8” were changed to “weight average particle size: 355 μm, SPAN: 0.7” in the same manner as in Production Example 1. A1-B3) was obtained.

<製造例B4>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−3){ショ糖ステアリン酸エステル,三菱ケミカルフーズ社製 リョートーシュガーエステルS−370}0.30部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B4)を得た。
<Manufacturing example B4>
"Hydrophobic substance (C-1) 0.19 parts" changed to "Hydrophoic substance (C-3) {sucrose stearic acid ester, Ryoto sugar ester S-370} 0.30 parts manufactured by Mitsubishi Chemical Foods Co., Ltd." Crosslinked polymer particles (weight average particle size: 350 μm, SPAN: 0.8” changed to “weight average particle size: 321 μm, SPAN: 0.8” in the same manner as in Production Example 1. A1-B4) was obtained.

<製造例B5>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−4){エチレンビスジステアリン酸アミド,三菱ケミカル社製 スリパックス(登録商標)E}0.20部」に変更し、および「重量平均粒子径を350μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B5)を得た。
<Manufacturing example B5>
Changed "0.29 parts of hydrophobic substance (C-1)" to "0.20 parts of hydrophobic substance (C-4) {ethylene bisdistearate amide, Slipax (registered trademark) E} manufactured by Mitsubishi Chemical Co., Ltd." , And "Weight average particle size 350 μm, SPAN 0.8" was changed to "Weight average particle size 355 μm, SPAN 0.7", but the crosslinked polymer particles (A1- B5) was obtained.

<製造例B6>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−5){ソルビタンオレイン酸モノエステル,三洋化成社製 イオネットS−80}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を355μm、SPANが0.7」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B6)を得た。
<Manufacturing example B6>
Changed "hydrophobic substance (C-1) 0.19 part" to "hydrophobic substance (C-5) {sorbitan oleic acid monoester, Sanyo Kasei Co., Ltd. Ionet S-80} 0.20 part", and Crosslinked polymer particles (A1-B6) in the same manner as in Production Example 1 except that "weight average particle size is 340 μm and SPAN is 0.8" is changed to "weight average particle size is 355 μm and SPAN is 0.7". Got

<製造例B7>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−1)0.30部と浸透剤(D−1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL−20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B7)を得た。
<Manufacturing example B7>
"Hydrophobic substance (C-1) 0.19 parts" to "Hydrophobic substance (C-1) 0.30 parts and penetrant (D-1) {polyoxyethylene alkyl ether, Sanyo Kasei Co., Ltd. Naroacty CL Production Example 1 except that "-20} 0.20 parts" was changed and "weight average particle size was changed to 340 μm and SPAN was 0.8" to "weight average particle size was changed to 321 μm and SPAN was 0.8". Crosslinked polymer particles (A1-B7) were obtained in the same manner as above.

<製造例B8>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−2)0.30部と浸透剤(D−1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL−20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B8)を得た。
<Manufacturing example B8>
"Hydrophobic substance (C-1) 0.19 parts" to "Hydrophobic substance (C-2) 0.30 parts and penetrant (D-1) {polyoxyethylene alkyl ether, Sanyo Kasei Co., Ltd. Naroacty CL Production Example 1 except that "-20} 0.20 parts" was changed and "weight average particle size was changed to 340 μm and SPAN was 0.8" to "weight average particle size was changed to 321 μm and SPAN was 0.8". Crosslinked polymer particles (A1-B8) were obtained in the same manner as above.

<製造例B9>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−3)0.30部と浸透剤(D−1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティ―CL−20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B9)を得た。
<Manufacturing example B9>
"Hydrophobic substance (C-1) 0.19 parts" to "Hydrophobic substance (C-3) 0.30 parts and penetrant (D-1) {polyoxyethylene alkyl ether, Sanyo Kasei Co., Ltd. Naroacty-CL Production Example 1 except that "-20} 0.20 parts" was changed and "weight average particle size was changed to 340 μm and SPAN was 0.8" to "weight average particle size was changed to 321 μm and SPAN was 0.8". Crosslinked polymer particles (A1-B9) were obtained in the same manner as above.

<製造例B10>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−4)0.30部と浸透剤(D−1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL−20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B10)を得た。
<Manufacturing example B10>
"Hydrophobic substance (C-1) 0.19 parts" to "Hydrophobic substance (C-4) 0.30 parts and penetrant (D-1) {polyoxyethylene alkyl ether, Sanyo Kasei Co., Ltd. Naroacty CL Production Example 1 except that "-20} 0.20 parts" was changed and "weight average particle size was changed to 340 μm and SPAN was 0.8" to "weight average particle size was changed to 321 μm and SPAN was 0.8". Crosslinked polymer particles (A1-B10) were obtained in the same manner as above.

<製造例B11>
「疎水性物質(C−1)0.19部」を「疎水性物質(C−5)0.30部と浸透剤(D−1){ポリオキシエチレンアルキルエーテル,三洋化成社製 ナロアクティーCL−20}0.20部」に変更し、および「重量平均粒子径を340μm、SPANが0.8」を「重量平均粒子径を321μm、SPANが0.8」に変更した以外、製造例1と同様にして架橋重合体粒子(A1−B11)を得た。
<Manufacturing example B11>
"Hydrophobic substance (C-1) 0.19 parts" to "Hydrophobic substance (C-5) 0.30 parts and penetrant (D-1) {polyoxyethylene alkyl ether, Sanyo Kasei Co., Ltd. Naroacty CL Production Example 1 except that "-20} 0.20 parts" was changed and "weight average particle size was changed to 340 μm and SPAN was 0.8" to "weight average particle size was changed to 321 μm and SPAN was 0.8". Crosslinked polymer particles (A1-B11) were obtained in the same manner as above.

<実施例1>
製造例1で得られた架橋重合体粒子(A1−1)100重量部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としてのエチレングリコールジグリシジルエーテル0.04重量部及び溶剤としての50%プロピレングリコール水溶液3.0重量部を混合した混合溶液を添加し、均一混合した後、130℃で30分間静置することで乾燥して、その乾燥体をふるい分けすることで、重量平均粒子径366μm、SPAN0.8である本発明の吸水性樹脂(P−1)を得た。
<Example 1>
While 100 parts by weight of the crosslinked polymer particles (A1-1) obtained in Production Example 1 were stirred at high speed (high-speed stirring solvent manufactured by Hosokawa Micron: rotation speed 2000 rpm), ethylene glycol di as a surface crosslinking agent was added to the crosslinked polymer particles (A1-1). A mixed solution prepared by mixing 0.04 part by weight of glycidyl ether and 3.0 parts by weight of a 50% propylene glycol aqueous solution as a solvent was added, and after uniform mixing, the mixture was dried by allowing it to stand at 130 ° C. for 30 minutes to dry it. By sieving the dried material, the water-absorbent resin (P-1) of the present invention having a weight average particle diameter of 366 μm and a SPAN of 0.8 was obtained.

<実施例2>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−2)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径384μm、SPAN0.6である本発明の吸水性樹脂(P−2)を得た。
<Example 2>
"100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-2)", and "0.04 parts by weight of ethylene glycol diglycidyl ether" was changed to "ethylene glycol di." A water-absorbent resin (P-2) of the present invention having a weight average particle diameter of 384 μm and a SPAN of 0.6 was obtained in the same manner as in Example 1 except that it was changed to "0.03 parts by weight of glycidyl ether".

<実施例3>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−3)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径299μm、SPAN0.9である本発明の吸水性樹脂(P−3)を得た。
<Example 3>
Similar to Example 1, the weight average particle diameter is 299 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-3)”. The water-absorbent resin (P-3) of the present invention, which is 9.9, was obtained.

<実施例4>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−4)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径210μm、SPAN0.9である本発明の吸水性樹脂(P−4)を得た。
<Example 4>
"100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-4)", and "0.04 parts by weight of ethylene glycol diglycidyl ether" was changed to "ethylene glycol di." A water-absorbent resin (P-4) of the present invention having a weight average particle diameter of 210 μm and a SPAN of 0.9 was obtained in the same manner as in Example 1 except that it was changed to “0.03 parts by weight of glycidyl ether”.

<実施例5>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−5)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.02重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径323μm、SPAN0.8である本発明の吸水性樹脂(P−5)を得た。
<Example 5>
"100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-5)", and "0.04 parts by weight of ethylene glycol diglycidyl ether" was changed to "ethylene glycol di." A water-absorbent resin (P-5) of the present invention having a weight average particle diameter of 323 μm and a SPAN of 0.8 was obtained in the same manner as in Example 1 except that the mixture was changed to "0.02 parts by weight of glycidyl ether".

<実施例6>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B1)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径367μm、SPAN0.8である本発明の吸水性樹脂(P−6)を得た。
<Example 6>
Similar to Example 1, the weight average particle diameter is 367 μm, SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B1)”. The water-absorbent resin (P-6) of the present invention (0.8) was obtained.

<実施例7>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B2)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径333μm、SPAN0.8である本発明の吸水性樹脂(P−7)を得た。
<Example 7>
Similar to Example 1, the weight average particle diameter is 333 μm, SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B2)”. A water-absorbent resin (P-7) of the present invention (0.8) was obtained.

<実施例8>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B3)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径359μm、SPAN0.7である本発明の吸水性樹脂(P−8)を得た。
<Example 8>
Similar to Example 1, the weight average particle diameter is 359 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B3)”. The water-absorbent resin (P-8) of the present invention, which is 0.7, was obtained.

<実施例9>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B4)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径331μm、SPAN0.7である本発明の吸水性樹脂(P−9)を得た。
<Example 9>
Similar to Example 1, the weight average particle diameter is 331 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B4)”. The water-absorbent resin (P-9) of the present invention, which is 0.7, was obtained.

<実施例10>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B5)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径372μm、SPAN0.7である本発明の吸水性樹脂(P−10)を得た。
<Example 10>
Similar to Example 1, the weight average particle diameter is 372 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B5)”. The water-absorbent resin (P-10) of the present invention, which is 0.7, was obtained.

<実施例11>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B6)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径362μm、SPAN0.8である本発明の吸水性樹脂(P−11)を得た。
<Example 11>
Similar to Example 1, the weight average particle diameter is 362 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B6)”. A water-absorbent resin (P-11) of the present invention (0.8) was obtained.

<実施例12>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B7)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径332μm、SPAN0.8である本発明の吸水性樹脂(P−12)を得た。
<Example 12>
Similar to Example 1, the weight average particle diameter is 332 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B7)”. A water-absorbent resin (P-12) of the present invention (0.8) was obtained.

<実施例13>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B8)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径335μm、SPAN0.8である本発明の吸水性樹脂(P−13)を得た。
<Example 13>
Similar to Example 1, the weight average particle diameter is 335 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B8)”. A water-absorbent resin (P-13) of the present invention (0.8) was obtained.

<実施例14>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B9)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径334μm、SPAN0.8である本発明の吸水性樹脂(P−14)を得た。
<Example 14>
Similar to Example 1, the weight average particle diameter is 334 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B9)”. A water-absorbent resin (P-14) of the present invention (0.8) was obtained.

<実施例15>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B10)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径330μm、SPAN0.8である本発明の吸水性樹脂(P−15)を得た。
<Example 15>
Similar to Example 1, the weight average particle diameter is 330 μm, SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B10)”. A water-absorbent resin (P-15) of the present invention (0.8) was obtained.

<実施例16>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−B11)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径332μm、SPAN0.8である本発明の吸水性樹脂(P−16)を得た。
<Example 16>
Similar to Example 1, the weight average particle diameter is 332 μm and SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-B11)”. A water-absorbent resin (P-16) of the present invention (0.8) was obtained.

<比較例1>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−6)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径365μm、SPAN1.2である比較用の吸水性樹脂(R−1)を得た。
<Comparative example 1>
Similar to Example 1, the weight average particle diameter is 365 μm, SPAN1 except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-6)”. A comparative water-absorbent resin (R-1) of .2 was obtained.

<比較例2>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−7)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径428μm、SPAN0.8である比較用の吸水性樹脂(R−2)を得た。
<Comparative example 2>
"100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-7)", and "0.04 parts by weight of ethylene glycol diglycidyl ether" was changed to "ethylene glycol di." A comparative water-absorbent resin (R-2) having a weight average particle diameter of 428 μm and a SPAN of 0.8 was obtained in the same manner as in Example 1 except that it was changed to "0.03 parts by weight of glycidyl ether".

<比較例3>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−8)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径180μm、SPAN1.0である比較用の吸水性樹脂(R−3)を得た。
<Comparative example 3>
Similar to Example 1, the weight average particle diameter is 180 μm, SPAN1 except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-8)”. A water-absorbent resin (R-3) for comparison, which was 0.0, was obtained.

<比較例4>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−9)100重量部」に変更し、表面架橋剤の混合溶液に「カルボキシ変性ポリシロキサン(信越化学工業株式会社製:X−22−3701E)0.01重量部」を追加したこと以外、実施例1と同様にして、重量平均粒子径346μm、SPAN0.8である比較用の吸水性樹脂(R−4)を得た。
<Comparative example 4>
"100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-9)", and "carboxy-modified polysiloxane (Shinetsu Chemical Industry Co., Ltd.) was added to the mixed solution of the surface crosslinking agent. A comparative water-absorbent resin (R-4) having a weight average particle diameter of 346 μm and a SPAN of 0.8, in the same manner as in Example 1, except that "Company: X-22-3701E) 0.01 parts by weight" was added. ) Was obtained.

<比較例5>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−10)100重量部」に変更し、「エチレングリコールジグリシジルエーテル0.04重量部」を「エチレングリコールジグリシジルエーテル0.03重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径305μm、SPAN0.9である比較用の吸水性樹脂(R−5)を得た。
<Comparative example 5>
"100 parts by weight of crosslinked polymer particles (A1-1)" was changed to "100 parts by weight of crosslinked polymer particles (A1-10)", and "0.04 parts by weight of ethylene glycol diglycidyl ether" was changed to "ethylene glycol di." A comparative water-absorbent resin (R-5) having a weight average particle diameter of 305 μm and a SPAN of 0.9 was obtained in the same manner as in Example 1 except that it was changed to "0.03 parts by weight of glycidyl ether".

<比較例6>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−11)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径458μm、SPAN0.7である比較用の吸水性樹脂(R−6)を得た。
<Comparative Example 6>
Similar to Example 1, the weight average particle diameter is 458 μm, SPAN0, except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-11)”. A comparative water-absorbent resin (R-6) of 0.7 was obtained.

<比較例7>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−12)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径382μm、SPAN1.2である比較用の吸水性樹脂(R−7)を得た。
<Comparative Example 7>
Similar to Example 1, the weight average particle diameter is 382 μm, SPAN1 except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-12)”. A comparative water-absorbent resin (R-7) of .2 was obtained.

<比較例8>
「架橋重合体粒子(A1−1)100重量部」を「架橋重合体粒子(A1−13)100重量部」に変更したこと以外、実施例1と同様にして、重量平均粒子径261μm、SPAN1.5である比較用の吸水性樹脂(R−8)を得た。
<Comparative Example 8>
Similar to Example 1, the weight average particle diameter is 261 μm, SPAN1 except that “100 parts by weight of the crosslinked polymer particles (A1-1)” is changed to “100 parts by weight of the crosslinked polymer particles (A1-13)”. A comparative water-absorbent resin (R-8) of .5 was obtained.

実施例1〜16および比較例1〜8で得た吸水性樹脂について、測定した物理的性質{重量平均粒子径、SPAN}および性能評価結果{DW法による吸収量、保水量、ロックアップ法による吸収速度}を表1に示す。なお、表1中、M1およびM2は、それぞれDW法による1分後の吸収量および5分後の吸収量を示し、%は架橋重合体(A1)の重量に基づく、含有量(重量%)を示す。 Regarding the water-absorbent resins obtained in Examples 1 to 16 and Comparative Examples 1 to 8, the measured physical properties {weight average particle size, SPAN} and performance evaluation results {absorption amount by DW method, water retention amount, by lockup method. The absorption rate} is shown in Table 1. In Table 1, M1 and M2 indicate the amount of absorption after 1 minute and the amount of absorption after 5 minutes by the DW method, respectively, and% is the content (% by weight) based on the weight of the crosslinked polymer (A1). Is shown.

Figure 2020017483
Figure 2020017483

表1から判るように、本発明の吸水樹脂粒子(実施例1〜16)は、SPANが小さく(粒度分布が狭い)、重量平均粒子径及び吸収速度パターンが適切である。具体的には、実施例2,5では疎水性物質を用いていないが、重量平均粒子径とSPANを適切に設定することで適切な吸収速度パターンとなっている。実施例1、3、4では重量平均粒子径の違いによる吸収速度パターンの変化を、疎水性物質の含有量を調整することにより、吸収速度パターンを特定範囲に制御できていることが分かる。また、実施例6〜11では他の好適な疎水性物質を用いた例を例示している。さらに、実施例12〜16では、疎水性物質(C)と浸透剤(D)を併用することにより、更にロックアップ法による吸収速度が改良できていることが分かる。一方、比較例1、7は実施例1と比べて、SPANが高いため粒度分布が広く、M2が低くロックアップ法による吸収速度が遅い傾向にある。比較例2はSPANが低いものの、重量平均粒子径が大きく、ロックアップ法による吸収速度が遅い。比較例4は疎水性の強い「カルボキシ変性ポリシロキサン(信越化学工業株式会社製:X−22−3701E)」を表面架橋に用いておりM2が低下し、ロックアップ法による吸収速度が遅くなっている。比較例5では疎水性物質を用いずに重量平均粒子径を下げており、M1が過剰に高くなっている。比較例6では重量平均粒子径が高く疎水性物質も用いており、M1が低く、ロックアップ法による吸収速度が低下している。比較例3、8では重量平均粒子径が小さく、かつSPANが高いためM1が過剰に高くなっている。 As can be seen from Table 1, the water-absorbent resin particles of the present invention (Examples 1 to 16) have a small SPAN (narrow particle size distribution), and the weight average particle size and absorption rate pattern are appropriate. Specifically, although hydrophobic substances are not used in Examples 2 and 5, an appropriate absorption rate pattern can be obtained by appropriately setting the weight average particle size and SPAN. In Examples 1, 3 and 4, it can be seen that the change in the absorption rate pattern due to the difference in the weight average particle size can be controlled within a specific range by adjusting the content of the hydrophobic substance. In addition, Examples 6 to 11 exemplify examples using other suitable hydrophobic substances. Further, in Examples 12 to 16, it can be seen that the absorption rate by the lockup method can be further improved by using the hydrophobic substance (C) and the penetrant (D) in combination. On the other hand, in Comparative Examples 1 and 7, since the SPAN is high, the particle size distribution is wide, the M2 is low, and the absorption rate by the lockup method tends to be slow. In Comparative Example 2, although the SPAN is low, the weight average particle size is large and the absorption rate by the lockup method is slow. In Comparative Example 4, "carboxy-modified polysiloxane (manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-3701E)" having strong hydrophobicity is used for surface cross-linking, M2 is lowered, and the absorption rate by the lockup method is slowed down. There is. In Comparative Example 5, the weight average particle size is lowered without using a hydrophobic substance, and M1 is excessively high. In Comparative Example 6, the weight average particle size is high and a hydrophobic substance is also used, M1 is low, and the absorption rate by the lockup method is lowered. In Comparative Examples 3 and 8, M1 is excessively high because the weight average particle size is small and the SPAN is high.

引き続き、SPANが低く、吸収速度パターンが適切であると、吸収性物品に適用したとき、どのような吸収特性を示すか評価した。実施例1〜16および比較例1〜8で得た吸水性樹脂粒子を用いて、以下のようにして、吸収性物品(紙おむつ)を調製し、表面不織布からの液引きによるドライ性およびSDME法による表面ドライネス値を評価し、この結果を表2に示した。 Subsequently, it was evaluated what kind of absorption characteristics were exhibited when applied to an absorbent article when the SPAN was low and the absorption rate pattern was appropriate. Using the water-absorbent resin particles obtained in Examples 1 to 16 and Comparative Examples 1 to 8, an absorbent article (paper diaper) was prepared as follows, and the dryness and SDME method by liquidation from the surface non-woven fabric were performed. The surface dryness value was evaluated by Table 2, and the results are shown in Table 2.

<吸収体の調製>
10cm×40cmの長方形に細断した不織布A(目付量40g/m、厚さ0.5mm、ポリプロピレン製)に、接着剤としてスチレン−ブタジエン−スチレン共重合体(SBS;軟化点85℃)をホットメルト塗布機(AD41、Nordson製)で目付量2.85g/mとなるように均一に塗布する。接着剤を塗布した面に、評価試料{吸水性樹脂粒子}10.6g(目付量265g/m)を均一に散布した後、10cm×40cmの長方形に細断した不織布B(目付量45g/m、厚さ7.0mm、ポリプロピレン製)を重ねた。その不織布A−吸水性樹脂−不織布Bとなったシートをアクリル板(厚み4mm)で挟み、5kg/cmの圧力で30秒間プレスした。プレス後、不織布A側のアクリル板を取り外し、上記と同様の方法で、接着剤と吸水性樹脂および不織布Bを積層し、再びアクリル板で挟み、5kg/cmの圧力で30秒間プレスし、吸収体を調製した。
<Preparation of absorber>
Styrene-butadiene-styrene copolymer (SBS; softening point 85 ° C.) was applied as an adhesive to non-woven fabric A (grain size 40 g / m 2, thickness 0.5 mm, made of polypropylene) shredded into a rectangle of 10 cm x 40 cm. Apply evenly with a hot melt coating machine (AD41, manufactured by Nordson) so that the grain size is 2.85 g / m 2 . After uniformly spraying 10.6 g (grain amount 265 g / m 2 ) of the evaluation sample {water-absorbent resin particles} on the surface coated with the adhesive, the non-woven fabric B (grain size 45 g / m 2) shredded into a rectangle of 10 cm × 40 cm. m 2 , thickness 7.0 mm, made of polypropylene) were stacked. The sheet of the non-woven fabric A-water-absorbent resin-nonwoven fabric B was sandwiched between acrylic plates (thickness 4 mm) and pressed at a pressure of 5 kg / cm 2 for 30 seconds. After pressing, the acrylic plate on the non-woven fabric A side is removed, the adhesive, the water-absorbent resin and the non-woven fabric B are laminated in the same manner as above, sandwiched between the acrylic plates again, and pressed at a pressure of 5 kg / cm 2 for 30 seconds. An absorber was prepared.

<吸収性物品の調製>
上記吸収体の片方の面に、ポリエチレンシート(タマポリ社製ポリエチレンフィルムUB−1)、反対側の面に不織布(坪量20g/m、旭化成社製エルタスガード)を配置することにより吸収性物品を調製した。
<Preparation of absorbent articles>
Absorbent article by arranging a polyethylene sheet (polyethylene film UB-1 manufactured by Tamapoli) on one side of the absorber and a non-woven fabric (basis weight 20 g / m 2 , Eltas guard manufactured by Asahi Kasei) on the other side. Was prepared.

<表面不織布からの液引きによるドライ性試験>
横11cm×縦41cm×高さ4cmで上部(11cm×41cmの面)が空いた箱(ステンレス製)の中に上記で作成した吸収体を入れた。32±2℃に調整した脱イオン水500mlを用意し、吸収体を入れた箱の中へ一気に流し込んだ。脱イオン水が吸収体と接触したと同時に時間の計測を開始した。表面不織布に保持された脱イオン水が吸水性樹脂に吸収され、表面不織布が白く見える範囲が不織布の半分になるまでの時間(白化時間)を記録した。
<Dryness test by dripping from surface non-woven fabric>
The absorber prepared above was placed in a box (stainless steel) measuring 11 cm in width × 41 cm in length × 4 cm in height and having an empty upper part (11 cm × 41 cm surface). 500 ml of deionized water adjusted to 32 ± 2 ° C. was prepared and poured into the box containing the absorber at once. Time measurement was started as soon as the deionized water came into contact with the absorber. The time (whitening time) until the deionized water held on the surface non-woven fabric was absorbed by the water-absorbent resin and the range in which the surface non-woven fabric appeared white became half that of the non-woven fabric was recorded.

<SDME法による表面ドライネス値>
SDME(Surface Dryness Measurement Equipment)試験器(WK system社製)の検出器を十分に湿らした紙おむつ{人工尿(塩化カリウム0.03重量%、硫酸マグネシウム0.08重量%、塩化ナトリウム0.8重量%及び脱イオン水99.09重量%)の中に紙おむつを浸し、60分放置して調製した。}の上に置き、0%ドライネス値を設定し、次に、SDME試験器の検出器を乾いた紙おむつ{紙おむつを80℃、2時間加熱乾燥して調製した。}の上に置き100%ドライネスを設定し、SDME試験器の校正を行った。次に、測定する紙おむつの中央に金属リング(内径70mm、長さ50mm)をセットし、人工尿80mlを注入し、人工尿を吸収し終えたら{人工尿による光沢が確認できなくなったら}、直ちに金属リングを取り去り、紙おむつの中央及びその左右{紙おむつ40cmの端から10cmの等間隔に3箇所}にSDME検出器を3つ載せて、表面ドライネス値の測定を開始し、測定開始から5分後の値を3つのSDME検出器のうち、中央の検出器のドライネス値を表面ドライネス値(1−1){中央}、残りの2つのSDME検出器のドライネス値を表面ドライネス値(1−2){左}、表面ドライネス値(1−3){右}とした。なお、人工尿、測定雰囲気及び放置雰囲気は、25±5℃、65±10%RHで行った。
<Surface dryness value by SDME method>
A disposable diaper in which the detector of the SDME (Surface Dryness Measurement Equipment) tester (manufactured by WK system) is sufficiently moistened {artificial urine (potassium chloride 0.03% by weight, magnesium sulfate 0.08% by weight, sodium chloride 0.8% by weight). % And 99.09% by weight of deionized water) soaked the disposable diaper and left it for 60 minutes to prepare. } To set a 0% dryness value, then the detector of the SDME tester was prepared by drying a dry disposable diaper {a disposable diaper at 80 ° C. for 2 hours. } Was placed on top of it to set 100% dryness, and the SDME tester was calibrated. Next, set a metal ring (inner diameter 70 mm, length 50 mm) in the center of the disposable diaper to be measured, inject 80 ml of artificial urine, and when the artificial urine has been absorbed {when the gloss due to the artificial urine cannot be confirmed}, immediately Remove the metal ring, place three SDME detectors on the center of the disposable diaper and on the left and right {three locations at equal intervals of 10 cm from the edge of the disposable diaper}, start measuring the surface dryness value, and 5 minutes after the start of measurement. Of the three SDME detectors, the dryness value of the central detector is the surface dryness value (1-1) {center}, and the dryness value of the remaining two SDME detectors is the surface dryness value (1-2). {Left}, surface dryness value (1-3) {right}. The artificial urine, the measurement atmosphere, and the neglected atmosphere were performed at 25 ± 5 ° C. and 65 ± 10% RH.

Figure 2020017483
Figure 2020017483

表2から判るように、本発明の吸水性樹脂粒子を使用した吸収体および吸収性物品は、比較用の吸水性樹脂粒子を使用した吸収体および吸収性物品に比べ、白化時間および表面ドライネス値(1−1)、(1−2)、(1−3)に偏りがなくドライ性に優れている。一方、比較例1、7、8はSPANが高いため、比較例2、6は重量平均粒子径が大きいため、比較例4では5分後吸収量(M2)が低いために白化時間、即ち不織布表面からの液引き性が劣っている。比較例3、5および8ではM1が過剰に高くなっているために液拡散性が劣りスポット吸収を起こすために表面ドライネス値の偏りが生じドライ性が悪くなっている。なお、比較例1、2、4および6〜8ではロックアップ法による吸収速度も遅いことからも白化時間が低下する傾向にあることが分かる。すなわち、本発明の吸水性樹脂粒子は、吸収体および吸収性物品に適用したとき、不織布からの液引き性および表面ドライ性に優れ、カブレ等の心配がないことが容易に予測される。 As can be seen from Table 2, the absorbent body and the absorbent article using the water-absorbent resin particles of the present invention have a whitening time and a surface dryness value as compared with the absorbent body and the absorbent article using the water-absorbent resin particles for comparison. (1-1), (1-2), and (1-3) are not biased and have excellent dryness. On the other hand, since Comparative Examples 1, 7 and 8 have a high SPAN, Comparative Examples 2 and 6 have a large weight average particle size, and Comparative Example 4 has a low absorption amount (M2) after 5 minutes, so that the whitening time, that is, the non-woven fabric Poor liquid drainage from the surface. In Comparative Examples 3, 5 and 8, since M1 is excessively high, the liquid diffusivity is poor and spot absorption occurs, so that the surface dryness value is biased and the dryness is deteriorated. In Comparative Examples 1, 2, 4 and 6 to 8, it can be seen that the whitening time tends to decrease because the absorption rate by the lockup method is also slow. That is, when the water-absorbent resin particles of the present invention are applied to an absorber and an absorbent article, it is easily predicted that the water-absorbent resin particles are excellent in liquidability from the non-woven fabric and surface dryness, and there is no concern about fogging or the like.

本発明の吸水性樹脂粒子は、吸水性樹脂粒子と繊維状物とを含有してなる吸収体に適用でき、この吸収体を備えてなる吸収性物品{紙おむつ、生理用ナプキンおよび医療用保血剤等}に有用である。また、ペット尿吸収剤、携帯トイレ用尿ゲル化剤、青果物用鮮度保持剤、肉類・魚介類用ドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物・土壌用保水剤、結露防止剤、止水剤、パッキング剤および人口雪等の種々の用途にも使用できる。 The water-absorbent resin particles of the present invention can be applied to an absorbent body containing the water-absorbent resin particles and a fibrous substance, and the absorbent article provided with the absorbent body {paper diaper, sanitary napkin and medical blood retention It is useful for agents, etc.}. In addition, pet urine absorbent, urine gelling agent for portable toilets, freshness preserving agent for fruits and vegetables, drip absorbent for meat and seafood, cold insulation agent, disposable body warmer, gelling agent for batteries, water retention agent for plants and soil, dew condensation. It can also be used for various purposes such as preventive agents, water blocking agents, packing agents and artificial snow.

1 ゴム栓
2 ビュレット部
3 生理食塩水
4 吸水性樹脂粒子
5 平織りナイロンメッシュ
6 測定台
7 コック
8 コック
9 空気導入管

1 Rubber stopper 2 Burette part 3 Saline 4 Water-absorbent resin particles 5 Plain woven nylon mesh 6 Measuring table 7 Cock 8 Cock 9 Air introduction tube

Claims (6)

水溶性ビニルモノマー(a1)及び/又は加水分解により水溶性ビニルモノマー(a1)となるビニルモノマー(a2)、並びに架橋剤(b)を必須構成単位とする架橋重合体(A1)を含んでなる吸水性樹脂粒子であって、吸水性樹脂粒子の重量平均粒子径(μm)が200〜400であり、下記の数式1で表されるスパン値(SPAN)が1.0以下であり、吸水性樹脂粒子のDW(Demand Wettability)法による1分後の吸収量(M1)が10〜15ml/gであり、5分後の吸収量(M2)が45〜55ml/gである吸水性樹脂粒子。
SPAN=[D(90%)−D(10%)]/D(50%)≦1.0 (数式1)
(数式1中、D(10%)は、標準ふるいを用いて分級した吸水性樹脂粒子の全体重量を100重量%として粒子径が最も小さい粒子からの累積重量分率が10重量%となる粒子径であり、D(50%)は、累積重量分率が50重量%となる粒子径であり、D(90%)は累積重量分率が90重量%となる粒子径である。)
It contains a water-soluble vinyl monomer (a1) and / or a vinyl monomer (a2) that becomes a water-soluble vinyl monomer (a1) by hydrolysis, and a cross-linked polymer (A1) containing a cross-linking agent (b) as an essential constituent unit. The water-absorbent resin particles have a weight average particle diameter (μm) of 200 to 400, a span value (SPAN) represented by the following formula 1 of 1.0 or less, and water absorption. Water-absorbent resin particles having an absorption amount (M1) of the resin particles after 1 minute by the DW (Polymer Wetability) method of 10 to 15 ml / g and an absorption amount (M2) of the resin particles after 5 minutes of 45 to 55 ml / g.
SPAN = [D (90%) -D (10%)] / D (50%) ≤ 1.0 (Formula 1)
(In Equation 1, D (10%) is a particle having a cumulative weight component of 10% by weight from the particle having the smallest particle size, where the total weight of the water-absorbent resin particles classified using a standard sieve is 100% by weight. In terms of diameter, D (50%) is a particle size having a cumulative weight component of 50% by weight, and D (90%) is a particle size having a cumulative weight component of 90% by weight.)
前記吸水性樹脂粒子が疎水性物質(C)を含有している請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1, wherein the water-absorbent resin particles contain a hydrophobic substance (C). 前記吸水性樹脂粒子のイオン交換水のロックアップ法による吸収速度が25秒以下である請求項1又は2に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1 or 2, wherein the absorption rate of the water-absorbent resin particles by the lock-up method of ion-exchanged water is 25 seconds or less. 前記吸水性樹脂粒子の生理食塩水の保水量が35〜40g/gである請求項1〜3のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 3, wherein the water-retaining amount of the physiological saline of the water-absorbent resin particles is 35 to 40 g / g. 請求項1〜4のいずれかに記載の吸水性樹脂粒子と不織布とを含有してなる吸収体。 An absorber comprising the water-absorbent resin particles according to any one of claims 1 to 4 and a non-woven fabric. 請求項5に記載の吸収体を備えてなる吸収性物品。

An absorbent article comprising the absorber according to claim 5.

JP2020531306A 2018-07-19 2019-07-16 Water absorbent resin particles, absorbent body and absorbent article containing the same Active JP7339253B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018135677 2018-07-19
JP2018135677 2018-07-19
PCT/JP2019/027845 WO2020017483A1 (en) 2018-07-19 2019-07-16 Water absorbing resin particles, and absorbent body and absorbent article containing same

Publications (2)

Publication Number Publication Date
JPWO2020017483A1 true JPWO2020017483A1 (en) 2021-08-12
JP7339253B2 JP7339253B2 (en) 2023-09-05

Family

ID=69163782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531306A Active JP7339253B2 (en) 2018-07-19 2019-07-16 Water absorbent resin particles, absorbent body and absorbent article containing the same

Country Status (3)

Country Link
JP (1) JP7339253B2 (en)
CN (1) CN112334517B (en)
WO (1) WO2020017483A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006089525A (en) * 2004-09-21 2006-04-06 Sumitomo Seika Chem Co Ltd Method for producing water-absorbing resin particle
JP2010116548A (en) * 2008-10-14 2010-05-27 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, absorbent containing the same and absorptive article
JP2012143755A (en) * 2004-03-29 2012-08-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water absorbing resin as main component
JP2014014666A (en) * 2012-06-11 2014-01-30 Kao Corp Absorber, and absorbent article using the same
JP2015515534A (en) * 2012-04-25 2015-05-28 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same
WO2015146603A1 (en) * 2014-03-26 2015-10-01 住友精化株式会社 Method for producing water-absorbing resin particle
WO2017170605A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Particulate water absorbing agent
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2018050835A (en) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 Absorbent article

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920183B2 (en) 2003-09-19 2012-04-18 株式会社日本触媒 Water absorbent
US20090036855A1 (en) 2004-08-06 2009-02-05 Katsuyuki Wada Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article
JP2010065107A (en) 2008-09-10 2010-03-25 San-Dia Polymer Ltd Absorbable resin particles and absorbable article
KR20180019558A (en) 2015-06-19 2018-02-26 가부시키가이샤 닛폰 쇼쿠바이 Poly (meth) acrylic acid (salt) -based particulate sorbent and method of manufacture
US20200023625A1 (en) 2017-02-22 2020-01-23 Nippon Shokubai Co., Ltd. Water absorbent sheet, elongated water absorbent sheet, and absorbent article

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143755A (en) * 2004-03-29 2012-08-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water absorbing resin as main component
JP2006089525A (en) * 2004-09-21 2006-04-06 Sumitomo Seika Chem Co Ltd Method for producing water-absorbing resin particle
JP2010116548A (en) * 2008-10-14 2010-05-27 San-Dia Polymer Ltd Absorptive resin particle, method for producing the same, absorbent containing the same and absorptive article
JP2015515534A (en) * 2012-04-25 2015-05-28 エルジー・ケム・リミテッド Superabsorbent resin and method for producing the same
JP2014014666A (en) * 2012-06-11 2014-01-30 Kao Corp Absorber, and absorbent article using the same
WO2015146603A1 (en) * 2014-03-26 2015-10-01 住友精化株式会社 Method for producing water-absorbing resin particle
WO2017170605A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Particulate water absorbing agent
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2018050835A (en) * 2016-09-27 2018-04-05 ユニ・チャーム株式会社 Absorbent article

Also Published As

Publication number Publication date
JP7339253B2 (en) 2023-09-05
WO2020017483A1 (en) 2020-01-23
CN112334517B (en) 2023-10-24
CN112334517A (en) 2021-02-05

Similar Documents

Publication Publication Date Title
JP6013729B2 (en) Water-absorbent resin powder and absorbent body and absorbent article using the same
KR102577371B1 (en) Process for producing aqueous-liquid-absorbing resin particles, aqueous-liquid-absorbing resin particles, absorbent, and absorbent article
JP6013730B2 (en) Absorbent articles
JP5833076B2 (en) Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
KR20110114535A (en) Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same
JP2018127508A (en) Absorptive resin particle and method for producing the same
US20180044487A1 (en) Method for producing aqueous-liquid absorbent resin particles, absorbent body, and absorbent article
JP2023099531A (en) Production method of water-absorbing resin particle
JP2020125472A (en) Water-absorbing resin particles and method for producing the same
JPWO2016114245A1 (en) Absorbent articles
JPWO2019111812A1 (en) Absorbent Resin Particles, Absorbents and Absorbent Articles, and Methods for Producing Absorbent Resin Particles
JP7339253B2 (en) Water absorbent resin particles, absorbent body and absorbent article containing the same
JP7448301B2 (en) Water absorbent resin particles, absorbent bodies and absorbent articles containing the same
JP7120739B2 (en) Absorbent resin composition particles and method for producing the same
JP7165753B2 (en) Water-absorbing resin particles and method for producing the same
JP7108422B2 (en) Water-absorbing resin particles, absorbent body and absorbent article using the same, and method for producing water-absorbing resin particles
JP6898842B2 (en) Absorbent resin particles, absorbers containing them and absorbent articles
JP6952649B2 (en) Absorbent article
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JP6979759B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using the same
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
JP2023029421A (en) Water-absorbing resin composition and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230824

R150 Certificate of patent or registration of utility model

Ref document number: 7339253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150