WO2020144948A1 - Water absorbent resin particles and production method therefor - Google Patents
Water absorbent resin particles and production method therefor Download PDFInfo
- Publication number
- WO2020144948A1 WO2020144948A1 PCT/JP2019/045767 JP2019045767W WO2020144948A1 WO 2020144948 A1 WO2020144948 A1 WO 2020144948A1 JP 2019045767 W JP2019045767 W JP 2019045767W WO 2020144948 A1 WO2020144948 A1 WO 2020144948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin particles
- water
- absorbent resin
- weight
- particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/53—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
Definitions
- the present invention relates to water absorbent resin particles and a method for producing the same.
- Sanitary materials such as paper diapers, sanitary napkins, incontinence pads, etc. are composed of hydrophilic fibers such as pulp and a water-absorbent resin (Super Absorber Polymer: hereinafter referred to as SAP) whose main raw material is acrylic acid (salt).
- SAP Super Absorber Polymer
- main raw material acrylic acid (salt).
- Absorbers are widely used. From the viewpoint of improving QOL (quality of life) in recent years, the demand for these sanitary materials is shifting to lighter and thinner, and along with this, there is a desire to reduce the amount of hydrophilic fibers used. It was Therefore, SAP is now required to play the role of hydrophilic fibers in the absorber.
- an important function of diapers is the reduction of leaks by rapid absorption of urine.
- the conventional absorbent body has a high absorption rate of urine due to the physical space existing between the bulky hydrophilic fibers, but in the absorbent body with a high SAP ratio in which the amount of hydrophilic fibers used is reduced, the SAP particles are filled with each other. Therefore, there is a problem in that the physical space is small and the absorption rate of urine is slow.
- the conventional absorbent body has a high urine diffusibility due to the hydrophilic fiber and can diffuse urine throughout the absorbent body, whereas the absorbent body having a high SAP ratio inhibits the diffusion of urine by the swollen gel. Therefore, the diffusivity of urine in the absorber is significantly reduced. This decrease in diffusivity, together with the decrease in absorption rate described above, causes a serious cause of so-called diaper leakage, that is, urine reversion.
- the object of the present invention is to maintain a stable absorption rate and liquid permeability from immediately after the production of the water-absorbent resin particles to the use of the absorbent article, and to exhibit excellent texture when used for the absorbent article.
- the present invention provides a water-absorbing structure in which resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface cross-linked by a surface cross-linking agent (d). Resin particles having an irregular crushed particle shape, an average sphericity (SPHT) of 0.800 to 0.900, and an average sphericity (SPHT) after an impact resistance test.
- the water absorbent resin particles have a change width of 0 to 0.015.
- the present invention also includes a polymerization step of polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential constituent units to obtain a hydrogel containing the crosslinked polymer (A).
- a method for producing water-absorbent resin particles which comprises a step of further pulverizing and/or classifying a powder to obtain resin particles containing (A), and a step of surface-crosslinking the surface of the resin particles with a surface-crosslinking agent (d).
- the gel blocking inhibitor (c) is added before the drying step, and in the drying step, drying is performed using a stirring dryer, and the dried powder of (A) obtained after drying is A method for producing water-absorbent resin particles, wherein the weight ratio of particles having a particle diameter of 2.8 mm or more to the total weight is 50% by weight or less.
- the water-absorbent resin particles of the present invention have a specific average sphericity, maintain the particle shape even after the impact resistance test, and exhibit stable absorption rate and liquid permeability. Further, the water-absorbent resin particles obtained by the production method of the present invention can suppress the generation of coarse particles in the dry powder, and can increase the average sphericity of the water-absorbent resin particles, which is preferable for the present invention. Water absorbent resin particles can be obtained. Therefore, the absorbent article to which the water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention are applied, has stable absorption performance immediately after the production of the water-absorbent resin particles until the use of the absorbent article. In addition to exhibiting excellent properties, the absorbent article does not have a crunchy feel and is excellent in texture when actually used.
- FIG. 3 is a perspective view schematically showing a pressurizing shaft and a weight for measuring a gel passage rate.
- resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface-crosslinked by the surface cross-linking agent (d). It has a different structure.
- the water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers such as at least one water-soluble substituent and an ethylenic vinyl group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 are used.
- Vinyl monomers having a saturated group for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers and nonionics disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883.
- Vinyl monomer and cationic vinyl monomer and selected from the group consisting of carboxy group, sulfo group, phosphono group, hydroxyl group, carbamoyl group, amino group and ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982.
- Vinyl monomers having at least one of
- the water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or mono-.
- a vinyl monomer having a di- or tri-alkylammonio group more preferably a vinyl monomer having a carboxy (salt) group or a carbamoyl group, further preferably (meth)acrylic acid (salt) and (meth)acrylamide, particularly preferably (meth)acrylic acid (salt), Most preferably, it is acrylic acid (salt).
- a “carboxy (salt) group” means a “carboxy group” or a “carboxylate group”
- a “sulfo (salt) group” means a “sulfo group” or a “sulfonate group”.
- (meth)acrylic acid (salt) means acrylic acid, acrylic acid salt, methacrylic acid or methacrylic acid salt
- (meth)acrylamide means acrylamide or methacrylamide.
- salts include alkali metal (lithium, sodium and potassium etc.) salts, alkaline earth metal (magnesium and calcium etc.) salts and ammonium (NH 4 ) salts.
- the alkali metal salts and ammonium salts are preferable, the alkali metal salts are more preferable, and the sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
- an acid group-containing monomer such as acrylic acid or methacrylic acid
- a part of the acid group-containing monomer can be neutralized with a base.
- alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
- alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate
- Neutralization may be carried out either before or during the polymerization of the acid group-containing monomer in the production process of the water absorbent resin, or the acid group-containing polymer may be treated in the state of a hydrogel containing the cross-linked polymer (A) described later. It can also be neutralized.
- the degree of neutralization of the acid group is preferably 50 to 80 mol %.
- the degree of neutralization is less than 50 mol %, the resulting hydrogel polymer may have high tackiness, which may deteriorate workability during production and use. Further, the water retention amount of the resulting water absorbent resin particles may decrease.
- the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there is a concern about the safety of the skin of human body.
- the constitutional unit of the crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1), another vinyl monomer (a2) copolymerizable with them can be used as the constitutional unit.
- the other vinyl monomer (a2) one type may be used alone, or two or more types may be used in combination.
- the other copolymerizable vinyl monomer (a2) is not particularly limited and is known (for example, the hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, JP-A-2003-165883).
- the vinyl monomers disclosed in paragraph 0025 and paragraph 0058 of Japanese Unexamined Patent Publication No. 2005-75982) can be used, and specifically, for example, vinyl monomers (i) to (iii) below can be used. Can be used.
- (I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and vinylnaphthalene, and halogen-substituted styrene such as dichlorostyrene.
- Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and vinylnaphthalene
- halogen-substituted styrene such as dichlorostyrene.
- the content (mol %) of the other vinyl monomer (a2) unit is preferably 0 to 5 and more preferably 0 to 5 based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. 3, particularly preferably 0 to 2, and particularly preferably 0 to 1.5. From the viewpoint of absorption performance and the like, the content of the other vinyl monomer (a2) unit is most preferably 0 mol %.
- the cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 36485553, which reacts with a water-soluble substituent group).
- Cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0028 to 0031, a cross-linking agent having an ethylenically unsaturated group and a reactive functional group, and a cross-linking agent having two or more reactive substituents The cross-linking vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982 and the cross-linking agent of the cross-linkable vinyl monomer disclosed in paragraphs 0015 to 0016 of JP-A-2005-95759 can be used. ..
- a crosslinking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption performance, and more preferable is a poly(meth)allyl ether of a polyhydric alcohol having 2 to 40 carbon atoms and a carbon number.
- the crosslinking agent (b) one type may be used alone, or two or more types may be used in combination.
- the content (mol %) of the crosslinking agent (b) unit is based on the total number of moles of the water-soluble vinyl monomer (a1) unit and (a1) to (a2) when another vinyl monomer (a2) unit is used. It is preferably 0.001 to 5, more preferably 0.005 to 3, and particularly preferably 0.01 to 1. When it is in the range of 0.001 to 5, the absorption performance is further improved.
- the method for producing water-absorbent resin particles of the present invention comprises a cross-linked polymer (A) obtained by polymerizing a monomer composition containing the above water-soluble vinyl monomer (a1) and a cross-linking agent (b) as essential constituent units.
- a step of polymerizing to obtain a hydrogel a step of kneading and chopping the hydrogel to obtain hydrogel particles containing (A), and a step of drying the hydrogel particles to obtain a dry powder containing (A).
- Examples of the polymerization step include known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization, etc.; JP-A-55-133413, etc.), known suspension polymerization method, reverse phase suspension polymerization (JP-B-54- 30710, JP 56-26909 A, JP 1-5808 A, etc.) to obtain a hydrogel containing a crosslinked polymer (A) (a hydrogel in which the crosslinked polymer contains water).
- the crosslinked polymer (A) may be a single type or a mixture of two or more types.
- the solution polymerization method is preferable, and since it is advantageous in terms of production cost that it is not necessary to use an organic solvent or the like, particularly preferable is the aqueous solution polymerization method, which has a large water retention amount and is water-soluble.
- the aqueous solution adiabatic polymerization method is most preferable because a water-absorbent resin having a small amount of components can be obtained and temperature control during polymerization is unnecessary.
- a mixed solvent containing water and an organic solvent can be used, and as the organic solvent, methanol, ethanol, acetone, methyl ethyl ketone, N,N-dimethylformamide, dimethylsulfoxide and two or more kinds of them can be used.
- the amount of organic solvent used (% by weight) is preferably 40 or less, more preferably 30 or less, based on the weight of water.
- the polymerization concentration that is, the charging concentration of the water-soluble vinyl monomer (a1) in the polymerization liquid and the other vinyl monomer (a2) used as necessary is not particularly limited, but the weight of the polymerization liquid, that is, the water-soluble vinyl monomer 10 to 55% is preferable based on the total weight of (a1) and other vinyl monomer (a2) optionally used, solvent, internal cross-linking agent (b) and polymerization catalyst and polymerization control agent described later, and 20 to 45%. % Is more preferable.
- the productivity may be lowered, and when the polymerization concentration is higher than 55%, the water retention capacity of the resulting water-absorbent resin particles is lowered due to side reactions such as self-crosslinking. There is.
- a conventionally known radical polymerization catalyst can be used, and examples thereof include azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis(2-amidinopropane) hydrochloride.
- inorganic peroxides hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate, etc.
- organic peroxides benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide] Oxide and di(2-ethoxyethyl)peroxydicarbonate, etc.
- redox catalysts reducing agents such as alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite and ascorbic acid, and alkali metal persulfates, (Combined with an oxidizing agent such as ammonium persulfate, hydrogen peroxide and organic peroxide).
- the amount (% by weight) of the radical polymerization catalyst used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
- a polymerization control agent such as a chain transfer agent may be used in combination, if necessary, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, alkyl halides and thiocarbonyl compounds. Etc. These polymerization control agents may be used alone or in combination of two or more thereof.
- the amount (% by weight) of the polymerization control agent is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
- the polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary.
- the polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane, and normal heptane.
- the polymerization initiation temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100°C, more preferably 2 to 80°C.
- the gel crushing step is a step of kneading and cutting the hydrogel containing the crosslinked polymer (A) obtained in the above-mentioned polymerization step to obtain hydrogel particles.
- the size (longest diameter) of the hydrogel particles after the gel crushing step is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 500 ⁇ m to 1 cm. When it is in the range of 50 ⁇ m to 10 cm, the drying property in the drying step is further improved.
- the gel pulverization can be performed by a known method, and kneading and shredding can be performed using a pulverizing device (eg, kneader, universal mixer, uniaxial or biaxial kneading extruder, mincing machine, meat chopper, etc.).
- a pulverizing device eg, kneader, universal mixer, uniaxial or biaxial kneading extruder, mincing machine, meat chopper, etc.
- a crushing device having a kneading and extruding mechanism for example, a uniaxial or biaxial kneading extruder, a mincing machine, etc. is preferable.
- the gel temperature in the gel crushing step is preferably 70 to 120°C, more preferably 80 to 110°C.
- the gel temperature is lower than the range of 70 to 120° C., not only the cooling step is required after the polymerization step but unnecessary energy is required, but also the adhesiveness of the hydrous gel particles increases and the pulverization of the hydrous gel particles becomes insufficient. If the gel temperature is higher than this range, bumping of water may occur and stable pulverization may not be possible.
- the hydrogel of the acid group-containing polymer obtained after the polymerization can be neutralized by mixing a base before or during the gel crushing step.
- the preferred range of the base and the degree of neutralization used when neutralizing the acid group-containing polymer is the same as when the acid group-containing monomer is used.
- the gel blocking inhibitor (c) is added before the drying step described later.
- the gel blocking inhibitor (c) is an additive that suppresses blocking due to aggregation of the hydrogel particles obtained in the gel crushing step described above.
- generation of coarse particles (particles having a particle size of 2.8 mm or more) in the dry powder obtained after drying is suppressed, and water absorbency is achieved.
- the average sphericity of the resin particles can be increased, and the change width of the average sphericity after the impact resistance test can be reduced.
- the gel blocking inhibitor (c) includes a hydrophobic substance (c1) containing a hydrocarbon group and a hydrophobic substance (c2) which is a polysiloxane.
- hydrophobic substance (c1) containing a hydrocarbon group examples include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long chain fatty acid esters, long chain fatty acids and salts thereof, long chain aliphatic alcohols, Quaternary ammonium salt type surfactants, mixtures of two or more of these, and the like are included.
- a weight of an olefin having 2 to 4 carbon atoms (ethylene, propylene, isobutylene, isoprene, etc.) as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin).
- examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 (eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene), isoprene, etc.).
- polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin (for example, polyethylene heat Degradation products, polypropylene thermal degradation products, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated And polybutadiene, ethylene-vinyl acetate copolymer, and ethylene-vinyl acetate copolymer maleated product ⁇ .
- a polyolefin resin for example, polyethylene heat Degradation products, polypropylene thermal degradation products, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copo
- polystyrene resin a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
- polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene-containing styrene) as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) is used.
- styrene-containing styrene a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene-containing styrene) as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) is used.
- maleic anhydride copolymers, styrene-butadiene copolymers and styrene-isobutylene copolymers styrene-isobutylene copolymers.
- waxes having a melting point of 50 to 200° C. for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.
- the long-chain fatty acid ester is an ester of a fatty acid having 8 to 25 carbon atoms and an alcohol having 1 to 12 carbon atoms (for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid).
- long-chain fatty acids and salts thereof include fatty acids having 8 to 25 carbon atoms (eg, lauric acid, palmitic acid, stearic acid, oleic acid, behenic acid, etc.).
- the salt include salts with calcium, magnesium or aluminum (hereinafter abbreviated as Ca, Mg and Al) ⁇ for example, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc. ⁇ .
- long-chain aliphatic alcohols include aliphatic alcohols having 8 to 25 carbon atoms (for example, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.).
- quaternary ammonium salt type surfactant a quaternary ammonium salt containing 1 to 2 aliphatic chains having 8 to 25 carbon atoms ⁇ eg, didecyldimethylammonium chloride, benzyldimethyldecylammonium chloride, benzyldimethyl And tetradecyl ammonium chloride, dimethyl distearyl ammonium chloride ⁇ , and didecyl dimethyl ammonium chloride and dimethyl distearyl ammonium chloride are preferred.
- Examples of the mixture of two or more of these include a mixture of a long-chain fatty acid ester and a long-chain aliphatic alcohol ⁇ for example, a mixture of sucrose stearate diester and stearyl alcohol ⁇ .
- hydrophobic substance (c2) which is a polysiloxane, polydimethylsiloxane, polyether-modified polysiloxane ⁇ polyoxyethylene-modified polysiloxane and poly(oxyethylene/oxypropylene)-modified polysiloxane, etc. ⁇ , carboxy-modified polysiloxane, epoxy Modified polysiloxanes, amino modified polysiloxanes, alkoxy modified polysiloxanes and the like and mixtures thereof are included.
- the position of the organic group (modified group) of the modified silicone ⁇ polyether modified polysiloxane, carboxy modified polysiloxane, epoxy modified polysiloxane, amino modified polysiloxane, etc. ⁇ is not particularly limited, but the side chain of polysiloxane, polysiloxane , Both ends of the polysiloxane, one end of the polysiloxane, and both the side chain and both ends of the polysiloxane. Of these, from the viewpoint of reducing coarse particles and the like, the side chain of polysiloxane and both side chains and both ends of polysiloxane are preferable, and both side chains and both ends of polysiloxane are more preferable.
- the organic group (modifying group) of the polyether modified polysiloxane includes a group containing a polyoxyethylene group or a poly(oxyethylene/oxypropylene) group.
- the content (number) of oxyethylene groups and/or oxypropylene groups contained in the polyether modified polysiloxane is preferably 2 to 40, more preferably 5 to 30, and particularly preferably, per 1 molecule of the polyether modified polysiloxane. It is 7 to 20, most preferably 10 to 15. When it is in the range of 2 to 40, the absorption property is further improved.
- the content (% by weight) of the oxyethylene group is preferably 1 to 30, more preferably 3 to 25, particularly preferably 5 based on the weight of the polysiloxane. Is up to 20. When it is in the range of 1 to 30, coarse particles can be further reduced.
- the polyether-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products ⁇ modified position, type of oxyalkylene ⁇ can be preferably exemplified. ⁇ Shin-Etsu Chemical Co., Ltd.
- FZ-2110 both ends, oxyethylene and oxypropylene ⁇
- FZ-2122 both ends, oxyethylene and oxypropylene ⁇
- FZ-7006 both ends, oxyethylene and oxypropylene ⁇
- FZ-2166 both ends, oxyethylene and oxypropylene ⁇
- FZ-2164 both ends, oxyethylene and oxypropylene ⁇
- FZ-2154 both ends, oxyethylene and oxypropylene ⁇
- FZ-2203 both ends, oxy Ethylene and oxypropylene ⁇ and FZ-2207 ⁇ both ends, oxyethylene and oxypropylene ⁇
- the organic group (modifying group) of the carboxy-modified polysiloxane includes a group containing a carboxy group
- the organic group (modifying group) of the epoxy-modified polysiloxane includes a group containing an epoxy group, etc.
- Examples of the organic group (modifying group) of polysiloxane include a group containing an amino group (a primary, secondary, or tertiary amino group).
- the content (g/mol) of the organic group (modifying group) of these modified silicones is preferably 200 to 11000, more preferably 600 to 8000, and particularly preferably 1000 to 4000 in terms of carboxy equivalent, epoxy equivalent or amino equivalent. Is. In the range of 200 to 11000, coarse particles can be further reduced.
- the carboxy equivalent is measured according to JIS C2101:1999 “16. Total acid number test”.
- the epoxy equivalent is calculated according to JIS K7236:2001.
- the amino equivalent is measured according to JIS K2501:2003 “8. Potentiometric titration method (base number/hydrochloric acid method)”.
- the carboxy-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products ⁇ modified position, carboxy equivalent (g/mol) ⁇ can be preferably exemplified.
- Epoxy-modified polysiloxane can be easily obtained from the market, and the following commercial products ⁇ modified position, epoxy equivalent ⁇ can be preferably exemplified.
- ⁇ Shin-Etsu Chemical Co., Ltd. X-22-343 ⁇ side chain, 525 ⁇ , KF-101 ⁇ side chain, 350 ⁇ , KF-1001 ⁇ side chain, 3500 ⁇ , X-22-2000 ⁇ side chain, 620 ⁇ , X-22-2046 ⁇ side chain, 600 ⁇ , KF-102 ⁇ side chain, 3600 ⁇ , X-22-4741 ⁇ side chain, 2500 ⁇ , KF-1002 ⁇ side chain, 4300 ⁇ , X-22-3000T ⁇ Side chain, 250 ⁇ , X-22-163 ⁇ both ends, 200 ⁇ , KF-105 ⁇ both ends, 490 ⁇ , X-22-163A ⁇ both ends, 1000 ⁇ , X-22-163B ⁇ both ends, 1750 ⁇ , X-22-163C ⁇ both ends, 2700 ⁇ ,
- Amino-modified silicone can be easily obtained from the market and, for example, the following commercial products ⁇ modified position, amino equivalent ⁇ can be preferably exemplified.
- the mixture examples include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane, and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
- the viscosity (mPa ⁇ s, 25° C.) of the hydrophobic substance (c2), which is a polysiloxane, is preferably 10 to 5000, more preferably 15 to 3000, and particularly preferably 20 to 1500. When it is in the range of 10 to 5000, the absorption property is further improved.
- the viscosity is JIS Z8803-1991 “Liquid viscosity”. Measured according to the viscosity measurement method using a cone and a cone-plate type rotational viscometer ⁇ for example, an E-type viscometer whose temperature is adjusted to 25.0 ⁇ 0.5° C. (RE80L manufactured by Toki Sangyo Co., Ltd., radius 7 mm , Cone cone with an angle of 5.24 ⁇ 10 ⁇ 2 rad). ⁇ .
- a long-chain fatty acid ester a long-chain fatty acid salt, a long-chain fatty acid alcohol, and a hydrophobic substance such as polysiloxane are preferable, and sucrose is more preferable.
- sucrose is more preferable.
- the step of adding the gel blocking inhibitor (c) is not particularly limited as long as it is before the drying step described later, but from the viewpoint of reducing coarse particles by the gel blocking inhibitor (c), it is preferably a polymerization step or gel pulverization.
- a method of adding the gel blocking inhibitor (c) before or during the gel crushing is preferable.
- the addition amount (% by weight) of the gel blocking inhibitor (c) is preferably 0.05 to 5.0, more preferably 0.08 to 1.0, particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A). It is preferably 0.1 to 0.5. If it is less than 0.05, the effect of reducing coarse particles becomes insufficient and the average sphericity tends to be low, and if it is higher than 5.0, not only the effect of reducing coarse particles does not correspond to the addition amount but it is uneconomical. Absorption characteristics may deteriorate.
- the drying step is a step of drying the hydrogel particles obtained by the gel crushing step to obtain a dry powder containing the crosslinked polymer (A).
- the solid content concentration of the gel before the drying step is preferably 10 to 55%, more preferably 25 to 45%. If the solid content concentration is lower than the range of 10 to 55%, the productivity will be poor, and if it is higher than this range, the energy required for the pulverization will be too high and the pulverization device may be damaged.
- drying is performed using a stirring dryer in the drying process.
- a stirring dryer to prevent aggregation of hydrogel particles during drying, to suppress the amount of coarse particles in the dry powder obtained after drying, high average sphericity in the pulverization step described later, and The change width of the average sphericity after the impact resistance test can be reduced.
- the agitating dryer is not limited as long as the hydrogel particles to be dried are agitated, and may have a form having an agitating means such as an agitating blade, a rotating container, and an air flow.
- Specific stirring dryers include, for example, groove-type stirring dryers, rotary dryers, disk dryers, Nauta-type dryers, fluidized-bed dryers, and airflow dryers. Among these, from the viewpoint of preventing aggregation of gel particles and convenience of operation, a stirring dryer having a stirring blade and a stirring means for a rotating container is preferable.
- the heating means of the dryer is not limited as long as it can add the amount of heat required for drying, and examples thereof include heating means by convective heat transfer, conductive heat transfer, microwaves, infrared rays, and the like.
- the drying temperature in the above-mentioned agitating dryer is preferably 100 to 230°C, more preferably 120 to 200°C from the viewpoint of drying efficiency and thermal deterioration of the crosslinked polymer.
- the hot air temperature can be increased from the viewpoint of improving the drying rate, though it depends on the water content of the gel particles to be dried, and is preferably 100 to 400° C., more preferably Is 200 to 400°C.
- the water content (% by weight) of the dry powder of the crosslinked polymer (A) is preferably 0 to 20 and more preferably 1 to 15 based on the weight of the crosslinked polymer (A). , Particularly preferably 2 to 13, and most preferably 3 to 12. When it is in the range of 0 to 20, the absorption performance is further improved.
- the content (% by weight) of the organic solvent in the dry powder of the crosslinked polymer (A) is preferably 0 to 10 based on the weight of the crosslinked polymer (A), and more preferably Is 0 to 5, particularly preferably 0 to 3, and most preferably 0-1.
- the absorbent performance of the water absorbent resin particles is further improved.
- the content and water content of the organic solvent are measured by an infrared moisture meter [eg, JE400 manufactured by KETT Co., Ltd.: 120 ⁇ 5° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V]. , 40 W] and the weight loss of the measurement sample when heated.
- an infrared moisture meter eg, JE400 manufactured by KETT Co., Ltd.: 120 ⁇ 5° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V. , 40 W] and the weight loss of the measurement sample when heated.
- residual solvent and residual crosslinking component may be included as long as the performance is not impaired.
- the weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dried powder of the crosslinked polymer (A) obtained after drying is 50% by weight or less, preferably 45% by weight or less, and more preferably It is 40% by weight or less, particularly preferably 35% or less, most preferably 30% by weight or less.
- the weight ratio of the particles having a particle diameter of 2.8 mm or more is higher than 50% by weight, the average sphericity of the water-absorbent resin particles is low and the variation range of the average sphericity after the impact resistance test is large. There is a risk of becoming.
- the lower limit is preferably as low as possible and is not particularly limited, but from the viewpoint of productivity of the water absorbent resin particles, it is preferably 0% by weight or more, and more preferably 10% by weight or more.
- the weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder is determined by using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006). It is measured by the method described in Ars Handbook 6th edition (MacGraw-Hill Book Company, 1984, p. 21). That is, the JIS standard sieve is assembled in the order of 4.0 mm, 2.8 mm, 1.4 mm and the pan from the top. About 50 g of the measurement particles are put into the uppermost sieve, and shaken for 5 minutes with a low tap test sieve shaker.
- the weight of the measured particles on each sieve and the pan is weighed, and the total weight is set to 100% by weight to obtain the weight fraction of the particles on each sieve.
- the total weight fraction of particles of 4.0 mm or more and 2.8 mm or more is defined as the weight ratio of particles having a particle diameter of 2.8 mm or more.
- the particle size and particle size distribution of the resin particles containing the crosslinked polymer (A) are adjusted by crushing and/or classification.
- the method of crushing is not particularly limited, and a known crushing device (for example, a hammer crusher, an impact crusher, a roll crusher, a shett airflow crusher, etc.) can be used. Among these, a roll type crusher is preferable from the viewpoint of controlling the particle size distribution.
- the sieved product may be pulverized again after the classification.
- the pulverizers may be the same or different, or different types of pulverizers may be used.
- a plurality of sieves with specific openings may be used or a single sieve may be used for classification.
- the classifying device is not particularly limited, but a known method such as a vibrating screen, an in-plane moving screen, a movable mesh screen, a forced stirring screen, and a sonic screen is used, and a vibrating screen and an in-plane moving screen are preferably used.
- a vibrating screen and an in-plane moving screen are preferably used.
- some or all of the particles remaining on the sieve with a specific opening (sieving product) and particles that have passed through the sieve with a specific opening (subsidiary product) are removed. It is preferable.
- the weight average particle diameter ( ⁇ m) of the resin particles containing the crosslinked polymer (A) obtained by pulverization and/or classification is preferably 200 to 450, more preferably 200 to 400, and particularly preferably 200 to 370. is there.
- it is larger than the range of 200 to 450, the average sphericity of the water-absorbent resin particles tends to be low, and the variation range of the average sphericity after the impact resistance test tends to be large.
- the amount is smaller than this range, the fluidity of the particles is deteriorated, and the addition amount tends to be varied during the production of diapers.
- the weight average particle size is determined by using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006), Perry's Chemical Engineers Handbook 6th edition (MacGlow Hill Book Company, 1984). , Page 21). That is, the JIS standard sieve is combined from the top in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and a saucer. About 50 g of the measurement particles are put into the uppermost sieve, and shaken for 5 minutes with a low tap test sieve shaker.
- the weight of the measured particles on each sieve and the pan is weighed, and the total is taken as 100% by weight to obtain the weight fraction of the particles on each sieve.
- This value is used as a logarithmic probability paper [the horizontal axis is the sieve opening (particle size ), and the vertical axis is the weight fraction], and then a line connecting the points is drawn to obtain the particle diameter corresponding to a weight fraction of 50% by weight, which is taken as the weight average particle diameter.
- the water-absorbent resin particles of the present invention have a structure in which the resin particles containing the crosslinked polymer (A) are surface-crosslinked with the surface crosslinking agent (d).
- the surface crosslinking agent d
- the surface cross-linking agent (d) in the step of subjecting the resin particles containing the cross-linked polymer (A) to the surface cross-linking treatment with the surface cross-linking agent there are known ⁇ JP-A-59-189103, JP-A-58-180233, JP-A-61-16903, JP-A-61-2111305, JP-A-61-252212, JP-A-51-136588 and JP-A-61-257235.
- the surface cross-linking agent ⁇ polyhydric glycidyl, polyhydric alcohol, polyhydric amine, polyhydric aziridine, polyhydric isocyanate, silane coupling agent, polyhydric metal, etc. ⁇ can be used.
- polyhydric glycidyl, polyhydric alcohols and polyhydric amines are preferred, more preferably polyhydric glycidyls and polyhydric alcohols, particularly preferably polyhydric glycidyl, most preferred.
- Preferred is ethylene glycol diglycidyl ether.
- the amount (% by weight) of the surface cross-linking agent is not particularly limited as it can be variously changed depending on the type of the surface cross-linking agent, the conditions for cross-linking, the target performance, etc.
- the amount is preferably 0.001 to 3, more preferably 0.005 to 2, and particularly preferably 0.01 to 1, based on the weight of the resin particles containing the aggregate (A).
- the step of surface cross-linking with a surface cross-linking agent it may be further sieved to adjust the particle size.
- the water-absorbent resin particles of the present invention may optionally contain inorganic fine particles and/or polyvalent metal salt. Therefore, the production method of the present invention may include a step of surface-treating the resin particles containing the crosslinked polymer (A) with the inorganic fine particles and/or the polyvalent metal salt. By containing the inorganic fine particles and/or the polyvalent metal salt, the liquid permeability and blocking resistance of the water absorbent resin particles are improved.
- Examples of the inorganic fine particles include silica, alumina, zirconia, titania, zinc oxide, talc and the like.
- Examples of the polyvalent metal salt include salts of at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum and titanium with the above-mentioned inorganic acid or organic acid.
- silica, alumina, aluminum sulfate, sodium aluminum sulfate, and aluminum lactate are preferable. These may be used alone or in combination of two or more.
- the amount (% by weight) of the inorganic fine particles or the polyvalent metal salt used is based on the weight of the resin particles containing the crosslinked polymer (A), from the viewpoint of absorption performance (particularly, liquid permeability and blocking resistance). It is preferably 0.01 to 2.0, more preferably 0.05 to 1.0.
- the step of mixing with the inorganic fine particles and/or the polyvalent metal salt is performed before the step of surface cross-linking with the surface cross-linking agent, after the step, and the step It can be performed at any one of the same time.
- the particle size may be further adjusted after the step of performing the surface treatment with the inorganic fine particles and/or the polyvalent metal salt.
- the content (% by weight) of the additive is preferably 0.001 to 10 and more preferably 0.01 based on the weight of the resin particles containing the crosslinked polymer (A). -5, particularly preferably 0.05-1 and most preferably 0.1-0.5.
- the particle shape of the water-absorbent resin particles of the present invention is an irregular crushed shape. Due to the irregular crushed particle shape, not only water-absorbent resin particles with a high water absorption rate (especially short water absorption time by the Vortex method) can be obtained, but it also has good entanglement with fibrous materials such as paper diapers. It is preferable from the standpoint that there is no fear of falling off from the fibrous material. Further, the particle shape may be an aggregate (or granule) thereof or a porous structure thereof, as long as it has an irregular crushed shape. Therefore, it is preferably not a perfect spherical shape as produced by, for example, the reverse phase suspension polymerization method. The preferable average sphericity of the water-absorbent resin particles will be described later.
- the apparent density (g/ml) of the water absorbent resin particles is preferably 0.54 to 0.70, more preferably 0.56 to 0.68, and particularly preferably 0.58 to 0.66. When it is in the range of 0.54 to 0.70, the absorption performance is further improved.
- the apparent density is measured at 25°C according to JIS K7365:1999.
- the average sphericity (SPHT) of the water absorbent resin particles is 0.800 to 0.900, preferably 0.800 to 0.870, more preferably 0.800 to 0.850, most preferably 0.800. It is about 0.840. If it is less than 0.800, not only the variation range of the average sphericity (SPHT) after the impact resistance test described below becomes large, but also the feeling of jaggedness or lumpiness due to the contact between SAP particles increases, and Feels worse. On the other hand, when it is larger than 0.900, the absorbent body comes off from the fibrous material.
- the average sphericity of the water-absorbent resin particles can be controlled by reducing the coarse particles of the dry powder obtained after drying, as described above.
- the average sphericity can be measured by a method of deriving the average sphericity of the measurement sample by image analysis, for example, using a Camsizer (registered trademark) image analysis system (manufactured by Retsch Technology GmbH). That is, 30.0 g of the measurement sample is allowed to fall in small amounts, and the falling measurement sample is continuously photographed with a CCD camera.
- the average sphericity of the measurement sample is derived by analyzing the captured image.
- the change range of the average sphericity (SPHT) after the impact resistance test is 0 to 0.015, preferably 0 to 0.0130, and more preferably 0 to 0.010. If it is out of the range of 0 to 0.015, the physical properties of the water-absorbent resin particles after the impact resistance test are deteriorated, and the liquid permeability and the absorption rate are easily changed.
- the change width of the average sphericity of the water absorbent resin particles after the impact resistance test can be controlled by reducing the coarse particles of the dry powder obtained after drying, as described above.
- the average sphericity (SPHT) after the impact test of the present invention was measured as follows. 30 g of water-absorbent resin particles was placed in a 3 L round separable flask (manufactured by ASONE), and a nylon net (JIS Z8801-1:2000) with an opening of 63 mm and a 6 mm hole in the center was placed in the upper part of the separable flask. ) Is placed, and a 4-port separable cover (main tube TS29/42 made by ASONE, side tubes TS24/40, 24/40, 15/35) is set on it.
- a stainless steel pipe (outer diameter 6 mm, inner diameter 4 mm) was set in a TS29/42 main pipe having a 4-neck separable cover so that the nylon net penetrated through the nylon net and the tip was at a position 45 mm from the bottom surface of the separable flask.
- the other side of the stainless steel pipe is equipped with a urethane tube (length 1500 mm, inner diameter 8.5 mm) and connected to an air line capable of achieving a pressure of 0.3 MPa or more.
- the air line is opened at a pressure of 0.2 MPa, and after air blowing for 3 minutes, the water absorbent resin particles are taken out.
- the average sphericity (SPHT) after the impact resistance test is measured using the Camsizer (registered trademark) image analysis system (manufactured by Retsch Technology GmbH) as described above.
- the weight average particle diameter ( ⁇ m) of the water absorbent resin particles of the present invention is preferably 200 to 450, more preferably 200 to 400, and particularly preferably 200 to 370. If it is larger than the range of 200 to 450, the average sphericity of the water-absorbent resin particles tends to be low, and the variation range of the average sphericity after the impact resistance test may be large. On the other hand, when the amount is smaller than this range, the fluidity of the particles is deteriorated, and the addition amount tends to be varied during the production of diapers.
- the weight ratio of particles having a particle diameter of 500 ⁇ m or more is preferably 5% by weight or less, more preferably 3% by weight or less, based on all the water-absorbent resin particles.
- the content is more than 5% by weight, the average sphericity of the water-absorbent resin particles tends to be low, and the change width of the average sphericity after the impact resistance test becomes large, or the jaggies or lumps due to the contact between the SAP particles are lumpy or lumpy.
- the touching feeling may increase, and the texture of the absorber may deteriorate.
- the weight ratio of particles having a particle diameter of less than 150 ⁇ m is preferably 3% by weight or less, more preferably 1% by weight or less, based on all the water-absorbent resin particles. If it is more than 3% by weight, the gel flow rate may decrease.
- the water-absorbent resin particles of the present invention preferably have a water retention capacity of physiological saline (0.9% by weight saline; the same below) of 25 to 45 g/g, more preferably 30 to 40 g/g. When it is in the range of 25 to 45 g/g, the absorbent article can exhibit a sufficient amount of absorption and can be compatible with the liquid passage rate.
- the gel permeation rate of the water-absorbent resin particles of the present invention with physiological saline is preferably 10 ml/min or more, more preferably 40 ml/min or more, and particularly preferably 70 ml/min or more. If it is less than 10 ml/min, the permeation rate into the absorbent is slow, and leakage may occur.
- the absorption rate of the water-absorbent resin particles of the present invention by the Vortex method is preferably 45 seconds or less, more preferably 40 seconds or less, and particularly preferably 35 seconds or less. If it is longer than 45 seconds, the absorbent body tends to leak.
- the lower limit is preferably as low as possible and is not particularly limited, but from the viewpoint of compatibility with the average sphericity, it is preferably 10 seconds or more, more preferably 15 seconds or more.
- the water content (% by weight) of the water-absorbent resin particles of the present invention is preferably 0 to 20, more preferably 1 to 15, particularly preferably 2 to 13, and most preferably 3 to 12. When it is in the range of 0 to 20, the absorption performance may be further improved, and the change width of the average sphericity after the impact resistance test may be small.
- the water-absorbent resin particles of the present invention form an absorbent body included in an absorbent article.
- water-absorbent resin particles may be used alone, or may be used together with other materials to form the absorber. Examples of other materials include fibrous materials.
- the structure and manufacturing method of the absorber when used together with the fibrous material are the same as known ones (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
- the weight ratio of the water-absorbent resin particles to the fibers is preferably 60/40 to 90/10. , And more preferably 75/25 to 85/15.
- the absorbent article can be applied not only to hygiene products such as disposable diapers and sanitary napkins, but also to various applications such as absorption of various aqueous liquids described below, use as a retention agent, and use as a gelling agent.
- the manufacturing method of the absorbent article and the like are the same as known methods (the methods described in JP-A-2003-225565, JP-A-2006-131767 and JP-A-2005-097569).
- ⁇ Measurement method of water retention of physiological saline> 1.00 g of the measurement sample was placed in a tea bag (length 20 cm, width 10 cm) made of a nylon mesh with an opening of 63 ⁇ m (JIS Z8801-1:2006), and immersed in 1,000 ml of physiological saline without stirring for 1 hour. After that, it was hung for 15 minutes to drain water. Then, each tea bag was placed in a centrifuge, and then spin-dried at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to determine the water retention amount from the following formula. The temperature of the physiological saline used and the measurement atmosphere was 25°C ⁇ 2°C. The weight of the tea bag after centrifugal dehydration was measured as (h2) in the same manner as above except that the measurement sample was not used. Retention capacity of physiological saline (g/g) (h1)-(h2)
- ⁇ Measurement method of gel permeation rate with physiological saline It measured by the following operations using the instrument shown in FIG. 1 and FIG. A swollen gel particle 2 was prepared by immersing 0.32 g of the measurement sample in 150 ml of physiological saline 1 for 30 minutes. Then, a vertically standing cylinder 3 ⁇ diameter (inner diameter) 25.4 mm, length 40 cm, graduation line 4 and graduation line 5 are provided at a position of 60 ml and 40 ml from the bottom, respectively.
- the measurement starts from the time when the measurement sample has been added, and the time (seconds) until the liquid surface of the mixed solution consisting of the measurement sample and physiological saline becomes flat (the point at which diffused light from the liquid surface disappears) was taken as the absorption rate.
- the test was conducted under the conditions of 25 ⁇ 3° C. and 60 ⁇ 5 RH%.
- ⁇ Gel flow rate change rate> The rate of change of the gel flow rate was determined by the following formula.
- the gel flow rate after the impact resistance test was carried out by using the same sample as that used in the measurement of the average sphericity (SPHT) after the impact resistance test described above, and the gel with physiological saline was used. The liquid passing rate was measured.
- (Gel flow rate [%]) ⁇ (gel flow rate of water-absorbent resin particles [ml/min])-(gel flow rate after impact test [ml/min]) ⁇ /( Gel flow rate of water-absorbent resin particles [ml/min]) ⁇ 100
- ⁇ Change rate of absorption rate by Vortex method The rate of change in absorption rate by the Vortex method is calculated by the following formula.
- the absorption rate by the Vortex method after the impact resistance test is the absorption rate by the Vortex method using the same sample as the one that was used to measure the average sphericity (SPHT) after the impact resistance test described above. The speed was measured.
- (Change rate of absorption rate by Vortex method [%]) ⁇ (Absorption rate of water absorbent resin particles by Vortex method [sec])-(Absorption rate by Vortex method after impact test [sec]) ⁇ /(Water absorption Speed of absorbing resin particles by Vortex method [sec]) ⁇ 100
- ⁇ Evaluation method of foreign body feeling The feeling of foreign matter by touch was evaluated by 10 monitors. Specifically, place 100 g of water-absorbent resin particles in a polyethylene bag with a zipper (140 x 100 x 0.04 mm), and use the index finger and/or the middle finger to sample the sample in one direction within a pre-marked area. Gently knead (for example, clockwise), and the feeling of foreign matter was evaluated according to the following evaluation criteria. ⁇ Less than 2 people who feels cramped ⁇ 2 or more but less than 4 who feels cramped ⁇ 4 or more but less than 6 who feels cramped ⁇ 6 or more who feels cramped
- Example 1 Water-soluble vinyl monomer (a1-1) ⁇ acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100% ⁇ 155 parts (2.15 mole parts), cross-linking agent (b1) ⁇ pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd. ⁇ 0.6225 parts (0.0024 parts by mole) and 340.27 parts of deionized water were maintained at 3°C with stirring and mixing.
- a1-1 ⁇ acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100% ⁇ 155 parts (2.15 mole parts), cross-linking agent (b1) ⁇ pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd. ⁇ 0.6225 parts (0.0024 parts by mole) and 340.27 parts of deionized water were maintained at 3°C with stirring and mixing.
- Nitrogen was introduced into this mixture to adjust the amount of dissolved oxygen to 1 ppm or less, and then 0.62 parts of a 1% aqueous hydrogen peroxide solution, 1.1625 parts of a 2% aqueous ascorbic acid solution and 2% of 2,2′-azobis[ 2-Methyl-N-(2-hydroxyethyl)-propionamide] aqueous solution (2.325 parts) was added and mixed to initiate polymerization. After the temperature of the mixture reached 90° C., the mixture was polymerized at 90 ⁇ 2° C. for about 5 hours to obtain a hydrogel (1) containing a crosslinked polymer.
- the dry powder (1) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain particles having an opening of 710 to 150 ⁇ m.
- the resin particles (A-1) containing the crosslinked polymer were obtained by adjusting the particle size within the range.
- the weight average particle diameter of the resin particles (A-1) containing the crosslinked polymer after pulverization and classification was 420 ⁇ m.
- Example 2 Water absorbent resin particles (P-2) were obtained in the same manner as in Example 1 except that the rotation number of the kneader was changed from 40 rpm to 30 rpm.
- the weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (2) in Example 2 was 49% by weight, and the resin particles containing the crosslinked polymer (A-2 after pulverization and classification) were used.
- the weight average particle diameter of () was 436 ⁇ m.
- Example 3 Water absorbent resin particles (P-3) were obtained in the same manner as in Example 1 except that the kneader rotation speed was changed from 40 rpm to 50 rpm.
- the weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (3) in Example 3 was 35% by weight, and the resin particles (A-3 containing the crosslinked polymer after pulverization and classification were used.
- the weight average particle diameter of () was 400 ⁇ m.
- Example 4 In the same manner as in Example 1, except that the gel blocking inhibitor (c-1) ⁇ sucrose stearate ⁇ 0.076 part was changed to 0.152 part, the same operation as in Example 1 was carried out to obtain the water-absorbent resin particles. (P-4) was obtained.
- the weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (4) in Example 4 was 33% by weight, and the resin particles (A-4 containing the crosslinked polymer after pulverization and classification were used.
- the weight average particle diameter of () was 393 ⁇ m.
- Example 5 In Example 1, the gel blocking inhibitor (c-1) ⁇ sucrose stearate ⁇ 0.076 parts was changed to 0.152 parts, and at the same time, the gel blocking inhibitor (c-2) ⁇ NAROACTY (registered trademark) The same operation as in Example 1 was carried out except that CL-20 and 0.113 part of an anionic surfactant (nonylphenol EOA (EO2 mol addition)) manufactured by Sanyo Kasei Co., Ltd. were used in combination, and the water-absorbent resin particles (P-5 ) Got.
- an anionic surfactant nonylphenol EOA (EO2 mol addition)
- the weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (5) in Example 5 was 27% by weight, and the resin particles containing the cross-linked polymer (A-5 after pulverization classification) were used.
- the weight average particle diameter of () was 385 ⁇ m.
- Example 6 In the same manner as in Example 5, except that the opening 710-150 ⁇ m for sieving after crushing the dry powder was changed to a particle size range of 500-150 ⁇ m in Example 5, the water-absorbent resin particles (P -6) was obtained.
- Example 7 In the same manner as in Example 5, except that the opening 710-150 ⁇ m for sieving after pulverizing the dry powder was changed to a particle size range of 300-150 ⁇ m in Example 5, the water-absorbent resin particles (P -7) was obtained.
- the weight average particle diameter of the resin particles (A-7) containing the crosslinked polymer after pulverization and classification was 202 ⁇ m.
- Example 8> In Example 5, the same operation as in Example 5 was carried out except that the kneader rotation speed was 40 rpm and 50 rpm, and the sieve opening 710 to 150 ⁇ m after crushing the dry powder was changed to a particle diameter range of 500 to 150 ⁇ m.
- the water-absorbent resin particles (P-8) were obtained.
- the weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (8) in Example 8 was 22% by weight, and the resin particles containing the crosslinked polymer (A- The weight average particle diameter of 8) was 340 ⁇ m.
- Example 9 In Example 6, except that 0.081 part of 15% ethylene glycol diglycidyl ether as a surface crosslinking agent for the resin particles (A-6) containing the crosslinked polymer after pulverization and classification was changed to 0.200 part, The same operation as in Example 6 was performed to obtain surface-crosslinked resin particles. Subsequently, 0.045 parts of silica (Aerosil (registered trademark, hereinafter the same) 200) as inorganic fine particles was subjected to high-speed stirring (high-speed stirring turbulizer (registered trademark, hereinafter the same) manufactured by Hosokawa Micron Co., Ltd., rotation speed 2000 rpm). After the addition, the mixture was heated at 80° C. for 30 minutes, and then passed through a sieve having an opening of 850 ⁇ m to obtain water absorbent resin particles (P-9).
- silica Al (registered trademark, hereinafter the same) 200
- high-speed stirring turbulizer registered trademark, hereinafter the same
- Example 10 0.081 parts of 15% ethylene glycol diglycidyl ether as a surface cross-linking agent for the resin particles (A-6) containing the cross-linked polymer after pulverization and classification was changed to 0.200 parts, and as a separate solvent. Except that 0.51 parts of 50% aqueous propylene glycol solution and 0.225 parts of sodium aluminum sulfate hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) as a polyvalent metal salt were added to carry out surface crosslinking. In the same manner as in Example 6, surface-crosslinked resin particles were obtained.
- ⁇ Comparative Example 1> The same operation as in Example 1 was carried out except that the kneader rotation speed was changed from 40 rpm to 20 rpm to obtain water absorbent resin particles (R-1) for comparison.
- the weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (ratio 1) in Comparative Example 1 was 73% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 1) was 430 ⁇ m.
- Example 2 shredded once with a mincing machine without adding a gel blocking agent, changed the kneader rotation speed of 40 rpm to 50 rpm, and changed the kneader drying time of 1 hour to 2 hours. Other than that, the same operation as in Example 1 was performed to obtain comparative water-absorbent resin particles (R-2).
- the weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (ratio 2) in Comparative Example 2 was 95% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 2) was 385 ⁇ m.
- Example 3 ⁇ Comparative example 3>
- the gel-blocking agent was not added, and the product was further shredded once with a mincing machine, and dried in a kneader using an aeration dryer (Tabay Espec Co., Ltd., drying conditions: hot air temperature 150° C., air speed 2 m). /S for 60 minutes), except that the drying was changed to the same operation as in Example 1 to obtain comparative water absorbent resin particles (R-3).
- the drying was performed by uniformly laying the entire amount of the hydrogel particles in a SUS vat (20 cm square, 5 cm depth).
- the weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (ratio 3) in Comparative Example 3 was 98% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 3) was 411 ⁇ m.
- Example 4 In Example 1, except that the drying in the kneader was changed to the ventilation type dryer (manufactured by Tabai Espec Co., Ltd., drying conditions: hot air temperature 150° C., wind speed 2 m/s, 60 minutes). The same operation was performed to obtain comparative water absorbent resin particles (R-4). In addition, the drying was performed by uniformly laying the entire amount of the hydrogel particles in a SUS vat (20 cm square, 5 cm depth).
- the weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (Comparative 4) in Comparative Example 4 was 97% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 4) was 415 ⁇ m.
- the water-absorbent resin particles of the present invention (Examples 1 to 10) have an average sphericity within a specific high range as compared with the comparative water-absorbent resin particles (Comparative Examples 1 to 4). Therefore, it can be seen that the variation range of the average sphericity after the impact resistance test is small, and the result of the foreign material feeling evaluation is excellent. Further, it can be seen that the rate of change of the gel flow rate and the rate of change of the absorption rate by the Vortex method are reduced as the variation range of the average sphericity is reduced within a specific range.
- the water-absorbent resin particles of the present invention can exhibit stable absorption performance even if there is a physical load from the outside.
- Examples 6 to 10 are examples in which the average sphericity and the increase range of the average sphericity are set within a specific range, and the weight average particle diameter is reduced. It can be seen from the results of the evaluation of the foreign matter feeling and the absorption rate) that these are highly compatible.
- Table 1 in order to control the variation range of the average sphericity and the average sphericity after the impact resistance test within a specific range, it is obtained after drying in the manufacturing process of the water absorbent resin particles. It can be seen that it is effective to control the weight ratio of particles having a particle diameter of 2.8 mm or more in the dry powder within a specific range.
- the water-absorbent resin particles of the present invention can be applied to an absorbent body containing the water-absorbent resin particles and a fibrous material, and an absorbent article including the absorbent body ⁇ paper diaper, sanitary napkin and medical blood retaining agent It is useful for agents.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Absorbent Articles And Supports Therefor (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Provided are: water absorbent resin particles that can maintain a stable absorption rate and liquid permeability in a duration from immediately after production of the water absorbent resin particles until the use of an absorbent article, and exhibit excellent texture when used in an absorbent article; and a production method for the water absorbent resin particles. The present invention is water absorbent resin particles obtained by surface-crosslinking resin particles containing a crosslinked polymer (A) of a water-soluble vinyl monomer and a crosslinking agent as essential constituent units, wherein the particles have irregular shapes, are in a pulverized form, have an average sphericity of 0.800-0.900, and have a variation width of the average sphericity of 0-0.015 after an impact resistance test; and a method for producing the water absorbent resin particles, the method comprising, as production steps, adding a gel blocking prevention agent before a drying step for obtaining dry powder containing the crosslinked polymer (A), and performing drying using an agitation dryer in the drying step so that the proportion by weight of particles having a particle size of 2.8 mm or more with respect to the total weight of the dry powder of (A) obtained after the drying is 50 wt% or less.
Description
本発明は、吸水性樹脂粒子及びその製造方法に関する。
The present invention relates to water absorbent resin particles and a method for producing the same.
紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維と、アクリル酸(塩)等を主原料とする吸水性樹脂(Super Absorbent Polymer :以下SAPという。)とからなる、吸収体が幅広く利用されている。近年のQOL(quality of life)向上の観点からこれら衛生材料はより軽量かつ薄型のものへと需要が遷移しており、これに伴って親水性繊維の使用量の低減が望まれるようになってきた。そのため、これまで吸収体中で親水性繊維が担ってきた役割をSAPが担うことを求められるようになっている。
Sanitary materials such as paper diapers, sanitary napkins, incontinence pads, etc. are composed of hydrophilic fibers such as pulp and a water-absorbent resin (Super Absorber Polymer: hereinafter referred to as SAP) whose main raw material is acrylic acid (salt). , Absorbers are widely used. From the viewpoint of improving QOL (quality of life) in recent years, the demand for these sanitary materials is shifting to lighter and thinner, and along with this, there is a desire to reduce the amount of hydrophilic fibers used. It was Therefore, SAP is now required to play the role of hydrophilic fibers in the absorber.
例えば、おむつの重要な機能として尿の高速吸収による漏れ低減がある。従来の吸収体は嵩高い親水性繊維間に存在する物理的空間により尿の吸収速度が速いが、親水性繊維の使用量が低減されたSAP比率の高い吸収体においてはSAP粒子どうしが充填構造を形成するために、物理的空間が少なく尿の吸収速度が遅いという問題点がある。また、従来の吸収体は、親水性繊維による尿拡散性が高く、吸収体全体に尿を拡散させることが可能であるのに対して、SAP比率の高い吸収体は膨潤ゲルによる尿の拡散阻害があるため、吸収体中における尿の拡散性は著しく低下する。この拡散性の低下は上述の吸収速度の低下と相まって所謂おむつ漏れ、すなわち尿の逆戻り、の深刻な原因となる。
For example, an important function of diapers is the reduction of leaks by rapid absorption of urine. The conventional absorbent body has a high absorption rate of urine due to the physical space existing between the bulky hydrophilic fibers, but in the absorbent body with a high SAP ratio in which the amount of hydrophilic fibers used is reduced, the SAP particles are filled with each other. Therefore, there is a problem in that the physical space is small and the absorption rate of urine is slow. Further, the conventional absorbent body has a high urine diffusibility due to the hydrophilic fiber and can diffuse urine throughout the absorbent body, whereas the absorbent body having a high SAP ratio inhibits the diffusion of urine by the swollen gel. Therefore, the diffusivity of urine in the absorber is significantly reduced. This decrease in diffusivity, together with the decrease in absorption rate described above, causes a serious cause of so-called diaper leakage, that is, urine reversion.
上述の課題に対し、SAPの通液性向上、又は通液性と吸収速度の両方を向上させる技術が検討されている。例えば、SAPの表面を特定の有機架橋剤化合物と特定のカチオンを含む水溶液とによって架橋し、膨潤ゲル表面の変形を抑制することでゲル間隙を効率的に形成する方法が知られている(例えば、特許文献1参照)。しかしながら表面架橋だけでは膨潤ゲル間の通液性は十分満足いくものではなかった。また、通液性を向上させる他の手法として(1)シリカ及びタルク等の無機化合物を添加することにより物理的なスペースを形成させる方法、(2)変性シリコーン等の表面自由エネルギーの小さい疎水性高分子で表面処理することにより、膨潤ゲル同士の合着を抑制してゲル間隙を形成させる方法及び(3)硫酸アルミニウムや乳酸アルミニウム等を添加する方法が既に知られている(例えば、特許文献2、特許文献3及び特許文献4参照)。しかしこれらの方法では、SAP製造直後には優れた特性を発揮しても、SAPの輸送時やSAPの散布、供給、ミキシング等の吸収性物品の製造時、さらには吸収性物品の輸送や実使用時に、粒子同士や装置壁面等と粒子との衝突・摩擦等によって、吸水性樹脂粒子の通液性や吸収速度を低下させることがあった。特に、近年の吸収体中のSAP比率増加に伴い、上記問題は顕在化しつつある。
For the above-mentioned problems, techniques for improving the liquid permeability of SAP or improving both liquid permeability and absorption rate are being studied. For example, a method is known in which the surface of SAP is crosslinked with an aqueous solution containing a specific organic crosslinking agent compound and an aqueous solution containing a specific cation to suppress the deformation of the surface of the swollen gel to efficiently form a gel gap (for example, , Patent Document 1). However, surface cross-linking alone was not sufficient for liquid permeability between swollen gels. Further, as other methods for improving liquid permeability, (1) a method of forming a physical space by adding an inorganic compound such as silica and talc, (2) hydrophobicity such as modified silicone having a small surface free energy A method of suppressing the coalescence of swollen gels to form a gel gap by surface treatment with a polymer and (3) a method of adding aluminum sulfate, aluminum lactate or the like are already known (for example, Patent Document 1). 2, refer to Patent Document 3 and Patent Document 4). However, in these methods, even when excellent properties are exhibited immediately after the production of SAP, even during the transportation of SAP, the production of absorbent articles such as spraying, supplying, and mixing of SAP, and further the transportation and transportation of absorbent articles, At the time of use, the liquid permeability and the absorption speed of the water-absorbent resin particles may be reduced due to collision and friction between the particles or particles of the apparatus wall surface. Particularly, with the recent increase in the SAP ratio in the absorber, the above problem is becoming apparent.
また、吸収体中のSAP比率が高くなることに伴い、上述のような粒子間接触による物性低下の問題だけでなく、吸収性物品の実使用時に、SAP粒子の粒子間接触により、ジャリジャリ又はゴツゴツする感触が惹起され、このような感触の悪化も改善が求められている。
Further, due to the increase in the SAP ratio in the absorber, not only the problem of physical property deterioration due to contact between particles as described above, but also the actual contact of the absorbent article with the contact between particles of SAP particles causes jarring or lumpiness. There is a need for improvement in the deterioration of such feeling.
本発明の課題は、吸水性樹脂粒子の製造直後から吸収性物品の使用に至るまで安定した吸収速度及び通液性能を維持し、かつ吸収性物品に使用したときに優れた風合いを発揮できる吸水性樹脂粒子及びその製造方法を提供することにある。
The object of the present invention is to maintain a stable absorption rate and liquid permeability from immediately after the production of the water-absorbent resin particles to the use of the absorbent article, and to exhibit excellent texture when used for the absorbent article. To provide a resinous resin particle and a method for producing the same.
本発明は、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子が表面架橋剤(d)により表面架橋された構造を有する吸水性樹脂粒子であって、粒子形状が不定形破砕状であり、平均真球度(SPHT)が0.800~0.900であり、かつ耐衝撃性試験後の平均真球度(SPHT)の変化幅が0~0.015である吸水性樹脂粒子である。
本発明はまた、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする単量体組成物を重合し、架橋重合体(A)を含有する含水ゲルを得る重合工程と、前記含水ゲルを混練細断し、(A)を含有する含水ゲル粒子を得るゲル粉砕工程と、前記含水ゲル粒子を乾燥し、(A)を含有する乾燥粉体を得る乾燥工程と、前記乾燥粉体をさらに粉砕及び/又は分級して(A)を含有する樹脂粒子を得る工程と、前記樹脂粒子の表面を表面架橋剤(d)により表面架橋する工程を含む吸水性樹脂粒子の製造方法であって、前記乾燥工程以前にゲルブロッキング防止剤(c)を添加し、かつ、前記乾燥工程では、攪拌式乾燥機を用いて乾燥を行い、乾燥後に得られる(A)の乾燥粉体の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合を50重量%以下とする、吸水性樹脂粒子の製造方法である。 The present invention provides a water-absorbing structure in which resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface cross-linked by a surface cross-linking agent (d). Resin particles having an irregular crushed particle shape, an average sphericity (SPHT) of 0.800 to 0.900, and an average sphericity (SPHT) after an impact resistance test. The water absorbent resin particles have a change width of 0 to 0.015.
The present invention also includes a polymerization step of polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential constituent units to obtain a hydrogel containing the crosslinked polymer (A). A gel crushing step of kneading and chopping the hydrogel to obtain hydrogel particles containing (A); a drying step of drying the hydrogel particles to obtain a dry powder containing (A); A method for producing water-absorbent resin particles, which comprises a step of further pulverizing and/or classifying a powder to obtain resin particles containing (A), and a step of surface-crosslinking the surface of the resin particles with a surface-crosslinking agent (d). In addition, the gel blocking inhibitor (c) is added before the drying step, and in the drying step, drying is performed using a stirring dryer, and the dried powder of (A) obtained after drying is A method for producing water-absorbent resin particles, wherein the weight ratio of particles having a particle diameter of 2.8 mm or more to the total weight is 50% by weight or less.
本発明はまた、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする単量体組成物を重合し、架橋重合体(A)を含有する含水ゲルを得る重合工程と、前記含水ゲルを混練細断し、(A)を含有する含水ゲル粒子を得るゲル粉砕工程と、前記含水ゲル粒子を乾燥し、(A)を含有する乾燥粉体を得る乾燥工程と、前記乾燥粉体をさらに粉砕及び/又は分級して(A)を含有する樹脂粒子を得る工程と、前記樹脂粒子の表面を表面架橋剤(d)により表面架橋する工程を含む吸水性樹脂粒子の製造方法であって、前記乾燥工程以前にゲルブロッキング防止剤(c)を添加し、かつ、前記乾燥工程では、攪拌式乾燥機を用いて乾燥を行い、乾燥後に得られる(A)の乾燥粉体の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合を50重量%以下とする、吸水性樹脂粒子の製造方法である。 The present invention provides a water-absorbing structure in which resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface cross-linked by a surface cross-linking agent (d). Resin particles having an irregular crushed particle shape, an average sphericity (SPHT) of 0.800 to 0.900, and an average sphericity (SPHT) after an impact resistance test. The water absorbent resin particles have a change width of 0 to 0.015.
The present invention also includes a polymerization step of polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential constituent units to obtain a hydrogel containing the crosslinked polymer (A). A gel crushing step of kneading and chopping the hydrogel to obtain hydrogel particles containing (A); a drying step of drying the hydrogel particles to obtain a dry powder containing (A); A method for producing water-absorbent resin particles, which comprises a step of further pulverizing and/or classifying a powder to obtain resin particles containing (A), and a step of surface-crosslinking the surface of the resin particles with a surface-crosslinking agent (d). In addition, the gel blocking inhibitor (c) is added before the drying step, and in the drying step, drying is performed using a stirring dryer, and the dried powder of (A) obtained after drying is A method for producing water-absorbent resin particles, wherein the weight ratio of particles having a particle diameter of 2.8 mm or more to the total weight is 50% by weight or less.
本発明の吸水性樹脂粒子は、特定の平均真球度を有し、耐衝撃性試験後でも粒子形状を維持し、安定した吸収速度と通液性能を示す。また、本発明の製造方法で得られる吸水性樹脂粒子は、乾燥粉体中の粗大粒子の発生を抑制し、吸水性樹脂粒子の平均真球度を高くすることができ、好適に本発明の吸水性樹脂粒子を得ることができる。従って、本発明の吸水性樹脂粒子及び本発明の製造方法で得られる吸水性樹脂粒子を適用した吸収性物品は、吸水性樹脂粒子の製造直後から吸収性物品の使用に至るまで安定した吸収性能を発揮できるとともに、吸収性物品の実使用時に、ジャリジャリした感触が少なく風合いに優れる。
The water-absorbent resin particles of the present invention have a specific average sphericity, maintain the particle shape even after the impact resistance test, and exhibit stable absorption rate and liquid permeability. Further, the water-absorbent resin particles obtained by the production method of the present invention can suppress the generation of coarse particles in the dry powder, and can increase the average sphericity of the water-absorbent resin particles, which is preferable for the present invention. Water absorbent resin particles can be obtained. Therefore, the absorbent article to which the water-absorbent resin particles of the present invention and the water-absorbent resin particles obtained by the production method of the present invention are applied, has stable absorption performance immediately after the production of the water-absorbent resin particles until the use of the absorbent article. In addition to exhibiting excellent properties, the absorbent article does not have a crunchy feel and is excellent in texture when actually used.
本発明の吸水性樹脂粒子は、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子が表面架橋剤(d)により表面架橋された構造を有する。
In the water-absorbent resin particles of the present invention, resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface-crosslinked by the surface cross-linking agent (d). It has a different structure.
本発明における水溶性ビニルモノマー(a1)としては特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマーが使用できる。
The water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers such as at least one water-soluble substituent and an ethylenic vinyl group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 3648553 are used. Vinyl monomers having a saturated group (for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers and nonionics disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883. Vinyl monomer and cationic vinyl monomer, and selected from the group consisting of carboxy group, sulfo group, phosphono group, hydroxyl group, carbamoyl group, amino group and ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982. Vinyl monomers having at least one of
水溶性ビニルモノマー(a1)としては、吸収性能等の観点から、好ましくはアニオン性ビニルモノマー、より好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマーである。これらの中で、より好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、更に好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。
From the viewpoint of absorption performance and the like, the water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or mono-. A vinyl monomer having a di- or tri-alkylammonio group. Among these, more preferably a vinyl monomer having a carboxy (salt) group or a carbamoyl group, further preferably (meth)acrylic acid (salt) and (meth)acrylamide, particularly preferably (meth)acrylic acid (salt), Most preferably, it is acrylic acid (salt).
なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩及びアンモニウム(NH4)塩等が挙げられる。これらの塩の内、吸収性能等の観点から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。
In addition, a "carboxy (salt) group" means a "carboxy group" or a "carboxylate group", and a "sulfo (salt) group" means a "sulfo group" or a "sulfonate group". Further, (meth)acrylic acid (salt) means acrylic acid, acrylic acid salt, methacrylic acid or methacrylic acid salt, and (meth)acrylamide means acrylamide or methacrylamide. Examples of salts include alkali metal (lithium, sodium and potassium etc.) salts, alkaline earth metal (magnesium and calcium etc.) salts and ammonium (NH 4 ) salts. Among these salts, the alkali metal salts and ammonium salts are preferable, the alkali metal salts are more preferable, and the sodium salts are particularly preferable, from the viewpoint of absorption performance and the like.
水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる場合、酸基含有モノマーの一部を塩基で中和することができる。中和する塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を通常使用できる。中和は吸水性樹脂の製造工程において、酸基含有モノマーの重合前及び重合中のいずれで行っても良いし、後述する架橋重合体(A)を含む含水ゲルの状態で酸基含有ポリマーを中和することもできる。
When an acid group-containing monomer such as acrylic acid or methacrylic acid is used as the water-soluble vinyl monomer (a1), a part of the acid group-containing monomer can be neutralized with a base. As the neutralizing base, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide and alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate can be usually used. Neutralization may be carried out either before or during the polymerization of the acid group-containing monomer in the production process of the water absorbent resin, or the acid group-containing polymer may be treated in the state of a hydrogel containing the cross-linked polymer (A) described later. It can also be neutralized.
酸基含有モノマーを用いる場合の酸基の中和度は、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸水性樹脂粒子の保水量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。
When the acid group-containing monomer is used, the degree of neutralization of the acid group is preferably 50 to 80 mol %. When the degree of neutralization is less than 50 mol %, the resulting hydrogel polymer may have high tackiness, which may deteriorate workability during production and use. Further, the water retention amount of the resulting water absorbent resin particles may decrease. On the other hand, when the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there is a concern about the safety of the skin of human body.
架橋重合体(A)の構成単位として、水溶性ビニルモノマー(a1)の他に、これらと共重合可能なその他のビニルモノマー(a2)を構成単位とすることができる。その他のビニルモノマー(a2)は1種を単独で用いても、2種以上を併用してもよい。
As the constitutional unit of the crosslinked polymer (A), in addition to the water-soluble vinyl monomer (a1), another vinyl monomer (a2) copolymerizable with them can be used as the constitutional unit. As the other vinyl monomer (a2), one type may be used alone, or two or more types may be used in combination.
共重合可能なその他のビニルモノマー(a2)としては特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン、並びにジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。 The other copolymerizable vinyl monomer (a2) is not particularly limited and is known (for example, the hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, JP-A-2003-165883). The vinyl monomers disclosed in paragraph 0025 and paragraph 0058 of Japanese Unexamined Patent Publication No. 2005-75982) can be used, and specifically, for example, vinyl monomers (i) to (iii) below can be used. Can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and vinylnaphthalene, and halogen-substituted styrene such as dichlorostyrene.
(Ii) C2-C20 aliphatic ethylenic monomer alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
(Iii) C5-C15 alicyclic ethylenic monomers, monoethylenically unsaturated monomers (pinene, limonene, indene, etc.); and polyethylene vinyl monomers [cyclopentadiene, bicyclopentadiene, ethylidene norbornene, etc.] and the like.
(i)炭素数8~30の芳香族エチレン性モノマー
スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン、並びにジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。 The other copolymerizable vinyl monomer (a2) is not particularly limited and is known (for example, the hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 3648553, JP-A-2003-165883). The vinyl monomers disclosed in paragraph 0025 and paragraph 0058 of Japanese Unexamined Patent Publication No. 2005-75982) can be used, and specifically, for example, vinyl monomers (i) to (iii) below can be used. Can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and vinylnaphthalene, and halogen-substituted styrene such as dichlorostyrene.
(Ii) C2-C20 aliphatic ethylenic monomer alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
(Iii) C5-C15 alicyclic ethylenic monomers, monoethylenically unsaturated monomers (pinene, limonene, indene, etc.); and polyethylene vinyl monomers [cyclopentadiene, bicyclopentadiene, ethylidene norbornene, etc.] and the like.
その他のビニルモノマー(a2)単位の含有量(モル%)は、吸収性能等の観点から、水溶性ビニルモノマー(a1)単位のモル数に基づいて、0~5が好ましく、更に好ましくは0~3、特に好ましくは0~2、とりわけ好ましくは0~1.5であり、吸収性能等の観点から、その他のビニルモノマー(a2)単位の含有量が0モル%であることが最も好ましい。
The content (mol %) of the other vinyl monomer (a2) unit is preferably 0 to 5 and more preferably 0 to 5 based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. 3, particularly preferably 0 to 2, and particularly preferably 0 to 1.5. From the viewpoint of absorption performance and the like, the content of the other vinyl monomer (a2) unit is most preferably 0 mol %.
架橋剤(b)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。これらの内、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのは、炭素数2~40の多価アルコールのポリ(メタ)アリルエーテル、炭素数2~40の多価アルコールの(メタ)アクリレート、炭素数2~40の多価アルコールの(メタ)アクリルアミド、特に好ましいのは炭素数2~40の多価アルコールのポリアリルエーテル、最も好ましいのはペンタエリスリトールトリアリルエーテルである。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。
The cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 36485553, which reacts with a water-soluble substituent group). Crosslinking agent having at least one functional group to be obtained and having at least one ethylenically unsaturated group, and crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent, JP-A-2003-165883. Cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0028 to 0031, a cross-linking agent having an ethylenically unsaturated group and a reactive functional group, and a cross-linking agent having two or more reactive substituents. The cross-linking vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982 and the cross-linking agent of the cross-linkable vinyl monomer disclosed in paragraphs 0015 to 0016 of JP-A-2005-95759 can be used. .. Among these, a crosslinking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption performance, and more preferable is a poly(meth)allyl ether of a polyhydric alcohol having 2 to 40 carbon atoms and a carbon number. (Meth)acrylate of polyhydric alcohol having 2 to 40 carbons, (meth)acrylamide of polyhydric alcohol having 2 to 40 carbons, polyallyl ether of polyhydric alcohol having 2 to 40 carbons, and most preferable Pentaerythritol triallyl ether. As the crosslinking agent (b), one type may be used alone, or two or more types may be used in combination.
架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位の、その他のビニルモノマー(a2)単位を用いる場合は(a1)~(a2)の合計モル数に基づいて、0.001~5が好ましく、更に好ましくは0.005~3、特に好ましくは0.01~1である。0.001~5の範囲であると、吸収性能が更に良好となる。
The content (mol %) of the crosslinking agent (b) unit is based on the total number of moles of the water-soluble vinyl monomer (a1) unit and (a1) to (a2) when another vinyl monomer (a2) unit is used. It is preferably 0.001 to 5, more preferably 0.005 to 3, and particularly preferably 0.01 to 1. When it is in the range of 0.001 to 5, the absorption performance is further improved.
本発明の吸水性樹脂粒子の製造方法は、前述した水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする単量体組成物を重合し、架橋重合体(A)を含有する含水ゲルを得る重合工程と、前記含水ゲルを混練細断し、(A)を含有する含水ゲル粒子を得るゲル粉砕工程と、前記含水ゲル粒子を乾燥し、(A)を含有する乾燥粉体を得る乾燥工程と、前記乾燥粉体をさらに粉砕及び/又は分級して(A)を含有する樹脂粒子を得る工程と、前記樹脂粒子の表面を表面架橋剤(d)により表面架橋する工程を含む。
The method for producing water-absorbent resin particles of the present invention comprises a cross-linked polymer (A) obtained by polymerizing a monomer composition containing the above water-soluble vinyl monomer (a1) and a cross-linking agent (b) as essential constituent units. A step of polymerizing to obtain a hydrogel, a step of kneading and chopping the hydrogel to obtain hydrogel particles containing (A), and a step of drying the hydrogel particles to obtain a dry powder containing (A). A step of obtaining a body, a step of further pulverizing and/or classifying the dry powder to obtain resin particles containing (A), and a step of surface-crosslinking the surface of the resin particles with a surface-crosslinking agent (d). including.
重合工程としては、公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の懸濁重合法や逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)によって架橋重合体(A)を含有する含水ゲル(架橋重合体が水を含んだ含水ゲル状物)を得ることができる。架橋重合体(A)は、1種単独でも良いし、2種以上の混合物であっても良い。
Examples of the polymerization step include known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization, etc.; JP-A-55-133413, etc.), known suspension polymerization method, reverse phase suspension polymerization (JP-B-54- 30710, JP 56-26909 A, JP 1-5808 A, etc.) to obtain a hydrogel containing a crosslinked polymer (A) (a hydrogel in which the crosslinked polymer contains water). be able to. The crosslinked polymer (A) may be a single type or a mixture of two or more types.
重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法であり、保水量が大きく、且つ水可溶性成分量の少ない吸水性樹脂が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。
Among the polymerization methods, the solution polymerization method is preferable, and since it is advantageous in terms of production cost that it is not necessary to use an organic solvent or the like, particularly preferable is the aqueous solution polymerization method, which has a large water retention amount and is water-soluble. The aqueous solution adiabatic polymerization method is most preferable because a water-absorbent resin having a small amount of components can be obtained and temperature control during polymerization is unnecessary.
水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。
水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。 When carrying out aqueous solution polymerization, a mixed solvent containing water and an organic solvent can be used, and as the organic solvent, methanol, ethanol, acetone, methyl ethyl ketone, N,N-dimethylformamide, dimethylsulfoxide and two or more kinds of them can be used. A mixture of
When carrying out aqueous solution polymerization, the amount of organic solvent used (% by weight) is preferably 40 or less, more preferably 30 or less, based on the weight of water.
水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。 When carrying out aqueous solution polymerization, a mixed solvent containing water and an organic solvent can be used, and as the organic solvent, methanol, ethanol, acetone, methyl ethyl ketone, N,N-dimethylformamide, dimethylsulfoxide and two or more kinds of them can be used. A mixture of
When carrying out aqueous solution polymerization, the amount of organic solvent used (% by weight) is preferably 40 or less, more preferably 30 or less, based on the weight of water.
重合濃度、即ち、重合液中の水溶性ビニルモノマー(a1)および必要により使用されるその他のビニルモノマー(a2)の仕込濃度は、特に制限されないが、重合液の重量、即ち、水溶性ビニルモノマー(a1)および必要により使用されるその他のビニルモノマー(a2)、溶媒、内部架橋剤(b)および後述の重合触媒、重合コントロール剤の合計重量に基づいて10~55%が好ましく、20~45%が更に好ましい。重合濃度が10%より低い場合生産性が低くなる場合があり、重合濃度が55%より高い場合、自己架橋等の副反応がおこることにより、得られる吸水性樹脂粒子の保水量が低下する場合がある。
The polymerization concentration, that is, the charging concentration of the water-soluble vinyl monomer (a1) in the polymerization liquid and the other vinyl monomer (a2) used as necessary is not particularly limited, but the weight of the polymerization liquid, that is, the water-soluble vinyl monomer 10 to 55% is preferable based on the total weight of (a1) and other vinyl monomer (a2) optionally used, solvent, internal cross-linking agent (b) and polymerization catalyst and polymerization control agent described later, and 20 to 45%. % Is more preferable. When the polymerization concentration is lower than 10%, the productivity may be lowered, and when the polymerization concentration is higher than 55%, the water retention capacity of the resulting water-absorbent resin particles is lowered due to side reactions such as self-crosslinking. There is.
重合に触媒を用いる場合、従来公知のラジカル重合用触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。
ラジカル重合触媒の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。 When a catalyst is used for the polymerization, a conventionally known radical polymerization catalyst can be used, and examples thereof include azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis(2-amidinopropane) hydrochloride. Etc.], inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide] Oxide and di(2-ethoxyethyl)peroxydicarbonate, etc.] and redox catalysts (reducing agents such as alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite and ascorbic acid, and alkali metal persulfates, (Combined with an oxidizing agent such as ammonium persulfate, hydrogen peroxide and organic peroxide). These catalysts may be used alone or in combination of two or more.
The amount (% by weight) of the radical polymerization catalyst used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
ラジカル重合触媒の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。 When a catalyst is used for the polymerization, a conventionally known radical polymerization catalyst can be used, and examples thereof include azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis(2-amidinopropane) hydrochloride. Etc.], inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, succinic acid peroxide] Oxide and di(2-ethoxyethyl)peroxydicarbonate, etc.] and redox catalysts (reducing agents such as alkali metal sulfites or bisulfites, ammonium sulfite, ammonium bisulfite and ascorbic acid, and alkali metal persulfates, (Combined with an oxidizing agent such as ammonium persulfate, hydrogen peroxide and organic peroxide). These catalysts may be used alone or in combination of two or more.
The amount (% by weight) of the radical polymerization catalyst used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
重合時には、必要に応じて連鎖移動剤等の重合コントロール剤を併用しても良く、これらの具体例としては、次亜リン酸ナトリウム、亜リン酸ナトリウム、アルキルメルカプタン、ハロゲン化アルキル、チオカルボニル化合物等が挙げられる。これらの重合コントロール剤は、単独で使用してもよく、これらの2種以上を併用しても良い。
重合コントロール剤の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。 During the polymerization, a polymerization control agent such as a chain transfer agent may be used in combination, if necessary, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, alkyl halides and thiocarbonyl compounds. Etc. These polymerization control agents may be used alone or in combination of two or more thereof.
The amount (% by weight) of the polymerization control agent is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
重合コントロール剤の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。 During the polymerization, a polymerization control agent such as a chain transfer agent may be used in combination, if necessary, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, alkyl halides and thiocarbonyl compounds. Etc. These polymerization control agents may be used alone or in combination of two or more thereof.
The amount (% by weight) of the polymerization control agent is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、従来公知の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来公知のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。
When the suspension polymerization method or the reverse phase suspension polymerization method is used as the polymerization method, the polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary. In the case of the reverse phase suspension polymerization method, the polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane, and normal heptane.
重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは2~80℃である。
The polymerization initiation temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100°C, more preferably 2 to 80°C.
ゲル粉砕工程は、前記の重合工程により得られた架橋重合体(A)を含有する含水ゲルを混練細断し、含水ゲル粒子を得る工程である。ゲル粉砕工程後の含水ゲル粒子の大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは500μm~1cmである。50μm~10cmの範囲であると、乾燥工程での乾燥性が更に良好となる。
The gel crushing step is a step of kneading and cutting the hydrogel containing the crosslinked polymer (A) obtained in the above-mentioned polymerization step to obtain hydrogel particles. The size (longest diameter) of the hydrogel particles after the gel crushing step is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 500 μm to 1 cm. When it is in the range of 50 μm to 10 cm, the drying property in the drying step is further improved.
ゲル粉砕は、公知の方法で行うことができ、粉砕装置(例えば、ニーダー、万能混合機、一軸又は二軸の混練押し出し機、ミンチ機およびミートチョッパー等)を使用して混練細断できる。Vortex法による吸水時間を制御する観点から、混練押出機構を備えた粉砕装置(例えば一軸又は二軸の混練押し出し機、ミンチ機等)が好ましい。
The gel pulverization can be performed by a known method, and kneading and shredding can be performed using a pulverizing device (eg, kneader, universal mixer, uniaxial or biaxial kneading extruder, mincing machine, meat chopper, etc.). From the viewpoint of controlling the water absorption time by the Vortex method, a crushing device having a kneading and extruding mechanism (for example, a uniaxial or biaxial kneading extruder, a mincing machine, etc.) is preferable.
ゲル粉砕工程でのゲル温度は70~120℃が好ましく、80~110℃が更に好ましい。ゲル温度が70~120℃の範囲より低いと、重合工程後に冷却工程が必要になり不要なエネルギーが必要になるばかりでなく、含水ゲル粒子の粘着性が上がり含水ゲル粒子の粉砕が不十分となりやすく、ゲル温度がこの範囲より高いと水の突沸が生じ安定的に粉砕ができない場合がある。
The gel temperature in the gel crushing step is preferably 70 to 120°C, more preferably 80 to 110°C. When the gel temperature is lower than the range of 70 to 120° C., not only the cooling step is required after the polymerization step but unnecessary energy is required, but also the adhesiveness of the hydrous gel particles increases and the pulverization of the hydrous gel particles becomes insufficient. If the gel temperature is higher than this range, bumping of water may occur and stable pulverization may not be possible.
また、前述のとおり、重合後に得られた酸基含有ポリマーの含水ゲルをゲル粉砕工程前又はゲル粉砕工程中に塩基を混合して中和することもできる。なお、酸基含有ポリマーを中和する場合に使用する塩基や中和度の好ましい範囲は、酸基含有モノマーを用いる場合と同様である。
Further, as described above, the hydrogel of the acid group-containing polymer obtained after the polymerization can be neutralized by mixing a base before or during the gel crushing step. The preferred range of the base and the degree of neutralization used when neutralizing the acid group-containing polymer is the same as when the acid group-containing monomer is used.
本発明の吸水性樹脂粒子の製造方法は、後述する乾燥工程以前にゲルブロッキング防止剤(c)を添加する。ゲルブロッキング防止剤(c)とは、前述したゲル粉砕工程で得られる含水ゲル粒子の同士の凝集によるブロッキングを抑制する添加剤である。ゲルブロッキング防止剤(c)を添加することで、乾燥後に得られる乾燥粉体中の粗大粒子(2.8mm以上の粒子径を有する粒子を粗大粒子と呼ぶ。)の発生を抑制し、吸水性樹脂粒子の平均真球度を高くすることができるとともに、耐衝撃性試験後の平均真球度の変化幅を小さくすることができる。
In the method for producing water absorbent resin particles of the present invention, the gel blocking inhibitor (c) is added before the drying step described later. The gel blocking inhibitor (c) is an additive that suppresses blocking due to aggregation of the hydrogel particles obtained in the gel crushing step described above. By adding the gel blocking inhibitor (c), generation of coarse particles (particles having a particle size of 2.8 mm or more) in the dry powder obtained after drying is suppressed, and water absorbency is achieved. The average sphericity of the resin particles can be increased, and the change width of the average sphericity after the impact resistance test can be reduced.
ゲルブロッキング防止剤(c)としては、炭化水素基を含有する疎水性物質(c1)及びポリシロキサンである疎水性物質(c2)等が含まれる。
The gel blocking inhibitor (c) includes a hydrophobic substance (c1) containing a hydrocarbon group and a hydrophobic substance (c2) which is a polysiloxane.
炭化水素基を含有する疎水性物質(c1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール、第四級アンモニウム塩型界面活性剤、及びこれらの2種以上の混合物等が含まれる。
Examples of the hydrophobic substance (c1) containing a hydrocarbon group include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, long chain fatty acid esters, long chain fatty acids and salts thereof, long chain aliphatic alcohols, Quaternary ammonium salt type surfactants, mixtures of two or more of these, and the like are included.
ポリオレフィン樹脂としては、炭素数2~4のオレフィン{エチレン、プロピレン、イソブチレン及びイソプレン等}を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン-イソブチレン)及びイソプレン等}が挙げられる。
As a polyolefin resin, a weight of an olefin having 2 to 4 carbon atoms (ethylene, propylene, isobutylene, isoprene, etc.) as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin). Examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 (eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene), isoprene, etc.).
ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(-COOH)や1,3-オキソ-2-オキサプロピレン(-COOCO-)等を導入した重量平均分子量1000~100万の重合体{たとえば、ポリエチレン熱減成体、ポリプロピレン熱減成体、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン-アクリル酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン-酢酸ビニル共重合体及びエチレン-酢酸ビニル共重合体のマレイン化物等}が挙げられる。
As the polyolefin resin derivative, a polymer having a weight average molecular weight of 1,000 to 1,000,000 obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin (for example, polyethylene heat Degradation products, polypropylene thermal degradation products, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated And polybutadiene, ethylene-vinyl acetate copolymer, and ethylene-vinyl acetate copolymer maleated product}.
ポリスチレン樹脂としては、重量平均分子量1000~100万の重合体等が使用できる。
As the polystyrene resin, a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びスチレン-イソブチレン共重合体等}が挙げられる。
As the polystyrene resin derivative, a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene-containing styrene) as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) is used. And maleic anhydride copolymers, styrene-butadiene copolymers and styrene-isobutylene copolymers.
ワックスとしては、融点50~200℃のワックス{たとえば、パラフィンワックス、ミツロウ、カルナウバワックス及び牛脂等}が挙げられる。
Examples of the wax include waxes having a melting point of 50 to 200° C. (for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.).
長鎖脂肪酸エステルとしては、炭素数8~25の脂肪酸と炭素数1~12のアルコールとのエステル{たとえば、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸メチル、オレイン酸エチル、グリセリンラウリン酸モノエステル、グリセリンステアリン酸モノエステル、グリセリンステアリン酸ジエステル、グリセリンオレイン酸モノエステル、ペンタエリスリットラウリン酸モノエステル、ペンタエリスリットステアリン酸モノエステル、ペンタエリスリットオレイン酸モノエステル、ソルビットラウリン酸モノエステル、ソルビットステアリン酸モノエステル、ソルビットオレイン酸モノエステル、ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル及び牛脂等}が挙げられる。
The long-chain fatty acid ester is an ester of a fatty acid having 8 to 25 carbon atoms and an alcohol having 1 to 12 carbon atoms (for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid). Ethyl, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin stearic acid diester, glycerin oleic acid monoester, pentaerythritol lauric acid monoester, pentaerythritol stearic acid monoester, pentaerythritol oleic acid monoester, sorbit Lauric acid monoester, sorbit stearic acid monoester, sorbit oleic acid monoester, sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, sucrose stearic acid monoester, sucrose stearic acid diester, Sucrose stearic acid triester and beef tallow, etc.}.
長鎖脂肪酸及びその塩としては、炭素数8~25の脂肪酸{たとえば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、及びベヘニン酸等}が挙げられる。塩としてはカルシウム、マグネシウム又はアルミニウム(以下、Ca、Mg、Alと略す)との塩{たとえば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等}が挙げられる。
Examples of long-chain fatty acids and salts thereof include fatty acids having 8 to 25 carbon atoms (eg, lauric acid, palmitic acid, stearic acid, oleic acid, behenic acid, etc.). Examples of the salt include salts with calcium, magnesium or aluminum (hereinafter abbreviated as Ca, Mg and Al) {for example, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc.}.
長鎖脂肪族アルコールとしては、炭素数8~25の脂肪族アルコール{たとえば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール等}が挙げられる。
Examples of long-chain aliphatic alcohols include aliphatic alcohols having 8 to 25 carbon atoms (for example, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.).
第四級アンモニウム塩型界面活性剤としては、炭素数8~25の脂肪族鎖を1~2個含有する第四級アンモニウム塩{たとえば、ジデシルジメチルアンモニウムクロライド、ベンジルジメチルデシルアンモニウムクロライド、ベンジルジメチルテトラデシルアンモニウムクロライド、ジメチルジステアリルアンモニウムクロライド}が挙げられ、好ましくは、ジデシルジメチルアンモニウムクロライド、ジメチルジステアリルアンモニウムクロライドである。
As the quaternary ammonium salt type surfactant, a quaternary ammonium salt containing 1 to 2 aliphatic chains having 8 to 25 carbon atoms {eg, didecyldimethylammonium chloride, benzyldimethyldecylammonium chloride, benzyldimethyl And tetradecyl ammonium chloride, dimethyl distearyl ammonium chloride}, and didecyl dimethyl ammonium chloride and dimethyl distearyl ammonium chloride are preferred.
これらの2種以上の混合物としては、長鎖脂肪酸エステルと長鎖脂肪族アルコールとの混合物{例えば、ショ糖ステアリン酸ジエステルとステアリルアルコールとの混合物等}が挙げられる。
Examples of the mixture of two or more of these include a mixture of a long-chain fatty acid ester and a long-chain aliphatic alcohol {for example, a mixture of sucrose stearate diester and stearyl alcohol}.
ポリシロキサンである疎水性物質(c2)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン{ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等}、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン等及びこれらの混合物等が含まれる。
As the hydrophobic substance (c2) which is a polysiloxane, polydimethylsiloxane, polyether-modified polysiloxane {polyoxyethylene-modified polysiloxane and poly(oxyethylene/oxypropylene)-modified polysiloxane, etc.}, carboxy-modified polysiloxane, epoxy Modified polysiloxanes, amino modified polysiloxanes, alkoxy modified polysiloxanes and the like and mixtures thereof are included.
変性シリコーン{ポリエーテル変性ポリシロキサン、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン及びアミノ変性ポリシロキサン等}の有機基(変性基)の位置としては特に限定はしないが、ポリシロキサンの側鎖、ポリシロキサンの両末端、ポリシロキサンの片末端、ポリシロキサンの側鎖と両末端との両方のいずれでもよい。これらのうち、粗大粒子低減の観点等から、ポリシロキサンの側鎖及びポリシロキサンの側鎖と両末端との両方が好ましく、さらに好ましくはポリシロキサンの側鎖と両末端との両方である。
The position of the organic group (modified group) of the modified silicone {polyether modified polysiloxane, carboxy modified polysiloxane, epoxy modified polysiloxane, amino modified polysiloxane, etc.} is not particularly limited, but the side chain of polysiloxane, polysiloxane , Both ends of the polysiloxane, one end of the polysiloxane, and both the side chain and both ends of the polysiloxane. Of these, from the viewpoint of reducing coarse particles and the like, the side chain of polysiloxane and both side chains and both ends of polysiloxane are preferable, and both side chains and both ends of polysiloxane are more preferable.
ポリエーテル変性ポリシロキサンの有機基(変性基)としては、ポリオキシエチレン基又はポリ(オキシエチレン・オキシプロピレン)基を含有する基等が含まれる。ポリエーテル変性ポリシロキサンに含まれるオキシエチレン基及び/又はオキシプロピレン基の含有量(個)は、ポリエーテル変性ポリシロキサン1分子あたり、2~40が好ましく、さらに好ましくは5~30、特に好ましくは7~20、最も好ましくは10~15である。2~40の範囲であると、吸収特性がさらに良好となる。また、オキシエチレン基及びオキシプロピレン基を含む場合、オキシエチレン基の含有量(重量%)は、ポリシロキサンの重量に基づいて、1~30が好ましく、さらに好ましくは3~25、特に好ましくは5~20である。1~30の範囲であると、粗大粒子がさらに低減できる。
The organic group (modifying group) of the polyether modified polysiloxane includes a group containing a polyoxyethylene group or a poly(oxyethylene/oxypropylene) group. The content (number) of oxyethylene groups and/or oxypropylene groups contained in the polyether modified polysiloxane is preferably 2 to 40, more preferably 5 to 30, and particularly preferably, per 1 molecule of the polyether modified polysiloxane. It is 7 to 20, most preferably 10 to 15. When it is in the range of 2 to 40, the absorption property is further improved. When it contains an oxyethylene group and an oxypropylene group, the content (% by weight) of the oxyethylene group is preferably 1 to 30, more preferably 3 to 25, particularly preferably 5 based on the weight of the polysiloxane. Is up to 20. When it is in the range of 1 to 30, coarse particles can be further reduced.
ポリエーテル変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、オキシアルキレンの種類}が好ましく例示できる。
・信越化学工業株式会社製
KF-945{側鎖、オキシエチレン及びオキシプロピレン}、KF-6020{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6191{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4952{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4272{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6266{側鎖、オキシエチレン及びオキシプロピレン} The polyether-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products {modified position, type of oxyalkylene} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. KF-945 {side chain, oxyethylene and oxypropylene}, KF-6020 {side chain, oxyethylene and oxypropylene}, X-22-6191 {side chain, oxyethylene and oxypropylene} , X-22-4952 {side chain, oxyethylene and oxypropylene}, X-22-4272 {side chain, oxyethylene and oxypropylene}, X-22-6266 {side chain, oxyethylene and oxypropylene}
・信越化学工業株式会社製
KF-945{側鎖、オキシエチレン及びオキシプロピレン}、KF-6020{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6191{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4952{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4272{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6266{側鎖、オキシエチレン及びオキシプロピレン} The polyether-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products {modified position, type of oxyalkylene} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. KF-945 {side chain, oxyethylene and oxypropylene}, KF-6020 {side chain, oxyethylene and oxypropylene}, X-22-6191 {side chain, oxyethylene and oxypropylene} , X-22-4952 {side chain, oxyethylene and oxypropylene}, X-22-4272 {side chain, oxyethylene and oxypropylene}, X-22-6266 {side chain, oxyethylene and oxypropylene}
・東レ・ダウコーニング株式会社製
FZ-2110{両末端、オキシエチレン及びオキシプロピレン}、FZ-2122{両末端、オキシエチレン及びオキシプロピレン}、FZ-7006{両末端、オキシエチレン及びオキシプロピレン}、FZ-2166{両末端、オキシエチレン及びオキシプロピレン}、FZ-2164{両末端、オキシエチレン及びオキシプロピレン}、FZ-2154{両末端、オキシエチレン及びオキシプロピレン}、FZ-2203{両末端、オキシエチレン及びオキシプロピレン}及びFZ-2207{両末端、オキシエチレン及びオキシプロピレン} -Toray Dow Corning Co., Ltd. FZ-2110 {both ends, oxyethylene and oxypropylene}, FZ-2122 {both ends, oxyethylene and oxypropylene}, FZ-7006 {both ends, oxyethylene and oxypropylene}, FZ-2166 {both ends, oxyethylene and oxypropylene}, FZ-2164 {both ends, oxyethylene and oxypropylene}, FZ-2154 {both ends, oxyethylene and oxypropylene}, FZ-2203 {both ends, oxy Ethylene and oxypropylene} and FZ-2207 {both ends, oxyethylene and oxypropylene}
FZ-2110{両末端、オキシエチレン及びオキシプロピレン}、FZ-2122{両末端、オキシエチレン及びオキシプロピレン}、FZ-7006{両末端、オキシエチレン及びオキシプロピレン}、FZ-2166{両末端、オキシエチレン及びオキシプロピレン}、FZ-2164{両末端、オキシエチレン及びオキシプロピレン}、FZ-2154{両末端、オキシエチレン及びオキシプロピレン}、FZ-2203{両末端、オキシエチレン及びオキシプロピレン}及びFZ-2207{両末端、オキシエチレン及びオキシプロピレン} -Toray Dow Corning Co., Ltd. FZ-2110 {both ends, oxyethylene and oxypropylene}, FZ-2122 {both ends, oxyethylene and oxypropylene}, FZ-7006 {both ends, oxyethylene and oxypropylene}, FZ-2166 {both ends, oxyethylene and oxypropylene}, FZ-2164 {both ends, oxyethylene and oxypropylene}, FZ-2154 {both ends, oxyethylene and oxypropylene}, FZ-2203 {both ends, oxy Ethylene and oxypropylene} and FZ-2207 {both ends, oxyethylene and oxypropylene}
カルボキシ変性ポリシロキサンの有機基(変性基)としてはカルボキシ基を含有する基等が含まれ、エポキシ変性ポリシロキサンの有機基(変性基)としてはエポキシ基を含有する基等が含まれ、アミノ変性ポリシロキサンの有機基(変性基)としてはアミノ基(1、2,3級アミノ基)を含有する基等が含まれる。これらの変性シリコーンの有機基(変性基)の含有量(g/mol)は、カルボキシ当量、エポキシ当量又はアミノ当量として、200~11000が好ましく、さらに好ましくは600~8000、特に好ましくは1000~4000である。200~11000の範囲であると、粗大粒子がさらに低減できる。なお、カルボキシ当量は、JIS C2101:1999の「16.全酸価試験」に準拠して測定される。また、エポキシ当量は、JIS K7236:2001に準拠して求められる。また、アミノ当量は、JIS K2501:2003の「8.電位差滴定法(塩基価・塩酸法)」に準拠して測定される。
The organic group (modifying group) of the carboxy-modified polysiloxane includes a group containing a carboxy group, and the organic group (modifying group) of the epoxy-modified polysiloxane includes a group containing an epoxy group, etc. Examples of the organic group (modifying group) of polysiloxane include a group containing an amino group (a primary, secondary, or tertiary amino group). The content (g/mol) of the organic group (modifying group) of these modified silicones is preferably 200 to 11000, more preferably 600 to 8000, and particularly preferably 1000 to 4000 in terms of carboxy equivalent, epoxy equivalent or amino equivalent. Is. In the range of 200 to 11000, coarse particles can be further reduced. The carboxy equivalent is measured according to JIS C2101:1999 “16. Total acid number test”. The epoxy equivalent is calculated according to JIS K7236:2001. The amino equivalent is measured according to JIS K2501:2003 “8. Potentiometric titration method (base number/hydrochloric acid method)”.
カルボキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、カルボキシ当量(g/mol)}が好ましく例示できる。
・信越化学工業株式会社製
X-22-3701E{側鎖、4000}、X-22-162C{両末端、2300}、X-22-3710{片末端、1450} The carboxy-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products {modified position, carboxy equivalent (g/mol)} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. X-22-3701E {side chain, 4000}, X-22-162C {both ends, 2300}, X-22-3710 {one end, 1450}
・信越化学工業株式会社製
X-22-3701E{側鎖、4000}、X-22-162C{両末端、2300}、X-22-3710{片末端、1450} The carboxy-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products {modified position, carboxy equivalent (g/mol)} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. X-22-3701E {side chain, 4000}, X-22-162C {both ends, 2300}, X-22-3710 {one end, 1450}
・東レ・ダウコーニング株式会社製
BY 16-880{側鎖、3500}、BY 16-750{両末端、750}、BY 16-840{側鎖、3500}、SF8418{側鎖、3500} ・By Toray Dow Corning Co., Ltd. BY 16-880 {side chain, 3500}, BY 16-750 {both ends, 750}, BY 16-840 {side chain, 3500}, SF8418 {side chain, 3500}
BY 16-880{側鎖、3500}、BY 16-750{両末端、750}、BY 16-840{側鎖、3500}、SF8418{側鎖、3500} ・By Toray Dow Corning Co., Ltd. BY 16-880 {side chain, 3500}, BY 16-750 {both ends, 750}, BY 16-840 {side chain, 3500}, SF8418 {side chain, 3500}
エポキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、エポキシ当量}が好ましく例示できる。
・信越化学工業株式会社製
X-22-343{側鎖、525}、KF-101{側鎖、350}、KF-1001{側鎖、3500}、X-22-2000{側鎖、620}、X-22-2046{側鎖、600}、KF-102{側鎖、3600}、X-22-4741{側鎖、2500}、KF-1002{側鎖、4300}、X-22-3000T{側鎖、250}、X-22-163{両末端、200}、KF-105{両末端、490}、X-22-163A{両末端、1000}、X-22-163B{両末端、1750}、X-22-163C{両末端、2700}、X-22-169AS{両末端、500}、X-22-169B{両末端、1700}、X-22-173DX{片末端、4500}、X-22-9002{側鎖・両末端、5000} Epoxy-modified polysiloxane can be easily obtained from the market, and the following commercial products {modified position, epoxy equivalent} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. X-22-343 {side chain, 525}, KF-101 {side chain, 350}, KF-1001 {side chain, 3500}, X-22-2000 {side chain, 620} , X-22-2046 {side chain, 600}, KF-102 {side chain, 3600}, X-22-4741 {side chain, 2500}, KF-1002 {side chain, 4300}, X-22-3000T {Side chain, 250}, X-22-163 {both ends, 200}, KF-105 {both ends, 490}, X-22-163A {both ends, 1000}, X-22-163B {both ends, 1750}, X-22-163C {both ends, 2700}, X-22-169AS {both ends, 500}, X-22-169B {both ends, 1700}, X-22-173DX {one end, 4500} , X-22-9002 {side chain/both ends, 5000}
・信越化学工業株式会社製
X-22-343{側鎖、525}、KF-101{側鎖、350}、KF-1001{側鎖、3500}、X-22-2000{側鎖、620}、X-22-2046{側鎖、600}、KF-102{側鎖、3600}、X-22-4741{側鎖、2500}、KF-1002{側鎖、4300}、X-22-3000T{側鎖、250}、X-22-163{両末端、200}、KF-105{両末端、490}、X-22-163A{両末端、1000}、X-22-163B{両末端、1750}、X-22-163C{両末端、2700}、X-22-169AS{両末端、500}、X-22-169B{両末端、1700}、X-22-173DX{片末端、4500}、X-22-9002{側鎖・両末端、5000} Epoxy-modified polysiloxane can be easily obtained from the market, and the following commercial products {modified position, epoxy equivalent} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. X-22-343 {side chain, 525}, KF-101 {side chain, 350}, KF-1001 {side chain, 3500}, X-22-2000 {side chain, 620} , X-22-2046 {side chain, 600}, KF-102 {side chain, 3600}, X-22-4741 {side chain, 2500}, KF-1002 {side chain, 4300}, X-22-3000T {Side chain, 250}, X-22-163 {both ends, 200}, KF-105 {both ends, 490}, X-22-163A {both ends, 1000}, X-22-163B {both ends, 1750}, X-22-163C {both ends, 2700}, X-22-169AS {both ends, 500}, X-22-169B {both ends, 1700}, X-22-173DX {one end, 4500} , X-22-9002 {side chain/both ends, 5000}
・東レ・ダウコーニング株式会社製
FZ-3720{側鎖、1200}、BY 16-839{側鎖、3700}、SF 8411{側鎖、3200}、SF 8413{側鎖、3800}、SF 8421{側鎖、11000}、BY 16-876{側鎖、2800}、FZ-3736{側鎖、5000}、BY 16-855D{側鎖、180}、BY 16-8{側鎖、3700} -Toray Dow Corning Co., Ltd. FZ-3720 {side chain, 1200}, BY 16-839 {side chain, 3700}, SF 8411 {side chain, 3200}, SF 8413 {side chain, 3800}, SF 8421{ Side chain, 11000}, BY 16-876 {side chain, 2800}, FZ-3736 {side chain, 5000}, BY 16-855D {side chain, 180}, BY 16-8 {side chain, 3700}
FZ-3720{側鎖、1200}、BY 16-839{側鎖、3700}、SF 8411{側鎖、3200}、SF 8413{側鎖、3800}、SF 8421{側鎖、11000}、BY 16-876{側鎖、2800}、FZ-3736{側鎖、5000}、BY 16-855D{側鎖、180}、BY 16-8{側鎖、3700} -Toray Dow Corning Co., Ltd. FZ-3720 {side chain, 1200}, BY 16-839 {side chain, 3700}, SF 8411 {side chain, 3200}, SF 8413 {side chain, 3800}, SF 8421{ Side chain, 11000}, BY 16-876 {side chain, 2800}, FZ-3736 {side chain, 5000}, BY 16-855D {side chain, 180}, BY 16-8 {side chain, 3700}
アミノ変性シリコーンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、アミノ当量}が好ましく例示できる。
・信越化学工業株式会社製
KF-865{側鎖、5000}、KF-864{側鎖、3800}、KF-859{側鎖、6000}、KF-393{側鎖、350}、KF-860{側鎖、7600}、KF-880{側鎖、1800}、KF-8004{側鎖、1500}、KF-8002{側鎖、1700}、KF-8005{側鎖、11000}、KF-867{側鎖、1700}、X-22-3820W{側鎖、55000}、KF-869{側鎖、8800}、KF-861{側鎖、2000}、X-22-3939A{側鎖、1500}、KF-877{側鎖、5200}、PAM-E{両末端、130}、KF-8010{両末端、430}、X-22-161A{両末端、800}、X-22-161B{両末端、1500}、KF-8012{両末端、2200}、KF-8008{両末端、5700}、X-22-1660B-3{両末端、2200}、KF-857{側鎖、2200}、KF-8001{側鎖、1900}、KF-862{側鎖、1900}、X-22-9192{側鎖、6500} Amino-modified silicone can be easily obtained from the market and, for example, the following commercial products {modified position, amino equivalent} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. KF-86 {side chain, 5000}, KF-864 {side chain, 3800}, KF-859 {side chain, 6000}, KF-393 {side chain, 350}, KF-860 {Side chain, 7600}, KF-880 {Side chain, 1800}, KF-8004 {Side chain, 1500}, KF-8002 {Side chain, 1700}, KF-8005 {Side chain, 11000}, KF-867 {Side chain, 1700}, X-22-3820W {Side chain, 55000}, KF-869 {Side chain, 8800}, KF-861 {Side chain, 2000}, X-22-3939A {Side chain, 1500} , KF-877 {side chain, 5200}, PAM-E {both ends, 130}, KF-8010 {both ends, 430}, X-22-161A {both ends, 800}, X-22-161B {both End, 1500}, KF-8012 {both ends, 2200}, KF-8008 {both ends, 5700}, X-22-1660B-3 {both ends, 2200}, KF-857 {side chain, 2200}, KF -8001 {side chain, 1900}, KF-862 {side chain, 1900}, X-22-9192 {side chain, 6500}
・信越化学工業株式会社製
KF-865{側鎖、5000}、KF-864{側鎖、3800}、KF-859{側鎖、6000}、KF-393{側鎖、350}、KF-860{側鎖、7600}、KF-880{側鎖、1800}、KF-8004{側鎖、1500}、KF-8002{側鎖、1700}、KF-8005{側鎖、11000}、KF-867{側鎖、1700}、X-22-3820W{側鎖、55000}、KF-869{側鎖、8800}、KF-861{側鎖、2000}、X-22-3939A{側鎖、1500}、KF-877{側鎖、5200}、PAM-E{両末端、130}、KF-8010{両末端、430}、X-22-161A{両末端、800}、X-22-161B{両末端、1500}、KF-8012{両末端、2200}、KF-8008{両末端、5700}、X-22-1660B-3{両末端、2200}、KF-857{側鎖、2200}、KF-8001{側鎖、1900}、KF-862{側鎖、1900}、X-22-9192{側鎖、6500} Amino-modified silicone can be easily obtained from the market and, for example, the following commercial products {modified position, amino equivalent} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. KF-86 {side chain, 5000}, KF-864 {side chain, 3800}, KF-859 {side chain, 6000}, KF-393 {side chain, 350}, KF-860 {Side chain, 7600}, KF-880 {Side chain, 1800}, KF-8004 {Side chain, 1500}, KF-8002 {Side chain, 1700}, KF-8005 {Side chain, 11000}, KF-867 {Side chain, 1700}, X-22-3820W {Side chain, 55000}, KF-869 {Side chain, 8800}, KF-861 {Side chain, 2000}, X-22-3939A {Side chain, 1500} , KF-877 {side chain, 5200}, PAM-E {both ends, 130}, KF-8010 {both ends, 430}, X-22-161A {both ends, 800}, X-22-161B {both End, 1500}, KF-8012 {both ends, 2200}, KF-8008 {both ends, 5700}, X-22-1660B-3 {both ends, 2200}, KF-857 {side chain, 2200}, KF -8001 {side chain, 1900}, KF-862 {side chain, 1900}, X-22-9192 {side chain, 6500}
・東レ・ダウコーニング株式会社製
FZ-3707{側鎖、1500}、FZ-3504{側鎖、1000}、BY 16-205{側鎖、4000}、FZ-3760{側鎖、1500}、FZ-3705{側鎖、4000}、BY 16-209{側鎖、1800}、FZ-3710{側鎖、1800}、SF 8417{側鎖、1800}、BY 16-849{側鎖、600}、BY 16-850{側鎖、3300}、BY 16-879B{側鎖、8000}、BY 16-892{側鎖、2000}、FZ-3501{側鎖、3000}、FZ-3785{側鎖、6000}、BY 16-872{側鎖、1800}、BY 16-213{側鎖、2700}、BY 16-203{側鎖、1900}、BY 16-898{側鎖、2900}、BY 16-890{側鎖、1900}、BY 16-893{側鎖、4000}、FZ-3789{側鎖、1900}、BY 16-871{両末端、130}、BY 16-853C{両末端、360}、BY 16-853U{両末端、450} -Toray Dow Corning Co., Ltd. FZ-3707 {side chain, 1500}, FZ-3504 {side chain, 1000}, BY 16-205 {side chain, 4000}, FZ-3760 {side chain, 1500}, FZ -3705 {side chain, 4000}, BY 16-209 {side chain, 1800}, FZ-3710 {side chain, 1800}, SF 8417 {side chain, 1800}, BY 16-849 {side chain, 600}, BY 16-850 {side chain, 3300}, BY 16-879B {side chain, 8000}, BY 16-892 {side chain, 2000}, FZ-3501 {side chain, 3000}, FZ-3785 {side chain, 6000}, BY 16-872 {side chain, 1800}, BY 16-213 {side chain, 2700}, BY 16-203 {side chain, 1900}, BY 16-898 {side chain, 2900}, BY 16- 890 {side chain, 1900}, BY 16-893 {side chain, 4000}, FZ-3789 {side chain, 1900}, BY 16-871 {both ends, 130}, BY 16-853C {both ends, 360} , BY 16-853U {both ends, 450}
FZ-3707{側鎖、1500}、FZ-3504{側鎖、1000}、BY 16-205{側鎖、4000}、FZ-3760{側鎖、1500}、FZ-3705{側鎖、4000}、BY 16-209{側鎖、1800}、FZ-3710{側鎖、1800}、SF 8417{側鎖、1800}、BY 16-849{側鎖、600}、BY 16-850{側鎖、3300}、BY 16-879B{側鎖、8000}、BY 16-892{側鎖、2000}、FZ-3501{側鎖、3000}、FZ-3785{側鎖、6000}、BY 16-872{側鎖、1800}、BY 16-213{側鎖、2700}、BY 16-203{側鎖、1900}、BY 16-898{側鎖、2900}、BY 16-890{側鎖、1900}、BY 16-893{側鎖、4000}、FZ-3789{側鎖、1900}、BY 16-871{両末端、130}、BY 16-853C{両末端、360}、BY 16-853U{両末端、450} -Toray Dow Corning Co., Ltd. FZ-3707 {side chain, 1500}, FZ-3504 {side chain, 1000}, BY 16-205 {side chain, 4000}, FZ-3760 {side chain, 1500}, FZ -3705 {side chain, 4000}, BY 16-209 {side chain, 1800}, FZ-3710 {side chain, 1800}, SF 8417 {side chain, 1800}, BY 16-849 {side chain, 600}, BY 16-850 {side chain, 3300}, BY 16-879B {side chain, 8000}, BY 16-892 {side chain, 2000}, FZ-3501 {side chain, 3000}, FZ-3785 {side chain, 6000}, BY 16-872 {side chain, 1800}, BY 16-213 {side chain, 2700}, BY 16-203 {side chain, 1900}, BY 16-898 {side chain, 2900}, BY 16- 890 {side chain, 1900}, BY 16-893 {side chain, 4000}, FZ-3789 {side chain, 1900}, BY 16-871 {both ends, 130}, BY 16-853C {both ends, 360} , BY 16-853U {both ends, 450}
これらの混合物としては、ポリジメチルシロキサンとカルボキシル変性ポリシロキサンとの混合物、及びポリエーテル変性ポリシロキサンとアミノ変性ポリシロキサンとの混合物等が挙げられる。
Examples of the mixture include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane, and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
ポリシロキサンである疎水性物質(c2)の粘度(mPa・s、25℃)は、10~5000が好ましく、さらに好ましくは15~3000、特に好ましくは20~1500である。10~5000の範囲であると、吸収特性がさらに良好となる。なお、粘度は、JIS Z8803-1991「液体の粘度」9.円すい及び円すい-平板形回転粘度計による粘度測定法に準拠して測定される{たとえば、25.0±0.5℃に温度調節したE型粘度計(東機産業株式会社製RE80L、半径7mm、角度5.24×10-2radの円すい型コーン)を用いて測定される。}。
The viscosity (mPa·s, 25° C.) of the hydrophobic substance (c2), which is a polysiloxane, is preferably 10 to 5000, more preferably 15 to 3000, and particularly preferably 20 to 1500. When it is in the range of 10 to 5000, the absorption property is further improved. The viscosity is JIS Z8803-1991 “Liquid viscosity”. Measured according to the viscosity measurement method using a cone and a cone-plate type rotational viscometer {for example, an E-type viscometer whose temperature is adjusted to 25.0±0.5° C. (RE80L manufactured by Toki Sangyo Co., Ltd., radius 7 mm , Cone cone with an angle of 5.24×10 −2 rad). }.
これらのゲルブロッキング防止剤(c)のうち、粗大粒子低減の観点から、長鎖脂肪酸エステル、長鎖脂肪酸塩、長鎖脂肪酸族アルコール、ポリシロキサンである疎水性物質が好ましく、さらに好ましくはショ糖ステアリン酸エステル、ステアリン酸Mg、ステアリルアルコール、アミノ変性ポリシロキサン、カルボキシ変性ポリシロキサン、特に好ましくはショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ステアリン酸Mg、ステアリルアルコール、アミノ変性ポリシロキサンである。
Of these gel blocking inhibitors (c), from the viewpoint of reducing coarse particles, a long-chain fatty acid ester, a long-chain fatty acid salt, a long-chain fatty acid alcohol, and a hydrophobic substance such as polysiloxane are preferable, and sucrose is more preferable. Stearic acid ester, Mg stearate, stearyl alcohol, amino-modified polysiloxane, carboxy-modified polysiloxane, particularly preferably sucrose stearate monoester, sucrose stearate diester, Mg stearate, stearyl alcohol, amino-modified polysiloxane. ..
ゲルブロッキング防止剤(c)を添加する工程としては、後述する乾燥工程以前であれば特に制限はないが、ゲルブロッキング防止剤(c)による粗大粒子低減の観点から、好ましくは重合工程又はゲル粉砕工程で、更に好ましくはゲル粉砕工程で、特に好ましくは、ゲル粉砕工程においてゲル粉砕前又はゲル粉砕中にゲルブロッキング防止剤(c)を添加する方法が好ましい。
The step of adding the gel blocking inhibitor (c) is not particularly limited as long as it is before the drying step described later, but from the viewpoint of reducing coarse particles by the gel blocking inhibitor (c), it is preferably a polymerization step or gel pulverization. In the step, more preferably in the gel crushing step, particularly preferably in the gel crushing step, a method of adding the gel blocking inhibitor (c) before or during the gel crushing is preferable.
ゲルブロッキング防止剤(c)の添加量(重量%)は、架橋重合体(A)の重量に基づいて、0.05~5.0が好ましく、さらに好ましくは0.08~1.0、特に好ましくは0.1~0.5である。0.05未満では粗大粒子低減の効果が不十分となり、平均真球度が低くなりやすく、5.0より高いと粗大粒子低減の効果が添加量に見合わず不経済であるばかりでなく、吸収特性が悪化する場合がある。
The addition amount (% by weight) of the gel blocking inhibitor (c) is preferably 0.05 to 5.0, more preferably 0.08 to 1.0, particularly preferably 0.08 to 1.0, based on the weight of the crosslinked polymer (A). It is preferably 0.1 to 0.5. If it is less than 0.05, the effect of reducing coarse particles becomes insufficient and the average sphericity tends to be low, and if it is higher than 5.0, not only the effect of reducing coarse particles does not correspond to the addition amount but it is uneconomical. Absorption characteristics may deteriorate.
乾燥工程は、前記のゲル粉砕工程により得られた含水ゲル粒子を乾燥し、架橋重合体(A)を含有する乾燥粉体を得る工程である。その際、乾燥工程前のゲルの固形分濃度は10~55%が好ましく、25~45%が更に好ましい。固形分濃度が10~55%の範囲より低いと生産性が悪くなり、この範囲より高いと粉砕に必要なエネルギーが高くなりすぎるため粉砕装置が破損する可能性がある。
The drying step is a step of drying the hydrogel particles obtained by the gel crushing step to obtain a dry powder containing the crosslinked polymer (A). At that time, the solid content concentration of the gel before the drying step is preferably 10 to 55%, more preferably 25 to 45%. If the solid content concentration is lower than the range of 10 to 55%, the productivity will be poor, and if it is higher than this range, the energy required for the pulverization will be too high and the pulverization device may be damaged.
本発明の吸水性樹脂粒子の製造方法は、乾燥工程で攪拌式乾燥機を用いて乾燥を行う。攪拌式乾燥機を用いることで、乾燥中の含水ゲル粒子の凝集を防止し、乾燥後に得られる乾燥粉体中の粗大粒子の量を抑制し、後述粉砕工程において平均真球度の高く、かつ耐衝撃性試験後の平均真球度の変化幅を小さくするができる。
In the method for producing water-absorbent resin particles of the present invention, drying is performed using a stirring dryer in the drying process. By using a stirring dryer, to prevent aggregation of hydrogel particles during drying, to suppress the amount of coarse particles in the dry powder obtained after drying, high average sphericity in the pulverization step described later, and The change width of the average sphericity after the impact resistance test can be reduced.
本発明において、攪拌式乾燥機は乾燥される含水ゲル粒子が攪拌される状態であれば制限はなく、攪拌翼、回転容器、気流等の攪拌手段を有する形態であればよい。具体的な攪拌乾燥機としては、例えば溝型攪拌乾燥機、回転式乾燥機、円盤型乾燥機、ナウター型乾燥機、流動層式乾燥機、気流乾燥機等が挙げられる。これらのうち、ゲル粒子の凝集防止及び操作便利性の観点から、攪拌翼、回転容器の攪拌手段を有する攪拌式乾燥機が好ましい。
In the present invention, the agitating dryer is not limited as long as the hydrogel particles to be dried are agitated, and may have a form having an agitating means such as an agitating blade, a rotating container, and an air flow. Specific stirring dryers include, for example, groove-type stirring dryers, rotary dryers, disk dryers, Nauta-type dryers, fluidized-bed dryers, and airflow dryers. Among these, from the viewpoint of preventing aggregation of gel particles and convenience of operation, a stirring dryer having a stirring blade and a stirring means for a rotating container is preferable.
また、乾燥機の加熱手段としては乾燥に必要な熱量を加えることができる手段であれば制限はなく、例えば対流伝熱、伝導伝熱、マイクロ波、赤外線等による加熱手段が挙げられる。
Also, the heating means of the dryer is not limited as long as it can add the amount of heat required for drying, and examples thereof include heating means by convective heat transfer, conductive heat transfer, microwaves, infrared rays, and the like.
上記攪拌式乾燥機での乾燥温度は、乾燥効率及び架橋重合体の熱劣化の観点から、好ましくは100~230℃、さらに好ましくは120~200℃である。なお、熱風を導入して乾燥する場合には、乾燥させるゲル粒子の含水率にもよるが、乾燥速度の向上の観点から熱風温度を高くすることができ、好ましくは100~400℃、さらに好ましくは200~400℃である。
The drying temperature in the above-mentioned agitating dryer is preferably 100 to 230°C, more preferably 120 to 200°C from the viewpoint of drying efficiency and thermal deterioration of the crosslinked polymer. In the case of introducing hot air for drying, the hot air temperature can be increased from the viewpoint of improving the drying rate, though it depends on the water content of the gel particles to be dried, and is preferably 100 to 400° C., more preferably Is 200 to 400°C.
溶媒に水を含む場合、架橋重合体(A)の乾燥粉体の含水率(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、更に好ましくは1~15、特に好ましくは2~13、最も好ましくは3~12である。0~20の範囲であると、吸収性能が更に良好となる。
When the solvent contains water, the water content (% by weight) of the dry powder of the crosslinked polymer (A) is preferably 0 to 20 and more preferably 1 to 15 based on the weight of the crosslinked polymer (A). , Particularly preferably 2 to 13, and most preferably 3 to 12. When it is in the range of 0 to 20, the absorption performance is further improved.
溶媒に有機溶媒を含む場合、架橋重合体(A)の乾燥粉体の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10が好ましく、更に好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。0~10の範囲であると、吸水性樹脂粒子の吸収性能が更に良好となる。
When the solvent contains an organic solvent, the content (% by weight) of the organic solvent in the dry powder of the crosslinked polymer (A) is preferably 0 to 10 based on the weight of the crosslinked polymer (A), and more preferably Is 0 to 5, particularly preferably 0 to 3, and most preferably 0-1. When it is in the range of 0 to 10, the absorbent performance of the water absorbent resin particles is further improved.
なお、有機溶媒の含有量及び水分は、赤外水分測定器[例えば、(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W]により加熱したときの測定試料の重量減量から求められる。
In addition, the content and water content of the organic solvent are measured by an infrared moisture meter [eg, JE400 manufactured by KETT Co., Ltd.: 120±5° C., 30 minutes, atmospheric humidity before heating 50±10% RH, lamp specification 100V]. , 40 W] and the weight loss of the measurement sample when heated.
なお、乾燥後その性能を損なわない範囲で残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。
After drying, some components such as residual solvent and residual crosslinking component may be included as long as the performance is not impaired.
乾燥後に得られる架橋重合体(A)の乾燥粉体の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は、50重量%以下であり、好ましくは45重量%以下、さらに好ましくは40重量%以下、特に好ましくは35%以下、最も好ましくは30重量%以下である。前記2.8mm以上の粒子径を有する粒子の重量割合が50重量%より高くなると、吸水性樹脂粒子の平均真球度が低く、かつ耐衝撃性試験後の平均真球度の変化幅が大きくなるおそれがある。一方、下限値は低いほど好ましく特に制限されないが、吸水性樹脂粒子の生産性の観点から、好ましくは0重量%以上、さらに好ましくは10重量%以上である。
The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dried powder of the crosslinked polymer (A) obtained after drying is 50% by weight or less, preferably 45% by weight or less, and more preferably It is 40% by weight or less, particularly preferably 35% or less, most preferably 30% by weight or less. When the weight ratio of the particles having a particle diameter of 2.8 mm or more is higher than 50% by weight, the average sphericity of the water-absorbent resin particles is low and the variation range of the average sphericity after the impact resistance test is large. There is a risk of becoming. On the other hand, the lower limit is preferably as low as possible and is not particularly limited, but from the viewpoint of productivity of the water absorbent resin particles, it is preferably 0% by weight or more, and more preferably 10% by weight or more.
なお、乾燥粉体の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンパニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から4.0mm、2.8mm、1.4mm並びに受け皿の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求める。4.0mm以上及び2.8mm以上粒子の合計重量分率を2.8mm以上の粒子径を有する粒子の重量割合とする。
The weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder is determined by using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006). It is measured by the method described in Ars Handbook 6th edition (MacGraw-Hill Book Company, 1984, p. 21). That is, the JIS standard sieve is assembled in the order of 4.0 mm, 2.8 mm, 1.4 mm and the pan from the top. About 50 g of the measurement particles are put into the uppermost sieve, and shaken for 5 minutes with a low tap test sieve shaker. The weight of the measured particles on each sieve and the pan is weighed, and the total weight is set to 100% by weight to obtain the weight fraction of the particles on each sieve. The total weight fraction of particles of 4.0 mm or more and 2.8 mm or more is defined as the weight ratio of particles having a particle diameter of 2.8 mm or more.
架橋重合体(A)を含有する樹脂粒子は、粉砕及び/又は分級することで粒度および粒度分布が調整される。粉砕する方法については、特に限定はなく、公知の粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機等)が使用できる。これらの内、粒度分布を制御する観点からロール式粉砕機が好ましい。また、粒度分布を制御するために分級後に篩上品を再度粉砕しても良い。篩上品を再度粉砕する場合には、それぞれの粉砕機は同じであっても異なる粉砕機を用いても良く、違う種類の粉砕機を用いても良い。
The particle size and particle size distribution of the resin particles containing the crosslinked polymer (A) are adjusted by crushing and/or classification. The method of crushing is not particularly limited, and a known crushing device (for example, a hammer crusher, an impact crusher, a roll crusher, a shett airflow crusher, etc.) can be used. Among these, a roll type crusher is preferable from the viewpoint of controlling the particle size distribution. Further, in order to control the particle size distribution, the sieved product may be pulverized again after the classification. When the sieved product is pulverized again, the pulverizers may be the same or different, or different types of pulverizers may be used.
分級する方法については、粉砕された樹脂粒子の粒度分布を制御するために、特定の目開きの篩を複数もしくは単独で用い分級しても良い。分級装置は特に限定されないが、振動篩、面内運動篩、可動網式篩、強制撹拌篩、音波篩等の公知の方法が用いられ、好ましくは振動篩、面内運動篩が用いられる。樹脂粒子の粒度分布を制御するためには、特定の目開きの篩上に残存した粒子(篩上品)と特定の目開きの篩を通過した粒子(篩下品)の一部またはすべてを除去することが好ましい。
Regarding the classification method, in order to control the particle size distribution of the crushed resin particles, a plurality of sieves with specific openings may be used or a single sieve may be used for classification. The classifying device is not particularly limited, but a known method such as a vibrating screen, an in-plane moving screen, a movable mesh screen, a forced stirring screen, and a sonic screen is used, and a vibrating screen and an in-plane moving screen are preferably used. In order to control the particle size distribution of resin particles, some or all of the particles remaining on the sieve with a specific opening (sieving product) and particles that have passed through the sieve with a specific opening (subsidiary product) are removed. It is preferable.
粉砕及び/又は分級して得られる架橋重合体(A)を含有する樹脂粒子の重量平均粒子径(μm)は、200~450が好ましく、更に好ましくは200~400、特に好ましくは200~370である。200~450の範囲より大きいと、吸水性樹脂粒子の平均真球度が低くなりやすく、かつ耐衝撃性試験後の平均真球度の変化幅が大きくなりやすい。一方、この範囲より小さいと、粒子の流動性が悪化、おむつ生産時に添加量のブレが起こりやすい。
The weight average particle diameter (μm) of the resin particles containing the crosslinked polymer (A) obtained by pulverization and/or classification is preferably 200 to 450, more preferably 200 to 400, and particularly preferably 200 to 370. is there. When it is larger than the range of 200 to 450, the average sphericity of the water-absorbent resin particles tends to be low, and the variation range of the average sphericity after the impact resistance test tends to be large. On the other hand, when the amount is smaller than this range, the fluidity of the particles is deteriorated, and the addition amount tends to be varied during the production of diapers.
なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンパニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。
The weight average particle size is determined by using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006), Perry's Chemical Engineers Handbook 6th edition (MacGlow Hill Book Company, 1984). , Page 21). That is, the JIS standard sieve is combined from the top in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and a saucer. About 50 g of the measurement particles are put into the uppermost sieve, and shaken for 5 minutes with a low tap test sieve shaker. The weight of the measured particles on each sieve and the pan is weighed, and the total is taken as 100% by weight to obtain the weight fraction of the particles on each sieve. This value is used as a logarithmic probability paper [the horizontal axis is the sieve opening (particle size ), and the vertical axis is the weight fraction], and then a line connecting the points is drawn to obtain the particle diameter corresponding to a weight fraction of 50% by weight, which is taken as the weight average particle diameter.
本発明の吸水性樹脂粒子は、架橋重合体(A)を含有する樹脂粒子が表面架橋剤(d)により表面架橋された構造を有する。表面架橋剤により表面架橋された構造を有することにより、吸収特性(通液速度や荷重下吸収量等)を上げることができる。
The water-absorbent resin particles of the present invention have a structure in which the resin particles containing the crosslinked polymer (A) are surface-crosslinked with the surface crosslinking agent (d). By having a structure that has been surface-crosslinked with the surface-crosslinking agent, it is possible to improve the absorption characteristics (liquid passing speed, absorption amount under load, etc.).
本発明の製造方法において、架橋重合体(A)を含有する樹脂粒子を表面架橋剤により表面架橋処理する工程における表面架橋剤(d)としては、公知{特開昭59-189103号公報、特開昭58-180233号公報、特開昭61-16903号公報、特開昭61-211305号公報、特開昭61-252212号公報、特開昭51-136588号公報及び特開昭61-257235号公報等}の表面架橋剤{多価グリシジル、多価アルコール、多価アミン、多価アジリジン、多価イソシアネート、シランカップリング剤及び多価金属等}等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル、多価アルコール及び多価アミンが好ましく、さらに好ましくは多価グリシジル及び多価アルコール、特に好ましくは多価グリシジル、最も好ましくはエチレングリコールジグリシジルエーテルである。
In the production method of the present invention, as the surface cross-linking agent (d) in the step of subjecting the resin particles containing the cross-linked polymer (A) to the surface cross-linking treatment with the surface cross-linking agent, there are known {JP-A-59-189103, JP-A-58-180233, JP-A-61-16903, JP-A-61-2111305, JP-A-61-252212, JP-A-51-136588 and JP-A-61-257235. The surface cross-linking agent {polyhydric glycidyl, polyhydric alcohol, polyhydric amine, polyhydric aziridine, polyhydric isocyanate, silane coupling agent, polyhydric metal, etc.} can be used. Of these surface cross-linking agents, from the viewpoints of economic efficiency and absorption characteristics, polyhydric glycidyl, polyhydric alcohols and polyhydric amines are preferred, more preferably polyhydric glycidyls and polyhydric alcohols, particularly preferably polyhydric glycidyl, most preferred. Preferred is ethylene glycol diglycidyl ether.
表面架橋剤の使用量(重量%)は、表面架橋剤の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、架橋重合体(A)を含有する樹脂粒子の重量に基づいて、0.001~3が好ましく、さらに好ましくは0.005~2、特に好ましくは0.01~1である。
The amount (% by weight) of the surface cross-linking agent is not particularly limited as it can be variously changed depending on the type of the surface cross-linking agent, the conditions for cross-linking, the target performance, etc. The amount is preferably 0.001 to 3, more preferably 0.005 to 2, and particularly preferably 0.01 to 1, based on the weight of the resin particles containing the aggregate (A).
表面架橋剤により表面架橋をする方法は、公知{たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報}の方法が適用できる。
As a method for surface-crosslinking with a surface-crosslinking agent, known methods (for example, Japanese Patent No. 36485553, Japanese Patent Laid-Open No. 2003-165883, Japanese Patent Laid-Open No. 2005-75982, Japanese Patent Laid-Open No. 2005-95759) can be applied. ..
表面架橋剤により表面架橋する工程を行った後、更に篩別して粒度調整しても良い。
After the step of surface cross-linking with a surface cross-linking agent, it may be further sieved to adjust the particle size.
本発明の吸水性樹脂粒子は、必要により無機微粒子及び/又は多価金属塩を含んでいてもよい。従って、本発明の製造方法は、架橋重合体(A)を含有する樹脂粒子を無機微粒子及び/又は多価金属塩により表面処理する工程を含んでも良い。無機微粒子及び/又は多価金属塩を含有することで、吸水性樹脂粒子の通液性や耐ブロッキング性が向上する。
The water-absorbent resin particles of the present invention may optionally contain inorganic fine particles and/or polyvalent metal salt. Therefore, the production method of the present invention may include a step of surface-treating the resin particles containing the crosslinked polymer (A) with the inorganic fine particles and/or the polyvalent metal salt. By containing the inorganic fine particles and/or the polyvalent metal salt, the liquid permeability and blocking resistance of the water absorbent resin particles are improved.
無機微粒子としては、シリカ、アルミナ、ジルコニア、チタニア、酸化亜鉛、タルク等が挙げられる。また、多価金属塩としては、マグネシウム、カルシウム、ジルコニウム、アルミニウム及びチタニウムからなる群から選ばれる少なくとも1種の金属と前記の無機酸又は有機酸との塩が挙げられる。これらのうち、好ましくはシリカ、アルミナ、硫酸アルミニウム、硫酸ナトリウムアルミニウム、乳酸アルミニウムである。これらは1種を単独で用いても良いし、2種以上を併用しても良い。
Examples of the inorganic fine particles include silica, alumina, zirconia, titania, zinc oxide, talc and the like. Examples of the polyvalent metal salt include salts of at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum and titanium with the above-mentioned inorganic acid or organic acid. Of these, silica, alumina, aluminum sulfate, sodium aluminum sulfate, and aluminum lactate are preferable. These may be used alone or in combination of two or more.
無機微粒子又は多価金属塩の使用量(重量%)は、吸収性能(特に、通液性や耐ブロッキング性)の観点から、架橋重合体(A)を含有する樹脂粒子の重量に基づいて、0.01~2.0が好ましく、更に好ましくは0.05~1.0である。
The amount (% by weight) of the inorganic fine particles or the polyvalent metal salt used is based on the weight of the resin particles containing the crosslinked polymer (A), from the viewpoint of absorption performance (particularly, liquid permeability and blocking resistance). It is preferably 0.01 to 2.0, more preferably 0.05 to 1.0.
無機微粒子及び/又は多価金属塩により表面処理する場合、無機微粒子及び/又は多価金属塩と混合する工程は、上記の表面架橋剤により表面架橋をする工程前、上記工程後、及び上記工程と同時のいずれにおいても行うことができる。
When the surface treatment is performed with the inorganic fine particles and/or the polyvalent metal salt, the step of mixing with the inorganic fine particles and/or the polyvalent metal salt is performed before the step of surface cross-linking with the surface cross-linking agent, after the step, and the step It can be performed at any one of the same time.
本発明の製造方法において、無機微粒子及び/又は多価金属塩により表面処理する工程を行った後、更に粒度調整を行っても良い。
In the production method of the present invention, the particle size may be further adjusted after the step of performing the surface treatment with the inorganic fine particles and/or the polyvalent metal salt.
本発明の吸水性樹脂粒子には、他の添加剤{たとえば、公知(特開2003-225565号、特開2006-131767号等)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤及び有機質繊維状物等}を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A)含有する樹脂粒子の重量に基づいて、0.001~10が好ましく、さらに好ましくは0.01~5、特に好ましくは0.05~1、最も好ましくは0.1~0.5である。
In the water-absorbent resin particles of the present invention, other additives (for example, known antiseptics, antifungal agents, antibacterial agents, antioxidants, ultraviolet rays, etc. (JP 2003-225565, JP 2006-131767, etc.) Absorbents, colorants, fragrances, deodorants, organic fibrous substances, etc.} can also be included. When these additives are contained, the content (% by weight) of the additive is preferably 0.001 to 10 and more preferably 0.01 based on the weight of the resin particles containing the crosslinked polymer (A). -5, particularly preferably 0.05-1 and most preferably 0.1-0.5.
本発明の吸水性樹脂粒子の粒子形状は、不定形破砕状である。粒子形状が不定形破砕状であることで、吸水速度が高い(特にVortex法による吸水時間が短い)吸水性樹脂粒子が得られるだけでなく、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から好ましい。また、粒子形状は不定形破砕状である限り、それらの凝集物(又は造粒物)であっても、それらの多孔構造物であっても良い。従って、例えば逆相懸濁重合法で製造されるような真球状の形状でないことが好ましい。なお、好ましい吸水性樹脂粒子の平均真球度については後述する。
The particle shape of the water-absorbent resin particles of the present invention is an irregular crushed shape. Due to the irregular crushed particle shape, not only water-absorbent resin particles with a high water absorption rate (especially short water absorption time by the Vortex method) can be obtained, but it also has good entanglement with fibrous materials such as paper diapers. It is preferable from the standpoint that there is no fear of falling off from the fibrous material. Further, the particle shape may be an aggregate (or granule) thereof or a porous structure thereof, as long as it has an irregular crushed shape. Therefore, it is preferably not a perfect spherical shape as produced by, for example, the reverse phase suspension polymerization method. The preferable average sphericity of the water-absorbent resin particles will be described later.
吸水性樹脂粒子の見掛け密度(g/ml)は、0.54~0.70が好ましく、さらに好ましくは0.56~0.68、特に好ましくは0.58~0.66である。0.54~0.70の範囲であると、吸収性能がさらに良好となる。なお、見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。
The apparent density (g/ml) of the water absorbent resin particles is preferably 0.54 to 0.70, more preferably 0.56 to 0.68, and particularly preferably 0.58 to 0.66. When it is in the range of 0.54 to 0.70, the absorption performance is further improved. The apparent density is measured at 25°C according to JIS K7365:1999.
吸水性樹脂粒子の平均真球度(SPHT)は0.800~0.900であり、好ましくは0.800~0.870、更に好ましくは0.800~0.850、最も好ましくは0.800~0.840である。0.800より小さい場合は後述する耐衝撃性試験後の平均真球度(SPHT)の変化幅が大きくなるだけでなく、SAP粒子の粒子間接触によるジャリジャリ又はゴツゴツする感触が増大し、吸収体の風合いが悪化する。また、0.900より大きい場合は、吸収体の繊維状物からの脱落が生ずる。吸水性樹脂粒子の平均真球度は、前述のとおり、乾燥後に得られる乾燥粉体の粗大粒子を低減することで制御できる。
The average sphericity (SPHT) of the water absorbent resin particles is 0.800 to 0.900, preferably 0.800 to 0.870, more preferably 0.800 to 0.850, most preferably 0.800. It is about 0.840. If it is less than 0.800, not only the variation range of the average sphericity (SPHT) after the impact resistance test described below becomes large, but also the feeling of jaggedness or lumpiness due to the contact between SAP particles increases, and Feels worse. On the other hand, when it is larger than 0.900, the absorbent body comes off from the fibrous material. The average sphericity of the water-absorbent resin particles can be controlled by reducing the coarse particles of the dry powder obtained after drying, as described above.
なお、平均真球度の測定方法は画像解析により測定サンプルの平均真球度を導く方法、例えばCamsizer(登録商標)image analysis system(Retsch Technology GmbH社製)を用いて測定することができる。すなわち、測定試料30.0gを少量ずつ自由落下させ、落下する測定サンプルをCCDカメラで連続的に撮影する。撮影した画像を解析することで測定サンプルの平均真球度を導く。分析点数N=3で導いた粒子平均真球度の算術平均値を本発明の平均真球度とする。
Note that the average sphericity can be measured by a method of deriving the average sphericity of the measurement sample by image analysis, for example, using a Camsizer (registered trademark) image analysis system (manufactured by Retsch Technology GmbH). That is, 30.0 g of the measurement sample is allowed to fall in small amounts, and the falling measurement sample is continuously photographed with a CCD camera. The average sphericity of the measurement sample is derived by analyzing the captured image. The arithmetic mean value of the average sphericity of the particles derived by the analysis point N=3 is defined as the average sphericity of the present invention.
耐衝撃性試験後の平均真球度(SPHT)の変化幅は0~0.015であり、好ましくは0~0.0130、更に好ましくは0~0.010である。0~0.015の範囲を外れると耐衝撃性試験後の吸水性樹脂粒子の物性低下が生じ、通液性や吸収速度が変化しやすくなる。吸水性樹脂粒子の耐衝撃性試験後の平均真球度の変化幅は、前述のとおり、乾燥後に得られる乾燥粉体の粗大粒子を低減することで制御できる。
The change range of the average sphericity (SPHT) after the impact resistance test is 0 to 0.015, preferably 0 to 0.0130, and more preferably 0 to 0.010. If it is out of the range of 0 to 0.015, the physical properties of the water-absorbent resin particles after the impact resistance test are deteriorated, and the liquid permeability and the absorption rate are easily changed. The change width of the average sphericity of the water absorbent resin particles after the impact resistance test can be controlled by reducing the coarse particles of the dry powder obtained after drying, as described above.
<耐衝撃性試験後の平均真球度(SPHT)の測定方法>
本発明の衝撃性試験後の平均真球度(SPHT)は、次の通り測定した。3L丸形セパラブルフラスコ(ASONE製)に吸水性樹脂粒子30gを投入し、前記セパラブルフラスコの上部に、中心部に6mmの穴を開けた目開き63μmのナイロン網(JIS Z8801-1:2000)を敷き、さらにその上に4つ口セパラブルカバー(ASONE製 主管TS29/42、側管TS24/40、24/40、15/35)をセットする。次に4つ口セパラブルカバーの主管TS29/42にステンレス製管(外径6mm、内径4mm)がナイロン網を貫通し、かつ先端が前記セパラブルフラスコ底面から45mmの位置となるようセットする。ステンレス製管のもう一方にはウレタンチューブ(長さ1500mm、内径8.5mm)を装備し、0.3MPa以上の圧力が達成できるエアーラインに接続する。次に圧力0.2MPaにてエアーラインを開け、3分間エアーブローした後、吸水性樹脂粒子を取り出す。この吸水性樹脂粒子を用いて、上述と同様にCamsizer(登録商標)image analysis system(Retsch Technology GmbH社製)を用いて耐衝撃試験後の平均真球度(SPHT)を測定する。なお、耐衝撃性試験後の平均真球度(SPHT)の変化幅は、次式より求められる。
(耐衝撃性試験後の平均真球度の変化幅)=(耐衝撃性試験後の平均真球度)-(耐衝撃性試験前の平均真球度) <Measurement method of average sphericity (SPHT) after impact resistance test>
The average sphericity (SPHT) after the impact test of the present invention was measured as follows. 30 g of water-absorbent resin particles was placed in a 3 L round separable flask (manufactured by ASONE), and a nylon net (JIS Z8801-1:2000) with an opening of 63 mm and a 6 mm hole in the center was placed in the upper part of the separable flask. ) Is placed, and a 4-port separable cover (main tube TS29/42 made by ASONE, side tubes TS24/40, 24/40, 15/35) is set on it. Next, a stainless steel pipe (outer diameter 6 mm,inner diameter 4 mm) was set in a TS29/42 main pipe having a 4-neck separable cover so that the nylon net penetrated through the nylon net and the tip was at a position 45 mm from the bottom surface of the separable flask. The other side of the stainless steel pipe is equipped with a urethane tube (length 1500 mm, inner diameter 8.5 mm) and connected to an air line capable of achieving a pressure of 0.3 MPa or more. Next, the air line is opened at a pressure of 0.2 MPa, and after air blowing for 3 minutes, the water absorbent resin particles are taken out. Using the water absorbent resin particles, the average sphericity (SPHT) after the impact resistance test is measured using the Camsizer (registered trademark) image analysis system (manufactured by Retsch Technology GmbH) as described above. The change width of the average sphericity (SPHT) after the impact resistance test is obtained by the following equation.
(Width of change in average sphericity after impact resistance test)=(Average sphericity after impact resistance test)-(Average sphericity before impact resistance test)
本発明の衝撃性試験後の平均真球度(SPHT)は、次の通り測定した。3L丸形セパラブルフラスコ(ASONE製)に吸水性樹脂粒子30gを投入し、前記セパラブルフラスコの上部に、中心部に6mmの穴を開けた目開き63μmのナイロン網(JIS Z8801-1:2000)を敷き、さらにその上に4つ口セパラブルカバー(ASONE製 主管TS29/42、側管TS24/40、24/40、15/35)をセットする。次に4つ口セパラブルカバーの主管TS29/42にステンレス製管(外径6mm、内径4mm)がナイロン網を貫通し、かつ先端が前記セパラブルフラスコ底面から45mmの位置となるようセットする。ステンレス製管のもう一方にはウレタンチューブ(長さ1500mm、内径8.5mm)を装備し、0.3MPa以上の圧力が達成できるエアーラインに接続する。次に圧力0.2MPaにてエアーラインを開け、3分間エアーブローした後、吸水性樹脂粒子を取り出す。この吸水性樹脂粒子を用いて、上述と同様にCamsizer(登録商標)image analysis system(Retsch Technology GmbH社製)を用いて耐衝撃試験後の平均真球度(SPHT)を測定する。なお、耐衝撃性試験後の平均真球度(SPHT)の変化幅は、次式より求められる。
(耐衝撃性試験後の平均真球度の変化幅)=(耐衝撃性試験後の平均真球度)-(耐衝撃性試験前の平均真球度) <Measurement method of average sphericity (SPHT) after impact resistance test>
The average sphericity (SPHT) after the impact test of the present invention was measured as follows. 30 g of water-absorbent resin particles was placed in a 3 L round separable flask (manufactured by ASONE), and a nylon net (JIS Z8801-1:2000) with an opening of 63 mm and a 6 mm hole in the center was placed in the upper part of the separable flask. ) Is placed, and a 4-port separable cover (main tube TS29/42 made by ASONE, side tubes TS24/40, 24/40, 15/35) is set on it. Next, a stainless steel pipe (outer diameter 6 mm,
(Width of change in average sphericity after impact resistance test)=(Average sphericity after impact resistance test)-(Average sphericity before impact resistance test)
本発明の吸水性樹脂粒子の重量平均粒子径(μm)は、200~450が好ましく、更に好ましくは200~400、特に好ましくは200~370である。200~450の範囲より大きいと、吸水性樹脂粒子の平均真球度が低くなりやすく、かつ耐衝撃性試験後の平均真球度の変化幅が大きくなる場合がある。一方、この範囲より小さいと、粒子の流動性が悪化、おむつ生産時に添加量のブレが起こりやすい。
The weight average particle diameter (μm) of the water absorbent resin particles of the present invention is preferably 200 to 450, more preferably 200 to 400, and particularly preferably 200 to 370. If it is larger than the range of 200 to 450, the average sphericity of the water-absorbent resin particles tends to be low, and the variation range of the average sphericity after the impact resistance test may be large. On the other hand, when the amount is smaller than this range, the fluidity of the particles is deteriorated, and the addition amount tends to be varied during the production of diapers.
本発明の吸水性樹脂粒子は、全吸水性樹脂粒子に対して、500μm以上の粒子径を有する粒子の重量割合は、5重量%以下が好ましく、更に好ましく3重量%以下である。5重量%より大きいと、吸水性樹脂粒子の平均真球度が低くなりやすく、かつ耐衝撃性試験後の平均真球度の変化幅が大きくなったり、SAP粒子の粒子間接触によるジャリジャリ又はゴツゴツする感触が増大し、吸収体の風合いが悪化する場合がある。
In the water-absorbent resin particles of the present invention, the weight ratio of particles having a particle diameter of 500 μm or more is preferably 5% by weight or less, more preferably 3% by weight or less, based on all the water-absorbent resin particles. When the content is more than 5% by weight, the average sphericity of the water-absorbent resin particles tends to be low, and the change width of the average sphericity after the impact resistance test becomes large, or the jaggies or lumps due to the contact between the SAP particles are lumpy or lumpy. The touching feeling may increase, and the texture of the absorber may deteriorate.
本発明の吸水性樹脂粒子は、全吸水性樹脂粒子に対して、150μm未満の粒子径を有する粒子の重量割合は、3重量%以下が好ましく、更に好ましくは1重量%以下である。3重量%より大きいと、ゲル通液速度が低下する場合がある。
In the water-absorbent resin particles of the present invention, the weight ratio of particles having a particle diameter of less than 150 μm is preferably 3% by weight or less, more preferably 1% by weight or less, based on all the water-absorbent resin particles. If it is more than 3% by weight, the gel flow rate may decrease.
本発明の吸水性樹脂粒子は、生理食塩水(0.9重量%食塩水。以下おなじ。)の保水量が好ましくは25~45g/gであり、更に好ましくは30~40g/gである。25~45g/gの範囲であると、吸収性物品の十分な吸収量を発揮し、通液速度と両立することができる。
The water-absorbent resin particles of the present invention preferably have a water retention capacity of physiological saline (0.9% by weight saline; the same below) of 25 to 45 g/g, more preferably 30 to 40 g/g. When it is in the range of 25 to 45 g/g, the absorbent article can exhibit a sufficient amount of absorption and can be compatible with the liquid passage rate.
本発明の吸水性樹脂粒子の生理食塩水によるゲル通液速度は、10ml/分以上が好ましく、更に好ましくは40ml/分以上であり、特に好ましくは70ml/分以上である。10ml/分より小さいと、吸収体への浸透速度が遅く、モレを生じる場合がある。上限値は高いほど好ましく特に制限されないが、保水量と両立する観点から、好ましくは1000ml/分以下であり、更に好ましくは500ml以下であり、特に好ましくは100ml以下である。
The gel permeation rate of the water-absorbent resin particles of the present invention with physiological saline is preferably 10 ml/min or more, more preferably 40 ml/min or more, and particularly preferably 70 ml/min or more. If it is less than 10 ml/min, the permeation rate into the absorbent is slow, and leakage may occur. The higher the upper limit, the more preferable it is not particularly limited, but from the viewpoint of compatibility with the water retention amount, it is preferably 1000 ml/min or less, more preferably 500 ml or less, and particularly preferably 100 ml or less.
本発明の吸水性樹脂粒子のVortex法による吸収速度は、45秒以下が好ましく、更に好ましくは40秒以下であり、特に好ましくは35秒以下である。45秒より大きいと、吸収体のモレが起こりやすくなる。下限値は低いほど好ましく特に制限されないが、平均真球度との両立の観点から、好ましくは10秒以上であり、更に好ましくは15秒以上である。
The absorption rate of the water-absorbent resin particles of the present invention by the Vortex method is preferably 45 seconds or less, more preferably 40 seconds or less, and particularly preferably 35 seconds or less. If it is longer than 45 seconds, the absorbent body tends to leak. The lower limit is preferably as low as possible and is not particularly limited, but from the viewpoint of compatibility with the average sphericity, it is preferably 10 seconds or more, more preferably 15 seconds or more.
本発明の吸水性樹脂粒子の含水率(重量%)は、0~20が好ましく、更に好ましくは1~15、特に好ましくは2~13、最も好ましくは3~12である。0~20の範囲であると、吸収性能が更に良好となり、耐衝撃性試験後の平均真球度の変化幅が小さくなる場合がある。
The water content (% by weight) of the water-absorbent resin particles of the present invention is preferably 0 to 20, more preferably 1 to 15, particularly preferably 2 to 13, and most preferably 3 to 12. When it is in the range of 0 to 20, the absorption performance may be further improved, and the change width of the average sphericity after the impact resistance test may be small.
本発明の吸水性樹脂粒子は、吸収性物品に含まれる吸収体を構成する。吸収体としては、吸水性樹脂粒子を単独で用いても良く、他の材料と共に用いて吸収体としても良い。他の材料としては繊維状物等が挙げられる。繊維状物と共に用いた場合の吸収体の構造及び製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等)と同様である。
The water-absorbent resin particles of the present invention form an absorbent body included in an absorbent article. As the absorber, water-absorbent resin particles may be used alone, or may be used together with other materials to form the absorber. Examples of other materials include fibrous materials. The structure and manufacturing method of the absorber when used together with the fibrous material are the same as known ones (JP 2003-225565 A, JP 2006-131767 A, JP 2005-097569 A, etc.). is there.
本発明の吸水性樹脂粒子を、繊維状物と共に吸収体とする場合、吸水性樹脂粒子と繊維の重量比率(吸水性樹脂粒子の重量/繊維の重量)は60/40~90/10が好ましく、更に好ましくは75/25~85/15である。
When the water-absorbent resin particles of the present invention are used as an absorbent body together with a fibrous material, the weight ratio of the water-absorbent resin particles to the fibers (weight of water-absorbent resin particles/weight of fibers) is preferably 60/40 to 90/10. , And more preferably 75/25 to 85/15.
吸収性物品としては、紙おむつや生理用ナプキン等の衛生用品のみならず、後述する各種水性液体の吸収や保持剤用途、ゲル化剤用途等の各種用途に使用されるものとして適用可能である。吸収性物品の製造方法等は、公知のもの(特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等に記載のもの)と同様である。
The absorbent article can be applied not only to hygiene products such as disposable diapers and sanitary napkins, but also to various applications such as absorption of various aqueous liquids described below, use as a retention agent, and use as a gelling agent. The manufacturing method of the absorbent article and the like are the same as known methods (the methods described in JP-A-2003-225565, JP-A-2006-131767 and JP-A-2005-097569).
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に定めない限り、部は重量部、%は重量%を示す。吸水性樹脂粒子の生理食塩水の保水量、生理食塩水によるゲル通液速度、Vortex法による吸収速度は以下の方法により測定した。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples. Unless otherwise specified, parts are parts by weight and% is% by weight. The water retention capacity of the water-absorbent resin particles in the physiological saline solution, the gel passing rate by the physiological saline solution, and the absorption rate by the Vortex method were measured by the following methods.
<生理食塩水の保水量の測定方法>
目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバッグを含めた重量(h1)を測定し次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とした。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバッグの重量を測定し(h2)とした。
生理食塩水の保水量(g/g)=(h1)-(h2) <Measurement method of water retention of physiological saline>
1.00 g of the measurement sample was placed in a tea bag (length 20 cm,width 10 cm) made of a nylon mesh with an opening of 63 μm (JIS Z8801-1:2006), and immersed in 1,000 ml of physiological saline without stirring for 1 hour. After that, it was hung for 15 minutes to drain water. Then, each tea bag was placed in a centrifuge, and then spin-dried at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including the tea bag was measured to determine the water retention amount from the following formula. The temperature of the physiological saline used and the measurement atmosphere was 25°C ± 2°C. The weight of the tea bag after centrifugal dehydration was measured as (h2) in the same manner as above except that the measurement sample was not used.
Retention capacity of physiological saline (g/g) = (h1)-(h2)
目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りした。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバッグを含めた重量(h1)を測定し次式から保水量を求めた。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とした。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバッグの重量を測定し(h2)とした。
生理食塩水の保水量(g/g)=(h1)-(h2) <Measurement method of water retention of physiological saline>
1.00 g of the measurement sample was placed in a tea bag (length 20 cm,
Retention capacity of physiological saline (g/g) = (h1)-(h2)
<生理食塩水によるゲル通液速度の測定方法>
図1及び図2で示される器具を用いて以下の操作により測定した。
測定試料0.32gを150ml生理食塩水1に30分間浸漬して膨潤ゲル粒子2を調製した。そして、垂直に立てた円筒3{直径(内径)25.4mm、長さ40cm、底部から60mlの位置及び40mlの位置にそれぞれ目盛り線4及び目盛り線5が設けてある。}の底部に、金網6(目開き106μm、JIS Z8801-1:2006)と、開閉自在のコック7(通液部の内径5mm)とを有する濾過円筒管内に、コック7を閉鎖した状態で、調製した膨潤ゲル粒子2を生理食塩水と共に移した後、この膨潤ゲル粒子2の上に円形金網8(目開き150μm、直径25mm)が金網面に対して垂直に結合する加圧軸9(重さ22g、長さ47cm)を金網と膨潤ゲル粒子とが接触するように載せ、更に加圧軸9におもり10(88.5g)を載せ、1分間静置した。引き続き、コック7を開き、濾過円筒管内の液面が60ml目盛り線4から40ml目盛り線5になるのに要する時間(T1;秒)を計測し、次式よりゲル通液速度(ml/分)を求めた。
生理食塩水によるゲル通液速度(ml/分)=20ml×60/(T1-T2)
なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃で行い、T2は測定試料の無い場合について上記と同様の操作により計測した時間である。 <Measurement method of gel permeation rate with physiological saline>
It measured by the following operations using the instrument shown in FIG. 1 and FIG.
Aswollen gel particle 2 was prepared by immersing 0.32 g of the measurement sample in 150 ml of physiological saline 1 for 30 minutes. Then, a vertically standing cylinder 3 {diameter (inner diameter) 25.4 mm, length 40 cm, graduation line 4 and graduation line 5 are provided at a position of 60 ml and 40 ml from the bottom, respectively. }, in the state where the cock 7 is closed in a filtration cylindrical tube having a wire mesh 6 (opening 106 μm, JIS Z8801-1:2006) and an openable/closable cock 7 (inner diameter of the liquid passage portion is 5 mm), After transferring the prepared swollen gel particles 2 together with a physiological saline solution, a circular wire netting 8 (opening 150 μm, diameter 25 mm) is attached onto the swollen gel particles 2 perpendicularly to the wire netting surface with a pressing shaft 9 (weight). 22 g and a length of 47 cm) were placed so that the wire net and the swollen gel particles were in contact with each other, and a weight 10 (88.5 g) was further placed on the pressure shaft 9 and left still for 1 minute. Subsequently, the cock 7 is opened, and the time (T1; seconds) required for the liquid level in the filtration cylindrical tube to change from the 60 ml scale line 4 to the 40 ml scale line 5 is measured, and the gel flow rate (ml/min) is calculated from the following formula. I asked.
Gel flow rate with physiological saline (ml/min)=20 ml×60/(T1-T2)
The temperature of the physiological saline used and the measurement atmosphere is 25° C.±2° C., and T2 is the time measured by the same operation as above in the case of no measurement sample.
図1及び図2で示される器具を用いて以下の操作により測定した。
測定試料0.32gを150ml生理食塩水1に30分間浸漬して膨潤ゲル粒子2を調製した。そして、垂直に立てた円筒3{直径(内径)25.4mm、長さ40cm、底部から60mlの位置及び40mlの位置にそれぞれ目盛り線4及び目盛り線5が設けてある。}の底部に、金網6(目開き106μm、JIS Z8801-1:2006)と、開閉自在のコック7(通液部の内径5mm)とを有する濾過円筒管内に、コック7を閉鎖した状態で、調製した膨潤ゲル粒子2を生理食塩水と共に移した後、この膨潤ゲル粒子2の上に円形金網8(目開き150μm、直径25mm)が金網面に対して垂直に結合する加圧軸9(重さ22g、長さ47cm)を金網と膨潤ゲル粒子とが接触するように載せ、更に加圧軸9におもり10(88.5g)を載せ、1分間静置した。引き続き、コック7を開き、濾過円筒管内の液面が60ml目盛り線4から40ml目盛り線5になるのに要する時間(T1;秒)を計測し、次式よりゲル通液速度(ml/分)を求めた。
生理食塩水によるゲル通液速度(ml/分)=20ml×60/(T1-T2)
なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃で行い、T2は測定試料の無い場合について上記と同様の操作により計測した時間である。 <Measurement method of gel permeation rate with physiological saline>
It measured by the following operations using the instrument shown in FIG. 1 and FIG.
A
Gel flow rate with physiological saline (ml/min)=20 ml×60/(T1-T2)
The temperature of the physiological saline used and the measurement atmosphere is 25° C.±2° C., and T2 is the time measured by the same operation as above in the case of no measurement sample.
<Vortex法による吸収速度>
100mlビーカーに50gの生理食塩水を入れ、25±2℃に温度調整を行った。次にスターラーピース(長さ30mm、中心部直径8mm、端部直径7mm)をビーカーの中央部に入れ、生理食塩水を600rpmで撹拌した。ビーカー壁面付近に測定試料2.000gを投入した。なお、使用する測定試料はその代表的粒子径の状態でサンプリングされるように、サンプルスプリッター等を用いて調整した。測定試料を投入し終わった時点から計測をスタートし、測定試料と生理食塩水とからなる混合液の液面が平らになる(液面からの乱反射光が消失する点)までの時間(秒)を吸収速度とした。なお、試験は25±3℃、60±5RH%の条件下で行った。 <Absorption rate by Vortex method>
50 g of physiological saline was put into a 100 ml beaker, and the temperature was adjusted to 25±2°C. Next, a stirrer piece (length 30 mm,central diameter 8 mm, end diameter 7 mm) was put in the central portion of the beaker, and physiological saline was stirred at 600 rpm. 2.000 g of the measurement sample was put in the vicinity of the beaker wall surface. The measurement sample to be used was adjusted by using a sample splitter or the like so as to be sampled in the state of its typical particle size. The measurement starts from the time when the measurement sample has been added, and the time (seconds) until the liquid surface of the mixed solution consisting of the measurement sample and physiological saline becomes flat (the point at which diffused light from the liquid surface disappears) Was taken as the absorption rate. The test was conducted under the conditions of 25±3° C. and 60±5 RH%.
100mlビーカーに50gの生理食塩水を入れ、25±2℃に温度調整を行った。次にスターラーピース(長さ30mm、中心部直径8mm、端部直径7mm)をビーカーの中央部に入れ、生理食塩水を600rpmで撹拌した。ビーカー壁面付近に測定試料2.000gを投入した。なお、使用する測定試料はその代表的粒子径の状態でサンプリングされるように、サンプルスプリッター等を用いて調整した。測定試料を投入し終わった時点から計測をスタートし、測定試料と生理食塩水とからなる混合液の液面が平らになる(液面からの乱反射光が消失する点)までの時間(秒)を吸収速度とした。なお、試験は25±3℃、60±5RH%の条件下で行った。 <Absorption rate by Vortex method>
50 g of physiological saline was put into a 100 ml beaker, and the temperature was adjusted to 25±2°C. Next, a stirrer piece (length 30 mm,
<耐衝撃性試験後の平均真球度(SPHT)の測定>
上述の測定方法で測定した。 <Measurement of average sphericity (SPHT) after impact resistance test>
It measured by the above-mentioned measuring method.
上述の測定方法で測定した。 <Measurement of average sphericity (SPHT) after impact resistance test>
It measured by the above-mentioned measuring method.
<ゲル通液速度変化率>
ゲル通液速度変化率は、下記式により求めた。なお、下記式において、耐衝撃性試験後のゲル通液速度は、前述した耐衝撃性試験後の平均真球度(SPHT)を測定したものと同じサンプルを使用して、生理食塩水によるゲル通液速度を測定した。
(ゲル通液速度変化率[%])={(吸水性樹脂粒子のゲル通液速度[ml/分])-(耐衝撃性試験後のゲル通液速度[ml/分])}/(吸水性樹脂粒子のゲル通液速度[ml/分])×100 <Gel flow rate change rate>
The rate of change of the gel flow rate was determined by the following formula. In the following formula, the gel flow rate after the impact resistance test was carried out by using the same sample as that used in the measurement of the average sphericity (SPHT) after the impact resistance test described above, and the gel with physiological saline was used. The liquid passing rate was measured.
(Gel flow rate [%])={(gel flow rate of water-absorbent resin particles [ml/min])-(gel flow rate after impact test [ml/min])}/( Gel flow rate of water-absorbent resin particles [ml/min])×100
ゲル通液速度変化率は、下記式により求めた。なお、下記式において、耐衝撃性試験後のゲル通液速度は、前述した耐衝撃性試験後の平均真球度(SPHT)を測定したものと同じサンプルを使用して、生理食塩水によるゲル通液速度を測定した。
(ゲル通液速度変化率[%])={(吸水性樹脂粒子のゲル通液速度[ml/分])-(耐衝撃性試験後のゲル通液速度[ml/分])}/(吸水性樹脂粒子のゲル通液速度[ml/分])×100 <Gel flow rate change rate>
The rate of change of the gel flow rate was determined by the following formula. In the following formula, the gel flow rate after the impact resistance test was carried out by using the same sample as that used in the measurement of the average sphericity (SPHT) after the impact resistance test described above, and the gel with physiological saline was used. The liquid passing rate was measured.
(Gel flow rate [%])={(gel flow rate of water-absorbent resin particles [ml/min])-(gel flow rate after impact test [ml/min])}/( Gel flow rate of water-absorbent resin particles [ml/min])×100
<Vortex法による吸収速度変化率>
Vortex法による吸収速度変化率は、下記式により求められる。なお、下記式において、耐衝撃性試験後のVortex法による吸収速度は、前述した耐衝撃性試験後の平均真球度(SPHT)を測定したものと同じサンプルを使用して、Vortex法による吸収速度を測定した。
(Vortex法による吸収速度変化率[%])={(吸水性樹脂粒子のVortex法による吸収速度[秒])-(耐衝撃性試験後のVortex法による吸収速度[秒])}/(吸水性樹脂粒子のVortex法による吸収速度[秒])×100 <Change rate of absorption rate by Vortex method>
The rate of change in absorption rate by the Vortex method is calculated by the following formula. In the following formula, the absorption rate by the Vortex method after the impact resistance test is the absorption rate by the Vortex method using the same sample as the one that was used to measure the average sphericity (SPHT) after the impact resistance test described above. The speed was measured.
(Change rate of absorption rate by Vortex method [%])={(Absorption rate of water absorbent resin particles by Vortex method [sec])-(Absorption rate by Vortex method after impact test [sec])}/(Water absorption Speed of absorbing resin particles by Vortex method [sec])×100
Vortex法による吸収速度変化率は、下記式により求められる。なお、下記式において、耐衝撃性試験後のVortex法による吸収速度は、前述した耐衝撃性試験後の平均真球度(SPHT)を測定したものと同じサンプルを使用して、Vortex法による吸収速度を測定した。
(Vortex法による吸収速度変化率[%])={(吸水性樹脂粒子のVortex法による吸収速度[秒])-(耐衝撃性試験後のVortex法による吸収速度[秒])}/(吸水性樹脂粒子のVortex法による吸収速度[秒])×100 <Change rate of absorption rate by Vortex method>
The rate of change in absorption rate by the Vortex method is calculated by the following formula. In the following formula, the absorption rate by the Vortex method after the impact resistance test is the absorption rate by the Vortex method using the same sample as the one that was used to measure the average sphericity (SPHT) after the impact resistance test described above. The speed was measured.
(Change rate of absorption rate by Vortex method [%])={(Absorption rate of water absorbent resin particles by Vortex method [sec])-(Absorption rate by Vortex method after impact test [sec])}/(Water absorption Speed of absorbing resin particles by Vortex method [sec])×100
<異物感の評価方法>
モニター10名に対して、触感による異物感の評価を行った。具体的には吸水性樹脂粒子100gをチャック付ポリエチレン袋(140×100×0.04mm)に入れ、人差し指及び/または中指を使用して、試料を事前に印を付けられた区域内で一方向(例えば、時計回り)に優しく揉み込み、その異物感を下記の評価基準で評価を行った。
◎ ジャリジャリ感を感じる 2人未満
○ ジャリジャリ感を感じる 2人以上4人未満
△ ジャリジャリ感を感じる 4人以上6人未満
× ジャリジャリ感を感じる 6人以上 <Evaluation method of foreign body feeling>
The feeling of foreign matter by touch was evaluated by 10 monitors. Specifically, place 100 g of water-absorbent resin particles in a polyethylene bag with a zipper (140 x 100 x 0.04 mm), and use the index finger and/or the middle finger to sample the sample in one direction within a pre-marked area. Gently knead (for example, clockwise), and the feeling of foreign matter was evaluated according to the following evaluation criteria.
◎ Less than 2 people who feels cramped ○ 2 or more but less than 4 who feelscramped △ 4 or more but less than 6 who feels cramped × 6 or more who feels cramped
モニター10名に対して、触感による異物感の評価を行った。具体的には吸水性樹脂粒子100gをチャック付ポリエチレン袋(140×100×0.04mm)に入れ、人差し指及び/または中指を使用して、試料を事前に印を付けられた区域内で一方向(例えば、時計回り)に優しく揉み込み、その異物感を下記の評価基準で評価を行った。
◎ ジャリジャリ感を感じる 2人未満
○ ジャリジャリ感を感じる 2人以上4人未満
△ ジャリジャリ感を感じる 4人以上6人未満
× ジャリジャリ感を感じる 6人以上 <Evaluation method of foreign body feeling>
The feeling of foreign matter by touch was evaluated by 10 monitors. Specifically, place 100 g of water-absorbent resin particles in a polyethylene bag with a zipper (140 x 100 x 0.04 mm), and use the index finger and/or the middle finger to sample the sample in one direction within a pre-marked area. Gently knead (for example, clockwise), and the feeling of foreign matter was evaluated according to the following evaluation criteria.
◎ Less than 2 people who feels cramped ○ 2 or more but less than 4 who feels
<実施例1>
水溶性ビニルモノマー(a1-1){アクリル酸、三菱化学株式会社製、純度100%}155部(2.15モル部)、架橋剤(b1){ペンタエリスリトールトリアリルエーテル、ダイソ-株式会社製}0.6225部(0.0024モル部)及び脱イオン水340.27部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.62部、2%アスコルビン酸水溶液1.1625部及び2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]水溶液2.325部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより架橋重合体を含有する含水ゲル(1)を得た。 <Example 1>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 155 parts (2.15 mole parts), cross-linking agent (b1) {pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd. } 0.6225 parts (0.0024 parts by mole) and 340.27 parts of deionized water were maintained at 3°C with stirring and mixing. Nitrogen was introduced into this mixture to adjust the amount of dissolved oxygen to 1 ppm or less, and then 0.62 parts of a 1% aqueous hydrogen peroxide solution, 1.1625 parts of a 2% aqueous ascorbic acid solution and 2% of 2,2′-azobis[ 2-Methyl-N-(2-hydroxyethyl)-propionamide] aqueous solution (2.325 parts) was added and mixed to initiate polymerization. After the temperature of the mixture reached 90° C., the mixture was polymerized at 90±2° C. for about 5 hours to obtain a hydrogel (1) containing a crosslinked polymer.
水溶性ビニルモノマー(a1-1){アクリル酸、三菱化学株式会社製、純度100%}155部(2.15モル部)、架橋剤(b1){ペンタエリスリトールトリアリルエーテル、ダイソ-株式会社製}0.6225部(0.0024モル部)及び脱イオン水340.27部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.62部、2%アスコルビン酸水溶液1.1625部及び2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]水溶液2.325部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより架橋重合体を含有する含水ゲル(1)を得た。 <Example 1>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 155 parts (2.15 mole parts), cross-linking agent (b1) {pentaerythritol triallyl ether, manufactured by Daiso Co., Ltd. } 0.6225 parts (0.0024 parts by mole) and 340.27 parts of deionized water were maintained at 3°C with stirring and mixing. Nitrogen was introduced into this mixture to adjust the amount of dissolved oxygen to 1 ppm or less, and then 0.62 parts of a 1% aqueous hydrogen peroxide solution, 1.1625 parts of a 2% aqueous ascorbic acid solution and 2% of 2,2′-azobis[ 2-Methyl-N-(2-hydroxyethyl)-propionamide] aqueous solution (2.325 parts) was added and mixed to initiate polymerization. After the temperature of the mixture reached 90° C., the mixture was polymerized at 90±2° C. for about 5 hours to obtain a hydrogel (1) containing a crosslinked polymer.
次に含水ゲル(1)200部をミンチ機(ROYAL社製12VR-400K)で混練細断しながら48.5%水酸化ナトリウム水溶液51.13部を添加して混合し、ミンチ機(ROYAL社製12VR-400K)で3回細断後、細断ゲルを得た。引き続きゲルブロッキング防止剤(c-1){ショ糖ステアリン酸エステル}0.076部を添加して混合し、更にミンチ機(ROYAL社製12VR-400K)で1回細断して、含水ゲル粒子を得た。次に、含水ゲル粒子をシグマ型回転翼及び保温ジャケットを備えたニーダー(卓上型ニーダーPNV-1、株式会社入江商会)に全量投入し、回転数40rpm、ジャケット温度180℃で60分間乾燥し、架橋重合体を含有する乾燥粉体(1)を得た。乾燥粉体(1)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は41重量%であった。続いて、乾燥粉体(1)をロールミル(RM-10型ロール式粉砕機、株式会社浅野鐵工所)でクリアランス0.35mmにて粉砕した後、ふるい分けして、目開き710~150μmの粒子径範囲に調整し、架橋重合体を含む樹脂粒子(A-1)を得た。粉砕分級後の、架橋重合体を含む樹脂粒子(A-1)の重量平均粒子径は、420μmであった。
Next, while mixing 200 parts of the hydrogel (1) with a mincing machine (12VR-400K manufactured by ROYAL Co., Ltd.) and chopping, 51.13 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed, and the mincing machine (ROYAL Co.) 12VR-400K) manufactured three times to obtain a shredded gel. Subsequently, 0.076 parts of gel blocking inhibitor (c-1) {sucrose stearate} was added and mixed, and further shredded once with a mincing machine (12VR-400K manufactured by ROYAL) to give water-containing gel particles. Got Next, all the water-containing gel particles were put into a kneader (tabletop kneader PNV-1, Irie Shokai Co., Ltd.) equipped with a sigma type rotary blade and a heat insulation jacket, and dried for 60 minutes at a rotation speed of 40 rpm and a jacket temperature of 180° C., A dry powder (1) containing a crosslinked polymer was obtained. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (1) was 41% by weight. Subsequently, the dry powder (1) was pulverized with a roll mill (RM-10 type roll pulverizer, Asano Iron Works Co., Ltd.) with a clearance of 0.35 mm, and then sieved to obtain particles having an opening of 710 to 150 μm. The resin particles (A-1) containing the crosslinked polymer were obtained by adjusting the particle size within the range. The weight average particle diameter of the resin particles (A-1) containing the crosslinked polymer after pulverization and classification was 420 μm.
次に、上記樹脂粒子(A-1)30部に表面架橋剤としての15%エチレングリコールジグリシジルエーテル0.081部、溶剤としての50%プロピレングリコール水溶液0.90部、無機微粒子としてクレボゾール(登録商標)30CAL25(メルク製コロイダルシリカ)0.20部を混合した混合溶液を添加して、均一混合した後、130℃で30分間加熱して、表面架橋された樹脂粒子を得た。続いて、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-1)を得た。
Next, to 30 parts of the above resin particles (A-1), 0.081 part of 15% ethylene glycol diglycidyl ether as a surface cross-linking agent, 0.90 part of 50% propylene glycol aqueous solution as a solvent, and clevozole (registered as inorganic fine particles) A mixed solution prepared by mixing 0.20 parts of Trademark) 30CAL25 (Colloidal silica manufactured by Merck) was added and uniformly mixed, and then heated at 130° C. for 30 minutes to obtain surface-crosslinked resin particles. Then, water-absorbent resin particles (P-1) were obtained by passing through a sieve having an opening of 850 μm.
<実施例2>
実施例1において、ニーダーの回転数40rpmを30rpmに変更した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-2)を得た。実施例2における乾燥粉体(2)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は49重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-2)の重量平均粒子径は、436μmであった。 <Example 2>
Water absorbent resin particles (P-2) were obtained in the same manner as in Example 1 except that the rotation number of the kneader was changed from 40 rpm to 30 rpm. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (2) in Example 2 was 49% by weight, and the resin particles containing the crosslinked polymer (A-2 after pulverization and classification) were used. The weight average particle diameter of () was 436 μm.
実施例1において、ニーダーの回転数40rpmを30rpmに変更した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-2)を得た。実施例2における乾燥粉体(2)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は49重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-2)の重量平均粒子径は、436μmであった。 <Example 2>
Water absorbent resin particles (P-2) were obtained in the same manner as in Example 1 except that the rotation number of the kneader was changed from 40 rpm to 30 rpm. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (2) in Example 2 was 49% by weight, and the resin particles containing the crosslinked polymer (A-2 after pulverization and classification) were used. The weight average particle diameter of () was 436 μm.
<実施例3>
実施例1において、ニーダーの回転数40rpmを50rpmに変更した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-3)を得た。実施例3における乾燥粉体(3)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は35重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-3)の重量平均粒子径は、400μmであった。 <Example 3>
Water absorbent resin particles (P-3) were obtained in the same manner as in Example 1 except that the kneader rotation speed was changed from 40 rpm to 50 rpm. The weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (3) in Example 3 was 35% by weight, and the resin particles (A-3 containing the crosslinked polymer after pulverization and classification were used. The weight average particle diameter of () was 400 μm.
実施例1において、ニーダーの回転数40rpmを50rpmに変更した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-3)を得た。実施例3における乾燥粉体(3)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は35重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-3)の重量平均粒子径は、400μmであった。 <Example 3>
Water absorbent resin particles (P-3) were obtained in the same manner as in Example 1 except that the kneader rotation speed was changed from 40 rpm to 50 rpm. The weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (3) in Example 3 was 35% by weight, and the resin particles (A-3 containing the crosslinked polymer after pulverization and classification were used. The weight average particle diameter of () was 400 μm.
<実施例4>
実施例1において、ゲルブロッキング防止剤(c-1){ショ糖ステアリン酸エステル}0.076部を0.152部に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-4)を得た。実施例4における乾燥粉体(4)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は33重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-4)の重量平均粒子径は、393μmであった。 <Example 4>
In the same manner as in Example 1, except that the gel blocking inhibitor (c-1) {sucrose stearate} 0.076 part was changed to 0.152 part, the same operation as in Example 1 was carried out to obtain the water-absorbent resin particles. (P-4) was obtained. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (4) in Example 4 was 33% by weight, and the resin particles (A-4 containing the crosslinked polymer after pulverization and classification were used. The weight average particle diameter of () was 393 μm.
実施例1において、ゲルブロッキング防止剤(c-1){ショ糖ステアリン酸エステル}0.076部を0.152部に変更した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-4)を得た。実施例4における乾燥粉体(4)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は33重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-4)の重量平均粒子径は、393μmであった。 <Example 4>
In the same manner as in Example 1, except that the gel blocking inhibitor (c-1) {sucrose stearate} 0.076 part was changed to 0.152 part, the same operation as in Example 1 was carried out to obtain the water-absorbent resin particles. (P-4) was obtained. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (4) in Example 4 was 33% by weight, and the resin particles (A-4 containing the crosslinked polymer after pulverization and classification were used. The weight average particle diameter of () was 393 μm.
<実施例5>
実施例1において、ゲルブロッキング防止剤(c-1){ショ糖ステアリン酸エステル}0.076部を0.152部に変更し、同時にゲルブロッキング防止剤(c-2){ナロアクティ(登録商標)CL-20、三洋化成工業製アニオン界面活性剤(ノニルフェノールEOA(EO2モル付加))}0.113部を併用した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-5)を得た。実施例5における乾燥粉体(5)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は27重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-5)の重量平均粒子径は、385μmであった。 <Example 5>
In Example 1, the gel blocking inhibitor (c-1) {sucrose stearate} 0.076 parts was changed to 0.152 parts, and at the same time, the gel blocking inhibitor (c-2) {NAROACTY (registered trademark) The same operation as in Example 1 was carried out except that CL-20 and 0.113 part of an anionic surfactant (nonylphenol EOA (EO2 mol addition)) manufactured by Sanyo Kasei Co., Ltd. were used in combination, and the water-absorbent resin particles (P-5 ) Got. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (5) in Example 5 was 27% by weight, and the resin particles containing the cross-linked polymer (A-5 after pulverization classification) were used. The weight average particle diameter of () was 385 μm.
実施例1において、ゲルブロッキング防止剤(c-1){ショ糖ステアリン酸エステル}0.076部を0.152部に変更し、同時にゲルブロッキング防止剤(c-2){ナロアクティ(登録商標)CL-20、三洋化成工業製アニオン界面活性剤(ノニルフェノールEOA(EO2モル付加))}0.113部を併用した以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-5)を得た。実施例5における乾燥粉体(5)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は27重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-5)の重量平均粒子径は、385μmであった。 <Example 5>
In Example 1, the gel blocking inhibitor (c-1) {sucrose stearate} 0.076 parts was changed to 0.152 parts, and at the same time, the gel blocking inhibitor (c-2) {NAROACTY (registered trademark) The same operation as in Example 1 was carried out except that CL-20 and 0.113 part of an anionic surfactant (nonylphenol EOA (EO2 mol addition)) manufactured by Sanyo Kasei Co., Ltd. were used in combination, and the water-absorbent resin particles (P-5 ) Got. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (5) in Example 5 was 27% by weight, and the resin particles containing the cross-linked polymer (A-5 after pulverization classification) were used. The weight average particle diameter of () was 385 μm.
<実施例6>
実施例5において、乾燥粉体を粉砕した後のふるい分けの目開き710~150μmを500~150μmの粒子径範囲に変更した以外は、実施例5と同様の操作を行い、吸水性樹脂粒子(P-6)を得た。粉砕分級後の、架橋重合体を含む樹脂粒子(A-6)の重量平均粒子径は、365μmであった。 <Example 6>
In the same manner as in Example 5, except that the opening 710-150 μm for sieving after crushing the dry powder was changed to a particle size range of 500-150 μm in Example 5, the water-absorbent resin particles (P -6) was obtained. The weight average particle diameter of the resin particles (A-6) containing the crosslinked polymer after pulverization and classification was 365 μm.
実施例5において、乾燥粉体を粉砕した後のふるい分けの目開き710~150μmを500~150μmの粒子径範囲に変更した以外は、実施例5と同様の操作を行い、吸水性樹脂粒子(P-6)を得た。粉砕分級後の、架橋重合体を含む樹脂粒子(A-6)の重量平均粒子径は、365μmであった。 <Example 6>
In the same manner as in Example 5, except that the opening 710-150 μm for sieving after crushing the dry powder was changed to a particle size range of 500-150 μm in Example 5, the water-absorbent resin particles (P -6) was obtained. The weight average particle diameter of the resin particles (A-6) containing the crosslinked polymer after pulverization and classification was 365 μm.
<実施例7>
実施例5において、乾燥粉体を粉砕した後のふるい分けの目開き710~150μmを300~150μmの粒子径範囲に変更した以外は、実施例5と同様の操作を行い、吸水性樹脂粒子(P-7)を得た。粉砕分級後の、架橋重合体を含む樹脂粒子(A-7)の重量平均粒子径は、202μmであった。 <Example 7>
In the same manner as in Example 5, except that the opening 710-150 μm for sieving after pulverizing the dry powder was changed to a particle size range of 300-150 μm in Example 5, the water-absorbent resin particles (P -7) was obtained. The weight average particle diameter of the resin particles (A-7) containing the crosslinked polymer after pulverization and classification was 202 μm.
実施例5において、乾燥粉体を粉砕した後のふるい分けの目開き710~150μmを300~150μmの粒子径範囲に変更した以外は、実施例5と同様の操作を行い、吸水性樹脂粒子(P-7)を得た。粉砕分級後の、架橋重合体を含む樹脂粒子(A-7)の重量平均粒子径は、202μmであった。 <Example 7>
In the same manner as in Example 5, except that the opening 710-150 μm for sieving after pulverizing the dry powder was changed to a particle size range of 300-150 μm in Example 5, the water-absorbent resin particles (P -7) was obtained. The weight average particle diameter of the resin particles (A-7) containing the crosslinked polymer after pulverization and classification was 202 μm.
<実施例8>
実施例5において、ニーダーの回転数40rpmを50rpmとし、乾燥粉体を粉砕した後のふるい分けの目開き710~150μmを500~150μmの粒子径範囲に変更した以外は、実施例5と同様の操作を行い、吸水性樹脂粒子(P-8)を得た。実施例8における乾燥粉体(8)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は、22重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-8)の重量平均粒子径は、340μmであった。 <Example 8>
In Example 5, the same operation as in Example 5 was carried out except that the kneader rotation speed was 40 rpm and 50 rpm, and the sieve opening 710 to 150 μm after crushing the dry powder was changed to a particle diameter range of 500 to 150 μm. The water-absorbent resin particles (P-8) were obtained. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (8) in Example 8 was 22% by weight, and the resin particles containing the crosslinked polymer (A- The weight average particle diameter of 8) was 340 μm.
実施例5において、ニーダーの回転数40rpmを50rpmとし、乾燥粉体を粉砕した後のふるい分けの目開き710~150μmを500~150μmの粒子径範囲に変更した以外は、実施例5と同様の操作を行い、吸水性樹脂粒子(P-8)を得た。実施例8における乾燥粉体(8)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は、22重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(A-8)の重量平均粒子径は、340μmであった。 <Example 8>
In Example 5, the same operation as in Example 5 was carried out except that the kneader rotation speed was 40 rpm and 50 rpm, and the sieve opening 710 to 150 μm after crushing the dry powder was changed to a particle diameter range of 500 to 150 μm. The water-absorbent resin particles (P-8) were obtained. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (8) in Example 8 was 22% by weight, and the resin particles containing the crosslinked polymer (A- The weight average particle diameter of 8) was 340 μm.
<実施例9>
実施例6において、粉砕分級後の架橋重合体を含む樹脂粒子(A-6)に対する表面架橋剤としての15%エチレングリコールジグリシジルエーテル0.081部を0.200部に変更すること以外は、実施例6と同様の操作を行い、表面架橋された樹脂粒子を得た。続いて、高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー(登録商標、以下おなじ)、回転数2000rpm)しながら、無機微粒子としてシリカ(アエロジル(登録商標、以下おなじ)200)を0.045部添加して、80℃で30分間加熱した後、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-9)を得た。 <Example 9>
In Example 6, except that 0.081 part of 15% ethylene glycol diglycidyl ether as a surface crosslinking agent for the resin particles (A-6) containing the crosslinked polymer after pulverization and classification was changed to 0.200 part, The same operation as in Example 6 was performed to obtain surface-crosslinked resin particles. Subsequently, 0.045 parts of silica (Aerosil (registered trademark, hereinafter the same) 200) as inorganic fine particles was subjected to high-speed stirring (high-speed stirring turbulizer (registered trademark, hereinafter the same) manufactured by Hosokawa Micron Co., Ltd., rotation speed 2000 rpm). After the addition, the mixture was heated at 80° C. for 30 minutes, and then passed through a sieve having an opening of 850 μm to obtain water absorbent resin particles (P-9).
実施例6において、粉砕分級後の架橋重合体を含む樹脂粒子(A-6)に対する表面架橋剤としての15%エチレングリコールジグリシジルエーテル0.081部を0.200部に変更すること以外は、実施例6と同様の操作を行い、表面架橋された樹脂粒子を得た。続いて、高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー(登録商標、以下おなじ)、回転数2000rpm)しながら、無機微粒子としてシリカ(アエロジル(登録商標、以下おなじ)200)を0.045部添加して、80℃で30分間加熱した後、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-9)を得た。 <Example 9>
In Example 6, except that 0.081 part of 15% ethylene glycol diglycidyl ether as a surface crosslinking agent for the resin particles (A-6) containing the crosslinked polymer after pulverization and classification was changed to 0.200 part, The same operation as in Example 6 was performed to obtain surface-crosslinked resin particles. Subsequently, 0.045 parts of silica (Aerosil (registered trademark, hereinafter the same) 200) as inorganic fine particles was subjected to high-speed stirring (high-speed stirring turbulizer (registered trademark, hereinafter the same) manufactured by Hosokawa Micron Co., Ltd., rotation speed 2000 rpm). After the addition, the mixture was heated at 80° C. for 30 minutes, and then passed through a sieve having an opening of 850 μm to obtain water absorbent resin particles (P-9).
<実施例10>
実施例6において、粉砕分級後の架橋重合体を含む樹脂粒子(A-6)に対する表面架橋剤としての15%エチレングリコールジグリシジルエーテル0.081部を0.200部に変更し、別途溶剤としての50%プロピレングリコール水溶液0.51部、多価金属塩として硫酸アルミニウムナトリウム16水和物(富士フィルム和光純薬製)0.225部を混合した混合溶液を添加して表面架橋を行った以外は、実施例6と同様の操作を行い、表面架橋された樹脂粒子を得た。高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー、回転数2000rpm)しながら、無機微粒子としてシリカ(アエロジル200)を0.045部添加して、80℃で30分間加熱した後、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-10)を得た。 <Example 10>
In Example 6, 0.081 parts of 15% ethylene glycol diglycidyl ether as a surface cross-linking agent for the resin particles (A-6) containing the cross-linked polymer after pulverization and classification was changed to 0.200 parts, and as a separate solvent. Except that 0.51 parts of 50% aqueous propylene glycol solution and 0.225 parts of sodium aluminum sulfate hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) as a polyvalent metal salt were added to carry out surface crosslinking. In the same manner as in Example 6, surface-crosslinked resin particles were obtained. While high-speed stirring (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd., rotation speed 2000 rpm), 0.045 parts of silica (Aerosil 200) as inorganic fine particles was added and heated at 80° C. for 30 minutes, and then opened at 850 μm. Water-absorbent resin particles (P-10) were obtained by passing through a sieve.
実施例6において、粉砕分級後の架橋重合体を含む樹脂粒子(A-6)に対する表面架橋剤としての15%エチレングリコールジグリシジルエーテル0.081部を0.200部に変更し、別途溶剤としての50%プロピレングリコール水溶液0.51部、多価金属塩として硫酸アルミニウムナトリウム16水和物(富士フィルム和光純薬製)0.225部を混合した混合溶液を添加して表面架橋を行った以外は、実施例6と同様の操作を行い、表面架橋された樹脂粒子を得た。高速攪拌(ホソカワミクロン株式会社製高速攪拌タービュライザー、回転数2000rpm)しながら、無機微粒子としてシリカ(アエロジル200)を0.045部添加して、80℃で30分間加熱した後、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-10)を得た。 <Example 10>
In Example 6, 0.081 parts of 15% ethylene glycol diglycidyl ether as a surface cross-linking agent for the resin particles (A-6) containing the cross-linked polymer after pulverization and classification was changed to 0.200 parts, and as a separate solvent. Except that 0.51 parts of 50% aqueous propylene glycol solution and 0.225 parts of sodium aluminum sulfate hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) as a polyvalent metal salt were added to carry out surface crosslinking. In the same manner as in Example 6, surface-crosslinked resin particles were obtained. While high-speed stirring (high-speed stirring turbulizer manufactured by Hosokawa Micron Co., Ltd., rotation speed 2000 rpm), 0.045 parts of silica (Aerosil 200) as inorganic fine particles was added and heated at 80° C. for 30 minutes, and then opened at 850 μm. Water-absorbent resin particles (P-10) were obtained by passing through a sieve.
<比較例1>
実施例1において、ニーダーの回転数40rpmを20rpmに変更した以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-1)を得た。比較例1における乾燥粉体(比1)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は73重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-1)の重量平均粒子径は、430μmであった。 <Comparative Example 1>
The same operation as in Example 1 was carried out except that the kneader rotation speed was changed from 40 rpm to 20 rpm to obtain water absorbent resin particles (R-1) for comparison. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (ratio 1) in Comparative Example 1 was 73% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 1) was 430 μm.
実施例1において、ニーダーの回転数40rpmを20rpmに変更した以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-1)を得た。比較例1における乾燥粉体(比1)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は73重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-1)の重量平均粒子径は、430μmであった。 <Comparative Example 1>
The same operation as in Example 1 was carried out except that the kneader rotation speed was changed from 40 rpm to 20 rpm to obtain water absorbent resin particles (R-1) for comparison. The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (ratio 1) in Comparative Example 1 was 73% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 1) was 430 μm.
<比較例2>
実施例1において、ゲルブロッキング剤を添加せずに更にミンチ機で1回細断したこと、ニーダーの回転数40rpmを50rpmに変更したこと、ニーダーでの乾燥時間1時間を2時間に変更したこと以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-2)を得た。比較例2における乾燥粉体(比2)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は95重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-2)の重量平均粒子径は、385μmであった。 <Comparative example 2>
In Example 1, shredded once with a mincing machine without adding a gel blocking agent, changed the kneader rotation speed of 40 rpm to 50 rpm, and changed the kneader drying time of 1 hour to 2 hours. Other than that, the same operation as in Example 1 was performed to obtain comparative water-absorbent resin particles (R-2). The weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (ratio 2) in Comparative Example 2 was 95% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 2) was 385 μm.
実施例1において、ゲルブロッキング剤を添加せずに更にミンチ機で1回細断したこと、ニーダーの回転数40rpmを50rpmに変更したこと、ニーダーでの乾燥時間1時間を2時間に変更したこと以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-2)を得た。比較例2における乾燥粉体(比2)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は95重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-2)の重量平均粒子径は、385μmであった。 <Comparative example 2>
In Example 1, shredded once with a mincing machine without adding a gel blocking agent, changed the kneader rotation speed of 40 rpm to 50 rpm, and changed the kneader drying time of 1 hour to 2 hours. Other than that, the same operation as in Example 1 was performed to obtain comparative water-absorbent resin particles (R-2). The weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (ratio 2) in Comparative Example 2 was 95% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 2) was 385 μm.
<比較例3>
実施例1において、ゲルブロッキング剤を添加せずに更にミンチ機で1回細断したこと、ニーダーでの乾燥を通気型乾燥機(タバイエスペック株式会社製、乾燥条件:熱風温度150℃、風速2m/s、60分間)での乾燥に変更した以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-3)を得た。なお、乾燥は含水ゲル粒子の全量をSUSバット(幅20cm角、深さ5cm)の中に均一に敷き詰めて行った。比較例3における乾燥粉体(比3)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は98重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-3)の重量平均粒子径は、411μmであった。 <Comparative example 3>
In Example 1, the gel-blocking agent was not added, and the product was further shredded once with a mincing machine, and dried in a kneader using an aeration dryer (Tabay Espec Co., Ltd., drying conditions: hot air temperature 150° C., air speed 2 m). /S for 60 minutes), except that the drying was changed to the same operation as in Example 1 to obtain comparative water absorbent resin particles (R-3). In addition, the drying was performed by uniformly laying the entire amount of the hydrogel particles in a SUS vat (20 cm square, 5 cm depth). The weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (ratio 3) in Comparative Example 3 was 98% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 3) was 411 μm.
実施例1において、ゲルブロッキング剤を添加せずに更にミンチ機で1回細断したこと、ニーダーでの乾燥を通気型乾燥機(タバイエスペック株式会社製、乾燥条件:熱風温度150℃、風速2m/s、60分間)での乾燥に変更した以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-3)を得た。なお、乾燥は含水ゲル粒子の全量をSUSバット(幅20cm角、深さ5cm)の中に均一に敷き詰めて行った。比較例3における乾燥粉体(比3)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は98重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-3)の重量平均粒子径は、411μmであった。 <Comparative example 3>
In Example 1, the gel-blocking agent was not added, and the product was further shredded once with a mincing machine, and dried in a kneader using an aeration dryer (Tabay Espec Co., Ltd., drying conditions: hot air temperature 150° C., air speed 2 m). /S for 60 minutes), except that the drying was changed to the same operation as in Example 1 to obtain comparative water absorbent resin particles (R-3). In addition, the drying was performed by uniformly laying the entire amount of the hydrogel particles in a SUS vat (20 cm square, 5 cm depth). The weight ratio of the particles having a particle size of 2.8 mm or more to the total weight of the dry powder (ratio 3) in Comparative Example 3 was 98% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 3) was 411 μm.
<比較例4>
実施例1において、ニーダーでの乾燥を通気型乾燥機(タバイエスペック株式会社製、乾燥条件:熱風温度150℃、風速2m/s、60分間)での乾燥に変更した以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-4)を得た。なお、乾燥は含水ゲル粒子の全量をSUSバット(幅20cm角、深さ5cm)の中に均一に敷き詰めて行った。比較例4における乾燥粉体(比4)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は97重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-4)の重量平均粒子径は、415μmであった。 <Comparative example 4>
In Example 1, except that the drying in the kneader was changed to the ventilation type dryer (manufactured by Tabai Espec Co., Ltd., drying conditions: hot air temperature 150° C., wind speed 2 m/s, 60 minutes). The same operation was performed to obtain comparative water absorbent resin particles (R-4). In addition, the drying was performed by uniformly laying the entire amount of the hydrogel particles in a SUS vat (20 cm square, 5 cm depth). The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (Comparative 4) in Comparative Example 4 was 97% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 4) was 415 μm.
実施例1において、ニーダーでの乾燥を通気型乾燥機(タバイエスペック株式会社製、乾燥条件:熱風温度150℃、風速2m/s、60分間)での乾燥に変更した以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-4)を得た。なお、乾燥は含水ゲル粒子の全量をSUSバット(幅20cm角、深さ5cm)の中に均一に敷き詰めて行った。比較例4における乾燥粉体(比4)の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合は97重量%であり、粉砕分級後の、架橋重合体を含む樹脂粒子(B-4)の重量平均粒子径は、415μmであった。 <Comparative example 4>
In Example 1, except that the drying in the kneader was changed to the ventilation type dryer (manufactured by Tabai Espec Co., Ltd., drying conditions: hot air temperature 150° C., wind speed 2 m/s, 60 minutes). The same operation was performed to obtain comparative water absorbent resin particles (R-4). In addition, the drying was performed by uniformly laying the entire amount of the hydrogel particles in a SUS vat (20 cm square, 5 cm depth). The weight ratio of the particles having a particle diameter of 2.8 mm or more to the total weight of the dry powder (Comparative 4) in Comparative Example 4 was 97% by weight, and the resin particles containing the crosslinked polymer (B- The weight average particle diameter of 4) was 415 μm.
実施例1~10で得られた吸水性樹脂粒子(P-1)~(P-10)および比較例1~4で得た比較用の吸水性樹脂粒子(R-1)~(R-4)について、保水量、重量平均粒子径、平均真球度、耐衝撃性試験後の平均真球度、ゲル通液速度、ゲル通液速度変化率、Vortex法による吸収速度、Vortex法による吸収速度変化率、及び異物感評価結果を表1に示す。
Water-absorbent resin particles (P-1) to (P-10) obtained in Examples 1 to 10 and comparative water-absorbent resin particles (R-1) to (R-4) obtained in Comparative Examples 1 to 4. ), water retention, weight average particle size, average sphericity, average sphericity after impact test, gel flow rate, gel flow rate change rate, absorption rate by Vortex method, absorption rate by Vortex method Table 1 shows the rate of change and the evaluation results of the foreign substance feeling.
表1に示すように、本発明の吸水性樹脂粒子(実施例1~10)は、比較用の吸水性樹脂粒子(比較例1~4)に比べ、平均真球度が特定の高い範囲にあり、耐衝撃性試験後の平均真球度の変化幅が小さくなっており、異物感評価の結果が優れていることが分かる。また、平均真球度の変化幅が特定の範囲内で小さくなることで、ゲル通液の変化率及びVortex法による吸収速度の変化率が小さくなっていることが分かる。すなわち、本発明の吸水性樹脂粒子は、外部からの物理的負荷があっても安定した吸収性能を発揮できると言える。さらに、実施例6~10は平均真球度と平均真球度の増加幅を特定の範囲にした上で、重量平均粒子径を小さくした例であるが、吸収性能の変化率(通液速度と吸収速度)と異物感評価の結果から、これらが高度に両立されているのが分かる。
一方、表1の結果より、平均真球度及び耐衝撃性試験後の平均真球度の変化幅を特定の範囲に制御するためには、吸水性樹脂粒子の製造工程において、乾燥後に得られる乾燥粉体の2.8mm以上の粒子径を有する粒子の重量割合を特定の範囲内で制御することが有効であることが分かる。 As shown in Table 1, the water-absorbent resin particles of the present invention (Examples 1 to 10) have an average sphericity within a specific high range as compared with the comparative water-absorbent resin particles (Comparative Examples 1 to 4). Therefore, it can be seen that the variation range of the average sphericity after the impact resistance test is small, and the result of the foreign material feeling evaluation is excellent. Further, it can be seen that the rate of change of the gel flow rate and the rate of change of the absorption rate by the Vortex method are reduced as the variation range of the average sphericity is reduced within a specific range. That is, it can be said that the water-absorbent resin particles of the present invention can exhibit stable absorption performance even if there is a physical load from the outside. Further, Examples 6 to 10 are examples in which the average sphericity and the increase range of the average sphericity are set within a specific range, and the weight average particle diameter is reduced. It can be seen from the results of the evaluation of the foreign matter feeling and the absorption rate) that these are highly compatible.
On the other hand, from the results in Table 1, in order to control the variation range of the average sphericity and the average sphericity after the impact resistance test within a specific range, it is obtained after drying in the manufacturing process of the water absorbent resin particles. It can be seen that it is effective to control the weight ratio of particles having a particle diameter of 2.8 mm or more in the dry powder within a specific range.
一方、表1の結果より、平均真球度及び耐衝撃性試験後の平均真球度の変化幅を特定の範囲に制御するためには、吸水性樹脂粒子の製造工程において、乾燥後に得られる乾燥粉体の2.8mm以上の粒子径を有する粒子の重量割合を特定の範囲内で制御することが有効であることが分かる。 As shown in Table 1, the water-absorbent resin particles of the present invention (Examples 1 to 10) have an average sphericity within a specific high range as compared with the comparative water-absorbent resin particles (Comparative Examples 1 to 4). Therefore, it can be seen that the variation range of the average sphericity after the impact resistance test is small, and the result of the foreign material feeling evaluation is excellent. Further, it can be seen that the rate of change of the gel flow rate and the rate of change of the absorption rate by the Vortex method are reduced as the variation range of the average sphericity is reduced within a specific range. That is, it can be said that the water-absorbent resin particles of the present invention can exhibit stable absorption performance even if there is a physical load from the outside. Further, Examples 6 to 10 are examples in which the average sphericity and the increase range of the average sphericity are set within a specific range, and the weight average particle diameter is reduced. It can be seen from the results of the evaluation of the foreign matter feeling and the absorption rate) that these are highly compatible.
On the other hand, from the results in Table 1, in order to control the variation range of the average sphericity and the average sphericity after the impact resistance test within a specific range, it is obtained after drying in the manufacturing process of the water absorbent resin particles. It can be seen that it is effective to control the weight ratio of particles having a particle diameter of 2.8 mm or more in the dry powder within a specific range.
本発明の吸水性樹脂粒子は、吸水性樹脂粒子と繊維状物とを含有してなる吸収体に適用でき、この吸収体を備えてなる吸収性物品{紙おむつ、生理用ナプキンおよび医療用保血剤等}に有用である。また、ペット尿吸収剤、携帯トイレ用尿ゲル化剤、青果物用鮮度保持剤、肉類・魚介類用ドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物・土壌用保水剤、結露防止剤、止水剤、パッキング剤および人口雪等の種々の用途にも使用できる。
The water-absorbent resin particles of the present invention can be applied to an absorbent body containing the water-absorbent resin particles and a fibrous material, and an absorbent article including the absorbent body {paper diaper, sanitary napkin and medical blood retaining agent It is useful for agents. In addition, pet urine absorbent, urine gelling agent for mobile toilets, freshness-maintaining agent for fruits and vegetables, drip absorbent for meat and seafood, ice pack, disposable warmer, gelling agent for batteries, water retention agent for plants and soil, dew condensation It can also be used for various applications such as preventive agents, waterstop agents, packing agents and artificial snow.
1 生理食塩水
2 含水ゲル粒子
3 円筒
4 底部から60mlの位置の目盛り線
5 底部から40mlの位置の目盛り線
6 金網
7 コック
8 円形金網
9 加圧軸
10 おもり
1physiological saline 2 hydrogel particles 3 cylinder 4 scale line 60 ml from the bottom 5 scale line 40 ml from the bottom 6 wire net 7 cock 8 circular wire net 9 pressure shaft 10 weight
2 含水ゲル粒子
3 円筒
4 底部から60mlの位置の目盛り線
5 底部から40mlの位置の目盛り線
6 金網
7 コック
8 円形金網
9 加圧軸
10 おもり
1
Claims (11)
- 水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子が表面架橋剤(d)により表面架橋された構造を有する吸水性樹脂粒子であって、粒子形状が不定形破砕状であり、平均真球度(SPHT)が0.800~0.900であり、耐衝撃性試験後の平均真球度(SPHT)の変化幅が0~0.015である吸水性樹脂粒子。 Resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as essential constituent units are water-absorbent resin particles having a structure in which the surface cross-linking agent (d) cross-links the surface. The particle shape is irregular crushed, the average sphericity (SPHT) is 0.800 to 0.900, and the change range of the average sphericity (SPHT) after the impact resistance test is 0 to 0.015 water-absorbent resin particles.
- 重量平均粒子径が200~450μmである請求項1に記載の吸水性樹脂粒子。 The water-absorbent resin particles according to claim 1, having a weight average particle diameter of 200 to 450 μm.
- 重量平均粒子径が200~370μmである請求項2に記載の吸水性樹脂粒子。 The water absorbent resin particles according to claim 2, having a weight average particle diameter of 200 to 370 μm.
- 無機微粒子及び/又は多価金属塩を含む請求項1~3のいずれかに記載の吸水性樹脂粒子。 The water absorbent resin particles according to any one of claims 1 to 3, which contain inorganic fine particles and/or a polyvalent metal salt.
- 0.9重量%生理食塩水によるゲル通液速度が10ml/分以上である請求項1~4のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 4, wherein a gel permeation rate of 0.9 wt% physiological saline is 10 ml/min or more.
- Vortex法による吸収速度が45秒以下である請求項1~5のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 5, which have an absorption rate of 45 seconds or less according to the Vortex method.
- 0.9重量%生理食塩水の保水量が25~45g/gである請求項1~6のいずれかに記載の吸水性樹脂粒子。 The water absorbent resin particles according to any one of claims 1 to 6, wherein the water retention capacity of 0.9 wt% physiological saline is 25 to 45 g/g.
- 水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする単量体組成物を重合し、架橋重合体(A)を含有する含水ゲルを得る重合工程と、前記含水ゲルを混練細断し、(A)を含有する含水ゲル粒子を得るゲル粉砕工程と、前記含水ゲル粒子を乾燥し、(A)を含有する乾燥粉体を得る乾燥工程と、前記乾燥粉体をさらに粉砕及び/又は分級して(A)を含有する樹脂粒子を得る工程と、前記樹脂粒子の表面を表面架橋剤(d)により表面架橋する工程を含む吸水性樹脂粒子の製造方法であって、前記乾燥工程以前にゲルブロッキング防止剤(c)を添加し、かつ、前記乾燥工程では、攪拌式乾燥機を用いて乾燥を行い、乾燥後に得られる(A)の乾燥粉体の全重量に対する2.8mm以上の粒子径を有する粒子の重量割合を50重量%以下とする、吸水性樹脂粒子の製造方法。 A polymerization step of polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a crosslinking agent (b) as essential constituent units to obtain a hydrogel containing the crosslinked polymer (A), and kneading the hydrogel. A step of crushing the gel to obtain hydrous gel particles containing (A); a step of drying the hydrous gel particles to obtain a dry powder containing (A); and further pulverizing the dry powder. And/or a method for producing water-absorbent resin particles, which comprises a step of classifying to obtain resin particles containing (A), and a step of surface-crosslinking the surface of the resin particles with a surface-crosslinking agent (d), wherein 1. The gel blocking inhibitor (c) is added before the drying step, and in the drying step, drying is performed using a stirring dryer, and the total weight of the dry powder (A) obtained after drying is 2. A method for producing water-absorbent resin particles, wherein the weight ratio of particles having a particle diameter of 8 mm or more is 50% by weight or less.
- ゲルブロッキング防止剤(c)が、炭化水素基を含有する疎水性物質(c1)及び/又はポリシロキサンである疎水性物質(c2)である請求項8に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 8, wherein the gel blocking inhibitor (c) is a hydrocarbon group-containing hydrophobic substance (c1) and/or a polysiloxane hydrophobic substance (c2).
- ゲルブロッキング防止剤(c)の添加量が、架橋重合体(A)の重量に基づいて0.05~5.0重量%である請求項8又は9に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 8 or 9, wherein the addition amount of the gel blocking inhibitor (c) is 0.05 to 5.0% by weight based on the weight of the crosslinked polymer (A).
- 前記乾燥工程前の含水ゲル粒子の固形分濃度が10~55重量%である請求項8~10のいずれかに記載の吸水性樹脂粒子の製造方法。 11. The method for producing water-absorbent resin particles according to claim 8, wherein the solid content concentration of the hydrogel particles before the drying step is 10 to 55% by weight.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020565606A JP7165753B2 (en) | 2019-01-11 | 2019-11-22 | Water-absorbing resin particles and method for producing the same |
CN201980088295.3A CN113302228B (en) | 2019-01-11 | 2019-11-22 | Water-absorbent resin particles and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019003382 | 2019-01-11 | ||
JP2019-003382 | 2019-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020144948A1 true WO2020144948A1 (en) | 2020-07-16 |
Family
ID=71521160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/045767 WO2020144948A1 (en) | 2019-01-11 | 2019-11-22 | Water absorbent resin particles and production method therefor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7165753B2 (en) |
CN (1) | CN113302228B (en) |
WO (1) | WO2020144948A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4190843A4 (en) * | 2020-12-18 | 2024-02-21 | Lg Chem, Ltd. | Super absorbent polymer and preparation method thereof |
WO2024202764A1 (en) * | 2023-03-24 | 2024-10-03 | 東レ株式会社 | Polymer fine particle, method for producing same, composition, optical member, light source unit, display and lighting device, and ink |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011252080A (en) * | 2010-06-02 | 2011-12-15 | San-Dia Polymer Ltd | Method for producing absorbing resin particle |
WO2013122246A1 (en) * | 2012-02-17 | 2013-08-22 | 株式会社日本触媒 | Polyacrylic acid (salt) water-absorbing resin and manufacturing method therefor |
WO2014088012A1 (en) * | 2012-12-03 | 2014-06-12 | 株式会社日本触媒 | Polyacrylate super-absorbent polymer and manufacturing method therefor |
JP2018053043A (en) * | 2016-09-27 | 2018-04-05 | 森下仁丹株式会社 | Plurality of water-absorbing polymer particles, and method for producing plurality of water-absorbing polymer particles |
JP2018511673A (en) * | 2015-02-25 | 2018-04-26 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing surface post-crosslinked water-absorbing polymer particles by polymerization of droplets of monomer solution |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4380873B2 (en) | 1999-02-15 | 2009-12-09 | 株式会社日本触媒 | Water absorbent resin powder and use thereof |
JP4676625B2 (en) | 2000-02-29 | 2011-04-27 | 株式会社日本触媒 | Method for producing water absorbent resin powder |
JP2009051952A (en) | 2007-08-28 | 2009-03-12 | San-Dia Polymer Ltd | Absorptive resin particle, absorber, and absorptive article |
US8481159B2 (en) | 2009-09-04 | 2013-07-09 | Basf Se | Water-absorbent porous polymer particles having specific sphericity and high bulk density |
EP2922882B2 (en) | 2012-11-21 | 2022-08-03 | Basf Se | A process for producing surface-postcrosslinked water-absorbent polymer particles |
JP2016030832A (en) | 2014-07-25 | 2016-03-07 | エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH | Adhesion inhibiting process aid and its use in manufacturing water absorptive particle |
CN118005961A (en) | 2015-06-19 | 2024-05-10 | 株式会社日本触媒 | Poly (meth) acrylic acid (salt) -based particulate water absorbing agent and method for producing same |
US11806692B2 (en) | 2016-06-20 | 2023-11-07 | Nippon Shokubai Co., Ltd. | Method for producing water-absorbing agent |
EP3543280A4 (en) | 2016-11-16 | 2020-09-02 | Nippon Shokubai Co., Ltd. | Production method for water-absorbing resin powder, and production device for same |
-
2019
- 2019-11-22 WO PCT/JP2019/045767 patent/WO2020144948A1/en active Application Filing
- 2019-11-22 JP JP2020565606A patent/JP7165753B2/en active Active
- 2019-11-22 CN CN201980088295.3A patent/CN113302228B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011252080A (en) * | 2010-06-02 | 2011-12-15 | San-Dia Polymer Ltd | Method for producing absorbing resin particle |
WO2013122246A1 (en) * | 2012-02-17 | 2013-08-22 | 株式会社日本触媒 | Polyacrylic acid (salt) water-absorbing resin and manufacturing method therefor |
WO2014088012A1 (en) * | 2012-12-03 | 2014-06-12 | 株式会社日本触媒 | Polyacrylate super-absorbent polymer and manufacturing method therefor |
JP2018511673A (en) * | 2015-02-25 | 2018-04-26 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Method for producing surface post-crosslinked water-absorbing polymer particles by polymerization of droplets of monomer solution |
JP2018053043A (en) * | 2016-09-27 | 2018-04-05 | 森下仁丹株式会社 | Plurality of water-absorbing polymer particles, and method for producing plurality of water-absorbing polymer particles |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4190843A4 (en) * | 2020-12-18 | 2024-02-21 | Lg Chem, Ltd. | Super absorbent polymer and preparation method thereof |
WO2024202764A1 (en) * | 2023-03-24 | 2024-10-03 | 東レ株式会社 | Polymer fine particle, method for producing same, composition, optical member, light source unit, display and lighting device, and ink |
Also Published As
Publication number | Publication date |
---|---|
CN113302228A (en) | 2021-08-24 |
CN113302228B (en) | 2024-09-27 |
JP7165753B2 (en) | 2022-11-04 |
JPWO2020144948A1 (en) | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101511820B1 (en) | Absorbing resin particles, process for producing same, and absorbent and absorbing article both including same | |
WO2018147317A1 (en) | Water-absorbent resin particles, and absorber and absorbent article in which same are used | |
JP5833076B2 (en) | Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article | |
JP2018127508A (en) | Absorptive resin particle and method for producing the same | |
JP2010185029A (en) | Absorbent resin particle, method for manufacturing the same, absorber including the same, and absorbent article | |
WO2020144948A1 (en) | Water absorbent resin particles and production method therefor | |
JP2023099531A (en) | Production method of water-absorbing resin particle | |
JP2023060178A (en) | Method for producing water-absorbing resin particle | |
JP6510561B2 (en) | Absorbent articles | |
JP2019141754A (en) | Water-absorbing resin particle, absorber and absorbing article using the same, and production method of water-absorbing resin particle | |
WO2020105277A1 (en) | Easily dehydratable water-absorbent resin particles and production method thereof | |
JP6898842B2 (en) | Absorbent resin particles, absorbers containing them and absorbent articles | |
JPWO2018225815A1 (en) | Water-absorbing resin particles and method for producing the same | |
JP6935996B2 (en) | Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them | |
JP7339253B2 (en) | Water absorbent resin particles, absorbent body and absorbent article containing the same | |
JP7453918B2 (en) | Water-absorbing resin particles and their manufacturing method | |
JP2018039929A (en) | Aqueous liquid absorptive resin particle and absorber and absorptive article using the same | |
WO2019059019A1 (en) | Water-absorbing resin composition and production method therefor | |
WO2023120230A1 (en) | Fluidity improving agent for solid fuel or for steel raw material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19909425 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020565606 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19909425 Country of ref document: EP Kind code of ref document: A1 |