WO2023120230A1 - Fluidity improving agent for solid fuel or for steel raw material - Google Patents

Fluidity improving agent for solid fuel or for steel raw material Download PDF

Info

Publication number
WO2023120230A1
WO2023120230A1 PCT/JP2022/045403 JP2022045403W WO2023120230A1 WO 2023120230 A1 WO2023120230 A1 WO 2023120230A1 JP 2022045403 W JP2022045403 W JP 2022045403W WO 2023120230 A1 WO2023120230 A1 WO 2023120230A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
solid fuel
fluidity
water
raw material
Prior art date
Application number
PCT/JP2022/045403
Other languages
French (fr)
Japanese (ja)
Inventor
遼 吉本
興滋 加峰
Original Assignee
三洋化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋化成工業株式会社 filed Critical 三洋化成工業株式会社
Publication of WO2023120230A1 publication Critical patent/WO2023120230A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention is a fluidity improver for solid fuels or steel raw materials, that is, coal, coke, wood chips, wood pellets, waste solid fuels, iron ore, limestone, sintered ore, steel mill dust, etc.
  • the present invention relates to a material for preventing a decrease in fluidity when Further, the present invention relates to a method for improving the fluidity of a solid fuel or steel raw material, including the step of contacting the solid fuel or steel raw material with a fluidity improver.
  • Patent Document 1 a powdery moisture absorbent is added to and mixed with wet coke and sieved to separate portions with poor fluidity
  • Patent Document 1 requires a sieving process, and has the problem of poor production efficiency and poor yield.
  • the present inventor arrived at the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention contains a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis, and a crosslinked polymer (A) containing a crosslinking agent (b) as essential constituent monomers. It is a fluidity improver that satisfies the following (1) and (2) and is for solid fuels or steel raw materials. (1) Gel elastic modulus; 1.5 to 2.5 kN/m 2 (2) Water retention capacity; greater than 320 g/g and 700 g/g or less
  • the fluidity improver of the present invention By using the fluidity improver of the present invention, even when solid fuels or steel raw materials are piled in an outdoor yard and become wet due to rainwater or sprinkled water, high-viscosity slurry is not generated and excellent fluidity is obtained. It can be solid fuel or raw steel.
  • the fluidity improver for solid fuel or steel raw material of the present invention essentially comprises a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis, and a cross-linking agent (b). It contains a crosslinked polymer (A) as a monomer.
  • the content of the crosslinked polymer (A) is preferably 80 to 100% by weight, more preferably 90 to 100% by weight, based on the weight of the fluidity improver for solid fuels or steel raw materials. , particularly preferably 92 to 100% by weight. Within this range, the water retention capacity and gel elastic modulus of the fluidity improver are likely to fall within the desired ranges.
  • the fluidity improving effect of the solid fuel or steel raw material is improved.
  • the crosslinked polymer (A) gelled by water may block the solid fuel or the raw material for steel, rather hindering fluidity.
  • the water retention amount of the fluidity improver for solid fuel or steel raw material containing the crosslinked polymer (A) and the gel elastic modulus when swollen 30 times with ion-exchanged water blocking can be prevented. It is possible to improve the fluidity without causing it to occur.
  • solid fuel or raw material for steel refers to the solid fuel or raw material for steel itself, and the solid fuel or raw material for steel, depending on the application, pulverization, particle size adjustment, agglomeration, agglomeration, granulation, etc. It also includes those pretreated with For example, if “solid fuel or iron ore raw material” is “coal”, it includes coal itself and coal that has undergone pretreatment such as pulverization, particle size adjustment, agglomeration, agglomeration and granulation depending on the application. .
  • the solid fuel preferably contains at least one selected from the group consisting of coal, coke, wood chips, wood pellets, and waste solid fuel
  • the iron ore raw material is iron ore, limestone, sintered ore , and steel mill dust.
  • the solid fuel or iron ore raw material more preferably contains at least one selected from the group consisting of coal, coke, iron ore, limestone, sintered ore and steel mill dust, and coal, coke, iron ore and Most preferably, it contains at least one selected from the group consisting of sintered ore. This is because these solid fuels or iron ore raw materials are used in large amounts in factories such as ironworks and power plants, and are often piled up in yards, piled up, and stored as storage methods.
  • the water-soluble vinyl monomer (a1) used in the crosslinked polymer (A) is not particularly limited, and known (for example, Japanese Patent No. 3648553, Japanese Unexamined Patent Publication No. 2003-165883, Japanese Unexamined Patent Publication No. 2005-75982 and Japanese Unexamined Patent Publications 2005-95759) can be used.
  • the vinyl monomer (a2) that becomes (a1) by hydrolysis means a vinyl monomer that becomes water-soluble vinyl monomer (a1) by hydrolysis, is not particularly limited, and is publicly known (e.g., Japanese Patent No. 3648553, Japanese Unexamined Patent Application Publication No. 3648553, 2003-165883, JP-A-2005-75982 and JP-A-2005-95759) can be used.
  • Water-soluble vinyl monomer means a vinyl monomer that has the property of dissolving at least 100 g in 100 g of water at 25°C.
  • a water-soluble vinyl monomer (a1) by hydrolysis means the property of being hydrolyzed by the action of water at 50°C and, if necessary, a catalyst (such as an acid or a base) to become a water-soluble vinyl monomer (a1). means.
  • the hydrolysis of the vinyl monomer that becomes (a1) by hydrolysis may be carried out during polymerization, after polymerization, or both. Later is preferred.
  • the water-soluble vinyl monomer (a1) is preferred, and anionic vinyl monomers are more preferred from the viewpoint of water absorption capacity and the like.
  • Monomers more preferably vinyl monomers having a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or a mono-, di- or tri-alkylammonio group, particularly preferably (meth ) acrylic acid (salts) and (meth)acrylamides, particularly preferred (meth)acrylic acid (salts), most preferred acrylic acid (salts).
  • salts include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts, ammonium (NH 4 ) salts, and the like. Among these salts, alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of water absorption capacity.
  • each of them may be used alone as a constituent monomer.
  • the above may be used as constituent monomers.
  • the water-soluble vinyl monomer (a1) and the vinyl monomer (a2) that becomes (a1) by hydrolysis are used as constituent monomers.
  • the molar ratio [(a1):(a2)] of these contents is 75: 25 to 99:1 is preferred, more preferably 85:15 to 99:1, particularly preferably 90:10 to 99:1, most preferably 95:5 to 99:1. Within this range, the water absorption capacity is further improved.
  • constituent monomers of the crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1) and the vinyl monomer (a2) that becomes (a1) by hydrolysis, other vinyl monomers (a3 ) can be used as constituent monomers.
  • the other copolymerizable vinyl monomer (a3) is not particularly limited and known (for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982 and Japanese Patent Application Laid-Open No. 2005-95759 ) can be used.
  • the following vinyl monomers (i) to (iii) can be used.
  • the content (mol %) of the other vinyl monomer (a3) unit is the water-soluble vinyl monomer (a1) unit and the vinyl monomer that becomes (a1) by hydrolysis. Based on the total number of moles of (a2) units, preferably 0.01 to 5 mol%, more preferably 0.01 to 3 mol%, particularly preferably 0.01 to 2 mol%, particularly preferably 0.01 ⁇ 1.5 mol%. From the viewpoint of water absorption capacity, etc., it is most preferable that the content of other vinyl monomer (a3) units is 0 mol %.
  • the cross-linking agent (b) constituting the cross-linked polymer (A) is not particularly limited, and known (for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982 and Japanese Patent Application Laid-Open No. 2005 -95759) can be used.
  • a cross-linking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of water absorption capacity, modification efficiency, and residual gel rate in the iron decomposition resistance test described later, and more preferably 2 carbon atoms.
  • Poly(meth)allyl ethers of polyols of ⁇ 10 particularly preferred are triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferred is pentaerythritol triallyl ether is.
  • the content (mol%) of the crosslinking agent (b) units is 0.001 to 0.001 based on the total number of moles of the water-soluble vinyl monomer (a1) units and the vinyl monomer (a2) units that become (a1) by hydrolysis. 5 mol % is preferred, more preferably 0.005 to 3 mol %, particularly preferably 0.01 to 1 mol %, most preferably 0.09 to 0.8 mol %. Within this range, the water absorption capacity is further improved.
  • the crosslinked polymer (A) is a known aqueous solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method, etc.; JP-A-55-133413, etc.) or known reverse-phase suspension polymerization (JP-B-54-30710 It can be produced in the same manner as described in JP-A-56-26909, JP-A-1-5808, etc.).
  • the solution polymerization method is preferred, and the aqueous solution polymerization method is particularly preferred because it is advantageous in terms of production cost because it does not require the use of an organic solvent or the like.
  • the water-containing gel obtained by polymerization [consisting of the crosslinked polymer (A) and water] can be shredded if necessary.
  • the size (maximum diameter) of the gel after shredding is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved.
  • Shredding can be performed by a known method, and shredding using a general shredding device (e.g., Vex mill, rubber chopper, farmer mill, mincing machine, impact pulverizer, and roll pulverizer), etc. can.
  • a general shredding device e.g., Vex mill, rubber chopper, farmer mill, mincing machine, impact pulverizer, and roll pulverizer
  • the solvent organic solvent, water, etc.
  • the content (% by weight) of the organic solvent after distillation is preferably 0 to 10% by weight, more preferably 0 to 5% by weight, based on the weight of the crosslinked polymer (A).
  • % particularly preferably 0-3% by weight, most preferably 0-1% by weight.
  • the water content (% by weight) after distillation is preferably 20% by weight or less, more preferably 1 to 20% by weight, particularly preferably 1 to 20% by weight, based on the weight of the crosslinked polymer (A). 2-15% by weight, most preferably 3-10% by weight. Within this range, the water absorption capacity is further improved.
  • the organic solvent content and water content of the crosslinked polymer (A) were measured using an infrared moisture meter [JE400 manufactured by KETT Co., Ltd.] at 120 ⁇ 5 ° C. for 30 minutes (atmospheric humidity before heating). : 50 ⁇ 10% RH, lamp specifications: 100 V, 40 W) Obtained from the weight loss of the measurement sample before and after heating when heated.
  • Methods for distilling off the solvent include a method of distilling off (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C., (heating). Vacuum drying, freeze-drying, infrared drying, decantation, filtration and the like can be applied.
  • the crosslinked polymer (A) can be pulverized after drying.
  • the method of pulverization is not particularly limited, and general pulverizers ⁇ eg, hammer pulverizer, impact pulverizer, roll pulverizer and jet jet pulverizer ⁇ , juicer mixers and the like can be used.
  • the pulverized crosslinked polymer can be adjusted in particle size by sieving or the like, if necessary.
  • the weight average particle diameter ( ⁇ m) of the crosslinked polymer (A) when sieved as necessary is preferably 100 to 800 ⁇ m, more preferably 200 to 700 ⁇ m, particularly preferably 250 to 600 ⁇ m, particularly preferably 300 to 500 ⁇ m, most preferably 300 to 500 ⁇ m. It is preferably 350-450 ⁇ m, especially most preferably 380-400 ⁇ m. Within this range, the water absorption capacity is further improved.
  • the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2019), Perry's Chemical Engineers Handbook 6th Edition (McGrow Hill Book Company, 1984 , page 21). That is, JIS standard sieves of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m are combined in order from the top to the tray. Approximately 50 g of the particles to be measured are placed in the top sieve and shaken for 5 minutes on the Rotap test sieve shaker.
  • the content of fine particles with a particle diameter of 150 ⁇ m or less in all particles is preferably 3% by weight or less, more preferably 1% by weight or less.
  • the content of fine particles having a particle diameter of 106 ⁇ m or less in all particles is preferably 2% by weight or less, more preferably 1% by weight or less.
  • the content (% by weight) of fine particles in all particles can be determined using the plot created when determining the weight average particle diameter.
  • the apparent density (g/ml) of the crosslinked polymer (A) is preferably from 0.54 to 0.70 g/ml, more preferably from 0.56 to 0.65 g/ml, particularly preferably from 0.58 to 0.58 g/ml. 60 g/ml. Within this range, the water absorption capacity is further improved. Incidentally, the apparent density is measured at 25°C in accordance with JIS K7365:1999.
  • the shape of the crosslinked polymer (A) is not particularly limited, and may be irregularly crushed, scaly, pearl-like, or rice grain-like, but irregularly crushed is preferred from the viewpoint of improving fluidity.
  • the crosslinked polymer (A) may be used alone or in combination of two or more.
  • the crosslinked polymer (A) is surface-crosslinked with a surface-crosslinking agent from the viewpoint of making it difficult for the gel absorbed by (A) and the solid fuel or steel raw material to block (hereinafter referred to as "blocking resistance").
  • a surface-crosslinking agent examples include polyhydric glycidyl described in JP-A-59-189103, etc., polyhydric alcohols and polyhydric amines described in JP-A-58-180233 and JP-A-61-16903.
  • polyvalent aziridine and polyvalent isocyanate silane coupling agents described in JP-A-61-211305 and JP-A-61-252212 and JP-A-51-136588 and JP-A-61-257235
  • examples thereof include polyvalent metals described in JP-A-2003-213351 and the like.
  • polyvalent glycidyls, polyvalent amines and silane coupling agents are preferred from the viewpoint of blocking resistance, polyvalent glycidyls and silane coupling agents are more preferred, and polyvalent glycidyls are particularly preferred.
  • polyhydric glycidyls ethylene glycol diglycidyl ether and glycerin diglycidyl ether are preferred, and ethylene glycol diglycidyl ether is particularly preferred.
  • the amount (% by weight) of the surface cross-linking agent used is preferably 0.01 to 0.20% by weight, more preferably 0.03, based on the weight of the crosslinked polymer (A), from the viewpoint of blocking resistance and the like. to 0.15% by weight, particularly preferably 0.05 to 0.10% by weight.
  • Surface cross-linking can be carried out by known methods (for example, the methods disclosed in JP-A-13-2935, JP-A-2003-147005 and JP-A-2003-165883).
  • the surface cross-linking step may be repeated two or more times. That is, the crosslinked polymer (A) obtained by surface-crosslinking with the surface-crosslinking agent can be subjected to additional surface-crosslinking with the same or different surface-crosslinking agent as the first surface-crosslinking agent.
  • the content of the additional surface cross-linking agent, treatment method, treatment temperature, treatment time, etc. are the same as in the first case.
  • the fluidity improver for solid fuel or steel raw material of the present invention preferably further contains an inorganic powder (c). It is preferably contained in a form in which (c) is attached.
  • Examples of the inorganic powder (c) include hydrophilic inorganic particles (c1) and hydrophobic inorganic particles (c2).
  • the hydrophilic inorganic particles (c1) include particles such as glass, silica gel, silica and clay.
  • Examples of hydrophobic inorganic particles (c2) include particles of carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos and shirasu. Among these, hydrophilic inorganic particles (c1) are preferred, and silica is most preferred.
  • the shape of the hydrophilic inorganic particles (c1) and the hydrophobic inorganic particles (c2) may be amorphous (crushed), spherical, film-like, rod-like, or fibrous. Alternatively, it is preferably spherical, more preferably spherical.
  • the specific surface area (m 2 /g) of the hydrophilic inorganic particles (c1) and the hydrophobic inorganic particles (c2) is preferably 5 to 700 m 2 /g, more preferably 20 to 500 m 2 /g, particularly preferably 40 to 400 m 2 /g, most preferably 150-250 m 2 /g.
  • the content (% by weight) of the inorganic powder (c) is preferably 0.010 to 5.000% by weight, more preferably 0.10 to 5.000% by weight, based on the weight of the crosslinked polymer (A). , then preferably 0.20 to 5.000% by weight, particularly preferably 0.275 to 5.000% by weight, most preferably 0.300 to 3.000% by weight. Within this range, blocking resistance is further improved.
  • a method for adhering the inorganic powder (c) to the surface of the crosslinked polymer (A) there is a method of uniform mixing using a general mixer.
  • Apparatuses used include, for example, cylindrical mixers, screw mixers, screw extruders, turbulizers, Nauta mixers, twin-arm kneaders, fluid mixers, V mixers, and ribbon mixers. Mixers, fluidized mixers, airflow mixers, rotating disk mixers, conical blenders, roll mixers and the like can be mentioned.
  • the mixing temperature (°C) is not particularly limited, but is preferably 20 to 120°C, more preferably 30 to 100°C, and particularly preferably 40 to 90°C. Within this range, the inorganic powder (c) adheres well to the surface of the crosslinked polymer (A).
  • the step of attaching the inorganic powder (c) to the surface of the crosslinked polymer (A) includes each step of producing the crosslinked polymer (A) ⁇ polymerization step, chopping step, neutralization step, from the viewpoint of adhesion efficiency. , before and after the drying step, the pulverizing step, the surface cross-linking step, etc. ⁇ , the drying step, the pulverizing step, before and after the surface cross-linking step, etc. are preferably carried out.
  • the fluidity improver for solid fuel or steel raw material of the present invention preferably further contains a hydrophobic organic compound (d). It is preferable to contain a part or all of the hydrophobic organic compound (d) inside the crosslinked polymer (A), and at least a part of (d) exists on the surface of the crosslinked polymer (A). More preferably.
  • hydrophobic organic compound (d) examples include a hydrophobic organic compound (d1) having a hydrocarbon group, a hydrophobic organic compound (d2) having a fluorine atom and a hydrocarbon group, and a hydrophobic organic compound having a polysiloxane structure ( d3) and the like.
  • hydrophobic organic compound (d1) having a hydrocarbon group examples include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, compounds comprising a hydrophobic portion and a hydrophilic portion, and mixtures of two or more thereof. be done.
  • the weight of an olefin having 2 to 4 carbon atoms (ethylene, propylene, isobutylene, isoprene, etc.) as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin).
  • examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 [eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene) and isoprene].
  • polystyrene resin 1,000 to 1,000,000 polymers (e.g., polyethylene oxide, polypropylene oxide, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-anhydride maleic acid copolymer, maleated polybutadiene, ethylene-vinyl acetate copolymer, maleated ethylene-vinyl acetate copolymer, etc.).
  • polymers e.g., polyethylene oxide, polypropylene oxide, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-anhydride maleic acid copolymer, maleated polybutadiene, ethylene-vinyl acetate copolymer, maleated ethylene-vinyl
  • polystyrene resin a styrene polymer having a weight average molecular weight of 1,000 to 1,000,000 is preferable.
  • polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene- maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, etc.).
  • Waxes include waxes with a melting point of 50 to 200°C (eg, paraffin wax, beeswax, carnauba wax, beef tallow, etc.).
  • Examples of compounds consisting of a hydrophobic portion and a hydrophilic portion include long-chain fatty acids and salts thereof, long-chain fatty alcohols, and sucrose fatty acid esters with an HLB value of 7 or less.
  • long-chain fatty acids and salts thereof include fatty acids having 8 to 30 carbon atoms (eg, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, behenic acid, etc.), and salts thereof such as zinc and calcium.
  • salts with magnesium or aluminum hereinafter abbreviated as Zn, Ca, Mg, Al
  • Zn stearate, Ca stearate, Mg stearate and Al stearate are preferred, and Mg stearate is more preferred.
  • long-chain aliphatic alcohols include aliphatic alcohols having 10 to 30 carbon atoms ⁇ eg, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, etc. ⁇ . Palmityl alcohol, stearyl alcohol and oleyl alcohol are preferred, and stearyl alcohol is more preferred, from the viewpoint of blocking resistance and the like.
  • sucrose fatty acid esters having an HLB value of 7 or less examples include sucrose in which fatty acids having 8 to 22 carbon atoms are ester-bonded to sucrose.
  • the HLB value in the present invention means the hydrophilic-hydrophobic balance (HLB) value, and the Oda method ["Introduction to Surfactants” (published by Sanyo Chemical Industries, Ltd., 2007, by Takehiko Fujimoto), page 212. ], it can be calculated from the ratio between the organic value and the inorganic value of the organic compound.
  • HLB value 10 x inorganic/organic
  • the organic value and inorganic value for deriving the HLB value can be calculated using the values in the table described on page 213 of "Introduction to Surfactants".
  • the melting point of the compound consisting of a hydrophobic portion and a hydrophilic portion is preferably 50-300°C, more preferably 60-200°C, and particularly preferably 80-160°C.
  • Hydrophobic organic compounds (d2) having a fluorine atom and a hydrocarbon group include perfluoroalkanes, perfluoroalkenes, perfluoroaryls, perfluoroalkyl ethers, perfluoroalkylcarboxylic acids, perfluoroalkyl alcohols, and two of these. mixtures of more than one species, and the like.
  • perfluoroalkanes examples include alkanes having 3 to 42 fluorine atoms and 1 to 20 carbon atoms (eg, trifluoromethane, pentafluoroethane, pentafluoropropane, tridecafluorooctane and heptadecafluorododecane).
  • perfluoroalkene examples include alkenes having 3 to 42 fluorine atoms and 2 to 20 carbon atoms (eg, trifluoroethylene, pentafluoropropene, tridecafluorooctene and heptadecafluorododecene).
  • perfluoroaryl examples include aryl having 3 to 42 fluorine atoms and 6 to 20 carbon atoms (eg, trifluorobenzene, tridecafluorooctylbenzene and heptadecafluorododecylbenzene).
  • perfluoroalkyl ethers examples include ethers having 2 to 82 fluorine atoms and 2 to 40 carbon atoms (eg, ditrifluoromethyl ether, ditridecafluorooctyl ether and diheptadecafluorododecyl ether).
  • Perfluoroalkylcarboxylic acids include carboxylic acids having 3 to 41 fluorine atoms and 1 to 21 carbon atoms [for example, pentafluoroethanoic acid, tridecafluorooctanoic acid, heptadecafluorododecanoic acid and metals thereof (alkali metals and alkaline earth metals, etc.) salts] and the like.
  • Perfluoroalkyl alcohols include alcohols having 3 to 41 fluorine atoms and 1 to 20 carbon atoms (e.g., pentafluoroethanol, nonafluorohexanol, tridecafluorooctanol and heptadecafluorododecanol) and ethylene of these alcohols. Oxide (1 to 20 mol per 1 mol of alcohol) adducts and the like can be mentioned.
  • mixtures of two or more of these include mixtures of perfluoroalkylcarboxylic acids and perfluoroalkyl alcohols (for example, mixtures of pentafluoroethanoic acid and pentafluoroethanol).
  • hydrophobic organic compound (d3) having a polysiloxane structure examples include polydimethylsiloxane, polyether-modified polysiloxane [polyoxyethylene-modified polysiloxane and poly(oxyethylene/oxypropylene)-modified polysiloxane, etc.], carboxy-modified polysiloxane. , epoxy-modified polysiloxane, amino-modified polysiloxane, alkoxy-modified polysiloxane, and mixtures thereof.
  • the position of the organic group (modifying group) of modified polysiloxane is not particularly limited, but the side chain of polysiloxane, poly It may be both ends of siloxane, one end of polysiloxane, or both side chains and both ends of polysiloxane.
  • the side chain of polysiloxane and the side chain and both terminals of polysiloxane are preferable, and both the side chain and both terminals of polysiloxane are more preferable.
  • organic groups (modified groups) of polyether-modified polysiloxane include groups containing polyoxypropylene groups or poly(oxyethylene/oxypropylene) groups.
  • the total content (groups) of oxyethylene groups and oxypropylene groups in the polyether-modified polysiloxane is preferably 2 to 40 groups, more preferably 5 to 30 groups, and particularly preferably 5 to 30 groups per molecule of polyether-modified polysiloxane. 7-20, most preferably 10-15. Within this range, blocking resistance is further improved.
  • the content (% by weight) of the oxypropylene group is preferably 1 to 30% by weight, more preferably 3 to 25% by weight, based on the weight of the polysiloxane. Especially preferred is 5 to 20% by weight. Within this range, blocking resistance is further improved.
  • Polyether-modified polysiloxanes are readily available on the market, and preferred examples include those described under the following "trade name (modification position, type of oxyalkylene)".
  • KF-945 side chain, oxyethylene and oxypropylene
  • KF-6020 side chain, oxyethylene and oxypropylene
  • X-22-6266 side chain, oxyethylene and oxypropylene
  • FZ-2110 both ends, oxyethylene and oxypropylene
  • FZ-2122 both ends, oxyethylene and oxypropylene
  • FZ-2154 both ends, oxyethylene and oxypropylene
  • FZ-2203 both ends, oxyethylene and oxypropylene
  • FZ-2207 both ends, oxyethylene and oxypropylene
  • Examples of the organic group (modifying group) of the carboxy-modified polysiloxane include groups having a carboxy group.
  • Examples of the organic group (modifying group) of the epoxy-modified polysiloxane include groups having an epoxy group.
  • Examples of the organic group (modifying group) of include groups having an amino group (primary, secondary or tertiary amino group).
  • the organic group (modifying group) content (g/mol) of these modified silicones is preferably 200 to 11,000 g/mol, more preferably 600 to 8,000 g/mol, and particularly preferably carboxy equivalent, epoxy equivalent, or amino equivalent. is between 1000 and 4000 g/mol. Within this range, blocking resistance is further improved.
  • the carboxy equivalent is measured according to JIS C2101:1999 "16. Total acid value test”.
  • the epoxy equivalent is determined according to JIS K7236:2001.
  • the amino equivalent is measured according to JIS K2501:2003 "8. Potentiometric titration method (base number/hydrochloric acid
  • Carboxy-modified polysiloxanes are readily available on the market, and preferred examples include those described as the following "trade name [modification position, carboxy equivalent (g/mol)]". ⁇ Shin-Etsu Chemical Co., Ltd.: X-22-3701E (side chain, 4000), X-22-162C (both ends, 2300), X-22-3710 (one end, 1450) ⁇ Dow Corning Toray Co., Ltd.: BY 16-880 (side chain, 3500), BY 16-750 (both ends, 750), BY 16-840 (side chain, 3500), SF8418 (side chain, 3500)
  • Epoxy-modified polysiloxanes are readily available on the market, and preferred examples include those described under the following "trade name (modification position, epoxy equivalent)". ⁇ Shin-Etsu Chemical Co., Ltd.: X-22-343 (side chain, 525), X-22-163C (both ends, 2700), X-22-169AS (both ends, 500), X-22-173DX ( One end, 4500), X-22-9002 (side chain/both ends, 5000) ⁇ Dow Corning Toray Co., Ltd.: FZ-3720 (side chain, 1200), FZ-3736 (side chain, 5000), BY 16-855D (side chain, 180), BY 16-8 (side chain, 3700)
  • Amino-modified silicones are readily available on the market, and preferred examples include those described under the following "trade name (modified position, amino equivalent)".
  • Mixtures of these include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
  • the hydrophobic organic compound (d) is preferably (d1) and (d3), more preferably (d3 ), most preferably carboxy-modified polysiloxane.
  • the viscosity (mPa s, 25° C.) of the hydrophobic organic compound (d3) having a polysiloxane structure is preferably 10 to 5000 mPa s, more preferably 15 to 3000 mPa s, particularly preferably 20 to 2500 mPa s. and most preferably 1900 to 2100 mPa ⁇ s. Within this range, blocking resistance is further improved. In addition, the viscosity is measured in accordance with JIS Z8803-2011 "10.
  • Viscosity measurement method using a cone-plate rotational viscometer for example, an E-type viscometer (Higashi RE80L manufactured by Kisangyo Co., Ltd., a conical cone with a radius of 7 mm and an angle of 5.24 ⁇ 10 ⁇ 2 rad).
  • the method for mixing the crosslinked polymer (A) and the hydrophobic organic compound (d) is not particularly limited, but mixing is performed so that the hydrophobic organic compound (d) exists inside the crosslinked polymer (A).
  • the hydrophobic organic compound (d) is preferably mixed by the following methods (1) to (2) instead of being mixed with the dried crosslinked polymer (A), more preferably This is the method of (1).
  • the mixing in the method (1) is uniformly mixed so as to be kneaded.
  • (1) A method of mixing and kneading the hydrophobic organic compound (d) and the water-containing gel of the crosslinked polymer (A).
  • the hydrophobic organic compound (d) in the method (1) it is possible to use the pulverized product of (d), beads, rod-shaped or fibrous products.
  • the volume average particle size ( ⁇ m) of the pulverized product and beads is preferably 0.5 to 100 ⁇ m, more preferably 1 to 30 ⁇ m, particularly preferably 2 to 20 ⁇ m.
  • the rod-like length ( ⁇ m) is preferably 5 to 50 ⁇ m, more preferably 7 to 30 ⁇ m, particularly preferably 10 to 20 ⁇ m, and the diameter ( ⁇ m) is preferably 0.5 to 50 ⁇ m, more preferably 1 to 50 ⁇ m. 30 ⁇ m, particularly preferably 2 to 15 ⁇ m.
  • the fibrous length ( ⁇ m) is preferably 5 to 50 ⁇ m, more preferably 7 to 30 ⁇ m, particularly preferably 10 to 20 ⁇ m, and the diameter ( ⁇ m) is preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, particularly preferably 2 to 15 ⁇ m. Within these ranges, blocking resistance is further improved.
  • beads such as Mg stearate beads, polystyrene beads and polyethylene beads, polyethylene films (for example, SE625M and UB-1 manufactured by Tamapoly Co., Ltd.) and polystyrene Pulverized films (volume average particle size: 20 to 50 ⁇ m) such as films (eg, OPS manufactured by Asahi Kasei Co., Ltd.) are preferably used.
  • a fluorine film for example, manufactured by Asahi Glass Co., Ltd.: FLUON PTFE (polytetrafluoroethylene film), FLUON PFA (tetrafluoroethylene and perfluoroethylene copolymer film) and FLUON AFLAS (tetrafluoroethylene and propylene copolymer film)] pulverized products (volume average particle size 20 to 50 ⁇ m) are preferably used.
  • FLUON PTFE polytetrafluoroethylene film
  • FLUON PFA tetrafluoroethylene and perfluoroethylene copolymer film
  • FLUON AFLAS tetrafluoroethylene and propylene copolymer film
  • silicone beads for example, manufactured by GE Toshiba Silicone Co., Ltd.: Tospearl 240 (irregular silicone resin fine powder, volume average particle diameter 4 ⁇ m), Tospearl 3120 (true Spherical silicone resin fine powder, volume average particle size 12 ⁇ m), Tospearl 145 (spherical silicone resin fine powder, volume average particle size 45 ⁇ m)] and the like are preferably used.
  • Tospearl 240 irregular silicone resin fine powder, volume average particle diameter 4 ⁇ m
  • Tospearl 3120 true Spherical silicone resin fine powder, volume average particle size 12 ⁇ m
  • Tospearl 145 spherical silicone resin fine powder, volume average particle size 45 ⁇ m
  • beads are preferred from the viewpoint of blocking resistance, and Mg stearate beads are more preferred.
  • the timing of mixing and kneading the hydrophobic organic compound (d) and (A) is not particularly limited, but during the polymerization step, immediately after the polymerization step, and after the hydrous gel During crushing (mincing) of the water-containing gel and during drying of the hydrous gel.
  • mixing is preferably performed immediately after the polymerization step or during the water-containing gel crushing (mincing) step, and more preferably during the water-containing gel crushing (mincing) step.
  • the hydrophobic organic compound (d) is a long-chain fatty acid salt
  • the long-chain fatty acid and metal hydroxide may be mixed or may be added separately.
  • the timing of mixing the hydrophobic organic compound (d) and (A) is not particularly limited, but during the polymerization process [(d ) in the presence of )], immediately after the polymerization step, during the dehydration step (during the step of dehydrating to a water content of about 10% by weight), immediately after the dehydration step, the organic solvent used in the polymerization is separated and distilled off. Examples include during the process and during drying of the hydrous gel.
  • mixing during the polymerization process immediately after the polymerization process, during the dehydration process, immediately after the dehydration process, or during the process of separating and distilling off the organic solvent used in the polymerization is preferable, and more preferable. is during or immediately after the polymerization step.
  • equipment such as Vex mill, rubber chopper, farmer mill, mincing machine, impact crusher and roll crusher can be used as mixing equipment.
  • a device with relatively high stirring power such as a homomixer and a biomixer can be used.
  • a kneading device such as an SV mixer can be used.
  • the mixing temperature (°C) is preferably 80-200°C, more preferably 100-180°C, and particularly preferably 120-170°C. Within this range, uniform mixing is facilitated, and blocking resistance is further improved.
  • a method of obtaining a hydrous gel of the crosslinked polymer (A) by polymerizing the constituent monomers in the presence of the hydrophobic organic compound (d) includes adding the hydrophobic organic compound (d) to the polymerization liquid of the crosslinked polymer (A). is dissolved or emulsified (dispersed), and the polymerization is carried out in the presence of the hydrophobic organic compound (d).
  • the hydrophobic organic compound (d) can be used in the form dissolved and/or emulsified in water and/or a volatile solvent (however, no emulsifier is used).
  • the volatile solvent preferably has a vapor pressure (Pa) of 0.13 to 5.3 Pa at 20° C., more preferably 0.15 to 4.5 Pa, and particularly preferably 0.15 to 4.5 Pa, from the viewpoint of ease of removal. is from 0.23 to 3.8 Pa.
  • Volatile solvents include alcohols with 1 to 3 carbon atoms (methanol, ethanol and isopropyl alcohol), hydrocarbons with 5 to 8 carbon atoms (pentane, hexane, cyclohexane, toluene, etc.), ethers with 2 to 4 carbon atoms (dimethyl ether , diethyl ether and tetrahydrofuran), ketones having 3 to 4 carbon atoms (acetone and methyl ethyl ketone etc.) and esters having 3 to 5 carbon atoms (ethyl formate, ethyl acetate, isopropyl acetate and diethyl carbonate etc.).
  • the amount (% by weight) of these used is preferably 1 to 900% by weight, more preferably 5 to 700% by weight, based on the weight of the hydrophobic organic compound (d). %, particularly preferably 10 to 400% by weight.
  • the amount of water used (% by weight) is preferably 50 to 98% by weight, more preferably 60 to 95% by weight, particularly preferably 60 to 95% by weight, based on the weight of water and the volatile solvent. is 70 to 90% by weight.
  • the hydrogel containing the hydrophobic organic compound (d) can be shredded if necessary.
  • the size (longest diameter) of the water-containing gel particles after shredding is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved.
  • the shredding method the same method as in the case of the aforementioned water-containing gel (consisting of the crosslinked polymer (A) and water) can be employed.
  • Additives other than the inorganic powder (c) and the hydrophobic organic compound (d) can be added to the fluidity improver for solid fuel or steel raw material of the present invention within a range that does not impair the performance.
  • known additives for example, JP-A-2003-225565) (preservatives, antifungal agents, antioxidants, ultraviolet absorbers, coloring agents, deodorants, organic fibrous materials, etc.), etc. can be used, and one or more of these may be used in combination.
  • the time of addition is not particularly limited, and it can be added at any stage (polymerization process, drying process, surface cross-linking process and/or before or after these processes) in the production process of the crosslinked polymer (A).
  • the gel elastic modulus (kN/m 2 ) of the fluidity improver for solid fuel or steel raw material of the present invention is 1.5 to 2.5 kN/m 2 , preferably 1.6 to 2.4 kN. /m 2 , more preferably 1.7 to 2.3 kN/m 2 , particularly preferably 1.8 to 2.2 kN/m 2 . If it is less than 1.5 kN/m 2 , the blocking resistance is poor and the fluidity-improving effect is low . , the fluidity-improving effect becomes small because it cannot contact the water in the system efficiently.
  • the gel elastic modulus (kN/m 2 ) is a value obtained by the following measuring method.
  • the gel elastic modulus is measured using a card meter (for example, Card Meter Max ME-500 manufactured by Itec Techno Engineering Co., Ltd.). to measure.
  • the card meter conditions are as follows. ⁇ Pressure-sensitive shaft: 8mm ⁇ Spring: for 100g ⁇ Load: 100g weight ⁇ Rising speed: 1 inch/7 seconds ⁇ Test properties: rupture ⁇ Measurement time: 6 seconds ⁇ Measurement ambient temperature: 25 ⁇ 2°C
  • the gel elastic modulus of the fluidity improver for solid fuel or steel raw material of the present invention depends on the polymerization conditions (monomer concentration during polymerization, etc.) of the crosslinked polymer (A) used and the type of crosslinker and surface crosslinker. It can be adjusted by controlling the amount or the like.
  • a cross-linking agent having a high reactive group concentration the number of moles of functional groups having cross-linking reactivity based on the unit weight of the cross-linking agent
  • a surface cross-linking agent are used to reduce the monomer concentration during polymerization. Methods of selecting agents, increasing amounts of cross-linking agents and surface cross-linking agents are included.
  • methods for lowering the gel elastic modulus include increasing the monomer concentration during polymerization, selecting a cross-linking agent and surface cross-linking agent having a low concentration of reactive groups, and reducing the amounts of the cross-linking agent and the surface cross-linking agent. .
  • the water retention amount (g/g) of the fluidity improver for solid fuel or steel raw material of the present invention is more than 320 g/g and 700 g/g or less, preferably 350 to 650 g, from the viewpoint of blocking resistance and the like. /g, more preferably 360 to 600 g/g, particularly preferably 450 to 600 g/g. If the water retention exceeds 700 g/g, the blocking resistance will be insufficient. Further, when the water retention amount is 320 g/g or less, a large amount of addition is required to obtain a sufficient reforming effect, which may adversely affect the quality of the reformed solid fuel or iron ore raw material.
  • the water retention amount (g/g) of the fluidity improver for solid fuel or steel material is measured by the following method.
  • ⁇ Measurement method of water retention amount of fluidity improver for solid fuel or steel raw material Put 0.100 g of the measurement sample (fluidity improver) in a tea bag (20 cm long, 10 cm wide) made of nylon mesh with an opening of 63 ⁇ m (JIS Z8801-1: 2019), and remove it in 1,000 ml of ion-exchanged water. After being immersed for 1 hour under stirring, it is hung for 15 minutes to drain. After that, the whole tea bag is placed in a centrifuge, dehydrated by centrifugation at 150 G for 90 seconds to remove excess ion-exchanged water, and the weight (h1) including the tea bag is measured.
  • the temperature of the used ion-exchanged water and the measurement atmosphere is 25°C ⁇ 2°C.
  • the water retention amount of the fluidity improver for solid fuel or steel raw material of the present invention depends on the polymerization conditions (monomer concentration during polymerization, etc.) of the crosslinked polymer (A) used, the type and amount of the crosslinker and the surface crosslinker. can be adjusted by controlling the For example, as a method of increasing the water retention amount, a cross-linking agent having a low reactive group concentration (the number of moles of functional groups having cross-linking reactivity based on the unit weight of the cross-linking agent) and a surface cross-linking agent are used to reduce the monomer concentration during polymerization. and reducing the amount of cross-linking agent and surface cross-linking agent.
  • methods for reducing the amount of water retention include increasing the monomer concentration during polymerization, selecting a cross-linking agent and surface cross-linking agent with a high concentration of reactive groups, and increasing the amounts of the cross-linking agent and the surface cross-linking agent.
  • the water absorption rate of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 60 seconds or less, more preferably 20 to 55 seconds, and particularly preferably 30 to 50 seconds. Within this range, the fluidity-improving effect is particularly good.
  • the water absorption speed (second) is a value obtained by the following measuring method.
  • the water absorption rate of fluidity improvers for solid fuels or steel raw materials can be adjusted by controlling the apparent density and the surface treatment of the fluidity improver.
  • the apparent density (g/ml) of the fluidity improver for solid fuel or steel raw material is preferably 0.54 to 0.70 g/ml, more preferably 0.56 to 0.65 g/ml, and particularly preferably is 0.58-0.60 g/ml. Within this range, the water absorption rate is good.
  • the apparent density of the fluidity improver is a value measured at 25° C. in accordance with JIS K7365:1999, similarly to the apparent density of the crosslinked polymer (A). The apparent density is almost directly reflected in the apparent density of the fluidity improver.
  • the water content (% by weight) of the fluidity improver for solid fuel or steel raw material of the present invention is based on the weight of the fluidity improver for solid fuel or steel raw material. is preferably 20% by weight or less, more preferably 1 to 20% by weight, particularly preferably 2 to 15% by weight, and most preferably 3 to 10% by weight. Within this range, the water absorption performance is further improved.
  • the water content of the fluidity improver for solid fuel or steel raw material is a value measured by the same method as the water content of the above-described crosslinked polymer (A). The water content is almost directly reflected in the water content of the fluidity improver.
  • the gel residual rate (% by weight) in the iron decomposition resistance test of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 50% by weight or more, more preferably 75% by weight or more, and still more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 94% by weight or more. Within this range, even when the solid fuel or iron ore raw material to be treated is an iron-containing raw material such as iron ore, the performance does not deteriorate and the fluidity improving effect is particularly good, and the effect lasts for a long time. .
  • the residual gel ratio (% by weight) in the iron decomposition resistance test of the fluidity improver for solid fuel or steel raw material is a value obtained by the following measuring method.
  • the measurement sample is spread with a spatula so that it evenly touches the sieve surface without being pressed. After the entire amount is transferred onto the sieve, it is allowed to stand for 5 minutes, and the weight (g) of the gel remaining on the sieve and the weight (g) of the liquid that has passed through the sieve are measured.
  • the gel residual ratio is obtained from the following formula.
  • Gel residual rate (% by weight) (weight of gel remaining on sieve) / (weight of gel remaining on sieve + weight of liquid passed through sieve) x 100
  • the decomposition mechanism has not been clarified, it is possible to adjust the residual gel ratio by, for example, selecting the type of cross-linking agent for the cross-linked polymer (A) and controlling the degree of cross-linking during polymerization and the degree of cross-linking during surface cross-linking. is possible.
  • a cross-linking agent and a surface cross-linking agent having a high reactive group concentration are selected as a method of increasing the gel residual rate.
  • a method of increasing the amount of the cross-linking agent can be mentioned.
  • a cross-linking agent having an ester bond as a part of the cross-linking agent is used, a cross-linking agent and a surface cross-linking agent with a low concentration of reactive groups are selected, and the amounts of the cross-linking agent and the surface cross-linking agent are selected. can be reduced.
  • the weight-average particle size ( ⁇ m) of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 100 to 800 ⁇ m, more preferably 200 to 700 ⁇ m, particularly preferably 200 to 700 ⁇ m, from the viewpoint of the fluidity improvement effect. 250-600 ⁇ m, particularly preferably 300-500 ⁇ m, most preferably 350-450 ⁇ m.
  • the weight average particle size ( ⁇ m) of the fluidity improver for solid fuel or steel raw material of the present invention can be measured in the same manner as the weight average particle size of the crosslinked polymer (A).
  • the weight-average particle size of the crosslinked polymer (A) greatly contributes to the weight-average particle size of the fluidity improver.
  • the content of fine particles having a particle diameter of 150 ⁇ m or less in the total particles of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 3% by weight or less, more preferably 1% by weight, from the viewpoint of water absorption capacity. It is below.
  • the content of fine particles having a particle diameter of 106 ⁇ m or less in all particles is preferably 2% by weight or less, more preferably 1% by weight or less.
  • the content (% by weight) of the fine particles in the total particles of the fluidity improver is determined using a plot prepared when determining the weight average particle size, as in the case of the above-described crosslinked polymer (A). be able to.
  • the content of fine particles in all particles of the fluidity improver largely depends on the content of fine particles in all particles of the crosslinked polymer (A). It varies somewhat depending on the presence and type of the hydrophobic organic compound (D) and the presence and type of the hydrophobic organic compound (D).
  • the present invention is a method for improving the fluidity of a solid fuel or steel raw material, comprising the step of bringing a fluidity improver into contact with the solid fuel or steel raw material, wherein the fluidity improver is a water-soluble vinyl monomer (a1 ) and / or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a crosslinked polymer (A) containing a crosslinking agent (b) as essential constituent monomers, and the following (1) and (2) A method for improving the fluidity of solid fuels or steel feedstocks.
  • Water retention capacity greater than 320 g/g and 700 g/g or less
  • the solid fuel includes at least one selected from the group consisting of coal, coke, wood chips, wood pellets, and waste solid fuel
  • the iron ore raw material is iron ore, limestone, It preferably contains at least one selected from the group consisting of sintered ore and steel mill dust.
  • the solid fuel or iron ore raw material more preferably contains at least one selected from the group consisting of coal, coke, iron ore, limestone, sintered ore and steel mill dust, and coal, coke, iron ore and Most preferably, it contains at least one selected from the group consisting of sintered ore.
  • the step of contacting the solid fuel or steel raw material with the fluidity improver is not particularly limited, but the solid fuel or steel raw material and the fluidity improvement It is preferable that the step is a step in which the agents are uniformly mixed and a mixture in contact with each other is obtained. Examples thereof include a method of mixing using a heavy machine, a method of mixing using a mixing device such as a mixer, and the like.
  • the amount of the fluidity improver added to the weight of the solid fuel or steel raw material is appropriately adjusted according to the type and properties of the solid fuel or steel raw material. ) is preferably 0.001 to 5 parts by weight, more preferably 0.1 to 2 parts by weight, still more preferably 0.25 to 1 part by weight. If the amount added is more than 5 parts by weight, the amount of fluidity improver is too large and may not exhibit the desired performance in solid fuel or steel raw material applications.
  • the fluidity improver used in the method for improving the fluidity of solid fuels or steel raw materials of the present invention is excellent in the fluidity improving effect, even if the water content of the raw material to be modified is high, a small amount A sufficient effect can be obtained even with the addition amount of
  • the present disclosure (1) is a crosslinked polymer (A) comprising a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a crosslinking agent (b) as essential constituent monomers and satisfies the following (1) and (2), and is a fluidity improver for solid fuels or steel raw materials.
  • A crosslinked polymer
  • a1 water-soluble vinyl monomer
  • a2 a vinyl monomer
  • b crosslinking agent
  • Water retention capacity greater than 320 g/g and 700 g/g or less
  • the present disclosure (2) is the fluidity improver according to the present disclosure (1), wherein the water retention capacity is 360 to 600 g/g.
  • (3) of the present disclosure is the fluidity improver according to (1) or (2) of the present disclosure, which has a water absorption rate of 60 seconds or less.
  • (4) of the present disclosure is a fluidity improver in any combination with any of (1) to (3) of the present disclosure, having a moisture content of 20% by weight or less.
  • (5) of the present disclosure is a fluidity improver in any combination with any of (1) to (4) of the present disclosure, further containing an inorganic powder (c).
  • the content of the inorganic powder (c) is 0.275 to 5.000% by weight based on the weight of the crosslinked polymer (A). It is a property improver.
  • This disclosure (7) is a fluidity improver in any combination with any of this disclosure (1) to (6), further comprising a hydrophobic organic compound (d).
  • the present disclosure (8) is a fluidity improver in any combination with any of the present disclosure (1) to (7), which has a gel residual rate of 50% by weight or more in an iron decomposition resistance test.
  • the present disclosure (9) is a method for modifying the fluidity of a solid fuel or steel raw material, comprising the step of contacting the solid fuel or steel raw material with a fluidity improver, wherein the fluidity improver is a water-soluble vinyl A monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a crosslinked polymer (A) containing a crosslinking agent (b) as essential constituent monomers, and the following (1) and ( It is a method for improving the fluidity of solid fuels or steel raw materials that satisfies 2).
  • Water retention capacity greater than 320 g/g and 700 g/g or less
  • the solid fuel includes at least one selected from the group consisting of coal, coke, wood chips, wood pellets, and waste solid fuel, and the iron ore raw material is iron ore, limestone, sinter, and steel mill dust.
  • Example 1 155 parts by weight (2.15 mol parts) of acrylic acid ⁇ manufactured by Mitsubishi Chemical Corporation, purity 100% ⁇ as a water-soluble vinyl monomer (a1), pentaerythritol triallyl ether ⁇ manufactured by Daiso Co., Ltd.) as a cross-linking agent (b) ⁇ 0.504 parts by weight (0.0020 moles) and 340.0 parts by weight of deionized water were kept at 3°C while stirring and mixing.
  • Example 2 The charging amount of pentaerythritol triallyl ether was changed from 0.504 parts by weight (0.0020 mol parts) to 0.425 parts by weight (0.0017 mol parts), and the charging amount of deionized water was changed from 340.0 parts by weight to 415 parts by weight. 0 parts by weight, and the charged amount of 48.5% by weight sodium hydroxide aqueous solution was changed from 127.84 parts by weight to 111.25 parts by weight to initiate the polymerization.
  • An amorphous crushed dried product [crosslinked polymer (A-2)] was obtained in the same manner as in Example 1 except that the polymerization was carried out at ⁇ 2° C. for about 8 hours.
  • the crosslinked polymer (A-2) was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then adjusted to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m, thereby obtaining the composition of the present invention.
  • a fluidity improver (F-2) was obtained.
  • Aerosil 200 as hydrophilic inorganic particles (c1) ⁇ Nippon Aerosil Co., Ltd., ratio Surface area: 200 m 2 /g ⁇ 0.250 parts by weight was added and uniformly mixed at 80°C using a conical blender (manufactured by Hosokawa Micron Corporation) to obtain the fluidity improver (F-3) of the present invention.
  • Example 4 The crosslinked polymer (A-2) obtained in the same manner as in Example 2 was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then pulverized to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m. Dry particles were obtained by the adjustment.
  • Example 5 The crosslinked polymer (A-2) obtained in the same manner as in Example 2 was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then pulverized to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m. Dry particles were obtained by the adjustment.
  • An amorphous crushed dry product [crosslinked polymer (A-3)] was obtained in the same manner as in Example 1 except that the polymerization was carried out at ⁇ 2° C. for about 8 hours.
  • the crosslinked polymer (A-3) was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then adjusted to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m, thereby obtaining the composition of the present invention.
  • a fluidity improver (F-6) was obtained.
  • a conical blender manufactured by Hosokawa Micron Corporation
  • a conical blender manufactured by Hosokawa Micron Corporation
  • Example 11 An amorphous pulverized dried product [crosslinked polymer (A-5)] was obtained in the same manner as in Example 1 except that the temperature of the ventilation band dryer was changed from 150°C to 190°C.
  • the dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m to obtain dried particles.
  • a juicer mixer Ole Blender manufactured by Oster
  • X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure ⁇ carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., viscosity 1960 mPa s ⁇ 0.02 parts by weight is added in a conical blender ⁇ Hosokawa Micron Co., Ltd.] is used to uniformly mix at 150 ° C., and then 0.300 parts by weight of Aerosil 200 as hydrophilic inorganic particles (c1) ⁇ Nippon Aerosil Co., Ltd., specific surface area 200 m / g ⁇ is added to a conical blender ⁇ Hosokawa Micron Co., Ltd.] was used to uniformly mix at 80° C. to obtain an irregularly pulverized fluidity improver (F-11).
  • Example 12 An amorphous pulverized dried product [crosslinked polymer (A-6)] was obtained in the same manner as in Example 1 except that the temperature of the ventilation band dryer was changed from 150°C to 120°C.
  • the dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m to obtain dried particles.
  • a juicer mixer Ole Blender manufactured by Oster
  • X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure ⁇ carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., viscosity 1960 mPa s ⁇ 0.02 parts by weight is added in a conical blender ⁇ Hosokawa Micron Co., Ltd.] is used to uniformly mix at 150 ° C., and then 0.300 parts by weight of Aerosil 200 as hydrophilic inorganic particles (c1) ⁇ Nippon Aerosil Co., Ltd., specific surface area 200 m / g ⁇ is added to a conical blender ⁇ Hosokawa Micron Co., Ltd.] was used to uniformly mix at 80° C. to obtain an irregularly pulverized fluidity improver (F-12).
  • Example 13 The charged amount of pentaerythritol triallyl ether was changed from 0.504 parts by weight (0.0020 mol parts) to 1.000 parts by weight (0.0039 mol parts), and the temperature of the ventilated band dryer was changed from 150°C to 105°C.
  • An amorphous pulverized dry product [crosslinked polymer (A-7)] was obtained in the same manner as in Example 1 except that the procedure was changed.
  • the dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m to obtain dried particles.
  • X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure ⁇ carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., viscosity 1960 mPa s ⁇ 0.02 parts by weight is added in a conical blender ⁇ Hosokawa Micron Co., Ltd.] is used to uniformly mix at 150 ° C., and then 0.300 parts by weight of Aerosil 200 as hydrophilic inorganic particles (c1) ⁇ Nippon Aerosil Co., Ltd., specific surface area 200 m / g ⁇ is added to a conical blender ⁇ Hosokawa Micron Co., Ltd.] was used to uniformly mix at 80° C. to obtain an irregularly pulverized fluidity improver (F-13).
  • Example 14 By spraying 6 parts by weight of ion-exchanged water onto 100 parts by weight of the fluidity improver (F-1) obtained in Example 1, an irregularly pulverized fluidity improver (F-14) was obtained.
  • Example 15 A round-bottomed separable flask with an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction tube, and a stirrer having two stages of four inclined paddle blades with a blade diameter of 5 cm. prepared.
  • 293 g of n-heptane was taken as a dispersion medium, and 0.736 g of a maleic anhydride-modified ethylene/propylene copolymer (Mitsui Chemicals, Inc., Hi-Wax 1105A) was added as a dispersant. After the temperature was raised to dissolve the dispersant, the solution was cooled to 50°C.
  • the aqueous liquid prepared above was added to a separable flask, stirred for 10 minutes, and then added to 6.62 g of n-heptane as a sucrose stearate (d1) of HLB 3 sucrose stearate (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) 0.736 g of heat-dissolved solution is further added, and the system is sufficiently replaced with nitrogen while stirring with the rotation speed of the stirrer at 550 rpm. was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
  • d1 sucrose stearate
  • HLB 3 sucrose stearate Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370
  • n-heptane was evaporated at 125° C. and dried to obtain polymer particles (dried product).
  • a substantially spherical fluidity improver F-15
  • Example 16 100 g of acrylic acid as a water-soluble vinyl monomer (a1), 0.3 g of polyethylene glycol diacrylate as a cross-linking agent (b), 0.033 g of diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide as an initiator, sodium hydroxide 38.9 g and 103.9 g of water were mixed at a ratio to prepare a monomer mixture having a monomer concentration of 50% by weight. Thereafter, the monomer mixture was placed on a continuously moving conveyor belt and irradiated with ultraviolet rays (irradiation dose: 2 mW/cm 2 ) to allow UV polymerization to proceed for 2 minutes to obtain a water-containing gel polymer.
  • irradiation dose 2 mW/cm 2
  • This water-containing gel polymer was cut into a size of 5 ⁇ 5 mm and dried in a hot air dryer at a temperature of 170° C. for 2 hours to obtain an irregularly crushed dry product [crosslinked polymer (A-9)]. rice field.
  • the dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m to obtain dried particles.
  • the comparative crosslinked polymer (A′-2) was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then adjusted to a particle size of 150 to 710 ⁇ m using sieves with openings of 150 ⁇ m and 710 ⁇ m. , to obtain a fluidity improver (H-2) for comparison.
  • a juicer mixer Olet Blender manufactured by Oster
  • Bituminous coal was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and sieved using a 16-mesh sieve (opening 1.00 mm). A predetermined amount of ion-exchanged water was added and mixed to obtain a solid fuel or steel raw material for testing. Next, in a room adjusted to a room temperature of 25 ° C. and a humidity of 50% RH, the fluidity improvers (F-1) to (F-14) and (H-1) to (H-2) are used for testing.
  • test sample After adding 0.25% by weight or 0.5% by weight based on the weight of the solid fuel or iron ore raw material, stirring for 15 minutes, and allowing to stand still for an additional 15 minutes, a test sample was prepared. Subsequently, after setting a sieve with an opening of 1.7 mm (diameter 7.5 cm) in a powder tester (Hosokawa Micron Corporation, Powder Tester PT-X type), 20.0 g (W A ) of the test sample was evenly distributed over the sieve surface. was left undisturbed. At this time, the contents were spread out with a spatula so as to evenly touch the surface of the sieve without being pressed.
  • a powder tester Hosokawa Micron Corporation, Powder Tester PT-X type
  • the fluidity improver of the present invention is excellent in improving the fluidity of solid fuels or raw materials for iron ore, it is used to convey solid fuels or raw materials for iron ore that have been piled outdoors in steelworks, thermal power plants, etc. and are in a water-containing state. It can be suitably used when necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a fluidity improving agent for a solid fuel or for a steel raw material, the fluidity improving agent satisfying (1) and (2) and containing a crosslinked polymer (A) comprising, as essential constituent monomers, a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) through hydrolysis, and a crosslinking agent (b). According to the present invention, the fluidity improving agent that can improve the fluidity of a solid fuel or a steel raw material without impairing production efficiency and yield can be provided, and a method for modifying the fluidity of a solid fuel or a steel raw material in order to improve the fluidity of the solid fuel or steel raw material without impairing production efficiency and yield can be provided. (1) Gel modulus of elasticity: 1.5-2.5 kN/m2 (2) Water retention amount: greater than 320 g/g and equal to or less than 700 g/g

Description

固体燃料用又は鉄鋼原料用である流動性向上剤Fluidity improver for solid fuel or steel raw material
 本発明は、固体燃料用又は鉄鋼原料用である流動性向上剤、即ち石炭、コークス、木質チップ、木質ペレット、廃棄物固形燃料、鉄鉱石、石灰石、焼結鉱、及び製鉄所ダスト等が含水した場合の流動性の低下を防ぐための材料に関するものである。更に、固体燃料又は鉄鋼原料に流動性向上剤を接触させる工程を含む固体燃料又は鉄鋼原料の流動性改質方法に関する。 The present invention is a fluidity improver for solid fuels or steel raw materials, that is, coal, coke, wood chips, wood pellets, waste solid fuels, iron ore, limestone, sintered ore, steel mill dust, etc. The present invention relates to a material for preventing a decrease in fluidity when Further, the present invention relates to a method for improving the fluidity of a solid fuel or steel raw material, including the step of contacting the solid fuel or steel raw material with a fluidity improver.
 従来、固体燃料又は鉄鋼原料は出荷待ちや使用待ちのために屋外ヤードで野積み状態で保管されることが多く、雨水や粉塵防止用の散水等により水分含有率が高くなり、特に粒子径が小さい粒子状物の集合体が高粘度のスラリーとなって、搬送が困難になったり、搬送設備や保管設備に高粘度スラリーが付着して作業効率や歩留りが大幅に低下したりする等の問題があった。 Conventionally, solid fuels or steel raw materials are often stored in outdoor yards in an open-air yard to await shipment or use. Problems such as aggregates of small particles turning into a highly viscous slurry that makes transportation difficult, and highly viscous slurry adhering to transportation equipment and storage equipment that significantly reduces work efficiency and yield. was there.
 この問題に対して湿潤コークスに粉状の水分吸収剤を添加・混合してふるい分けにより流動性が悪い部分を分別する方法が提案されている(例えば、特許文献1)。 To address this problem, a method has been proposed in which a powdery moisture absorbent is added to and mixed with wet coke and sieved to separate portions with poor fluidity (for example, Patent Document 1).
 しかしながら、特許文献1に記載の方法ではふるい分けの工程が必要であり、生産効率が悪く、また、歩留りが悪いという問題があった。 However, the method described in Patent Document 1 requires a sieving process, and has the problem of poor production efficiency and poor yield.
 また、固体燃料及び/又は鉄鋼原料に対し、特定の保水量の高分子吸水剤を接触させる改質方法が提案されている(例えば、特許文献2)。しかしながら、特許文献2に記載の方法では、保水量が小さい高分子吸水剤を使用するため、改質対象の原料等の種類や含水率等の性状によっては、添加量が多くなってしまうことや、十分な流動性改質効果が得られないことがあるという問題があった。 In addition, a reforming method has been proposed in which solid fuel and/or steel raw materials are brought into contact with a polymer water absorbing agent having a specific water retention capacity (for example, Patent Document 2). However, in the method described in Patent Document 2, since a polymer water-absorbing agent having a small water retention capacity is used, the amount to be added may increase depending on the type of raw material to be modified and the properties such as the water content. , there is a problem that a sufficient fluidity-improving effect may not be obtained.
特開2009-132971号公報Japanese Patent Application Laid-Open No. 2009-132971 特開2019-137909号公報JP 2019-137909 A
 本発明は上記問題点に鑑みてなされたものであり、本発明の目的は、生産効率及び歩留り性を損なうことなく固体燃料又は鉄鋼原料の流動性を向上できる流動性向上剤を提供すること、及び生産効率及び歩留り性を損なうことなく固体燃料又は鉄鋼原料の流動性を向上させるための固体燃料又は鉄鋼原料の流動性改質方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a fluidity improver capable of improving the fluidity of solid fuels or steel raw materials without impairing production efficiency and yield. Another object of the present invention is to provide a method for improving the fluidity of a solid fuel or raw material for iron ore to improve the fluidity of the solid fuel or raw material for iron ore without impairing production efficiency and yield.
 本発明者は、上記課題を解決するため鋭意検討した結果、本発明に到達した。即ち本発明は、水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有し、下記(1)及び(2)を満たし、固体燃料用又は鉄鋼原料用である流動性向上剤である。
(1)ゲル弾性率;1.5~2.5kN/m
(2)保水量;320g/gより大きく700g/g以下
The present inventor arrived at the present invention as a result of intensive studies in order to solve the above problems. That is, the present invention contains a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis, and a crosslinked polymer (A) containing a crosslinking agent (b) as essential constituent monomers. It is a fluidity improver that satisfies the following (1) and (2) and is for solid fuels or steel raw materials.
(1) Gel elastic modulus; 1.5 to 2.5 kN/m 2
(2) Water retention capacity; greater than 320 g/g and 700 g/g or less
 本発明の流動性向上剤を用いることにより、固体燃料又は鉄鋼原料を屋外ヤードに野積みして、雨水又は散水により含水状態になった場合でも高粘度スラリーが発生せず、流動性に優れた固体燃料又は鉄鋼原料とすることができる。 By using the fluidity improver of the present invention, even when solid fuels or steel raw materials are piled in an outdoor yard and become wet due to rainwater or sprinkled water, high-viscosity slurry is not generated and excellent fluidity is obtained. It can be solid fuel or raw steel.
<固体燃料用又は鉄鋼原料用である流動性向上剤>
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤は、水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有する。
<Fluidity improver for solid fuel or steel raw material>
The fluidity improver for solid fuel or steel raw material of the present invention essentially comprises a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis, and a cross-linking agent (b). It contains a crosslinked polymer (A) as a monomer.
 前記架橋重合体(A)の含有量は、固体燃料用又は鉄鋼原料用である流動性向上剤の重量に基づいて、80~100重量%であることが好ましく、更に好ましくは90~100重量%、特に好ましくは92~100重量%である。この範囲であると、流動性向上剤の保水量及びゲル弾性率を所望の範囲としやすい。 The content of the crosslinked polymer (A) is preferably 80 to 100% by weight, more preferably 90 to 100% by weight, based on the weight of the fluidity improver for solid fuels or steel raw materials. , particularly preferably 92 to 100% by weight. Within this range, the water retention capacity and gel elastic modulus of the fluidity improver are likely to fall within the desired ranges.
 架橋性重合体(A)を含有する固体燃料用又は鉄鋼原料用である流動性向上剤が含水した固体燃料又は鉄鋼原料から水分を吸収することにより、固体燃料又は鉄鋼原料の流動性向上効果が発現するが、単に水吸収能が高いだけでは、水によりゲル化した架橋重合体(A)が固体燃料又は鉄鋼原料とブロッキングしてかえって流動性を妨げる場合がある。架橋重合体(A)を含有する固体燃料用又は鉄鋼原料用である流動性向上剤の保水量と、イオン交換水で30倍に膨潤した際のゲル弾性率とを制御することにより、ブロッキングを生じさせずに流動性を向上させることが可能となる。 By absorbing water from the solid fuel or steel raw material containing the crosslinkable polymer (A) for solid fuel or steel raw material, the fluidity improving effect of the solid fuel or steel raw material is improved. However, if the water absorption capacity is simply high, the crosslinked polymer (A) gelled by water may block the solid fuel or the raw material for steel, rather hindering fluidity. By controlling the water retention amount of the fluidity improver for solid fuel or steel raw material containing the crosslinked polymer (A) and the gel elastic modulus when swollen 30 times with ion-exchanged water, blocking can be prevented. It is possible to improve the fluidity without causing it to occur.
 なお、本明細書において「固体燃料又は鉄鋼原料」とは、固体燃料又は鉄鋼原料自体、及び、固体燃料又は鉄鋼原料に対して用途に応じて粉砕、粒度調整、塊成、凝集及び造粒などの前処理を施したものも含む。例えば、「固体燃料又は鉄鋼原料」が「石炭」の場合、石炭自体、及び石炭に対して用途に応じて粉砕、粒度調整、塊成、凝集及び造粒等の前処理を施したものも含む。 In this specification, the term "solid fuel or raw material for steel" refers to the solid fuel or raw material for steel itself, and the solid fuel or raw material for steel, depending on the application, pulverization, particle size adjustment, agglomeration, agglomeration, granulation, etc. It also includes those pretreated with For example, if "solid fuel or iron ore raw material" is "coal", it includes coal itself and coal that has undergone pretreatment such as pulverization, particle size adjustment, agglomeration, agglomeration and granulation depending on the application. .
 また、上記固体燃料は、石炭、コークス、木質チップ、木質ペレット、及び廃棄物固形燃料からなる群より選択される少なくとも1種を含むことが好ましく、鉄鋼原料は、鉄鉱石、石灰石、焼結鉱、及び製鉄所ダストからなる群より選択される少なくとも1種を含むことが好ましい。また、上記固体燃料又は鉄鋼原料は、石炭、コークス、鉄鉱石、石灰石、焼結鉱及び製鉄所ダストからなる群より選択される少なくとも1種を含むことが更に好ましく、石炭、コークス、鉄鉱石及び焼結鉱からなる群より選択される少なくとも1種を含むことが最も好ましい。これらの固体燃料又は鉄鋼原料は、製鉄所や発電所等の各工場において使用量が多く、その貯蔵方法としてヤードに山積みされ、堆積、貯蔵される場合が多いためである。 In addition, the solid fuel preferably contains at least one selected from the group consisting of coal, coke, wood chips, wood pellets, and waste solid fuel, and the iron ore raw material is iron ore, limestone, sintered ore , and steel mill dust. Further, the solid fuel or iron ore raw material more preferably contains at least one selected from the group consisting of coal, coke, iron ore, limestone, sintered ore and steel mill dust, and coal, coke, iron ore and Most preferably, it contains at least one selected from the group consisting of sintered ore. This is because these solid fuels or iron ore raw materials are used in large amounts in factories such as ironworks and power plants, and are often piled up in yards, piled up, and stored as storage methods.
 架橋重合体(A)に用いる水溶性ビニルモノマー(a1)としては特に限定はなく、公知(例えば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報及び特開2005-95759号公報)のビニルモノマー等が使用できる。 The water-soluble vinyl monomer (a1) used in the crosslinked polymer (A) is not particularly limited, and known (for example, Japanese Patent No. 3648553, Japanese Unexamined Patent Publication No. 2003-165883, Japanese Unexamined Patent Publication No. 2005-75982 and Japanese Unexamined Patent Publications 2005-95759) can be used.
 加水分解により(a1)となるビニルモノマー(a2)は、加水分解により水溶性ビニルモノマー(a1)となるビニルモノマーを意味し、特に限定はなく、公知(例えば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報及び特開2005-95759号公報)のビニルモノマー等が使用できる。 The vinyl monomer (a2) that becomes (a1) by hydrolysis means a vinyl monomer that becomes water-soluble vinyl monomer (a1) by hydrolysis, is not particularly limited, and is publicly known (e.g., Japanese Patent No. 3648553, Japanese Unexamined Patent Application Publication No. 3648553, 2003-165883, JP-A-2005-75982 and JP-A-2005-95759) can be used.
 尚、「水溶性ビニルモノマー」とは、25℃の水100gに少なくとも100g溶解する性質を持つビニルモノマーを意味する。また、「加水分解により水溶性ビニルモノマー(a1)となる」とは、50℃の水及び必要により触媒(酸又は塩基等)の作用により加水分解され水溶性ビニルモノマー(a1)になる性質を意味する。加水分解により(a1)となるビニルモノマーの加水分解は、重合中、重合後又はこれらの両方のいずれの時期に行ってもよいが、得られる架橋重合体(A)の分子量の観点等から重合後が好ましい。 "Water-soluble vinyl monomer" means a vinyl monomer that has the property of dissolving at least 100 g in 100 g of water at 25°C. In addition, the phrase "becomes a water-soluble vinyl monomer (a1) by hydrolysis" means the property of being hydrolyzed by the action of water at 50°C and, if necessary, a catalyst (such as an acid or a base) to become a water-soluble vinyl monomer (a1). means. The hydrolysis of the vinyl monomer that becomes (a1) by hydrolysis may be carried out during polymerization, after polymerization, or both. Later is preferred.
 水溶性ビニルモノマー(a1)及び加水分解により(a1)となるビニルモノマー(a2)の内、水吸収能の観点等からは、水溶性ビニルモノマー(a1)が好ましく、より好ましいのはアニオン性ビニルモノマー、更に好ましいのはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマー、特に好ましいのは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、とりわけ好ましいのは(メタ)アクリル酸(塩)、最も好ましいのはアクリル酸(塩)である。 Of the water-soluble vinyl monomer (a1) and the vinyl monomer (a2) that becomes (a1) by hydrolysis, the water-soluble vinyl monomer (a1) is preferred, and anionic vinyl monomers are more preferred from the viewpoint of water absorption capacity and the like. Monomers, more preferably vinyl monomers having a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or a mono-, di- or tri-alkylammonio group, particularly preferably (meth ) acrylic acid (salts) and (meth)acrylamides, particularly preferred (meth)acrylic acid (salts), most preferred acrylic acid (salts).
 尚、「カルボキシ(塩)基」は「カルボキシ基」及び/又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」及び/又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸及び/又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド及び/又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が挙げられる。これらの塩の内、水吸収能の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、更に好ましいのはアルカリ金属塩、特に好ましいのはナトリウム塩である。 In addition, "carboxy (salt) group" means "carboxy group" and/or "carboxylate group", and "sulfo (salt) group" means "sulfo group" and/or "sulfonate group". (Meth)acrylic acid (salt) means acrylic acid, acrylate, methacrylic acid and/or methacrylate, and (meth)acrylamide means acrylamide and/or methacrylamide. Examples of salts include alkali metal (lithium, sodium, potassium, etc.) salts, alkaline earth metal (magnesium, calcium, etc.) salts, ammonium (NH 4 ) salts, and the like. Among these salts, alkali metal salts and ammonium salts are preferable, alkali metal salts are more preferable, and sodium salts are particularly preferable, from the viewpoint of water absorption capacity.
 水溶性ビニルモノマー(a1)又は加水分解により(a1)となるビニルモノマー(a2)のいずれかを構成単量体とする場合、それぞれ単独で構成単量体としてもよく、また、必要により2種以上を構成単量体としてもよい。また、水溶性ビニルモノマー(a1)及び加水分解により(a1)となるビニルモノマー(a2)を構成単量体とする場合も同様である。また、水溶性ビニルモノマー(a1)及び加水分解により(a1)となるビニルモノマー(a2)を構成単量体とする場合、これらの含有モル比[(a1):(a2)]は、75:25~99:1が好ましく、更に好ましくは85:15~99:1、特に好ましくは90:10~99:1、最も好ましくは95:5~99:1である。この範囲であると、水吸収能が更に良好となる。 When either the water-soluble vinyl monomer (a1) or the vinyl monomer (a2) that becomes (a1) by hydrolysis is used as a constituent monomer, each of them may be used alone as a constituent monomer. The above may be used as constituent monomers. The same applies to the case where the water-soluble vinyl monomer (a1) and the vinyl monomer (a2) that becomes (a1) by hydrolysis are used as constituent monomers. Further, when the water-soluble vinyl monomer (a1) and the vinyl monomer (a2) that becomes (a1) by hydrolysis are used as the constituent monomers, the molar ratio [(a1):(a2)] of these contents is 75: 25 to 99:1 is preferred, more preferably 85:15 to 99:1, particularly preferably 90:10 to 99:1, most preferably 95:5 to 99:1. Within this range, the water absorption capacity is further improved.
 架橋重合体(A)の構成単量体として、水溶性ビニルモノマー(a1)及び加水分解により(a1)となるビニルモノマー(a2)の他に、これらと共重合可能なその他のビニルモノマー(a3)を構成単量体とすることができる。 As constituent monomers of the crosslinked polymer (A), in addition to the water-soluble vinyl monomer (a1) and the vinyl monomer (a2) that becomes (a1) by hydrolysis, other vinyl monomers (a3 ) can be used as constituent monomers.
 共重合可能なその他のビニルモノマー(a3)としては特に限定はなく公知(例えば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報及び特開2005-95759号公報)の疎水性ビニルモノマー等が使用でき、具体的には下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン、ヒドロキシスチレン、ビニルナフタレン及びジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等]及びアルカジエン[ブタジエン及びイソプレン等]等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等)及びポリエチレン性ビニル重合性モノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The other copolymerizable vinyl monomer (a3) is not particularly limited and known (for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982 and Japanese Patent Application Laid-Open No. 2005-95759 ) can be used. Specifically, the following vinyl monomers (i) to (iii) can be used.
(i) Aromatic ethylenic monomer having 8 to 30 carbon atoms Halogen-substituted styrene such as styrene, α-methylstyrene, vinyltoluene, hydroxystyrene, vinylnaphthalene and dichlorostyrene.
(ii) Aliphatic ethylenic monomers having 2 to 20 carbon atoms Alkenes [ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.] and alkadienes [butadiene, isoprene, etc.] and the like.
(iii) Alicyclic ethylenic monomers having 5 to 15 carbon atoms Monoethylenically unsaturated monomers (pinene, limonene, indene, etc.) and polyethylene vinyl polymerizable monomers [cyclopentadiene, bicyclopentadiene, ethylidenenorbornene, etc.] and the like.
 その他のビニルモノマー(a3)を構成単位とする場合、その他のビニルモノマー(a3)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解により(a1)となるビニルモノマー(a2)単位の合計モル数に基づいて、0.01~5モル%が好ましく、更に好ましくは0.01~3モル%、特に好ましくは0.01~2モル%、とりわけ好ましくは0.01~1.5モル%である。尚、水吸収能の観点等から、その他のビニルモノマー(a3)単位の含有量が0モル%であることが最も好ましい。 When the other vinyl monomer (a3) is used as a structural unit, the content (mol %) of the other vinyl monomer (a3) unit is the water-soluble vinyl monomer (a1) unit and the vinyl monomer that becomes (a1) by hydrolysis. Based on the total number of moles of (a2) units, preferably 0.01 to 5 mol%, more preferably 0.01 to 3 mol%, particularly preferably 0.01 to 2 mol%, particularly preferably 0.01 ~1.5 mol%. From the viewpoint of water absorption capacity, etc., it is most preferable that the content of other vinyl monomer (a3) units is 0 mol %.
 架橋重合体(A)を構成する架橋剤(b)としては特に限定はなく、公知(例えば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報及び特開2005-95759号公報)の架橋剤等が使用できる。これらの内、水吸収能、改質効率及び後述する耐鉄分解性試験におけるゲル残存率等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのは炭素数2~10のポリオールのポリ(メタ)アリルエーテルであり、特に好ましいのはトリアリルシアヌレート、トリアリルイソシアヌレート、テトラアリロキシエタン及びペンタエリスリトールトリアリルエーテルであり、最も好ましいのはペンタエリスリトールトリアリルエーテルである。 The cross-linking agent (b) constituting the cross-linked polymer (A) is not particularly limited, and known (for example, Japanese Patent No. 3648553, Japanese Patent Application Laid-Open No. 2003-165883, Japanese Patent Application Laid-Open No. 2005-75982 and Japanese Patent Application Laid-Open No. 2005 -95759) can be used. Among these, a cross-linking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of water absorption capacity, modification efficiency, and residual gel rate in the iron decomposition resistance test described later, and more preferably 2 carbon atoms. Poly(meth)allyl ethers of polyols of ∼10, particularly preferred are triallyl cyanurate, triallyl isocyanurate, tetraallyloxyethane and pentaerythritol triallyl ether, most preferred is pentaerythritol triallyl ether is.
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位及び加水分解により(a1)となるビニルモノマー(a2)単位の合計モル数に基づいて、0.001~5モル%が好ましく、更に好ましくは0.005~3モル%、特に好ましくは0.01~1モル%であり、最も好ましくは0.09~0.8モル%である。この範囲であると、水吸収能が更に良好となる。 The content (mol%) of the crosslinking agent (b) units is 0.001 to 0.001 based on the total number of moles of the water-soluble vinyl monomer (a1) units and the vinyl monomer (a2) units that become (a1) by hydrolysis. 5 mol % is preferred, more preferably 0.005 to 3 mol %, particularly preferably 0.01 to 1 mol %, most preferably 0.09 to 0.8 mol %. Within this range, the water absorption capacity is further improved.
 架橋重合体(A)は、公知の水溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)と同様にして製造することができる。これらの重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法である。 The crosslinked polymer (A) is a known aqueous solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization method, etc.; JP-A-55-133413, etc.) or known reverse-phase suspension polymerization (JP-B-54-30710 It can be produced in the same manner as described in JP-A-56-26909, JP-A-1-5808, etc.). Among these polymerization methods, the solution polymerization method is preferred, and the aqueous solution polymerization method is particularly preferred because it is advantageous in terms of production cost because it does not require the use of an organic solvent or the like.
 重合によって得られる含水ゲル[架橋重合体(A)と水とからなる]は、必要に応じて細断することができる。細断後のゲルの大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。 The water-containing gel obtained by polymerization [consisting of the crosslinked polymer (A) and water] can be shredded if necessary. The size (maximum diameter) of the gel after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying process is further improved.
 細断は、公知の方法で行うことができ、一般的な細断装置(例えば、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機)等を使用して細断できる。 Shredding can be performed by a known method, and shredding using a general shredding device (e.g., Vex mill, rubber chopper, farmer mill, mincing machine, impact pulverizer, and roll pulverizer), etc. can.
 重合に溶媒(有機溶媒及び水等)を使用する場合、重合後に溶媒を留去することが好ましい。溶媒に有機溶媒を含む場合、留去後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10重量%が好ましく、更に好ましくは0~5重量%、特に好ましくは0~3重量%、最も好ましくは0~1重量%である。この範囲であると、架橋重合体(A)の水吸収能及び保水能が更に良好となる。 When using a solvent (organic solvent, water, etc.) for polymerization, it is preferable to distill off the solvent after polymerization. When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after distillation is preferably 0 to 10% by weight, more preferably 0 to 5% by weight, based on the weight of the crosslinked polymer (A). %, particularly preferably 0-3% by weight, most preferably 0-1% by weight. Within this range, the water absorption capacity and water retention capacity of the crosslinked polymer (A) are further improved.
 溶媒に水を含む場合、留去後の含水率(重量%)は、架橋重合体(A)の重量に基づいて、20重量%以下が好ましく、更に好ましくは1~20重量%、特に好ましくは2~15重量%、最も好ましくは3~10重量%である。この範囲であると、水吸収能が更に良好となる。 When water is contained in the solvent, the water content (% by weight) after distillation is preferably 20% by weight or less, more preferably 1 to 20% by weight, particularly preferably 1 to 20% by weight, based on the weight of the crosslinked polymer (A). 2-15% by weight, most preferably 3-10% by weight. Within this range, the water absorption capacity is further improved.
 尚、架橋重合体(A)の有機溶媒の含有量及び含水率は、赤外水分測定器[(株)KETT社製JE400等]を用いて120±5℃で30分間(加熱前の雰囲気湿度:50±10%RH、ランプ仕様:100V、40W)加熱したときの加熱前後の測定試料の重量減量から求められる。 The organic solvent content and water content of the crosslinked polymer (A) were measured using an infrared moisture meter [JE400 manufactured by KETT Co., Ltd.] at 120 ± 5 ° C. for 30 minutes (atmospheric humidity before heating). : 50±10% RH, lamp specifications: 100 V, 40 W) Obtained from the weight loss of the measurement sample before and after heating when heated.
 溶媒(水を含む)を留去する方法としては、80~230℃の温度の熱風で留去(乾燥)する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 Methods for distilling off the solvent (including water) include a method of distilling off (drying) with hot air at a temperature of 80 to 230 ° C., a thin film drying method using a drum dryer or the like heated to 100 to 230 ° C., (heating). Vacuum drying, freeze-drying, infrared drying, decantation, filtration and the like can be applied.
 架橋重合体(A)は、乾燥後に粉砕することができる。粉砕方法については、特に限定はなく、一般的な粉砕装置{例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機}やジューサーミキサー等が使用できる。粉砕された架橋重合体は、必要によりふるい分け等により粒度調整できる。 The crosslinked polymer (A) can be pulverized after drying. The method of pulverization is not particularly limited, and general pulverizers {eg, hammer pulverizer, impact pulverizer, roll pulverizer and jet jet pulverizer}, juicer mixers and the like can be used. The pulverized crosslinked polymer can be adjusted in particle size by sieving or the like, if necessary.
 必要によりふるい分けした場合の架橋重合体(A)の重量平均粒子径(μm)は、100~800μmが好ましく、更に好ましくは200~700μm、特に好ましくは250~600μm、とりわけ好ましくは300~500μm、最も好ましくは350~450μm、とりわけ最も好ましくは380~400μmである。この範囲であると、水吸収能が更に良好となる。 The weight average particle diameter (μm) of the crosslinked polymer (A) when sieved as necessary is preferably 100 to 800 μm, more preferably 200 to 700 μm, particularly preferably 250 to 600 μm, particularly preferably 300 to 500 μm, most preferably 300 to 500 μm. It is preferably 350-450 μm, especially most preferably 380-400 μm. Within this range, the water absorption capacity is further improved.
 尚、重量平均粒子径は、ロータップ試験ふるい振とう機及び標準ふるい(JIS Z8801-1:2019)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンバニー、1984、21頁)に記載の方法で測定される。即ち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、受け皿の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験ふるい振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、合計重量に対する各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率の累計値]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径(μm)とする。 In addition, the weight average particle size was measured using a low-tap test sieve shaker and a standard sieve (JIS Z8801-1: 2019), Perry's Chemical Engineers Handbook 6th Edition (McGrow Hill Book Company, 1984 , page 21). That is, JIS standard sieves of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm are combined in order from the top to the tray. Approximately 50 g of the particles to be measured are placed in the top sieve and shaken for 5 minutes on the Rotap test sieve shaker. Weigh the weight of the particles to be measured on each sieve and the tray, determine the weight fraction of the particles on each sieve with respect to the total weight, and record this value on logarithmic probability paper [horizontal axis is sieve opening (particle diameter), vertical axis is the cumulative value of weight fraction], draw a line connecting each point, determine the particle diameter corresponding to a weight fraction of 50% by weight, and take this as the weight average particle diameter (μm).
 また、微粒子の含有量は少ない方が水吸収能が良好となるため、全粒子に占める粒子径150μm以下の微粒子の含有量は3重量%以下が好ましく、更に好ましくは1重量%以下である。全粒子に占める粒子径106μm以下の微粒子の含有量は2重量%以下が好ましく、更に好ましくは1重量%以下である。尚、全粒子に占める微粒子の含有量(重量%)は、上記の重量平均粒子径を求める際に作成するプロットを用いて求めることができる。 In addition, since the smaller the content of fine particles, the better the water absorption capacity, the content of fine particles with a particle diameter of 150 μm or less in all particles is preferably 3% by weight or less, more preferably 1% by weight or less. The content of fine particles having a particle diameter of 106 μm or less in all particles is preferably 2% by weight or less, more preferably 1% by weight or less. Incidentally, the content (% by weight) of fine particles in all particles can be determined using the plot created when determining the weight average particle diameter.
 架橋重合体(A)の見掛け密度(g/ml)は、0.54~0.70g/mlが好ましく、更に好ましくは0.56~0.65g/ml、特に好ましくは0.58~0.60g/mlである。この範囲であると、水吸収能が更に良好となる。尚、見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。 The apparent density (g/ml) of the crosslinked polymer (A) is preferably from 0.54 to 0.70 g/ml, more preferably from 0.56 to 0.65 g/ml, particularly preferably from 0.58 to 0.58 g/ml. 60 g/ml. Within this range, the water absorption capacity is further improved. Incidentally, the apparent density is measured at 25°C in accordance with JIS K7365:1999.
 架橋重合体(A)の形状については特に限定はなく、不定形破砕状、リン片状、パール状及び米粒状等が挙げられるが、流動性向上効果の観点からは不定形破砕状が好ましい。架橋重合体(A)は1種を単独で用いても2種以上を併用してもよい。 The shape of the crosslinked polymer (A) is not particularly limited, and may be irregularly crushed, scaly, pearl-like, or rice grain-like, but irregularly crushed is preferred from the viewpoint of improving fluidity. The crosslinked polymer (A) may be used alone or in combination of two or more.
 架橋重合体(A)は、(A)が吸水したゲルと固体燃料又は鉄鋼原料がブロッキングしにくくする(以下、「耐ブロッキング性」と記載)観点から表面架橋剤により表面架橋されたものであることが好ましい。表面架橋剤としては、特開昭59-189103号公報等に記載の多価グリシジル、特開昭58-180233号公報及び特開昭61-16903号公報等に記載の多価アルコール、多価アミン、多価アジリジン及び多価イソシアネート、特開昭61-211305号公報及び特開昭61-252212号公報等に記載のシランカップリング剤並びに特開昭51-136588号公報及び特開昭61-257235号公報等に記載の多価金属等が挙げられる。 The crosslinked polymer (A) is surface-crosslinked with a surface-crosslinking agent from the viewpoint of making it difficult for the gel absorbed by (A) and the solid fuel or steel raw material to block (hereinafter referred to as "blocking resistance"). is preferred. Examples of the surface cross-linking agent include polyhydric glycidyl described in JP-A-59-189103, etc., polyhydric alcohols and polyhydric amines described in JP-A-58-180233 and JP-A-61-16903. , polyvalent aziridine and polyvalent isocyanate, silane coupling agents described in JP-A-61-211305 and JP-A-61-252212 and JP-A-51-136588 and JP-A-61-257235 Examples thereof include polyvalent metals described in JP-A-2003-213351 and the like.
 これらの表面架橋剤の内、耐ブロッキング性の観点から、多価グリシジル、多価アミン及びシランカップリング剤が好ましく、更に好ましいのは多価グリシジル及びシランカップリング剤、特に好ましいのは多価グリシジルである。また、多価グリシジル中でも、好ましいのはエチレングリコールジグリシジルエーテル及びグリセリンジグリシジルエーテル、特に好ましいのはエチレングリコールジグリシジルエーテルである。 Among these surface cross-linking agents, polyvalent glycidyls, polyvalent amines and silane coupling agents are preferred from the viewpoint of blocking resistance, polyvalent glycidyls and silane coupling agents are more preferred, and polyvalent glycidyls are particularly preferred. is. Among polyhydric glycidyls, ethylene glycol diglycidyl ether and glycerin diglycidyl ether are preferred, and ethylene glycol diglycidyl ether is particularly preferred.
 表面架橋剤の使用量(重量%)は、耐ブロッキング性等の観点から、架橋重合体(A)の重量に基づいて、0.01~0.20重量%が好ましく、更に好ましくは0.03~0.15重量%、特に好ましくは0.05~0.10重量%である。 The amount (% by weight) of the surface cross-linking agent used is preferably 0.01 to 0.20% by weight, more preferably 0.03, based on the weight of the crosslinked polymer (A), from the viewpoint of blocking resistance and the like. to 0.15% by weight, particularly preferably 0.05 to 0.10% by weight.
 表面架橋は、公知の方法(例えば、特開平13-2935号公報、特開2003-147005号公報及び特開2003-165883号公報に開示された方法)等で行うことができる。 Surface cross-linking can be carried out by known methods (for example, the methods disclosed in JP-A-13-2935, JP-A-2003-147005 and JP-A-2003-165883).
 表面架橋の工程は、2回以上繰り返して行ってもよい。即ち、表面架橋剤で表面架橋して得られた架橋重合体(A)を、1回目の表面架橋剤と同種又は異種の表面架橋剤で追加の表面架橋を施すことができる。追加の表面架橋剤の含有量、処理方法、処理温度、処理時間等は1回目の場合と同様である。 The surface cross-linking step may be repeated two or more times. That is, the crosslinked polymer (A) obtained by surface-crosslinking with the surface-crosslinking agent can be subjected to additional surface-crosslinking with the same or different surface-crosslinking agent as the first surface-crosslinking agent. The content of the additional surface cross-linking agent, treatment method, treatment temperature, treatment time, etc. are the same as in the first case.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤は、耐ブロッキング性の観点から、更に無機質粉末(c)を含有することが好ましく、架橋重合体(A)の粒子表面に無機質粉末(c)が付着した形態で含有することが好ましい。 From the viewpoint of blocking resistance, the fluidity improver for solid fuel or steel raw material of the present invention preferably further contains an inorganic powder (c). It is preferably contained in a form in which (c) is attached.
 無機質粉末(c)としては、親水性無機粒子(c1)及び疎水性無機粒子(c2)等が挙げられる。親水性無機粒子(c1)としては、ガラス、シリカゲル、シリカ及びクレー等の粒子が挙げられる。疎水性無機粒子(c2)としては、炭素繊維、カオリン、タルク、マイカ、ベントナイト、セリサイト、アスベスト及びシラス等の粒子が挙げられる。これらの内、親水性無機粒子(c1)が好ましく、最も好ましいのはシリカである。 Examples of the inorganic powder (c) include hydrophilic inorganic particles (c1) and hydrophobic inorganic particles (c2). The hydrophilic inorganic particles (c1) include particles such as glass, silica gel, silica and clay. Examples of hydrophobic inorganic particles (c2) include particles of carbon fiber, kaolin, talc, mica, bentonite, sericite, asbestos and shirasu. Among these, hydrophilic inorganic particles (c1) are preferred, and silica is most preferred.
 親水性無機粒子(c1)及び疎水性無機粒子(c2)の形状としては、不定形(破砕状)、真球状、フィルム状、棒状及び繊維状等のいずれでもよいが、不定形(破砕状)又は真球状が好ましく、更に好ましいのは真球状である。 The shape of the hydrophilic inorganic particles (c1) and the hydrophobic inorganic particles (c2) may be amorphous (crushed), spherical, film-like, rod-like, or fibrous. Alternatively, it is preferably spherical, more preferably spherical.
 親水性無機粒子(c1)及び疎水性無機粒子(c2)の比表面積(m/g)は、5~700m/gが好ましく、更に好ましくは20~500m/g、特に好ましくは40~400m/gであり、最も好ましくは150~250m/gである。 The specific surface area (m 2 /g) of the hydrophilic inorganic particles (c1) and the hydrophobic inorganic particles (c2) is preferably 5 to 700 m 2 /g, more preferably 20 to 500 m 2 /g, particularly preferably 40 to 400 m 2 /g, most preferably 150-250 m 2 /g.
 無機質粉末(c)の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.010~5.000重量%が好ましく、更に好ましくは0.10~5.000重量%、次に好ましくは0.20~5.000重量%、特に好ましくは0.275~5.000重量%、最も好ましくは0.300~3.000重量%である。この範囲であると、耐ブロッキング性が更に良好となる。 The content (% by weight) of the inorganic powder (c) is preferably 0.010 to 5.000% by weight, more preferably 0.10 to 5.000% by weight, based on the weight of the crosslinked polymer (A). , then preferably 0.20 to 5.000% by weight, particularly preferably 0.275 to 5.000% by weight, most preferably 0.300 to 3.000% by weight. Within this range, blocking resistance is further improved.
 無機質粉末(c)を架橋重合体(A)の表面に付着させる方法としては、一般的な混合機を使用して均一混合する方法等が挙げられる。使用される装置としては、例えば、円筒型混合機、スクリュー型混合機、スクリュー型押出機、タービュライザー、ナウター型混合機、双腕型ニーダー、流動式混合機、V型混合機、リボン型混合機、流動式混合機、気流型混合機、回転円盤型混合機、コニカルブレンダー及びロールミキサー等が挙げられる。 As a method for adhering the inorganic powder (c) to the surface of the crosslinked polymer (A), there is a method of uniform mixing using a general mixer. Apparatuses used include, for example, cylindrical mixers, screw mixers, screw extruders, turbulizers, Nauta mixers, twin-arm kneaders, fluid mixers, V mixers, and ribbon mixers. Mixers, fluidized mixers, airflow mixers, rotating disk mixers, conical blenders, roll mixers and the like can be mentioned.
 また、混合の温度(℃)としては特に限定ないが、20~120℃が好ましく、更に好ましくは30~100℃、特に好ましくは40~90℃である。この範囲であると、架橋重合体(A)表面への無機質粉末(c)の付着性が良好となる。尚、無機質粉末(c)を架橋重合体(A)の表面に付着させる工程は、付着効率の観点から、架橋重合体(A)を製造する各工程{重合工程、細断工程、中和工程、乾燥工程、粉砕工程、表面架橋工程の前後等}の内、乾燥工程、粉砕工程、表面架橋工程の前後等において行うことが好ましい。 The mixing temperature (°C) is not particularly limited, but is preferably 20 to 120°C, more preferably 30 to 100°C, and particularly preferably 40 to 90°C. Within this range, the inorganic powder (c) adheres well to the surface of the crosslinked polymer (A). The step of attaching the inorganic powder (c) to the surface of the crosslinked polymer (A) includes each step of producing the crosslinked polymer (A) {polymerization step, chopping step, neutralization step, from the viewpoint of adhesion efficiency. , before and after the drying step, the pulverizing step, the surface cross-linking step, etc.}, the drying step, the pulverizing step, before and after the surface cross-linking step, etc. are preferably carried out.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤は、耐ブロッキング性の観点から、更に疎水性有機化合物(d)を含有することも好ましい。架橋重合体(A)の内部に疎水性有機化合物(d)の一部又は全部を含有する形態で含有することが好ましく、(d)の少なくとも一部が架橋重合体(A)の表面に存在していることが更に好ましい。 From the viewpoint of anti-blocking properties, the fluidity improver for solid fuel or steel raw material of the present invention preferably further contains a hydrophobic organic compound (d). It is preferable to contain a part or all of the hydrophobic organic compound (d) inside the crosslinked polymer (A), and at least a part of (d) exists on the surface of the crosslinked polymer (A). More preferably.
 疎水性有機化合物(d)としては、炭化水素基を有する疎水性有機化合物(d1)、フッ素原子と炭化水素基とを有する疎水性有機化合物(d2)及びポリシロキサン構造を有する疎水性有機化合物(d3)等が挙げられる。 Examples of the hydrophobic organic compound (d) include a hydrophobic organic compound (d1) having a hydrocarbon group, a hydrophobic organic compound (d2) having a fluorine atom and a hydrocarbon group, and a hydrophobic organic compound having a polysiloxane structure ( d3) and the like.
 炭化水素基を有する疎水性有機化合物(d1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、疎水部及び親水部からなる化合物及びこれらの2種以上の混合物等が挙げられる。 Examples of the hydrophobic organic compound (d1) having a hydrocarbon group include polyolefin resins, polyolefin resin derivatives, polystyrene resins, polystyrene resin derivatives, waxes, compounds comprising a hydrophobic portion and a hydrophilic portion, and mixtures of two or more thereof. be done.
 ポリオレフィン樹脂としては、炭素数2~4のオレフィン(エチレン、プロピレン、イソブチレン及びイソプレン等)を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体[例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン-イソブチレン)及びイソプレン等]等が挙げられる。 As the polyolefin resin, the weight of an olefin having 2 to 4 carbon atoms (ethylene, propylene, isobutylene, isoprene, etc.) as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin). Examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 [eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene) and isoprene].
 ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(-COOH)や1,3-オキソ-2-オキサプロピレン[-C(=O)OC(=O)-]やハロゲン原子等を導入した重量平均分子量1000~100万の重合体(例えば、酸化ポリエチレン、酸化ポリプロピレン、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン-アクリル酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン-酢酸ビニル共重合体及びエチレン-酢酸ビニル共重合体のマレイン化物等)が挙げられる。 As a polyolefin resin derivative, a weight average molecular weight obtained by introducing a carboxy group (-COOH), 1,3-oxo-2-oxapropylene [-C(=O)OC(=O)-], a halogen atom, etc. into a polyolefin resin 1,000 to 1,000,000 polymers (e.g., polyethylene oxide, polypropylene oxide, maleic acid-modified polyethylene, chlorinated polyethylene, maleic acid-modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-anhydride maleic acid copolymer, maleated polybutadiene, ethylene-vinyl acetate copolymer, maleated ethylene-vinyl acetate copolymer, etc.).
 ポリスチレン樹脂としては、重量平均分子量1000~100万のスチレン重合体等が好ましい。 As the polystyrene resin, a styrene polymer having a weight average molecular weight of 1,000 to 1,000,000 is preferable.
 ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体(例えば、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びスチレン-イソブチレン共重合体等)等が挙げられる。 As the polystyrene resin derivative, a polymer having a weight average molecular weight of 1,000 to 1,000,000 (for example, styrene- maleic anhydride copolymer, styrene-butadiene copolymer, styrene-isobutylene copolymer, etc.).
 ワックスとしては、融点50~200℃のワックス(例えば、パラフィンワックス、ミツロウ、カルナウバワックス及び牛脂等)が挙げられる。 Waxes include waxes with a melting point of 50 to 200°C (eg, paraffin wax, beeswax, carnauba wax, beef tallow, etc.).
 疎水部及び親水部からなる化合物としては、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール並びにHLB値が7以下のショ糖脂肪酸エステル等が挙げられる。 Examples of compounds consisting of a hydrophobic portion and a hydrophilic portion include long-chain fatty acids and salts thereof, long-chain fatty alcohols, and sucrose fatty acid esters with an HLB value of 7 or less.
 長鎖脂肪酸及びその塩としては、炭素数8~30の脂肪酸(例えば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、ダイマー酸及びベヘン酸等)等が挙げられ、その塩としては亜鉛、カルシウム、マグネシウム又はアルミニウム(以下、Zn、Ca、Mg、Alと略す)との塩(例えば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等)が挙げられる。耐ブロッキング性の観点等から、ステアリン酸Zn、ステアリン酸Ca、ステアリン酸Mg及びステアリン酸Alが好ましく、更に好ましいのはステアリン酸Mgである。 Examples of long-chain fatty acids and salts thereof include fatty acids having 8 to 30 carbon atoms (eg, lauric acid, palmitic acid, stearic acid, oleic acid, dimer acid, behenic acid, etc.), and salts thereof such as zinc and calcium. , salts with magnesium or aluminum (hereinafter abbreviated as Zn, Ca, Mg, Al) (eg, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc.). From the viewpoint of blocking resistance, Zn stearate, Ca stearate, Mg stearate and Al stearate are preferred, and Mg stearate is more preferred.
 長鎖脂肪族アルコールとしては、炭素数10~30の脂肪族アルコール{例えば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール及びベヘニルアルコール等}等が挙げられる。耐ブロッキング性の観点等から、パルミチルアルコール、ステアリルアルコール及びオレイルアルコールが好ましく、更に好ましいのはステアリルアルコールである。 Examples of long-chain aliphatic alcohols include aliphatic alcohols having 10 to 30 carbon atoms {eg, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, etc.}. Palmityl alcohol, stearyl alcohol and oleyl alcohol are preferred, and stearyl alcohol is more preferred, from the viewpoint of blocking resistance and the like.
 HLB値が7以下のショ糖脂肪酸エステルとしては、ショ糖に炭素数8~22の脂肪酸がエステル結合したものが含まれ、具体的には、ショ糖パルミチン酸エステルやショ糖ステアリン酸エステル[例えば、第一工業製薬社製のもの{DKエステルF-50(HLB=6)等}、三菱化学フーズ(株)製のもの{リョートーシュガーエステルS-370(HLB=約3)及びS-770(HLB=約7)}等が挙げられる。 Examples of sucrose fatty acid esters having an HLB value of 7 or less include sucrose in which fatty acids having 8 to 22 carbon atoms are ester-bonded to sucrose. Specifically, sucrose palmitate and sucrose stearate [for example, , Daiichi Kogyo Seiyaku Co., Ltd. {DK Ester F-50 (HLB = 6), etc.}, Mitsubishi Kagaku Foods Co., Ltd. {Ryoto Sugar Ester S-370 (HLB = about 3) and S-770 (HLB=about 7)} and the like.
 ここで本発明におけるHLB値とは、親水性-疎水性バランス(HLB)値を意味し、小田法[「界面活性剤入門」(2007年三洋化成工業株式会社発行、藤本武彦著)、212頁]によって、有機化合物の有機性の値と無機性の値との比率から計算することができる。
 HLB値=10×無機性/有機性
 HLB値を導き出すための有機性の値及び無機性の値については前記「界面活性剤入門」213頁に記載の表の値を用いて算出できる。
Here, the HLB value in the present invention means the hydrophilic-hydrophobic balance (HLB) value, and the Oda method ["Introduction to Surfactants" (published by Sanyo Chemical Industries, Ltd., 2007, by Takehiko Fujimoto), page 212. ], it can be calculated from the ratio between the organic value and the inorganic value of the organic compound.
HLB value = 10 x inorganic/organic The organic value and inorganic value for deriving the HLB value can be calculated using the values in the table described on page 213 of "Introduction to Surfactants".
 疎水部及び親水部からなる化合物の融点は、好ましくは50~300℃であり、更に好ましくは60~200℃であり、特に好ましくは80~160℃である。 The melting point of the compound consisting of a hydrophobic portion and a hydrophilic portion is preferably 50-300°C, more preferably 60-200°C, and particularly preferably 80-160°C.
 フッ素原子と炭化水素基とを有する疎水性有機化合物(d2)としては、パーフルオロアルカン、パーフルオロアルケン、パーフルオロアリール、パーフルオロアルキルエーテル、パーフルオロアルキルカルボン酸、パーフルオロアルキルアルコール及びこれらの2種以上の混合物等が挙げられる。 Hydrophobic organic compounds (d2) having a fluorine atom and a hydrocarbon group include perfluoroalkanes, perfluoroalkenes, perfluoroaryls, perfluoroalkyl ethers, perfluoroalkylcarboxylic acids, perfluoroalkyl alcohols, and two of these. mixtures of more than one species, and the like.
 パーフルオロアルカンとしては、フッ素原子数3~42、炭素数1~20のアルカン(例えば、トリフルオロメタン、ペンタフルオロエタン、ペンタフルオロプロパン、トリデカフルオロオクタン及びヘプタデカフルオロドデカン)等が挙げられる。 Examples of perfluoroalkanes include alkanes having 3 to 42 fluorine atoms and 1 to 20 carbon atoms (eg, trifluoromethane, pentafluoroethane, pentafluoropropane, tridecafluorooctane and heptadecafluorododecane).
 パーフルオロアルケンとしては、フッ素原子数3~42、炭素数2~20のアルケン(例えば、トリフルオロエチレン、ペンタフルオロプロペン、トリデカフルオロオクテン及びヘプタデカフルオロドデセン)等が挙げられる。 Examples of perfluoroalkene include alkenes having 3 to 42 fluorine atoms and 2 to 20 carbon atoms (eg, trifluoroethylene, pentafluoropropene, tridecafluorooctene and heptadecafluorododecene).
 パーフルオロアリールとしては、フッ素原子数3~42、炭素数6~20のアリール(例えば、トリフルオロベンゼン、トリデカフルオロオクチルベンゼン及びヘプタデカフルオロドデシルベンゼン)等が挙げられる。 Examples of perfluoroaryl include aryl having 3 to 42 fluorine atoms and 6 to 20 carbon atoms (eg, trifluorobenzene, tridecafluorooctylbenzene and heptadecafluorododecylbenzene).
 パーフルオロアルキルエーテルとしては、フッ素原子数2~82、炭素数2~40のエーテル(例えば、ジトリフルオロメチルエーテル、ジトリデカフルオロオクチルエーテル及びジヘプタデカフルオロドデシルエーテル)等が挙げられる。 Examples of perfluoroalkyl ethers include ethers having 2 to 82 fluorine atoms and 2 to 40 carbon atoms (eg, ditrifluoromethyl ether, ditridecafluorooctyl ether and diheptadecafluorododecyl ether).
 パーフルオロアルキルカルボン酸としては、フッ素原子数3~41、炭素数1~21のカルボン酸[例えば、ペンタフルオロエタン酸、トリデカフルオロオクタン酸、ヘプタデカフルオロドデカン酸及びこれらの金属(アルカリ金属及びアルカリ土類金属等)塩]等が挙げられる。 Perfluoroalkylcarboxylic acids include carboxylic acids having 3 to 41 fluorine atoms and 1 to 21 carbon atoms [for example, pentafluoroethanoic acid, tridecafluorooctanoic acid, heptadecafluorododecanoic acid and metals thereof (alkali metals and alkaline earth metals, etc.) salts] and the like.
 パーフルオロアルキルアルコールとしては、フッ素原子数3~41、炭素数1~20のアルコール(例えば、ペンタフルオロエタノール、ノナフルフルオロヘキサノール、トリデカフルオロオクタノール及びヘプタデカフルオロドデカノール)及びこれらのアルコールのエチレンオキサイド(アルコール1モルに対して1~20モル)付加体等が挙げられる。 Perfluoroalkyl alcohols include alcohols having 3 to 41 fluorine atoms and 1 to 20 carbon atoms (e.g., pentafluoroethanol, nonafluorohexanol, tridecafluorooctanol and heptadecafluorododecanol) and ethylene of these alcohols. Oxide (1 to 20 mol per 1 mol of alcohol) adducts and the like can be mentioned.
 これらの2種以上の混合物としては、パーフルオロアルキルカルボン酸とパーフルオロアルキルアルコールとの混合物(例えば、ペンタフルオロエタン酸とペンタフルオロエタノールとの混合物)等が挙げられる。 Examples of mixtures of two or more of these include mixtures of perfluoroalkylcarboxylic acids and perfluoroalkyl alcohols (for example, mixtures of pentafluoroethanoic acid and pentafluoroethanol).
 ポリシロキサン構造を有する疎水性有機化合物(d3)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン[ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等]、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン及びこれらの混合物等が挙げられる。 Examples of the hydrophobic organic compound (d3) having a polysiloxane structure include polydimethylsiloxane, polyether-modified polysiloxane [polyoxyethylene-modified polysiloxane and poly(oxyethylene/oxypropylene)-modified polysiloxane, etc.], carboxy-modified polysiloxane. , epoxy-modified polysiloxane, amino-modified polysiloxane, alkoxy-modified polysiloxane, and mixtures thereof.
 変性ポリシロキサン(ポリエーテル変性ポリシロキサン、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン及びアミノ変性ポリシロキサン等)の有機基(変性基)の位置としては特に限定はされないが、ポリシロキサンの側鎖、ポリシロキサンの両末端、ポリシロキサンの片末端、ポリシロキサンの側鎖と両末端との両方のいずれでもよい。これらの内、耐ブロッキング性の観点等から、ポリシロキサンの側鎖及びポリシロキサンの側鎖と両末端との両方が好ましく、更に好ましいのはポリシロキサンの側鎖と両末端との両方である。 The position of the organic group (modifying group) of modified polysiloxane (polyether-modified polysiloxane, carboxy-modified polysiloxane, epoxy-modified polysiloxane, amino-modified polysiloxane, etc.) is not particularly limited, but the side chain of polysiloxane, poly It may be both ends of siloxane, one end of polysiloxane, or both side chains and both ends of polysiloxane. Among these, from the viewpoint of anti-blocking property, both the side chain of polysiloxane and the side chain and both terminals of polysiloxane are preferable, and both the side chain and both terminals of polysiloxane are more preferable.
 ポリエーテル変性ポリシロキサンの有機基(変性基)としては、ポリオキシプロピレン基又はポリ(オキシエチレン・オキシプロピレン)基を含有する基等が挙げられる。ポリエーテル変性ポリシロキサンにおけるオキシエチレン基及びオキシプロピレン基の合計の含有量(個)は、ポリエーテル変性ポリシロキサン1分子あたり、2~40個が好ましく、更に好ましくは5~30個、特に好ましくは7~20個、最も好ましくは10~15個である。この範囲であると、耐ブロッキング性が更に良好となる。また、オキシエチレン基及びオキシプロピレン基を含む場合、オキシプロピレン基の含有量(重量%)は、ポリシロキサンの重量に基づいて、1~30重量%が好ましく、更に好ましくは3~25重量%、特に好ましくは5~20重量%である。この範囲であると、耐ブロッキング性が更に良好となる。 Examples of organic groups (modified groups) of polyether-modified polysiloxane include groups containing polyoxypropylene groups or poly(oxyethylene/oxypropylene) groups. The total content (groups) of oxyethylene groups and oxypropylene groups in the polyether-modified polysiloxane is preferably 2 to 40 groups, more preferably 5 to 30 groups, and particularly preferably 5 to 30 groups per molecule of polyether-modified polysiloxane. 7-20, most preferably 10-15. Within this range, blocking resistance is further improved. Further, when an oxyethylene group and an oxypropylene group are included, the content (% by weight) of the oxypropylene group is preferably 1 to 30% by weight, more preferably 3 to 25% by weight, based on the weight of the polysiloxane. Especially preferred is 5 to 20% by weight. Within this range, blocking resistance is further improved.
 ポリエーテル変性ポリシロキサンは、市場から容易に入手でき、例えば、以下の「商品名(変性位置、オキシアルキレンの種類)」として記載のものが好ましく例示できる。
・信越化学工業株式会社製:KF-945(側鎖、オキシエチレン及びオキシプロピレン)、KF-6020(側鎖、オキシエチレン及びオキシプロピレン)、X-22-6266(側鎖、オキシエチレン及びオキシプロピレン)
・東レ・ダウコーニング株式会社製:FZ-2110(両末端、オキシエチレン及びオキシプロピレン)、FZ-2122(両末端、オキシエチレン及びオキシプロピレン)、FZ-2154(両末端、オキシエチレン及びオキシプロピレン)、FZ-2203(両末端、オキシエチレン及びオキシプロピレン)及びFZ-2207(両末端、オキシエチレン及びオキシプロピレン)
Polyether-modified polysiloxanes are readily available on the market, and preferred examples include those described under the following "trade name (modification position, type of oxyalkylene)".
・ Shin-Etsu Chemical Co., Ltd.: KF-945 (side chain, oxyethylene and oxypropylene), KF-6020 (side chain, oxyethylene and oxypropylene), X-22-6266 (side chain, oxyethylene and oxypropylene) )
· Dow Corning Toray Co., Ltd.: FZ-2110 (both ends, oxyethylene and oxypropylene), FZ-2122 (both ends, oxyethylene and oxypropylene), FZ-2154 (both ends, oxyethylene and oxypropylene) , FZ-2203 (both ends, oxyethylene and oxypropylene) and FZ-2207 (both ends, oxyethylene and oxypropylene)
 カルボキシ変性ポリシロキサンの有機基(変性基)としてはカルボキシ基を有する基等が挙げられ、エポキシ変性ポリシロキサンの有機基(変性基)としてはエポキシ基を有する基等が挙げられ、アミノ変性ポリシロキサンの有機基(変性基)としてはアミノ基(1級、2級又は3級アミノ基)を有する基等が挙げられる。これらの変性シリコーンの有機基(変性基)の含有量(g/mol)は、カルボキシ当量、エポキシ当量又はアミノ当量として、200~11000g/molが好ましく、更に好ましくは600~8000g/mol、特に好ましくは1000~4000g/molである。この範囲であると、耐ブロッキング性が更に良好となる。尚、カルボキシ当量は、JIS C2101:1999の「16.全酸価試験」に準拠して測定される。また、エポキシ当量は、JIS K7236:2001に準拠して求められる。また、アミノ当量は、JIS K2501:2003の「8.電位差滴定法(塩基価・塩酸法)」に準拠して測定される。 Examples of the organic group (modifying group) of the carboxy-modified polysiloxane include groups having a carboxy group. Examples of the organic group (modifying group) of the epoxy-modified polysiloxane include groups having an epoxy group. Examples of the organic group (modifying group) of include groups having an amino group (primary, secondary or tertiary amino group). The organic group (modifying group) content (g/mol) of these modified silicones is preferably 200 to 11,000 g/mol, more preferably 600 to 8,000 g/mol, and particularly preferably carboxy equivalent, epoxy equivalent, or amino equivalent. is between 1000 and 4000 g/mol. Within this range, blocking resistance is further improved. The carboxy equivalent is measured according to JIS C2101:1999 "16. Total acid value test". Also, the epoxy equivalent is determined according to JIS K7236:2001. In addition, the amino equivalent is measured according to JIS K2501:2003 "8. Potentiometric titration method (base number/hydrochloric acid method)".
 カルボキシ変性ポリシロキサンは、市場から容易に入手でき、例えば、以下の「商品名[変性位置、カルボキシ当量(g/mol)]」として記載のものが好ましく例示できる。
・信越化学工業株式会社製:X-22-3701E(側鎖、4000)、X-22-162C(両末端、2300)、X-22-3710(片末端、1450)
・東レ・ダウコーニング株式会社製:BY 16-880(側鎖、3500)、BY 16-750(両末端、750)、BY 16-840(側鎖、3500)、SF8418(側鎖、3500)
Carboxy-modified polysiloxanes are readily available on the market, and preferred examples include those described as the following "trade name [modification position, carboxy equivalent (g/mol)]".
・ Shin-Etsu Chemical Co., Ltd.: X-22-3701E (side chain, 4000), X-22-162C (both ends, 2300), X-22-3710 (one end, 1450)
· Dow Corning Toray Co., Ltd.: BY 16-880 (side chain, 3500), BY 16-750 (both ends, 750), BY 16-840 (side chain, 3500), SF8418 (side chain, 3500)
 エポキシ変性ポリシロキサンは、市場から容易に入手でき、例えば、以下の「商品名(変性位置、エポキシ当量)」として記載のものが好ましく例示できる。
・信越化学工業株式会社製:X-22-343(側鎖、525)、X-22-163C(両末端、2700)、X-22-169AS(両末端、500)、X-22-173DX(片末端、4500)、X-22-9002(側鎖・両末端、5000)
・東レ・ダウコーニング株式会社製:FZ-3720(側鎖、1200)、FZ-3736(側鎖、5000)、BY 16-855D(側鎖、180)、BY 16-8(側鎖、3700)
Epoxy-modified polysiloxanes are readily available on the market, and preferred examples include those described under the following "trade name (modification position, epoxy equivalent)".
・ Shin-Etsu Chemical Co., Ltd.: X-22-343 (side chain, 525), X-22-163C (both ends, 2700), X-22-169AS (both ends, 500), X-22-173DX ( One end, 4500), X-22-9002 (side chain/both ends, 5000)
・ Dow Corning Toray Co., Ltd.: FZ-3720 (side chain, 1200), FZ-3736 (side chain, 5000), BY 16-855D (side chain, 180), BY 16-8 (side chain, 3700)
 アミノ変性シリコーンは、市場から容易に入手でき、例えば、以下の「商品名(変性位置、アミノ当量)」として記載のものが好ましく例示できる。
・信越化学工業株式会社製:KF-865(側鎖、5000)、KF-857(側鎖、2200)、KF-8001(側鎖、1900)、KF-862(側鎖、1900)、X-22-9192(側鎖、6500)
・東レ・ダウコーニング株式会社製:FZ-3707(側鎖、1500)、BY 16-203(側鎖、1900)、BY 16-898(側鎖、2900)、BY 16-890(側鎖、1900)、BY 16-893(側鎖、4000)、FZ-3789(側鎖、1900)、BY 16-871(両末端、130)、BY 16-853C(両末端、360)、BY 16-853U(両末端、450)
Amino-modified silicones are readily available on the market, and preferred examples include those described under the following "trade name (modified position, amino equivalent)".
・ Shin-Etsu Chemical Co., Ltd.: KF-865 (side chain, 5000), KF-857 (side chain, 2200), KF-8001 (side chain, 1900), KF-862 (side chain, 1900), X- 22-9192 (side chain, 6500)
· Dow Corning Toray Co., Ltd.: FZ-3707 (side chain, 1500), BY 16-203 (side chain, 1900), BY 16-898 (side chain, 2900), BY 16-890 (side chain, 1900 ), BY 16-893 (side chain, 4000), FZ-3789 (side chain, 1900), BY 16-871 (both ends, 130), BY 16-853C (both ends, 360), BY 16-853U ( both ends, 450)
 これらの混合物としては、ポリジメチルシロキサンとカルボキシル変性ポリシロキサンとの混合物及びポリエーテル変性ポリシロキサンとアミノ変性ポリシロキサンとの混合物等が挙げられる。 Mixtures of these include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
 疎水性有機化合物(d)としては、固体燃料用又は鉄鋼原料用である流動性向上剤を製造する際のハンドリングの観点から、好ましくは(d1)及び(d3)であり、更に好ましくは(d3)であり、最も好ましくはカルボキシ変性ポリシロキサンである。 The hydrophobic organic compound (d) is preferably (d1) and (d3), more preferably (d3 ), most preferably carboxy-modified polysiloxane.
 ポリシロキサン構造を有する疎水性有機化合物(d3)の粘度(mPa・s、25℃)は、10~5000mPa・sが好ましく、更に好ましくは15~3000mPa・s、特に好ましくは20~2500mPa・sであり、最も好ましくは1900~2100mPa・sである。この範囲であると、耐ブロッキング性が更に良好となる。尚、粘度は、JIS Z8803-2011の「10.円すい-平板形回転粘度計による粘度測定法」に準拠して、例えば、25.0±0.5℃に温度調節したE型粘度計(東機産業株式会社製RE80L、半径7mm、角度5.24×10-2radの円すい型コーン)を用いて測定される。 The viscosity (mPa s, 25° C.) of the hydrophobic organic compound (d3) having a polysiloxane structure is preferably 10 to 5000 mPa s, more preferably 15 to 3000 mPa s, particularly preferably 20 to 2500 mPa s. and most preferably 1900 to 2100 mPa·s. Within this range, blocking resistance is further improved. In addition, the viscosity is measured in accordance with JIS Z8803-2011 "10. Viscosity measurement method using a cone-plate rotational viscometer", for example, an E-type viscometer (Higashi RE80L manufactured by Kisangyo Co., Ltd., a conical cone with a radius of 7 mm and an angle of 5.24×10 −2 rad).
 架橋重合体(A)と疎水性有機化合物(d)との混合方法としては、特に制限はないが、疎水性有機化合物(d)が架橋重合体(A)の内部に存在するように混合するためには、疎水性有機化合物(d)は架橋重合体(A)の乾燥体に混合するのではなく、以下の(1)~(2)の方法で混合することが好ましく、更に好ましいのは(1)の方法である。尚、(1)の方法での混合は、練り込むように均一混合することが好ましい。
(1)疎水性有機化合物(d)と架橋重合体(A)の含水ゲルとを混合・混練する方法。
(2)疎水性有機化合物(d)の存在下に構成単量体を重合させて架橋重合体(A)の含水ゲルを得る方法。
The method for mixing the crosslinked polymer (A) and the hydrophobic organic compound (d) is not particularly limited, but mixing is performed so that the hydrophobic organic compound (d) exists inside the crosslinked polymer (A). For this purpose, the hydrophobic organic compound (d) is preferably mixed by the following methods (1) to (2) instead of being mixed with the dried crosslinked polymer (A), more preferably This is the method of (1). In addition, it is preferable that the mixing in the method (1) is uniformly mixed so as to be kneaded.
(1) A method of mixing and kneading the hydrophobic organic compound (d) and the water-containing gel of the crosslinked polymer (A).
(2) A method of polymerizing constituent monomers in the presence of a hydrophobic organic compound (d) to obtain a hydrous gel of the crosslinked polymer (A).
 前記(1)の方法における疎水性有機化合物(d)としては、(d)の粉砕物やビーズ、棒状又は繊維状に加工したものを用いることができる。粉砕物及びビーズの体積平均粒子径(μm)は、0.5~100μmが好ましく、更に好ましくは1~30μm、特に好ましくは2~20μmである。棒状の長さ(μm)は、5~50μmが好ましく、更に好ましくは7~30μm、特に好ましくは10~20μmであり、直径(μm)は、0.5~50μmが好ましく、更に好ましくは1~30μm、特に好ましくは2~15μmである。繊維状の長さ(μm)は、5~50μmが好ましく、更に好ましくは7~30μm、特に好ましくは10~20μmであり、直径(μm)は、0.5~50μmが好ましく、更に好ましくは1~30μm、特に好ましくは2~15μmである。これらの範囲であると、耐ブロッキング性が更に良好となる。 As the hydrophobic organic compound (d) in the method (1), it is possible to use the pulverized product of (d), beads, rod-shaped or fibrous products. The volume average particle size (μm) of the pulverized product and beads is preferably 0.5 to 100 μm, more preferably 1 to 30 μm, particularly preferably 2 to 20 μm. The rod-like length (μm) is preferably 5 to 50 μm, more preferably 7 to 30 μm, particularly preferably 10 to 20 μm, and the diameter (μm) is preferably 0.5 to 50 μm, more preferably 1 to 50 μm. 30 μm, particularly preferably 2 to 15 μm. The fibrous length (μm) is preferably 5 to 50 μm, more preferably 7 to 30 μm, particularly preferably 10 to 20 μm, and the diameter (μm) is preferably 0.5 to 50 μm, more preferably 1 to 30 μm, particularly preferably 2 to 15 μm. Within these ranges, blocking resistance is further improved.
 炭化水素基を含有する疎水性有機化合物(d1)を使用する場合は、ステアリン酸Mgビーズ、ポリスチレンビーズ及びポリエチレンビーズ等のビーズ並びにポリエチレンフイルム(例えば、タマポリ社製:SE625M及びUB-1)及びポリスチレンフィルム(例えば旭化成社製:OPS)等のフィルムの粉砕品(体積平均粒子径20~50μm)等が好適に用いられる。 When using a hydrophobic organic compound (d1) containing a hydrocarbon group, beads such as Mg stearate beads, polystyrene beads and polyethylene beads, polyethylene films (for example, SE625M and UB-1 manufactured by Tamapoly Co., Ltd.) and polystyrene Pulverized films (volume average particle size: 20 to 50 μm) such as films (eg, OPS manufactured by Asahi Kasei Co., Ltd.) are preferably used.
 フッ素原子をもつ炭化水素基を含有する疎水性有機化合物(d2)を使用する場合は、フッ素フィルム[例えば、旭ガラス社製:FLUON PTFE(ポリテトラフルオロエチレンフィルム)、FLUON PFA(四フッ化エチレンとパーフルオロエチレンとの共重合物のフィルム)及びFLUON AFLAS(テトラフルオロエチレンとプロピレンとの共重合物のフィルム)]の粉砕品(体積平均粒子径20~50μm)等が好適に用いられる。 When using a hydrophobic organic compound (d2) containing a hydrocarbon group having a fluorine atom, a fluorine film [for example, manufactured by Asahi Glass Co., Ltd.: FLUON PTFE (polytetrafluoroethylene film), FLUON PFA (tetrafluoroethylene and perfluoroethylene copolymer film) and FLUON AFLAS (tetrafluoroethylene and propylene copolymer film)] pulverized products (volume average particle size 20 to 50 μm) are preferably used.
 ポリシロキサンを含有する疎水性有機化合物(d3)を使用する場合は、シリコーンビーズ[例えば、GE東芝シリコーン社製:トスパール240(不定形シリコーン樹脂微粉末、体積平均粒子径4μm)、トスパール3120(真球状シリコーン樹脂微粉末、体積平均粒子径12μm)、トスパール145(真球状シリコーン樹脂微粉末、体積平均粒子径45μm)]等が好適に用いられる。これらの内、耐ブロッキング性の観点から、ビーズが好ましく、更に好ましいのはステアリン酸Mgビーズである。 When using a hydrophobic organic compound (d3) containing polysiloxane, silicone beads [for example, manufactured by GE Toshiba Silicone Co., Ltd.: Tospearl 240 (irregular silicone resin fine powder, volume average particle diameter 4 μm), Tospearl 3120 (true Spherical silicone resin fine powder, volume average particle size 12 μm), Tospearl 145 (spherical silicone resin fine powder, volume average particle size 45 μm)] and the like are preferably used. Among these, beads are preferred from the viewpoint of blocking resistance, and Mg stearate beads are more preferred.
 水溶液重合法により架橋重合体(A)を得る場合、疎水性有機化合物(d)と(A)とを混合・混練するタイミングとしては特に制限はないが、重合工程中、重合工程直後、含水ゲルの破砕(ミンチ)中及び含水ゲルの乾燥中等が挙げられる。これらの内、耐ブロッキング性の観点から、重合工程直後又は含水ゲルの破砕(ミンチ)工程中で混合することが好ましく、更に好ましいのは含水ゲルの破砕(ミンチ)工程中である。また、疎水性有機化合物(d)が長鎖脂肪酸塩の場合、長鎖脂肪酸と金属の水酸化物を混合していれてもよいし、個別にいれてもよい。 When the crosslinked polymer (A) is obtained by the aqueous solution polymerization method, the timing of mixing and kneading the hydrophobic organic compound (d) and (A) is not particularly limited, but during the polymerization step, immediately after the polymerization step, and after the hydrous gel During crushing (mincing) of the water-containing gel and during drying of the hydrous gel. Among these, from the viewpoint of blocking resistance, mixing is preferably performed immediately after the polymerization step or during the water-containing gel crushing (mincing) step, and more preferably during the water-containing gel crushing (mincing) step. When the hydrophobic organic compound (d) is a long-chain fatty acid salt, the long-chain fatty acid and metal hydroxide may be mixed or may be added separately.
 逆相懸濁重合法又は乳化重合により架橋重合体(A)を得る場合、疎水性有機化合物(d)と(A)とを混合するタイミングとしては特に制限はないが、重合工程中[(d)の存在下で、(A)を製造する]、重合工程直後、脱水工程中(含水率10重量%前後まで脱水する工程中)、脱水工程直後、重合に用いた有機溶媒を分離留去する工程中及び含水ゲルの乾燥中等が挙げられる。これらの内、耐ブロッキング性の観点から、重合工程中、重合工程直後、脱水工程中、脱水工程直後又は重合に用いた有機溶媒を分離留去する工程中に混合することが好ましく、更に好ましいのは重合工程中又は重合工程直後である。 When the crosslinked polymer (A) is obtained by a reversed-phase suspension polymerization method or emulsion polymerization, the timing of mixing the hydrophobic organic compound (d) and (A) is not particularly limited, but during the polymerization process [(d ) in the presence of )], immediately after the polymerization step, during the dehydration step (during the step of dehydrating to a water content of about 10% by weight), immediately after the dehydration step, the organic solvent used in the polymerization is separated and distilled off. Examples include during the process and during drying of the hydrous gel. Among these, from the viewpoint of anti-blocking property, mixing during the polymerization process, immediately after the polymerization process, during the dehydration process, immediately after the dehydration process, or during the process of separating and distilling off the organic solvent used in the polymerization is preferable, and more preferable. is during or immediately after the polymerization step.
 含水ゲルの乾燥中に混合する場合、混合装置としては、ベックスミル、ラバーチョッパ、ファーマミル、ミンチ機、衝撃式粉砕機及びロール式粉砕機等の装置が使用できる。重合液中で混合する場合、ホモミキサー、バイオミキサー等の比較的撹拌力の高い装置を使用できる。また、含水ゲルの乾燥中で混合する場合、SVミキサー等の混練装置も使用できる。 When mixing during drying of the hydrous gel, equipment such as Vex mill, rubber chopper, farmer mill, mincing machine, impact crusher and roll crusher can be used as mixing equipment. When mixing in the polymerization solution, a device with relatively high stirring power such as a homomixer and a biomixer can be used. Further, when the hydrous gel is mixed during drying, a kneading device such as an SV mixer can be used.
 混合温度(℃)は、80~200℃が好ましく、更に好ましくは100~180℃、特に好ましくは120~170℃である。この範囲であると、更に均一混合しやすくなり、耐ブロッキング性が更に良好となる。 The mixing temperature (°C) is preferably 80-200°C, more preferably 100-180°C, and particularly preferably 120-170°C. Within this range, uniform mixing is facilitated, and blocking resistance is further improved.
 疎水性有機化合物(d)の存在下に構成単量体を重合させて架橋重合体(A)の含水ゲルを得る方法は、架橋重合体(A)の重合液に疎水性有機化合物(d)を溶解又は乳化(分散)させておき、疎水性有機化合物(d)の存在下で重合を行うこと以外、重合方法は上述の架橋重合体(A)の場合と同様である。 A method of obtaining a hydrous gel of the crosslinked polymer (A) by polymerizing the constituent monomers in the presence of the hydrophobic organic compound (d) includes adding the hydrophobic organic compound (d) to the polymerization liquid of the crosslinked polymer (A). is dissolved or emulsified (dispersed), and the polymerization is carried out in the presence of the hydrophobic organic compound (d).
 疎水性有機化合物(d)は、水及び/又は揮発性溶媒に、溶解及び/又は乳化した形態でも使用できる(但し、乳化剤は使用しない)。揮発性溶媒としては、除去しやすさの観点等から、20℃での蒸気圧(Pa)が0.13~5.3Paのものが好ましく、更に好ましくは0.15~4.5Pa、特に好ましくは0.23~3.8Paのものである。 The hydrophobic organic compound (d) can be used in the form dissolved and/or emulsified in water and/or a volatile solvent (however, no emulsifier is used). The volatile solvent preferably has a vapor pressure (Pa) of 0.13 to 5.3 Pa at 20° C., more preferably 0.15 to 4.5 Pa, and particularly preferably 0.15 to 4.5 Pa, from the viewpoint of ease of removal. is from 0.23 to 3.8 Pa.
 揮発性溶媒としては、炭素数1~3のアルコール(メタノール、エタノール及びイソプロピルアルコール)、炭素数5~8の炭化水素(ペンタン、ヘキサン、シクロヘキサン及びトルエン等)、炭素数2~4のエーテル(ジメチルエーテル、ジエチルエーテル及びテトラヒドロフラン等)、炭素数3~4のケトン(アセトン及びメチルエチルケトン等)及び炭素数3~5のエステル(蟻酸エチル、酢酸エチル、酢酸イソプロピル及び炭酸ジエチル等)等が挙げられる。 Volatile solvents include alcohols with 1 to 3 carbon atoms (methanol, ethanol and isopropyl alcohol), hydrocarbons with 5 to 8 carbon atoms (pentane, hexane, cyclohexane, toluene, etc.), ethers with 2 to 4 carbon atoms (dimethyl ether , diethyl ether and tetrahydrofuran), ketones having 3 to 4 carbon atoms (acetone and methyl ethyl ketone etc.) and esters having 3 to 5 carbon atoms (ethyl formate, ethyl acetate, isopropyl acetate and diethyl carbonate etc.).
 水及び/又は揮発性溶媒を使用する場合、これらの使用量(重量%)は、疎水性有機化合物(d)の重量に基づいて、1~900重量%が好ましく、更に好ましくは5~700重量%、特に好ましくは10~400重量%である。水及び揮発性溶媒を使用する場合、水の使用量(重量%)は、水及び揮発性溶媒の重量に基づいて、50~98重量%が好ましく、更に好ましくは60~95重量%、特に好ましくは70~90重量%である。 When water and/or a volatile solvent are used, the amount (% by weight) of these used is preferably 1 to 900% by weight, more preferably 5 to 700% by weight, based on the weight of the hydrophobic organic compound (d). %, particularly preferably 10 to 400% by weight. When water and a volatile solvent are used, the amount of water used (% by weight) is preferably 50 to 98% by weight, more preferably 60 to 95% by weight, particularly preferably 60 to 95% by weight, based on the weight of water and the volatile solvent. is 70 to 90% by weight.
 疎水性有機化合物(d)を含有する含水ゲルは、必要に応じて、この含水ゲルを細断することができる。細断後の含水ゲル粒子の大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは1mm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。細断方法は、上述の含水ゲル(架橋重合体(A)と水とからなる)の場合と同様の方法が採用できる。 The hydrogel containing the hydrophobic organic compound (d) can be shredded if necessary. The size (longest diameter) of the water-containing gel particles after shredding is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, particularly preferably 1 mm to 1 cm. Within this range, the drying property in the drying step is further improved. As for the shredding method, the same method as in the case of the aforementioned water-containing gel (consisting of the crosslinked polymer (A) and water) can be employed.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤には、性能を損なわない範囲で無機質粉末(c)及び疎水性有機化合物(d)以外の添加物を添加することができる。添加物としては、公知(例えば特開2003-225565号公報)の添加剤(防腐剤、防かび剤、酸化防止剤、紫外線吸収剤、着色剤、消臭剤及び有機質繊維状物等)等が使用でき、これらの1種又は2種以上を併用してもよい。添加時期は特に限定されず、架橋重合体(A)の製造工程における任意の段階(重合工程、乾燥工程、表面架橋工程及び/又はこれらの工程の前後)において添加することができる。 Additives other than the inorganic powder (c) and the hydrophobic organic compound (d) can be added to the fluidity improver for solid fuel or steel raw material of the present invention within a range that does not impair the performance. As additives, known additives (for example, JP-A-2003-225565) (preservatives, antifungal agents, antioxidants, ultraviolet absorbers, coloring agents, deodorants, organic fibrous materials, etc.), etc. can be used, and one or more of these may be used in combination. The time of addition is not particularly limited, and it can be added at any stage (polymerization process, drying process, surface cross-linking process and/or before or after these processes) in the production process of the crosslinked polymer (A).
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤のゲル弾性率(kN/m)は、1.5~2.5kN/mであり、好ましくは1.6~2.4kN/m、更に好ましくは1.7~2.3kN/m、特に好ましくは1.8~2.2kN/mである。1.5kN/m未満であれば耐ブロッキング性が悪く流動性改質効果が低くなり、2.5kN/mを超えると固体燃料又は鉄鋼原料と混合しゲル化した際に柔軟性に欠け、効率よく系中の水と接触できず流動性改質効果が小さくなる。尚、ゲル弾性率(kN/m)は、下記測定方法で求められた値である。 The gel elastic modulus (kN/m 2 ) of the fluidity improver for solid fuel or steel raw material of the present invention is 1.5 to 2.5 kN/m 2 , preferably 1.6 to 2.4 kN. /m 2 , more preferably 1.7 to 2.3 kN/m 2 , particularly preferably 1.8 to 2.2 kN/m 2 . If it is less than 1.5 kN/m 2 , the blocking resistance is poor and the fluidity-improving effect is low . , the fluidity-improving effect becomes small because it cannot contact the water in the system efficiently. The gel elastic modulus (kN/m 2 ) is a value obtained by the following measuring method.
<ゲル弾性率の測定法>
 生理食塩水60.0gを100mlビーカー(内径5cm)に量り取り、スターラーチップ(長さ30mm、フッ素樹脂でコーティングされたもの)を入れ、回転数を毎分600±60回に合わせたマグネチックスターラーにビーカーを載せる。次に、測定試料(流動性向上剤)2.00gを精秤して上記ビーカーに投入し、ゲルの膨潤によりスターラーチップが回転しなくなった時点で撹拌を停止し、30倍膨潤ゲルを作製する。この30倍膨潤ゲルの入ったビーカーを25±2℃の雰囲気下で3時間静置した後、ゲル弾性率をカードメーター(例えば、株式会社アイテックテクノエンジニアリング製カードメーター・マックスME-500)を用いて測定する。尚、カードメーターの条件は以下の通りである。
・感圧軸:8mm
・スプリング:100g用
・荷重:100g重
・上昇速度:1インチ/7秒
・試験性質:破断
・測定時間:6秒
・測定雰囲気温度:25±2℃
<Method for measuring gel elastic modulus>
60.0 g of physiological saline was weighed into a 100 ml beaker (inner diameter: 5 cm), a stirrer tip (30 mm in length, coated with fluororesin) was placed, and a magnetic stirrer was set to rotate at 600 ± 60 times per minute. Place the beaker on the Next, 2.00 g of a measurement sample (fluidity improver) is precisely weighed and put into the beaker, and when the gel swells and the stirrer tip stops rotating, stirring is stopped to prepare a 30-fold swollen gel. . After leaving the beaker containing the 30-fold swollen gel in an atmosphere of 25 ± 2 ° C. for 3 hours, the gel elastic modulus is measured using a card meter (for example, Card Meter Max ME-500 manufactured by Itec Techno Engineering Co., Ltd.). to measure. The card meter conditions are as follows.
・Pressure-sensitive shaft: 8mm
・Spring: for 100g ・Load: 100g weight ・Rising speed: 1 inch/7 seconds ・Test properties: rupture ・Measurement time: 6 seconds ・Measurement ambient temperature: 25±2°C
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤のゲル弾性率は、用いる架橋重合体(A)の重合条件(重合時のモノマー濃度等)や架橋剤及び表面架橋剤の種類と量などをコントロールすること等で調整可能である。たとえば、ゲル弾性率を上げる方法としては、重合時のモノマー濃度を低くする、反応性基濃度(架橋剤の単位重量に基づく架橋反応性を有する官能基のモル数)の高い架橋剤及び表面架橋剤を選択する、架橋剤及び表面架橋剤の量を増やす方法が挙げられる。一方、ゲル弾性率を下げる方法としては、重合時のモノマー濃度を高くする、反応性基濃度の低い架橋剤及び表面架橋剤を選択する、架橋剤及び表面架橋剤の量を減らす方法が挙げられる。 The gel elastic modulus of the fluidity improver for solid fuel or steel raw material of the present invention depends on the polymerization conditions (monomer concentration during polymerization, etc.) of the crosslinked polymer (A) used and the type of crosslinker and surface crosslinker. It can be adjusted by controlling the amount or the like. For example, as a method for increasing the gel elastic modulus, a cross-linking agent having a high reactive group concentration (the number of moles of functional groups having cross-linking reactivity based on the unit weight of the cross-linking agent) and a surface cross-linking agent are used to reduce the monomer concentration during polymerization. Methods of selecting agents, increasing amounts of cross-linking agents and surface cross-linking agents are included. On the other hand, methods for lowering the gel elastic modulus include increasing the monomer concentration during polymerization, selecting a cross-linking agent and surface cross-linking agent having a low concentration of reactive groups, and reducing the amounts of the cross-linking agent and the surface cross-linking agent. .
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の保水量(g/g)は、耐ブロッキング性等の観点から320g/gより大きく700g/g以下であり、好ましくは350~650g/g、更に好ましくは360~600g/g、特に好ましくは450~600g/gである。保水量が700g/gを超えると耐ブロッキング性が不足する。また保水量が320g/g以下であると十分な改質効果を得るために必要な添加量が多くなり、改質後の固体燃料又は鉄鋼原料の品質に悪影響を及ぼすことがある。尚、固体燃料用又は鉄鋼原料用である流動性向上剤の保水量(g/g)は以下の方法により測定される。 The water retention amount (g/g) of the fluidity improver for solid fuel or steel raw material of the present invention is more than 320 g/g and 700 g/g or less, preferably 350 to 650 g, from the viewpoint of blocking resistance and the like. /g, more preferably 360 to 600 g/g, particularly preferably 450 to 600 g/g. If the water retention exceeds 700 g/g, the blocking resistance will be insufficient. Further, when the water retention amount is 320 g/g or less, a large amount of addition is required to obtain a sufficient reforming effect, which may adversely affect the quality of the reformed solid fuel or iron ore raw material. The water retention amount (g/g) of the fluidity improver for solid fuel or steel material is measured by the following method.
<固体燃料用又は鉄鋼原料用である流動性向上剤の保水量の測定法>
 目開き63μm(JIS Z8801-1:2019)のナイロン網で作製したティーバッグ(縦20cm、横10cm)に測定試料(流動性向上剤)0.100gを入れ、イオン交換水1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りする。その後、ティーバッグごと、遠心分離器に入れ、150Gで90秒間遠心脱水して余剰のイオン交換水を取り除き、ティーバッグを含めた重量(h1)を測定する。尚、使用したイオン交換水及び測定雰囲気の温度は25℃±2℃とする。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバックの重量(h2)を測定し、下記式から保水量を算出する。
  保水量(g/g)=[(h1)-(h2)]/0.100
<Measurement method of water retention amount of fluidity improver for solid fuel or steel raw material>
Put 0.100 g of the measurement sample (fluidity improver) in a tea bag (20 cm long, 10 cm wide) made of nylon mesh with an opening of 63 μm (JIS Z8801-1: 2019), and remove it in 1,000 ml of ion-exchanged water. After being immersed for 1 hour under stirring, it is hung for 15 minutes to drain. After that, the whole tea bag is placed in a centrifuge, dehydrated by centrifugation at 150 G for 90 seconds to remove excess ion-exchanged water, and the weight (h1) including the tea bag is measured. The temperature of the used ion-exchanged water and the measurement atmosphere is 25°C ± 2°C. The weight (h2) of the tea bag after centrifugal dehydration is measured in the same manner as above except that the measurement sample is not used, and the water retention amount is calculated from the following formula.
Water retention amount (g / g) = [(h1) - (h2)] / 0.100
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の保水量は、用いる架橋重合体(A)の重合条件(重合時のモノマー濃度等)や架橋剤及び表面架橋剤の種類と量などをコントロールすることで調整可能である。たとえば、保水量を上げる方法としては、重合時のモノマー濃度を低くする、反応性基濃度(架橋剤の単位重量に基づく架橋反応性を有する官能基のモル数)の低い架橋剤及び表面架橋剤を選択する、架橋剤及び表面架橋剤の量を減らす方法が挙げられる。一方、保水量を下げる方法としては、重合時のモノマー濃度を高くする、反応性基濃度の高い架橋剤及び表面架橋剤を選択する、架橋剤及び表面架橋剤の量を増やす方法が挙げられる。 The water retention amount of the fluidity improver for solid fuel or steel raw material of the present invention depends on the polymerization conditions (monomer concentration during polymerization, etc.) of the crosslinked polymer (A) used, the type and amount of the crosslinker and the surface crosslinker. can be adjusted by controlling the For example, as a method of increasing the water retention amount, a cross-linking agent having a low reactive group concentration (the number of moles of functional groups having cross-linking reactivity based on the unit weight of the cross-linking agent) and a surface cross-linking agent are used to reduce the monomer concentration during polymerization. and reducing the amount of cross-linking agent and surface cross-linking agent. On the other hand, methods for reducing the amount of water retention include increasing the monomer concentration during polymerization, selecting a cross-linking agent and surface cross-linking agent with a high concentration of reactive groups, and increasing the amounts of the cross-linking agent and the surface cross-linking agent.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の吸水速度は、好ましくは60秒以下であり、更に好ましくは20~55秒であり、特に好ましくは30~50秒である。この範囲であると流動性改質効果が特に良好となる。尚、吸水速度(秒)は、下記測定方法で求められた値である。 The water absorption rate of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 60 seconds or less, more preferably 20 to 55 seconds, and particularly preferably 30 to 50 seconds. Within this range, the fluidity-improving effect is particularly good. Incidentally, the water absorption speed (second) is a value obtained by the following measuring method.
<吸水速度の測定法>
 吸水速度(秒)はJISK7224に準拠して25℃で測定する。(試験液:生理食塩水)
<Method for measuring water absorption rate>
The water absorption rate (seconds) is measured at 25°C in accordance with JISK7224. (Test solution: physiological saline)
 固体燃料用又は鉄鋼原料用である流動性向上剤の吸水速度は、見掛け密度や流動性向上剤の表面処理などをコントロールすること等により調整することができる。 The water absorption rate of fluidity improvers for solid fuels or steel raw materials can be adjusted by controlling the apparent density and the surface treatment of the fluidity improver.
 固体燃料用又は鉄鋼原料用である流動性向上剤の見掛け密度(g/ml)は、0.54~0.70g/mlが好ましく、更に好ましくは0.56~0.65g/ml、特に好ましくは0.58~0.60g/mlである。この範囲であると、吸水速度が良好となる。尚、流動性向上剤の見掛け密度は上述の架橋重合体(A)の見掛け密度と同様に、JIS K7365:1999に準拠して25℃で測定される値であり、架橋重合体(A)の見掛け密度がほぼそのまま流動性向上剤の見かけ密度に反映される。 The apparent density (g/ml) of the fluidity improver for solid fuel or steel raw material is preferably 0.54 to 0.70 g/ml, more preferably 0.56 to 0.65 g/ml, and particularly preferably is 0.58-0.60 g/ml. Within this range, the water absorption rate is good. The apparent density of the fluidity improver is a value measured at 25° C. in accordance with JIS K7365:1999, similarly to the apparent density of the crosslinked polymer (A). The apparent density is almost directly reflected in the apparent density of the fluidity improver.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の含水率(重量%)は、流動性向上剤の含水率は固体燃料用又は鉄鋼原料用である流動性向上剤の重量に基づいて、20重量%以下が好ましく、更に好ましくは1~20重量%、特に好ましくは2~15重量%、最も好ましくは3~10重量%である。この範囲であると、吸水性能が更に良好となる。尚、固体燃料用又は鉄鋼原料用である流動性向上剤の含水率は、上述の架橋重合体(A)の含水率と同様の方法で測定される値であり、架橋重合体(A)の含水率がほぼそのまま流動性向上剤の含水率に反映される。 The water content (% by weight) of the fluidity improver for solid fuel or steel raw material of the present invention is based on the weight of the fluidity improver for solid fuel or steel raw material. is preferably 20% by weight or less, more preferably 1 to 20% by weight, particularly preferably 2 to 15% by weight, and most preferably 3 to 10% by weight. Within this range, the water absorption performance is further improved. The water content of the fluidity improver for solid fuel or steel raw material is a value measured by the same method as the water content of the above-described crosslinked polymer (A). The water content is almost directly reflected in the water content of the fluidity improver.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の耐鉄分解性試験におけるゲル残存率(重量%)は、50重量%以上が好ましく、より好ましくは75重量%以上、更に好ましくは80重量%以上、特に好ましくは90重量%以上、最も好ましくは94重量%以上である。この範囲であると、処理対象の固体燃料又は鉄鋼原料が鉄鉱石等の鉄含有原料である場合も、性能低下が起こらず流動性改質効果が特に良好であり、また効果が長期間持続する。尚、固体燃料用又は鉄鋼原料用である流動性向上剤の耐鉄分解性試験におけるゲル残存率(重量%)は、下記測定方法で求められた値である。 The gel residual rate (% by weight) in the iron decomposition resistance test of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 50% by weight or more, more preferably 75% by weight or more, and still more preferably 80% by weight or more, particularly preferably 90% by weight or more, most preferably 94% by weight or more. Within this range, even when the solid fuel or iron ore raw material to be treated is an iron-containing raw material such as iron ore, the performance does not deteriorate and the fluidity improving effect is particularly good, and the effect lasts for a long time. . The residual gel ratio (% by weight) in the iron decomposition resistance test of the fluidity improver for solid fuel or steel raw material is a value obtained by the following measuring method.
<耐鉄分解性試験におけるゲル残存率の測定法>
 FeCl0.242gに水999.758gを加え溶解させた(液1)を作成する。(液1)29.667gをスクリュー管瓶[50mL(胴径35mm×高さ78mm)]中に移し、流動性向上剤を0.333g加えた後密閉し、25℃で1時間膨潤させる。その後、50℃の循風乾燥機中で24時間静置したスクリュー管瓶内の測定サンプルをスパチュラを用いて目開き2.8mm、内径7.5cmのJIS標準ふるい上に移す。この際、前記測定サンプルがふるい面にまんべんなく触れるように、スパチュラで押し付けないように広げる。全量をふるい上に移してから5分間静置し、ふるい上に残ったゲルの重量(g)及び、ふるいを通過した液の重量(g)を測定する。以下の式から、ゲル残存率を求める。
ゲル残存率(重量%)=(ふるい上に残ったゲルの重量)/(ふるい上に残ったゲルの重量+ふるいを通過した液の重量)×100
<Measurement method of gel residual rate in iron decomposition resistance test>
999.758 g of water was added to 0.242 g of FeCl 3 and dissolved to prepare (liquid 1). (Liquid 1) 29.667 g is transferred into a screw tube bottle [50 mL (barrel diameter 35 mm×height 78 mm)], 0.333 g of a fluidity improver is added, and the bottle is sealed and allowed to swell at 25° C. for 1 hour. After that, the measurement sample in the screw tube bottle left still for 24 hours in a circulating air dryer at 50° C. is transferred onto a JIS standard sieve having an opening of 2.8 mm and an inner diameter of 7.5 cm using a spatula. At this time, the measurement sample is spread with a spatula so that it evenly touches the sieve surface without being pressed. After the entire amount is transferred onto the sieve, it is allowed to stand for 5 minutes, and the weight (g) of the gel remaining on the sieve and the weight (g) of the liquid that has passed through the sieve are measured. The gel residual ratio is obtained from the following formula.
Gel residual rate (% by weight) = (weight of gel remaining on sieve) / (weight of gel remaining on sieve + weight of liquid passed through sieve) x 100
 処理対象の固体燃料又は鉄鋼原料が鉄鉱石等の鉄含有原料である場合に起こることのある性能低下の原因ははっきりとは特定できていないが、架橋重合体(A)及び流動性向上剤の分解によるものと考えられる。 Although the cause of the performance deterioration that may occur when the solid fuel or iron ore raw material to be treated is an iron-containing raw material such as iron ore has not been clearly identified, the crosslinked polymer (A) and the fluidity improver This is thought to be due to decomposition.
 分解メカニズムは判明していないが、たとえば、架橋重合体(A)の架橋剤の種類の選定や、重合時の架橋度や表面架橋での架橋度をコントロールすることによりゲル残存率を調整することが可能である。たとえば、ゲル残存率を上げる方法としては、反応性基濃度(架橋剤の単位重量に基づく架橋反応性を有する官能基のモル数)の高い架橋剤及び表面架橋剤を選択する、架橋剤及び表面架橋剤の量を増やす方法が挙げられる。一方、ゲル残存率を下げる方法としては、架橋剤の一部にエステル結合を有する架橋剤を用いる、反応性基濃度の低い架橋剤及び表面架橋剤を選択する、架橋剤及び表面架橋剤の量を減らす方法が挙げられる。 Although the decomposition mechanism has not been clarified, it is possible to adjust the residual gel ratio by, for example, selecting the type of cross-linking agent for the cross-linked polymer (A) and controlling the degree of cross-linking during polymerization and the degree of cross-linking during surface cross-linking. is possible. For example, as a method of increasing the gel residual rate, a cross-linking agent and a surface cross-linking agent having a high reactive group concentration (the number of moles of functional groups having cross-linking reactivity based on the unit weight of the cross-linking agent) are selected. A method of increasing the amount of the cross-linking agent can be mentioned. On the other hand, as a method for reducing the gel residual rate, a cross-linking agent having an ester bond as a part of the cross-linking agent is used, a cross-linking agent and a surface cross-linking agent with a low concentration of reactive groups are selected, and the amounts of the cross-linking agent and the surface cross-linking agent are selected. can be reduced.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の重量平均粒子径(μm)は、流動性向上効果の観点から、100~800μmが好ましく、更に好ましくは200~700μm、特に好ましくは250~600μm、とりわけ好ましくは300~500μm、最も好ましくは350~450μmである。 The weight-average particle size (μm) of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 100 to 800 μm, more preferably 200 to 700 μm, particularly preferably 200 to 700 μm, from the viewpoint of the fluidity improvement effect. 250-600 μm, particularly preferably 300-500 μm, most preferably 350-450 μm.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の重量平均粒子径(μm)は架橋重合体(A)の重量平均粒子径と同様にして測定できる。流動性向上剤の重量平均粒子径には、架橋重合体(A)の重量平均粒子径が大きく寄与するが、表面架橋の有無と程度等により多少変化する。 The weight average particle size (μm) of the fluidity improver for solid fuel or steel raw material of the present invention can be measured in the same manner as the weight average particle size of the crosslinked polymer (A). The weight-average particle size of the crosslinked polymer (A) greatly contributes to the weight-average particle size of the fluidity improver.
 本発明の固体燃料用又は鉄鋼原料用である流動性向上剤の全粒子に占める粒子径150μm以下の微粒子の含有量は水吸収能の観点から3重量%以下が好ましく、更に好ましくは1重量%以下である。全粒子に占める粒子径106μm以下の微粒子の含有量は2重量%以下が好ましく、更に好ましくは1重量%以下である。尚、流動性向上剤の全粒子に占める微粒子の含有量(重量%)は、上述の架橋重合体(A)の場合と同様に、重量平均粒子径を求める際に作成するプロットを用いて求めることができる。流動性向上剤の全粒子に占める微粒子の含有量には、架橋重合体(A)の全粒子に占める微粒子の含有量が大きく寄与するが、表面架橋の有無と程度、無機質粉末(C)の有無と種類、及び疎水性有機化合物(D)の有無と種類等により多少変化する。 The content of fine particles having a particle diameter of 150 μm or less in the total particles of the fluidity improver for solid fuel or steel raw material of the present invention is preferably 3% by weight or less, more preferably 1% by weight, from the viewpoint of water absorption capacity. It is below. The content of fine particles having a particle diameter of 106 μm or less in all particles is preferably 2% by weight or less, more preferably 1% by weight or less. The content (% by weight) of the fine particles in the total particles of the fluidity improver is determined using a plot prepared when determining the weight average particle size, as in the case of the above-described crosslinked polymer (A). be able to. The content of fine particles in all particles of the fluidity improver largely depends on the content of fine particles in all particles of the crosslinked polymer (A). It varies somewhat depending on the presence and type of the hydrophobic organic compound (D) and the presence and type of the hydrophobic organic compound (D).
<固体燃料又は鉄鋼原料の流動性改質方法>
 本発明は、固体燃料又は鉄鋼原料の流動性を改質する方法であって、固体燃料又は鉄鋼原料に流動性向上剤を接触させる工程を含み、前記流動性向上剤が水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有し、下記(1)及び(2)を満たす固体燃料又は鉄鋼原料の流動性改質方法である。
(1)ゲル弾性率;1.5~2.5kN/m
(2)保水量;320g/gより大きく700g/g以下
<Method for Improving Fluidity of Solid Fuel or Steel Raw Materials>
The present invention is a method for improving the fluidity of a solid fuel or steel raw material, comprising the step of bringing a fluidity improver into contact with the solid fuel or steel raw material, wherein the fluidity improver is a water-soluble vinyl monomer (a1 ) and / or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a crosslinked polymer (A) containing a crosslinking agent (b) as essential constituent monomers, and the following (1) and (2) A method for improving the fluidity of solid fuels or steel feedstocks.
(1) Gel elastic modulus; 1.5 to 2.5 kN/m 2
(2) Water retention capacity; greater than 320 g/g and 700 g/g or less
 本発明の流動性改質方法において、前記固体燃料が石炭、コークス、木質チップ、木質ペレット、及び廃棄物固形燃料からなる群より選択される少なくとも1種を含み、鉄鋼原料が鉄鉱石、石灰石、焼結鉱、及び製鉄所ダストからなる群より選択される少なくとも1種を含むことが好ましい。また、上記固体燃料又は鉄鋼原料は、石炭、コークス、鉄鉱石、石灰石、焼結鉱及び製鉄所ダストからなる群より選択される少なくとも1種を含むことが更に好ましく、石炭、コークス、鉄鉱石及び焼結鉱からなる群より選択される少なくとも1種を含むことが最も好ましい。これらの固体燃料又は鉄鋼原料は、製鉄所や発電所等の各工場において使用量が多く、その貯蔵方法としてヤードに山積みされ、堆積、貯蔵される場合が多いためである。更に、本発明の流動性向上剤は耐鉄分解性が高い(後述する耐鉄分解性試験におけるゲル残存率が高い)ため、上記固体燃料又は鉄鋼原料が鉄鉱石等の鉄含有原料である場合も、少ない添加量で十分な流動性改質効果を得ることが可能である。 In the method for improving fluidity of the present invention, the solid fuel includes at least one selected from the group consisting of coal, coke, wood chips, wood pellets, and waste solid fuel, and the iron ore raw material is iron ore, limestone, It preferably contains at least one selected from the group consisting of sintered ore and steel mill dust. Further, the solid fuel or iron ore raw material more preferably contains at least one selected from the group consisting of coal, coke, iron ore, limestone, sintered ore and steel mill dust, and coal, coke, iron ore and Most preferably, it contains at least one selected from the group consisting of sintered ore. This is because these solid fuels or iron ore raw materials are used in large amounts in factories such as ironworks and power plants, and are often piled up in yards, piled up, and stored as storage methods. Furthermore, since the fluidity improver of the present invention has high iron decomposition resistance (high gel residual rate in the iron decomposition resistance test described later), when the solid fuel or steel raw material is an iron-containing raw material such as iron ore It is also possible to obtain a sufficient fluidity-improving effect with a small addition amount.
 本発明の固体燃料又は鉄鋼原料の流動性改質方法における、固体燃料又は鉄鋼原料に流動性向上剤を接触させる工程は、特に限定されるものではないが、固体燃料又は鉄鋼原料と流動性向上剤とが均一に混合されて、相互に接している状態の混合物が得られる工程であることが好ましい。例えば重機を用いて混合する方法、ミキサーなどの混合装置を用いて混合する方法などが挙げられる。 In the method for improving the fluidity of a solid fuel or steel raw material of the present invention, the step of contacting the solid fuel or steel raw material with the fluidity improver is not particularly limited, but the solid fuel or steel raw material and the fluidity improvement It is preferable that the step is a step in which the agents are uniformly mixed and a mixture in contact with each other is obtained. Examples thereof include a method of mixing using a heavy machine, a method of mixing using a mixing device such as a mixer, and the like.
 固体燃料又は鉄鋼原料の重量に対する流動性向上剤の添加量は固体燃料又は鉄鋼原料の種類や性状に応じて適宜調整されるが、例えば湿潤な固体燃料又は鉄鋼原料(含水率が1~30%)の100重量部に対して0.001~5重量部であることが好ましく、より好ましくは0.1~2重量部、更に好ましくは0.25~1重量部である。添加量が5重量部より多くなると、流動性向上剤の量が多すぎるため固体燃料又は鉄鋼原料の用途における所望の性能を示さなくなる可能性がある。また、本発明の固体燃料又は鉄鋼原料の流動性改質方法で用いる流動性向上剤は流動性改質効果に優れるため、改質対象の原料等の含水率が高い場合であっても、少量の添加量でも十分な効果が得られる。 The amount of the fluidity improver added to the weight of the solid fuel or steel raw material is appropriately adjusted according to the type and properties of the solid fuel or steel raw material. ) is preferably 0.001 to 5 parts by weight, more preferably 0.1 to 2 parts by weight, still more preferably 0.25 to 1 part by weight. If the amount added is more than 5 parts by weight, the amount of fluidity improver is too large and may not exhibit the desired performance in solid fuel or steel raw material applications. In addition, since the fluidity improver used in the method for improving the fluidity of solid fuels or steel raw materials of the present invention is excellent in the fluidity improving effect, even if the water content of the raw material to be modified is high, a small amount A sufficient effect can be obtained even with the addition amount of
 また、本明細書には以下の事項が開示されている。 In addition, the following matters are disclosed in this specification.
 本開示(1)は、水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有し、下記(1)及び(2)を満たし、固体燃料用又は鉄鋼原料用である流動性向上剤である。
(1)ゲル弾性率;1.5~2.5kN/m
(2)保水量;320g/gより大きく700g/g以下
The present disclosure (1) is a crosslinked polymer (A) comprising a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a crosslinking agent (b) as essential constituent monomers and satisfies the following (1) and (2), and is a fluidity improver for solid fuels or steel raw materials.
(1) Gel elastic modulus; 1.5 to 2.5 kN/m 2
(2) Water retention capacity; greater than 320 g/g and 700 g/g or less
 本開示(2)は、前記保水量が360~600g/gである、本開示(1)に記載の流動性向上剤である。 The present disclosure (2) is the fluidity improver according to the present disclosure (1), wherein the water retention capacity is 360 to 600 g/g.
 本開示(3)は、吸水速度が60秒以下である、本開示(1)又は(2)に記載の流動性向上剤である。 (3) of the present disclosure is the fluidity improver according to (1) or (2) of the present disclosure, which has a water absorption rate of 60 seconds or less.
 本開示(4)は、含水率が20重量%以下である、本開示(1)~(3)のいずれかとの任意の組合せの流動性向上剤である。 (4) of the present disclosure is a fluidity improver in any combination with any of (1) to (3) of the present disclosure, having a moisture content of 20% by weight or less.
 本開示(5)は、更に無機質粉末(c)を含有する、本開示(1)~(4)のいずれかとの任意の組合せの流動性向上剤である。 (5) of the present disclosure is a fluidity improver in any combination with any of (1) to (4) of the present disclosure, further containing an inorganic powder (c).
 本開示(6)は、前記無機質粉末(c)の含有量が、架橋重合体(A)の重量に基づいて0.275~5.000重量%である、本開示(5)に記載の流動性向上剤である。 The content of the inorganic powder (c) is 0.275 to 5.000% by weight based on the weight of the crosslinked polymer (A). It is a property improver.
 本開示(7)は、更に疎水性有機化合物(d)を含有する、本開示(1)~(6)のいずれかとの任意の組合せの流動性向上剤である。 This disclosure (7) is a fluidity improver in any combination with any of this disclosure (1) to (6), further comprising a hydrophobic organic compound (d).
 本開示(8)は、耐鉄分解性試験におけるゲル残存率が50重量%以上である、本開示(1)~(7)のいずれかとの任意の組合せの流動性向上剤である。 The present disclosure (8) is a fluidity improver in any combination with any of the present disclosure (1) to (7), which has a gel residual rate of 50% by weight or more in an iron decomposition resistance test.
 本開示(9)は、固体燃料又は鉄鋼原料の流動性を改質する方法であって、固体燃料又は鉄鋼原料に流動性向上剤を接触させる工程を含み、前記流動性向上剤が水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有し、下記(1)及び(2)を満たす固体燃料又は鉄鋼原料の流動性改質方法である。
(1)ゲル弾性率;1.5~2.5kN/m
(2)保水量;320g/gより大きく700g/g以下
The present disclosure (9) is a method for modifying the fluidity of a solid fuel or steel raw material, comprising the step of contacting the solid fuel or steel raw material with a fluidity improver, wherein the fluidity improver is a water-soluble vinyl A monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis and a crosslinked polymer (A) containing a crosslinking agent (b) as essential constituent monomers, and the following (1) and ( It is a method for improving the fluidity of solid fuels or steel raw materials that satisfies 2).
(1) Gel elastic modulus; 1.5 to 2.5 kN/m 2
(2) Water retention capacity; greater than 320 g/g and 700 g/g or less
 本開示(10)は、固体燃料が石炭、コークス、木質チップ、木質ペレット、及び廃棄物固形燃料からなる群より選択される少なくとも1種を含み、鉄鋼原料が鉄鉱石、石灰石、焼結鉱、及び製鉄所ダストからなる群より選択される少なくとも1種を含む、本開示(9)に記載の固体燃料又は鉄鋼原料の流動性改質方法である。 In the present disclosure (10), the solid fuel includes at least one selected from the group consisting of coal, coke, wood chips, wood pellets, and waste solid fuel, and the iron ore raw material is iron ore, limestone, sinter, and steel mill dust.
 以下、実施例及び比較例により本発明を更に説明するが、本発明はこれらに限定されるものではない。 The present invention will be further described below with reference to Examples and Comparative Examples, but the present invention is not limited to these.
<実施例1>
 水溶性ビニルモノマー(a1)としてのアクリル酸{三菱化学株式会社製、純度100%}155重量部(2.15モル部)、架橋剤(b)としてのペンタエリスリトールトリアリルエーテル{ダイソー株式会社製}0.504重量部(0.0020モル部)及び脱イオン水340.0重量部を撹拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1重量%過酸化水素水溶液0.62重量部、2重量%アスコルビン酸水溶液1.1625重量部及び2重量%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]水溶液2.325重量部を添加・混合して重合を開始させた。混合物の温度が80℃に達した後、85±2℃で約8時間重合することにより含水ゲルを得た。次にこの含水ゲル500.00重量部をミンチ機(ROYAL社製12VR-400K)で細断しながら48.5重量%水酸化ナトリウム水溶液127.84重量部を添加して混合し、細断ゲルを得た。更に細断ゲルを通気型バンド乾燥機{150℃、風速2m/秒}で乾燥し、不定形破砕状の乾燥体[架橋重合体(A-1)]を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋することにより、不定形破砕状の流動性向上剤(F-1)を得た。
<Example 1>
155 parts by weight (2.15 mol parts) of acrylic acid {manufactured by Mitsubishi Chemical Corporation, purity 100%} as a water-soluble vinyl monomer (a1), pentaerythritol triallyl ether {manufactured by Daiso Co., Ltd.) as a cross-linking agent (b) } 0.504 parts by weight (0.0020 moles) and 340.0 parts by weight of deionized water were kept at 3°C while stirring and mixing. After nitrogen was introduced into this mixture to reduce the dissolved oxygen content to 1 ppm or less, 0.62 parts by weight of a 1% by weight aqueous hydrogen peroxide solution, 1.1625 parts by weight of a 2% by weight aqueous ascorbic acid solution and 2% by weight of 2, 2.325 parts by weight of 2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide] aqueous solution was added and mixed to initiate polymerization. After the temperature of the mixture reached 80° C., the mixture was polymerized at 85±2° C. for about 8 hours to obtain a hydrous gel. Next, while chopping 500.00 parts by weight of this hydrous gel with a mincing machine (12VR-400K manufactured by ROYAL), 127.84 parts by weight of a 48.5% by weight sodium hydroxide aqueous solution was added and mixed to obtain a chopped gel. got Further, the shredded gel was dried with a ventilated band dryer {150° C., wind speed 2 m/sec} to obtain a dried irregularly shredded product [crosslinked polymer (A-1)]. The dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm to obtain dried particles. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 5 parts by weight were added while spraying and mixed, and allowed to stand at 150°C for 30 minutes for surface cross-linking to obtain an irregularly pulverized fluidity improver (F-1).
<実施例2>
 ペンタエリスリトールトリアリルエーテルの仕込量を0.504重量部(0.0020モル部)から0.425重量部(0.0017モル部)に、脱イオン水の仕込量を340.0重量部から415.0重量部に、48.5重量%水酸化ナトリウム水溶液の仕込量を127.84重量部から111.25重量部に変更して重合を開始させ、混合物の温度が70℃に達した後75±2℃で約8時間重合すること以外は、実施例1と同様にして不定形破砕状の乾燥体[架橋重合体(A-2)]を得た。次に架橋重合体(A-2)をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、本発明の流動性向上剤(F-2)を得た。
<Example 2>
The charging amount of pentaerythritol triallyl ether was changed from 0.504 parts by weight (0.0020 mol parts) to 0.425 parts by weight (0.0017 mol parts), and the charging amount of deionized water was changed from 340.0 parts by weight to 415 parts by weight. 0 parts by weight, and the charged amount of 48.5% by weight sodium hydroxide aqueous solution was changed from 127.84 parts by weight to 111.25 parts by weight to initiate the polymerization. An amorphous crushed dried product [crosslinked polymer (A-2)] was obtained in the same manner as in Example 1 except that the polymerization was carried out at ±2° C. for about 8 hours. Next, the crosslinked polymer (A-2) was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm, thereby obtaining the composition of the present invention. A fluidity improver (F-2) was obtained.
<実施例3>
 実施例2と同様にして得られた架橋重合体(A-2)をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)2.5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋し、更に親水性無機粒子(c1)としてのアエロジル200{日本アエロジル株式会社製、比表面積200m/g}0.250重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて80℃で均一混合して、本発明の流動性向上剤(F-3)を得た。
<Example 3>
The crosslinked polymer (A-2) obtained in the same manner as in Example 2 was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then pulverized to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm. Dry particles were obtained by the adjustment. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) Add 2.5 parts by weight while spraying and mix, allow to stand at 150 ° C. for 30 minutes to surface crosslink, and further Aerosil 200 as hydrophilic inorganic particles (c1) {Nippon Aerosil Co., Ltd., ratio Surface area: 200 m 2 /g} 0.250 parts by weight was added and uniformly mixed at 80°C using a conical blender (manufactured by Hosokawa Micron Corporation) to obtain the fluidity improver (F-3) of the present invention.
<実施例4>
 実施例2と同様にして得られた架橋重合体(A-2)をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)2.5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋した。これに更に親水性無機粒子(c1)としてのアエロジル200{日本アエロジル株式会社製、比表面積200m/g}0.400重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて80℃で均一混合して、本発明の流動性向上剤(F-4)を得た。
<Example 4>
The crosslinked polymer (A-2) obtained in the same manner as in Example 2 was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then pulverized to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm. Dry particles were obtained by the adjustment. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 2.5 parts by weight were added and mixed while spraying, and allowed to stand at 150°C for 30 minutes for surface cross-linking. To this, 0.400 parts by weight of Aerosil 200 {manufactured by Nippon Aerosil Co., Ltd., specific surface area 200 m 2 /g} as a hydrophilic inorganic particle (c1) was added, and blended at 80° C. using a conical blender {manufactured by Hosokawa Micron Corporation}. The fluidity improver (F-4) of the present invention was obtained by uniform mixing.
<実施例5>
 実施例2と同様にして得られた架橋重合体(A-2)をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)2.5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋した。これに更にポリシロキサン構造を有する疎水性有機化合物(d3)としてのX-22-3701E{信越化学工業株式会社製カルボキシ変性ポリジメチルシロキサン、粘度=1960mPa・s}0.02重量部および親水性無機粒子(c1)としてのアエロジル200{日本アエロジル株式会社製、比表面積200m/g}0.400重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて80℃で均一混合して、本発明の流動性向上剤(F-5)を得た。
<Example 5>
The crosslinked polymer (A-2) obtained in the same manner as in Example 2 was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then pulverized to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm. Dry particles were obtained by the adjustment. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 2.5 parts by weight were added and mixed while spraying, and allowed to stand at 150°C for 30 minutes for surface cross-linking. In addition to this, X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure {carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., viscosity = 1960 mPa s} 0.02 parts by weight and a hydrophilic inorganic Add 0.400 parts by weight of Aerosil 200 {manufactured by Nippon Aerosil Co., Ltd., specific surface area 200 m 2 /g} as the particles (c1) and uniformly mix at 80° C. using a conical blender {manufactured by Hosokawa Micron Corporation}. An inventive fluidity improver (F-5) was obtained.
<実施例6>
 ペンタエリスリトールトリアリルエーテルの仕込量を0.504重量部(0.0020モル部)から0.387重量部(0.0015モル部)に、脱イオン水の仕込量を340.0重量部から515.0重量部に、48.5重量%水酸化ナトリウム水溶液の仕込量を127.84重量部から94.76重量部に変更して重合を開始させ、混合物の温度が60℃に達した後65±2℃で約8時間重合すること以外は、実施例1と同様にして不定形破砕状の乾燥体[架橋重合体(A-3)]を得た。次に架橋重合体(A-3)をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、本発明の流動性向上剤(F-6)を得た。
<Example 6>
The charging amount of pentaerythritol triallyl ether was changed from 0.504 parts by weight (0.0020 mol parts) to 0.387 parts by weight (0.0015 mol parts), and the charging amount of deionized water was changed from 340.0 parts by weight to 515 parts by weight. 0 parts by weight, and the charged amount of 48.5% by weight sodium hydroxide aqueous solution was changed from 127.84 parts by weight to 94.76 parts by weight to initiate polymerization. An amorphous crushed dry product [crosslinked polymer (A-3)] was obtained in the same manner as in Example 1 except that the polymerization was carried out at ±2° C. for about 8 hours. Next, the crosslinked polymer (A-3) was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm, thereby obtaining the composition of the present invention. A fluidity improver (F-6) was obtained.
<実施例7>
 実施例1で得られた含水ゲル500.00重量部をミンチ機(ROYAL社製12VR-400K)で細断しながら48.5重量%水酸化ナトリウム水溶液127.84重量部を添加して混合し、更に細断しながら炭化水素基を有する疎水性有機化合物(d1)としての{太平化学産業株式会社製ステアリン酸マグネシウム、融点=155℃}0.226重量部を添加して細断ゲルを得、その後細断ゲルを通気型バンド乾燥機{160℃、風速2m/秒}で乾燥し、不定形破砕状の乾燥体[架橋重合体(A-4)]を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋することにより、不定形破砕状の流動性向上剤(F-7)を得た。
<Example 7>
While 500.00 parts by weight of the hydrous gel obtained in Example 1 was chopped with a mincing machine (12VR-400K manufactured by ROYAL), 127.84 parts by weight of a 48.5% by weight sodium hydroxide aqueous solution was added and mixed. 0.226 parts by weight {magnesium stearate manufactured by Taihei Kagaku Sangyo Co., Ltd., melting point = 155°C} as a hydrophobic organic compound (d1) having a hydrocarbon group was added while chopping to obtain a chopped gel. After that, the shredded gel was dried with a ventilated band dryer {160° C., wind speed 2 m/sec} to obtain an irregularly crushed dry product [crosslinked polymer (A-4)]. The dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm to obtain dried particles. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 5 parts by weight were added while spraying and mixed, and allowed to stand at 150°C for 30 minutes for surface cross-linking to obtain an irregularly pulverized fluidity improver (F-7).
<実施例8>
 実施例1で得られた流動性向上剤(F-1)に、炭化水素基を有する疎水性有機化合物(d1)としての{株式会社加藤洋行製カルナウバワックス、融点=80~86℃}0.1重量部を加えて、コニカルブレンダー{ホソカワミクロン株式会社製}を用いて100℃で均一混合して、本発明の流動性向上剤(F-8)を得た。
<Example 8>
The fluidity improver (F-1) obtained in Example 1 was added with {carnauba wax manufactured by Kato Yoko Co., Ltd., melting point = 80 to 86 ° C.} as the hydrophobic organic compound (d1) having a hydrocarbon group. 1 part by weight was added and uniformly mixed at 100° C. using a conical blender (manufactured by Hosokawa Micron Corporation) to obtain the fluidity improver (F-8) of the present invention.
<実施例9>
 実施例1で得られた流動性向上剤(F-1)に、ポリシロキサン構造を有する疎水性有機化合物(d3)としてのX-22-3701E{信越化学工業株式会社製カルボキシ変性ポリジメチルシロキサン、粘度=1960mPa・s}0.02重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて150℃で均一混合して、本発明の流動性向上剤(F-9)を得た。
<Example 9>
To the fluidity improver (F-1) obtained in Example 1, X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure {carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., Viscosity = 1960 mPa·s} 0.02 parts by weight was added and uniformly mixed at 150°C using a conical blender (manufactured by Hosokawa Micron Corporation) to obtain the fluidity improver (F-9) of the present invention.
<実施例10>
 実施例1で得られた流動性向上剤(F-1)に、ポリシロキサン構造を有する疎水性有機化合物(d3)としてのX-22-3701E{信越化学工業株式会社製カルボキシ変性ポリジメチルシロキサン、粘度=1960mPa・s}0.02重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて150℃で均一混合し、更に親水性無機粒子(c1)としてのアエロジル200{日本アエロジル株式会社製、比表面積200m/g}0.300重量部をコニカルブレンダー{ホソカワミクロン株式会社製}を用いて80℃で均一混合して、本発明の流動性向上剤(F-10)を得た。
<Example 10>
To the fluidity improver (F-1) obtained in Example 1, X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure {carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., Viscosity = 1960 mPa · s} 0.02 parts by weight is added and uniformly mixed at 150 ° C. using a conical blender {manufactured by Hosokawa Micron Co., Ltd.}, and Aerosil 200 {manufactured by Nippon Aerosil Co., Ltd.] as hydrophilic inorganic particles (c1). , and a specific surface area of 200 m 2 /g}0.300 parts by weight were uniformly mixed at 80° C. using a conical blender (manufactured by Hosokawa Micron Corporation) to obtain the fluidity improver (F-10) of the present invention.
<実施例11>
 通気型バンド乾燥機の温度を150℃から190℃に変更する以外は実施例1と同様にして不定形破砕状の乾燥体[架橋重合体(A-5)]を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋を行った。更にポリシロキサン構造を有する疎水性有機化合物(d3)としてのX-22-3701E{信越化学工業株式会社製カルボキシ変性ポリジメチルシロキサン、粘度=1960mPa・s}0.02重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて150℃で均一混合し、更に親水性無機粒子(c1)としてのアエロジル200{日本アエロジル株式会社製、比表面積200m/g}0.300重量部をコニカルブレンダー{ホソカワミクロン株式会社製}を用いて80℃で均一混合して、不定形破砕状の流動性向上剤(F-11)を得た。
<Example 11>
An amorphous pulverized dried product [crosslinked polymer (A-5)] was obtained in the same manner as in Example 1 except that the temperature of the ventilation band dryer was changed from 150°C to 190°C. The dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm to obtain dried particles. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 5 parts by weight were added and mixed while spraying, and allowed to stand at 150°C for 30 minutes to carry out surface cross-linking. Furthermore, X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure {carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., viscosity = 1960 mPa s} 0.02 parts by weight is added in a conical blender { Hosokawa Micron Co., Ltd.] is used to uniformly mix at 150 ° C., and then 0.300 parts by weight of Aerosil 200 as hydrophilic inorganic particles (c1) {Nippon Aerosil Co., Ltd., specific surface area 200 m / g} is added to a conical blender { Hosokawa Micron Co., Ltd.] was used to uniformly mix at 80° C. to obtain an irregularly pulverized fluidity improver (F-11).
<実施例12>
 通気型バンド乾燥機の温度を150℃から120℃に変更する以外は実施例1と同様にして不定形破砕状の乾燥体[架橋重合体(A-6)]を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋を行った。更にポリシロキサン構造を有する疎水性有機化合物(d3)としてのX-22-3701E{信越化学工業株式会社製カルボキシ変性ポリジメチルシロキサン、粘度=1960mPa・s}0.02重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて150℃で均一混合し、更に親水性無機粒子(c1)としてのアエロジル200{日本アエロジル株式会社製、比表面積200m/g}0.300重量部をコニカルブレンダー{ホソカワミクロン株式会社製}を用いて80℃で均一混合して、不定形破砕状の流動性向上剤(F-12)を得た。
<Example 12>
An amorphous pulverized dried product [crosslinked polymer (A-6)] was obtained in the same manner as in Example 1 except that the temperature of the ventilation band dryer was changed from 150°C to 120°C. The dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm to obtain dried particles. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 5 parts by weight were added and mixed while spraying, and allowed to stand at 150°C for 30 minutes to carry out surface cross-linking. Furthermore, X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure {carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., viscosity = 1960 mPa s} 0.02 parts by weight is added in a conical blender { Hosokawa Micron Co., Ltd.] is used to uniformly mix at 150 ° C., and then 0.300 parts by weight of Aerosil 200 as hydrophilic inorganic particles (c1) {Nippon Aerosil Co., Ltd., specific surface area 200 m / g} is added to a conical blender { Hosokawa Micron Co., Ltd.] was used to uniformly mix at 80° C. to obtain an irregularly pulverized fluidity improver (F-12).
<実施例13>
 ペンタエリスリトールトリアリルエーテルの仕込量を0.504重量部(0.0020モル部)から1.000重量部(0.0039モル部)に、通気型バンド乾燥機の温度を150℃から105℃に変更すること以外は、実施例1と同様にして不定形破砕状の乾燥体[架橋重合体(A-7)]を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)7.5重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋を行った。更にポリシロキサン構造を有する疎水性有機化合物(d3)としてのX-22-3701E{信越化学工業株式会社製カルボキシ変性ポリジメチルシロキサン、粘度=1960mPa・s}0.02重量部を加えてコニカルブレンダー{ホソカワミクロン株式会社製}を用いて150℃で均一混合し、更に親水性無機粒子(c1)としてのアエロジル200{日本アエロジル株式会社製、比表面積200m/g}0.300重量部をコニカルブレンダー{ホソカワミクロン株式会社製}を用いて80℃で均一混合して、不定形破砕状の流動性向上剤(F-13)を得た。
<Example 13>
The charged amount of pentaerythritol triallyl ether was changed from 0.504 parts by weight (0.0020 mol parts) to 1.000 parts by weight (0.0039 mol parts), and the temperature of the ventilated band dryer was changed from 150°C to 105°C. An amorphous pulverized dry product [crosslinked polymer (A-7)] was obtained in the same manner as in Example 1 except that the procedure was changed. The dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm to obtain dried particles. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 7.5 parts by weight were added and mixed while spraying, and allowed to stand at 150°C for 30 minutes to carry out surface cross-linking. Furthermore, X-22-3701E as a hydrophobic organic compound (d3) having a polysiloxane structure {carboxy-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., viscosity = 1960 mPa s} 0.02 parts by weight is added in a conical blender { Hosokawa Micron Co., Ltd.] is used to uniformly mix at 150 ° C., and then 0.300 parts by weight of Aerosil 200 as hydrophilic inorganic particles (c1) {Nippon Aerosil Co., Ltd., specific surface area 200 m / g} is added to a conical blender { Hosokawa Micron Co., Ltd.] was used to uniformly mix at 80° C. to obtain an irregularly pulverized fluidity improver (F-13).
<実施例14>
 実施例1で得た流動性向上剤(F-1)100重量部に、イオン交換水を6重量部スプレーすることで不定形破砕状の流動性向上剤(F-14)を得た。
<Example 14>
By spraying 6 parts by weight of ion-exchanged water onto 100 parts by weight of the fluidity improver (F-1) obtained in Example 1, an irregularly pulverized fluidity improver (F-14) was obtained.
<実施例15>
 還流冷却器、滴下ロート、窒素ガス導入管、並びに、撹拌機として、翼径5cmの4枚傾斜パドル翼を2段で有する撹拌翼を備えた内径11cm、2L容の丸底円筒型セパラブルフラスコを準備した。このフラスコに、分散媒としてn-ヘプタン293gをとり、分散剤として無水マレイン酸変性エチレン・プロピレン共重合体(三井化学株式会社、ハイワックス1105A)0.736gを添加し、撹拌しつつ80℃まで昇温して分散剤を溶解した後、50℃まで冷却した。一方、内容積300mLのビーカーに、水溶性ビニルモノマー(a1)として80.5質量%のアクリル酸水溶液92.0g(1.03モル)をとり、外部より冷却しつつ、20.9質量%の水酸化ナトリウム水溶液147.7gを滴下して75モル%の中和を行った後、増粘剤としてヒドロキシルエチルセルロース0.092g(住友精化株式会社、HECAW-15F)、重合開始剤として2,2’-アゾビス(2-アミジノプロパン)2塩酸塩0.092g(0.339ミリモル)、及び過硫酸カリウム0.018g(0.068ミリモル)、架橋剤(b)としてエチレングリコールジグリシジルエーテル0.010g(0.057ミリモル)を加えて溶解し、第1段目の水性液を調製した。そして、上記にて調製した水性液をセパラブルフラスコに添加して、10分間撹拌した後、n-ヘプタン6.62gにショ糖ステアリン酸エステル(d1)としてHLB3のショ糖ステアリン酸エステル(三菱化学フーズ株式会社、リョートーシュガーエステルS-370)0.736gを加熱溶解した溶液を、更に添加して、撹拌機の回転数を550rpmとして撹拌しながら系内を窒素で十分に置換した後、フラスコを70℃の水浴に浸漬して昇温し、重合を60分間行うことにより、第1段目の重合スラリー液を得た。
<Example 15>
A round-bottomed separable flask with an inner diameter of 11 cm and a volume of 2 L equipped with a reflux condenser, a dropping funnel, a nitrogen gas introduction tube, and a stirrer having two stages of four inclined paddle blades with a blade diameter of 5 cm. prepared. In this flask, 293 g of n-heptane was taken as a dispersion medium, and 0.736 g of a maleic anhydride-modified ethylene/propylene copolymer (Mitsui Chemicals, Inc., Hi-Wax 1105A) was added as a dispersant. After the temperature was raised to dissolve the dispersant, the solution was cooled to 50°C. On the other hand, 92.0 g (1.03 mol) of an 80.5% by mass acrylic acid aqueous solution is taken as a water-soluble vinyl monomer (a1) in a beaker with an internal volume of 300 mL, and cooled from the outside while adding 20.9% by mass. After dropping 147.7 g of an aqueous sodium hydroxide solution to neutralize 75 mol%, 0.092 g of hydroxyl ethyl cellulose (HECAW-15F, manufactured by Sumitomo Seika Co., Ltd.) as a thickener and 2,2 as a polymerization initiator. 0.092 g (0.339 mmol) of '-azobis(2-amidinopropane) dihydrochloride and 0.018 g (0.068 mmol) of potassium persulfate, 0.010 g of ethylene glycol diglycidyl ether as crosslinker (b) (0.057 mmol) was added and dissolved to prepare a first-stage aqueous solution. Then, the aqueous liquid prepared above was added to a separable flask, stirred for 10 minutes, and then added to 6.62 g of n-heptane as a sucrose stearate (d1) of HLB 3 sucrose stearate (Mitsubishi Chemical Foods Co., Ltd., Ryoto Sugar Ester S-370) 0.736 g of heat-dissolved solution is further added, and the system is sufficiently replaced with nitrogen while stirring with the rotation speed of the stirrer at 550 rpm. was immersed in a water bath at 70° C. to raise the temperature, and polymerization was carried out for 60 minutes to obtain a first-stage polymerization slurry.
 一方、別の内容積500mLのビーカーに水溶性ビニルモノマー(a1)として80.5質量%のアクリル酸水溶液128.8g(1.43モル)をとり、外部より冷却しつつ、27質量%の水酸化ナトリウム水溶液159.0gを滴下して75モル%の中和を行った後、重合開始剤として2,2’-アゾビス(2-アミジノプロパン)二塩酸塩0.129g(0.475ミリモル)、及び過硫酸カリウム0.026g(0.095ミリモル)を加えて溶解し、第2段目の水性液を調製した。撹拌機の回転数を1000rpmとして撹拌しながら、上記のセパラブルフラスコ系内を25℃に冷却した後、上記第2段目の水性液の全量を、第1段目の重合スラリー液に添加して、系内を窒素で30分間置換した後、再度、フラスコを70℃の水浴に浸漬して昇温し、重合反応を60分間行った。その後、架橋剤(b)として2質量%のエチレングリコールジグリシジルエーテル水溶液0.580g(0.067ミリモル)を添加し、架橋重合体(A-8)を得た。 On the other hand, 128.8 g (1.43 mol) of an 80.5% by mass acrylic acid aqueous solution is taken as a water-soluble vinyl monomer (a1) in another beaker with an internal volume of 500 mL, and while cooling from the outside, 27% by mass of water After 159.0 g of an aqueous sodium oxide solution was added dropwise for 75 mol% neutralization, 0.129 g (0.475 mmol) of 2,2′-azobis(2-amidinopropane) dihydrochloride as a polymerization initiator, and 0.026 g (0.095 mmol) of potassium persulfate were added and dissolved to prepare a second aqueous solution. After cooling the inside of the separable flask system to 25° C. while stirring at a stirrer rotation speed of 1000 rpm, the entire amount of the second-stage aqueous liquid was added to the first-stage polymerization slurry liquid. After purging the inside of the system with nitrogen for 30 minutes, the flask was again immersed in a water bath at 70° C. to raise the temperature, and the polymerization reaction was carried out for 60 minutes. Thereafter, 0.580 g (0.067 mmol) of a 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as a cross-linking agent (b) to obtain a cross-linked polymer (A-8).
 上記で得られた架橋重合体(A-8)に、45質量%のジエチレントリアミン5酢酸5ナトリウム水溶液0.265gを撹拌下で添加した。その後、125℃に設定した油浴にフラスコを浸漬し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら、238.5gの水を系外へ抜き出した。その後、フラスコに表面架橋剤として2質量%のエチレングリコールジグリシジルエーテル水溶液4.42g(0.507ミリモル)を添加し、83℃で2時間保持した。その後、n-ヘプタンを125℃にて蒸発させて乾燥させることによって、重合体粒子(乾燥品)を得た。この重合体粒子を目開き850μmのふるいに通過させることにより、略球状の流動性向上剤(F-15)を得た。 To the crosslinked polymer (A-8) obtained above, 0.265 g of a 45% by mass aqueous solution of pentasodium diethylenetriamine pentaacetate was added with stirring. Thereafter, the flask was immersed in an oil bath set at 125° C., and 238.5 g of water was withdrawn from the system by azeotropic distillation of n-heptane and water while refluxing n-heptane. After that, 4.42 g (0.507 mmol) of 2% by mass ethylene glycol diglycidyl ether aqueous solution was added as a surface cross-linking agent to the flask, and the mixture was kept at 83° C. for 2 hours. Thereafter, n-heptane was evaporated at 125° C. and dried to obtain polymer particles (dried product). By passing the polymer particles through a sieve with an opening of 850 μm, a substantially spherical fluidity improver (F-15) was obtained.
<実施例16>
 水溶性ビニルモノマー(a1)としてアクリル酸100g、架橋剤(b)としてポリエチレングリコールジアクリレート0.3g、開始剤としてジフェニル(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド0.033g、水酸化ナトリウム38.9g、及び水103.9gの比率で混合して、単量体濃度が50重量%の単量体混合物を用意した。その後、前記単量体混合物を連続移動するコンベヤベルト上に投入し、紫外線を照射(照射量:2mW/cm)して2分間UV重合を進行させて、含水ゲル重合体を得た。この含水ゲル重合体を5×5mmの大きさに切断して、170℃の温度の熱風乾燥機で2時間乾燥し、不定形破砕状の乾燥体[架橋重合体(A-9)]を得た。乾燥体をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、乾燥体粒子を得た。この乾燥体粒子100重量部を高速撹拌(細川ミクロン製高速撹拌タービュライザー:回転数2000rpm)しながらエチレングリコールジグリシジルエーテルの2重量%水/メタノール混合溶液(水/メタノールの重量比=70/30)3重量部をスプレー噴霧しながら加えて混合し、150℃で30分間静置して表面架橋することにより、不定形破砕状の流動性向上剤(F-16)を得た。
<Example 16>
100 g of acrylic acid as a water-soluble vinyl monomer (a1), 0.3 g of polyethylene glycol diacrylate as a cross-linking agent (b), 0.033 g of diphenyl (2,4,6-trimethylbenzoyl)-phosphine oxide as an initiator, sodium hydroxide 38.9 g and 103.9 g of water were mixed at a ratio to prepare a monomer mixture having a monomer concentration of 50% by weight. Thereafter, the monomer mixture was placed on a continuously moving conveyor belt and irradiated with ultraviolet rays (irradiation dose: 2 mW/cm 2 ) to allow UV polymerization to proceed for 2 minutes to obtain a water-containing gel polymer. This water-containing gel polymer was cut into a size of 5×5 mm and dried in a hot air dryer at a temperature of 170° C. for 2 hours to obtain an irregularly crushed dry product [crosslinked polymer (A-9)]. rice field. The dried material was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm to obtain dried particles. While 100 parts by weight of the dried particles were stirred at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: number of revolutions 2000 rpm), a 2% by weight water/methanol mixed solution of ethylene glycol diglycidyl ether (water/methanol weight ratio = 70/ 30) 3 parts by weight were added and mixed while being sprayed, and allowed to stand at 150°C for 30 minutes for surface cross-linking to obtain an irregularly pulverized fluidity improver (F-16).
<比較例1>
 アクリル酸の仕込量を155重量部(2.15モル部)から160重量部(2.22モル部)に、ペンタエリスリトールトリアリルエーテルの仕込量を0.504重量部(0.0020モル部)から1.100重量部(0.0043モル部)に、48.5重量%水酸化ナトリウム水溶液の仕込量を127.84重量部から130.60重量部に変更すること以外は実施例1と同様にして、不定形破砕状の乾燥体[比較用の架橋重合体(A’-1)]を得た。次に比較用の架橋重合体(A’-1)を実施例1と同様にして粉砕及び表面架橋することにより、比較用の流動性向上剤(H-1)を得た。
<Comparative Example 1>
The charged amount of acrylic acid was changed from 155 parts by weight (2.15 mol parts) to 160 parts by weight (2.22 mol parts), and the charged amount of pentaerythritol triallyl ether was changed to 0.504 parts by weight (0.0020 mol parts). to 1.100 parts by weight (0.0043 mol parts), and the charging amount of the 48.5 wt% sodium hydroxide aqueous solution was changed from 127.84 parts by weight to 130.60 parts by weight. Then, an amorphous pulverized dry product [comparative crosslinked polymer (A'-1)] was obtained. Next, the comparative crosslinked polymer (A'-1) was pulverized and surface-crosslinked in the same manner as in Example 1 to obtain a comparative fluidity improver (H-1).
<比較例2>
 ペンタエリスリトールトリアリルエーテルの仕込量を0.387重量部(0.0015モル部)から0.150重量部(0.0006モル部)に、脱イオン水の仕込み量を515.0重量部から579.0重量部に、48.5重量%水酸化ナトリウム水溶液の仕込量を94.76重量部から86.60重量部に変更して重合を開始させ、混合物の温度が50℃に達した後55±2℃で約8時間重合すること以外は実施例6と同様にして、不定形破砕状の乾燥体[比較用の架橋重合体(A’-2)]を得た。次に比較用の架橋重合体(A’-2)をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕した後、目開き150μm及び710μmのふるいを用いて150~710μmの粒度に調整することにより、比較用の流動性向上剤(H-2)を得た。
<Comparative Example 2>
The charge amount of pentaerythritol triallyl ether was changed from 0.387 parts by weight (0.0015 parts by weight) to 0.150 parts by weight (0.0006 parts by weight), and the amount of deionized water was changed from 515.0 parts by weight to 579 parts by weight. 0 parts by weight, and the charged amount of 48.5% by weight sodium hydroxide aqueous solution was changed from 94.76 parts by weight to 86.60 parts by weight to initiate polymerization. In the same manner as in Example 6 except that the polymerization was carried out at ±2° C. for about 8 hours, an irregularly crushed dry product [comparative crosslinked polymer (A′-2)] was obtained. Next, the comparative crosslinked polymer (A′-2) was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster), and then adjusted to a particle size of 150 to 710 μm using sieves with openings of 150 μm and 710 μm. , to obtain a fluidity improver (H-2) for comparison.
<比較例3>
 実施例15における架橋剤(b)としての2質量%のエチレングリコールジグリシジルエーテル水溶液の量を0.580g(0.067ミリモル)から1.740g(0.201ミリモル)に変更すること以外は実施例15と同様にして、比較用の架橋重合体(A’-3)を得た。次に、実施例15で[架橋重合体(A-8)]を処理するのと同様に、比較用の架橋重合体(A’-3)を処理することにより、比較用の流動性向上剤(H-3)を得た。
<Comparative Example 3>
Except for changing the amount of 2% by mass ethylene glycol diglycidyl ether aqueous solution as the cross-linking agent (b) in Example 15 from 0.580 g (0.067 mmol) to 1.740 g (0.201 mmol) A crosslinked polymer (A'-3) for comparison was obtained in the same manner as in Example 15. Next, the comparative crosslinked polymer (A'-3) was treated in the same manner as the treatment of [crosslinked polymer (A-8)] in Example 15 to obtain a fluidity improver for comparison. (H-3) was obtained.
 得られた流動性向上剤(F-1)~(F-14)及び比較用の流動性向上剤(H-1)~(H-2)について、ゲル弾性率(kN/m)、保水量(g/g)、含水率(重量%)、重量平均粒子径(μm)、150μm以下の微粒子の含有量(重量%)、耐鉄分解性試験におけるゲル残存率(重量%)及び見掛け密度(g/ml)を上述の方法で測定した結果並びに下記方法により固体燃料又は鉄鋼原料の流動性向上効果を評価した結果を表1に示す。また、流動性向上剤を用いない場合を比較例4として表1に記載した。 Regarding the obtained fluidity improvers (F-1) to (F-14) and the comparative fluidity improvers (H-1) to (H-2), the gel elastic modulus (kN/m 2 ), the retention Water content (g/g), water content (% by weight), weight average particle size (μm), content of fine particles of 150 μm or less (% by weight), residual gel rate (% by weight) and apparent density in iron decomposition resistance test Table 1 shows the results of measuring (g/ml) by the method described above and the results of evaluating the fluidity-improving effect of solid fuels or steel raw materials by the following method. Table 1 also shows Comparative Example 4 in which no fluidity improver is used.
<固体燃料又は鉄鋼原料の流動性評価方法>
 瀝青炭をジューサーミキサー(Oster社製OSTERIZER BLENDER)にて粉砕し、16メッシュふるい(目開き1.00mm)を使用してふるい分けを実施した後、ふるいを通過した瀝青炭粒子に含水率が30重量%となるように、所定量のイオン交換水を添加・混合し、試験用の固体燃料又は鉄鋼原料とした。次に、室温25℃、湿度50%RHに調製された室内にて、流動性向上剤(F-1)~(F-14)及び(H-1)~(H-2)を試験用の固体燃料又は鉄鋼原料の重量に対して0.25重量%又は0.5重量%添加し、15分撹拌した後、更に15分静置し試験用のサンプルとした。続いて、パウダーテスト機(ホソカワミクロン製、パウダテスタPT-X型)に目開き1.7mmのふるい(直径7.5cm)をセットした後、ふるい面にまんべんなく試験用のサンプル20.0g(W)を静置した。この際、内容物がふるい面にまんべんなく触れるように、スパチュラで押し付けないように広げた。その後、下記の条件で所定時間の振動を与えた後、ふるいの上に残ったサンプル重量(W)を測定し、下記計算式より固体燃料又は鉄鋼原料のふるい通過率(%)を求めて、下記評価基準で流動性向上効果を評価した。
[振動条件]
  振幅:1.0mm
  動作時間:30秒
  スローダウン:10秒
  周波数:60Hz
[計算式]
  ふるい通過率(%)=(W-W)/W×100
[評価基準]
 〇:ふるい通過率10%以上
 △:ふるい通過率6%以上10%未満
 ×:ふるい通過率6%未満
<Method for evaluating fluidity of solid fuel or steel raw material>
Bituminous coal was pulverized with a juicer mixer (Osterizer Blender manufactured by Oster) and sieved using a 16-mesh sieve (opening 1.00 mm). A predetermined amount of ion-exchanged water was added and mixed to obtain a solid fuel or steel raw material for testing. Next, in a room adjusted to a room temperature of 25 ° C. and a humidity of 50% RH, the fluidity improvers (F-1) to (F-14) and (H-1) to (H-2) are used for testing. After adding 0.25% by weight or 0.5% by weight based on the weight of the solid fuel or iron ore raw material, stirring for 15 minutes, and allowing to stand still for an additional 15 minutes, a test sample was prepared. Subsequently, after setting a sieve with an opening of 1.7 mm (diameter 7.5 cm) in a powder tester (Hosokawa Micron Corporation, Powder Tester PT-X type), 20.0 g (W A ) of the test sample was evenly distributed over the sieve surface. was left undisturbed. At this time, the contents were spread out with a spatula so as to evenly touch the surface of the sieve without being pressed. After that, after applying vibration for a predetermined time under the following conditions, the weight of the sample remaining on the sieve (W B ) is measured, and the sieve passage rate (%) of the solid fuel or iron ore raw material is calculated from the following formula. , the fluidity improvement effect was evaluated according to the following evaluation criteria.
[Vibration condition]
Amplitude: 1.0mm
Operating time: 30 seconds Slowdown: 10 seconds Frequency: 60Hz
[a formula]
Sieve passage rate (%) = (W A - W B )/W A × 100
[Evaluation criteria]
○: Sieve passing rate of 10% or more △: Sieve passing rate of 6% or more and less than 10% ×: Sieve passing rate of less than 6%
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 本発明の流動性向上剤は、固体燃料又は鉄鋼原料の流動性向上効果に優れるため、製鉄所や火力発電所等で屋外に野積みして含水状態となった固体燃料又は鉄鋼原料を搬送する必要がある場合等に好適に使用できる。 Since the fluidity improver of the present invention is excellent in improving the fluidity of solid fuels or raw materials for iron ore, it is used to convey solid fuels or raw materials for iron ore that have been piled outdoors in steelworks, thermal power plants, etc. and are in a water-containing state. It can be suitably used when necessary.

Claims (10)

  1.  水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有し、下記(1)及び(2)を満たし、固体燃料用又は鉄鋼原料用である流動性向上剤。
    (1)ゲル弾性率;1.5~2.5kN/m
    (2)保水量;320g/gより大きく700g/g以下
    It contains a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) that becomes (a1) by hydrolysis, and a crosslinked polymer (A) whose essential constituent monomers are a crosslinking agent (b), and the following (1 ) and (2) and is used for solid fuels or steel raw materials.
    (1) Gel elastic modulus; 1.5 to 2.5 kN/m 2
    (2) Water retention capacity; greater than 320 g/g and 700 g/g or less
  2.  前記保水量が360~600g/gである請求項1記載の流動性向上剤。 The fluidity improver according to claim 1, wherein the water retention amount is 360 to 600 g/g.
  3.  吸水速度が60秒以下である請求項1又は2記載の流動性向上剤。 The fluidity improver according to claim 1 or 2, which has a water absorption rate of 60 seconds or less.
  4.  含水率が20重量%以下である請求項1~3のいずれか1項に記載の流動性向上剤。 The fluidity improver according to any one of claims 1 to 3, which has a moisture content of 20% by weight or less.
  5.  更に無機質粉末(c)を含有する請求項1~4のいずれか1項に記載の流動性向上剤。 The fluidity improver according to any one of claims 1 to 4, which further contains an inorganic powder (c).
  6.  前記無機質粉末(c)の含有量が、架橋重合体(A)の重量に基づいて0.275~5.000重量%である請求項5に記載の流動性向上剤。 The fluidity improver according to claim 5, wherein the content of the inorganic powder (c) is 0.275 to 5.000% by weight based on the weight of the crosslinked polymer (A).
  7.  更に疎水性有機化合物(d)を含有する請求項1~6のいずれか1項に記載の流動性向上剤。 The fluidity improver according to any one of claims 1 to 6, further comprising a hydrophobic organic compound (d).
  8.  耐鉄分解性試験におけるゲル残存率が80重量%以上である請求項1~7のいずれか1項に記載の流動性向上剤。 The fluidity improver according to any one of claims 1 to 7, which has a gel residual rate of 80% by weight or more in an iron decomposition resistance test.
  9.  固体燃料又は鉄鋼原料の流動性を改質する方法であって、
    固体燃料又は鉄鋼原料に流動性向上剤を接触させる工程を含み、
    前記流動性向上剤が水溶性ビニルモノマー(a1)及び/又は加水分解により(a1)となるビニルモノマー(a2)並びに架橋剤(b)を必須構成単量体とする架橋重合体(A)を含有し、下記(1)及び(2)を満たす固体燃料又は鉄鋼原料の流動性改質方法。
    (1)ゲル弾性率;1.5~2.5kN/m
    (2)保水量;320g/gより大きく700g/g以下
    A method for modifying the fluidity of a solid fuel or steel feedstock comprising:
    Contacting a solid fuel or steel raw material with a fluidity improver,
    A crosslinked polymer (A) comprising a water-soluble vinyl monomer (a1) and/or a vinyl monomer (a2) where the fluidity improver becomes (a1) by hydrolysis, and a crosslinking agent (b) as essential constituent monomers A method for improving the fluidity of a solid fuel or iron ore raw material containing and satisfying the following (1) and (2).
    (1) Gel elastic modulus; 1.5 to 2.5 kN/m 2
    (2) Water retention capacity; greater than 320 g/g and 700 g/g or less
  10.  固体燃料が石炭、コークス、木質チップ、木質ペレット、及び廃棄物固形燃料からなる群より選択される少なくとも1種を含み、鉄鋼原料が鉄鉱石、石灰石、焼結鉱、及び製鉄所ダストからなる群より選択される少なくとも1種を含む請求項9に記載の固体燃料又は鉄鋼原料の流動性改質方法。 The solid fuel contains at least one selected from the group consisting of coal, coke, wood chips, wood pellets, and waste solid fuel, and the iron ore raw material consists of iron ore, limestone, sintered ore, and steel mill dust. 10. The method for improving fluidity of solid fuel or steel raw material according to claim 9, comprising at least one selected from.
PCT/JP2022/045403 2021-12-20 2022-12-09 Fluidity improving agent for solid fuel or for steel raw material WO2023120230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-206393 2021-12-20
JP2021206393 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120230A1 true WO2023120230A1 (en) 2023-06-29

Family

ID=86902357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045403 WO2023120230A1 (en) 2021-12-20 2022-12-09 Fluidity improving agent for solid fuel or for steel raw material

Country Status (1)

Country Link
WO (1) WO2023120230A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256710A (en) * 2012-05-16 2013-12-26 Kurita Water Ind Ltd Method for conveying iron-making raw material and method for manufacturing iron-making raw material solidified body
WO2017057709A1 (en) * 2015-10-02 2017-04-06 Sdpグローバル株式会社 Absorbent resin composition and method for producing same
JP2018053043A (en) * 2016-09-27 2018-04-05 森下仁丹株式会社 Plurality of water-absorbing polymer particles, and method for producing plurality of water-absorbing polymer particles
JP2019098327A (en) * 2017-12-07 2019-06-24 日鉄環境株式会社 Method of treating oil-containing sludge and method of treating wastewater
JP2019218429A (en) * 2018-06-15 2019-12-26 Sdpグローバル株式会社 Water-absorbing resin particles and absorbent article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256710A (en) * 2012-05-16 2013-12-26 Kurita Water Ind Ltd Method for conveying iron-making raw material and method for manufacturing iron-making raw material solidified body
WO2017057709A1 (en) * 2015-10-02 2017-04-06 Sdpグローバル株式会社 Absorbent resin composition and method for producing same
JP2018053043A (en) * 2016-09-27 2018-04-05 森下仁丹株式会社 Plurality of water-absorbing polymer particles, and method for producing plurality of water-absorbing polymer particles
JP2019098327A (en) * 2017-12-07 2019-06-24 日鉄環境株式会社 Method of treating oil-containing sludge and method of treating wastewater
JP2019218429A (en) * 2018-06-15 2019-12-26 Sdpグローバル株式会社 Water-absorbing resin particles and absorbent article

Similar Documents

Publication Publication Date Title
JP5685293B2 (en) Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
JP5833076B2 (en) Absorbent resin particles, production method thereof, absorbent body containing the same, and absorbent article
JP7015341B2 (en) Water-absorbent resin composition and its manufacturing method
JP2010185029A (en) Absorbent resin particle, method for manufacturing the same, absorber including the same, and absorbent article
WO2011052140A1 (en) Absorbent resin particles for water-stopping tape, and water-stopping tape containing same
WO2016143739A1 (en) Method for producing aqueous liquid absorbent resin particles, and absorbent body and absorbent article
JP2017206646A (en) Water-absorptive resin particles and absorber and absorptive article containing the same
JP5649336B2 (en) Method for producing absorbent resin particles
JP2012217599A (en) Absorbable resin particle, and absorber and absorbable article including the same
JP2023060178A (en) Method for producing water-absorbing resin particle
JP2013203842A (en) Absorptive resin particle and absorber and absorptive article containing the same
JP2010241975A (en) Absorptive resin particle, and absorbing material and absorbing article containing the same
WO2023120230A1 (en) Fluidity improving agent for solid fuel or for steel raw material
JP7165753B2 (en) Water-absorbing resin particles and method for producing the same
JP7128980B1 (en) Method for producing water absorbent resin composition, water absorbent resin composition, absorbent body using the same, and absorbent article
JP2019141754A (en) Water-absorbing resin particle, absorber and absorbing article using the same, and production method of water-absorbing resin particle
JP2012012469A (en) Absorptive resin particle, and absorber and absorptive article containing the same
WO2019188648A1 (en) Water absorbent resin particles and production method therefor
JP6979759B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using the same
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
JPWO2018225815A1 (en) Water-absorbing resin particles and method for producing the same
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JP6553932B2 (en) Waste liquid solidifying agent, its production method and its use
WO2019059019A1 (en) Water-absorbing resin composition and production method therefor
JP2017218579A (en) Method for producing absorptive resin particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910941

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569305

Country of ref document: JP

Kind code of ref document: A