JP5178783B2 - Electric power supply and demand adjustment system and electric power supply and demand adjustment method - Google Patents

Electric power supply and demand adjustment system and electric power supply and demand adjustment method Download PDF

Info

Publication number
JP5178783B2
JP5178783B2 JP2010155083A JP2010155083A JP5178783B2 JP 5178783 B2 JP5178783 B2 JP 5178783B2 JP 2010155083 A JP2010155083 A JP 2010155083A JP 2010155083 A JP2010155083 A JP 2010155083A JP 5178783 B2 JP5178783 B2 JP 5178783B2
Authority
JP
Japan
Prior art keywords
power
station device
total
load
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010155083A
Other languages
Japanese (ja)
Other versions
JP2012019598A (en
Inventor
潔 畑
保憲 武内
聡 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010155083A priority Critical patent/JP5178783B2/en
Publication of JP2012019598A publication Critical patent/JP2012019598A/en
Application granted granted Critical
Publication of JP5178783B2 publication Critical patent/JP5178783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations

Description

本発明は、負荷及び分散型電源を含む電力系統における電力の需給を調整するシステム
及び方法に関する。
The present invention relates to a system and method for adjusting power supply and demand in a power system including a load and a distributed power source.

今後、地球温暖化への対策として新エネルギーの利用が急速に広まると考えられる。実際に、新エネルギーの1つである太陽光発電に関しては、売電価格が上昇したことにより、普及率が高くなりつつある。太陽光発電等の分散型電源の普及率が高くなってくると、発電量が増加して負荷による消費電力を上回ることにより、余剰電力が配電線に供給される逆潮流等の問題が発生する。   In the future, the use of new energy is expected to spread rapidly as a countermeasure against global warming. In fact, with regard to solar power generation, which is one of the new energies, the penetration rate is increasing due to the increase in the selling price. When the penetration rate of distributed power sources such as photovoltaic power generation increases, the amount of power generation increases and exceeds the power consumption of the load, causing problems such as reverse power flow where surplus power is supplied to distribution lines .

そこで、分散型電源の大量導入に伴う問題に対しては、様々な解決手法が提案されている。例えば、特許文献1には、電力系統の周波数の変動を検知して、太陽光発電設備等の出力を制御することができる電力供給システムが開示されている。また、特許文献2には、複数の電力需給家が、電力需給制御機器により相互接続されて構成され、従来の電力系統に拠らず自立できるとともに、従来の電力系統との並存もできる電力システムが開示されている。   Thus, various solutions have been proposed for problems associated with the large-scale introduction of distributed power sources. For example, Patent Document 1 discloses a power supply system that can detect fluctuations in the frequency of a power system and control the output of a photovoltaic power generation facility or the like. Patent Document 2 discloses an electric power system in which a plurality of electric power suppliers and demanders are interconnected by electric power supply and demand control devices, can be independent of the conventional electric power system, and can coexist with the conventional electric power system. Is disclosed.

特許第4369450号公報Japanese Patent No. 4369450 国際公開2008/047400号パンフレットInternational Publication No. 2008/047400 Pamphlet

しかしながら、特許文献1の電力供給システムは、周波数の変動に応じて出力を制御することで、折角設置した分散型電源の出力を抑制してしまうため、分散型電源の出力を最大限に有効利用できないことがある。   However, since the power supply system of Patent Document 1 controls the output according to the fluctuation of the frequency and suppresses the output of the distributed power supply installed at the corner, the output of the distributed power supply is effectively used to the maximum. There are things that cannot be done.

また、特許文献2の電力システムは、電力需給家に備えられた電力需給制御機器により自身が電力不足か否かを判断し、余剰電力を他の電力需給家から受給するか、又は、他の電力需給家に供給する。これらの電力需給制御機器による情報の送受信は、その情報量が多くなると発生するトラフィック障害により、多大な時間を要することがあると考えられる。   Moreover, the electric power system of patent document 2 judges whether self is short of electric power by the electric power supply and demand control apparatus with which the electric power supplier and demander was equipped, and receives surplus electric power from another electric power supplier and demander, or other Supply to electricity suppliers and suppliers. It is considered that transmission / reception of information by these power supply / demand control devices may require a great amount of time due to a traffic failure that occurs when the amount of information increases.

本発明は、上記課題を鑑みてなされたものであり、その主たる目的は、分散型電源の導入に際して電力系統の安定化を図ることにある。   The present invention has been made in view of the above problems, and a main object thereof is to stabilize the power system when a distributed power source is introduced.

上記課題を解決するために、本発明は、上位系統から系統電力を受電し、配電線に送電するとともに、前記配電線からの余剰電力を付設の蓄電池に充電する変電所と、前記配電線に連系する変圧器と、所定の施設に設置され、前記変圧器に接続される、電力を消費する負荷及び発電を行う分散型電源を含む電力機器と、を含む複数の電力系統における電力の需給を調整するシステム(電力需給調整システム)であって、前記施設ごとに設置される子局装置と、前記変圧器ごとに設置され、各子局装置と通信可能な中継局装置と、前記変電所ごとに設置され、各中継局装置と通信可能な親局装置と、を備え、前記子局装置が、前記施設に設置される前記電力機器が必要な電力の合計である施設電力を計算し、計算した前記施設電力を前記中継局装置に送信し、前記中継局装置が、各子局装置から前記施設電力を受信し、受信した各施設電力の合計を負荷電力合計として算出し、前記負荷電力合計を前記親局装置に送信し、前記親局装置が、各中継局装置から前記負荷電力合計を受信し、受信した各負荷電力合計の合計を総合負荷電力合計として算出する手段と、前記総合負荷電力合計が前記系統電力より大きい場合に、前記蓄電池から前記配電線への放電を指示する手段と、前記総合負荷電力合計が前記系統電力より大きく、かつ、前記総合負荷電力合計から前記系統電力を減算した値である不足電力が前記蓄電池からの放電電力より大きい場合に、前記不足電力から前記放電電力を減算した値を融通電力として求め、その融通電力の出力を要請する要請メッセージを、当該親局装置と通信可能な他の親局装置に送信する手段と、を備え、前記他の親局装置が、当該親局装置から前記要請メッセージを受信した場合に、当該他の親局装置が設置された変電所に付設の蓄電池から前記配電線への放電を指示することを特徴とする。   In order to solve the above-mentioned problems, the present invention receives a system power from a host system, transmits power to a distribution line, and charges a surplus power from the distribution line to an attached storage battery, and the distribution line. Supply and demand of electric power in a plurality of electric power systems including an interconnecting transformer and a power device including a load that consumes electric power and a distributed power source that generates electric power that is installed in a predetermined facility and connected to the transformer A power supply / demand adjustment system, a slave station device installed for each facility, a relay station device installed for each transformer and capable of communicating with each slave station device, and the substation Each of which is provided with a master station device capable of communicating with each relay station device, and the slave station device calculates facility power that is the total power required by the power equipment installed in the facility, Calculate the facility power as the relay station The relay station device receives the facility power from each slave station device, calculates the total of the received facility powers as a total load power, and transmits the total load power to the master station device. The master station device receives the load power total from each relay station device, and calculates the total load power total received as a total load power total; and the total load power total is greater than the grid power A means for instructing discharge from the storage battery to the distribution line, and the total load power total is larger than the system power, and the insufficient power is a value obtained by subtracting the system power from the total load power total. When larger than the discharge power from the storage battery, a value obtained by subtracting the discharge power from the insufficient power is obtained as accommodation power, and a request message for requesting output of the accommodation power is sent to the master station device Means for transmitting to another master station device capable of communication, and when the other master station device receives the request message from the master station device, the substation in which the other master station device is installed The discharge from the storage battery attached to the place to the distribution line is instructed.

この構成によれば、分散型電源による余剰電力は、変圧器及び配電線を通じて変電所に付設された蓄電池に充電されて、捨てられることなく有効に利用される。一方、電力機器が施設全体として必要な電力が大きく、系統電力だけで賄えない場合には、当該変電所の蓄電池から放電される。それでも電力が不足するときには、他の変電所の蓄電池から融通される。また、親局装置は各中継局装置と通信可能であり、中継局装置は各子局装置と通信可能なので、親局装置と、子局装置との間のデータ送受信が円滑に行われる。以上によれば、分散型電源の導入に際して電力系統の安定化を図ることができる。   According to this configuration, surplus power from the distributed power source is charged to the storage battery attached to the substation through the transformer and the distribution line, and is effectively used without being discarded. On the other hand, when the power equipment requires a large amount of power as a whole facility and cannot be covered only by the system power, it is discharged from the storage battery of the substation. If power still runs short, it will be accommodated from storage batteries at other substations. Further, since the master station device can communicate with each relay station device and the relay station device can communicate with each slave station device, data transmission / reception between the master station device and the slave station device is performed smoothly. According to the above, it is possible to stabilize the power system when the distributed power source is introduced.

また、本発明の上記電力需給調整システムにおいて、前記他の親局装置が、前記親局装置から前記要請メッセージを受信した場合に、当該蓄電池の蓄電電力が前記融通電力以上のときに、当該蓄電池から前記配電線への放電を指示し、当該蓄電池の蓄電電力が前記融通電力未満のときに、電力融通ができない旨を示す融通不可メッセージを前記親局装置に送信し、前記親局装置が、前記他の親局装置から前記融通不可メッセージを受信した場合に、前記負荷による消費電力の低減を指示する指示メッセージを前記中継局装置経由で前記子局装置に送信し、前記子局装置が、前記親局装置から前記中継局装置経由で前記指示メッセージを受信した場合に、前記負荷を抑制又は遮断することとしてもよい。   Further, in the power supply and demand adjustment system of the present invention, when the other master station device receives the request message from the master station device, when the stored power of the storage battery is equal to or greater than the accommodation power, the storage battery Instructing the discharge from the distribution line, and when the stored power of the storage battery is less than the accommodation power, a message indicating that power accommodation is not possible is transmitted to the master station device, the master station device, When the interchange unavailable message is received from the other master station device, an instruction message for instructing reduction of power consumption by the load is transmitted to the slave station device via the relay station device, and the slave station device When the instruction message is received from the master station device via the relay station device, the load may be suppressed or blocked.

この構成によれば、他の親局装置が親局装置から融通電力の出力要請を受けた際に、変電所の蓄電池に十分な電力があれば、その電力を融通し、蓄電池の電力が不十分であれば、融通できない旨を親局装置に通知する。親局装置は、融通不可の通知を受けて、負荷の消費電力を低減する指示を中継局装置経由で子局装置に出し、子局装置は指示に応じて負荷の抑制又は遮断を行う。これによれば、他の電力系統に電力の融通を要請しても、十分な融通を受けられない場合には、負荷を抑制又は遮断することにより、電力系統の安定化を図ることができる。   According to this configuration, when another master station device receives an output request for interchangeable power from the master station device, if there is sufficient power in the storage battery of the substation, that power is interchanged and the power of the storage battery is low. If it is enough, it notifies the master station device that it cannot be accommodated. The master station device receives the notification that the interchange is not possible and issues an instruction to reduce the power consumption of the load to the slave station device via the relay station device, and the slave station device suppresses or cuts off the load according to the instruction. According to this, even when requesting the interchange of power to another power system, when sufficient accommodation is not received, the power system can be stabilized by suppressing or blocking the load.

また、本発明の上記電力需給調整システムにおいて、前記子局装置のうち、前記中継局装置に送信した前記施設電力が大きい子局装置に対して、優先して前記指示メッセージが送信されることとしてもよい。   In the power supply and demand adjustment system according to the present invention, the instruction message is preferentially transmitted to the slave station device having a large facility power transmitted to the relay station device among the slave station devices. Also good.

この構成によれば、負荷による消費電力を低減する指示は、電力機器の負荷電力が大きい施設の子局装置に優先して出されるので、効果的に負荷の消費電力が低減され、電力系統の速やかな安定化を期待することができる。   According to this configuration, since the instruction to reduce the power consumption due to the load is given priority to the slave station device of the facility where the load power of the power equipment is large, the power consumption of the load is effectively reduced, and the power system Prompt stabilization can be expected.

なお、本発明は、電力需給調整方法を含む。その他、本願が開示する課題及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   The present invention includes a power supply and demand adjustment method. In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description of the mode for carrying out the invention and the drawings.

本発明によれば、分散型電源の導入に際して電力系統の安定化を図ることができる。   According to the present invention, the power system can be stabilized when the distributed power source is introduced.

分散型電源需給調整システム1の構成を示す図である。1 is a diagram illustrating a configuration of a distributed power supply and demand adjustment system 1. FIG. 分散型電源需給調整システム1の概要を示す図である。It is a figure which shows the outline | summary of the distributed power supply and demand adjustment system. 子局2のハードウェア構成を示す図である。2 is a diagram illustrating a hardware configuration of a slave station 2. FIG. 中継局3のハードウェア構成を示す図である。3 is a diagram illustrating a hardware configuration of a relay station 3. FIG. PCS4のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of PCS4. 子局2の記憶部25及び中継局3の記憶部33に記憶されるデータの構成を示す図であり、(a)は子局2の記憶部25に記憶される電力データ25Aの構成を示し、(b)は中継局3の記憶部33に記憶される子局電力データ33Aの構成を示す。It is a figure which shows the structure of the data memorize | stored in the memory | storage part 25 of the sub_station | mobile_unit 2, and the memory | storage part 33 of the relay station 3, (a) shows the structure of the electric power data 25A memorize | stored in the memory | storage part 25 of the sub_station | mobile_unit 2. (B) shows the configuration of the slave station power data 33 A stored in the storage unit 33 of the relay station 3. PCS4の記憶部45に記憶されるデータの構成を示す図であり、(a)は中継局電力データ45Aの構成を示し、(b)は配変電力データ45Bの構成を示す。It is a figure which shows the structure of the data memorize | stored in the memory | storage part 45 of PCS4, (a) shows the structure of relay station electric power data 45A, (b) shows the structure of distribution power data 45B. 分散型電源需給調整システム1の処理を示すフローチャートである。It is a flowchart which shows the process of the distributed power supply and demand adjustment system.

以下、図面を参照しながら、本発明を実施するための形態を説明する。本発明の実施の形態に係る分散型電源需給調整システムは、負荷や分散型電源を含む電力機器が連系する電力系統において電力の需給を調整するシステムであり、通信装置として、配電用変電所に設置されたPCS(親局)と、変圧器に設置された中継局と、需要家宅に設置された子局とが連携して、分散型電源の余剰電力を蓄電池に充電し、負荷の電力不足に対して当該電力系統内外の蓄電池から電力を融通し、電力の融通ができないときには負荷の抑制又は遮断を行うものである。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. A distributed power supply and demand adjustment system according to an embodiment of the present invention is a system that adjusts the supply and demand of power in a power system in which power devices including a load and a distributed power supply are connected. As a communication device, a distribution substation PCS (parent station) installed in the power station, the relay station installed in the transformer, and the slave station installed in the customer's house work together to charge the surplus power of the distributed power source to the storage battery and load power In response to the shortage, power is accommodated from the storage batteries inside and outside the power system, and when the power cannot be accommodated, the load is suppressed or cut off.

≪システムの構成と概要≫
図1は、分散型電源需給調整システム1の構成を示す図である。分散型電源需給調整システム1の配電系統において、配電用変電所(配変)には変圧器TRが設置され、変圧器TRの2次側から配電線が延設される。配電線には連系点において顧客用の変圧器trが接続され、変圧器trには顧客宅(需要家宅)の電力機器として単独の負荷L、又は、負荷L、インバータIV(Inverter)、蓄電池b及び太陽光発電装置PV(Photovoltaic)の組合せが接続される。なお、変圧器trは、例えば、1台で約10〜20世帯を賄う。また、配電用変電所は、例えば、1箇所で数百程度の世帯を賄う。
≪System configuration and overview≫
FIG. 1 is a diagram illustrating a configuration of a distributed power supply and demand adjustment system 1. In the distribution system of the distributed power supply and demand adjustment system 1, a transformer TR is installed at a distribution substation (distribution), and a distribution line is extended from the secondary side of the transformer TR. A customer-use transformer tr is connected to the distribution line at the connection point, and the transformer tr has a single load L or a load L, an inverter IV (Inverter), a storage battery as power equipment for a customer house (customer house). b and a combination of a photovoltaic power generation device PV (Photovoltaic). For example, one transformer tr covers about 10 to 20 households. In addition, a distribution substation covers, for example, several hundred households at one location.

負荷Lは、変圧器tr又は蓄電池bから電力を供給され、供給された電力を消費する。インバータIVは、太陽光発電装置PVで発電された直流電力及び蓄電池bに蓄電された直流電力を交流電力に変換し、変換後の交流電力を負荷Lに供給する。蓄電池bは、太陽光発電装置PVで発電された電力を蓄電する。太陽光発電装置PVは、太陽光により発電する装置である。   The load L is supplied with power from the transformer tr or the storage battery b and consumes the supplied power. The inverter IV converts the DC power generated by the solar power generation device PV and the DC power stored in the storage battery b into AC power, and supplies the converted AC power to the load L. The storage battery b stores the electric power generated by the solar power generation device PV. The solar power generation device PV is a device that generates power using sunlight.

負荷L、インバータIV、蓄電池b、太陽光発電装置PV等の電力機器は、必ずしも個人の顧客宅に限ることなく、企業や公共の施設に設置されていてもよい。また、1以上の電力機器が、設置場所に限ることなく、グループとして管理されていてもよい。   The power devices such as the load L, the inverter IV, the storage battery b, and the solar power generation device PV are not necessarily limited to private customer homes, and may be installed in companies and public facilities. In addition, one or more power devices may be managed as a group without being limited to the installation location.

上記配電系統の構成に対して、通信装置として子局2、中継局3及びPCS4が設けられる。配電用変電所ごとに、親局(制御装置)であるPCS(Power Control Server)4、インバータIV及び大容量の蓄電池Bが設置され、顧客用の変圧器trに中継局3が設置される。さらに、負荷Lや太陽光発電装置PVのある顧客宅に子局2が設置される。子局2は、太陽光発電装置PV等の分散型電源がなく、負荷Lだけが設置された顧客宅にも置かれる。PCS4のうち、配電用変電所#1に設置されるものをPCS#1とし、配電用変電所#2に設置されるものをPCS#2とする。なお、太陽光発電装置PVに限ることなく、顧客宅に他の分散型電源(例えば、風力発電装置等)が設置されてもよい。また、子局2は、顧客宅に限ることなく、施設ごと、又は、グループごとに設置されていてもよい。   For the configuration of the distribution system, a slave station 2, a relay station 3, and a PCS 4 are provided as communication devices. For each distribution substation, a PCS (Power Control Server) 4 that is a master station (control device), an inverter IV, and a large-capacity storage battery B are installed, and a relay station 3 is installed in a transformer tr for customers. Further, the slave station 2 is installed at the customer's home where the load L and the solar power generation device PV are located. The slave station 2 does not have a distributed power source such as the solar power generation device PV, and is also placed in a customer's house where only the load L is installed. Of the PCSs 4, one installed in the distribution substation # 1 is referred to as PCS # 1, and one installed in the distribution substation # 2 is referred to as PCS # 2. Note that the present invention is not limited to the solar power generation device PV, and another distributed power source (for example, a wind power generation device) may be installed at the customer's home. Further, the slave station 2 may be installed for each facility or for each group without being limited to the customer's home.

分散型電源需給調整システム1は、従来の分散型電源転送遮断システムをベースにした応用版として構成され、負荷Lだけの顧客宅に子局2を新設し、その子局2と、中継局3との間に通信線を新設する。   The distributed power supply and demand adjustment system 1 is configured as an application version based on a conventional distributed power transfer interruption system, and a slave station 2 is newly installed in a customer's house having only a load L. The slave station 2, relay station 3 and A new communication line will be established between the two.

なお、系統電力Pは、上位系統の変電所(図示せず)から配電用変電所に送電される電力を示す。総合負荷電力Pは、変圧器trの1次側における負荷電力の合計である。顧客子局総合負荷電力Pは、顧客宅における負荷電力の合計である。顧客負荷電力PLLは、顧客宅の負荷Lの消費電力である。顧客PV電力PPVは、顧客宅の太陽光発電装置PVの発電電力である。電力不足分蓄電池放電力Pは、配電変電所の蓄電池Bから放電される不足分の電力である。最大蓄電池容量PBMAXは、配電変電所の蓄電池Bに蓄電されている電力である。顧客設置蓄電池電力PBBは、顧客宅の蓄電池bにおける蓄電電力である。 Note that grid power P S indicates the power transmitted to the power distribution substation from the substation of the upper grid (not shown). Total load power P L is the sum of the load power in the primary side of the transformer tr. Kokyakuko stations total load power P X is the sum of the load power in the customer's house. The customer load power P LL is the power consumption of the load L at the customer's house. Customer PV power P PV is generated power of the solar power generation device PV at the customer's house. The power shortage storage battery discharge power P B is the power shortage discharged from the storage battery B of the distribution substation. The maximum storage battery capacity P BMAX is electric power stored in the storage battery B of the distribution substation. The customer-installed storage battery power PBB is stored power in the storage battery b at the customer's house.

ここで、顧客子局総合負荷電力Pは、次の式1により計算される。
=PLL−PPV−PBB ・・・ 式1
Here, Kokyakuko station total load power P X is calculated by the following equation 1.
P X = P LL -P PV -P BB Formula 1

子局2以下、つまり、顧客宅では従来通りの太陽光発電装置PV及びパワコンが設置されている。さらに、太陽光発電装置PVの余剰出力は、顧客の蓄電池bに優先して充電される。それでも余った電力は、逆潮流として配電線を通じて配電用変電所まで到達し、PCS4の制御により、インバータIVで交流から直流に変換された後、蓄電池Bに充電されて、電力会社により買電されることになる。式1は、顧客負荷電力PLLから顧客PV電力PPV及び蓄電池bの電力PBBを引いた電力を表す。そして、蓄電池bが充電されておらず、雨や夜間等のため太陽光発電装置PVが発電していない場合は、P=PLLとなる。 The conventional solar power generation device PV and the power conditioner are installed at the slave station 2 or lower, that is, at the customer's house. Furthermore, the surplus output of the solar power generation device PV is charged with priority over the storage battery b of the customer. Still, the surplus power reaches the distribution substation through the distribution line as a reverse power flow, is converted from AC to DC by inverter IV under the control of PCS4, then is charged into storage battery B and purchased by the power company. Will be. Equation 1 represents the power obtained by subtracting the customer PV power P PV and the power P BB of the storage battery b from the customer load power P LL . And when the storage battery b is not charged and the solar power generation device PV is not generating power due to rain or night, P X = P LL .

図2は、分散型電源需給調整システム1の概要を示す図であり、各通信装置の役割及び相互関係を示す。子局2は、顧客負荷電力PLL等から電力情報を生成し、中継局3に送信する。中継局3は、変圧器trの配下にある複数の顧客宅の子局2と通信可能であり、各子局2から電力情報を受信し、各電力情報に含まれる負荷電力を集約し、集約した負荷電力の情報をPCS4に送信する。PCS4は、配電用変電所の配電線に連系する複数の変圧器trの中継局3と通信可能であり、各中継局3から負荷電力情報を受信し、各負荷電力情報に含まれる負荷電力を集約し、集約した負荷電力の情報を他のPCS4に送信する。一方、他のPCS4から負荷電力情報を受信する。PCS4間においては、電力不足に関する情報を交換して、電力を融通し合うとともに、過負荷の対象となる子局2には負荷Lの抑制又は遮断の指令を出す。 FIG. 2 is a diagram showing an overview of the distributed power supply and demand adjustment system 1 and shows the role and mutual relationship of each communication device. The slave station 2 generates power information from the customer load power P LL and transmits it to the relay station 3. The relay station 3 can communicate with a plurality of customer stations 2 subordinate to the transformer tr, receives power information from each station 2, aggregates load power included in each power information, and aggregates The information on the load power thus transmitted is transmitted to the PCS 4. The PCS 4 can communicate with the relay stations 3 of the plurality of transformers tr connected to the distribution lines of the distribution substation, receives load power information from each relay station 3, and loads power included in each load power information Are aggregated and the aggregated load power information is transmitted to the other PCS 4. On the other hand, load power information is received from another PCS 4. Between the PCSs 4, information on power shortage is exchanged to exchange power, and a command to suppress or cut off the load L is issued to the slave station 2 to be overloaded.

図3は、子局2のハードウェア構成を示す図である。子局2は、通信部21、入力部22、出力部23、処理部24及び記憶部25を備え、各部がバス26を介してデータを送受信可能なように接続されている。通信部21は、通信線を介して中継局3と通信を行う部分であり、例えば、NIC(Network Interface Card)等によって実現される。入力部22は、処理部24からの指示により負荷L、太陽光発電装置PV及び蓄電池bから電力データを取得する部分であり、例えば、電力計とのインタフェースアダプタ等によって実現される。出力部23は、処理部24からの指示により負荷Lの抑制又は遮断を指示する部分であり、例えば、開閉器とのインタフェースアダプタ等によって実現される。処理部24は、所定のメモリを介して各部間のデータの受け渡しを行うととともに、子局2全体の制御を行うものであり、CPU(Central Processing Unit)が所定のメモリに格納されたプログラムを実行することによって実現される。記憶部25は、処理部24からデータを記憶したり、記憶したデータを読み出したりするものであり、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の不揮発性記憶装置によって実現される。   FIG. 3 is a diagram illustrating a hardware configuration of the slave station 2. The slave station 2 includes a communication unit 21, an input unit 22, an output unit 23, a processing unit 24, and a storage unit 25, and each unit is connected so that data can be transmitted and received via a bus 26. The communication unit 21 is a part that communicates with the relay station 3 via a communication line, and is realized by, for example, a NIC (Network Interface Card) or the like. The input unit 22 is a part that acquires power data from the load L, the solar power generation device PV, and the storage battery b according to an instruction from the processing unit 24, and is realized by, for example, an interface adapter with a power meter. The output unit 23 is a part that instructs to suppress or block the load L according to an instruction from the processing unit 24, and is realized by, for example, an interface adapter with a switch. The processing unit 24 exchanges data between each unit via a predetermined memory and controls the entire slave station 2. The CPU (Central Processing Unit) stores a program stored in the predetermined memory. It is realized by executing. The storage unit 25 stores data from the processing unit 24 and reads the stored data. For example, the storage unit 25 is realized by a nonvolatile storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive). The

図4は、中継局3のハードウェア構成を示す図である。中継局3は、通信部31、処理部32及び記憶部33を備え、各部がバス34を介してデータを送受信可能なように接続されている。通信部31は、通信線を介して子局2及びPCS4と通信を行う部分であり、例えば、NIC等によって実現される。処理部32は、所定のメモリを介して各部間のデータの受け渡しを行うととともに、中継局3全体の制御を行うものであり、CPUが所定のメモリに格納されたプログラムを実行することによって実現される。記憶部33は、処理部32からデータを記憶したり、記憶したデータを読み出したりするものであり、例えば、HDDやSSD等の不揮発性記憶装置によって実現される。   FIG. 4 is a diagram illustrating a hardware configuration of the relay station 3. The relay station 3 includes a communication unit 31, a processing unit 32, and a storage unit 33, and each unit is connected so that data can be transmitted and received via a bus 34. The communication unit 31 is a part that communicates with the slave station 2 and the PCS 4 via a communication line, and is realized by, for example, a NIC or the like. The processing unit 32 delivers data between the units via a predetermined memory and controls the relay station 3 as a whole. The processing unit 32 is realized by the CPU executing a program stored in the predetermined memory. Is done. The storage unit 33 stores data from the processing unit 32 and reads the stored data, and is realized by, for example, a nonvolatile storage device such as an HDD or an SSD.

図5は、PCS4のハードウェア構成を示す図である。PCS4は、通信部41、入力部42、出力部43、処理部44及び記憶部45を備え、各部がバス46を介してデータを送受信可能なように接続されている。通信部41は、通信線を介して中継局3及び他のPCS4と通信を行う部分であり、例えば、NIC等によって実現される。入力部42は、処理部44からの指示により蓄電池Bの電力データを取得する部分であり、例えば、電力計とのインタフェースアダプタ等によって実現される。出力部43は、処理部44からの指示により蓄電池Bからの放電等を指示する部分であり、例えば、蓄電池Bとのインタフェースアダプタ等によって実現される。処理部44は、所定のメモリを介して各部間のデータの受け渡しを行うととともに、PCS4全体の制御を行うものであり、CPUが所定のメモリに格納されたプログラムを実行することによって実現される。記憶部45は、処理部44からデータを記憶したり、記憶したデータを読み出したりするものであり、例えば、HDDやSSD等の不揮発性記憶装置によって実現される。   FIG. 5 is a diagram illustrating a hardware configuration of the PCS 4. The PCS 4 includes a communication unit 41, an input unit 42, an output unit 43, a processing unit 44, and a storage unit 45, and each unit is connected so that data can be transmitted and received via a bus 46. The communication unit 41 is a part that communicates with the relay station 3 and another PCS 4 via a communication line, and is realized by, for example, a NIC or the like. The input unit 42 is a part that acquires the power data of the storage battery B according to an instruction from the processing unit 44, and is realized by, for example, an interface adapter with a power meter. The output unit 43 is a part for instructing discharge or the like from the storage battery B by an instruction from the processing unit 44, and is realized by, for example, an interface adapter with the storage battery B or the like. The processing unit 44 transfers data between the respective units via a predetermined memory and controls the entire PCS 4 and is realized by the CPU executing a program stored in the predetermined memory. . The storage unit 45 stores data from the processing unit 44 and reads the stored data, and is realized by, for example, a nonvolatile storage device such as an HDD or an SSD.

≪データの構成≫
図6は、子局2の記憶部25及び中継局3の記憶部33に記憶されるデータの構成を示す図である。図6(a)は、子局2の記憶部25に記憶される電力データ25Aの構成を示す。電力データ25Aは、子局2が設置された顧客宅の電力機器に関する電力のデータであり、負荷電力25A1、PV電力25A2、蓄電池電力25A3及び顧客電力25A4を含む。負荷電力25A1は、負荷Lの消費電力であり、顧客負荷電力PLLに相当する。PV電力25A2は、太陽光発電装置PVの発電電力であり、顧客PV電力PPVに相当する。蓄電池電力25A3は、蓄電池bにおける蓄電電力であり、顧客設置蓄電池電力PBBに相当する。顧客電力25A4は、顧客宅における電力機器の負荷電力の合計であり、顧客子局総合負荷電力Pに相当する。なお、顧客電力25A4は、[負荷電力25A1−PV電力25A2−蓄電池電力25A3]により算出、設定され、正値であれば系統電力の供給が必要であり、負値であれば余剰電力が発生していることになる。
<< Data structure >>
FIG. 6 is a diagram illustrating a configuration of data stored in the storage unit 25 of the slave station 2 and the storage unit 33 of the relay station 3. FIG. 6A shows the configuration of power data 25 </ b> A stored in the storage unit 25 of the slave station 2. The power data 25A is power data related to the power equipment at the customer's home where the slave station 2 is installed, and includes load power 25A1, PV power 25A2, storage battery power 25A3, and customer power 25A4. The load power 25A1 is the power consumption of the load L and corresponds to the customer load power P LL . PV power 25A2 is a power generated by the solar power generation apparatus PV, corresponding to the customer PV power P PV. Battery power 25A3 is a stored power in the battery b, corresponding to the customer installed the battery power P BB. Customer power 25A4 is the sum of the load power of the power equipment in the customer's house, equivalent to Kokyakuko stations total load power P X. Note that the customer power 25A4 is calculated and set by [load power 25A1-PV power 25A2-storage battery power 25A3]. If it is a positive value, supply of system power is necessary, and if it is a negative value, surplus power is generated. Will be.

図6(b)は、中継局3の記憶部33に記憶される子局電力データ33Aの構成を示す。子局電力データ33Aは、中継局3の配下にある各子局2から受信した電力情報を記憶したものであり、子局ID33A1及び顧客電力33A2を含む、子局2ごとのレコードからなる。子局ID33A1は、子局2に固有のIDであり、中継局3において電力情報を区別し、また、負荷Lの抑制又は遮断の指示を出すべき子局2を特定するのに用いられる。顧客電力33A2は、顧客宅における電力機器の負荷電力の合計であり、電力データ25Aの顧客電力25A4と同じであり、顧客子局総合負荷電力Pに相当する。なお、子局電力データ33Aの最後のレコードは、子局ID33A1が「合計」になっていて、顧客電力33A2には各子局2の顧客電力の合計(負荷電力合計)が設定される。この顧客電力の合計は、変圧器trの1次側における負荷電力の合計ΣPであり、総合負荷電力Pに相当する。 FIG. 6B shows a configuration of the slave station power data 33 </ b> A stored in the storage unit 33 of the relay station 3. The slave station power data 33A stores power information received from each slave station 2 subordinate to the relay station 3, and includes a record for each slave station 2 including a slave station ID 33A1 and customer power 33A2. The slave station ID 33A1 is an ID unique to the slave station 2, and is used to identify power information in the relay station 3 and to specify the slave station 2 that should issue an instruction to suppress or block the load L. Customer power 33A2 is a total load power of the power equipment in the customer's house, the same as the customer power 25A4 of power data 25A, corresponding to Kokyakuko station total load power P X. In the last record of the slave station power data 33A, the slave station ID 33A1 is “total”, and the customer power 33A2 is set with the total customer power of each slave station 2 (total load power). Total this customer power is the sum .SIGMA.P X of the load power in the primary side of the transformer tr, corresponding to the total load power P L.

図7は、PCS4の記憶部45に記憶されるデータの構成を示す図である。図7(a)は、中継局電力データ45Aの構成を示す。中継局電力データ45Aは、PCS4の配下にある各中継局3から受信した電力情報を記憶したものであり、中継局ID45A1及び変圧器電力45A2を含む、中継局3ごとのレコードからなる。中継局ID45A1は、中継局3に固有のIDであり、PCS4において電力情報を区別し、また、負荷Lの抑制又は遮断の指示を出すべき中継局3を特定するのに用いられる。変圧器電力45A2は、変圧器trの1次側における負荷電力の合計であり、子局電力データ33Aの顧客電力33A2の合計と同じであり、総合負荷電力Pに相当する。なお、中継局電力データ45Aの最後のレコードは、中継局ID45A1が「合計」になっていて、変圧器電力45A2には各中継局3の変圧器電力の合計が設定される。この変圧器電力の合計は、配電線につながるすべての負荷電力の合計であり、総合負荷電力Pの合計ΣPに相当する。 FIG. 7 is a diagram illustrating a configuration of data stored in the storage unit 45 of the PCS 4. FIG. 7A shows the configuration of relay station power data 45A. The relay station power data 45A stores power information received from each relay station 3 under the control of the PCS 4, and includes a record for each relay station 3 including the relay station ID 45A1 and the transformer power 45A2. The relay station ID 45A1 is an ID unique to the relay station 3, and is used to identify power information in the PCS 4 and to identify the relay station 3 that should issue an instruction to suppress or block the load L. Transformer power 45A2 is the sum of the load power in the primary side of the transformer tr is the same as the total customer power 33A2 child station power data 33A, corresponding to the total load power P L. In the last record of the relay station power data 45A, the relay station ID 45A1 is “total”, and the total transformer power of each relay station 3 is set in the transformer power 45A2. Total of the transformer power is the sum of all the load power connected to the distribution line, it corresponds to the sum .SIGMA.P L of total load power P L.

図7(b)は、配変電力データ45Bの構成を示す。配変電力データ45Bは、PCS4の設置された配電用変電所の電力に関するデータであり、系統電力45B1、総合負荷電力合計45B2、蓄電池蓄電電力45B3及び蓄電池放電電力45B4を含む。系統電力45B1は、上位の変電所から配電用変電所に供給される電力であり、系統電力Pに相当する。総合負荷電力合計45B2は、配電線につながるすべての負荷電力の合計であり、中継局電力データ45Aの変圧器電力45A2の合計と同じであり、総合負荷電力Pの合計ΣPに相当する。蓄電池蓄電電力45B3は、蓄電池Bに蓄電されている電力であり、最大蓄電池容量PBMAXに相当する。蓄電池放電電力45B4は、電力不足を補うために蓄電池Bから放電される電力であり、先に設定されている蓄電池蓄電電力45B3を超えることはなく、電力不足分蓄電池放電力Pに相当する。 FIG. 7B shows the configuration of the distribution power data 45B. The distribution power data 45B is data related to the power of the distribution substation where the PCS 4 is installed, and includes system power 45B1, total load power 45B2, storage battery storage power 45B3, and storage battery discharge power 45B4. Grid power 45B1 is a power supplied to the power distribution substation from the substation higher, corresponding to grid power P S. Total load power total 45B2 is the sum of all the load power connected to the distribution line is the same as the sum of the transformer power 45A2 relay station power data 45A, it corresponds to the sum .SIGMA.P L of total load power P L. The storage battery stored power 45B3 is the power stored in the storage battery B, and corresponds to the maximum storage battery capacity P BMAX . Battery discharge power 45B4 is a power discharged from the battery B to supplement the power insufficiency, not exceed the storage battery stored power 45B3 which has been set previously, corresponds to the power shortage battery discharge power P B.

≪システムの処理≫
図8は、分散型電源需給調整システム1の処理を示すフローチャートである。本処理は、分散型電源需給調整システム1の各通信装置(子局2、中継局3及びPCS4)において、主として処理部が、通信部により他の通信装置とデータを送受信し、記憶部のデータを参照、更新しながら、配電用変電所間に亘って余剰電力の蓄電、不足電力の給電、負荷の抑制や遮断等を行うものである。以下では、特に、配電用変電所#1の配下にある電力機器に対する制御について説明するが、配電用変電所#2の配下についても同様である。
≪System processing≫
FIG. 8 is a flowchart showing the processing of the distributed power supply and demand adjustment system 1. In this processing, in each communication device (slave station 2, relay station 3 and PCS 4) of the distributed power supply and demand adjustment system 1, the processing unit mainly transmits / receives data to / from other communication devices by the communication unit, and the data in the storage unit While referring to and updating the above, storage of surplus power, power supply of insufficient power, load suppression and shut-off, etc. are performed across distribution substations. In the following, the control for the power equipment under the distribution substation # 1 will be described in particular, but the same applies to the distribution under the distribution substation # 2.

まず、PCS#1側において、子局2が上位の中継局3に電力情報を送信する(S801)。送信される電力情報には、子局ID及び顧客電力25A4(顧客子局総合負荷電力P)が含まれる。子局2は、事前に入力部22を通じて負荷電力25A1、PV電力25A2及び蓄電池電力25A3の最新値を取得し、顧客電力24A4を計算しておく。 First, on the PCS # 1 side, the slave station 2 transmits power information to the upper relay station 3 (S801). The transmitted power information includes the slave station ID and the customer power 25A4 (customer slave station total load power P X ). The slave station 2 acquires the latest values of the load power 25A1, the PV power 25A2, and the storage battery power 25A3 through the input unit 22 in advance, and calculates the customer power 24A4.

次に、中継局3が、配下の各子局2から電力情報を受信し、集約し、上位のPCS#1に送信する(S802)。送信される電力情報には、中継局ID及び顧客電力33A2の合計(総合負荷電力P=ΣP)が含まれる。中継局3は、子局2ごとに受信した電力情報の顧客電力33A2をそれぞれ記憶し、記憶した顧客電力33A2を合計する。 Next, the relay station 3 receives, aggregates, and transmits power information from each of the subordinate slave stations 2 (S802). The transmitted power information includes the sum of the relay station ID and the customer power 33A2 (total load power P L = ΣP X ). The relay station 3 stores the customer power 33A2 of the power information received for each slave station 2, and totals the stored customer power 33A2.

そして、PCS#1は、配下の各中継局3から電力情報を受信し、集約する(S803)。詳細には、中継局3ごとに受信した電力情報に含まれる顧客電力33A2の合計(総合負荷電力P)をそれぞれ変圧器電力45A2として記憶し、記憶した変圧器電力45A2を合計する。その合計値(ΣP)を総合負荷電力合計45B2として記憶部45に記憶する。このとき、入力部42を通じて系統電力45B1及び蓄電池蓄電電力45B3の最新値を記憶部45に記憶しておく。以下、PCS#1及びPCS#2により、配変電力データ45Bに応じた制御を行う。 Then, the PCS # 1 receives and aggregates power information from each relay station 3 under its control (S803). Specifically, the total (total load power P L ) of the customer power 33A2 included in the power information received for each relay station 3 is stored as the transformer power 45A2, and the stored transformer power 45A2 is summed. The total value (ΣP L ) is stored in the storage unit 45 as a total load power total 45B2. At this time, the latest values of the system power 45B1 and the storage battery stored power 45B3 are stored in the storage unit 45 through the input unit 42. Hereinafter, control according to the distribution power data 45B is performed by PCS # 1 and PCS # 2.

まず、PCS#1は、系統電力45B1(P)が総合負荷電力合計45B2(ΣP)より小さいか否かを判定する(S804)。系統電力45B1が総合負荷電力合計45B2より小さければ(S804のYES)、上位系統の変電所から送電される系統電力Pが、配電用変電所#1の配下にある負荷L全体に対して十分でなく、電力不足になっているということなので、PCS#1の制御により、配電用変電所#1の蓄電池BからインバータIVを経て放電が行われる(S805)。このとき、PCS#1は、蓄電池Bから放電された電力を蓄電池放電電力45B4(P)として記憶部45に記憶する。 First, the PCS # 1 determines whether or not the system power 45B1 (P S ) is smaller than the total load power 45B2 (ΣP L ) (S804). Is smaller than the system power 45B1 is the total load power total 45B2 (YES in S804), the system power P S being the transmission from the substation of higher strains, sufficient for the entire load L working under the distribution substation # 1 However, since the power is insufficient, the discharge is performed from the storage battery B of the distribution substation # 1 through the inverter IV under the control of the PCS # 1 (S805). At this time, the PCS # 1 stores the power discharged from the storage battery B in the storage unit 45 as the storage battery discharge power 45B4 (P B ).

蓄電池Bが放電した後、PCS#1は、電力不足分(ΣP−P)が蓄電池放電電力45B4(P)より大きいか否かを判定する(S806)。電力不足分(不足電力)が蓄電池放電電力45B4より大きければ(S806のYES)、配電用変電所#1の蓄電池Bから放電を行ってもまだ電力が足りないということなので、配電用変電所#2側のPCS#2へ融通電力の出力を要請するメッセージ(要請メッセージ)を送信する(S807)。そのメッセージには、PCS#1の蓄電池Bから放電した後の電力不足分(融通電力)が含まれる。一方、電力不足分が蓄電池放電電力45B4より大きくなければ(S806のNO)、配電用変電所#1の蓄電池Bから電力不足分だけの放電が行われたということなので、配電用変電所#1配下の系統は安定していることになる(S808)。なお、蓄電池Bから電力不足分を超える電力が放電されることはない。 After the storage battery B is discharged, the PCS # 1 determines whether or not the power shortage (ΣP L −P S ) is larger than the storage battery discharge power 45B4 (P B ) (S806). If the power shortage (insufficient power) is larger than the storage battery discharge power 45B4 (YES in S806), it means that there is not enough power even after discharging from the storage battery B of the distribution substation # 1, so the distribution substation # A message (request message) requesting the output of interchangeable power is transmitted to the PCS # 2 on the second side (S807). The message includes a power shortage (accommodated power) after discharging from the storage battery B of PCS # 1. On the other hand, if the power shortage is not larger than the storage battery discharge power 45B4 (NO in S806), it means that the power shortage is discharged from the storage battery B of the distribution substation # 1, so the distribution substation # 1 The subordinate system is stable (S808). In addition, the electric power exceeding the shortage of electric power is not discharged from the storage battery B.

S804において系統電力45B1が総合負荷電力合計45B2より小さくなければ(S804のNO)、PCS#1は、系統電力45B1が総合負荷電力合計45B2より大きいか否かを判定する(S809)。系統電力45B1が総合負荷電力合計45B2より大きければ(S809のYES)、余剰電力が発生しているということなので、その余剰電力がPCS#1の制御により、配電用変電所#1のインバータIVを経て蓄電池Bに充電される(S810)。系統電力45B1が総合負荷電力合計45B2より大きくなければ(S809のNO)、系統電力45B1が総合負荷電力合計45B2と等しいということなので、配電用変電所#1配下の系統は安定していることになる(S811)。   If the system power 45B1 is not smaller than the total load power 45B2 in S804 (NO in S804), the PCS # 1 determines whether or not the system power 45B1 is greater than the total load power 45B2 (S809). If the grid power 45B1 is larger than the total load power 45B2 (YES in S809), it means that surplus power has been generated. Therefore, the surplus power is controlled by the PCS # 1, and the inverter IV of the distribution substation # 1 is controlled. Then, the storage battery B is charged (S810). If the system power 45B1 is not greater than the total load power 45B2 (NO in S809), the system power 45B1 is equal to the total load power 45B2, and therefore the system under the distribution substation # 1 is stable. (S811).

S807の後、PCS#2は、PCS#1から出力要請のメッセージを受信する(S821)。そこで、PCS#2側からPCS#1側へ給電すべきか否かを判定する(S822)。この判定では、以下の2つの条件C1及びC2のいずれか1つが成立すれば、給電すべきとする。なお、PCS#2の電力不足分、系統電力、総合負荷電力、蓄電池蓄電電力、蓄電池放電電力は、PCS#1の処理と同様にして取得されるものとする。   After S807, the PCS # 2 receives an output request message from the PCS # 1 (S821). Therefore, it is determined whether power should be supplied from the PCS # 2 side to the PCS # 1 side (S822). In this determination, it is assumed that power supply should be performed if any one of the following two conditions C1 and C2 is satisfied. Note that the power shortage, system power, total load power, storage battery storage power, and storage battery discharge power of PCS # 2 are acquired in the same manner as the processing of PCS # 1.

(C1)PCS#2系統電力=PCS#2総合負荷電力 かつ PCS#2蓄電池蓄電電力>PCS#1電力不足分
PCS#2側の系統が安定していて、かつ、PCS#2の蓄電池Bの蓄電電力がPCS#1の電力不足分より大きければ、PCS#1へ給電する。この場合には、問題なく十分に給電できる。
(C1) PCS # 2 system power = PCS # 2 total load power and PCS # 2 storage battery storage power> PCS # 1 power shortage PCS # 2 side system is stable, and PCS # 2 storage battery B If the stored power is larger than the power shortage of PCS # 1, power is supplied to PCS # 1. In this case, sufficient power can be supplied without problems.

(C2)PCS#2蓄電池放電電力=PCS#2電力不足分 かつ PCS#2蓄電池蓄電電力−PCS#2蓄電池放電電力>PCS#1電力不足分
PCS#2の蓄電池BからPCS#2の電力不足分を放電した後、その蓄電池の残電力がPCS#1の電力不足分より大きければ、PCS#1へ給電する。この場合、問題なく十分に給電できる。
(C2) PCS # 2 storage battery discharge power = PCS # 2 power shortage and PCS # 2 storage battery storage power-PCS # 2 storage battery discharge power> PCS # 1 power shortage PCS # 2 storage battery B to PCS # 2 power shortage If the remaining power of the storage battery is greater than the power shortage of PCS # 1 after discharging the battery, power is supplied to PCS # 1. In this case, sufficient power can be supplied without problems.

PCS#1へ給電すべきであれば(S822のYES)、PCS#2の指示により配電用変電所#2の蓄電池BからPCS#1側へ放電が行われる(S823)。このとき、PCS#1側は電力不足になっていて、PCS#2側はPCS#1側と比較すると系統が安定しているので、PCS#2の蓄電池Bから放電すれば、その放電電力は自然にPCS#1側へ流れることになる。そして、蓄電池Bが放電した後、その放電電力がPCS#1の電力不足分と等しいか否かを判定する(S824)。等しければ(S824のYES)、PCS#2側からの給電によりPCS#1側の系統が安定したことになる。続いて、PCS#2側に関して、蓄電池蓄電電力−蓄電池放電電力、すなわち、蓄電池残電力が電力不足分以上か否かを判定する(S825)。蓄電池残電力が電力不足分以上であれば(S825のYES)、蓄電池BからPCS#1側へ放電した後の残電力によりPCS#2側の電力不足分を賄えるということなので、PCS#2側の系統も安定していることになる。従って、PCS#1側及びPCS#2側の両方の系統が安定していることになる(S826)。   If power should be supplied to PCS # 1 (YES in S822), discharging is performed from storage battery B of distribution substation # 2 to PCS # 1 side in accordance with the instruction of PCS # 2 (S823). At this time, the PCS # 1 side is insufficient in power, and the PCS # 2 side is more stable than the PCS # 1 side. Therefore, if the battery B of the PCS # 2 is discharged, the discharge power is It will naturally flow to the PCS # 1 side. Then, after the storage battery B is discharged, it is determined whether or not the discharged power is equal to the power shortage of PCS # 1 (S824). If they are equal (YES in S824), the power supply from the PCS # 2 side stabilizes the system on the PCS # 1 side. Subsequently, regarding the PCS # 2 side, it is determined whether or not the storage battery stored power-storage battery discharge power, that is, the remaining battery power is equal to or greater than the power shortage (S825). If the remaining power of the storage battery is equal to or greater than the shortage of power (YES in S825), the remaining power after discharging from the storage battery B to the PCS # 1 side can cover the shortage of power on the PCS # 2 side. This system is also stable. Therefore, both the systems on the PCS # 1 side and the PCS # 2 side are stable (S826).

S822においてPCS#1側へ給電すべきでなければ(S822のNO)、PCS#1は、その旨(融通不可メッセージ)をPCS#2から受けて、配下において電力不足分が大きい負荷Lを抑制又は遮断する(S827)。S824においてPCS#2の放電電力がPCS#1の電力不足分と等しくなければ(S824のNO)、PCS#2の放電電力がPCS#1の電力不足分より小さいということなので、PCS#1は、その旨(融通不可メッセージ)をPCS#2から受けて、配下において電力不足分が大きい負荷Lを抑制又は遮断する(S827)。S825においてPCS#2の蓄電池残電力が電力不足分より小さければ(S825のNO)、PCS#2の電力不足分を賄えないということなので、PCS#2は配下において電力不足分が大きい負荷Lを抑制又は遮断する(S827)。   If power should not be supplied to the PCS # 1 side in S822 (NO in S822), the PCS # 1 receives a message to that effect (a message indicating no interchangeability) from the PCS # 2 and suppresses the load L that has a large power shortage under its control. Or it shuts off (S827). If the discharge power of PCS # 2 is not equal to the power shortage of PCS # 1 in S824 (NO in S824), the discharge power of PCS # 2 is smaller than the power shortage of PCS # 1, so PCS # 1 In response to this (a message indicating no interchangeability) from PCS # 2, the load L having a large power shortage under control is suppressed or blocked (S827). If the remaining battery power of PCS # 2 is smaller than the power shortage in S825 (NO in S825), it means that the power shortage of PCS # 2 cannot be covered, so PCS # 2 has a load L with a large power shortage under its control. Is suppressed or blocked (S827).

PCS4(PCS#1又はPCS#2)が負荷Lを抑制又は遮断する際の手順は、以下のようになる。まず、PCS4は、記憶部45の中継局電力データ45Aを参照して、変圧器電力45A2が最も大きい中継局ID45A1を優先的に特定し、その中継局ID45A1の中継局3に対して、負荷Lによる消費電力を低減する指示(負荷低減の指示メッセージ)を出す。次に、PCS4から負荷低減の指示を受けた中継局3は、記憶部33の子局電力データ33Aを参照して、顧客電力33A2の最も大きい子局ID33A1を優先的に特定し、その子局ID33A1の子局2に負荷低減の指示を出す。なお、PCS4から中継局3への負荷低減の指示、中継局3から子局2への負荷低減の指示は、変圧器電力45A2や顧客電力33A2の大きい順に優先順位を付けて行われる。例えば、指示メッセージの送信がNGであれば、次の順位の中継局3や子局2に送信する。   The procedure when the PCS 4 (PCS # 1 or PCS # 2) suppresses or blocks the load L is as follows. First, the PCS 4 refers to the relay station power data 45A in the storage unit 45 and preferentially identifies the relay station ID 45A1 having the largest transformer power 45A2, and loads the load L on the relay station 3 of the relay station ID 45A1. An instruction (load reduction instruction message) to reduce power consumption is issued. Next, the relay station 3 that received the load reduction instruction from the PCS 4 refers to the slave station power data 33A in the storage unit 33 and preferentially specifies the slave station ID 33A1 having the largest customer power 33A2, and the slave station ID 33A1. Instruct the slave station 2 to reduce the load. Note that the load reduction instruction from the PCS 4 to the relay station 3 and the load reduction instruction from the relay station 3 to the slave station 2 are given priority in descending order of the transformer power 45A2 and the customer power 33A2. For example, if the transmission of the instruction message is NG, the instruction message is transmitted to the next-ranked relay station 3 or slave station 2.

そして、中継局3から負荷低減の指示を受けた子局2は、負荷Lを抑制するか、又は、遮断する。負荷Lを抑制する際には、例えば、ピークシフトやピークカットを用いて負荷Lによる消費電力を平準化する方法や、コンビニエンスストアの店内ライトや公共施設のデジタルサイネージといった負荷Lのうち、人がいないため不要な照明や表示広告を消す方法等がある。負荷Lを遮断する際には、例えば、変圧器trから対象の負荷Lにつながる電力線上の開閉器を開路にする。   The slave station 2 that receives the load reduction instruction from the relay station 3 suppresses or blocks the load L. In order to suppress the load L, for example, among the loads L such as a method of leveling the power consumption due to the load L using peak shift or peak cut, a storehouse light of a convenience store, or a digital signage of a public facility, There are methods to turn off unnecessary lighting and display advertisements. When cutting off the load L, for example, a switch on the power line connected to the target load L from the transformer tr is opened.

さらに、PCS4は、負荷Lの抑制又は遮断を実施した後に、電力系統が安定するか否かを判断しておく。そして、負荷低減しても需給バランスがよくならない(系統が安定しない)と判断した場合には、負荷低減を指示すると同時に上位系統の変電所に調整電力を要求する。   Further, the PCS 4 determines whether or not the power system is stabilized after the load L is suppressed or cut off. If it is determined that the supply and demand balance does not improve even if the load is reduced (the system is not stable), the load reduction is instructed and the adjusted power is requested to the substation in the higher system.

なお、上記実施の形態では、図1に示す分散型電源需給調整システム1内の各通信装置を機能させるために、処理部(CPU)で実行されるプログラムをコンピュータにより読み取り可能な記録媒体に記録し、その記録したプログラムをコンピュータに読み込ませ、実行させることにより、本発明の実施の形態に係る分散型電源需給調整システム1が実現されるものとする。この場合、プログラムをインターネット等のネットワーク経由でコンピュータに提供してもよいし、プログラムが書き込まれた半導体チップ等をコンピュータに組み込んでもよい。   In the above embodiment, a program executed by the processing unit (CPU) is recorded on a computer-readable recording medium so that each communication device in the distributed power supply and demand adjustment system 1 shown in FIG. 1 functions. Then, the distributed power supply / demand adjustment system 1 according to the embodiment of the present invention is realized by causing the computer to read and execute the recorded program. In this case, the program may be provided to the computer via a network such as the Internet, or a semiconductor chip or the like in which the program is written may be incorporated in the computer.

以上説明した本発明の実施の形態によれば、分散型電源が大量に導入された場合にも、電力系統の安定化を図ることができる。そして、各分散型電源で発電される余剰電力を、電源の抑制や遮断等の制御により停止するのではなく、余剰分を蓄電し、電力不足のフィーダに送ること等により、全体として効率よく利用することができる。また、子局2−中継局3−PCS4の通信システムにより、メッセージやデータの伝送速度が速く、送受信が円滑に行われる。   According to the embodiment of the present invention described above, the power system can be stabilized even when a large number of distributed power sources are introduced. And the surplus power generated by each distributed power source is efficiently used as a whole by storing the surplus power and sending it to a feeder with insufficient power, instead of stopping it by controlling the power source, controlling the power source, etc. can do. Further, the communication system of the slave station 2-relay station 3-PCS 4 has a high transmission speed of messages and data, and transmission / reception is performed smoothly.

≪その他の実施の形態≫
以上、本発明を実施するための形態について説明したが、上記実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。例えば、上記実施の形態では、2つのPCS4間で電力不足に関する情報を交換するように説明したが、3以上のPCS4間であってもよい。この場合、1のPCS4が情報を送信し、他のPCS4がその情報を受信した後、図8のS822の条件を満たしたいずれかのPCS4から給電を受けてもよいし、当該条件のうち、よりよい条件を満たしたPCS4から給電を受けてもよい。よりよい条件とは、条件C1、C2を満たす中でも、PCS4の蓄電池Bから電力不足分を放電した後に、より多くの電力が残る方がよいと言える。
<< Other embodiments >>
As mentioned above, although the form for implementing this invention was demonstrated, the said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention. For example, in the above-described embodiment, the information regarding power shortage is exchanged between the two PCSs 4, but it may be between three or more PCSs 4. In this case, after one PCS 4 transmits information and the other PCS 4 receives the information, it may receive power from any PCS 4 that satisfies the condition of S822 in FIG. You may receive electric power supply from PCS4 which satisfy | filled the better conditions. It can be said that the better condition is that more power remains after discharging the power shortage from the storage battery B of the PCS 4 while satisfying the conditions C1 and C2.

1 分散型電源需給調整システム(電力需給調整システム)
2 子局(子局装置)
24 処理部
25 記憶部
25A4 顧客電力(施設電力)
3 中継局(中継局装置)
32 処理部
33 記憶部
33A2 顧客電力の合計(負荷電力合計)
4 PCS(親局装置、他の親局装置)
44 処理部
45 記憶部
45B1 系統電力
45B2 総合負荷電力合計
45B3 蓄電池蓄電電力(蓄電電力)
45B4 蓄電池放電電力(放電電力)
B 蓄電池
L 負荷(電力機器)
PV 太陽光発電装置(分散型電源、電力機器)
TR 変圧器
1 Distributed power supply and demand adjustment system (Power supply and demand adjustment system)
2 Slave stations (slave station equipment)
24 processing unit 25 storage unit 25A4 customer power (facility power)
3 relay station (relay station equipment)
32 Processing unit 33 Storage unit 33A2 Total customer power (total load power)
4 PCS (master station equipment, other master station equipment)
44 processing unit 45 storage unit 45B1 system power 45B2 total load power 45B3 storage battery storage power (storage power)
45B4 battery discharge power (discharge power)
B Storage battery L Load (electric power equipment)
PV solar power generator (distributed power supply, power equipment)
TR transformer

Claims (6)

上位系統から系統電力を受電し、配電線に送電するとともに、前記配電線からの余剰電力を付設の蓄電池に充電する変電所と、
前記配電線に連系する変圧器と、
所定の施設に設置され、前記変圧器に接続される、電力を消費する負荷及び発電を行う分散型電源を含む電力機器と、
を含む複数の電力系統における電力の需給を調整するシステムであって、
前記施設ごとに設置される子局装置と、
前記変圧器ごとに設置され、各子局装置と通信可能な中継局装置と、
前記変電所ごとに設置され、各中継局装置と通信可能な親局装置と、
を備え、
前記子局装置は、前記施設に設置される前記電力機器が必要な電力の合計である施設電力を計算し、計算した前記施設電力を前記中継局装置に送信し、
前記中継局装置は、各子局装置から前記施設電力を受信し、受信した各施設電力の合計を負荷電力合計として算出し、前記負荷電力合計を前記親局装置に送信し、
前記親局装置は、
各中継局装置から前記負荷電力合計を受信し、受信した各負荷電力合計の合計を総合負荷電力合計として算出する手段と、
前記総合負荷電力合計が前記系統電力より大きい場合に、前記蓄電池から前記配電線への放電を指示する手段と、
前記総合負荷電力合計が前記系統電力より大きく、かつ、前記総合負荷電力合計から前記系統電力を減算した値である不足電力が前記蓄電池からの放電電力より大きい場合に、前記不足電力から前記放電電力を減算した値を融通電力として求め、その融通電力の出力を要請する要請メッセージを、当該親局装置と通信可能な他の親局装置に送信する手段と、
を備え、
前記他の親局装置は、当該親局装置から前記要請メッセージを受信した場合に、当該他の親局装置が設置された変電所に付設の蓄電池から前記配電線への放電を指示する
ことを特徴とする電力需給調整システム。
A substation that receives system power from the upper system, transmits power to the distribution line, and charges surplus power from the distribution line to an attached storage battery;
A transformer linked to the distribution line;
Power equipment installed in a predetermined facility and connected to the transformer, including a load that consumes power and a distributed power source that generates power; and
A system for adjusting supply and demand of power in a plurality of power systems including
A slave station device installed for each facility;
A relay station device that is installed for each transformer and can communicate with each slave station device,
A master station device installed for each substation and capable of communicating with each relay station device;
With
The slave station device calculates facility power, which is the total power required by the power equipment installed in the facility, and transmits the calculated facility power to the relay station device,
The relay station device receives the facility power from each slave station device, calculates the total of each received facility power as a load power total, and transmits the load power total to the parent station device,
The master station device is
Means for receiving the total load power from each relay station device and calculating the total of the received total load power as a total load power total;
Means for instructing discharge from the storage battery to the distribution line when the total load power is greater than the grid power;
When the total load power is greater than the grid power, and the insufficient power, which is a value obtained by subtracting the grid power from the total load power, is greater than the discharge power from the storage battery, Means for transmitting a request message for requesting an output of the power to another master station device communicable with the master station device;
With
When the other master station device receives the request message from the master station device, the other master station device instructs to discharge from the storage battery attached to the substation where the other master station device is installed to the distribution line. A power supply and demand adjustment system that is characterized.
請求項1に記載の電力需給調整システムであって、
前記他の親局装置は、
前記親局装置から前記要請メッセージを受信した場合に、当該蓄電池の蓄電電力が前記融通電力以上のときに、当該蓄電池から前記配電線への放電を指示し、当該蓄電池の蓄電電力が前記融通電力未満のときに、電力融通ができない旨を示す融通不可メッセージを前記親局装置に送信し、
前記親局装置は、
前記他の親局装置から前記融通不可メッセージを受信した場合に、前記負荷による消費電力の低減を指示する指示メッセージを前記中継局装置経由で前記子局装置に送信し、
前記子局装置は、
前記親局装置から前記中継局装置経由で前記指示メッセージを受信した場合に、前記負荷を抑制又は遮断する
ことを特徴とする電力需給調整システム。
The power supply and demand adjustment system according to claim 1,
The other master station device is
In the case where the request message is received from the master station device, when the stored power of the storage battery is equal to or greater than the accommodation power, the storage battery instructs the discharge from the storage battery to the distribution line, and the storage power of the storage battery is the accommodation power. If less than, transmit a non-acceptable message indicating that power accommodation is not possible to the master station device,
The master station device is
When receiving the interchange impossible message from the other master station device, an instruction message for instructing reduction of power consumption due to the load is transmitted to the slave station device via the relay station device,
The slave station device is
The power supply and demand adjustment system according to claim 1, wherein the load is suppressed or cut off when the instruction message is received from the master station device via the relay station device.
請求項2に記載の電力需給調整システムであって、
前記子局装置のうち、前記中継局装置に送信した前記施設電力が大きい子局装置に対して、優先して前記指示メッセージが送信される
ことを特徴とする電力需給調整システム。
The power supply and demand adjustment system according to claim 2,
The power supply and demand adjustment system, wherein the instruction message is preferentially transmitted to a slave station device having a large facility power transmitted to the relay station device among the slave station devices.
上位系統から系統電力を受電し、配電線に送電するとともに、前記配電線からの余剰電力を付設の蓄電池に充電する変電所と、
前記配電線に連系する変圧器と、
所定の施設に設置され、前記変圧器に接続される、電力を消費する負荷及び発電を行う分散型電源を含む電力機器と、
を含む複数の電力系統において、
前記施設ごとに設置される子局装置と、
前記変圧器ごとに設置され、各子局装置と通信可能な中継局装置と、
前記変電所ごとに設置され、各中継局装置と通信可能な親局装置と、
が電力の需給を調整する方法であって、
前記子局装置が、前記施設に設置される前記電力機器が必要な電力の合計である施設電力を計算し、計算した前記施設電力を前記中継局装置に送信するステップと、
前記中継局装置が、各子局装置から前記施設電力を受信し、受信した各施設電力の合計を負荷電力合計として算出し、前記負荷電力合計を前記親局装置に送信するステップと、
前記親局装置が、各中継局装置から前記負荷電力合計を受信し、受信した各負荷電力合計の合計を総合負荷電力合計として算出するステップと、
前記親局装置が、前記総合負荷電力合計が前記系統電力より大きい場合に、前記蓄電池から前記配電線への放電を指示するステップと、
前記親局装置が、前記総合負荷電力合計が前記系統電力より大きく、かつ、前記総合負荷電力合計から前記系統電力を減算した値である不足電力が前記蓄電池からの放電電力より大きい場合に、前記不足電力から前記放電電力を減算した値を融通電力として求め、その融通電力の出力を要請する要請メッセージを、当該親局装置と通信可能な他の親局装置に送信するステップと、
前記他の親局装置が、当該親局装置から前記要請メッセージを受信した場合に、当該他の親局装置が設置された変電所に付設の蓄電池から前記配電線への放電を指示するステップと、
を実行することを特徴とする電力需給調整方法。
A substation that receives system power from the upper system, transmits power to the distribution line, and charges surplus power from the distribution line to an attached storage battery;
A transformer linked to the distribution line;
Power equipment installed in a predetermined facility and connected to the transformer, including a load that consumes power and a distributed power source that generates power; and
In a plurality of power systems including
A slave station device installed for each facility;
A relay station device that is installed for each transformer and can communicate with each slave station device,
A master station device installed for each substation and capable of communicating with each relay station device;
Is a method of adjusting the supply and demand of electricity,
The slave station device calculates facility power that is the total power required by the power equipment installed in the facility, and transmits the calculated facility power to the relay station device;
The relay station device receives the facility power from each slave station device, calculates the total of each received facility power as a load power total, and transmits the load power total to the parent station device;
The master station device receives the load power total from each relay station device, and calculates the total of the received load power total as a total load power total;
Instructing the discharge from the storage battery to the distribution line when the master station device has the total total load power greater than the grid power; and
The master station device, when the total load power total is larger than the system power, and the insufficient power that is a value obtained by subtracting the system power from the total load power total is larger than the discharge power from the storage battery, Obtaining a value obtained by subtracting the discharge power from insufficient power as accommodation power, and transmitting a request message for requesting output of the accommodation power to another parent station device communicable with the parent station device;
Instructing discharge from the storage battery attached to the substation where the other master station device is installed to the distribution line when the other master station device receives the request message from the master station device; ,
The power supply and demand adjustment method characterized by performing.
請求項4に記載の電力需給調整方法であって、
前記他の親局装置は、
前記親局装置から前記要請メッセージを受信した場合に、当該蓄電池の蓄電電力が前記融通電力以上のときに、当該蓄電池から前記配電線への放電を指示し、当該蓄電池の蓄電電力が前記融通電力未満のときに、電力融通ができない旨を示す融通不可メッセージを前記親局装置に送信し、
前記親局装置は、
前記他の親局装置から前記融通不可メッセージを受信した場合に、前記負荷による消費電力の低減を指示する指示メッセージを前記中継局装置経由で前記子局装置に送信し、
前記子局装置は、
前記親局装置から前記中継局装置経由で前記指示メッセージを受信した場合に、前記負荷を抑制又は遮断する
ことを特徴とする電力需給調整方法。
It is the electric power supply-and-demand adjustment method of Claim 4, Comprising:
The other master station device is
In the case where the request message is received from the master station device, when the stored power of the storage battery is equal to or greater than the accommodation power, the storage battery instructs the discharge from the storage battery to the distribution line, and the storage power of the storage battery is the accommodation power. If less than, transmit a non-acceptable message indicating that power accommodation is not possible to the master station device,
The master station device is
When receiving the interchange impossible message from the other master station device, an instruction message for instructing reduction of power consumption due to the load is transmitted to the slave station device via the relay station device,
The slave station device is
The power supply and demand adjustment method, wherein the load is suppressed or cut off when the instruction message is received from the master station device via the relay station device.
請求項5に記載の電力需給調整方法であって、
前記子局装置のうち、前記中継局装置に送信した前記施設電力が大きい子局装置に対して、優先して前記指示メッセージが送信される
ことを特徴とする電力需給調整方法。
The power supply and demand adjustment method according to claim 5,
The power supply and demand adjustment method, wherein the instruction message is preferentially transmitted to a slave station device having a large facility power transmitted to the relay station device among the slave station devices.
JP2010155083A 2010-07-07 2010-07-07 Electric power supply and demand adjustment system and electric power supply and demand adjustment method Active JP5178783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155083A JP5178783B2 (en) 2010-07-07 2010-07-07 Electric power supply and demand adjustment system and electric power supply and demand adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155083A JP5178783B2 (en) 2010-07-07 2010-07-07 Electric power supply and demand adjustment system and electric power supply and demand adjustment method

Publications (2)

Publication Number Publication Date
JP2012019598A JP2012019598A (en) 2012-01-26
JP5178783B2 true JP5178783B2 (en) 2013-04-10

Family

ID=45604421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155083A Active JP5178783B2 (en) 2010-07-07 2010-07-07 Electric power supply and demand adjustment system and electric power supply and demand adjustment method

Country Status (1)

Country Link
JP (1) JP5178783B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917292B2 (en) * 2012-05-28 2016-05-11 株式会社日立製作所 Power management apparatus, power management system, and power management method
JP5951371B2 (en) * 2012-07-03 2016-07-13 株式会社東芝 Power system monitoring and control system
WO2014042219A1 (en) 2012-09-12 2014-03-20 日本電気株式会社 Electric power management method, electric power management device and program
WO2014122930A1 (en) * 2013-02-07 2014-08-14 日本電気株式会社 Power control system
JP6409576B2 (en) * 2013-02-07 2018-10-24 日本電気株式会社 Power control system
JP5608841B1 (en) * 2013-06-06 2014-10-15 中国電力株式会社 System power management system, master station device, relay station device, and program
US10126810B2 (en) * 2015-09-29 2018-11-13 Emerson Process Management Power & Water Solutions, Inc. Method for controlling power generation unit to desired output as specified by load demand signal by using modified control signal
US20230216339A1 (en) * 2021-12-31 2023-07-06 Duke Energy Corporation Systems and methods for differential power generation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135536A (en) * 1995-11-07 1997-05-20 Hitachi Ltd Power system interconnection system
JP3782924B2 (en) * 2000-07-27 2006-06-07 日本電信電話株式会社 Distributed energy community system and its control method
JP2002281667A (en) * 2001-03-22 2002-09-27 Osaka Gas Co Ltd Power-supplying system
JP2003199249A (en) * 2001-12-25 2003-07-11 Hitachi Ltd Method of making use of power supply network and system therefor

Also Published As

Publication number Publication date
JP2012019598A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
JP5178783B2 (en) Electric power supply and demand adjustment system and electric power supply and demand adjustment method
US11757304B2 (en) Versatile site energy router
US8803362B2 (en) Standalone unit of a standalone power grid for communicating energy requests with another standalone unit
US8140194B2 (en) Supply-and-demand control system of distributed and coordinated type, for use in power systems
JP5766328B2 (en) Control system, correction device, and power control method
US10078318B2 (en) Composable method for explicit power flow control in electrical grids
JP5960958B2 (en) Power management system
JP6396531B2 (en) POWER CONTROL DEVICE, DEVICE CONTROL DEVICE, AND METHOD
CN104022527B (en) Direct current micro-grid system
US20140077596A1 (en) Power electronics device, cooperative control method, cooperative control system and computer readable medium
JP7121902B2 (en) Power interchange system
CN105896610B (en) A kind of micro-capacitance sensor dispatching method
US20160329744A1 (en) Power control device and power control method
US20210194262A1 (en) Charge and discharge control system, charge and discharge control method, and program
WO2015001767A1 (en) Control device and power management system
JP6678244B2 (en) Power management server, power management method, and power management system
JP6793321B2 (en) Power storage control system, power storage system, power storage control device, charge / discharge control device, and power storage device
JP2011135768A (en) Power-supply apparatus and inverter
JP7203269B2 (en) Power management method and power management device
WO2019107017A1 (en) Electric power management system
JP7084296B2 (en) Power management device, power management system and power management method
Schwaegerl et al. Can microgrids provide a new paradigm for network operation? an evaluation of their technical, commercial and environmental benefits
US9735575B2 (en) Power management system, power management method, and upper power management apparatus
WO2018052117A1 (en) Electric power management method, electric power management server, local control device, and electric power management system
KR101123450B1 (en) Energy Management System Based on Power Line Communication Network and Method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250