WO2020017428A1 - Electric power management server, energy accumulating device, and electric power management method - Google Patents

Electric power management server, energy accumulating device, and electric power management method Download PDF

Info

Publication number
WO2020017428A1
WO2020017428A1 PCT/JP2019/027536 JP2019027536W WO2020017428A1 WO 2020017428 A1 WO2020017428 A1 WO 2020017428A1 JP 2019027536 W JP2019027536 W JP 2019027536W WO 2020017428 A1 WO2020017428 A1 WO 2020017428A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
operation mode
management server
power management
information element
Prior art date
Application number
PCT/JP2019/027536
Other languages
French (fr)
Japanese (ja)
Inventor
健太 沖野
啓 岩田
信悟 上甲
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020017428A1 publication Critical patent/WO2020017428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention relates to a power management server, an energy storage device, and a power management method.
  • Patent Documents 1 and 2 In recent years, in order to maintain the power supply and demand balance of the power system, a technique for suppressing the amount of power flow from the power system to the facility has been known. In order to maintain a power supply / demand balance of a power system, a technique using an energy storage device (for example, a storage battery device) provided in a facility has been proposed (for example, Patent Documents 1 and 2).
  • an energy storage device for example, a storage battery device
  • the power management server manages two or more facilities connected to the power system.
  • a controller configured to determine an operation mode to be applied to an energy storage device provided in at least one of the two or more facilities when it is necessary to adjust a power supply and demand balance of the power system.
  • a transmission unit that transmits a control message including an information element that specifies a condition under which the energy storage device stores or outputs energy to the energy storage device in accordance with the determination of the operation mode.
  • the energy storage device is provided in a facility connected to the power system and managed by the power management server.
  • the energy storage device when it is necessary to adjust the power supply and demand balance of the power system, according to the determination of the operation mode applied to the energy storage device, the energy storage device to store or output energy conditions.
  • a power receiving unit that receives a control message including an information element to be specified from the power management server; and a control unit that controls an operation of the energy storage device in accordance with the control message.
  • the power management method is a method in which the power management server manages two or more facilities connected to the power system.
  • the power management method includes an operation mode applied to an energy storage device provided in at least one of the two or more facilities when the power management server needs to adjust a power supply and demand balance of the power system. And transmitting, to the energy storage device, a control message including an information element that specifies a condition under which the energy storage device stores or outputs energy according to the determination of the operation mode.
  • FIG. 1 is a diagram illustrating a power management system 100 according to the embodiment.
  • FIG. 2 is a diagram illustrating a facility 300 according to the embodiment.
  • FIG. 3 is a diagram illustrating the power management server 200 according to the embodiment.
  • FIG. 4 is a diagram illustrating the local control device 360 according to the embodiment.
  • FIG. 5 is a diagram illustrating the storage battery device 320 according to the embodiment.
  • FIG. 6 is a diagram illustrating the power management method according to the embodiment.
  • the present disclosure makes it possible to appropriately control the energy storage device by designating conditions under which the energy storage device stores or outputs energy.
  • the embodiment manages two or more facilities connected to the power system.
  • a controller configured to determine an operation mode to be applied to an energy storage device provided in at least one of the two or more facilities when it is necessary to adjust a power supply and demand balance of the power system.
  • a transmission unit that transmits a control message including an information element that specifies a condition under which the energy storage device stores or outputs energy to the energy storage device in accordance with the determination of the operation mode.
  • drawings are schematic and ratios of dimensions may be different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Further, it is needless to say that the drawings may include portions having different dimensional relationships or ratios.
  • the power management system 100 includes a power management server 200, a facility 300, and a power company 400.
  • facilities 300A to 300C are illustrated as facilities 300.
  • Each facility 300 is connected to the power system 110.
  • the flow of power from the power system 110 to the facility 300 is referred to as a power flow
  • the flow of power from the facility 300 to the power system 110 is referred to as a reverse flow.
  • the power management server 200, the facility 300, and the power company 400 are connected to the network 120.
  • the network 120 may provide a line between the power management server 200 and the facility 300 and a line between the power management server 200 and the power company 400.
  • the network 120 is the Internet.
  • the network 120 may provide a dedicated line such as a VPN (Virtual Private Network).
  • the power management server 200 is a server managed by a power company such as a power generation company, a transmission / distribution company or a retail company, and a resource aggregator.
  • the resource aggregator is a power company that provides reverse power flow to a power generation company, a transmission / distribution company, a retail company, and the like in a VPP (Virtual Power Plant).
  • the resource aggregator may be a power provider that generates surplus power (negawatt) by reducing power consumption of facilities managed by the resource aggregator. Such surplus power may be regarded as generated power.
  • the resource aggregator may be a power company that absorbs excessive power by increasing power consumption of a facility managed by the resource aggregator (for example, increasing the charge amount of the storage battery device 320).
  • the power management server 200 transmits a control message to the local control device 360 provided in the facility 300 to instruct the local control device 360 provided in the facility 300 to control a distributed power source (for example, the solar cell device 310, the storage battery device 320, or the fuel cell device 330).
  • a distributed power source for example, the solar cell device 310, the storage battery device 320, or the fuel cell device 330.
  • the power management server 200 may transmit a power flow control message (for example, DR; Demand @ Response) requesting power flow control, or may transmit a reverse power flow control message requesting reverse power flow control.
  • the power management server 200 may transmit a power control message for controlling the operation state of the distributed power supply.
  • the control level of the power flow or the reverse power flow may be represented by an absolute value (for example, WkW) or a relative value (for example, ⁇ %).
  • the degree of control of the power flow or the reverse power flow may be represented by two or more levels.
  • the power flow or reverse power flow control degree may be represented by a power rate (RTP; Real ⁇ Time ⁇ Pricing) determined by a current power supply and demand balance, or a power rate (TOU; Time ⁇ Of ⁇ Use) determined by a past power supply and demand balance. May be represented by
  • the facility 300 includes a solar cell device 310, a storage battery device 320, a fuel cell device 330, a load device 340, a local control device 360, and a power meter 380.
  • the solar cell device 310 is a distributed power source that generates electric power in response to light such as sunlight.
  • the solar cell device 310 is an example of a distributed power supply that generates power using renewable energy.
  • the solar cell device 310 includes a PCS (Power Conditioning System) and a solar panel.
  • PCS Power Conditioning System
  • the storage battery device 320 is a distributed power source that charges and discharges power.
  • Storage battery device 320 is an example of an energy storage device.
  • the storage battery device 320 includes a PCS and a storage battery cell.
  • the fuel cell device 330 is a distributed power source that generates power using fuel.
  • the fuel cell device 330 is an example of a distributed power supply to which a predetermined purchase price is not applied, and is a distributed power supply having a rated operation mode for outputting rated power.
  • the fuel cell device 330 includes a PCS and fuel cells.
  • the fuel cell device 330 may be a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell), a solid polymer fuel cell (PEFC: Polymer Electrolyte Fuel Cell), or phosphoric acid.
  • SOFC Solid Oxide Fuel Cell
  • PEFC Solid polymer Fuel Cell
  • phosphoric acid phosphoric acid
  • a fuel cell PAFC: Phosphoric Acid Fuel Cell
  • MCFC Molton Carbonate Fuel Cell
  • the solar cell device 310, the storage battery device 320, and the fuel cell device 330 may be power supplies used for VPP.
  • the load device 340 is a device that consumes power.
  • the load device 340 is an air conditioner, a lighting device, an AV (Audio Visual) device, or the like.
  • the local control device 360 is a device (EMS; Energy Management System) for managing the power of the facility 300.
  • the local control device 360 may control the operation state of the solar cell device 310, may control the operation state of the storage battery device 320 provided in the facility 300, and may control the operation state of the fuel cell device 330 provided in the facility 300. May be controlled. The details of the local control device 360 will be described later (see FIG. 4).
  • communication between the power management server 200 and the local control device 360 is performed according to a first protocol.
  • communication between the local control device 360 and the distributed power source (the solar cell device 310, the storage battery device 320, or the fuel cell device 330) is performed according to a second protocol different from the first protocol.
  • communication between the power management server 200 and the distributed power source (the solar battery device 310, the storage battery device 320, or the fuel cell device 330) may be performed according to a first protocol.
  • the local control device 360 functions as a router that transparently relays communication between the power management server 200 and the distributed power supply.
  • the local controller 360 may not be present.
  • first protocol a protocol based on Open ⁇ ADR (Automated ⁇ Demand ⁇ Response) or an original dedicated protocol can be used.
  • second protocol a protocol conforming to ECHONET Lite, SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used.
  • first protocol and the second protocol need only be different, and, for example, both may be proprietary dedicated protocols as long as they are protocols created according to different rules.
  • the wattmeter 380 measures the amount of power flow from the power system 110 to the facility 300 and the amount of reverse power flow from the facility 300 to the power system 110.
  • wattmeter 380 is a smart meter belonging to power company 400.
  • the wattmeter 380 transmits a message including an information element indicating the measurement result (the amount of power flow or reverse power flow (Wh)) per unit time to the local control device 360 every unit time (for example, 30 minutes). .
  • the power meter 380 may transmit the message autonomously or may transmit the message in response to a request from the local control device 360.
  • the power company 400 is an entity that provides infrastructure such as the power system 110, and is, for example, a power company such as a power generation company or a transmission and distribution company.
  • the power company 400 may outsource various tasks to an entity that manages the power management server 200.
  • communication between the power company 400 and the power management server 200 may be performed according to the first protocol.
  • the power company 400 may transmit an adjustment message for adjusting the power supply and demand balance of the power system 110 to the power management server 200.
  • the adjustment message may be the above-described power flow control message, or may be the above-described reverse power flow control message.
  • the power management server 200 transmits a control message for suppressing the tide flow or the reverse tide flow of the power system 110 in response to receiving the adjustment message.
  • the power management server 200 mainly considers a case in which the storage battery device 320 is directly controlled. Communication between the power management server 200 and the storage battery device 320 is performed according to a first protocol.
  • the above-described local control device 360 may not be present, and may function as a router.
  • power management server 200 is a storage battery provided in at least one of two or more facilities 300 managed by power management server 200 when it is necessary to adjust the power supply and demand balance of power system 110.
  • the operation mode applied to the device 320 is determined.
  • “determination” includes not only a determination to change the operation mode applied to the storage battery device 320 but also a determination to continuously apply the operation mode applied to the storage battery device 320 without changing the operation mode.
  • the power management server 200 determines an operation mode to be applied to the storage battery device 320.
  • the power management server 200 transmits to the storage battery device 320 a control message including an information element that specifies a condition under which the storage battery device 320 stores or outputs power in accordance with the determination of the operation mode.
  • control message includes at least one of a first information element that specifies an operation mode and a second information element that specifies a specified energy amount (here, a specified power amount) stored or output by storage battery device 320. Include as information element.
  • the specified power amount may be read as the specified charging power amount or the specified discharging power amount of the storage battery device 320.
  • the power management server 200 may transmit a control message including the second information element without including the first information element.
  • the power management server 200 omits the first information element and includes the control message including the second information element. May be transmitted.
  • the power management server 200 may transmit a control message including the first information element without including the second information element when the control power amount is not changed. In such a case, the power management server 200 omits the second information element and transmits the control message including the first information element on the assumption that the control message including the first information element and the second information element is transmitted. May be transmitted.
  • the power management server 200 may transmit a control message including both the first information element and the second information element. In such a case, the power management server 200 assumes that the control message including the first information element and the second information element is transmitted, and the power management server 200 does not change the operation mode and the control power amount. , A control message including both the first information element and the second information element.
  • the first operation mode is an operation mode in which the solar battery device 310 is used as the power source used by the storage battery device 320 for power storage without using the power system 110.
  • Such an operation mode may be referred to as a green mode.
  • the second operation mode is an operation mode in which both the power system 110 and the solar cell device 310 are used as a power source used by the storage battery device 320 to store power.
  • Such an operation mode may be referred to as a forced charging mode.
  • the charging power amount of the storage battery device 320 is the designated charging power amount.
  • the fuel cell device 330 may be used as a power source used by the storage battery device 320 for storing power.
  • the operation mode may include an operation mode other than the first operation mode and the second operation mode.
  • the storage battery device 320 is charged in a time zone (for example, at night) when the electricity rate of the power system 110 is lower than the threshold value, and the operation time is such that the electricity rate of the power system 110 is higher than the threshold value.
  • An operation mode in which the storage battery device 320 is discharged during a band (for example, during the day) may be used.
  • Such an operation mode may be referred to as an economic mode.
  • the power management server 200 may receive a report message including an information element indicating the state of the storage battery device 320 from the storage battery device 320.
  • the report message may include an information element indicating the operation state of the storage battery device 320.
  • the operating state may be a state such as controllability, dischargeability, operation, stop, standby, normal, abnormal, faulty, maintenance, inspection, and the like.
  • the report message may receive a message including information elements such as a chargeable amount of the storage battery device 320, a dischargeable amount of the storage battery device 320, and a storage battery capacity of the storage battery device 320.
  • the report message may include an information element indicating the state of charge (SOC; State ⁇ Of ⁇ Charge) of the storage battery device 320.
  • the report message may include an information element indicating the maximum discharge power of the storage battery device 320.
  • the report message may include information elements indicating the actual charge power of the storage battery device 320, the actual discharge power of the storage battery device 320, and the like.
  • the report message may include an information element indicating a demand suppression result of the storage battery device 320.
  • the report message may include an information element indicating the output suppression result of the storage battery device 320.
  • the report message may include an information element indicating the operation mode applied to the storage battery device 320. According to such an information element, the power management server 200 can recognize the operation mode applied to the storage battery device 320. Accordingly, when it is necessary to adjust the power supply and demand balance of the power system 110, the power management server 200 determines whether to change the operation mode when determining the operation mode to be applied to the storage battery device 320. Can be.
  • the power management server 200 includes a management unit 210, a communication unit 220, and a control unit 230.
  • the power management server 200 is an example of a VTN (Virtual Top Node).
  • the management unit 210 is configured by a storage medium such as a nonvolatile memory and / or an HDD, and manages data relating to two or more facilities 300 managed by the power management server 200.
  • the two or more facilities 300 managed by the power management server 200 may be facilities 300 that have a contract with an entity that manages the power management server 200.
  • the data related to the facility 300 may be demand power supplied from the power system 110 to the facility 300, and the demand power is reduced at each facility 300 in response to a demand reduction request (DR; Demand @ Response) of the entire power system 110.
  • DR Demand @ Response
  • the amount of electric power may be used.
  • the data related to the facility 300 includes the type of the distributed power supply (the solar battery device 310, the storage battery device 320, or the fuel cell device 330) provided in the facility 300, and the distributed power supply (the solar battery device 310, the storage battery device 320, or the fuel cell) provided in the facility 300.
  • the specifications of the device 330) may be used. The specifications may be the rated generated power (W) of the solar cell device 310, the maximum output power (W) of the storage battery device 320, and the maximum output power (W) of the fuel cell device 330. Further, the data regarding the facility 300 may be an output power amount instructed to the distributed power source in the past.
  • the data regarding the facility 300 may be the amount of discharge power instructed to the storage battery device 320.
  • the data on the facility 300 may be the degree of deterioration of the distributed power supply.
  • the data regarding the facility 300 may be the SOH (State ⁇ Of ⁇ Health) of the storage battery device 320.
  • the communication unit 220 includes a communication module, and communicates with the local control device 360 via the network 120.
  • the communication unit 220 performs communication according to the first protocol as described above. For example, the communication unit 220 transmits a first message to the local control device 360 according to a first protocol.
  • the communication unit 220 receives a first message response from the local control device 360 according to a first protocol.
  • the communication unit 220 receives the above-described report message from the storage battery device 320.
  • Communication unit 220 transmits the above-described control message to storage battery device 320.
  • the communication unit 220 may receive a message including an information element indicating demand power supplied from the power system 110 to the facility 300 from the facility 300 (for example, the local control device 360 or the wattmeter 380).
  • the power demand may be a value measured by the power meter 380 described above.
  • the demand power may be a value obtained by subtracting the output power of the distributed power supply (the solar battery device 310, the storage battery device 320, and the fuel cell device 330) from the power consumption of the load device 340.
  • the control unit 230 includes a memory, a CPU, and the like, and controls each component provided in the power management server 200. For example, by transmitting a control message, the control unit 230 controls the local control device 360 provided in the facility 300 to control the distributed power supply (the solar cell device 310, the storage battery device 320, or the fuel cell device 330) provided in the facility 300. Instruct. As described above, the control message may be a power flow control message, a reverse power flow control message, or a power control message.
  • control unit 230 determines an operation mode to be applied to the storage battery device 320.
  • the control unit 230 instructs the communication unit 220 to transmit the above-described control message according to the determination of the operation mode.
  • control unit 230 may determine to apply the first operation mode to the storage battery device 320 when it is necessary to suppress the tide flow of the power system 110. In such a case, when the storage battery device 320 is operating in the second operation mode, the control unit 230 transmits the control message including the first information element specifying the first operation mode. Control for changing the operation mode from the second operation mode to the first operation mode may be performed.
  • the control unit 230 may perform control to change the operation mode and change the designated charging power amount by transmitting a control message including the first information element and the second information element.
  • the control unit 230 may perform control to change the operation mode without changing the designated charging power amount by transmitting a control message including the first information element without including the second information element.
  • the control unit 230 transmits the control message including the second information element that specifies the designated charging power amount reduced from the current designated charging power amount. Control for reducing the designated charging power amount may be performed by transmission.
  • the control unit 230 may perform control to change the designated power amount and maintain the operation mode by transmitting a control message including the first information element together with the second information element.
  • the control unit 230 may perform control to change the designated charging power amount without changing the operation mode by transmitting a control message including the second information element without including the first information element.
  • the local control device 360 has a first communication unit 361, a second communication unit 362, and a control unit 363.
  • the local control device 360 is an example of a VEN (Virtual End Node). As described above, the local control device 360 may not be present, and may function as a router.
  • the first communication unit 361 is configured by a communication module, and may communicate with the power management server 200 via the network 120.
  • the first communication unit 361 may perform communication according to the first protocol as described above.
  • the first communication unit 361 may receive a first message from the power management server 200 according to a first protocol.
  • the first communication unit 361 may transmit a first message response to the power management server 200 according to a first protocol.
  • the second communication unit 362 is configured by a communication module, and may communicate with a distributed power source (the solar cell device 310, the storage battery device 320, or the fuel cell device 330).
  • the second communication unit 362 may perform communication according to the second protocol as described above. For example, the second communication unit 362 may transmit a second message to the distributed power source according to a second protocol.
  • the second communication unit 362 may receive a second message response from the distributed power source according to a second protocol.
  • the control unit 363 includes a memory, a CPU, and the like, and controls each component provided in the local control device 360. Specifically, the control unit 363 may instruct the distributed power source to set the operation state of the distributed power source by transmitting the second message and receiving the second message response in order to control the power of the facility 300. . The control unit 363 may instruct the distributed power source to report the information of the distributed power source by transmitting the second message and receiving the second message response in order to manage the power of the facility 300.
  • the storage battery device 320 includes a communication unit 321 and a control unit 322.
  • the storage battery device 320 is an example of a VEN (Virtual End Node).
  • the communication unit 321 is configured by a communication module, and communicates with the power management server 200 via the network 120.
  • the communication unit 321 performs communication according to the first protocol, as described above.
  • the communication unit 321 receives a first message from the power management server 200 according to a first protocol.
  • the communication unit 321 transmits a first message response to the power management server 200 according to a first protocol.
  • the communication unit 321 transmits the above-described report message to the power management server 200.
  • the communication unit 321 receives the above-described control message from the power management server 200.
  • the control unit 322 includes a memory, a CPU, and the like, and controls each component provided in the storage battery device 320. Specifically, control unit 322 controls the operation of storage battery device 320 based on the control message. Specifically, when an operation mode is specified by the control message, control unit 322 controls storage battery device 320 in the specified operation mode. Control unit 322 controls charging and discharging of storage battery device 320 with the specified specified power amount when the specified power amount is specified by the control message.
  • the storage battery device 320 transmits a report message to the power management server 200.
  • the storage battery device 320 may periodically transmit a report message, may transmit a report message in response to a request from the power management server 200, or may transmit a report message in response to a change in state of the storage battery device 320. Is also good.
  • step S20 the power management server 200 receives an adjustment message for adjusting the power supply and demand balance of the power system 110 from the power company 400.
  • step S30 power management server 200 determines an operation mode to be applied to storage battery device 320. For example, the power management server 200 may determine that the first operation mode is applied to the storage battery device 320.
  • step S ⁇ b> 40 power management server 200 transmits a control message including an information element that specifies a condition under which storage battery device 320 stores or outputs power to storage battery device 320 in accordance with the determination of the operation mode.
  • step S50 the storage battery device 320 controls the operation of the storage battery device 320 based on the control message.
  • the power management server 200 transmits, to the storage battery device 320, a control message including an information element that specifies a condition under which the storage battery device 320 accumulates or outputs power according to the determination of the operation mode.
  • the storage battery device 320 can be appropriately controlled by designating the conditions under which the storage battery device 320 stores or outputs power.
  • the case where the power of the power system 110 is insufficient is mainly described.
  • a case where the power of the power system 110 is exceeded will be mainly described. That is, a case where the reverse flow from the facility 300 to the power system 110 is suppressed will be mainly described.
  • the third operation mode and the fourth operation mode are considered as the operation modes of the storage battery device 320.
  • the third operation mode is an operation mode in which reverse power flow to the power system 110 is allowed. In other words, in the third operation mode, the output power of the storage battery device 320 may flow backward to the power system 110. In the third operation mode, the discharge power amount of the storage battery device 320 is the designated discharge power amount.
  • the fourth operation mode is an operation mode in which reverse power flow to the power system 110 is not allowed. In other words, in the fourth operation mode, the output power of the storage battery device 320 must not flow backward to the power system 110.
  • the output power of the distributed power source (here, the solar cell device 310) that generates power using renewable energy may be reversely flowed to the power system 110. That is, the discharge of the storage battery device 320 may be allowed as long as the reverse flow rate of the facility 300 does not exceed the output power of the distributed power source. In such a fourth operation mode, there is a restriction that the reverse flow rate of the facility 300 does not exceed the output power of the distributed power source, so that the discharge power amount of the storage battery device 320 may be smaller than the designated discharge power amount. Alternatively, when the storage battery device 320 is discharged in the fourth operation mode, the reverse power flow may not be allowed for the output power of the distributed power source. That is, reverse flow of the facility 300 is not allowed. In such a fourth operation mode, since there is a restriction that the reverse flow rate of the facility 300 is not allowed, the discharge power amount of the storage battery device 320 may be smaller than the designated discharge power amount.
  • the power management server 200 may determine to apply the fourth operation mode to the storage battery device 320 when it is necessary to suppress the reverse flow rate of the power system 110.
  • the power management server 200 when the storage battery device 320 is operating in the third operation mode, the power management server 200 (the control unit 230) transmits the control message including the first information element designating the fourth operation mode. Accordingly, control for changing the operation mode of the storage battery device 320 from the third operation mode to the fourth operation mode may be performed.
  • the power management server 200 (control unit 230) may determine that the first operation mode is applied to the storage battery device 320. According to this, since the storage battery device 320 is charged using the output power of the solar battery device 310, it can contribute to the suppression of the reverse flow rate.
  • power management server 200 may determine that the second operation mode is applied to storage battery device 320. According to this, since the storage battery device 320 is charged using the supply power of the power system 110 and the output power of the solar battery device 310, it can further contribute to the suppression of the reverse flow rate. In these cases, the first operation mode and the second operation mode may be applied to overlap with the fourth operation mode, or may be applied without overlapping with the fourth operation mode.
  • the storage battery device 320 has been exemplified as the energy storage device.
  • the energy storage device is a heat storage device that stores heat using electric power.
  • the power system 110 and the solar cell device 310 can be used.
  • the fuel cell device 330 may be used as a power source.
  • the heat storage device may be a water heater such as a heat pump water heater.
  • the above-mentioned “charging” may be read as “heat storage”, and the above-mentioned “discharge” may be read as “radiation”.
  • the above-mentioned “specified electric energy” should be read as “specified heat amount”
  • the above-mentioned “specified charge electric energy” should be read as “specified heat storage amount”
  • the above-mentioned “specified discharge electric energy” should be read as "specified heat release amount”. Good.
  • energy is used as a general term for “power” and “heat”.
  • the solar cell device 310 and the fuel cell device 330 are provided. However, embodiments are not limited to this. As the distributed power source, the solar cell device 310 and the fuel cell device 330 are not provided, and the storage battery device 320 may be provided.
  • the storage battery device 320 may be a storage battery device fixedly connected to a power line provided in the facility 300, or may be a storage battery device detachably connected to a power line provided in the facility 300. It may be.
  • a storage battery device detachably connected to a power line provided in the facility 300 a storage battery device provided in an electric vehicle can be considered.
  • the local control device 360 provided in the facility 300 does not necessarily have to be provided in the facility 300.
  • some of the functions of the local control device 360 may be provided by a cloud server provided on the Internet. That is, it may be considered that local control device 360 includes a cloud server.
  • the local control device 360 may perform protocol conversion of the control message received from the power management server 200, and transmit the message after the protocol conversion to the storage battery device 320.
  • the first protocol is a protocol based on Open@ADR2.0 and the second protocol is a protocol based on ECHONET Lite has been exemplified.
  • the first protocol may be a protocol standardized as a protocol used for communication between the power management server 200 and the local control device 360.
  • the second protocol may be any protocol standardized as a protocol used in the facility 300.
  • control message including an information element specifying a condition under which the energy storage device stores or outputs energy in a case where the first protocol is a protocol based on Open ADR 2.0 will be described.
  • An EiEvent service can be used as the control message.
  • “MarketContext” can be used as the first information element for specifying the operation mode of the energy storage device.
  • the second information element for designating the designated energy amount to be stored or output by the energy storage device it is possible to use a signal whose Signal @ Name is "LOAD @ DISPATCH".
  • “LOAD @ DISpatch” may include “setpoint” that directly specifies the amount of energy stored or output by the energy storage device, and “delta” that relatively specifies the amount of energy stored or output by the energy storage device. May be included.
  • the control message includes two signals (for example, “LOAD @ DISPATCH” and “SIMPLE”)
  • one of the signals “LOAD @ DISPATCH” and “SIMPLE” specifies the operation mode of the energy storage device. It is good also as operation used as one information element.
  • the other signal of “LOAD @ DISPATCH” and “SIMPLE” may be used as the second information element that specifies the specified energy amount stored or output by the energy storage device, as described above. .
  • “Signal @ ID” can be used as the first information element that specifies the operation mode of the energy storage device.
  • a signal whose Signal @ Name is "LOAD @ DISPATCH" can be used as the second information element that specifies the designated amount of energy to be stored or output by the energy storage device, as described above. is there.

Abstract

This electric power management server manages two or more facilities connected to an electric power grid. The electric power management server is provided with: a control unit which, if an electric power supply and demand balance of the electric power grid needs to be adjusted, determines an operating mode to be applied to an energy accumulating device provided in at least one of the two or more facilities; and a transmitting unit which, in accordance with the determination of the operating mode, transmits to the energy accumulating device a control message including an information element specifying a condition for the energy accumulating device to accumulate or output energy.

Description

電力管理サーバ、エネルギー蓄積装置及び電力管理方法Power management server, energy storage device, and power management method
 本発明は、電力管理サーバ、エネルギー蓄積装置及び電力管理方法に関する。 The present invention relates to a power management server, an energy storage device, and a power management method.
 近年、電力系統の電力需給バランスを維持するために、電力系統から施設への潮流の量を抑制する技術が知られている。電力系統の電力需給バランスを維持するために、施設に設けられるエネルギー蓄積装置(例えば、蓄電池装置)を利用する技術も提案されている(例えば、特許文献1,2)。 In recent years, in order to maintain the power supply and demand balance of the power system, a technique for suppressing the amount of power flow from the power system to the facility has been known. In order to maintain a power supply / demand balance of a power system, a technique using an energy storage device (for example, a storage battery device) provided in a facility has been proposed (for example, Patent Documents 1 and 2).
国際公開第2015/041010号パンフレットWO 2015/041010 pamphlet 国際公開第2016/084396号パンフレットWO 2016/084396 pamphlet
 第1の特徴に係る電力管理サーバは、電力系統に接続される2以上の施設を管理する。前記電力管理サーバは、前記電力系統の電力需給バランスを調整する必要がある場合に、前記2以上の施設の少なくともいずれか1つに設けられるエネルギー蓄積装置に適用する運転モードを決定する制御部と、前記運転モードの決定に応じて、前記エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージを前記エネルギー蓄積装置に送信する送信部と、を備える。 The power management server according to the first feature manages two or more facilities connected to the power system. A controller configured to determine an operation mode to be applied to an energy storage device provided in at least one of the two or more facilities when it is necessary to adjust a power supply and demand balance of the power system. A transmission unit that transmits a control message including an information element that specifies a condition under which the energy storage device stores or outputs energy to the energy storage device in accordance with the determination of the operation mode.
 第2の特徴に係るエネルギー蓄積装置は、電力系統に接続される施設であって、電力管理サーバによって管理される施設に設けられる。前記エネルギー蓄積装置は、前記電力系統の電力需給バランスを調整する必要がある場合において、前記エネルギー蓄積装置に適用する運転モードの決定に応じて、前記エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージを前記電力管理サーバから受信する受信部と、前記制御メッセージに応じて前記エネルギー蓄積装置の動作を制御する制御部と、を備える。 The energy storage device according to the second feature is provided in a facility connected to the power system and managed by the power management server. The energy storage device, when it is necessary to adjust the power supply and demand balance of the power system, according to the determination of the operation mode applied to the energy storage device, the energy storage device to store or output energy conditions. A power receiving unit that receives a control message including an information element to be specified from the power management server; and a control unit that controls an operation of the energy storage device in accordance with the control message.
 第3の特徴に係る電力管理方法は、電力系統に接続される2以上の施設を電力管理サーバが管理する方法である。前記電力管理方法は、前記電力管理サーバが、前記電力系統の電力需給バランスを調整する必要がある場合に、前記2以上の施設の少なくともいずれか1つに設けられるエネルギー蓄積装置に適用する運転モードを決定することと、前記運転モードの決定に応じて、前記エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージを前記エネルギー蓄積装置に送信することと、を含む。 The power management method according to the third feature is a method in which the power management server manages two or more facilities connected to the power system. The power management method includes an operation mode applied to an energy storage device provided in at least one of the two or more facilities when the power management server needs to adjust a power supply and demand balance of the power system. And transmitting, to the energy storage device, a control message including an information element that specifies a condition under which the energy storage device stores or outputs energy according to the determination of the operation mode.
図1は、実施形態に係る電力管理システム100を示す図である。FIG. 1 is a diagram illustrating a power management system 100 according to the embodiment. 図2は、実施形態に係る施設300を示す図である。FIG. 2 is a diagram illustrating a facility 300 according to the embodiment. 図3は、実施形態に係る電力管理サーバ200を示す図である。FIG. 3 is a diagram illustrating the power management server 200 according to the embodiment. 図4は、実施形態に係るローカル制御装置360を示す図である。FIG. 4 is a diagram illustrating the local control device 360 according to the embodiment. 図5は、実施形態に係る蓄電池装置320を示す図である。FIG. 5 is a diagram illustrating the storage battery device 320 according to the embodiment. 図6は、実施形態に係る電力管理方法を示す図である。FIG. 6 is a diagram illustrating the power management method according to the embodiment.
 近年では、2以上の施設を管理する電力管理サーバが2以上の施設のそれぞれに設けられるエネルギー蓄積装置を制御する技術の検討が進められている。発明者等は、鋭意検討の結果、このような技術において、エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する必要があることを見出した。 In recent years, technology for controlling an energy storage device provided in each of two or more facilities by a power management server that manages two or more facilities has been studied. As a result of diligent studies, the inventors have found that in such a technique, it is necessary to specify conditions for the energy storage device to store or output energy.
 そこで、本開示は、エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定することによって、エネルギー蓄積装置を適切に制御することを可能とする。 Therefore, the present disclosure makes it possible to appropriately control the energy storage device by designating conditions under which the energy storage device stores or outputs energy.
 実施形態は、電力系統に接続される2以上の施設を管理する。前記電力管理サーバは、前記電力系統の電力需給バランスを調整する必要がある場合に、前記2以上の施設の少なくともいずれか1つに設けられるエネルギー蓄積装置に適用する運転モードを決定する制御部と、前記運転モードの決定に応じて、前記エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージを前記エネルギー蓄積装置に送信する送信部と、を備える。 The embodiment manages two or more facilities connected to the power system. A controller configured to determine an operation mode to be applied to an energy storage device provided in at least one of the two or more facilities when it is necessary to adjust a power supply and demand balance of the power system. A transmission unit that transmits a control message including an information element that specifies a condition under which the energy storage device stores or outputs energy to the energy storage device in accordance with the determination of the operation mode.
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。 Hereinafter, embodiments will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれている場合があることは勿論である。 However, it should be noted that the drawings are schematic and ratios of dimensions may be different from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Further, it is needless to say that the drawings may include portions having different dimensional relationships or ratios.
 [実施形態]
 (電力管理システム)
 以下において、実施形態に係る電力管理システムについて説明する。
[Embodiment]
(Power management system)
Hereinafter, a power management system according to the embodiment will be described.
 図1に示すように、電力管理システム100は、電力管理サーバ200と、施設300と、電力会社400とを有する。図1では、施設300として、施設300A~施設300Cが例示されている。 As shown in FIG. 1, the power management system 100 includes a power management server 200, a facility 300, and a power company 400. In FIG. 1, facilities 300A to 300C are illustrated as facilities 300.
 各施設300は、電力系統110に接続される。以下において、電力系統110から施設300への電力の流れを潮流と称し、施設300から電力系統110への電力の流れを逆潮流と称する。 施 設 Each facility 300 is connected to the power system 110. Hereinafter, the flow of power from the power system 110 to the facility 300 is referred to as a power flow, and the flow of power from the facility 300 to the power system 110 is referred to as a reverse flow.
 電力管理サーバ200、施設300及び電力会社400は、ネットワーク120に接続されている。ネットワーク120は、電力管理サーバ200と施設300との間の回線及び電力管理サーバ200と電力会社400との間の回線を提供すればよい。例えば、ネットワーク120は、インターネットである。ネットワーク120は、VPN(Virtual Private Network)などの専用回線を提供してもよい。 The power management server 200, the facility 300, and the power company 400 are connected to the network 120. The network 120 may provide a line between the power management server 200 and the facility 300 and a line between the power management server 200 and the power company 400. For example, the network 120 is the Internet. The network 120 may provide a dedicated line such as a VPN (Virtual Private Network).
 電力管理サーバ200は、発電事業者、送配電事業者或いは小売事業者、リソースアグリゲータなどの電力事業者によって管理されるサーバである。リソースアグリゲータは、VPP(Virtual Power Plant)において、発電事業者、送配電事業者及び小売事業者などに逆潮流の電力を提供する電力事業者である。リソースアグリゲータは、リソースアグリゲータによって管理される施設の消費電力の削減によって余剰電力(ネガワット)を生み出す電力事業者であってもよい。このような余剰電力は発電電力と見做されてもよい。リソースアグリゲータは、リソースアグリゲータによって管理される施設の消費電力の増大(例えば、蓄電池装置320の充電量の増大)によって過剰な電力を吸収する電力事業者であってもよい。 The power management server 200 is a server managed by a power company such as a power generation company, a transmission / distribution company or a retail company, and a resource aggregator. The resource aggregator is a power company that provides reverse power flow to a power generation company, a transmission / distribution company, a retail company, and the like in a VPP (Virtual Power Plant). The resource aggregator may be a power provider that generates surplus power (negawatt) by reducing power consumption of facilities managed by the resource aggregator. Such surplus power may be regarded as generated power. The resource aggregator may be a power company that absorbs excessive power by increasing power consumption of a facility managed by the resource aggregator (for example, increasing the charge amount of the storage battery device 320).
 電力管理サーバ200は、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源(例えば、太陽電池装置310、蓄電池装置320又は燃料電池装置330)に対する制御を指示する制御メッセージを送信する。例えば、電力管理サーバ200は、潮流の制御を要求する潮流制御メッセージ(例えば、DR;Demand Response)を送信してもよく、逆潮流の制御を要求する逆潮流制御メッセージを送信してもよい。さらに、電力管理サーバ200は、分散電源の動作状態を制御する電源制御メッセージを送信してもよい。潮流又は逆潮流の制御度合いは、絶対値(例えば、○○kW)で表されてもよく、相対値(例えば、○○%)で表されてもよい。或いは、潮流又は逆潮流の制御度合いは、2以上のレベルで表されてもよい。潮流又は逆潮流の制御度合いは、現在の電力需給バランスによって定められる電力料金(RTP;Real Time Pricing)によって表されてもよく、過去の電力需給バランスによって定められる電力料金(TOU;Time Of Use)によって表されてもよい。 The power management server 200 transmits a control message to the local control device 360 provided in the facility 300 to instruct the local control device 360 provided in the facility 300 to control a distributed power source (for example, the solar cell device 310, the storage battery device 320, or the fuel cell device 330). Send For example, the power management server 200 may transmit a power flow control message (for example, DR; Demand @ Response) requesting power flow control, or may transmit a reverse power flow control message requesting reverse power flow control. Further, the power management server 200 may transmit a power control message for controlling the operation state of the distributed power supply. The control level of the power flow or the reverse power flow may be represented by an absolute value (for example, WkW) or a relative value (for example, ○%). Alternatively, the degree of control of the power flow or the reverse power flow may be represented by two or more levels. The power flow or reverse power flow control degree may be represented by a power rate (RTP; Real \ Time \ Pricing) determined by a current power supply and demand balance, or a power rate (TOU; Time \ Of \ Use) determined by a past power supply and demand balance. May be represented by
 施設300は、図2に示すように、太陽電池装置310、蓄電池装置320、燃料電池装置330と、負荷機器340、ローカル制御装置360及び電力計380を有する。 As shown in FIG. 2, the facility 300 includes a solar cell device 310, a storage battery device 320, a fuel cell device 330, a load device 340, a local control device 360, and a power meter 380.
 太陽電池装置310は、太陽光などの光に応じて発電を行う分散電源である。太陽電池装置310は、再生可能エネルギーを用いて発電する分散電源の一例である。例えば、太陽電池装置310は、PCS(Power Conditioning System)及び太陽光パネルによって構成される。 The solar cell device 310 is a distributed power source that generates electric power in response to light such as sunlight. The solar cell device 310 is an example of a distributed power supply that generates power using renewable energy. For example, the solar cell device 310 includes a PCS (Power Conditioning System) and a solar panel.
 蓄電池装置320は、電力の充電及び電力の放電を行う分散電源である。蓄電池装置320は、エネルギー蓄積装置の一例である。例えば、蓄電池装置320は、PCS及び蓄電池セルによって構成される。 (4) The storage battery device 320 is a distributed power source that charges and discharges power. Storage battery device 320 is an example of an energy storage device. For example, the storage battery device 320 includes a PCS and a storage battery cell.
 燃料電池装置330は、燃料を用いて発電を行う分散電源である。燃料電池装置330は、所定買取価格が適用されない分散電源の一例であり、定格電力を出力する定格運転モードを有する分散電源である。例えば、燃料電池装置330は、PCS及び燃料電池セルによって構成される。 The fuel cell device 330 is a distributed power source that generates power using fuel. The fuel cell device 330 is an example of a distributed power supply to which a predetermined purchase price is not applied, and is a distributed power supply having a rated operation mode for outputting rated power. For example, the fuel cell device 330 includes a PCS and fuel cells.
 例えば、燃料電池装置330は、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)であってもよく、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)であってもよく、リン酸型燃料電池(PAFC:Phosphoric Acid Fuel Cell)であってもよく、溶融炭酸塩型燃料電池(MCFC:Molten Carbonate Fuel Cell)であってもよい。 For example, the fuel cell device 330 may be a solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell), a solid polymer fuel cell (PEFC: Polymer Electrolyte Fuel Cell), or phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell) or a molten carbonate fuel cell (MCFC: Molton Carbonate Fuel Cell) may be used.
 実施形態において、太陽電池装置310、蓄電池装置320及び燃料電池装置330は、VPPに用いられる電源であってもよい。 In the embodiment, the solar cell device 310, the storage battery device 320, and the fuel cell device 330 may be power supplies used for VPP.
 負荷機器340は、電力を消費する機器である。例えば、負荷機器340は、空調機器、照明機器、AV(Audio Visual)機器などである。 The load device 340 is a device that consumes power. For example, the load device 340 is an air conditioner, a lighting device, an AV (Audio Visual) device, or the like.
 ローカル制御装置360は、施設300の電力を管理する装置(EMS;Energy Management System)である。ローカル制御装置360は、太陽電池装置310の動作状態を制御してもよく、施設300に設けられる蓄電池装置320の動作状態を制御してもよく、施設300に設けられる燃料電池装置330の動作状態を制御してもよい。ローカル制御装置360の詳細については後述する(図4を参照)。 The local control device 360 is a device (EMS; Energy Management System) for managing the power of the facility 300. The local control device 360 may control the operation state of the solar cell device 310, may control the operation state of the storage battery device 320 provided in the facility 300, and may control the operation state of the fuel cell device 330 provided in the facility 300. May be controlled. The details of the local control device 360 will be described later (see FIG. 4).
 実施形態において、電力管理サーバ200とローカル制御装置360との間の通信は、第1プロトコルに従って行われる。一方で、ローカル制御装置360と分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)との間の通信は、第1プロトコルとは異なる第2プロトコルに従って行われる。さらに、電力管理サーバ200と分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)との間の通信は、第1プロトコルに従って行われてもよい。このようなケースにおいて、ローカル制御装置360は、電力管理サーバ200と分散電源との間の通信を透過的に中継するルータとして機能すると考えてもよい。或いは、ローカル制御装置360は、存在していなくてもよい。 In the embodiment, communication between the power management server 200 and the local control device 360 is performed according to a first protocol. On the other hand, communication between the local control device 360 and the distributed power source (the solar cell device 310, the storage battery device 320, or the fuel cell device 330) is performed according to a second protocol different from the first protocol. Further, communication between the power management server 200 and the distributed power source (the solar battery device 310, the storage battery device 320, or the fuel cell device 330) may be performed according to a first protocol. In such a case, it may be considered that the local control device 360 functions as a router that transparently relays communication between the power management server 200 and the distributed power supply. Alternatively, the local controller 360 may not be present.
 例えば、第1プロトコルとしては、Open ADR(Automated Demand Response)に準拠するプロトコル、或いは、独自の専用プロトコルを用いることができる。例えば、第2プロトコルは、ECHONET Liteに準拠するプロトコル、SEP(Smart Energy Profile)2.0、KNX、或いは、独自の専用プロトコルを用いることができる。なお、第1プロトコルと第2プロトコルは異なっていればよく、例えば、両方が独自の専用プロトコルであっても異なる規則で作られたプロトコルであればよい。 For example, as the first protocol, a protocol based on Open \ ADR (Automated \ Demand \ Response) or an original dedicated protocol can be used. For example, as the second protocol, a protocol conforming to ECHONET Lite, SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used. It should be noted that the first protocol and the second protocol need only be different, and, for example, both may be proprietary dedicated protocols as long as they are protocols created according to different rules.
 電力計380は、電力系統110から施設300への潮流の量及び施設300から電力系統110への逆潮流の量を計測する。例えば、電力計380は、電力会社400に帰属するスマートメータである。 The wattmeter 380 measures the amount of power flow from the power system 110 to the facility 300 and the amount of reverse power flow from the facility 300 to the power system 110. For example, wattmeter 380 is a smart meter belonging to power company 400.
 ここで、電力計380は、単位時間(例えば、30分)毎に、単位時間における計測結果(潮流又は逆潮流の量(Wh))を示す情報要素を含むメッセージをローカル制御装置360に送信する。電力計380は、自律的にメッセージを送信してもよく、ローカル制御装置360の要求に応じてメッセージを送信してもよい。 Here, the wattmeter 380 transmits a message including an information element indicating the measurement result (the amount of power flow or reverse power flow (Wh)) per unit time to the local control device 360 every unit time (for example, 30 minutes). . The power meter 380 may transmit the message autonomously or may transmit the message in response to a request from the local control device 360.
 電力会社400は、電力系統110などのインフラストラクチャーを提供するエンティティであり、例えば、発電事業者又は送配電事業者などの電力事業者である。電力会社400は、電力管理サーバ200を管理するエンティティに対して、各種の業務を委託してもよい。 The power company 400 is an entity that provides infrastructure such as the power system 110, and is, for example, a power company such as a power generation company or a transmission and distribution company. The power company 400 may outsource various tasks to an entity that manages the power management server 200.
 実施形態において、電力会社400と電力管理サーバ200との間の通信は、第1プロトコルに従って行われてもよい。電力会社400は、電力系統110の電力需給バランスを調整する調整メッセージを電力管理サーバ200に送信してもよい。調整メッセージは、上述した潮流制御メッセージであってもよく、上述した逆潮流制御メッセージであってもよい。電力管理サーバ200は、調整メッセージの受信に応じて、電力系統110の潮流量又は逆潮流量を抑制する制御メッセージを送信する。 In the embodiment, communication between the power company 400 and the power management server 200 may be performed according to the first protocol. The power company 400 may transmit an adjustment message for adjusting the power supply and demand balance of the power system 110 to the power management server 200. The adjustment message may be the above-described power flow control message, or may be the above-described reverse power flow control message. The power management server 200 transmits a control message for suppressing the tide flow or the reverse tide flow of the power system 110 in response to receiving the adjustment message.
 (適用シーンの概要)
 以下において、実施形態の適用シーンの概要について説明する。実施形態では、電力管理サーバ200は、蓄電池装置320を直接的に制御するケースについて主として考える。電力管理サーバ200と蓄電池装置320との間の通信は第1プロトコルに従って行われる。上述したローカル制御装置360は、存在していなくてもよく、ルータとして機能してもよい。
(Overview of application scene)
Hereinafter, an outline of an application scene of the embodiment will be described. In the embodiment, the power management server 200 mainly considers a case in which the storage battery device 320 is directly controlled. Communication between the power management server 200 and the storage battery device 320 is performed according to a first protocol. The above-described local control device 360 may not be present, and may function as a router.
 具体的には、電力管理サーバ200は、電力系統110の電力需給バランスを調整する必要がある場合に、電力管理サーバ200によって管理される2以上の施設300の少なくともいずれか1つに設けられる蓄電池装置320に適用する運転モードを決定する。 Specifically, power management server 200 is a storage battery provided in at least one of two or more facilities 300 managed by power management server 200 when it is necessary to adjust the power supply and demand balance of power system 110. The operation mode applied to the device 320 is determined.
 ここで、「決定」とは、蓄電池装置320に適用されている運転モードを変更する決定だけではなく、蓄電池装置320に適用されている運転モードを変更せずに引き続き適用する決定を含む。例えば、電力管理サーバ200は、上述した調整メッセージを電力会社400から受信した場合に、蓄電池装置320に適用する運転モードを決定する。電力管理サーバ200は、運転モードの決定に応じて、蓄電池装置320が電力を蓄積又は出力する条件を指定する情報要素を含む制御メッセージを蓄電池装置320に送信する。 Here, “determination” includes not only a determination to change the operation mode applied to the storage battery device 320 but also a determination to continuously apply the operation mode applied to the storage battery device 320 without changing the operation mode. For example, when the power management server 200 receives the above-described adjustment message from the power company 400, the power management server 200 determines an operation mode to be applied to the storage battery device 320. The power management server 200 transmits to the storage battery device 320 a control message including an information element that specifies a condition under which the storage battery device 320 stores or outputs power in accordance with the determination of the operation mode.
 ここで、制御メッセージは、運転モードを指定する第1情報要素及び蓄電池装置320が蓄積又は出力する指定エネルギー量(ここでは、指定電力量)を指定する第2情報要素の少なくともいずれか1つを情報要素として含む。指定電力量は、蓄電池装置320の指定充電電力量又は指定放電電力量と読み替えてもよい。 Here, the control message includes at least one of a first information element that specifies an operation mode and a second information element that specifies a specified energy amount (here, a specified power amount) stored or output by storage battery device 320. Include as information element. The specified power amount may be read as the specified charging power amount or the specified discharging power amount of the storage battery device 320.
 例えば、電力管理サーバ200は、運転モードを変更しない場合に、第1情報要素を含まずに第2情報要素を含む制御メッセージを送信してもよい。このようなケースについては、第1情報要素及び第2情報要素を含む制御メッセージを送信することを前提として、電力管理サーバ200は、第1情報要素を省略して第2情報要素を含む制御メッセージを送信すると考えてもよい。 For example, when the operation mode is not changed, the power management server 200 may transmit a control message including the second information element without including the first information element. In such a case, assuming that the control message including the first information element and the second information element is transmitted, the power management server 200 omits the first information element and includes the control message including the second information element. May be transmitted.
 電力管理サーバ200は、制御電力量を変更しない場合に、第2情報要素を含まずに第1情報要素を含む制御メッセージを送信してもよい。このようなケースについては、第1情報要素及び第2情報要素を含む制御メッセージを送信することを前提として、電力管理サーバ200は、第2情報要素を省略して第1情報要素を含む制御メッセージを送信すると考えてもよい。 The power management server 200 may transmit a control message including the first information element without including the second information element when the control power amount is not changed. In such a case, the power management server 200 omits the second information element and transmits the control message including the first information element on the assumption that the control message including the first information element and the second information element is transmitted. May be transmitted.
 電力管理サーバ200は、第1情報要素及び第2情報要素の双方を含む制御メッセージを送信してもよい。このようなケースについては、第1情報要素及び第2情報要素を含む制御メッセージを送信することを前提として、電力管理サーバ200は、運転モード及び制御電力量を変更するか否かによらずに、第1情報要素及び第2情報要素の双方を含む制御メッセージを送信すると考えてもよい。 The power management server 200 may transmit a control message including both the first information element and the second information element. In such a case, the power management server 200 assumes that the control message including the first information element and the second information element is transmitted, and the power management server 200 does not change the operation mode and the control power amount. , A control message including both the first information element and the second information element.
 さらに、実施形態では、電力系統110の電力が不足するケースについて主として説明する。すなわち、電力系統110から施設300に対する潮流量を抑制するケースについて主として説明する。 Further, in the embodiment, a case where the power of the power system 110 is insufficient will be mainly described. That is, a case in which the tide flow from the power system 110 to the facility 300 is suppressed will be mainly described.
 このようなケースにおいて、運転モードとしては、第1運転モード及び第2運転モードが考えられる。第1運転モードは、蓄電池装置320が電力の蓄積に用いる電力ソースとして、電力系統110を用いずに太陽電池装置310を用いる運転モードである。このような運転モードは、グリーンモードと称されてもよい。第1運転モードにおいては、電力系統110の電力を用いないという制約があるため、蓄電池装置320の充電電力量が指定充電電力量よりも小さくなることがある。第2運転モードは、蓄電池装置320が電力の蓄積に用いる電力ソースとして、電力系統110及び太陽電池装置310の双方を用いる運転モードである。このような運転モードは、強制充電モードと称されてもよい。第2運転モードにおいては、蓄電池装置320の充電電力量は指定充電電力量である。第2運転モードにおいては、蓄電池装置320が電力の蓄積に用いる電力ソースとして、電力系統110及び太陽電池装置310に加えて、燃料電池装置330が用いられてもよい。 に お い て In such a case, the first operation mode and the second operation mode are considered as the operation modes. The first operation mode is an operation mode in which the solar battery device 310 is used as the power source used by the storage battery device 320 for power storage without using the power system 110. Such an operation mode may be referred to as a green mode. In the first operation mode, there is a restriction that the electric power of the electric power system 110 is not used, so that the charging power amount of the storage battery device 320 may be smaller than the designated charging power amount. The second operation mode is an operation mode in which both the power system 110 and the solar cell device 310 are used as a power source used by the storage battery device 320 to store power. Such an operation mode may be referred to as a forced charging mode. In the second operation mode, the charging power amount of the storage battery device 320 is the designated charging power amount. In the second operation mode, in addition to the power system 110 and the solar cell device 310, the fuel cell device 330 may be used as a power source used by the storage battery device 320 for storing power.
 運転モードは、第1運転モード及び第2運転モード以外の運転モードを含んでもよい。例えば、このような運転モードとしては、電力系統110の電気料金が閾値よりも低い時間帯(例えば、夜間)に蓄電池装置320の充電を行うとともに、電力系統110の電気料金が閾値よりも高い時間帯(例えば、日中)に蓄電池装置320の放電を行う運転モードであってもよい。このような運転モードは、経済モードと称されてもよい。 The operation mode may include an operation mode other than the first operation mode and the second operation mode. For example, in such an operation mode, the storage battery device 320 is charged in a time zone (for example, at night) when the electricity rate of the power system 110 is lower than the threshold value, and the operation time is such that the electricity rate of the power system 110 is higher than the threshold value. An operation mode in which the storage battery device 320 is discharged during a band (for example, during the day) may be used. Such an operation mode may be referred to as an economic mode.
 上述した制御を行うにあたって、電力管理サーバ200は、蓄電池装置320の状態を示す情報要素を含む報告メッセージを蓄電池装置320から受信してもよい。報告メッセージは、蓄電池装置320の稼働状態を示す情報要素を含んでもよい。稼働状態は、制御の可否、放電の可否、運転、停止、待機、正常、異常、故障中、保守中、点検中などの状態であってもよい。報告メッセージは、蓄電池装置320の充電可能量、蓄電池装置320の放電可能量、蓄電池装置320の蓄電池容量などの情報要素を含むメッセージを受信してもよい。報告メッセージは、蓄電池装置320の充電残量(SOC;State Of Charge)を示す情報要素を含んでもよい。報告メッセージは、蓄電池装置320の最大放電電力を示す情報要素を含んでもよい。報告メッセージは、蓄電池装置320の充電電力実績及び蓄電池装置320の放電電力実績などを示す情報要素を含んでもよい。報告メッセージは、蓄電池装置320の需要抑制実績を示す情報要素を含んでもよい。報告メッセージは、蓄電池装置320の出力抑制実績を示す情報要素を含んでもよい。 In performing the above-described control, the power management server 200 may receive a report message including an information element indicating the state of the storage battery device 320 from the storage battery device 320. The report message may include an information element indicating the operation state of the storage battery device 320. The operating state may be a state such as controllability, dischargeability, operation, stop, standby, normal, abnormal, faulty, maintenance, inspection, and the like. The report message may receive a message including information elements such as a chargeable amount of the storage battery device 320, a dischargeable amount of the storage battery device 320, and a storage battery capacity of the storage battery device 320. The report message may include an information element indicating the state of charge (SOC; State \ Of \ Charge) of the storage battery device 320. The report message may include an information element indicating the maximum discharge power of the storage battery device 320. The report message may include information elements indicating the actual charge power of the storage battery device 320, the actual discharge power of the storage battery device 320, and the like. The report message may include an information element indicating a demand suppression result of the storage battery device 320. The report message may include an information element indicating the output suppression result of the storage battery device 320.
 さらに、実施形態では、報告メッセージは、蓄電池装置320に適用されている運転モードを示す情報要素を含んでもよい。このような情報要素によれば、電力管理サーバ200は、蓄電池装置320に適用されている運転モードを把握することができる。これにより電力管理サーバ200は、電力系統110の電力需給バランスを調整する必要がある場合に、蓄電池装置320に適用する運転モードを決定する際に、運転モードを変更すべきか否かを判定することができる。 Further, in the embodiment, the report message may include an information element indicating the operation mode applied to the storage battery device 320. According to such an information element, the power management server 200 can recognize the operation mode applied to the storage battery device 320. Accordingly, when it is necessary to adjust the power supply and demand balance of the power system 110, the power management server 200 determines whether to change the operation mode when determining the operation mode to be applied to the storage battery device 320. Can be.
 (電力管理サーバ)
 以下において、実施形態に係る電力管理サーバについて説明する。図3に示すように、電力管理サーバ200は、管理部210と、通信部220と、制御部230とを有する。電力管理サーバ200は、VTN(Virtual Top Node)の一例である。
(Power management server)
Hereinafter, the power management server according to the embodiment will be described. As shown in FIG. 3, the power management server 200 includes a management unit 210, a communication unit 220, and a control unit 230. The power management server 200 is an example of a VTN (Virtual Top Node).
 管理部210は、不揮発性メモリ又は/及びHDDなどの記憶媒体によって構成されており、電力管理サーバ200によって管理される2以上の施設300に関するデータを管理する。電力管理サーバ200によって管理される2以上の施設300は、電力管理サーバ200を管理するエンティティと契約を有する施設300であってもよい。例えば、施設300に関するデータは、電力系統110から施設300に供給される需要電力であってもよく、電力系統110全体の需要電力の削減要請(DR;Demand Response)に応じて各施設300で削減された電力量であってもよい。施設300に関するデータは、施設300に設けられる分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)の種別、施設300に設けられる分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)のスペックなどであってもよい。スペックは、太陽電池装置310の定格発電電力(W)、蓄電池装置320の最大出力電力(W)、燃料電池装置330の最大出力電力(W)であってもよい。さらに、施設300に関するデータは、過去において分散電源に指示した出力電力量であってもよい。例えば、分散電源が蓄電池装置320である場合において、施設300に関するデータは、蓄電池装置320に指示した放電電力量であってもよい。施設300に関するデータは、分散電源の劣化度であってもよい。例えば、分散電源が蓄電池装置320である場合において、施設300に関するデータは、蓄電池装置320のSOH(State Of Health)であってもよい。 The management unit 210 is configured by a storage medium such as a nonvolatile memory and / or an HDD, and manages data relating to two or more facilities 300 managed by the power management server 200. The two or more facilities 300 managed by the power management server 200 may be facilities 300 that have a contract with an entity that manages the power management server 200. For example, the data related to the facility 300 may be demand power supplied from the power system 110 to the facility 300, and the demand power is reduced at each facility 300 in response to a demand reduction request (DR; Demand @ Response) of the entire power system 110. The amount of electric power may be used. The data related to the facility 300 includes the type of the distributed power supply (the solar battery device 310, the storage battery device 320, or the fuel cell device 330) provided in the facility 300, and the distributed power supply (the solar battery device 310, the storage battery device 320, or the fuel cell) provided in the facility 300. The specifications of the device 330) may be used. The specifications may be the rated generated power (W) of the solar cell device 310, the maximum output power (W) of the storage battery device 320, and the maximum output power (W) of the fuel cell device 330. Further, the data regarding the facility 300 may be an output power amount instructed to the distributed power source in the past. For example, when the distributed power source is the storage battery device 320, the data regarding the facility 300 may be the amount of discharge power instructed to the storage battery device 320. The data on the facility 300 may be the degree of deterioration of the distributed power supply. For example, when the distributed power source is the storage battery device 320, the data regarding the facility 300 may be the SOH (State \ Of \ Health) of the storage battery device 320.
 通信部220は、通信モジュールによって構成されており、ネットワーク120を介してローカル制御装置360と通信を行う。通信部220は、上述したように、第1プロトコルに従って通信を行う。例えば、通信部220は、第1プロトコルに従って第1メッセージをローカル制御装置360に送信する。通信部220は、第1プロトコルに従って第1メッセージ応答をローカル制御装置360から受信する。 The communication unit 220 includes a communication module, and communicates with the local control device 360 via the network 120. The communication unit 220 performs communication according to the first protocol as described above. For example, the communication unit 220 transmits a first message to the local control device 360 according to a first protocol. The communication unit 220 receives a first message response from the local control device 360 according to a first protocol.
 実施形態において、通信部220は、上述した報告メッセージを蓄電池装置320から受信する。通信部220は、上述した制御メッセージを蓄電池装置320に送信する。 In the embodiment, the communication unit 220 receives the above-described report message from the storage battery device 320. Communication unit 220 transmits the above-described control message to storage battery device 320.
 通信部220は、電力系統110から施設300に供給される需要電力を示す情報要素を含むメッセージを施設300(例えば、ローカル制御装置360又は電力計380)から受信してもよい。需要電力は、上述した電力計380によって測定された値でもよい。需要電力は、負荷機器340の消費電力から分散電源(太陽電池装置310、蓄電池装置320、燃料電池装置330)の出力電力を除いた値でもよい。 The communication unit 220 may receive a message including an information element indicating demand power supplied from the power system 110 to the facility 300 from the facility 300 (for example, the local control device 360 or the wattmeter 380). The power demand may be a value measured by the power meter 380 described above. The demand power may be a value obtained by subtracting the output power of the distributed power supply (the solar battery device 310, the storage battery device 320, and the fuel cell device 330) from the power consumption of the load device 340.
 制御部230は、メモリ及びCPUなどによって構成されており、電力管理サーバ200に設けられる各構成を制御する。例えば、制御部230は、制御メッセージの送信によって、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)に対する制御を指示する。制御メッセージは、上述したように、潮流制御メッセージであってもよく、逆潮流制御メッセージであってもよく、電源制御メッセージであってもよい。 The control unit 230 includes a memory, a CPU, and the like, and controls each component provided in the power management server 200. For example, by transmitting a control message, the control unit 230 controls the local control device 360 provided in the facility 300 to control the distributed power supply (the solar cell device 310, the storage battery device 320, or the fuel cell device 330) provided in the facility 300. Instruct. As described above, the control message may be a power flow control message, a reverse power flow control message, or a power control message.
 実施形態において、制御部230は、電力系統110の電力需給バランスを調整する必要がある場合に、蓄電池装置320に適用する運転モードを決定する。制御部230は、運転モードの決定に応じて、上述した制御メッセージの送信を通信部220に指示する。 In the embodiment, when it is necessary to adjust the power supply and demand balance of the power system 110, the control unit 230 determines an operation mode to be applied to the storage battery device 320. The control unit 230 instructs the communication unit 220 to transmit the above-described control message according to the determination of the operation mode.
 例えば、制御部230は、電力系統110の潮流量を抑制する必要がある場合に、第1運転モードを蓄電池装置320に適用すると決定してもよい。このようなケースにおいて、蓄電池装置320が第2運転モードで動作している場合に、制御部230は、第1運転モードを指定する第1情報要素を含む制御メッセージの送信によって、蓄電池装置320の運転モードを第2運転モードから第1運転モードに変更する制御を行ってもよい。ここで、制御部230は、第1情報要素とともに第2情報要素を含む制御メッセージの送信によって、運転モードを変更するとともに指定充電電力量を変更する制御を行ってよい。制御部230は、第2情報要素を含まずに第1情報要素を含む制御メッセージの送信によって、指定充電電力量を変更せずに運転モードを変更する制御を行ってもよい。或いは、蓄電池装置320が第1運転モードで動作している場合に、制御部230は、現在の指定充電電力量よりも削減された指定充電電力量を指定する第2情報要素を含む制御メッセージの送信によって、指定充電電力量を削減する制御を行ってよい。制御部230は、第2情報要素とともに第1情報要素を含む制御メッセージの送信によって、指定電力量を変更するとともに運転モードを維持する制御を行ってよい。制御部230は、第1情報要素を含まずに第2情報要素を含む制御メッセージの送信によって、運転モードを変更せずに指定充電電力量を変更する制御を行ってもよい。 For example, the control unit 230 may determine to apply the first operation mode to the storage battery device 320 when it is necessary to suppress the tide flow of the power system 110. In such a case, when the storage battery device 320 is operating in the second operation mode, the control unit 230 transmits the control message including the first information element specifying the first operation mode. Control for changing the operation mode from the second operation mode to the first operation mode may be performed. Here, the control unit 230 may perform control to change the operation mode and change the designated charging power amount by transmitting a control message including the first information element and the second information element. The control unit 230 may perform control to change the operation mode without changing the designated charging power amount by transmitting a control message including the first information element without including the second information element. Alternatively, when the storage battery device 320 is operating in the first operation mode, the control unit 230 transmits the control message including the second information element that specifies the designated charging power amount reduced from the current designated charging power amount. Control for reducing the designated charging power amount may be performed by transmission. The control unit 230 may perform control to change the designated power amount and maintain the operation mode by transmitting a control message including the first information element together with the second information element. The control unit 230 may perform control to change the designated charging power amount without changing the operation mode by transmitting a control message including the second information element without including the first information element.
 (ローカル制御装置)
 以下において、実施形態に係るローカル制御装置について説明する。図4に示すように、ローカル制御装置360は、第1通信部361と、第2通信部362と、制御部363とを有する。ローカル制御装置360は、VEN(Virtual End Node)の一例である。上述したように、ローカル制御装置360は、存在していなくてもよく、ルータとして機能してもよい。
(Local controller)
Hereinafter, the local control device according to the embodiment will be described. As shown in FIG. 4, the local control device 360 has a first communication unit 361, a second communication unit 362, and a control unit 363. The local control device 360 is an example of a VEN (Virtual End Node). As described above, the local control device 360 may not be present, and may function as a router.
 第1通信部361は、通信モジュールによって構成されており、ネットワーク120を介して電力管理サーバ200と通信を行ってもよい。第1通信部361は、上述したように、第1プロトコルに従って通信を行ってもよい。例えば、第1通信部361は、第1プロトコルに従って第1メッセージを電力管理サーバ200から受信してもよい。第1通信部361は、第1プロトコルに従って第1メッセージ応答を電力管理サーバ200に送信してもよい。 The first communication unit 361 is configured by a communication module, and may communicate with the power management server 200 via the network 120. The first communication unit 361 may perform communication according to the first protocol as described above. For example, the first communication unit 361 may receive a first message from the power management server 200 according to a first protocol. The first communication unit 361 may transmit a first message response to the power management server 200 according to a first protocol.
 第2通信部362は、通信モジュールによって構成されており、分散電源(太陽電池装置310、蓄電池装置320又は燃料電池装置330)と通信を行ってもよい。第2通信部362は、上述したように、第2プロトコルに従って通信を行ってもよい。例えば、第2通信部362は、第2プロトコルに従って第2メッセージを分散電源に送信してもよい。第2通信部362は、第2プロトコルに従って第2メッセージ応答を分散電源から受信してもよい。 The second communication unit 362 is configured by a communication module, and may communicate with a distributed power source (the solar cell device 310, the storage battery device 320, or the fuel cell device 330). The second communication unit 362 may perform communication according to the second protocol as described above. For example, the second communication unit 362 may transmit a second message to the distributed power source according to a second protocol. The second communication unit 362 may receive a second message response from the distributed power source according to a second protocol.
 制御部363は、メモリ及びCPUなどによって構成されており、ローカル制御装置360に設けられる各構成を制御する。具体的には、制御部363は、施設300の電力を制御するために、第2メッセージの送信及び第2メッセージ応答の受信によって、分散電源の動作状態の設定を分散電源に指示してもよい。制御部363は、施設300の電力を管理するために、第2メッセージの送信及び第2メッセージ応答の受信によって分散電源の情報の報告を分散電源に指示してもよい。 The control unit 363 includes a memory, a CPU, and the like, and controls each component provided in the local control device 360. Specifically, the control unit 363 may instruct the distributed power source to set the operation state of the distributed power source by transmitting the second message and receiving the second message response in order to control the power of the facility 300. . The control unit 363 may instruct the distributed power source to report the information of the distributed power source by transmitting the second message and receiving the second message response in order to manage the power of the facility 300.
 (蓄電池装置)
 以下において、実施形態に係る蓄電池装置について説明する。図5に示すように、蓄電池装置320は、通信部321と、制御部322とを有する。蓄電池装置320は、VEN(Virtual End Node)の一例である。
(Storage battery device)
Hereinafter, the storage battery device according to the embodiment will be described. As shown in FIG. 5, the storage battery device 320 includes a communication unit 321 and a control unit 322. The storage battery device 320 is an example of a VEN (Virtual End Node).
 通信部321は、通信モジュールによって構成されており、ネットワーク120を介して電力管理サーバ200と通信を行う。通信部321は、上述したように、第1プロトコルに従って通信を行う。例えば、通信部321は、第1プロトコルに従って第1メッセージを電力管理サーバ200から受信する。通信部321は、第1プロトコルに従って第1メッセージ応答を電力管理サーバ200に送信する。 The communication unit 321 is configured by a communication module, and communicates with the power management server 200 via the network 120. The communication unit 321 performs communication according to the first protocol, as described above. For example, the communication unit 321 receives a first message from the power management server 200 according to a first protocol. The communication unit 321 transmits a first message response to the power management server 200 according to a first protocol.
 実施形態において、通信部321は、上述した報告メッセージを電力管理サーバ200に送信する。通信部321は、上述した制御メッセージを電力管理サーバ200から受信する。 In the embodiment, the communication unit 321 transmits the above-described report message to the power management server 200. The communication unit 321 receives the above-described control message from the power management server 200.
 制御部322は、メモリ及びCPUなどによって構成されており、蓄電池装置320に設けられる各構成を制御する。具体的には、制御部322は、制御メッセージに基づいて蓄電池装置320の動作を制御する。詳細には、制御部322は、制御メッセージによって運転モードが指定された場合に、指定された運転モードで蓄電池装置320を制御する。制御部322は、制御メッセージによって指定電力量が指定された場合に、指定された指定電力量で蓄電池装置320の充電及び放電を制御する。 The control unit 322 includes a memory, a CPU, and the like, and controls each component provided in the storage battery device 320. Specifically, control unit 322 controls the operation of storage battery device 320 based on the control message. Specifically, when an operation mode is specified by the control message, control unit 322 controls storage battery device 320 in the specified operation mode. Control unit 322 controls charging and discharging of storage battery device 320 with the specified specified power amount when the specified power amount is specified by the control message.
 (電力管理方法)
 以下において、実施形態に係る電力管理方法について説明する。
(Power management method)
Hereinafter, a power management method according to the embodiment will be described.
 図6に示すように、ステップS10において、蓄電池装置320は、報告メッセージを電力管理サーバ200に送信する。蓄電池装置320は、報告メッセージを定期的に送信してもよく、電力管理サーバ200の要求に応じて報告メッセージを送信してもよく、蓄電池装置320の状態変更に応じて報告メッセージを送信してもよい。 As shown in FIG. 6, in step S10, the storage battery device 320 transmits a report message to the power management server 200. The storage battery device 320 may periodically transmit a report message, may transmit a report message in response to a request from the power management server 200, or may transmit a report message in response to a change in state of the storage battery device 320. Is also good.
 ステップS20において、電力管理サーバ200は、電力系統110の電力需給バランスを調整する調整メッセージを電力会社400から受信する。 In step S20, the power management server 200 receives an adjustment message for adjusting the power supply and demand balance of the power system 110 from the power company 400.
 ステップS30において、電力管理サーバ200は、蓄電池装置320に適用する運転モードを決定する。例えば、電力管理サーバ200は、第1運転モードを蓄電池装置320に適用すると決定してもよい。 に お い て In step S30, power management server 200 determines an operation mode to be applied to storage battery device 320. For example, the power management server 200 may determine that the first operation mode is applied to the storage battery device 320.
 ステップS40において、電力管理サーバ200は、運転モードの決定に応じて、蓄電池装置320が電力を蓄積又は出力する条件を指定する情報要素を含む制御メッセージを蓄電池装置320に送信する。 In step S <b> 40, power management server 200 transmits a control message including an information element that specifies a condition under which storage battery device 320 stores or outputs power to storage battery device 320 in accordance with the determination of the operation mode.
 ステップS50において、蓄電池装置320は、制御メッセージに基づいて蓄電池装置320の動作を制御する。 In step S50, the storage battery device 320 controls the operation of the storage battery device 320 based on the control message.
 (作用及び効果)
 実施形態では、電力管理サーバ200は、運転モードの決定に応じて、蓄電池装置320が電力を蓄積又は出力する条件を指定する情報要素を含む制御メッセージを蓄電池装置320に送信する。このような構成によれば、蓄電池装置320が電力を蓄積又は出力する条件を指定することによって、蓄電池装置320を適切に制御することができる。
(Action and effect)
In the embodiment, the power management server 200 transmits, to the storage battery device 320, a control message including an information element that specifies a condition under which the storage battery device 320 accumulates or outputs power according to the determination of the operation mode. According to such a configuration, the storage battery device 320 can be appropriately controlled by designating the conditions under which the storage battery device 320 stores or outputs power.
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
[Modification 1]
Hereinafter, a first modification of the embodiment will be described. Hereinafter, differences from the embodiment will be mainly described.
 実施形態では、電力系統110の電力が不足するケースについて主として説明した。これに対して、変更例1では、電力系統110の電力が超過するケースについて主として説明する。すなわち、施設300から電力系統110に対する逆潮流量を抑制するケースについて主として説明する。 In the embodiment, the case where the power of the power system 110 is insufficient is mainly described. On the other hand, in the first modification, a case where the power of the power system 110 is exceeded will be mainly described. That is, a case where the reverse flow from the facility 300 to the power system 110 is suppressed will be mainly described.
 このようなケースにおいて、蓄電池装置320の運転モードとしては、第3運転モード及び第4運転モードが考えられる。第3運転モードは、電力系統110への逆潮流が許容される運転モードである。言い換えると、第3運転モードにおいて、蓄電池装置320の出力電力が電力系統110に逆潮流されてもよい。第3運転モードにおいては、蓄電池装置320の放電電力量は指定放電電力量である。第4運転モードは、電力系統110への逆潮流が許容されない運転モードである。言い換えると、第4運転モードにおいて、蓄電池装置320の出力電力が電力系統110に逆潮流されてはならない。第4運転モードにおいて、再生可能エネルギーを用いて発電する分散電源(ここでは、太陽電池装置310)の出力電力については電力系統110に逆潮流されてもよい。すなわち、施設300の逆潮流量が分散電源の出力電力を超えない範囲であれば蓄電池装置320の放電が許容されてもよい。このような第4運転モードにおいて、施設300の逆潮流量が分散電源の出力電力を超えないという制約があるため、蓄電池装置320の放電電力量が指定放電電力量よりも小さくなることがある。或いは、第4運転モードにおいて、蓄電池装置320の放電が行われる場合には、分散電源の出力電力についても逆潮流が許容されなくてもよい。すなわち、施設300の逆潮流が許容されない。このような第4運転モードにおいては、施設300の逆潮流量が許容されないという制約があるため、蓄電池装置320の放電電力量が指定放電電力量よりも小さくなることがある。 に お い て In such a case, the third operation mode and the fourth operation mode are considered as the operation modes of the storage battery device 320. The third operation mode is an operation mode in which reverse power flow to the power system 110 is allowed. In other words, in the third operation mode, the output power of the storage battery device 320 may flow backward to the power system 110. In the third operation mode, the discharge power amount of the storage battery device 320 is the designated discharge power amount. The fourth operation mode is an operation mode in which reverse power flow to the power system 110 is not allowed. In other words, in the fourth operation mode, the output power of the storage battery device 320 must not flow backward to the power system 110. In the fourth operation mode, the output power of the distributed power source (here, the solar cell device 310) that generates power using renewable energy may be reversely flowed to the power system 110. That is, the discharge of the storage battery device 320 may be allowed as long as the reverse flow rate of the facility 300 does not exceed the output power of the distributed power source. In such a fourth operation mode, there is a restriction that the reverse flow rate of the facility 300 does not exceed the output power of the distributed power source, so that the discharge power amount of the storage battery device 320 may be smaller than the designated discharge power amount. Alternatively, when the storage battery device 320 is discharged in the fourth operation mode, the reverse power flow may not be allowed for the output power of the distributed power source. That is, reverse flow of the facility 300 is not allowed. In such a fourth operation mode, since there is a restriction that the reverse flow rate of the facility 300 is not allowed, the discharge power amount of the storage battery device 320 may be smaller than the designated discharge power amount.
 例えば、電力管理サーバ200(制御部230)は、電力系統110の逆潮流量を抑制する必要がある場合に、第4運転モードを蓄電池装置320に適用すると決定してもよい。このようなケースにおいて、蓄電池装置320が第3運転モードで動作している場合に、電力管理サーバ200(制御部230)は、第4運転モードを指定する第1情報要素を含む制御メッセージの送信によって、蓄電池装置320の運転モードを第3運転モードから第4運転モードに変更する制御を行ってもよい。また、電力管理サーバ200(制御部230)は、第1運転モードを蓄電池装置320に適用すると決定してもよい。これによれば、太陽電池装置310の出力電力を用いて蓄電池装置320の充電が行われるため、逆潮流量の抑制に寄与し得る。さらには、電力管理サーバ200(制御部230)は、第2運転モードを蓄電池装置320に適用すると決定してもよい。これによれば、電力系統110の供給電力及び太陽電池装置310の出力電力を用いて蓄電池装置320の充電が行われるため、逆潮流量の抑制にさらに寄与し得る。これらのケースにおいて、第1運転モード及び第2運転モードは、第4運転モードと重複して適用されてもよく、第4運転モードと重複せずに適用されてもよい。 For example, the power management server 200 (the control unit 230) may determine to apply the fourth operation mode to the storage battery device 320 when it is necessary to suppress the reverse flow rate of the power system 110. In such a case, when the storage battery device 320 is operating in the third operation mode, the power management server 200 (the control unit 230) transmits the control message including the first information element designating the fourth operation mode. Accordingly, control for changing the operation mode of the storage battery device 320 from the third operation mode to the fourth operation mode may be performed. The power management server 200 (control unit 230) may determine that the first operation mode is applied to the storage battery device 320. According to this, since the storage battery device 320 is charged using the output power of the solar battery device 310, it can contribute to the suppression of the reverse flow rate. Further, power management server 200 (control unit 230) may determine that the second operation mode is applied to storage battery device 320. According to this, since the storage battery device 320 is charged using the supply power of the power system 110 and the output power of the solar battery device 310, it can further contribute to the suppression of the reverse flow rate. In these cases, the first operation mode and the second operation mode may be applied to overlap with the fourth operation mode, or may be applied without overlapping with the fourth operation mode.
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。
[Modification 2]
Hereinafter, a second modification of the embodiment will be described. Hereinafter, differences from the embodiment will be mainly described.
 実施形態では、エネルギー蓄積装置として蓄電池装置320を例示した。これに対して、変更例2では、エネルギー蓄積装置は、電力を用いて熱を蓄積する蓄熱装置である。蓄熱装置が熱の蓄積に用いる電力ソースとしては、電力系統110及び太陽電池装置310を用いることが可能である。電力ソースとして燃料電池装置330が用いられてもよい。例えば、蓄熱装置は、ヒートポンプ給湯器などの給湯器であってもよい。 In the embodiment, the storage battery device 320 has been exemplified as the energy storage device. On the other hand, in the second modification, the energy storage device is a heat storage device that stores heat using electric power. As a power source used by the heat storage device for storing heat, the power system 110 and the solar cell device 310 can be used. The fuel cell device 330 may be used as a power source. For example, the heat storage device may be a water heater such as a heat pump water heater.
 変更例2において、上述した「充電」は「蓄熱」と読み替え、上述した「放電」は「放熱」と読み替えればよい。上述した「指定電力量」は「指定熱量」と読み替え、上述した「指定充電電力量」は「指定蓄熱量」と読み替え、上述した「指定放電電力量」は「指定放熱量」と読み替えればよい。 In the second modification, the above-mentioned “charging” may be read as “heat storage”, and the above-mentioned “discharge” may be read as “radiation”. The above-mentioned "specified electric energy" should be read as "specified heat amount", the above-mentioned "specified charge electric energy" should be read as "specified heat storage amount", and the above-mentioned "specified discharge electric energy" should be read as "specified heat release amount". Good.
 このように、「エネルギー」という用語は、「電力」及び「熱」の上位概念を表す用語として用いられることに留意すべきである。 It should be noted that the term “energy” is used as a general term for “power” and “heat”.
 [その他の実施形態]
 本開示は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present disclosure has been described by the above-described embodiments, it should not be understood that the description and drawings forming a part of the present disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
 実施形態では、太陽電池装置310及び燃料電池装置330が設けられている。しかしながら、実施形態はこれに限定されるものではない。分散電源として、太陽電池装置310及び燃料電池装置330が設けられておらず、蓄電池装置320が設けられていてもよい。 In the embodiment, the solar cell device 310 and the fuel cell device 330 are provided. However, embodiments are not limited to this. As the distributed power source, the solar cell device 310 and the fuel cell device 330 are not provided, and the storage battery device 320 may be provided.
 実施形態では特に触れていないが、蓄電池装置320は、施設300に設けられる電力線に固定的に接続される蓄電池装置であってもよく、施設300に設けられる電力線に着脱可能に接続される蓄電池装置であってもよい。施設300に設けられる電力線に着脱可能に接続される蓄電池装置としては、電動車両に設けられる蓄電池装置が考えられる。 Although not specifically mentioned in the embodiment, the storage battery device 320 may be a storage battery device fixedly connected to a power line provided in the facility 300, or may be a storage battery device detachably connected to a power line provided in the facility 300. It may be. As a storage battery device detachably connected to a power line provided in the facility 300, a storage battery device provided in an electric vehicle can be considered.
 実施形態では特に触れていないが、施設300に設けられるローカル制御装置360は、必ずしも施設300内に設けられていなくてもよい。例えば、ローカル制御装置360の機能の一部は、インターネット上に設けられるクラウドサーバによって提供されてもよい。すなわち、ローカル制御装置360がクラウドサーバを含むと考えてもよい。 Although not particularly described in the embodiment, the local control device 360 provided in the facility 300 does not necessarily have to be provided in the facility 300. For example, some of the functions of the local control device 360 may be provided by a cloud server provided on the Internet. That is, it may be considered that local control device 360 includes a cloud server.
 実施形態では、ローカル制御装置360が存在していないケース、或いは、ローカル制御装置360がルータとして機能してもよいケースを例示した。しかしながら、実施形態はこれに限定されるものではない。ローカル制御装置360は、電力管理サーバ200から受信する制御メッセージのプロトコル変換を行って、プロトコル変換後のメッセージを蓄電池装置320に送信してもよい。 In the embodiment, the case where the local control device 360 does not exist or the case where the local control device 360 may function as a router has been exemplified. However, embodiments are not limited to this. The local control device 360 may perform protocol conversion of the control message received from the power management server 200, and transmit the message after the protocol conversion to the storage battery device 320.
 実施形態では、第1プロトコルがOpen ADR2.0に準拠するプロトコルであり、第2プロトコルがECHONET Liteに準拠するプロトコルであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。第1プロトコルは、電力管理サーバ200とローカル制御装置360との間の通信で用いるプロトコルとして規格化されたプロトコルであればよい。第2プロトコルは、施設300で用いるプロトコルとして規格化されたプロトコルであればよい。 In the embodiment, the case where the first protocol is a protocol based on Open@ADR2.0 and the second protocol is a protocol based on ECHONET Lite has been exemplified. However, embodiments are not limited to this. The first protocol may be a protocol standardized as a protocol used for communication between the power management server 200 and the local control device 360. The second protocol may be any protocol standardized as a protocol used in the facility 300.
 [付記]
 ここでは、第1プロトコルがOpen ADR2.0に準拠するプロトコルであるケースにおいて、エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージの一例について説明する。制御メッセージとしては、EiEventサービスを用いることが可能である。
[Appendix]
Here, an example of a control message including an information element specifying a condition under which the energy storage device stores or outputs energy in a case where the first protocol is a protocol based on Open ADR 2.0 will be described. An EiEvent service can be used as the control message.
 例えば、エネルギー蓄積装置の運転モードを指定する第1情報要素としては、“MaraketContext”を用いることが可能である。エネルギー蓄積装置が蓄積又は出力する指定エネルギー量を指定する第2情報要素としては、Signal Nameが“LOAD DISPATCH”であるシグナルを用いることが可能である。“LOAD DISPATCH”は、エネルギー蓄積装置が蓄積又は出力するエネルギー量を直接的に指定する“setpoint”を含んでもよく、エネルギー蓄積装置が蓄積又は出力するエネルギー量を相対的に指定する“delta”を含んでもよい。 {For example, "MarketContext" can be used as the first information element for specifying the operation mode of the energy storage device. As the second information element for designating the designated energy amount to be stored or output by the energy storage device, it is possible to use a signal whose Signal @ Name is "LOAD @ DISPATCH". “LOAD @ DISpatch” may include “setpoint” that directly specifies the amount of energy stored or output by the energy storage device, and “delta” that relatively specifies the amount of energy stored or output by the energy storage device. May be included.
 或いは、制御メッセージが2つのシグナル(例えば、“LOAD DISPATCH”及び“SIMPLE”)を含むことを前提として、“LOAD DISPATCH”及び“SIMPLE”の一方のシグナルがエネルギー蓄積装置の運転モードを指定する第1情報要素として用いる運用としてもよい。このようなケースにおいて、“LOAD DISPATCH”及び“SIMPLE”の他方のシグナルは、上述した説明と同様に、エネルギー蓄積装置が蓄積又は出力する指定エネルギー量を指定する第2情報要素として用いてもよい。 Alternatively, assuming that the control message includes two signals (for example, “LOAD @ DISPATCH” and “SIMPLE”), one of the signals “LOAD @ DISPATCH” and “SIMPLE” specifies the operation mode of the energy storage device. It is good also as operation used as one information element. In such a case, the other signal of “LOAD @ DISPATCH” and “SIMPLE” may be used as the second information element that specifies the specified energy amount stored or output by the energy storage device, as described above. .
 或いは、制御メッセージが1つのシグナルを含むケースであっても、エネルギー蓄積装置の運転モードを指定する第1情報要素としては、“Signal ID”を用いることが可能である。このようなケースにおいて、エネルギー蓄積装置が蓄積又は出力する指定エネルギー量を指定する第2情報要素としては、上述した説明と同様に、Signal Nameが“LOAD DISPATCH”であるシグナルを用いることが可能である。 Alternatively, even if the control message includes one signal, “Signal @ ID” can be used as the first information element that specifies the operation mode of the energy storage device. In such a case, a signal whose Signal @ Name is "LOAD @ DISPATCH" can be used as the second information element that specifies the designated amount of energy to be stored or output by the energy storage device, as described above. is there.
 本願は、日本国特許出願第2018-136776号(2018年7月20日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。  This application claims the priority of Japanese Patent Application No. 2018-136776 (filed on July 20, 2018), the entire contents of which are incorporated herein.

Claims (10)

  1.  電力系統に接続される2以上の施設を管理する電力管理サーバであって、
     前記電力系統の電力需給バランスを調整する必要がある場合に、前記2以上の施設の少なくともいずれか1つに設けられるエネルギー蓄積装置に適用する運転モードを決定する制御部と、
     前記運転モードの決定に応じて、前記エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージを前記エネルギー蓄積装置に送信する送信部と、を備える電力管理サーバ。
    A power management server that manages two or more facilities connected to a power system,
    When it is necessary to adjust the power supply and demand balance of the power system, a control unit that determines an operation mode to be applied to the energy storage device provided in at least one of the two or more facilities,
    A transmission unit that transmits, to the energy storage device, a control message including an information element that specifies a condition under which the energy storage device stores or outputs energy according to the determination of the operation mode.
  2.  前記制御メッセージは、前記運転モードを指定する第1情報要素及び前記エネルギー蓄積装置が蓄積又は出力する指定エネルギー量を指定する第2情報要素の少なくともいずれか1つを前記情報要素として含む、請求項1に記載の電力管理サーバ。 The control message includes, as the information element, at least one of a first information element that specifies the operation mode and a second information element that specifies a specified amount of energy to be stored or output by the energy storage device. 2. The power management server according to 1.
  3.  前記送信部は、前記運転モードを変更しない場合に、前記第1情報要素を含まずに前記第2情報要素を含む前記制御メッセージを送信する、請求項2に記載の電力管理サーバ。 The power management server according to claim 2, wherein the transmission unit transmits the control message including the second information element without including the first information element when the operation mode is not changed.
  4.  前記送信部は、前記指定エネルギー量を変更しない場合に、前記第2情報要素を含まずに前記第1情報要素を含む前記制御メッセージを送信する、請求項2に記載の電力管理サーバ。 The power management server according to claim 2, wherein the transmission unit transmits the control message including the first information element without including the second information element when the designated energy amount is not changed.
  5.  前記送信部は、前記第1情報要素及び前記第2情報要素の双方を含む前記制御メッセージを送信する、請求項2に記載の電力管理サーバ。 The power management server according to claim 2, wherein the transmission unit transmits the control message including both the first information element and the second information element.
  6.  前記エネルギー蓄積装置がエネルギーの蓄積に用いる電力ソースは、再生可能エネルギーを用いて発電する分散電源及び前記電力系統であり、
     前記運転モードは、前記電力ソースとして前記電力系統を用いずに前記分散電源を用いる第1運転モードと、前記電力ソースとして前記分散電源及び前記電力系統の双方を用いる第2運転モードとを含む、請求項1乃至請求項5のいずれかに記載の電力管理サーバ。
    The power source used by the energy storage device to store energy is a distributed power source that generates power using renewable energy and the power system,
    The operation mode includes a first operation mode using the distributed power source without using the power system as the power source, and a second operation mode using both the distributed power source and the power system as the power source. The power management server according to claim 1.
  7.  前記運転モードは、前記電力系統への逆潮流が許容される第3運転モードと、前記電力系統への逆潮流が許容されない第4運転モードとを含む、請求項1乃至請求項6のいずれかに記載の電力管理サーバ。 7. The operation mode according to claim 1, wherein a third operation mode in which reverse power flow to the power system is allowed and a fourth operation mode in which reverse power flow to the power system is not allowed. 8. The power management server according to 1.
  8.  前記エネルギー蓄積装置に適用されている前記運転モードを示す情報要素を含む報告メッセージを前記エネルギー蓄積装置から受信する受信部を備える、請求項1乃至請求項7のいずれかに記載の電力管理サーバ。 The power management server according to any one of claims 1 to 7, further comprising: a receiving unit configured to receive, from the energy storage device, a report message including an information element indicating the operation mode applied to the energy storage device.
  9.  電力系統に接続される施設であって、電力管理サーバによって管理される施設に設けられるエネルギー蓄積装置であって、
     前記電力系統の電力需給バランスを調整する必要がある場合において、前記エネルギー蓄積装置に適用する運転モードの決定に応じて、前記エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージを前記電力管理サーバから受信する受信部と、
     前記制御メッセージに応じて前記エネルギー蓄積装置の動作を制御する制御部と、を備えるエネルギー蓄積装置。
    An energy storage device that is a facility connected to the power system and is provided in the facility managed by the power management server,
    In the case where it is necessary to adjust the power supply and demand balance of the power system, the information storage device includes an information element that specifies a condition under which the energy storage device stores or outputs energy in accordance with a determination of an operation mode applied to the energy storage device. A receiving unit that receives a control message from the power management server;
    A control unit that controls an operation of the energy storage device according to the control message.
  10.  電力系統に接続される2以上の施設を電力管理サーバが管理する電力管理方法であって、
     前記電力管理サーバが、前記電力系統の電力需給バランスを調整する必要がある場合に、前記2以上の施設の少なくともいずれか1つに設けられるエネルギー蓄積装置に適用する運転モードを決定することと、
     前記運転モードの決定に応じて、前記エネルギー蓄積装置がエネルギーを蓄積又は出力する条件を指定する情報要素を含む制御メッセージを前記エネルギー蓄積装置に送信することと、を含む電力管理方法。
    A power management method in which a power management server manages two or more facilities connected to a power system,
    The power management server determines an operation mode to be applied to an energy storage device provided in at least one of the two or more facilities when it is necessary to adjust a power supply and demand balance of the power system;
    And transmitting a control message to the energy storage device, the control message including an information element designating a condition under which the energy storage device stores or outputs energy according to the determination of the operation mode.
PCT/JP2019/027536 2018-07-20 2019-07-11 Electric power management server, energy accumulating device, and electric power management method WO2020017428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018136776 2018-07-20
JP2018-136776 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017428A1 true WO2020017428A1 (en) 2020-01-23

Family

ID=69164675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027536 WO2020017428A1 (en) 2018-07-20 2019-07-11 Electric power management server, energy accumulating device, and electric power management method

Country Status (1)

Country Link
WO (1) WO2020017428A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024708A1 (en) * 2020-07-29 2022-02-03 京セラ株式会社 Electric power management server, and electric power management method
WO2024058039A1 (en) * 2022-09-13 2024-03-21 京セラ株式会社 Communication device, distributed power supply, and communication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168315A (en) * 2013-01-30 2014-09-11 Sekisui Chem Co Ltd Local power demand control system
WO2017203664A1 (en) * 2016-05-26 2017-11-30 日本電気株式会社 Control device, storage battery control device, control system, battery unit control device, control method, storage battery control method, battery unit control device operating method, and program
JP2018027016A (en) * 2016-11-29 2018-02-15 三菱重工業株式会社 Charging power control circuit and charging facility management device
WO2018052117A1 (en) * 2016-09-15 2018-03-22 京セラ株式会社 Electric power management method, electric power management server, local control device, and electric power management system
JP2018093573A (en) * 2016-11-30 2018-06-14 日本電気株式会社 Storage battery control device, storage battery control system, storage battery control method, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168315A (en) * 2013-01-30 2014-09-11 Sekisui Chem Co Ltd Local power demand control system
WO2017203664A1 (en) * 2016-05-26 2017-11-30 日本電気株式会社 Control device, storage battery control device, control system, battery unit control device, control method, storage battery control method, battery unit control device operating method, and program
WO2018052117A1 (en) * 2016-09-15 2018-03-22 京セラ株式会社 Electric power management method, electric power management server, local control device, and electric power management system
JP2018027016A (en) * 2016-11-29 2018-02-15 三菱重工業株式会社 Charging power control circuit and charging facility management device
JP2018093573A (en) * 2016-11-30 2018-06-14 日本電気株式会社 Storage battery control device, storage battery control system, storage battery control method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022024708A1 (en) * 2020-07-29 2022-02-03 京セラ株式会社 Electric power management server, and electric power management method
JP7466651B2 (en) 2020-07-29 2024-04-12 京セラ株式会社 Power management server and power management method
WO2024058039A1 (en) * 2022-09-13 2024-03-21 京セラ株式会社 Communication device, distributed power supply, and communication method

Similar Documents

Publication Publication Date Title
US11362516B2 (en) Power management server and power management method
US11379937B2 (en) Power management server and power management method
WO2020017428A1 (en) Electric power management server, energy accumulating device, and electric power management method
JP7014903B2 (en) Device management server, device management system and device management method
WO2018139603A1 (en) Power supply control method, power supply control device, and power supply control system
JP7203269B2 (en) Power management method and power management device
JP2019017154A (en) Power management method and power management device
JP2019030123A (en) Power supply management method, power supply management server and power supply management device
JP6975125B2 (en) Power management server and power management method
US20220094164A1 (en) Energy management apparatus, energy storage apparatus, and energy management method
JP2023005861A (en) Power management device, power management system, and power management method
WO2018052117A1 (en) Electric power management method, electric power management server, local control device, and electric power management system
JP7237851B2 (en) Power management server and power management method
JP7480075B2 (en) ELECTRICITY STORAGE DEVICE MANAGEMENT SYSTEM AND ELECTRICITY STORAGE DEVICE MANAGEMENT METHOD
JP2022169292A (en) Power management device, power management system, and power management method
JP7037583B2 (en) Power management system, power management server and power management method
JP2022087790A (en) Power management server and power management method
JP2022114955A (en) Power storage device management system and power storage device management method
JP2022191478A (en) Power management device and power management method
JPWO2020022210A1 (en) Distributed generation system, control device, and distributed generation control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP