WO2018052117A1 - Electric power management method, electric power management server, local control device, and electric power management system - Google Patents

Electric power management method, electric power management server, local control device, and electric power management system Download PDF

Info

Publication number
WO2018052117A1
WO2018052117A1 PCT/JP2017/033466 JP2017033466W WO2018052117A1 WO 2018052117 A1 WO2018052117 A1 WO 2018052117A1 JP 2017033466 W JP2017033466 W JP 2017033466W WO 2018052117 A1 WO2018052117 A1 WO 2018052117A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
facility
battery device
message
Prior art date
Application number
PCT/JP2017/033466
Other languages
French (fr)
Japanese (ja)
Inventor
一尊 中村
啓晃 金内
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018539186A priority Critical patent/JPWO2018052117A1/en
Publication of WO2018052117A1 publication Critical patent/WO2018052117A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a power management method, a power management server, a local control device, and a power management system.
  • Step A is provided for performing a charging operation of the storage battery device when a power flow is not possible.
  • the power management server manages facilities connected to the power system.
  • the power management server includes a transmission unit that transmits a power command message for controlling a distributed power source provided in the facility to a local control device provided in the facility.
  • the power command message includes a charging message instructing charging of a storage battery device provided in the facility.
  • the charging message instructs to charge the storage battery device when a reverse power flow from the facility to the power system is not possible, and when the reverse power flow is possible, the charging operation of the storage battery device Including a first message for instructing to forbid.
  • the local control device is a distributed power source provided in the facility when the local control device provided in the facility connected to the power system can reversely flow from the facility to the power system.
  • the control part which performs the charge operation of the said storage battery apparatus when the said reverse power flow is not possible without performing the charge operation of the storage battery apparatus which is one of these is provided.
  • a power management system includes a power management server that manages a facility connected to a power system, and a local control device provided in the facility.
  • the local control device When the local control device is capable of reverse power flow from the facility to the power system, the local control device can perform the reverse power flow without performing a charging operation of a storage battery device that is one of the distributed power sources provided in the facility. Otherwise, the storage battery device is charged.
  • FIG. 1 is a diagram illustrating a power management system 1 according to the embodiment.
  • FIG. 2 is a diagram illustrating the power management server 300 according to the embodiment.
  • FIG. 3 is a diagram illustrating the local control device 400 according to the embodiment.
  • FIG. 4 is a diagram illustrating a power management method according to the embodiment.
  • FIG. 5 is a diagram illustrating a power management method according to the embodiment.
  • FIG. 6 is a diagram illustrating the facility 100 according to the first modification.
  • FIG. 7 is a diagram illustrating a facility 100 according to the third modification.
  • a VPP is taken as an example of a system that uses the storage battery device 140 provided in the facility 100 as a distributed power source.
  • the power management system 1 includes a facility 100, a network 200, and a power management server 300.
  • the facility 100A to the facility 100C are illustrated as the facility 100.
  • the facility 100B and the facility 100C have the same configuration as the facility 100A, only the facility 100A will be described here.
  • the facility 100 is connected to the power system 10 and includes an EMS 110, a power consuming device 120, a solar cell device 130, and a storage battery device 140.
  • the device provided in the facility is connected to the main trunk line 20 that branches from the power system 10.
  • the solar cell device 130 and the storage battery device 140 are connected to the in-home trunk line 20 in the order of the solar cell device 130 and the storage battery device 140 in the order from the power system 10.
  • the EMS 110 is an apparatus (Energy Management System) that manages the power of equipment provided in the facility 100.
  • the EMS 110 may be a cloud server via the network 200.
  • the EMS 110 is an example of a local control device, and is an example of a virtual end node (VEN; Virtual End Node) device.
  • VEN virtual End node
  • the power consuming device 120 is a facility or device that consumes power.
  • the power consuming device 120 includes equipment or devices such as a refrigerator, a freezer, lighting, an air conditioner, or a television, for example.
  • the power consuming device 120 may include a single facility or device, or may include a plurality of facilities or devices.
  • Solar cell device 130 is an example of a distributed power source used in VPP and an example of a power generation device.
  • the solar cell device 130 includes a solar cell 131 and a PCS 132.
  • the solar cell 131 is a device that generates power in response to light reception.
  • the PCS 132 is a device (Power Conditioning System) that converts direct current (hereinafter referred to as DC) power discharged from the storage battery 141 into alternating current (hereinafter referred to as AC) power.
  • DC direct current
  • AC alternating current
  • a wattmeter 138 is provided on a power line (first power line) that connects the home trunk 20 and the solar cell device 130.
  • the wattmeter 138 is a wattmeter that measures the generated power of the solar cell device 130, and is, for example, at least one of CT (Current Transformer) and VT (Voltage Transformer). Therefore, the wattmeter 138 is provided closer to the solar cell device 130 than the connection point P1 between the first power line and the home trunk line 20.
  • the PCS 132 is connected to the wattmeter 138 by a wired or wireless signal line, and controls the solar cell 131 by, for example, the MPPT (Maximum Power Point Tracking) method based on the measurement result of the wattmeter 138.
  • MPPT Maximum Power Point Tracking
  • the PCS 132 optimizes the operating point (the point determined by the operating point voltage value and the power value, or the point determined by the operating point voltage value and the current value) of the solar cell 131.
  • the power meter 138 is connected to the PCS 142 by a wired or wireless signal line.
  • the storage battery device 140 is an example of a distributed power source used in VPP.
  • the storage battery device 140 includes a storage battery 141 and a PCS 142.
  • the storage battery 141 is a device that charges power or discharges power.
  • the PCS 142 is a device (Power Conditioning System) that converts DC power discharged from the storage battery 141 into AC power and converts AC power into DC power charged in the storage battery 141.
  • a wattmeter 148 is provided on the home trunk 20.
  • the wattmeter 148 is a wattmeter that measures the power consumption of a downstream device (here, the EMS 110, the power consuming device 120, and the storage battery device 140) provided on the downstream side of the connection point P1, and includes, for example, at least CT and VT. Either.
  • the downstream means a flow in a direction away from the power system 10. Therefore, the wattmeter 138 is provided between the connection point P1 and the connection point P2.
  • the connection point P ⁇ b> 2 is a connection point between the home main line 20 and the power line (second power line) connecting the home main line 20 and the storage battery device 140.
  • the PCS 142 is connected to the power meter 148 via a wired or wireless signal line, and controls the storage battery 141 so as not to perform a reverse power flow from the storage battery device 140 to the power system 10 based on the measurement result of the power meter 148. .
  • the power meter 148 measures the power obtained by adding the charging power of the storage battery device 140 to the power consumption of the EMS 110 and the power consuming device 120, or uses the power consumption of the EMS 110 and the power consuming device 120. Measure the power minus the discharge power. Therefore, the PCS 142 controls the storage battery 141 so that the measurement result of the wattmeter 148 does not become a negative value.
  • the network 200 is a communication line that connects the facility 100 and the power management server 300.
  • the network 200 may be, for example, a public line such as the Internet or a mobile communication network, or may be a dedicated line such as a VPN (Virtual Private Network).
  • a public line for example, a B route line that does not pass through the smart meter provided in the facility 100 may be used.
  • a dedicated line an A route line passing through a smart meter provided in the facility 100 may be used.
  • the smart meter is a power meter that is managed by a power generation company such as an electric power company and is used for calculating the incentive for charging or selling electric power used by the facility 100.
  • a plurality of smart meters may be installed in the facility 100.
  • the power management server 300 is a server managed by a business operator such as a power generation business, a power transmission / distribution business, or a retail business.
  • the power management server 300 may be managed by an aggregator corresponding to a power transmission / distribution business or a retail business.
  • the aggregator is a business operator that manages the power supply / demand balance of the facility 100 contracted with the aggregator.
  • the aggregator may be entrusted with the management of the power supply-demand balance from a power generation company such as an electric power company.
  • the power management server 300 is an example of a virtual top node (VTN; Virtual Top Node) device.
  • VTN Virtual Top Node
  • the power management server 300 may transmit a power command message for controlling a distributed power source provided in the facility 100.
  • the power command message may be a power control message for requesting control of the operation of the distributed power source installed in the facility 100.
  • the power command message may be a power flow control message for requesting control (increase, decrease or maintenance) of power flow from the power system 10 to the facility 100, and control of reverse power flow from the facility 100 to the power system 10 ( It may be a reverse power flow control message requesting (increase, decrease or maintain).
  • the format of the power command message a unique format may be used, or a format that conforms to an automatic demand response (ADR) may be used. More specifically, the power command message can use a method based on the OpenADR2.0 standard.
  • the power management server 300 includes a communication unit 310, a management unit 320, and a control unit 330.
  • the communication unit 310 includes a communication module and the like, and communicates with the facility 100. For example, the communication unit 310 transmits a power command message to the facility 100. The communication unit 310 receives distributed power supply information, which will be described later, from the facility 100.
  • the management unit 320 is configured by a storage medium such as a non-volatile memory and / or HDD, and manages a plurality of facilities 100 connected to the power system 10.
  • the control unit 330 includes a CPU, a memory, and the like, and controls the communication unit 310 and the management unit 320.
  • the control unit 330 adjusts the power supply / demand balance of the plurality of facilities 100 managed by the management unit 320 as a whole.
  • the power command message includes a message for controlling the storage battery device 140.
  • a message includes a charging message instructing a charging operation of the storage battery device 140, a discharging message instructing a discharging operation of the storage battery device 140, and a standby message instructing a standby operation of the storage battery device 140.
  • the charging message will be mainly described.
  • the charging message may be a quick charging message instructing a quick charging operation in which the charging time is shorter than normal charging in the storage battery device 140.
  • the power command message may include a test message for instructing a test operation for confirming the operation of the storage battery device 140, an automatic message for instructing an automatic operation of the storage battery device 140, and the storage battery device 140. May be included, and an effective capacity recalculation processing message that is an instruction to recalculate the effective capacity of the storage battery device 140 may be included.
  • the charging message instructs to perform the charging operation of the storage battery device 140 when the reverse flow from the facility 100 to the power system 10 is not possible, and prohibits the charging operation of the storage battery device 140 when the reverse flow is possible
  • the charging message may include a second message that instructs to perform the charging operation of the storage battery device 140 regardless of whether or not a reverse power flow from the facility 100 to the power system 10 is possible.
  • “A reverse power flow is possible” may be a state where reverse power flow is actually performed, or a state where reverse power flow is not actually performed but reverse power flow is allowed.
  • the first message indicates the charging operation of the storage battery device 140 when the charging power of the storage battery device 140 exceeds the power flow from the power system 10 to the facility 100 while the storage battery device 140 is performing the charging operation. It may be a message instructing to stop. The first message may be a message instructing to start the charging operation of the storage battery device 140 when there is a power flow from the power system 10 to the facility 100 in a state where the storage battery device 140 is not performing the charging operation. Good.
  • P_GRID represents the tidal power from the power system 10 to the facility 100
  • P_PV represents the generated power of the solar cell device 130.
  • P_BT represents charging power (or discharging power) of the storage battery device 140
  • P_LOAD represents power consumption of the EMS 110 and the power consuming device 120.
  • the charging power of the storage battery device 140 is represented by a positive value
  • the discharging power of the storage battery device 140 is represented by a negative value.
  • the tidal current power (P_GRID) can be obtained from the measurement result (P_PV) of the wattmeter 138 and the measurement result (P_BT + P_LOAD) of the wattmeter 148.
  • the charge power (discharge power) of the storage battery device 140 can be acquired by the PCS 142.
  • the power command message may include a continuation condition for continuing control by the power command message.
  • the continuation conditions are the time condition (from XX hour to XX hour), the discharge condition (until the power of XX kWh is discharged, or the remaining amount of charge is XX kWh.
  • Charging condition (until the remaining amount of electricity exceeds OO kWh until the power of OO kWh is charged).
  • the time condition and the discharge condition may be combined, and the time condition and the charging condition may be combined.
  • the time condition may be specified by the duration (or remaining time) from the reception of the power command message, may be specified by the duration (or remaining time) from a predetermined start time, or only the end time May be specified. In such a case, the discharge condition and the charge condition may be specified in kW.
  • the local control device may be a device that controls the storage battery device 140 in the facility 100.
  • the local control device may be the EMS 110 described above or the PCS 142 described above.
  • the local control device may be configured by both the EMS 110 and the PCS 142.
  • the local control device may be considered to be the PCS 142.
  • the local control device 400 includes a communication unit 410 and a control unit 420.
  • the communication unit 410 includes a communication module and the like, and communicates with the power management server 300. For example, the communication unit 410 receives a power command message from the power management server 300. As described above, the power command message includes at least the first message as the charging message.
  • the control unit 420 includes a CPU and a memory, and controls the communication unit 410.
  • the control unit 420 controls the storage battery device 140 in the facility 100.
  • control unit 420 controls the storage battery device 140 according to at least the first message.
  • the control unit 420 performs the charging operation of the storage battery device 140 when the reverse flow from the facility 100 to the power system 10 is not possible in the operation according to the first message, and when the reverse flow is possible, the storage battery device 140 charging operation is not performed.
  • step S10 the power management server 300 transmits a power command message to the local control device 400.
  • the power command message includes the first message described above.
  • step S11 the local control device 400 controls the operating state of the distributed power source according to the power command message.
  • the local control device 400 continues control by the power command message until the control period expires.
  • the control period is defined by the continuation condition described above.
  • step S12 the power management server 300 transmits a message (result request) requesting the operation control result of the storage battery device 140 to the local control device 400.
  • step S ⁇ b> 13 the local control device 400 transmits a message (result response) including the operation control result of the storage battery device 140 to the power management server 300.
  • the power management server 300 gives an incentive accompanying a change in the local operation plan optimized in the facility 100.
  • the incentive may be a monetary reward, a reward based on an intangible object such as a gift certificate or a coupon, or a reward based on a tangible object such as a prize.
  • step S ⁇ b> 20 the local control device 400 determines whether or not the storage battery device 140 is operating. Examples of the state in which the storage battery device 140 is not in operation include a standby operation or a discharge operation of the storage battery device 140. If the determination result is YES, the process of step S21 is performed, and if the determination result is NO, the process of step S23 is performed.
  • step S21 the local control device 400 determines whether or not the charging power (P_BT) exceeds the tidal power (P_GRID). If the determination result is YES, the process of step S22 is performed, and if the determination result is NO, the process of step S25 is performed.
  • the state where the charging power (P_BT) exceeds the tidal power (P_GRID) is a state where reverse power flow from the facility 100 to the power system 10 is possible unless the storage battery device 140 performs the charging operation.
  • step S22 the local control device 400 stops the charging operation of the storage battery device 140.
  • Local control device 400 instructs standby operation of storage battery device 140.
  • step S23 the local control device 400 determines whether or not there is a power flow from the power system 10 to the facility 100. Whether there is a reverse power flow can be determined by power flow power (P_GRID). If the determination result is YES, the process of step S24 is performed, and if the determination result is NO, the process of step S25 is performed.
  • the state where there is a power flow is a state where reverse power flow from the facility 100 to the power system 10 is not possible even when the storage battery device 140 performs a charging operation.
  • step S24 the local control device 400 starts the charging operation of the storage battery device 140.
  • the charging operation of the storage battery device 140 is performed so that the charging power (P_BT) does not exceed the tidal power (P_GRID).
  • step S25 the local control device 400 determines whether or not the control period has expired. If the determination result is YES, the process of step S26 is performed, and if the determination result is NO, the process returns to step S20.
  • step S26 the local control device 400 controls the operation of the storage battery device 140 in order to optimize the power state in the facility 100 (hereinafter referred to as local optimization).
  • the local optimization may be performed after a certain period has elapsed since the control period has expired.
  • the storage battery device 140 performs a standby operation for a certain period.
  • the embodiment when a reverse power flow from the facility 100 to the power system 10 is not possible, an instruction is given to perform the charging operation of the storage battery device 140, and a reverse power flow is possible.
  • the first message that instructs to prohibit the charging operation of the storage battery device 140 is defined as the charging message. According to such a structure, the user of the facility 100 mentioned above can suppress a disadvantage.
  • the power management server 300 dynamically transmits a power command message while taking into consideration the generated power of the solar cell device 130.
  • the power command message may be transmitted frequently. There is a concern that there may be a delay associated with grasping the generated power of the solar cell device 130.
  • such a problem can be solved by defining the first message described above as a charging message.
  • the tidal power (P_GRID) from the power system 10 to the facility 100 is acquired from the measurement result (P_PV) of the power meter 138 and the measurement result (P_BT + P_LOAD) of the power meter 148.
  • the tidal power (P_GRID) is acquired from the measurement result of the wattmeter 118 that measures the tidal power (P_GRID) as shown in FIG.
  • the wattmeter 118 is provided on the in-home main line 20 upstream from the connection point P1, and is, for example, at least one of CT and VT. Therefore, the wattmeter 118 can measure the tidal power (P_GRID).
  • the tidal power may be acquired from the above-described smart meter measurement result. Since the smart meter measures the power used or the power sold in the facility 100, the smart meter is provided at the same position as the power meter 118. Therefore, the smart meter can measure the tidal current power (P_GRID).
  • the first message is generated when the power generation amount of the power generation device provided in the facility 100 exceeds the power consumption amount of the load provided in the facility 100.
  • indicates to stop the charging operation of the storage battery apparatus 140 may be sufficient.
  • the first message is for charging the storage battery device 140 when the power generation amount of the power generation device provided in the facility 100 falls below the power consumption amount of the load provided in the facility 100 in a state where the storage battery device 140 is not performing the charging operation. It may be a message instructing to start the operation.
  • the load means a device excluding the storage battery device 140 among devices provided in the facility 100. In the example illustrated in FIG. 1, the load is the EMS 110 and the power consuming device 120.
  • the power amount means an instantaneous power value (W) or a power amount value (Wh) for a certain period.
  • the electric energy may be an instantaneous current value (A) or a charge value (Ah) for a certain period.
  • the first message only needs to include a condition that can be determined by the local control device 400 as a condition for stopping the charging operation of the storage battery device 140.
  • a condition is a condition that a reverse power flow from the facility 100 to the power system 10 is possible unless the storage battery device 140 is charged.
  • the first message only needs to include a condition that can be determined by the local control device 400 as a condition for starting the charging operation of the storage battery device 140.
  • a condition is a condition that a reverse power flow from the facility 100 to the power system 10 is not possible even when the storage battery device 140 is charged.
  • the PCS of the solar cell 131 and the storage battery 141 is one PCS 152 connected to both the solar cell 131 and the storage battery 141 as shown in FIG.
  • the facility 100 includes a power meter 158 and a meter 160.
  • the power meter 158 is provided on the main trunk line 20 upstream of the connection point P3.
  • the connection point P3 is a connection point between the home main line 20 and the power line (third power line) connecting the home main line 20 and the PCS 152 (meter 160).
  • the wattmeter 158 is a wattmeter for controlling the storage battery device 140 so as not to perform reverse power flow from the storage battery 141 to the power system 10, and is, for example, at least one of CT and VT.
  • the meter 160 is a power meter installed by a business operator that manages the power management server 300, and measures the output power of the PCS 158.
  • the meter 160 is connected to the power management server 300 via a wired or wireless signal line.
  • the output power of the PCS 158 may be a mixture of the power derived from the solar battery 131 and the power derived from the storage battery 141.
  • the power management server 300 to distinguish and acquire the power derived from the solar battery 131 and the power derived from the storage battery 141 from the measurement result of the meter 160.
  • a third message instructing to prohibit is defined as a power command message.
  • the third message may be a message instructing to prohibit both the charging operation and the discharging operation when the power generation apparatus is generating power.
  • a fourth message that allows reverse power flow after discharging the power charged in the storage battery 141 at least in a self-supporting state is defined as a power command message.
  • the fourth message may be a message that allows reverse power flow after discharging all of the power charged in the storage battery 141 in a self-supporting state in the reconnection state.
  • the fourth message may be a message for prohibiting reverse power flow until the power charged in the storage battery 141 is discharged at least in a self-supporting state.
  • the fourth message may be used in combination with the third message described in the third modification.
  • the third message and the fourth message may be realized by one message.
  • the power command message does not permit the charging operation of the storage battery 141 by the power generation of the power generation device when the storage battery 141 is connected to the power system 10, and the charging operation of the storage battery 141 by the power generation of the power generation device in the independent state. May be included.
  • such a power command message does not allow reverse power flow until at least the power charged in the storage battery 141 is discharged in a self-supporting state, and at least reverse power flow after discharging the power charged in the storage battery 141 in a self-supporting state. It may be a message that allows
  • the power charged in the storage battery 141 in the self-supporting state may be the generated power of the power generation device when the source power of the storage battery 141 can be identified.
  • the power charged in the storage battery 141 in the self-supporting state may be the power charged in the storage battery 141 when the reconnection is performed when the source power of the storage battery 141 is not identifiable.
  • the state where power generation by the power generation device is being performed may be an example of a state where reverse power flow is not possible.
  • An “independent state” may be an example of a state where reverse power flow is not possible.
  • the “state until the electric power charged in the storage battery 141 is discharged in the self-supporting state” may be an example of a state where reverse power flow is not possible.
  • the local control device 400 may autonomously perform the operation described in the modification example 4 from the above-described embodiment without depending on the power command message received from the power management server 300.
  • the local control device 400 performs the charging operation of the storage battery 141 when the reverse power flow is possible without performing the charging operation of the storage battery device (here, the storage battery 141). I do.
  • the local control device 400 permits the charging operation of the storage battery 141 by the power generation of the power generation device in the self-sustaining state and charges the storage battery 141 in at least the self-supporting state in the re-connected state, as in the fourth modification.
  • the reverse power flow may be allowed after the discharged power is discharged.
  • the local control device 400 may allow the reverse power flow after discharging all of the electric power charged in the storage battery 141 in a self-supporting state in the reconnection state.
  • the local control device 400 is at least one of the EMS 110 and the PCS 142 .
  • the local control device 400 may be a remote controller that controls the PCS 142.
  • the charging operation of the storage battery device 140 is instructed. That is, the time zone in which the reverse power flow is not possible is a time zone in which the charging operation of the storage battery device 140 is allowed (hereinafter, a chargeable time zone).
  • the charging operation of the storage battery device 140 is prohibited. That is, the time zone in which the reverse power flow is possible is a time zone during which the charging operation of the storage battery device 140 is prohibited (hereinafter referred to as a charging prohibited time zone).
  • At least one of the chargeable time zone and the charge prohibition time zone may be specified by the power management server 300 or may be set in the local control device 400. The setting of at least one of the chargeable time zone and the charge prohibition time zone in the local control device 400 may be performed by an operator before factory shipment or may be performed by an operator after factory shipment.
  • the solar cell device 130 is exemplified as the power generation device provided in the facility 100.
  • the power generation device may be a fuel cell device.
  • the fuel cell device includes a solid oxide fuel cell (SOFC), a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), and a molten fuel cell. Any of carbonate type fuel cells (MCFC: Molten Carbonate Fuel Cell) may be used.
  • the power meter that the facility 100 has is not particularly limited. If it is assumed that the power meter can be placed at an arbitrary position, the first message instructs the storage battery device 140 to be charged when the reverse flow from the facility 100 to the power system 10 is not possible. In the case where reverse power flow is possible, any instruction that prohibits the charging operation of the storage battery device 140 may be used. That is, the condition for stopping the charging operation of the storage battery device 140 by the first message can be determined according to the arrangement of the wattmeter. The condition for starting the charging operation of the storage battery device 140 by the first message is also the wattmeter. It is possible to determine according to the arrangement of.
  • a wattmeter (a wattmeter 148 shown in FIGS. 1 and 6 and a wattmeter 158 shown in FIG. 7) for preventing a reverse flow from the storage battery device 140 to the power system 10 is provided.
  • a wattmeter (a wattmeter 148 shown in FIGS. 1 and 6 and a wattmeter 158 shown in FIG. 7) for preventing a reverse flow from the storage battery device 140 to the power system 10 is provided.
  • the reverse power flow may not always be prohibited.
  • the reverse power flow may be temporarily permitted by a request from the power management server 300.
  • the communication between the power management server 300 and the local control device 400 may be performed by a method conforming to the Open ADR standard.
  • a message may be transmitted from the power management server 300 to the local control device 400 as a response of a polling signal from the local control device 400 to the power management server 300.
  • ordrPoll can be used as the polling signal.
  • oaderDistributionEvent can be used as the power command message.
  • TELEMETRY USAGE and TELEMETRY STATUS can be used as the distributed power information response and the actual response.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

Provided is an electric power management method, provided with step A in which a local control device provided to a facility connected to an electric power system performs an operation for charging a storage cell device, which is one of distributed power sources provided to the facility, if reverse flow from the facility to the electric power system is not possible, and does not perform an operation for charging the storage cell device if the reverse flow is possible.

Description

電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システムPower management method, power management server, local control device, and power management system
 本発明は、電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システムに関する技術である。 The present invention relates to a power management method, a power management server, a local control device, and a power management system.
 近年、電力系統の電力需給バランスを維持するために、電力系統から施設への潮流量又は施設から電力系統への逆量流を抑制する技術が知られている(例えば、特許文献1,2)。また、複数の施設に設けられる分散電源を電力系統に電力を供給する電源として用いるシステム(以下、VPP;Virtual Power Plant)が注目を集めている。 2. Description of the Related Art In recent years, in order to maintain the power supply / demand balance of a power system, a technique for suppressing a tidal flow from the power system to the facility or a reverse flow from the facility to the power system is known (for example, Patent Documents 1 and 2). . Further, a system that uses a distributed power source provided in a plurality of facilities as a power source for supplying power to an electric power system (hereinafter referred to as VPP: Virtual Power Plant) has attracted attention.
特開2013-169104号公報JP 2013-169104 A 特開2014-128107号公報JP 2014-128107 A
 第1の開示に係る電力管理方法は、施設から電力系統への逆潮流が可能である場合に、前記施設に設けられる分散電源の一つである蓄電池装置の充電動作を行わずに、前記逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行うステップAを備える。 In the power management method according to the first disclosure, when the reverse power flow from the facility to the power system is possible, the reverse operation is performed without performing the charging operation of the storage battery device which is one of the distributed power sources provided in the facility. Step A is provided for performing a charging operation of the storage battery device when a power flow is not possible.
 第2の開示に係る電力管理サーバは、電力系統に接続された施設を管理する。前記電力管理サーバは、前記施設に設けられるローカル制御装置に対して、前記施設に設けられる分散電源を制御するための電力指令メッセージを送信する送信部を備える。前記電力指令メッセージは、前記施設に設けられる蓄電池装置の充電を指示する充電メッセージを含む。前記充電メッセージは、前記施設から前記電力系統への逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行うように指示し、前記逆潮流が可能である場合に、前記蓄電池装置の充電動作を禁止するように指示する第1メッセージを含む。 The power management server according to the second disclosure manages facilities connected to the power system. The power management server includes a transmission unit that transmits a power command message for controlling a distributed power source provided in the facility to a local control device provided in the facility. The power command message includes a charging message instructing charging of a storage battery device provided in the facility. The charging message instructs to charge the storage battery device when a reverse power flow from the facility to the power system is not possible, and when the reverse power flow is possible, the charging operation of the storage battery device Including a first message for instructing to forbid.
 第3の開示に係るローカル制御装置は、電力系統に接続された施設に設けられるローカル制御装置が、前記施設から前記電力系統への逆潮流が可能である場合に、前記施設に設けられる分散電源の一つである蓄電池装置の充電動作を行わずに、前記逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行う制御部を備える。 The local control device according to the third disclosure is a distributed power source provided in the facility when the local control device provided in the facility connected to the power system can reversely flow from the facility to the power system. The control part which performs the charge operation of the said storage battery apparatus when the said reverse power flow is not possible without performing the charge operation of the storage battery apparatus which is one of these is provided.
 第4の開示に係る電力管理システムは、電力系統に接続された施設を管理する電力管理サーバと、前記施設に設けられるローカル制御装置とを備える。前記ローカル制御装置は、前記施設から前記電力系統への逆潮流が可能である場合に、前記施設に設けられる分散電源の一つである蓄電池装置の充電動作を行わずに、前記逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行う。 A power management system according to a fourth disclosure includes a power management server that manages a facility connected to a power system, and a local control device provided in the facility. When the local control device is capable of reverse power flow from the facility to the power system, the local control device can perform the reverse power flow without performing a charging operation of a storage battery device that is one of the distributed power sources provided in the facility. Otherwise, the storage battery device is charged.
図1は、実施形態に係る電力管理システム1を示す図である。FIG. 1 is a diagram illustrating a power management system 1 according to the embodiment. 図2は、実施形態に係る電力管理サーバ300を示す図である。FIG. 2 is a diagram illustrating the power management server 300 according to the embodiment. 図3は、実施形態に係るローカル制御装置400を示す図である。FIG. 3 is a diagram illustrating the local control device 400 according to the embodiment. 図4は、実施形態に係る電力管理方法を示す図である。FIG. 4 is a diagram illustrating a power management method according to the embodiment. 図5は、実施形態に係る電力管理方法を示す図である。FIG. 5 is a diagram illustrating a power management method according to the embodiment. 図6は、変更例1に係る施設100を示す図である。FIG. 6 is a diagram illustrating the facility 100 according to the first modification. 図7は、変更例3に係る施設100を示す図である。FIG. 7 is a diagram illustrating a facility 100 according to the third modification.
 以下において、実施形態について図面を参照しながら説明する。なお、以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。 Hereinafter, embodiments will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
 但し、図面は模式的なものであり、各寸法の比率などは現実のものとは異なる場合があることに留意すべきである。従って、具体的な寸法などは以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係又は比率が異なる部分が含まれていることは勿論である。 However, it should be noted that the drawings are schematic and ratios of dimensions may differ from actual ones. Therefore, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships or ratios are included between the drawings.
 [実施形態]
 (電力管理システム)
 以下において、実施形態に係る電力管理システムについて説明する。実施形態では、施設100に設けられる蓄電池装置140を分散電源として用いるシステムとしてVPPを例に挙げる。
[Embodiment]
(Power management system)
Hereinafter, the power management system according to the embodiment will be described. In the embodiment, a VPP is taken as an example of a system that uses the storage battery device 140 provided in the facility 100 as a distributed power source.
 図1に示すように、電力管理システム1は、施設100と、ネットワーク200と、電力管理サーバ300とを有する。実施形態では、施設100A~施設100Cが施設100として例示されている。しかしながら、施設100B及び施設100Cは施設100Aと同様の構成を有するため、ここでは、施設100Aについてのみ説明する。 As shown in FIG. 1, the power management system 1 includes a facility 100, a network 200, and a power management server 300. In the embodiment, the facility 100A to the facility 100C are illustrated as the facility 100. However, since the facility 100B and the facility 100C have the same configuration as the facility 100A, only the facility 100A will be described here.
 施設100は、電力系統10に接続されており、EMS110と、電力消費機器120と、太陽電池装置130と、蓄電池装置140とを有する。実施形態では、施設に設けられる装置は、電力系統10から分岐する宅内主幹線20に接続される。太陽電池装置130及び蓄電池装置140は、電力系統10から近い順に太陽電池装置130及び蓄電池装置140の順で宅内主幹線20に接続されている。 The facility 100 is connected to the power system 10 and includes an EMS 110, a power consuming device 120, a solar cell device 130, and a storage battery device 140. In the embodiment, the device provided in the facility is connected to the main trunk line 20 that branches from the power system 10. The solar cell device 130 and the storage battery device 140 are connected to the in-home trunk line 20 in the order of the solar cell device 130 and the storage battery device 140 in the order from the power system 10.
 EMS110は、施設100に設けられる設備の電力を管理する装置(Energy Management System)である。EMS110は、ネットワーク200を介したクラウドサーバであってもよい。EMS110は、ローカル制御装置の一例であり、バーチャルエンドノード(VEN;Virtual End Node)装置の一例である。 The EMS 110 is an apparatus (Energy Management System) that manages the power of equipment provided in the facility 100. The EMS 110 may be a cloud server via the network 200. The EMS 110 is an example of a local control device, and is an example of a virtual end node (VEN; Virtual End Node) device.
 電力消費機器120は、電力を消費する設備又は機器である。電力消費機器120は、例えば、冷蔵庫、冷凍庫、照明、エアコン又はテレビなどの設備又は機器を含む。電力消費機器120は、単数の設備又は機器を含んでもよく、複数の設備又は機器を含んでもよい。 The power consuming device 120 is a facility or device that consumes power. The power consuming device 120 includes equipment or devices such as a refrigerator, a freezer, lighting, an air conditioner, or a television, for example. The power consuming device 120 may include a single facility or device, or may include a plurality of facilities or devices.
 太陽電池装置130は、VPPで用いる分散電源の一例であり、発電装置の一例でもある。太陽電池装置130は、太陽電池131と、PCS132とを有する。太陽電池131は、受光に応じて発電を行う装置である。PCS132は、蓄電池141から放電される直流(以下、DC;Direct Current)電力を交流(以下、AC;Alternating Current)電力に変換する装置(Power Conditioning System)である。 Solar cell device 130 is an example of a distributed power source used in VPP and an example of a power generation device. The solar cell device 130 includes a solar cell 131 and a PCS 132. The solar cell 131 is a device that generates power in response to light reception. The PCS 132 is a device (Power Conditioning System) that converts direct current (hereinafter referred to as DC) power discharged from the storage battery 141 into alternating current (hereinafter referred to as AC) power.
 実施形態では、宅内主幹線20と太陽電池装置130とを接続する電力線(第1電力線)上に電力計138が設けられる。電力計138は、太陽電池装置130の発電電力を計測する電力計であり、例えば、CT(Current Transfomer)及びVT(Voltage Transfomer)の少なくともいずれかである。従って、電力計138は、第1電力線と宅内主幹線20との接続点P1よりも太陽電池装置130側に設けられる。PCS132は、有線又は無線の信号線によって電力計138と接続されており、例えば、電力計138の測定結果に基づいて、MPPT(Maximum Power Point Tracking)法によって太陽電池131を制御する。PCS132は、太陽電池131の動作点(動作点電圧値及び電力値によって定まる点、又は、動作点電圧値と電流値とによって定まる点)を最適化する。実施形態では、電力計138は、有線又は無線の信号線によってPCS142と接続される。 In the embodiment, a wattmeter 138 is provided on a power line (first power line) that connects the home trunk 20 and the solar cell device 130. The wattmeter 138 is a wattmeter that measures the generated power of the solar cell device 130, and is, for example, at least one of CT (Current Transformer) and VT (Voltage Transformer). Therefore, the wattmeter 138 is provided closer to the solar cell device 130 than the connection point P1 between the first power line and the home trunk line 20. The PCS 132 is connected to the wattmeter 138 by a wired or wireless signal line, and controls the solar cell 131 by, for example, the MPPT (Maximum Power Point Tracking) method based on the measurement result of the wattmeter 138. The PCS 132 optimizes the operating point (the point determined by the operating point voltage value and the power value, or the point determined by the operating point voltage value and the current value) of the solar cell 131. In the embodiment, the power meter 138 is connected to the PCS 142 by a wired or wireless signal line.
 蓄電池装置140は、VPPで用いる分散電源の一例である。蓄電池装置140は、蓄電池141と、PCS142とを有する。蓄電池141は、電力の充電又は電力の放電を行う装置である。PCS142は、蓄電池141から放電されるDC電力をAC電力に変換し、AC電力を蓄電池141に充電されるDC電力に変換する装置(Power Conditioning System)である。 The storage battery device 140 is an example of a distributed power source used in VPP. The storage battery device 140 includes a storage battery 141 and a PCS 142. The storage battery 141 is a device that charges power or discharges power. The PCS 142 is a device (Power Conditioning System) that converts DC power discharged from the storage battery 141 into AC power and converts AC power into DC power charged in the storage battery 141.
 実施形態では、宅内主幹線20上に電力計148が設けられる。電力計148は、接続点P1よりも下流側に設けられる下流装置(ここでは、EMS110、電力消費機器120、蓄電池装置140)の消費電力を計測する電力計であり、例えば、CT及びVTの少なくともいずれかである。下流とは、電力系統10から離れる方向への流れを意味する。従って、電力計138は、接続点P1と接続点P2との間に設けられる。接続点P2は、宅内主幹線20と蓄電池装置140とを接続する電力線(第2電力線)と宅内主幹線20との接続点である。PCS142は、有線又は無線の信号線によって電力計148と接続されており、電力計148の測定結果に基づいて、蓄電池装置140から電力系統10への逆潮流を行わないように蓄電池141を制御する。詳細には、電力計148は、EMS110及び電力消費機器120の消費電力に蓄電池装置140の充電電力が加算された電力を測定し、或いは、EMS110及び電力消費機器120の消費電力から蓄電池装置140の放電電力が減算された電力を測定する。従って、PCS142は、電力計148の計測結果が負の値とならないように蓄電池141を制御する。 In the embodiment, a wattmeter 148 is provided on the home trunk 20. The wattmeter 148 is a wattmeter that measures the power consumption of a downstream device (here, the EMS 110, the power consuming device 120, and the storage battery device 140) provided on the downstream side of the connection point P1, and includes, for example, at least CT and VT. Either. The downstream means a flow in a direction away from the power system 10. Therefore, the wattmeter 138 is provided between the connection point P1 and the connection point P2. The connection point P <b> 2 is a connection point between the home main line 20 and the power line (second power line) connecting the home main line 20 and the storage battery device 140. The PCS 142 is connected to the power meter 148 via a wired or wireless signal line, and controls the storage battery 141 so as not to perform a reverse power flow from the storage battery device 140 to the power system 10 based on the measurement result of the power meter 148. . Specifically, the power meter 148 measures the power obtained by adding the charging power of the storage battery device 140 to the power consumption of the EMS 110 and the power consuming device 120, or uses the power consumption of the EMS 110 and the power consuming device 120. Measure the power minus the discharge power. Therefore, the PCS 142 controls the storage battery 141 so that the measurement result of the wattmeter 148 does not become a negative value.
 ネットワーク200は、施設100と電力管理サーバ300とを接続する通信回線である。ネットワーク200は、例えば、インターネット又は移動通信網などの公衆回線であってもよく、VPN(Virtual Private Network)などの専用回線であってもよい。公衆回線は、例えば、施設100に設けられるスマートメータを通らないBルートの回線を用いてもよい。専用回線は、施設100に設けられるスマートメータを通るAルートの回線を用いてもよい。スマートメータは、電力会社などの発電事業者によって管理され、施設100の使用電力に対する課金又は売電電力に対するインセンティブの計算に用いられる電力計である。スマートメータは施設100に複数設置されてもよい。 The network 200 is a communication line that connects the facility 100 and the power management server 300. The network 200 may be, for example, a public line such as the Internet or a mobile communication network, or may be a dedicated line such as a VPN (Virtual Private Network). As the public line, for example, a B route line that does not pass through the smart meter provided in the facility 100 may be used. As the dedicated line, an A route line passing through a smart meter provided in the facility 100 may be used. The smart meter is a power meter that is managed by a power generation company such as an electric power company and is used for calculating the incentive for charging or selling electric power used by the facility 100. A plurality of smart meters may be installed in the facility 100.
 電力管理サーバ300は、発電事業者、送配電事業者又は小売事業者などの事業者によって管理されるサーバである。電力管理サーバ300は、送配電事業者又は小売事業者に相当するアグリゲータによって管理されてもよい。アグリゲータは、当該アグリゲータと契約する施設100の電力需給バランスを管理する事業者である。アグリゲータは、電力会社などの発電事業者から電力需給バランスの管理を委託されてもよい。電力管理サーバ300は、バーチャルトップノード(VTN;Virtual Top Node)装置の一例である。 The power management server 300 is a server managed by a business operator such as a power generation business, a power transmission / distribution business, or a retail business. The power management server 300 may be managed by an aggregator corresponding to a power transmission / distribution business or a retail business. The aggregator is a business operator that manages the power supply / demand balance of the facility 100 contracted with the aggregator. The aggregator may be entrusted with the management of the power supply-demand balance from a power generation company such as an electric power company. The power management server 300 is an example of a virtual top node (VTN; Virtual Top Node) device.
 電力管理サーバ300は、施設100に設けられる分散電源を制御する電力指令メッセージを送信してもよい。電力指令メッセージは、施設100に設置された分散電源の運転の制御を要求する電源制御メッセージであってもよい。電力指令メッセージは、電力系統10から施設100への潮流量の制御(増加、減少又は維持)を要求する潮流制御メッセージであってもよく、施設100から電力系統10への逆潮流量の制御(増加、減少又は維持)を要求する逆潮流制御メッセージであってもよい。 The power management server 300 may transmit a power command message for controlling a distributed power source provided in the facility 100. The power command message may be a power control message for requesting control of the operation of the distributed power source installed in the facility 100. The power command message may be a power flow control message for requesting control (increase, decrease or maintenance) of power flow from the power system 10 to the facility 100, and control of reverse power flow from the facility 100 to the power system 10 ( It may be a reverse power flow control message requesting (increase, decrease or maintain).
 電力指令メッセージのフォーマットとして、独自フォーマットを用いてもよいし、自動デマンドレスポンス(ADR;Automated Demand Response)に準拠したフォーマットを用いてもよい。より具体的に、電力指令メッセージは、OpenADR2.0規格に準拠した方式を用いることができる。 As the format of the power command message, a unique format may be used, or a format that conforms to an automatic demand response (ADR) may be used. More specifically, the power command message can use a method based on the OpenADR2.0 standard.
 (電力管理サーバ)
 以下において、実施形態に係る電力管理サーバについて説明する。
(Power management server)
Hereinafter, the power management server according to the embodiment will be described.
 図2に示すように、電力管理サーバ300は、通信部310と、管理部320と、制御部330とを有する。 As illustrated in FIG. 2, the power management server 300 includes a communication unit 310, a management unit 320, and a control unit 330.
 通信部310は、通信モジュール等によって構成されており、施設100と通信を行う。例えば、通信部310は、電力指令メッセージを施設100に送信する。通信部310は、後述する分散電源情報を施設100から受信する。 The communication unit 310 includes a communication module and the like, and communicates with the facility 100. For example, the communication unit 310 transmits a power command message to the facility 100. The communication unit 310 receives distributed power supply information, which will be described later, from the facility 100.
 管理部320は、不揮発性メモリ又は/及びHDDなどの記憶媒体によって構成されており、電力系統10に接続された複数の施設100を管理する。 The management unit 320 is configured by a storage medium such as a non-volatile memory and / or HDD, and manages a plurality of facilities 100 connected to the power system 10.
 制御部330は、CPU及びメモリ等によって構成されており、通信部310及び管理部320を制御する。制御部330は、管理部320によって管理される複数の施設100の全体として電力需給バランスを調整する。 The control unit 330 includes a CPU, a memory, and the like, and controls the communication unit 310 and the management unit 320. The control unit 330 adjusts the power supply / demand balance of the plurality of facilities 100 managed by the management unit 320 as a whole.
 実施形態では、電力指令メッセージは、蓄電池装置140を制御するメッセージを含む。このようなメッセージは、蓄電池装置140の充電動作を指示する充電メッセージ、蓄電池装置140の放電動作を指示する放電メッセージ、蓄電池装置140の待機動作を指示する待機メッセージを含む。ここでは、充電メッセージについて主として説明する。なお、充電メッセージには、蓄電池装置140における通常の充電よりも充電時間が短い急速充電動作を指示する急速充電メッセージであってもよい。また、電力指令メッセージは、蓄電池装置140の動作を確認するテスト動作を指示するテストメッセージが含まれてもよく、蓄電池装置140の自動動作を指示する自動メッセージが含まれてもよく、蓄電池装置140の再起動動作を指示する再起動メッセージが含まれてもよく、蓄電池装置140の実効容量を再計算する指示である実効容量再計算処理メッセージが含まれてもよい。 In the embodiment, the power command message includes a message for controlling the storage battery device 140. Such a message includes a charging message instructing a charging operation of the storage battery device 140, a discharging message instructing a discharging operation of the storage battery device 140, and a standby message instructing a standby operation of the storage battery device 140. Here, the charging message will be mainly described. The charging message may be a quick charging message instructing a quick charging operation in which the charging time is shorter than normal charging in the storage battery device 140. The power command message may include a test message for instructing a test operation for confirming the operation of the storage battery device 140, an automatic message for instructing an automatic operation of the storage battery device 140, and the storage battery device 140. May be included, and an effective capacity recalculation processing message that is an instruction to recalculate the effective capacity of the storage battery device 140 may be included.
 充電メッセージは、施設100から電力系統10への逆潮流が可能でない場合に、蓄電池装置140の充電動作を行うように指示し、逆潮流が可能である場合に、蓄電池装置140の充電動作を禁止するように指示する第1メッセージを含む。充電メッセージは、充電メッセージは、施設100から電力系統10への逆潮流が可能であるか否かによらずに、蓄電池装置140の充電動作を行うように指示する第2メッセージを含んでもよい。「逆潮流が可能」とは、逆潮流を実際に行っている状態であってもよいし、逆潮流を実際に行っていないが、逆潮流が許容された状態であってもよい。 The charging message instructs to perform the charging operation of the storage battery device 140 when the reverse flow from the facility 100 to the power system 10 is not possible, and prohibits the charging operation of the storage battery device 140 when the reverse flow is possible A first message instructing to do so. The charging message may include a second message that instructs to perform the charging operation of the storage battery device 140 regardless of whether or not a reverse power flow from the facility 100 to the power system 10 is possible. “A reverse power flow is possible” may be a state where reverse power flow is actually performed, or a state where reverse power flow is not actually performed but reverse power flow is allowed.
 例えば、第1メッセージは、蓄電池装置140が充電動作を行っている状態において、蓄電池装置140の充電電力が電力系統10から施設100への潮流電力を上回った場合に、蓄電池装置140の充電動作を停止するように指示するメッセージであってもよい。第1メッセージは、蓄電池装置140が充電動作を行っていない状態において、電力系統10から施設100への潮流がある場合に、蓄電池装置140の充電動作を開始するように指示するメッセージであってもよい。 For example, the first message indicates the charging operation of the storage battery device 140 when the charging power of the storage battery device 140 exceeds the power flow from the power system 10 to the facility 100 while the storage battery device 140 is performing the charging operation. It may be a message instructing to stop. The first message may be a message instructing to start the charging operation of the storage battery device 140 when there is a power flow from the power system 10 to the facility 100 in a state where the storage battery device 140 is not performing the charging operation. Good.
 ここで、施設100の電力は、「P_GRID+P_PV=P_BT+P_LOAD」の関係によって表される。P_GRIDは、電力系統10から施設100への潮流電力を表しており、P_PVは、太陽電池装置130の発電電力を表している。P_BTは、蓄電池装置140の充電電力(又は放電電力)を表しており、P_LOADは、EMS110及び電力消費機器120の消費電力を表している。蓄電池装置140の充電電力は正の値で表され、蓄電池装置140の放電電力は負の値で表される。従って、潮流電力(P_GRID)は、電力計138の測定結果(P_PV)及び電力計148の測定結果(P_BT+P_LOAD)によって取得可能である。蓄電池装置140の充電電力(放電電力)は、PCS142によって取得可能である。 Here, the power of the facility 100 is represented by the relationship of “P_GRID + P_PV = P_BT + P_LOAD”. P_GRID represents the tidal power from the power system 10 to the facility 100, and P_PV represents the generated power of the solar cell device 130. P_BT represents charging power (or discharging power) of the storage battery device 140, and P_LOAD represents power consumption of the EMS 110 and the power consuming device 120. The charging power of the storage battery device 140 is represented by a positive value, and the discharging power of the storage battery device 140 is represented by a negative value. Therefore, the tidal current power (P_GRID) can be obtained from the measurement result (P_PV) of the wattmeter 138 and the measurement result (P_BT + P_LOAD) of the wattmeter 148. The charge power (discharge power) of the storage battery device 140 can be acquired by the PCS 142.
 実施形態では、電力指令メッセージは、電力指令メッセージによる制御を継続する継続条件を含んでもよい。分散電源が蓄電池装置140である場合に、継続条件は、時間条件(○○時~○○時まで)、放電条件(○○kWhの電力を放電するまで、又は蓄電残量が○○kWhを下回るまで)、充電条件(○○kWhの電力を充電するまで、蓄電残量が○○kWhを上回るまで)という条件である。時間条件及び放電条件は組み合わされてもよく、時間条件及び充電条件は組み合わされてもよい。時間条件は、電力指令メッセージの受信からの継続時間(又は残り時間)で指定されてもよいし、所定の開始時間からの継続時間(又は残り時間)で指定されてもよいし、終了時刻のみの指定であってもよい。このようなケースにおいて、放電条件及び充電条件はkWで指定されてもよい。 In the embodiment, the power command message may include a continuation condition for continuing control by the power command message. When the distributed power source is the storage battery device 140, the continuation conditions are the time condition (from XX hour to XX hour), the discharge condition (until the power of XX kWh is discharged, or the remaining amount of charge is XX kWh. Charging condition (until the remaining amount of electricity exceeds OO kWh until the power of OO kWh is charged). The time condition and the discharge condition may be combined, and the time condition and the charging condition may be combined. The time condition may be specified by the duration (or remaining time) from the reception of the power command message, may be specified by the duration (or remaining time) from a predetermined start time, or only the end time May be specified. In such a case, the discharge condition and the charge condition may be specified in kW.
 (ローカル制御装置)
 以下において、実施形態に係るローカル制御装置について説明する。ローカル制御装置は、施設100内で蓄電池装置140を制御する装置であればよい。ローカル制御装置は、上述したEMS110であってもよく、上述したPCS142であってもよい。ローカル制御装置は、EMS110及びPCS142の双方によって構成されてもよい。但し、蓄電池装置140の制御の即時性を考慮する場合には、ローカル制御装置がPCS142であると考えてもよい。図3に示すように、ローカル制御装置400は、通信部410と、制御部420とを有する。
(Local control device)
Hereinafter, a local control device according to the embodiment will be described. The local control device may be a device that controls the storage battery device 140 in the facility 100. The local control device may be the EMS 110 described above or the PCS 142 described above. The local control device may be configured by both the EMS 110 and the PCS 142. However, when considering the immediacy of the control of the storage battery device 140, the local control device may be considered to be the PCS 142. As shown in FIG. 3, the local control device 400 includes a communication unit 410 and a control unit 420.
 通信部410は、通信モジュール等によって構成されており、電力管理サーバ300と通信を行う。例えば、通信部410は、電力指令メッセージを電力管理サーバ300から受信する。上述したように、電力指令メッセージは、少なくとも、充電メッセージとして第1メッセージを含む。 The communication unit 410 includes a communication module and the like, and communicates with the power management server 300. For example, the communication unit 410 receives a power command message from the power management server 300. As described above, the power command message includes at least the first message as the charging message.
 制御部420は、CPU及びメモリ等によって構成されており、通信部410を制御する。制御部420は、施設100内で蓄電池装置140を制御する。 The control unit 420 includes a CPU and a memory, and controls the communication unit 410. The control unit 420 controls the storage battery device 140 in the facility 100.
 実施形態では、制御部420は、少なくとも、第1メッセージに従って蓄電池装置140を制御する。制御部420は、第1メッセージに従った動作において、施設100から電力系統10への逆潮流が可能でない場合に、蓄電池装置140の充電動作を行い、逆潮流が可能である場合に、蓄電池装置140の充電動作を行わない。 In the embodiment, the control unit 420 controls the storage battery device 140 according to at least the first message. The control unit 420 performs the charging operation of the storage battery device 140 when the reverse flow from the facility 100 to the power system 10 is not possible in the operation according to the first message, and when the reverse flow is possible, the storage battery device 140 charging operation is not performed.
 (電力管理方法)
 以下において、実施形態に係る電力管理方法について説明する。図4では、1つのローカル制御装置400のみが図示されているが、実際には複数のローカル制御装置400が存在してもよい。
(Power management method)
Hereinafter, a power management method according to the embodiment will be described. In FIG. 4, only one local control device 400 is illustrated, but actually, a plurality of local control devices 400 may exist.
 ステップS10において、電力管理サーバ300は、電力指令メッセージをローカル制御装置400に送信する。ここでは、電力指令メッセージは、上述した第1メッセージを含む。 In step S10, the power management server 300 transmits a power command message to the local control device 400. Here, the power command message includes the first message described above.
 ステップS11において、ローカル制御装置400は、電力指令メッセージに従って、分散電源の運転状態を制御する。ローカル制御装置400は、制御期間が満了するまで、電力指令メッセージによる制御を継続する。制御期間は、上述した継続条件によって定義される。 In step S11, the local control device 400 controls the operating state of the distributed power source according to the power command message. The local control device 400 continues control by the power command message until the control period expires. The control period is defined by the continuation condition described above.
 ステップS12において、電力管理サーバ300は、蓄電池装置140の運転制御実績を要求するメッセージ(実績要求)をローカル制御装置400に送信する。 In step S12, the power management server 300 transmits a message (result request) requesting the operation control result of the storage battery device 140 to the local control device 400.
 ステップS13において、ローカル制御装置400は、蓄電池装置140の運転制御実績を含むメッセージ(実績応答)を電力管理サーバ300に送信する。 In step S <b> 13, the local control device 400 transmits a message (result response) including the operation control result of the storage battery device 140 to the power management server 300.
 ステップS14において、電力管理サーバ300は、施設100内で最適化されたローカル運転計画の変更に伴うインセンティブを付与する。インセンティブは、金銭報酬であってもよく、商品券又はクーポンなどの無体物による報酬であってもよく、景品などの有体物による報酬であってもよい。 In step S14, the power management server 300 gives an incentive accompanying a change in the local operation plan optimized in the facility 100. The incentive may be a monetary reward, a reward based on an intangible object such as a gift certificate or a coupon, or a reward based on a tangible object such as a prize.
 続いて、ステップS12におけるローカル制御装置400の動作について説明する。図5に示すように、ステップS20において、ローカル制御装置400は、蓄電池装置140が運転動作中であるか否かを判定する。蓄電池装置140が運転動作中でない状態としては、蓄電池装置140の待機動作中又は放電動作中が挙げられる。判定結果がYESである場合には、ステップS21の処理が行われ、判定結果がNOである場合には、ステップS23の処理が行われる。 Subsequently, the operation of the local control device 400 in step S12 will be described. As shown in FIG. 5, in step S <b> 20, the local control device 400 determines whether or not the storage battery device 140 is operating. Examples of the state in which the storage battery device 140 is not in operation include a standby operation or a discharge operation of the storage battery device 140. If the determination result is YES, the process of step S21 is performed, and if the determination result is NO, the process of step S23 is performed.
 ステップS21において、ローカル制御装置400は、充電電力(P_BT)が潮流電力(P_GRID)を上回っているか否かを判定する。判定結果がYESである場合には、ステップS22の処理が行われ、判定結果がNOである場合には、ステップS25の処理が行われる。充電電力(P_BT)が潮流電力(P_GRID)を上回っている状態は、蓄電池装置140が充電動作を行わなければ、施設100から電力系統10への逆潮流が可能な状態である。 In step S21, the local control device 400 determines whether or not the charging power (P_BT) exceeds the tidal power (P_GRID). If the determination result is YES, the process of step S22 is performed, and if the determination result is NO, the process of step S25 is performed. The state where the charging power (P_BT) exceeds the tidal power (P_GRID) is a state where reverse power flow from the facility 100 to the power system 10 is possible unless the storage battery device 140 performs the charging operation.
 ステップS22において、ローカル制御装置400は、蓄電池装置140の充電動作を停止する。ローカル制御装置400は、蓄電池装置140の待機動作を指示する。 In step S22, the local control device 400 stops the charging operation of the storage battery device 140. Local control device 400 instructs standby operation of storage battery device 140.
 ステップS23において、ローカル制御装置400は、電力系統10から施設100への潮流があるか否かを判定する。逆潮流があるか否かは、潮流電力(P_GRID)によって判定可能である。判定結果がYESである場合には、ステップS24の処理が行われ、判定結果がNOである場合には、ステップS25の処理が行われる。潮流がある状態は、蓄電池装置140が充電動作を行っても、施設100から電力系統10への逆潮流が可能でない状態である。 In step S23, the local control device 400 determines whether or not there is a power flow from the power system 10 to the facility 100. Whether there is a reverse power flow can be determined by power flow power (P_GRID). If the determination result is YES, the process of step S24 is performed, and if the determination result is NO, the process of step S25 is performed. The state where there is a power flow is a state where reverse power flow from the facility 100 to the power system 10 is not possible even when the storage battery device 140 performs a charging operation.
 ステップS24において、ローカル制御装置400は、蓄電池装置140の充電動作を開始する。但し、充電電力(P_BT)が潮流電力(P_GRID)を上回らないように蓄電池装置140の充電動作が行われる。 In step S24, the local control device 400 starts the charging operation of the storage battery device 140. However, the charging operation of the storage battery device 140 is performed so that the charging power (P_BT) does not exceed the tidal power (P_GRID).
 ステップS25において、ローカル制御装置400は、制御期間が満了したか否かを判定する。判定結果がYESである場合には、ステップS26の処理が行われ、判定結果がNOである場合には、ステップS20の処理に戻る。 In step S25, the local control device 400 determines whether or not the control period has expired. If the determination result is YES, the process of step S26 is performed, and if the determination result is NO, the process returns to step S20.
 ステップS26において、ローカル制御装置400は、施設100内で電力状態を最適化するために蓄電池装置140の動作を制御する(以下、ローカル最適化)。ローカル最適化は、制御期間が満了してから一定期間が経過した後に行われてもよい。一定期間において蓄電池装置140は待機動作を行う。 In step S26, the local control device 400 controls the operation of the storage battery device 140 in order to optimize the power state in the facility 100 (hereinafter referred to as local optimization). The local optimization may be performed after a certain period has elapsed since the control period has expired. The storage battery device 140 performs a standby operation for a certain period.
 (作用及び効果)
 実施形態では、太陽電池装置130の発電電力の売電単価が電力系統10の供給電力の買電単価よりも高いケースに着目している。このようなケースにおいて、施設100から電力系統10への逆潮流が可能であるか否かによらずに、蓄電池装置140の充電動作を行うように指示する第2メッセージのみが充電メッセージとして定義されていると、高コストの電力(すなわち、太陽電池装置130の発電電力)を蓄電池装置140に充電することなり、施設100のユーザが不利益を被る可能性がある。
(Function and effect)
In the embodiment, attention is paid to a case where the unit price of the generated power of the solar cell device 130 is higher than the unit price of the supplied power of the power system 10. In such a case, only the second message instructing to perform the charging operation of the storage battery device 140 is defined as the charging message regardless of whether or not the reverse power flow from the facility 100 to the power system 10 is possible. If this is the case, the storage battery device 140 will be charged with high-cost power (that is, the power generated by the solar cell device 130), and the user of the facility 100 may suffer a disadvantage.
 このような着眼点の下において、実施形態では、施設100から電力系統10への逆潮流が可能でない場合に、蓄電池装置140の充電動作を行うように指示し、逆潮流が可能である場合に、蓄電池装置140の充電動作を禁止するように指示する第1メッセージが充電メッセージとして定義される。このような構成によれば、上述した施設100のユーザが不利益を抑制することができる。 Under such a point of view, in the embodiment, when a reverse power flow from the facility 100 to the power system 10 is not possible, an instruction is given to perform the charging operation of the storage battery device 140, and a reverse power flow is possible. The first message that instructs to prohibit the charging operation of the storage battery device 140 is defined as the charging message. According to such a structure, the user of the facility 100 mentioned above can suppress a disadvantage.
 さらに、電力管理サーバ300が太陽電池装置130の発電電力を考慮しながら電力指令メッセージを動的に送信することも考えられるが、このような構成によれば、電力指令メッセージの送信が頻発する可能性があり、太陽電池装置130の発電電力の把握に伴う遅延も懸念される。実施形態では、上述した第1メッセージを充電メッセージとして定義することによって、このような問題も解消することができる。 Further, it is conceivable that the power management server 300 dynamically transmits a power command message while taking into consideration the generated power of the solar cell device 130. According to such a configuration, the power command message may be transmitted frequently. There is a concern that there may be a delay associated with grasping the generated power of the solar cell device 130. In the embodiment, such a problem can be solved by defining the first message described above as a charging message.
 [変更例1]
 以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について説明する。
[Modification 1]
Hereinafter, Modification Example 1 of the embodiment will be described. In the following, differences from the embodiment will be described.
 実施形態では、電力系統10から施設100への潮流電力(P_GRID)は、電力計138の測定結果(P_PV)及び電力計148の測定結果(P_BT+P_LOAD)によって取得される。 In the embodiment, the tidal power (P_GRID) from the power system 10 to the facility 100 is acquired from the measurement result (P_PV) of the power meter 138 and the measurement result (P_BT + P_LOAD) of the power meter 148.
 これに対して、変更例1では、潮流電力(P_GRID)は、図6に示すように、潮流電力(P_GRID)を測定する電力計118の測定結果によって取得される。電力計118は、接続点P1よりも上流において宅内主幹線20上に設けられており、例えば、CT及びVTの少なくともいずれかである。従って、電力計118は、潮流電力(P_GRID)を測定可能である。 On the other hand, in the first modification, the tidal power (P_GRID) is acquired from the measurement result of the wattmeter 118 that measures the tidal power (P_GRID) as shown in FIG. The wattmeter 118 is provided on the in-home main line 20 upstream from the connection point P1, and is, for example, at least one of CT and VT. Therefore, the wattmeter 118 can measure the tidal power (P_GRID).
 さらに、電力計118が設けられていなくても、潮流電力(P_GRID)は、上述したスマートメータの測定結果によって取得されてもよい。スマートメータは、施設100の使用電力又は売電電力を測定するものであるため、電力計118と同様の位置に設けられる。従って、スマートメータは、潮流電力(P_GRID)を測定可能である。 Furthermore, even if the wattmeter 118 is not provided, the tidal power (P_GRID) may be acquired from the above-described smart meter measurement result. Since the smart meter measures the power used or the power sold in the facility 100, the smart meter is provided at the same position as the power meter 118. Therefore, the smart meter can measure the tidal current power (P_GRID).
 [変更例2]
 以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について説明する。
[Modification 2]
Hereinafter, a second modification of the embodiment will be described. In the following, differences from the embodiment will be described.
 変更例2において、第1メッセージは、蓄電池装置140が充電動作を行っている状態において、施設100に設けられる発電装置の発電量が施設100に設けられる負荷の消費電力量を上回った場合に、蓄電池装置140の充電動作を停止するように指示するメッセージであってもよい。第1メッセージは、蓄電池装置140が充電動作を行っていない状態において、施設100に設けられる発電装置の発電量が施設100に設けられる負荷の消費電力量を下回った場合に、蓄電池装置140の充電動作を開始するように指示するメッセージであってもよい。ここで、負荷とは、施設100に設けられる装置のうち、蓄電池装置140を除いた装置を意味する。図1に示す例では、負荷は、EMS110及び電力消費機器120である。ここでは電力量とは、瞬時電力値(W)又は一定期間の電力量値(Wh)を意味する。また、電力量とは、瞬時電流値(A)又は一定期間の電荷値(Ah)でも構わない。 In the second modification, when the storage battery device 140 is performing the charging operation, the first message is generated when the power generation amount of the power generation device provided in the facility 100 exceeds the power consumption amount of the load provided in the facility 100. The message which instruct | indicates to stop the charging operation of the storage battery apparatus 140 may be sufficient. The first message is for charging the storage battery device 140 when the power generation amount of the power generation device provided in the facility 100 falls below the power consumption amount of the load provided in the facility 100 in a state where the storage battery device 140 is not performing the charging operation. It may be a message instructing to start the operation. Here, the load means a device excluding the storage battery device 140 among devices provided in the facility 100. In the example illustrated in FIG. 1, the load is the EMS 110 and the power consuming device 120. Here, the power amount means an instantaneous power value (W) or a power amount value (Wh) for a certain period. The electric energy may be an instantaneous current value (A) or a charge value (Ah) for a certain period.
 このように、第1メッセージは、蓄電池装置140の充電動作を停止する条件として、ローカル制御装置400が判定可能な条件を含んでいればよい。このような条件は、蓄電池装置140の充電動作を行わなければ、施設100から電力系統10への逆潮流が可能であるという条件である。同様に、第1メッセージは、蓄電池装置140の充電動作を開始する条件として、ローカル制御装置400が判定可能な条件を含んでいればよい。このような条件は、蓄電池装置140の充電動作を行っても、施設100から電力系統10への逆潮流が可能でないという条件である。 As described above, the first message only needs to include a condition that can be determined by the local control device 400 as a condition for stopping the charging operation of the storage battery device 140. Such a condition is a condition that a reverse power flow from the facility 100 to the power system 10 is possible unless the storage battery device 140 is charged. Similarly, the first message only needs to include a condition that can be determined by the local control device 400 as a condition for starting the charging operation of the storage battery device 140. Such a condition is a condition that a reverse power flow from the facility 100 to the power system 10 is not possible even when the storage battery device 140 is charged.
 [変更例3]
 以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について説明する。
[Modification 3]
Hereinafter, Modification Example 3 of the embodiment will be described. In the following, differences from the embodiment will be described.
 実施形態では、太陽電池131及び蓄電池141のPCSが個別に設けられるケースを説明した。 In the embodiment, the case where the PCS of the solar battery 131 and the storage battery 141 is provided individually has been described.
 これに対して、変更例3では、太陽電池131及び蓄電池141のPCSは、図7に示すように、太陽電池131及び蓄電池141の双方に接続される1つのPCS152である。このようなケースにおいて、施設100は、電力計158及びメータ160を有する。 On the other hand, in the third modification, the PCS of the solar cell 131 and the storage battery 141 is one PCS 152 connected to both the solar cell 131 and the storage battery 141 as shown in FIG. In such a case, the facility 100 includes a power meter 158 and a meter 160.
 電力計158は、電力計158は、接続点P3よりも上流において宅内主幹線20上に設けられる。接続点P3は、宅内主幹線20とPCS152(メータ160)とを接続する電力線(第3電力線)と宅内主幹線20との接続点である。電力計158は、蓄電池141から電力系統10への逆潮流を行わないように蓄電池装置140を制御するための電力計であり、例えば、CT及びVTの少なくともいずれかである。 The power meter 158 is provided on the main trunk line 20 upstream of the connection point P3. The connection point P3 is a connection point between the home main line 20 and the power line (third power line) connecting the home main line 20 and the PCS 152 (meter 160). The wattmeter 158 is a wattmeter for controlling the storage battery device 140 so as not to perform reverse power flow from the storage battery 141 to the power system 10, and is, for example, at least one of CT and VT.
 メータ160は、電力管理サーバ300を管理する事業者によって設置される電力計であり、PCS158の出力電力を測定する。メータ160は、有線又は無線の信号線によって電力管理サーバ300と接続される。 The meter 160 is a power meter installed by a business operator that manages the power management server 300, and measures the output power of the PCS 158. The meter 160 is connected to the power management server 300 via a wired or wireless signal line.
 このようなケースにおいて、PCS158の出力電力は、太陽電池131由来の電力及び蓄電池141由来の電力が混在する可能性がある。しかしながら、電力管理サーバ300がメータ160の測定結果から太陽電池131由来の電力及び蓄電池141由来の電力を区別して取得したいというニーズが存在する。 In such a case, the output power of the PCS 158 may be a mixture of the power derived from the solar battery 131 and the power derived from the storage battery 141. However, there is a need for the power management server 300 to distinguish and acquire the power derived from the solar battery 131 and the power derived from the storage battery 141 from the measurement result of the meter 160.
 従って、変更例3においては、施設100に設けられる発電装置(ここでは、太陽電池装置130)の発電が行われている場合に、蓄電池装置(ここでは、蓄電池141)の充電動作又は放電動作を禁止するように指示する第3メッセージが電力指令メッセージとして定義される。第3メッセージは、発電装置の発電が行われている場合に、充電動作及び放電動作の双方を禁止するように指示するメッセージであってもよい。 Therefore, in the modified example 3, when the power generation device (here, the solar cell device 130) provided in the facility 100 is generating power, the charging operation or discharging operation of the storage battery device (here, the storage battery 141) is performed. A third message instructing to prohibit is defined as a power command message. The third message may be a message instructing to prohibit both the charging operation and the discharging operation when the power generation apparatus is generating power.
 [変更例4]
 以下において、実施形態の変更例4について説明する。以下においては、実施形態に対する相違点について説明する。
[Modification 4]
Hereinafter, Modification Example 4 of the embodiment will be described. In the following, differences from the embodiment will be described.
 変更例4においては、蓄電池装置(ここでは、蓄電池141)が電力系統10から解列された自立状態において、施設100に設けられる発電装置の発電による蓄電池141の充電動作を許容し、蓄電池141が電力系統10と再連系された再連系状態において、少なくとも自立状態で蓄電池141に充電された電力を放電した後に逆潮流を許容する第4メッセージが電力指令メッセージとして定義される。例えば、第4メッセージは、再連系状態において、自立状態で蓄電池141に充電された電力の全てを放電した後に逆潮流を許容するメッセージであってもよい。言い換えると、第4メッセージは、少なくとも自立状態で蓄電池141に充電された電力が放電されるまで逆潮流を禁止するメッセージであってもよい。 In the modification example 4, in a self-supporting state in which the storage battery device (here, the storage battery 141) is disconnected from the power system 10, the charging operation of the storage battery 141 by the power generation of the power generation device provided in the facility 100 is permitted. In the reconnection state reconnected to the power system 10, a fourth message that allows reverse power flow after discharging the power charged in the storage battery 141 at least in a self-supporting state is defined as a power command message. For example, the fourth message may be a message that allows reverse power flow after discharging all of the power charged in the storage battery 141 in a self-supporting state in the reconnection state. In other words, the fourth message may be a message for prohibiting reverse power flow until the power charged in the storage battery 141 is discharged at least in a self-supporting state.
 第4メッセージは、変更例3で説明した第3メッセージと併用されてもよい。第3メッセージ及び第4メッセージは1つのメッセージで実現されてもよい。例えば、電力指令メッセージは、蓄電池141が電力系統10と連系された連系状態において発電装置の発電による蓄電池141の充電動作を許容せず、自立状態において発電装置の発電による蓄電池141の充電動作を許容するメッセージを含んでもよい。しかしながら、このような電力指令メッセージは、少なくとも自立状態で蓄電池141に充電された電力を放電するまで逆潮流を許容せずに、少なくとも自立状態で蓄電池141に充電された電力を放電した後に逆潮流を許容するメッセージであってもよい。 The fourth message may be used in combination with the third message described in the third modification. The third message and the fourth message may be realized by one message. For example, the power command message does not permit the charging operation of the storage battery 141 by the power generation of the power generation device when the storage battery 141 is connected to the power system 10, and the charging operation of the storage battery 141 by the power generation of the power generation device in the independent state. May be included. However, such a power command message does not allow reverse power flow until at least the power charged in the storage battery 141 is discharged in a self-supporting state, and at least reverse power flow after discharging the power charged in the storage battery 141 in a self-supporting state. It may be a message that allows
 ここで、「自立状態で蓄電池141に充電された電力」は、蓄電池141のソース電力が識別可能である場合には、発電装置の発電電力であってもよい。「自立状態で蓄電池141に充電された電力」は、蓄電池141のソース電力が識別可能でない場合には、再連系が行われた時点で蓄電池141に充電された電力であってもよい。 Here, “the power charged in the storage battery 141 in the self-supporting state” may be the generated power of the power generation device when the source power of the storage battery 141 can be identified. “The power charged in the storage battery 141 in the self-supporting state” may be the power charged in the storage battery 141 when the reconnection is performed when the source power of the storage battery 141 is not identifiable.
 「発電装置の発電が行われている状態」は、逆潮流が可能でない状態の一例であってもよい。「自立状態」は、逆潮流が可能でない状態の一例であってもよい。「自立状態で蓄電池141に充電された電力が放電されるまでの状態」は、逆潮流が可能でない状態の一例であってもよい。 “The state where power generation by the power generation device is being performed” may be an example of a state where reverse power flow is not possible. An “independent state” may be an example of a state where reverse power flow is not possible. The “state until the electric power charged in the storage battery 141 is discharged in the self-supporting state” may be an example of a state where reverse power flow is not possible.
 [変更例5]
 以下において、実施形態の変更例5について説明する。以下においては、実施形態に対する相違点について説明する。
[Modification 5]
Hereinafter, Modification Example 5 of the embodiment will be described. In the following, differences from the embodiment will be described.
 上述した実施形態から変更例4においては、電力管理サーバ300から受信する電力指令メッセージに従ってローカル制御装置400が動作するケースを例示した。しかしながら、変更例5においては、ローカル制御装置400は、電力管理サーバ300から受信する電力指令メッセージによらずに、上述した実施形態から変更例4で説明した動作を自律的に行ってもよい。 In the fourth modification from the embodiment described above, the case where the local control device 400 operates in accordance with the power command message received from the power management server 300 is exemplified. However, in the modification example 5, the local control device 400 may autonomously perform the operation described in the modification example 4 from the above-described embodiment without depending on the power command message received from the power management server 300.
 具体的には、ローカル制御装置400は、逆潮流が可能である場合に、蓄電池装置(ここでは、蓄電池141)の充電動作を行わずに、逆潮流が可能でない場合に、蓄電池141の充電動作を行う。 Specifically, the local control device 400 performs the charging operation of the storage battery 141 when the reverse power flow is possible without performing the charging operation of the storage battery device (here, the storage battery 141). I do.
 このようなケースにおいて、ローカル制御装置400は、変更例4と同様に、自立状態において発電装置の発電による蓄電池141の充電動作を許容し、再連系状態において少なくとも自立状態で蓄電池141に充電された電力を放電した後に逆潮流を許容してもよい。例えば、ローカル制御装置400は、再連系状態において自立状態で蓄電池141に充電された電力の全てを放電した後に逆潮流を許容してもよい。 In such a case, the local control device 400 permits the charging operation of the storage battery 141 by the power generation of the power generation device in the self-sustaining state and charges the storage battery 141 in at least the self-supporting state in the re-connected state, as in the fourth modification. The reverse power flow may be allowed after the discharged power is discharged. For example, the local control device 400 may allow the reverse power flow after discharging all of the electric power charged in the storage battery 141 in a self-supporting state in the reconnection state.
 [その他の実施形態]
 本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present invention has been described with reference to the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 実施形態では、ローカル制御装置400がEMS110及びPCS142の少なくともいずれかであるケースを例示した。しかしながら、実施形態はこれに限定されるものではない。ローカル制御装置400は、PCS142を制御するリモートコントローラであってもよい。 In the embodiment, the case where the local control device 400 is at least one of the EMS 110 and the PCS 142 is exemplified. However, the embodiment is not limited to this. The local control device 400 may be a remote controller that controls the PCS 142.
 実施形態では、逆潮流が可能でない場合に、蓄電池装置140の充電動作が指示される。すなわち、逆潮流が可能でない時間帯は、蓄電池装置140の充電動作が許容される時間帯(以下、充電可能時間帯)である。一方で、逆潮流が可能である場合に、蓄電池装置140の充電動作が禁止される。すなわち、逆潮流が可能である時間帯は、蓄電池装置140の充電動作が禁止される時間帯(以下、充電禁止時間帯)である。このような充電可能時間帯及び充電禁止時間帯の少なくともいずれか1つは、電力管理サーバ300から指定されてもよく、ローカル制御装置400に設定されてもよい。充電可能時間帯及び充電禁止時間帯の少なくともいずれか1つのローカル制御装置400への設定は、工場出荷前に作業者によって行われてもよく、工場出荷後に作業者によって行われてもよい。 In the embodiment, when the reverse power flow is not possible, the charging operation of the storage battery device 140 is instructed. That is, the time zone in which the reverse power flow is not possible is a time zone in which the charging operation of the storage battery device 140 is allowed (hereinafter, a chargeable time zone). On the other hand, when reverse power flow is possible, the charging operation of the storage battery device 140 is prohibited. That is, the time zone in which the reverse power flow is possible is a time zone during which the charging operation of the storage battery device 140 is prohibited (hereinafter referred to as a charging prohibited time zone). At least one of the chargeable time zone and the charge prohibition time zone may be specified by the power management server 300 or may be set in the local control device 400. The setting of at least one of the chargeable time zone and the charge prohibition time zone in the local control device 400 may be performed by an operator before factory shipment or may be performed by an operator after factory shipment.
 実施形態では、施設100に設けられる発電装置として太陽電池装置130を例示した。しかしながら、実施形態はこれに限定されるものではない。発電装置は、燃料電池装置であってもよい。燃料電池装置は、固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)、固体高分子型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、リン酸型燃料電池(PAFC:Phosphoric Acid Fuel Cell)及び溶融炭酸塩型燃料電池(MCFC:Molten Carbonate Fuel Cell)のいずれかであってもよい。 In the embodiment, the solar cell device 130 is exemplified as the power generation device provided in the facility 100. However, the embodiment is not limited to this. The power generation device may be a fuel cell device. The fuel cell device includes a solid oxide fuel cell (SOFC), a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), and a molten fuel cell. Any of carbonate type fuel cells (MCFC: Molten Carbonate Fuel Cell) may be used.
 実施形態では、既存の施設100が有する電力計に適合する態様が例示されているに過ぎない。従って、施設100が有する電力計は特に限定されるものではない。電力計を任意の位置に配置可能であるという前提であれば、第1メッセージは、施設100から電力系統10への逆潮流が可能でない場合に、蓄電池装置140の充電動作を行うように指示し、逆潮流が可能である場合に、蓄電池装置140の充電動作を禁止するように指示するものであればよい。すなわち、第1メッセージによって蓄電池装置140の充電動作を停止する条件は、電力計の配置に応じて定めることが可能であり、第1メッセージによって蓄電池装置140の充電動作を開始する条件も、電力計の配置に応じて定めることが可能である。 In the embodiment, only an aspect suitable for the power meter of the existing facility 100 is illustrated. Therefore, the power meter that the facility 100 has is not particularly limited. If it is assumed that the power meter can be placed at an arbitrary position, the first message instructs the storage battery device 140 to be charged when the reverse flow from the facility 100 to the power system 10 is not possible. In the case where reverse power flow is possible, any instruction that prohibits the charging operation of the storage battery device 140 may be used. That is, the condition for stopping the charging operation of the storage battery device 140 by the first message can be determined according to the arrangement of the wattmeter. The condition for starting the charging operation of the storage battery device 140 by the first message is also the wattmeter. It is possible to determine according to the arrangement of.
 実施形態では、蓄電池装置140から電力系統10への逆潮流を防止するための電力計(図1及び図6に示す電力計148、図7に示す電力計158)が設けられる。しかしながら、このような逆潮流が常に禁止されていなくてもよい。例えば、電力管理サーバ300の要求によって逆潮流が一時的に許容されてもよい。 In the embodiment, a wattmeter (a wattmeter 148 shown in FIGS. 1 and 6 and a wattmeter 158 shown in FIG. 7) for preventing a reverse flow from the storage battery device 140 to the power system 10 is provided. However, such reverse power flow may not always be prohibited. For example, the reverse power flow may be temporarily permitted by a request from the power management server 300.
 特に限定されるものではないが、電力管理サーバ300とローカル制御装置400との間の通信は、Open ADR規格に準拠する方式で行われてもよい。このようなケースにおいて、ローカル制御装置400から電力管理サーバ300に対するポーリング信号の応答として、電力管理サーバ300からローカル制御装置400にメッセージが送信されてもよい。ポーリング信号としては、例えば、ordrPollを用いることができる。電力指令メッセージとしては、例えば、oadrDistributeEventを用いることができる。分散電源情報応答及び実績応答としては、TELEMETRY USAGE及びTELEMETRY STATUSを用いることができる。 Although not particularly limited, the communication between the power management server 300 and the local control device 400 may be performed by a method conforming to the Open ADR standard. In such a case, a message may be transmitted from the power management server 300 to the local control device 400 as a response of a polling signal from the local control device 400 to the power management server 300. For example, ordrPoll can be used as the polling signal. As the power command message, for example, oaderDistributionEvent can be used. TELEMETRY USAGE and TELEMETRY STATUS can be used as the distributed power information response and the actual response.
 なお、日本国特許出願第2016-180105号(2016年9月15日出願)及び日本国特許出願第2017-29473号(2017年2月20日出願)の全内容が、参照により、本願明細書に組み込まれている。 The entire contents of Japanese Patent Application No. 2016-180105 (filed on September 15, 2016) and Japanese Patent Application No. 2017-29473 (filed on February 20, 2017) are incorporated herein by reference. Built in.
 一態様によれば、分散電源を適切に管理する電力管理方法、電力管理サーバ、ローカル制御装置及び電力管理システムを提供することができる。 According to one aspect, it is possible to provide a power management method, a power management server, a local control device, and a power management system that appropriately manage a distributed power source.

Claims (18)

  1.  施設から電力系統への逆潮流が可能である場合に、前記施設に設けられる分散電源の一つである蓄電池装置の充電動作を行わずに、前記逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行うステップAを備える、電力管理方法。 When the reverse power flow from the facility to the power system is possible, the storage battery device that is one of the distributed power sources provided in the facility is not charged and the reverse power flow is not possible. A power management method comprising step A of performing a charging operation.
  2.  前記電力系統に接続された前記施設に設けられるローカル制御装置がステップAを実行する、請求項1に記載の電力管理方法。 The power management method according to claim 1, wherein a local control device provided in the facility connected to the power system executes Step A.
  3.  前記施設を管理する電力管理サーバから、前記ローカル制御装置に対して、前記分散電源を制御するための電力指令メッセージを送信するステップBを備え、
     前記電力指令メッセージは、前記蓄電池装置の充電を指示する充電メッセージを含み、
     前記充電メッセージは、前記施設から前記電力系統への逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行うように指示し、前記逆潮流が可能である場合に、前記蓄電池装置の充電動作を禁止するように指示する第1メッセージを含む、請求項2に記載の電力管理方法。
    From the power management server that manages the facility, the local control device comprises a step B of transmitting a power command message for controlling the distributed power supply,
    The power command message includes a charging message instructing charging of the storage battery device,
    The charging message instructs to charge the storage battery device when a reverse power flow from the facility to the power system is not possible, and when the reverse power flow is possible, the charging operation of the storage battery device The power management method according to claim 2, further comprising a first message instructing to prohibit the operation.
  4.  前記第1メッセージは、前記蓄電池装置が充電動作を行っている状態において、前記蓄電池装置の充電電力が前記電力系統から前記施設への潮流電力を上回った場合に、前記蓄電池装置の充電動作を停止するように指示するメッセージである、請求項3に記載の電力管理方法。 The first message stops the charging operation of the storage battery device when the charging power of the storage battery device exceeds the power flow from the power system to the facility while the storage battery device is performing the charging operation. The power management method according to claim 3, wherein the power management method is a message instructing to do so.
  5.  前記第1メッセージは、前記蓄電池装置が充電動作を行っていない状態において、前記電力系統から前記施設への潮流がある場合に、前記蓄電池装置の充電動作を開始するように指示するメッセージである、請求項3又は請求項4に記載の電力管理方法。 The first message is a message instructing to start a charging operation of the storage battery device when there is a power flow from the power system to the facility in a state where the storage battery device is not performing a charging operation. The power management method according to claim 3 or 4.
  6.  前記第1メッセージは、前記蓄電池装置が充電動作を行っている状態において、前記施設に設けられる発電装置の発電量が前記施設に設けられる負荷の消費電力量を上回った場合に、前記蓄電池装置の充電動作を停止するように指示するメッセージである、請求項3乃至請求項5のいずれかに記載の電力管理方法。 The first message is stored in the storage battery device when a power generation amount of the power generation device provided in the facility exceeds a power consumption amount of a load provided in the facility in a state where the storage battery device is performing a charging operation. The power management method according to claim 3, wherein the power management method is a message instructing to stop the charging operation.
  7.  前記第1メッセージは、前記蓄電池装置が充電動作を行っていない状態において、前記施設に設けられる発電装置の発電量が前記施設に設けられる負荷の消費電力量を下回った場合に、前記蓄電池装置の充電動作を開始するように指示するメッセージである、請求項3乃至請求項6のいずれかに記載の電力管理方法。 The first message is stored in the storage battery device when the power generation amount of the power generation device provided in the facility is lower than the power consumption amount of the load provided in the facility in a state where the storage battery device is not performing a charging operation. The power management method according to claim 3, wherein the power management method is a message instructing to start a charging operation.
  8.  前記施設は、太陽電池装置及び燃料電池装置の少なくとも1つを発電装置として有する、請求項3乃至請求項7のいずれかに記載の電力管理方法。 The power management method according to any one of claims 3 to 7, wherein the facility includes at least one of a solar cell device and a fuel cell device as a power generation device.
  9.  前記充電メッセージは、前記施設から前記電力系統への逆潮流が可能であるか否かによらずに、前記蓄電池装置の充電動作を行うように指示する第2メッセージを含む、請求項3乃至請求項8のいずれかに記載の電力管理方法。 The charging message includes a second message instructing to perform a charging operation of the storage battery device regardless of whether or not a reverse power flow from the facility to the power system is possible. Item 9. The power management method according to any one of Items 8 to 8.
  10.  前記電力指令メッセージは、前記施設に設けられる発電装置の発電が行われている場合に、前記蓄電池装置の充電動作又は放電動作を禁止するように指示する第3メッセージを含む、請求項1乃至請求項9のいずれかに記載の電力管理方法。 The power command message includes a third message instructing to prohibit charging operation or discharging operation of the storage battery device when the power generation device provided in the facility is generating power. Item 10. The power management method according to any one of Items 9.
  11.  前記ステップBは、前記発電装置及び前記蓄電池装置の双方に接続された電力変換装置を有する前記施設に設けられる前記ローカル制御装置に対して、前記第3メッセージを送信するステップを含む、請求項10に記載の電力管理方法。 The step B includes a step of transmitting the third message to the local control device provided in the facility having a power conversion device connected to both the power generation device and the storage battery device. The power management method described in 1.
  12.  前記電力指令メッセージは、前記蓄電池装置が前記電力系統から解列された自立状態において、前記施設に設けられる発電装置の発電による前記蓄電池装置の充電動作を許容し、前記蓄電池装置が前記電力系統と再連系された再連系状態において、少なくとも前記自立状態で前記蓄電池装置に充電された電力を放電した後に前記逆潮流を許容する第4メッセージを含む、請求項1乃至請求項11のいずれかに記載の電力管理方法。 The power command message permits a charging operation of the storage battery device by power generation of a power generation device provided in the facility in a self-supporting state where the storage battery device is disconnected from the power system, and the storage battery device is connected to the power system. 12. The device according to claim 1, further comprising: a fourth message that allows the reverse power flow after discharging the electric power charged in the storage battery device in at least the self-supporting state in the re-linked state. The power management method described in 1.
  13.  前記ステップAは、前記蓄電池装置が前記電力系統から解列された自立状態において、前記施設に設けられる発電装置の発電による前記蓄電池装置の充電動作を許容し、前記蓄電池装置が前記電力系統と再連系された再連系状態において、少なくとも前記自立状態で前記蓄電池装置に充電された電力を放電した後に前記逆潮流を許容するステップを含む、請求項1乃至請求項12のいずれかに記載の電力管理方法。 The step A allows the charging operation of the storage battery device by the power generation of the power generation device provided in the facility in a self-supporting state where the storage battery device is disconnected from the power system. 13. The method according to claim 1, further comprising a step of allowing the reverse power flow after discharging the power charged in the storage battery device in at least the self-supporting state in the interconnected reconnection state. Power management method.
  14.  電力系統に接続された施設を管理する電力管理サーバであって、
     前記施設に設けられるローカル制御装置に対して、前記施設に設けられる分散電源を制御するための電力指令メッセージを送信する送信部を備え、
     前記電力指令メッセージは、前記施設に設けられる蓄電池装置の充電を指示する充電メッセージを含み、
     前記充電メッセージは、前記施設から前記電力系統への逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行うように指示し、前記逆潮流が可能である場合に、前記蓄電池装置の充電動作を禁止するように指示する第1メッセージを含む、電力管理サーバ。
    A power management server that manages facilities connected to the power grid,
    A transmission unit that transmits a power command message for controlling a distributed power source provided in the facility to a local control device provided in the facility,
    The power command message includes a charging message instructing charging of a storage battery device provided in the facility,
    The charging message instructs to charge the storage battery device when a reverse power flow from the facility to the power system is not possible, and when the reverse power flow is possible, the charging operation of the storage battery device A power management server including a first message instructing to prohibit
  15.  電力系統に接続された施設に設けられるローカル制御装置であって、
     前記施設から前記電力系統への逆潮流が可能である場合に、前記施設に設けられる分散電源の一つである蓄電池装置の充電動作を行わずに、前記逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行う制御部を備える、ローカル制御装置。
    A local control device provided in a facility connected to the power system,
    When a reverse power flow from the facility to the power system is possible, the storage battery is not capable of performing the reverse power flow without performing a charging operation of a storage battery device that is one of the distributed power sources provided in the facility. A local control device comprising a control unit that performs a charging operation of the device.
  16.  前記施設を管理する電力管理サーバから、前記分散電源を制御するための電力指令メッセージを受信する受信部を備え、
     前記電力指令メッセージは、前記蓄電池装置の充電を指示する充電メッセージを含み、
     前記充電メッセージは、前記施設から前記電力系統への逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行うように指示し、前記逆潮流が可能である場合に、前記蓄電池装置の充電動作を禁止するように指示する第1メッセージを含む、請求項15に記載のローカル制御装置。
    From a power management server that manages the facility, a receiving unit that receives a power command message for controlling the distributed power supply,
    The power command message includes a charging message instructing charging of the storage battery device,
    The charging message instructs to charge the storage battery device when a reverse power flow from the facility to the power system is not possible, and when the reverse power flow is possible, the charging operation of the storage battery device The local control device according to claim 15, further comprising a first message instructing to prohibit the password.
  17.  電力系統に接続された施設を管理する電力管理サーバと、
     前記施設に設けられるローカル制御装置とを備え、
     前記ローカル制御装置は、前記施設から前記電力系統への逆潮流が可能である場合に、前記施設に設けられる分散電源の一つである蓄電池装置の充電動作を行わずに、前記逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行う、電力管理システム。
    A power management server for managing facilities connected to the power grid;
    A local control device provided in the facility,
    When the local control device is capable of reverse power flow from the facility to the power system, the local control device can perform the reverse power flow without performing a charging operation of a storage battery device that is one of the distributed power sources provided in the facility. If not, the power management system performs the charging operation of the storage battery device.
  18.  前記電力管理サーバは、前記ローカル制御装置に対して、前記施設に設けられる分散電源を制御するための電力指令メッセージを送信する送信部を備え、
     前記電力指令メッセージは、前記施設に設けられる蓄電池装置の充電を指示する充電メッセージを含み、
     前記充電メッセージは、前記施設から前記電力系統への逆潮流が可能でない場合に、前記蓄電池装置の充電動作を行うように指示し、前記逆潮流が可能である場合に、前記蓄電池装置の充電動作を禁止するように指示する第1メッセージを含む、請求項17に記載の電力管理システム。
    The power management server includes a transmission unit that transmits a power command message for controlling a distributed power source provided in the facility to the local control device,
    The power command message includes a charging message instructing charging of a storage battery device provided in the facility,
    The charging message instructs to charge the storage battery device when a reverse power flow from the facility to the power system is not possible, and when the reverse power flow is possible, the charging operation of the storage battery device The power management system according to claim 17, further comprising a first message instructing to prohibit the operation.
PCT/JP2017/033466 2016-09-15 2017-09-15 Electric power management method, electric power management server, local control device, and electric power management system WO2018052117A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018539186A JPWO2018052117A1 (en) 2016-09-15 2017-09-15 POWER MANAGEMENT METHOD, POWER MANAGEMENT SERVER, LOCAL CONTROL DEVICE, AND POWER MANAGEMENT SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016180105 2016-09-15
JP2016-180105 2016-09-15
JP2017029473 2017-02-20
JP2017-029473 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018052117A1 true WO2018052117A1 (en) 2018-03-22

Family

ID=61620034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033466 WO2018052117A1 (en) 2016-09-15 2017-09-15 Electric power management method, electric power management server, local control device, and electric power management system

Country Status (2)

Country Link
JP (1) JPWO2018052117A1 (en)
WO (1) WO2018052117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017428A1 (en) * 2018-07-20 2020-01-23 京セラ株式会社 Electric power management server, energy accumulating device, and electric power management method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237121A (en) * 2004-02-20 2005-09-02 Meidensha Corp Solar power generation system with power storage function
WO2011141798A2 (en) * 2010-05-11 2011-11-17 パナソニック電工株式会社 Electric power control apparatus and grid connection system having same
JP2012152093A (en) * 2010-12-28 2012-08-09 Panasonic Corp Power control unit
JP2014033591A (en) * 2012-08-06 2014-02-20 Kyocera Corp Management system, management method, controller and power storage device
JP2014106659A (en) * 2012-11-27 2014-06-09 Sharp Corp Electric power buying and selling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237121A (en) * 2004-02-20 2005-09-02 Meidensha Corp Solar power generation system with power storage function
WO2011141798A2 (en) * 2010-05-11 2011-11-17 パナソニック電工株式会社 Electric power control apparatus and grid connection system having same
JP2012152093A (en) * 2010-12-28 2012-08-09 Panasonic Corp Power control unit
JP2014033591A (en) * 2012-08-06 2014-02-20 Kyocera Corp Management system, management method, controller and power storage device
JP2014106659A (en) * 2012-11-27 2014-06-09 Sharp Corp Electric power buying and selling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017428A1 (en) * 2018-07-20 2020-01-23 京セラ株式会社 Electric power management server, energy accumulating device, and electric power management method

Also Published As

Publication number Publication date
JPWO2018052117A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US9153963B2 (en) Electric power control apparatus and grid connection system having same
US10700524B2 (en) Management device and control method
WO2018043662A1 (en) Power management method, power management server, local control apparatus, and power management system
JP2011083087A (en) Power supply system
JP5178783B2 (en) Electric power supply and demand adjustment system and electric power supply and demand adjustment method
WO2018043689A1 (en) Electric power management method, electric power management server, local control device, and electric power management system
US11431194B2 (en) Power management method, power management server, local control apparatus and power management system
WO2020017428A1 (en) Electric power management server, energy accumulating device, and electric power management method
WO2018052117A1 (en) Electric power management method, electric power management server, local control device, and electric power management system
JP7203269B2 (en) Power management method and power management device
US11495809B2 (en) Power management method, power management server, local control apparatus, and power management system
US20220094164A1 (en) Energy management apparatus, energy storage apparatus, and energy management method
US10893128B2 (en) Power management method, local control apparatus and power management system
US11228176B2 (en) Power management method, local control apparatus and power management system
JP3171578U (en) Power storage device
JP2016158434A (en) Electric power conversion system and power management system
JP7303692B2 (en) POWER MANAGEMENT SYSTEM, POWER MANAGEMENT METHOD, POWER MANAGEMENT APPARATUS, AND PROGRAM
WO2016136911A1 (en) Power conditioning system and power conditioning method
JP2022084819A (en) Power management server and power management method
JP6487265B2 (en) Power management apparatus and power management method
JP2020099173A (en) Power management system and power management method
WO2016199816A1 (en) Power conversion device, power management device, and power management method
JP2018057071A (en) Power storage system
JP2016158436A (en) Power management system, electric power conversion system and power management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17851016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17851016

Country of ref document: EP

Kind code of ref document: A1