WO2018139603A1 - Power supply control method, power supply control device, and power supply control system - Google Patents

Power supply control method, power supply control device, and power supply control system Download PDF

Info

Publication number
WO2018139603A1
WO2018139603A1 PCT/JP2018/002558 JP2018002558W WO2018139603A1 WO 2018139603 A1 WO2018139603 A1 WO 2018139603A1 JP 2018002558 W JP2018002558 W JP 2018002558W WO 2018139603 A1 WO2018139603 A1 WO 2018139603A1
Authority
WO
WIPO (PCT)
Prior art keywords
distributed power
power supply
power source
priority
power
Prior art date
Application number
PCT/JP2018/002558
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 卯花
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2018564662A priority Critical patent/JPWO2018139603A1/en
Publication of WO2018139603A1 publication Critical patent/WO2018139603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • This disclosure relates to a power control method, a power control device, and a power control system.
  • Patent Document 1 a system including a fuel cell device, a solar cell device, and a storage battery device is known (for example, Patent Document 1).
  • the solar cell device is controlled to operate at the maximum operating point.
  • the power control method includes a first distributed power source having a first priority as a cost priority, a second distributed power source having a second priority lower than the first priority as the cost priority, and Controlling a third distributed power source having a third priority lower than the second priority as the cost priority based on the cost priority; the first distributed power source; the second distributed power source; Step B for detecting any failure of the third distributed power source, and Step C for controlling a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected when the failure is detected.
  • the step C includes a step of controlling the normal distributed power source based on load followability relating to an output that the normal distributed power source can increase per unit time.
  • the power supply control device includes a first distributed power source having a first priority as a cost priority, a second distributed power source having a second priority lower than the first priority as the cost priority, and A control unit that controls a third distributed power source having a third priority lower than the second priority as the cost priority based on the cost priority, the first distributed power source, the second distributed power source, and And a detection unit that detects any failure of the third distributed power supply.
  • the control unit is configured to perform normal distribution based on load followability related to an output in which a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected can increase per unit time. Control the power supply.
  • a power supply control system includes a first distributed power supply having a first priority as a cost priority and a second distributed power supply having a second priority lower than the first priority as the cost priority. And a third distributed power supply having a third priority lower than the second priority as the cost priority, and a power supply control device for controlling the first distributed power supply, the second distributed power supply, and the third distributed power supply With.
  • the power supply control device detects a failure of any of the first distributed power supply, the second distributed power supply, and the third distributed power supply.
  • the power supply control device when the failure is detected, the normal distributed power supply that is a distributed power supply other than the distributed power supply in which the failure is detected is based on load followability related to an output that can be increased per unit time. Control distributed power.
  • FIG. 1 is a diagram illustrating a power supply control system 100 according to an embodiment.
  • FIG. 2 is a diagram illustrating a facility 300 according to an embodiment.
  • FIG. 3 is a diagram illustrating a power management server 200 according to an embodiment.
  • FIG. 4 is a diagram illustrating the local control device 360 according to an embodiment.
  • FIG. 5 is a diagram for explaining an example of the application scene according to the embodiment.
  • FIG. 6 is a diagram for explaining an example of the application scene according to the embodiment.
  • FIG. 7 is a diagram for explaining an example of the application scene according to the embodiment.
  • FIG. 8 is a diagram for explaining an example of the application scene according to the embodiment.
  • FIG. 9 is a diagram for explaining an example of the application scene according to the embodiment.
  • FIG. 10 is a diagram illustrating a power control method according to an embodiment.
  • FIG. 11 is a diagram illustrating a power control method according to an embodiment.
  • the present disclosure relates to a power supply control method, a power supply control apparatus, and a power supply control capable of optimizing the operation of a normal distributed power supply even when any of a fuel cell device, a solar cell device, and a storage battery device fails.
  • a power supply control method capable of optimizing the operation of a normal distributed power supply even when any of a fuel cell device, a solar cell device, and a storage battery device fails.
  • the power supply control system 100 includes a power management server 200 and a facility 300.
  • a facility 300A to a facility 300C are illustrated.
  • Each facility 300 is connected to the power system 110.
  • the flow of power from the power system 110 to the facility 300 is referred to as tidal current, and the flow of power from the facility 300 to the power system 110 is referred to as reverse power flow.
  • the power management server 200 and the facility 300 are connected to the network 120.
  • the network 120 may provide a line between the power management server 200 and the facility 300.
  • the network 120 is, for example, the Internet.
  • the network 120 may provide a dedicated line such as a VPN (Virtual Private Network).
  • the power management server 200 is a server managed by a business operator such as a power generation business, a power transmission / distribution business, or a retail business.
  • the power management server 200 transmits, to the local control device 360 provided in the facility 300, a control message instructing control of a distributed power source (for example, a solar cell device, a storage battery device, and a fuel cell device) provided in the facility 300.
  • a distributed power source for example, a solar cell device, a storage battery device, and a fuel cell device
  • the power management server 200 may transmit a power flow control message (for example, DR; Demand Response) that requests control of power flow, or may transmit a reverse power flow control message that requests control of reverse power flow.
  • the power management server 200 may transmit a power control message for controlling the operating state of the distributed power.
  • the degree of control of the tidal current or the reverse tidal current may be represented by an absolute value (for example, OO kW) or a relative value (for example, OO%).
  • control degree of a tidal current or a reverse tidal current may be represented by two or more levels.
  • the degree of control of the tidal current or reverse power flow may be represented by a power rate (RTP: Real Time Pricing) determined by the current power supply / demand balance, or a power rate (TOU: Time Of Use) determined by the past power supply / demand balance May be represented by
  • the facility 300 includes a router 500 as shown in FIG.
  • the router 500 is connected to the power management server 200 via the network 120.
  • the router 500 constitutes a local area network and is connected to each device (for example, a power meter 321, a power meter 323, a PCS 331, a PCS 332, a PCS 333 load 350, a local control device 360, and the like).
  • a solid line indicates a power line
  • a dotted line indicates a signal line.
  • the embodiment is not limited to this, and a signal may be transmitted through a power line.
  • the facility 300 includes a solar cell 311, a storage battery 312, a fuel cell 313, a hot water supply device 314, a power meter 321, a power meter 323, a PCS 331, a PCS 332, a PCS 333, a distribution board 340, and a load 350. And a local control device 360.
  • the solar cell 311 is a device that generates power in response to light reception.
  • the solar cell 311 outputs the generated DC power.
  • the amount of power generated by the solar cell 311 changes according to the amount of solar radiation applied to the solar cell 311.
  • the storage battery 312 is a device that stores electric power.
  • the storage battery 312 outputs the accumulated DC power.
  • the storage battery 312 may be a power source used for VPP (Virtual Power Plant).
  • the fuel cell 313 is a battery that generates electric power using fuel.
  • the fuel may be, for example, a material containing hydrogen or a material containing alcohol.
  • the fuel cell 313 includes, for example, a solid oxide fuel cell (hereinafter referred to as SOFC: Solid Oxide Fuel Cell), a solid polymer fuel cell (hereinafter referred to as PEFC: Polymer Electrolyte Fuel Cell), a phosphoric acid fuel cell (hereinafter referred to as PAFC). : Phosphoric Acid Fuel Cell) or Molten Carbonate Fuel Cell (hereinafter referred to as MCFC: Molten Carbonate Fuel Cell).
  • SOFC Solid Oxide Fuel Cell
  • PEFC Polymer Electrolyte Fuel Cell
  • PAFC phosphoric acid fuel cell
  • MCFC Molten Carbonate Fuel Cell
  • the hot water supply device 314 has a hot water storage tank, and uses the exhaust heat of the fuel cell 313 to maintain or increase the amount of water (hot water) stored in the hot water storage tank, or to store water in the hot water storage tank. Maintain or increase the temperature of (hot water). Such control may be referred to as boiling water stored in the hot water tank.
  • the wattmeter 321 is a wattmeter that measures the output power of the PCS 331.
  • the wattmeter 321 may be a wattmeter that measures the generated power of the solar cell 311.
  • the wattmeter 321 may be a CT (Current Transformer) that measures the output current of the PCS 331.
  • the wattmeter 323 is a wattmeter that measures the output power of the PCS 333.
  • the wattmeter 323 may be a wattmeter that measures the power generated by the fuel cell 313.
  • the wattmeter 323 may be a CT that measures the output current of the PCS 333.
  • the PCS 331 is a power conversion device (PCS; Power Conditioning System) connected to the solar cell 311.
  • the PCS 331 converts DC power from the solar cell 311 into AC power.
  • the PCS 331 may output the converted AC power to the first distribution board 340A.
  • the PCS 331 may output the converted AC power to the storage battery 312.
  • PCS 332 is a power conversion device connected to the storage battery 312.
  • the PCS 332 converts DC power from the storage battery 312 into AC power.
  • the PCS 332 outputs the converted AC power to the first distribution board 340A.
  • the PCS 332 converts AC power to the storage battery 312 into DC power.
  • the PCS 332 outputs the converted DC power to the storage battery 312.
  • PCS333 is a power converter connected to the fuel cell 313.
  • the PCS 333 converts DC power from the fuel cell 313 into AC power.
  • the PCS 333 may output the converted AC power to the first distribution board 340A.
  • the PCS 333 may output the converted AC power to the storage battery 312.
  • Distribution board 340 is connected to main power line 10L.
  • the distribution board 340 includes a first distribution board 340A and a second distribution board 340B.
  • the first distribution board 340A is connected to the power system 110 via the main power line 10LA.
  • the first distribution board 340A is connected to the solar cell 311 via the PCS 331, is connected to the storage battery 312 via the PCS 332, and is connected to the fuel cell 313 via the PCS 333.
  • the first distribution board 340 ⁇ / b> A may supply AC power supplied from the power system 110 to the storage battery 312 via the PCS 332.
  • the first distribution board 340A may supply the AC power supplied from the PCS 331 to the power system 110 via the main power line 10LA as a reverse power flow.
  • the first distribution board 340A may supply the AC power supplied from the PCS 332 to the power system 110 via the main power line 10LA as a reverse power flow.
  • the first distribution board 340A may supply the AC power supplied from the PCS 333 to the power system 110 via the main power line 10LA as a reverse power flow.
  • the first distribution board 340A supplies the power output from the PCS 331 to PCS 333 and the power supplied from the power system 110 to the second distribution board 340B via the main power line 10LB.
  • the second distribution board 340B distributes the power supplied via the main power line 10LB to each device.
  • Each device is, for example, a load 350, a local control device 360, and the like.
  • the load 350 is a device that consumes power supplied through the power line.
  • the load 350 includes devices such as an air conditioner, a lighting device, a refrigerator, and a television.
  • the load 350 may be a single device or may include a plurality of devices.
  • the local control device 360 is a device (EMS; Energy Management System) that manages power information indicating power in the facility 300.
  • the power in the facility 300 is the power flowing through the facility 300, the power purchased by the facility 300, or the power sold from the facility 300. Accordingly, the local control device 360 manages at least the PCS 331 to PCS 333.
  • the local control device 360 may manage the load 350. Further, when the load 350 includes a plurality of devices, the local control device 360 may manage some of the plurality of devices. In this case, the local control device 360 may manage a plurality of devices according to a predetermined priority order. Further, such a priority order may be determined by the local control device 360 based on the power consumption amount consumed by the load 350.
  • the solar cell 311 is an example of a first distributed power source having a first priority as a cost priority.
  • a single solar cell 311 may be referred to as a solar cell device, and the solar cell 311 and the PCS 331 may be referred to as a solar cell device.
  • the solar cell device is a distributed power source having first load followability as load followability.
  • the fuel cell 313 is an example of a second distributed power source having a second priority lower than the first priority as the cost priority.
  • the single fuel cell 313 may be referred to as a fuel cell device
  • the fuel cell 313 and the PCS 333 may be referred to as a fuel cell device
  • the fuel cell 313, the hot water supply device 314, and the PCS 333 may be referred to as a fuel cell device.
  • the fuel cell device is a distributed power source having a second load followability as load followability.
  • the second load followability may be similar to the first load followability, or may be inferior to the first load followability.
  • the storage battery 312 is an example of a third distributed power source having a third priority lower than the second priority as the cost priority.
  • the single storage battery 312 may be referred to as a storage battery device, and the storage battery 312 and the PCS 332 may be referred to as storage battery devices.
  • the storage battery device is a distributed power source having a third load followability.
  • the third load followability is superior to at least the second load followability.
  • the third load followability may be superior to the first load followability.
  • the power cost of the fuel cell 313 mainly depends on the charge of gas serving as fuel.
  • the power cost of the storage battery 312 mainly depends on the power charge when charging. For example, the power cost of the storage battery 312 is calculated based on the power charge when purchasing power from the power system 110. Moreover, if the storage battery 312 charges the generated electric power of the solar cell 311, the power cost can be further reduced. As described above, the power cost of the storage battery 312 varies depending on the power source (charging power source) used for the charging operation of the storage battery 312.
  • the storage battery 312 may have a higher cost priority than the fuel cell 313.
  • the solar cell 311 does not require fuel or the like during power generation, and therefore has a lower power cost and higher cost priority than the fuel cell 313 and the storage battery 312. Therefore, since the cost priority of the solar cell 311 is higher than the cost priority of the fuel cell 313, the cost priority of the storage battery 312 in the case where the power source used for charging is the solar cell 311 is that the power source used for charging is the fuel cell 313. It is higher than the cost priority of the storage battery 312 in a certain case.
  • the cost priority of the storage battery 312 in the case where the power source used for charging is the fuel cell 313 is that the power source used for charging is power. It becomes higher than the cost priority of the storage battery 312 in the case of the system 110.
  • the load followability varies depending on the type of the distributed power supply.
  • the distributed power supply having better load followability is more likely to follow the power output to the change in the power consumption of the load 350.
  • the load following speed is fast.
  • the load following speed is output power that the distributed power source can increase per unit time in accordance with an increase in power consumption of the load 350.
  • the load follow-up speed may be output power that the distributed power supply can reduce in unit time in accordance with a decrease in power consumption of the load 350.
  • communication between the power management server 200 and the local control device 360 is performed according to the first protocol.
  • communication between the local control device 360 and the distributed power supply is performed according to a second protocol different from the first protocol.
  • the first protocol for example, a protocol compliant with Open ADR (Automated Demand Response) 2.0 or a unique dedicated protocol can be used.
  • the second protocol for example, a protocol conforming to ECHONET Lite, SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used.
  • the first protocol and the second protocol only need to be different. For example, even if both are unique dedicated protocols, they may be protocols created according to different rules.
  • the power management server 200 includes a management unit 210, a communication unit 220, and a control unit 230.
  • the power management server 200 is an example of a VTN (Virtual Top Node).
  • the management unit 210 is configured by a storage medium such as a non-volatile memory and / or an HDD, and manages data related to the facility 300.
  • the data related to the facility 300 includes, for example, the type of the distributed power source provided in the facility 300, the specifications of the distributed power source provided in the facility 300, and the like.
  • the spec may be the rated generated power of the PCS 331 connected to the solar cell 311, the rated output power of the PCS 332 connected to the storage battery 312, the rated output power of the PCS 333 connected to the fuel cell 313, and the like.
  • the communication unit 220 includes a communication module, and communicates with the local control device 360 via the network 120. As described above, the communication unit 220 performs communication according to the first protocol. For example, the communication unit 220 transmits the first message to the local control device 360 according to the first protocol. The communication unit 220 receives the first message response from the local control device 360 according to the first protocol.
  • the control unit 230 includes a memory, a CPU, and the like, and controls each component provided in the power management server 200. For example, the control unit 230 instructs the local control device 360 provided in the facility 300 to control the distributed power source provided in the facility 300 by transmitting a control message. The control unit 230 may instruct the local control device 360 provided in the facility 300 to control the load 350 provided in the facility 300. As described above, the control message may be a power flow control message, a reverse power flow control message, or a power control message.
  • the local control device 360 includes a first communication unit 361, a second communication unit 362, and a control unit 363.
  • the local control device 360 is an example of a VEN (Virtual End Node).
  • the first communication unit 361 is configured by a communication module and communicates with the power management server 200 via the network 120. As described above, the first communication unit 361 performs communication according to the first protocol. For example, the first communication unit 361 receives the first message from the power management server 200 according to the first protocol. The first communication unit 361 transmits a first message response to the power management server 200 according to the first protocol.
  • the second communication unit 362 includes a communication module, and communicates with distributed power sources (for example, PCS331 to PCS333). As described above, the second communication unit 362 performs communication according to the second protocol. For example, the second communication unit 362 transmits the second message to the distributed power source according to the second protocol. The second communication unit 362 receives the second message response from the distributed power source according to the second protocol. In addition, the second communication unit 362 may transmit the second message to the load 350 according to the second protocol. Further, the second communication unit 362 may receive the second message response from the load 350 according to the second protocol.
  • distributed power sources for example, PCS331 to PCS333.
  • the control unit 363 includes a memory and a CPU, and controls each component provided in the local control device 360. Specifically, in order to control the power of the facility 300, the control unit 363 instructs the distributed power supply to set the operating state of the distributed power supply by transmitting the second message and receiving the second message response. In order to manage the power of the facility 300, the control unit 363 may instruct the distributed power supply to report information on the distributed power supply by transmitting the second message and receiving the second message response. Further, the control unit 363 may instruct the load 350 to set the operation state of the load 350 by transmitting the second message and receiving the second message response. Further, the control unit 363 may instruct the load 350 to report information on the load 350 by transmitting the second message and receiving the second message response in order to manage the power of the facility 300.
  • the control unit 363 controls the solar cell device including at least the solar cell 311, the storage battery device including at least the storage battery 312, and the fuel cell device including at least the fuel cell 313 based on the cost priority (hereinafter, plan control). ).
  • plan control determines the operation plan of each distributed power source based on the predicted value of the power consumption of the load 350 on the assumption that the solar cell device, the storage battery device, and the fuel cell device are operating normally.
  • the operation plan is a plan for a predetermined period (for example, one day, one week, etc.).
  • the control unit 363 determines the operation plan based on the cost priority of each distributed power source, but may determine the operation plan in consideration of other factors. Other factors include the selling price of the generated power of the solar cell 311, the purchase price of the power supplied from the power system 110, the environmental load such as CO 2 emission, the amount of hot water or hot water of the hot water supply device 314, the facility 300 User preferences (settings).
  • the control unit 363 detects a failure and recovery of any of the solar cell device, the storage battery device, and the fuel cell device.
  • the control unit 363 may detect a failure based on a communication error between the second communication unit 362 and the PCS 331 to PCS 333, or detect a failure based on a message received by the second communication unit 362 from the PCS 331 to PCS 333. May be.
  • the control unit 363 may detect recovery based on the release of the communication error between the second communication unit 362 and the PCS 331 to PCS 333, and recover based on the message received by the second communication unit 362 from the PCS 331 to PCS 333. May be detected. Therefore, the detection unit that detects the failure and recovery of each distributed power supply is the control unit 363. However, the detection unit that detects failure and recovery of each distributed power supply may be considered to be the second communication unit 362.
  • the control unit 363 performs first failure control when a failure of the solar cell device is detected.
  • the control unit 363 performs the first recovery control when the recovery of the solar cell device is detected.
  • 1st failure control is control which substitutes the output electric power (planned value) of a solar cell apparatus with another power supply.
  • the other power source is selected based on load followability from the necessity of replacing the output power (planned value) of the solar cell device.
  • the other power source may be, for example, a storage battery device having excellent load followability, or the power system 110.
  • the output power of the fuel cell device is not the maximum output, the output power of the fuel cell device may increase within a range not exceeding the maximum output. In such a case, the load followability of the fuel cell device is considered.
  • 1st restoration control is control which returns the output electric power of a solar cell apparatus to a plan value.
  • the operation plan is determined based on the cost priority, when the output power of the solar cell device cannot be immediately returned to the planned value, the load followability of the solar cell device is taken into consideration. Details of the first failure control and the second recovery control will be described later (see FIGS. 6 and 7).
  • the control unit 363 performs second failure control when a failure of the fuel cell device is detected.
  • the control unit 363 performs the second restoration control when the restoration of the fuel cell device is detected.
  • the second failure control is control for substituting the output power (planned value) of the fuel cell device with another power source.
  • the other power source is selected based on the load followability from the necessity of replacing the output power (planned value) of the fuel cell device.
  • the other power source may be, for example, a storage battery device having excellent load followability, or the power system 110.
  • the output power of the solar cell device is not the maximum output, the output power of the solar cell device may be increased within a range not exceeding the maximum output. In such a case, the load followability of the solar cell device is considered.
  • the second recovery control is control for returning the output power of the fuel cell device to a planned value.
  • the operation plan is determined based on the cost priority. However, when the output power of the fuel cell device cannot be immediately returned to the planned value, the load followability of the fuel cell device is taken into consideration. Details of the second failure control and the second recovery control will be described later (see FIGS. 8 and 9).
  • the control unit 363 performs the third failure control when a failure of the storage battery device is detected.
  • the control unit 363 performs the third recovery control when the recovery of the storage battery device is detected.
  • 3rd failure control is control which substitutes the output electric power (planned value) of a storage battery apparatus with another power supply.
  • the other power source is selected based on load followability from the necessity of replacing the output power (planned value) of the storage battery device.
  • the other power source may be, for example, the power system 110.
  • the output power of the solar cell device or the fuel cell device is not the maximum output, the output power of the solar cell device or the fuel cell device may be increased within a range not exceeding the maximum output. In such a case, the load followability of the solar cell device or the fuel cell device is considered.
  • the third recovery control is control for returning the output power of the storage battery device to the planned value. Since the load followability of the storage battery device is excellent, the load followability need not be considered in the third recovery control.
  • the control unit 363 controls a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected.
  • the control unit 363 basically controls the normal distributed power supply based on load followability.
  • the control unit 363 controls the normal distributed power source based on the cost priority within the range allowed by the load followability after controlling the normal distributed power source based on the load followability during the failure period in which the failure occurs. May be.
  • the control unit 363 may control the recovery distributed power source that is the distributed power source in which the recovery is detected based on the load followability in addition to the cost priority.
  • the zero energy facility means a facility that covers all the power consumption of the load 350 by the output power of the distributed power source provided in the facility 300 without depending on the power supplied from the power system 110.
  • the storage battery device when the storage battery device is performing the charging operation, the storage battery device may be considered as one of the loads 350.
  • the local control device 360 assumes that the solar cell device, the storage battery device, and the fuel cell device are operating normally, based on the predicted value of the power consumption of the load 350. Determine the operation plan.
  • “power demand” is the transition of the predicted value of the power consumption of the load 350.
  • “PV ⁇ load” is a planned value of the output power of the solar cell device.
  • “FC ⁇ load” is a planned value of output power of the fuel cell device.
  • “BAT ⁇ Load” is a planned value of the output power (discharge power) of the storage battery device.
  • PV ⁇ load”, “FC ⁇ load” and “BAT ⁇ load” are determined based on the cost priority, but it is a matter of course that the maximum output is not exceeded.
  • FIG. 7 is a diagram focusing on the failure period (PV failure period) of the solar cell device.
  • a failure of the solar cell device occurs at 12:00 and 13:00.
  • the output power (planned value) of the solar cell device is basically replaced by the output power of the storage battery device and the fuel cell device.
  • the output power of the storage battery device increases based on the load following ability. Subsequently, the output power of the fuel cell device increases due to the decrease in the output power of the storage battery device.
  • the output power of the storage cell device decreases according to the load followability of the fuel cell device, thereby increasing the output power of the fuel cell device.
  • the cost priority of the fuel cell device is higher than the cost priority of the storage battery device. That is, the local control device 360 increases the output power of the storage battery device based on the load followability during the PV failure period, and then the storage battery based on the cost priority within the range allowed by the load followability of the fuel cell device. By reducing the output power of the device, the output power of the fuel cell device is increased within a range not exceeding the maximum output.
  • the output power of the solar cell apparatus is returned to the level immediately before the PV failure period. Thereafter, as the output power of the fuel cell device decreases, the output power of the solar cell device returns to the planned value while the output power of the fuel cell device returns to the planned value.
  • FIG. 9 is a diagram focusing on the failure period (FC failure period) of the fuel cell device.
  • the fuel cell device fails at the time of 12:00 and 13:00.
  • the output power (planned value) of the fuel cell device is basically replaced by the output power of the storage battery device.
  • the output power (planned value) of the solar cell device is less than the maximum power, the output power of the solar cell device may be increased from the planned value.
  • the output power of the storage battery device increases based on the load followability.
  • the output power (planned value) of the solar cell device is less than the maximum power, the output power of the solar cell device increases in preference to the output power of the storage battery device.
  • the output power of the fuel cell device increases due to a decrease in the output power of the storage battery device.
  • the output power of the fuel cell device increases as the output power of the storage battery device decreases in accordance with the load followability of the fuel cell device within a range not exceeding the planned value of the output power of the fuel cell device. As a result, the output power of the fuel cell device is returned to the planned value.
  • the local control device 360 increases the output power of the fuel cell device to the planned value by decreasing the output power of the storage battery device based on load followability and cost priority.
  • the local control device 360 controls each distributed power source based on the operation plan (plan control).
  • the operation plan is a plan for a predetermined period (for example, one day, one week, etc.), and is determined based on the predicted value of the power consumption of the load 350 and the cost priority of each distributed power source.
  • step S11 the local control device 360 determines whether or not a failure of each distributed power source has been detected. If the determination result is YES, the process of step S12 is performed, and if the determination result is NO, the process of step S11 is continued.
  • step S12 the local control device 360 determines whether or not the solar cell device has failed. If the determination result is YES, the process of step S14 is performed, and if the determination result is NO, the process of step S13 is performed.
  • step S13 the local control device 360 determines whether or not the fuel cell device has failed. If the determination result is YES, the process of step S15 is performed, and if the determination result is NO, the process of step S16 is performed.
  • step S14 the local control device 360 performs first failure control (see FIGS. 6 and 7).
  • the local control device 360 replaces the output power (planned value) of the solar cell device with the output power of the storage battery device and the fuel cell device during the PV failure period.
  • the local control device 360 increases the output power of the storage battery device based on the load followability during the PV failure period, and then sets the cost priority within the range allowed by the load followability of the fuel cell device. Based on this, the output power of the fuel cell device is increased within a range not exceeding the maximum output by decreasing the output power of the storage battery device.
  • step S15 the local control device 360 performs the second failure control (see FIGS. 8 and 9).
  • the local control device 360 substitutes the output power (planned value) of the fuel cell device with the output power of the storage battery device during the FC failure period.
  • the local control device 360 may increase the output power of the solar cell device within a range not exceeding the maximum output.
  • step S16 the local control device 360 performs the third failure control.
  • the local control device 360 substitutes the output power (planned value) of the storage battery device with the power supplied from the power system 110.
  • the local control device 360 may increase the output power of the solar cell device or the fuel cell device within a range not exceeding the maximum output. Good.
  • step S20 the local control device 360 determines whether recovery of each distributed power source has been detected. If the determination result is YES, the process of step S21 is performed, and if the determination result is NO, the detection waiting state for recovery of each distributed power source is maintained.
  • step S21 the local control device 360 determines whether or not the solar cell device has been restored. If the determination result is YES, the process of step S23 is performed, and if the determination result is NO, the process of step S22 is performed.
  • step S22 the local control device 360 determines whether or not the fuel cell device has been restored. If the determination result is YES, the process of step S24 is performed, and if the determination result is NO, the process of step S25 is performed.
  • step S23 the local control device 360 performs first recovery control.
  • the local control device 360 returns the output power of the solar cell device to the planned value.
  • the local control device 360 after returning the output power of the solar cell device to the level immediately before the PV failure period, the local control device 360 returns the output power of the fuel cell device to the planned value due to the decrease in the output power of the fuel cell device.
  • the output power of the solar cell device may be returned to the planned value.
  • step S24 the local control device 360 performs second recovery control.
  • the local control device 360 returns the output power of the fuel cell device to the planned value.
  • the local control device 360 returns the output power of the fuel cell device to the planned value by reducing the output power of the storage battery device based on the cost priority within the range allowed by the load followability of the fuel cell device. May be.
  • step S25 the local control device 360 performs third recovery control.
  • the local control device 360 returns the output power of the storage battery device to the planned value.
  • the local control device 360 may immediately return the output power of the storage battery device to the planned value.
  • the local control device 360 sets the normal distributed power supply based on the load followability with respect to the output that can be increased by a normal distributed power supply other than the distributed power supply in which the failure is detected per unit time. Control. According to such a configuration, the output power (planned value) of the distributed power source in which a failure is detected can be appropriately replaced with the output power of the normal distributed power source.
  • a solar cell device is exemplified as the first distributed power source.
  • the first distributed power supply may be a distributed power supply that uses natural energy such as wind power or geothermal heat.
  • the fuel cell device is exemplified as the second distributed power source.
  • the embodiment is not limited to this.
  • a storage battery device is illustrated as the third distributed power source.
  • the second distributed power supply and the third distributed power supply may be any distributed power supply that satisfies a relationship in which the load followability of the third distributed power supply is relatively better than the load followability of the second distributed power supply.
  • the second distributed power source and the third distributed power source may be any distributed power source that satisfies a relationship in which the cost priority of the third distributed power source is relatively lower than the cost priority of the second distributed power source.
  • the first distributed power source, the second distributed power source, and the third distributed power source are of different types in terms of cost priority and load followability.
  • the embodiment is not limited to this.
  • the types of the distributed power sources may be different in terms of specifications such as the rated output power of the distributed power source, the maintenance information of the distributed power source, and the control history of the distributed power source.
  • the power cost is different for each distributed power source.
  • the distributed power supply maintenance information may include information on the total operating time of the distributed power supply, distributed power life information, distributed power supply deterioration information, distributed power supply replacement information, distributed power supply repair information, and the like.
  • the control history of the distributed power supply may include distributed power supply stop information including information related to the normal stop or abnormal stop of the distributed power supply, distributed power supply start information, and the like. Note that the cost priority and the load followability may vary according to changes in the maintenance information of the distributed power source, the control history of the distributed power source, and the like.
  • the local control device 360 provided in the facility 300 may not necessarily be provided in the facility 300.
  • some of the functions of the local control device 360 may be provided by a cloud server provided on the Internet. That is, it may be considered that the local control device 360 includes a cloud server.
  • the local control device that controls each distributed power source is the local control device 360 (EMS)
  • EMS local control device 360
  • such local control devices may be PCS331 to PCS333.
  • the PCS 331 to PCS 333 may have a function of communicating with each other.
  • the first protocol is a protocol conforming to Open ADR2.0 and the second protocol is a protocol conforming to ECHONET Lite is illustrated.
  • the first protocol may be a protocol standardized as a protocol used for communication between the power management server 200 and the local control device 360.
  • the second protocol may be a protocol standardized as a protocol used in the facility 300.
  • the case where any one of the fuel cell device, the solar cell device, and the storage battery device fails specifically, the case where the output power of the distributed power source decreases without changing the power consumption of the load 350 is illustrated.
  • the present invention is not limited to this, and the power output by the distributed power supply may not change, and the power consumption of the load 350 may change rapidly. That is, a change may occur in the relative relationship between the power values of the output power of the distributed power source and the power consumption of the load 350.

Abstract

This power supply control method comprises: step A for controlling a first dispersed power supply having a first priority as cost priority, a second dispersed power supply having a second priority lower than said first priority as said cost priority, and a third dispersed power supply having a third priority lower than said second priority as said cost priority, on the basis of said cost priority; step B for detecting failure of one of said first dispersed power supply, said second dispersed power supply, and said third dispersed power supply; and step C for controlling, in cases where said failure has been detected, a normal dispersed power supply which is a dispersed power supply other than the dispersed power supply in which said failure has been detected. Said step C involves a step for controlling said normal dispersed power supply on the basis of load-following capability related to an output that is increasable per unit time by said normal dispersed power supply.

Description

電源制御方法、電源制御装置及び電源制御システムPower supply control method, power supply control device, and power supply control system
 本開示は、電源制御方法、電源制御装置及び電源制御システムに関する技術である。 This disclosure relates to a power control method, a power control device, and a power control system.
 近年、燃料電池装置、太陽電池装置及び蓄電池装置を有するシステムが知られている(例えば、特許文献1)。このようなシステムにおいては、コスト等の観点から、太陽電池装置が最大動作点で動作するように制御される。 Recently, a system including a fuel cell device, a solar cell device, and a storage battery device is known (for example, Patent Document 1). In such a system, from the viewpoint of cost and the like, the solar cell device is controlled to operate at the maximum operating point.
特開平7-320752号公報JP 7-320752 A
 第1の態様に係る電源制御方法は、コスト優先度として第1優先度を有する第1分散電源、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源及び前記コスト優先度として前記第2優先度よりも低い第3優先度を有する第3分散電源を、前記コスト優先度に基づいて制御するステップAと、前記第1分散電源、前記第2分散電源及び前記第3分散電源のいずれかの故障を検知するステップBと、前記故障が検知された場合において、前記故障が検知された分散電源以外の分散電源である正常分散電源を制御するステップCとを備える。前記ステップCは、前記正常分散電源が単位時間に増大可能な出力に関する負荷追従性に基づいて、前記正常分散電源を制御するステップを含む。 The power control method according to the first aspect includes a first distributed power source having a first priority as a cost priority, a second distributed power source having a second priority lower than the first priority as the cost priority, and Controlling a third distributed power source having a third priority lower than the second priority as the cost priority based on the cost priority; the first distributed power source; the second distributed power source; Step B for detecting any failure of the third distributed power source, and Step C for controlling a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected when the failure is detected. Prepare. The step C includes a step of controlling the normal distributed power source based on load followability relating to an output that the normal distributed power source can increase per unit time.
 第2の態様に係る電源制御装置は、コスト優先度として第1優先度を有する第1分散電源、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源及び前記コスト優先度として前記第2優先度よりも低い第3優先度を有する第3分散電源を、前記コスト優先度に基づいて制御する制御部と、前記第1分散電源、前記第2分散電源及び前記第3分散電源のいずれかの故障を検知する検知部とを備える。前記制御部は、前記故障が検知された場合において、前記故障が検知された分散電源以外の分散電源である正常分散電源が単位時間に増大可能な出力に関する負荷追従性に基づいて、前記正常分散電源を制御する。 The power supply control device according to the second aspect includes a first distributed power source having a first priority as a cost priority, a second distributed power source having a second priority lower than the first priority as the cost priority, and A control unit that controls a third distributed power source having a third priority lower than the second priority as the cost priority based on the cost priority, the first distributed power source, the second distributed power source, and And a detection unit that detects any failure of the third distributed power supply. When the failure is detected, the control unit is configured to perform normal distribution based on load followability related to an output in which a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected can increase per unit time. Control the power supply.
 第3の態様に係る電源制御システムは、コスト優先度として第1優先度を有する第1分散電源と、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源と、前記コスト優先度として前記第2優先度よりも低い第3優先度を有する第3分散電源と、前記第1分散電源、前記第2分散電源及び前記第3分散電源を制御する電源制御装置とを備える。前記電源制御装置は、前記第1分散電源、前記第2分散電源及び前記第3分散電源のいずれかの故障を検知する。前記電源制御装置は、前記故障が検知された場合において、前記故障が検知された分散電源以外の分散電源である正常分散電源が単位時間に増大可能な出力に関する負荷追従性に基づいて、前記正常分散電源を制御する。 A power supply control system according to a third aspect includes a first distributed power supply having a first priority as a cost priority and a second distributed power supply having a second priority lower than the first priority as the cost priority. And a third distributed power supply having a third priority lower than the second priority as the cost priority, and a power supply control device for controlling the first distributed power supply, the second distributed power supply, and the third distributed power supply With. The power supply control device detects a failure of any of the first distributed power supply, the second distributed power supply, and the third distributed power supply. The power supply control device, when the failure is detected, the normal distributed power supply that is a distributed power supply other than the distributed power supply in which the failure is detected is based on load followability related to an output that can be increased per unit time. Control distributed power.
図1は、一実施形態に係る電源制御システム100を示す図である。FIG. 1 is a diagram illustrating a power supply control system 100 according to an embodiment. 図2は、一実施形態に係る施設300を示す図である。FIG. 2 is a diagram illustrating a facility 300 according to an embodiment. 図3は、一実施形態に係る電力管理サーバ200を示す図である。FIG. 3 is a diagram illustrating a power management server 200 according to an embodiment. 図4は、一実施形態に係るローカル制御装置360を示す図である。FIG. 4 is a diagram illustrating the local control device 360 according to an embodiment. 図5は、一実施形態に係る適用シーンの一例を説明するための図である。FIG. 5 is a diagram for explaining an example of the application scene according to the embodiment. 図6は、一実施形態に係る適用シーンの一例を説明するための図である。FIG. 6 is a diagram for explaining an example of the application scene according to the embodiment. 図7は、一実施形態に係る適用シーンの一例を説明するための図である。FIG. 7 is a diagram for explaining an example of the application scene according to the embodiment. 図8は、一実施形態に係る適用シーンの一例を説明するための図である。FIG. 8 is a diagram for explaining an example of the application scene according to the embodiment. 図9は、一実施形態に係る適用シーンの一例を説明するための図である。FIG. 9 is a diagram for explaining an example of the application scene according to the embodiment. 図10は、一実施形態に係る電源制御方法を示す図である。FIG. 10 is a diagram illustrating a power control method according to an embodiment. 図11は、一実施形態に係る電源制御方法を示す図である。FIG. 11 is a diagram illustrating a power control method according to an embodiment.
 燃料電池装置、太陽電池装置及び蓄電池装置の動作がコスト等の観点で最適化されていたとしても、これらの分散電源のいずれかの分散電源が故障した際に、残りの分散電源(以下、正常分散電源)の動作を最適化する必要性についても検討する必要がある。 Even if the operation of the fuel cell device, the solar cell device, and the storage battery device is optimized from the viewpoint of cost, when one of these distributed power sources fails, the remaining distributed power sources (hereinafter normal) It is also necessary to consider the need to optimize the operation of the distributed power source.
 本開示は、燃料電池装置、太陽電池装置及び蓄電池装置のいずれかが故障した場合であっても、正常分散電源の動作を最適化することを可能とする電源制御方法、電源制御装置及び電源制御システムを提供する。 The present disclosure relates to a power supply control method, a power supply control apparatus, and a power supply control capable of optimizing the operation of a normal distributed power supply even when any of a fuel cell device, a solar cell device, and a storage battery device fails. Provide a system.
 [実施形態]
 (電源制御システム)
 以下において、実施形態に係る電源制御システムについて説明する。
[Embodiment]
(Power control system)
Hereinafter, a power supply control system according to the embodiment will be described.
 図1に示すように、電源制御システム100は、電力管理サーバ200と、施設300とを有する。図1では、施設300として、施設300A~施設300Cが例示されている。 As shown in FIG. 1, the power supply control system 100 includes a power management server 200 and a facility 300. In FIG. 1, as the facility 300, a facility 300A to a facility 300C are illustrated.
 各施設300は、電力系統110に接続される。以下において、電力系統110から施設300への電力の流れを潮流と称し、施設300から電力系統110への電力の流れを逆潮流と称する。 Each facility 300 is connected to the power system 110. In the following, the flow of power from the power system 110 to the facility 300 is referred to as tidal current, and the flow of power from the facility 300 to the power system 110 is referred to as reverse power flow.
 電力管理サーバ200、施設300は、ネットワーク120に接続されている。ネットワーク120は、電力管理サーバ200と施設300との間の回線を提供すればよい。ネットワーク120は、例えば、インターネットである。ネットワーク120は、VPN(Virtual Private Network)などの専用回線を提供してもよい。 The power management server 200 and the facility 300 are connected to the network 120. The network 120 may provide a line between the power management server 200 and the facility 300. The network 120 is, for example, the Internet. The network 120 may provide a dedicated line such as a VPN (Virtual Private Network).
 電力管理サーバ200は、発電事業者、送配電事業者或いは小売事業者などの事業者によって管理されるサーバである。 The power management server 200 is a server managed by a business operator such as a power generation business, a power transmission / distribution business, or a retail business.
 電力管理サーバ200は、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源(例えば、太陽電池装置、蓄電池装置及び燃料電池装置)に対する制御を指示する制御メッセージを送信する。例えば、電力管理サーバ200は、潮流の制御を要求する潮流制御メッセージ(例えば、DR;Demand Response)を送信してもよく、逆潮流の制御を要求する逆潮流制御メッセージを送信してもよい。さらに、電力管理サーバ200は、分散電源の動作状態を制御する電源制御メッセージを送信してもよい。潮流又は逆潮流の制御度合いは、絶対値(例えば、○○kW)で表されてもよく、相対値(例えば、○○%)で表されてもよい。或いは、潮流又は逆潮流の制御度合いは、2以上のレベルで表されてもよい。潮流又は逆潮流の制御度合いは、現在の電力需給バランスによって定められる電力料金(RTP;Real Time Pricing)によって表されてもよく、過去の電力需給バランスによって定められる電力料金(TOU;Time Of Use)によって表されてもよい。 The power management server 200 transmits, to the local control device 360 provided in the facility 300, a control message instructing control of a distributed power source (for example, a solar cell device, a storage battery device, and a fuel cell device) provided in the facility 300. . For example, the power management server 200 may transmit a power flow control message (for example, DR; Demand Response) that requests control of power flow, or may transmit a reverse power flow control message that requests control of reverse power flow. Furthermore, the power management server 200 may transmit a power control message for controlling the operating state of the distributed power. The degree of control of the tidal current or the reverse tidal current may be represented by an absolute value (for example, OO kW) or a relative value (for example, OO%). Or the control degree of a tidal current or a reverse tidal current may be represented by two or more levels. The degree of control of the tidal current or reverse power flow may be represented by a power rate (RTP: Real Time Pricing) determined by the current power supply / demand balance, or a power rate (TOU: Time Of Use) determined by the past power supply / demand balance May be represented by
 施設300は、図2に示すように、ルータ500を有する。ルータ500は、ネットワーク120を介して電力管理サーバ200と接続される。ルータ500は、ローカルエリアネットワークを構成しており、各装置(例えば、電力計321、電力計323、PCS331、PCS332、PCS333負荷350及びローカル制御装置360など)と接続される。図2において、実線は電力線を示しており、点線は信号線を示している。実施形態はこれに限定されるものではなく、電力線で信号が送信されてもよい。 The facility 300 includes a router 500 as shown in FIG. The router 500 is connected to the power management server 200 via the network 120. The router 500 constitutes a local area network and is connected to each device (for example, a power meter 321, a power meter 323, a PCS 331, a PCS 332, a PCS 333 load 350, a local control device 360, and the like). In FIG. 2, a solid line indicates a power line, and a dotted line indicates a signal line. The embodiment is not limited to this, and a signal may be transmitted through a power line.
 施設300は、太陽電池311と、蓄電池312と、燃料電池313と、給湯装置314と、電力計321と、電力計323と、PCS331と、PCS332と、PCS333と、分電盤340と、負荷350と、ローカル制御装置360とを有する。 The facility 300 includes a solar cell 311, a storage battery 312, a fuel cell 313, a hot water supply device 314, a power meter 321, a power meter 323, a PCS 331, a PCS 332, a PCS 333, a distribution board 340, and a load 350. And a local control device 360.
 太陽電池311は、受光に応じて発電を行う装置である。太陽電池311は、発電された直流電力を出力する。太陽電池311の発電量は、太陽電池311に照射される日射量に応じて変化する。 The solar cell 311 is a device that generates power in response to light reception. The solar cell 311 outputs the generated DC power. The amount of power generated by the solar cell 311 changes according to the amount of solar radiation applied to the solar cell 311.
 蓄電池312は、電力を蓄積する装置である。蓄電池312は、蓄積された直流電力を出力する。蓄電池312は、VPP(Virtual Power Plant)に用いられる電源であってもよい。 The storage battery 312 is a device that stores electric power. The storage battery 312 outputs the accumulated DC power. The storage battery 312 may be a power source used for VPP (Virtual Power Plant).
 燃料電池313は、燃料を用いて電力を発電する電池である。燃料は、例えば水素を含む材料であってもよいし、アルコールを含む材料であってもよい。燃料電池313は、例えば、固体酸化物型燃料電池(以下、SOFC:Solid Oxide Fuel Cell)、固体高分子型燃料電池(以下、PEFC:Polymer Electrolyte Fuel Cell)、リン酸型燃料電池(以下、PAFC:Phosphoric Acid Fuel Cell)及び溶融炭酸塩型燃料電池(以下、MCFC:Molten Carbonate Fuel Cell)のいずれかであってもよい。 The fuel cell 313 is a battery that generates electric power using fuel. The fuel may be, for example, a material containing hydrogen or a material containing alcohol. The fuel cell 313 includes, for example, a solid oxide fuel cell (hereinafter referred to as SOFC: Solid Oxide Fuel Cell), a solid polymer fuel cell (hereinafter referred to as PEFC: Polymer Electrolyte Fuel Cell), a phosphoric acid fuel cell (hereinafter referred to as PAFC). : Phosphoric Acid Fuel Cell) or Molten Carbonate Fuel Cell (hereinafter referred to as MCFC: Molten Carbonate Fuel Cell).
 給湯装置314は、貯湯槽を有しており、燃料電池313の排熱を用いて、貯湯槽に貯留される水(湯)の量を維持又は増大し、或いは、貯湯槽に貯留される水(湯)の温度を維持又は上昇する。このような制御は、貯湯槽に貯留される水の沸き上げと称してもよい。 The hot water supply device 314 has a hot water storage tank, and uses the exhaust heat of the fuel cell 313 to maintain or increase the amount of water (hot water) stored in the hot water storage tank, or to store water in the hot water storage tank. Maintain or increase the temperature of (hot water). Such control may be referred to as boiling water stored in the hot water tank.
 電力計321は、PCS331の出力電力を計測する電力計である。電力計321は、太陽電池311の発電電力を計測する電力計であってもよい。電力計321は、PCS331の出力電流を計測するCT(Current Transformer)であってもよい。 The wattmeter 321 is a wattmeter that measures the output power of the PCS 331. The wattmeter 321 may be a wattmeter that measures the generated power of the solar cell 311. The wattmeter 321 may be a CT (Current Transformer) that measures the output current of the PCS 331.
 電力計323は、PCS333の出力電力を計測する電力計である。電力計323は、燃料電池313の発電電力を計測する電力計であってもよい。電力計323は、PCS333の出力電流を計測するCTであってもよい。 The wattmeter 323 is a wattmeter that measures the output power of the PCS 333. The wattmeter 323 may be a wattmeter that measures the power generated by the fuel cell 313. The wattmeter 323 may be a CT that measures the output current of the PCS 333.
 PCS331は、太陽電池311に接続される電力変換装置(PCS;Power Conditioning System)である。PCS331は、太陽電池311からの直流電力を交流電力に変換する。PCS331は、変換した交流電力を第1分電盤340Aに出力してもよい。PCS331は、変換した交流電力を蓄電池312に出力してもよい。 The PCS 331 is a power conversion device (PCS; Power Conditioning System) connected to the solar cell 311. The PCS 331 converts DC power from the solar cell 311 into AC power. The PCS 331 may output the converted AC power to the first distribution board 340A. The PCS 331 may output the converted AC power to the storage battery 312.
 PCS332は、蓄電池312に接続される電力変換装置である。PCS332は、蓄電池312からの直流電力を交流電力に変換する。PCS332は、変換した交流電力を第1分電盤340Aに出力する。PCS332は、蓄電池312への交流電力を直流電力に変換する。PCS332は、変換した直流電力を蓄電池312に出力する。 PCS 332 is a power conversion device connected to the storage battery 312. The PCS 332 converts DC power from the storage battery 312 into AC power. The PCS 332 outputs the converted AC power to the first distribution board 340A. The PCS 332 converts AC power to the storage battery 312 into DC power. The PCS 332 outputs the converted DC power to the storage battery 312.
 PCS333は、燃料電池313に接続される電力変換装置である。PCS333は、燃料電池313からの直流電力を交流電力に変換する。PCS333は、変換した交流電力を第1分電盤340Aに出力してもよい。PCS333は、変換した交流電力を蓄電池312に出力してもよい。 PCS333 is a power converter connected to the fuel cell 313. The PCS 333 converts DC power from the fuel cell 313 into AC power. The PCS 333 may output the converted AC power to the first distribution board 340A. The PCS 333 may output the converted AC power to the storage battery 312.
 分電盤340は、主幹電力線10Lに接続される。分電盤340は、第1分電盤340A及び第2分電盤340Bを有する。第1分電盤340Aは、主幹電力線10LAを介して電力系統110に接続される。第1分電盤340Aは、PCS331を介して太陽電池311と接続されており、PCS332を介して蓄電池312と接続されており、PCS333を介して燃料電池313と接続される。第1分電盤340Aは、PCS332を介して、電力系統110から供給される交流電力を蓄電池312に供給してもよい。第1分電盤340Aは、PCS331から供給される交流電力を、逆潮流として、主幹電力線10LAを介して電力系統110に供給してもよい。第1分電盤340Aは、PCS332から供給される交流電力を、逆潮流として、主幹電力線10LAを介して電力系統110に供給してもよい。第1分電盤340Aは、PCS333から供給される交流電力を、逆潮流として、主幹電力線10LAを介して電力系統110に供給してもよい。第1分電盤340Aは、主幹電力線10LBを介して、PCS331~PCS333から出力される電力及び電力系統110から供給される電力を第2分電盤340Bに供給する。第2分電盤340Bは、主幹電力線10LBを介して供給される電力を各機器に分配する。各機器は、例えば、負荷350、ローカル制御装置360等である。 Distribution board 340 is connected to main power line 10L. The distribution board 340 includes a first distribution board 340A and a second distribution board 340B. The first distribution board 340A is connected to the power system 110 via the main power line 10LA. The first distribution board 340A is connected to the solar cell 311 via the PCS 331, is connected to the storage battery 312 via the PCS 332, and is connected to the fuel cell 313 via the PCS 333. The first distribution board 340 </ b> A may supply AC power supplied from the power system 110 to the storage battery 312 via the PCS 332. The first distribution board 340A may supply the AC power supplied from the PCS 331 to the power system 110 via the main power line 10LA as a reverse power flow. The first distribution board 340A may supply the AC power supplied from the PCS 332 to the power system 110 via the main power line 10LA as a reverse power flow. The first distribution board 340A may supply the AC power supplied from the PCS 333 to the power system 110 via the main power line 10LA as a reverse power flow. The first distribution board 340A supplies the power output from the PCS 331 to PCS 333 and the power supplied from the power system 110 to the second distribution board 340B via the main power line 10LB. The second distribution board 340B distributes the power supplied via the main power line 10LB to each device. Each device is, for example, a load 350, a local control device 360, and the like.
 負荷350は、電力線を介して供給される電力を消費する装置である。例えば、負荷350は、エアーコンディショナ、照明装置、冷蔵庫、テレビなどの装置を含む。負荷350は、単数の装置であってもよく、複数の装置を含んでもよい。 The load 350 is a device that consumes power supplied through the power line. For example, the load 350 includes devices such as an air conditioner, a lighting device, a refrigerator, and a television. The load 350 may be a single device or may include a plurality of devices.
 ローカル制御装置360は、施設300における電力を示す電力情報を管理する装置(EMS;Energy Management System)である。施設300における電力とは、施設300内を流れる電力、施設300が買電する電力、又は施設300から売電する電力である。従って、ローカル制御装置360は、少なくともPCS331~PCS333を管理する。ローカル制御装置360は、負荷350を管理してもよい。また、負荷350が複数の装置を含む場合には、ローカル制御装置360は、複数の装置のうち一部の装置を管理してもよい。また、この場合、ローカル制御装置360は、所定の優先順位に従って、複数の装置を管理してもよい。また、このような優先順位は、負荷350が消費する消費電力量に基づいて、ローカル制御装置360が決定してもよい。 The local control device 360 is a device (EMS; Energy Management System) that manages power information indicating power in the facility 300. The power in the facility 300 is the power flowing through the facility 300, the power purchased by the facility 300, or the power sold from the facility 300. Accordingly, the local control device 360 manages at least the PCS 331 to PCS 333. The local control device 360 may manage the load 350. Further, when the load 350 includes a plurality of devices, the local control device 360 may manage some of the plurality of devices. In this case, the local control device 360 may manage a plurality of devices according to a predetermined priority order. Further, such a priority order may be determined by the local control device 360 based on the power consumption amount consumed by the load 350.
 実施形態において、太陽電池311は、コスト優先度として第1優先度を有する第1分散電源の一例である。太陽電池311の単体を太陽電池装置と称してもよく、太陽電池311及びPCS331を太陽電池装置と称してもよい。太陽電池装置は、負荷追従性として第1負荷追従性を有する分散電源である。 In the embodiment, the solar cell 311 is an example of a first distributed power source having a first priority as a cost priority. A single solar cell 311 may be referred to as a solar cell device, and the solar cell 311 and the PCS 331 may be referred to as a solar cell device. The solar cell device is a distributed power source having first load followability as load followability.
 燃料電池313は、コスト優先度として第1優先度よりも低い第2優先度を有する第2分散電源の一例である。燃料電池313の単体を燃料電池装置と称してもよく、燃料電池313及びPCS333を燃料電池装置と称してもよく、燃料電池313、給湯装置314及びPCS333を燃料電池装置と称してもよい。燃料電池装置は、負荷追従性として第2負荷追従性を有する分散電源ある。第2負荷追従性は、第1負荷追従性と同程度であってもよく、第1負荷追従性よりも劣っていてもよい。 The fuel cell 313 is an example of a second distributed power source having a second priority lower than the first priority as the cost priority. The single fuel cell 313 may be referred to as a fuel cell device, the fuel cell 313 and the PCS 333 may be referred to as a fuel cell device, and the fuel cell 313, the hot water supply device 314, and the PCS 333 may be referred to as a fuel cell device. The fuel cell device is a distributed power source having a second load followability as load followability. The second load followability may be similar to the first load followability, or may be inferior to the first load followability.
 蓄電池312は、コスト優先度として第2優先度よりも低い第3優先度を有する第3分散電源の一例である。蓄電池312の単体を蓄電池装置と称してもよく、蓄電池312及びPCS332を蓄電池装置と称してもよい。蓄電池装置は、第3負荷追従性を有する分散電源である。第3負荷追従性は、少なくとも第2負荷追従性よりも優れている。第3負荷追従性は、第1負荷追従性よりも優れていてもよい。 The storage battery 312 is an example of a third distributed power source having a third priority lower than the second priority as the cost priority. The single storage battery 312 may be referred to as a storage battery device, and the storage battery 312 and the PCS 332 may be referred to as storage battery devices. The storage battery device is a distributed power source having a third load followability. The third load followability is superior to at least the second load followability. The third load followability may be superior to the first load followability.
 なお、コスト優先度は、分散電源の種類によって異なるものであり、実施形態においては、コスト優先度が高い分散電源ほど、電力コストが低いものとする。次に電力コストについて説明する。燃料電池313の電力コストは、主として燃料となるガスの料金に依存する。蓄電池312の電力コストは、主として充電する際の電力料金に依存する。例えば、蓄電池312の電力コストは、電力系統110から買電する際の電力料金に基づいて算出される。また、蓄電池312は、太陽電池311の発電電力を充電すれば、電力コストをより低減できる。このように、蓄電池312の電力コストは、蓄電池312の充電動作に用いる電源(充電使用電源)によって変動する。それゆえ、蓄電池312は燃料電池313よりもコスト優先度が高くなる場合もある。なお、太陽電池311は、発電時に燃料等が不要であるため、燃料電池313および蓄電池312に比べて電力コストが低く、コスト優先度が高い。したがって、太陽電池311のコスト優先度は、燃料電池313のコスト優先度よりも高いため、充電使用電源が太陽電池311であるケースにおける蓄電池312のコスト優先度は、充電使用電源が燃料電池313であるケースにおける蓄電池312のコスト優先度よりも高い。また、燃料電池313の電力コストは、電力系統110から買電する際の電力料金よりも低いため、充電使用電源が燃料電池313であるケースにおける蓄電池312のコスト優先度は、充電使用電源が電力系統110であるケースにおける蓄電池312のコスト優先度よりも高くなる。 Note that the cost priority varies depending on the type of the distributed power source, and in the embodiment, the power source having a higher cost priority has a lower power cost. Next, the power cost will be described. The power cost of the fuel cell 313 mainly depends on the charge of gas serving as fuel. The power cost of the storage battery 312 mainly depends on the power charge when charging. For example, the power cost of the storage battery 312 is calculated based on the power charge when purchasing power from the power system 110. Moreover, if the storage battery 312 charges the generated electric power of the solar cell 311, the power cost can be further reduced. As described above, the power cost of the storage battery 312 varies depending on the power source (charging power source) used for the charging operation of the storage battery 312. Therefore, the storage battery 312 may have a higher cost priority than the fuel cell 313. Note that the solar cell 311 does not require fuel or the like during power generation, and therefore has a lower power cost and higher cost priority than the fuel cell 313 and the storage battery 312. Therefore, since the cost priority of the solar cell 311 is higher than the cost priority of the fuel cell 313, the cost priority of the storage battery 312 in the case where the power source used for charging is the solar cell 311 is that the power source used for charging is the fuel cell 313. It is higher than the cost priority of the storage battery 312 in a certain case. In addition, since the power cost of the fuel cell 313 is lower than the power charge when purchasing power from the power system 110, the cost priority of the storage battery 312 in the case where the power source used for charging is the fuel cell 313 is that the power source used for charging is power. It becomes higher than the cost priority of the storage battery 312 in the case of the system 110.
 また、負荷追従性は、分散電源の種類によって異なるものであり、実施形態においては、負荷追従性が優れている分散電源ほど、負荷350の消費電力の変化に出力する電力を追従しやすい、すなわち、負荷追従速度が速いものとする。負荷追従速度は、負荷350の消費電力の増加に応じて、分散電源が単位時間に増大可能な出力電力である。また、負荷追従速度は、負荷350の消費電力の減少に応じて、分散電源が単位時間に低減可能な出力電力であってもよい。 In addition, the load followability varies depending on the type of the distributed power supply.In the embodiment, the distributed power supply having better load followability is more likely to follow the power output to the change in the power consumption of the load 350. Suppose that the load following speed is fast. The load following speed is output power that the distributed power source can increase per unit time in accordance with an increase in power consumption of the load 350. Further, the load follow-up speed may be output power that the distributed power supply can reduce in unit time in accordance with a decrease in power consumption of the load 350.
 実施形態において、電力管理サーバ200とローカル制御装置360との間の通信は、第1プロトコルに従って行われる。一方で、ローカル制御装置360と分散電源との間の通信は、第1プロトコルとは異なる第2プロトコルに従って行われる。第1プロトコルとしては、例えば、Open ADR(Automated Demand Response)2.0に準拠するプロトコル、或いは、独自の専用プロトコルを用いることができる。第2プロトコルは、例えば、ECHONET Liteに準拠するプロトコル、SEP(Smart Energy Profile)2.0、KNX、或いは、独自の専用プロトコルを用いることができる。なお、第1プロトコルと第2プロトコルは異なっていればよく、例えば、両方が独自の専用プロトコルであっても異なる規則で作られたプロトコルであればよい。 In the embodiment, communication between the power management server 200 and the local control device 360 is performed according to the first protocol. On the other hand, communication between the local control device 360 and the distributed power supply is performed according to a second protocol different from the first protocol. As the first protocol, for example, a protocol compliant with Open ADR (Automated Demand Response) 2.0 or a unique dedicated protocol can be used. As the second protocol, for example, a protocol conforming to ECHONET Lite, SEP (Smart Energy Profile) 2.0, KNX, or an original dedicated protocol can be used. Note that the first protocol and the second protocol only need to be different. For example, even if both are unique dedicated protocols, they may be protocols created according to different rules.
 (電力管理サーバ)
 以下において、実施形態に係る電力管理サーバについて説明する。図3に示すように、電力管理サーバ200は、管理部210と、通信部220と、制御部230とを有する。電力管理サーバ200は、VTN(Virtual Top Node)の一例である。
(Power management server)
Hereinafter, the power management server according to the embodiment will be described. As illustrated in FIG. 3, the power management server 200 includes a management unit 210, a communication unit 220, and a control unit 230. The power management server 200 is an example of a VTN (Virtual Top Node).
 管理部210は、不揮発性メモリ又は/及びHDDなどの記憶媒体によって構成されており、施設300に関するデータを管理する。施設300に関するデータは、例えば、施設300に設けられる分散電源の種別、施設300に設けられる分散電源のスペックなどである。スペックは、太陽電池311に接続されるPCS331の定格発電電力、蓄電池312に接続されるPCS332の定格出力電力、燃料電池313に接続されるPCS333の定格出力電力などであってもよい。 The management unit 210 is configured by a storage medium such as a non-volatile memory and / or an HDD, and manages data related to the facility 300. The data related to the facility 300 includes, for example, the type of the distributed power source provided in the facility 300, the specifications of the distributed power source provided in the facility 300, and the like. The spec may be the rated generated power of the PCS 331 connected to the solar cell 311, the rated output power of the PCS 332 connected to the storage battery 312, the rated output power of the PCS 333 connected to the fuel cell 313, and the like.
 通信部220は、通信モジュールによって構成されており、ネットワーク120を介してローカル制御装置360と通信を行う。通信部220は、上述したように、第1プロトコルに従って通信を行う。例えば、通信部220は、第1プロトコルに従って第1メッセージをローカル制御装置360に送信する。通信部220は、第1プロトコルに従って第1メッセージ応答をローカル制御装置360から受信する。 The communication unit 220 includes a communication module, and communicates with the local control device 360 via the network 120. As described above, the communication unit 220 performs communication according to the first protocol. For example, the communication unit 220 transmits the first message to the local control device 360 according to the first protocol. The communication unit 220 receives the first message response from the local control device 360 according to the first protocol.
 制御部230は、メモリ及びCPUなどによって構成されており、電力管理サーバ200に設けられる各構成を制御する。制御部230は、例えば、制御メッセージの送信によって、施設300に設けられるローカル制御装置360に対して、施設300に設けられる分散電源に対する制御を指示する。また、制御部230は、施設300に設けられるローカル制御装置360に対して、施設300に設けられる負荷350に対する制御を指示してもよい。制御メッセージは、上述したように、潮流制御メッセージであってもよく、逆潮流制御メッセージであってもよく、電源制御メッセージであってもよい。 The control unit 230 includes a memory, a CPU, and the like, and controls each component provided in the power management server 200. For example, the control unit 230 instructs the local control device 360 provided in the facility 300 to control the distributed power source provided in the facility 300 by transmitting a control message. The control unit 230 may instruct the local control device 360 provided in the facility 300 to control the load 350 provided in the facility 300. As described above, the control message may be a power flow control message, a reverse power flow control message, or a power control message.
 (ローカル制御装置)
 以下において、実施形態に係るローカル制御装置について説明する。図4に示すように、ローカル制御装置360は、第1通信部361と、第2通信部362と、制御部363とを有する。ローカル制御装置360は、VEN(Virtual End Node)の一例である。
(Local control device)
Hereinafter, a local control device according to the embodiment will be described. As illustrated in FIG. 4, the local control device 360 includes a first communication unit 361, a second communication unit 362, and a control unit 363. The local control device 360 is an example of a VEN (Virtual End Node).
 第1通信部361は、通信モジュールによって構成されており、ネットワーク120を介して電力管理サーバ200と通信を行う。第1通信部361は、上述したように、第1プロトコルに従って通信を行う。例えば、第1通信部361は、第1プロトコルに従って第1メッセージを電力管理サーバ200から受信する。第1通信部361は、第1プロトコルに従って第1メッセージ応答を電力管理サーバ200に送信する。 The first communication unit 361 is configured by a communication module and communicates with the power management server 200 via the network 120. As described above, the first communication unit 361 performs communication according to the first protocol. For example, the first communication unit 361 receives the first message from the power management server 200 according to the first protocol. The first communication unit 361 transmits a first message response to the power management server 200 according to the first protocol.
 第2通信部362は、通信モジュールによって構成されており、分散電源(例えば、PCS331~PCS333)と通信を行う。第2通信部362は、上述したように、第2プロトコルに従って通信を行う。例えば、第2通信部362は、第2プロトコルに従って第2メッセージを分散電源に送信する。第2通信部362は、第2プロトコルに従って第2メッセージ応答を分散電源から受信する。また、第2通信部362は、第2プロトコルに従って第2メッセージを負荷350に送信してもよい。また、第2通信部362は、第2プロトコルに従って第2メッセージ応答を負荷350から受信してもよい。 The second communication unit 362 includes a communication module, and communicates with distributed power sources (for example, PCS331 to PCS333). As described above, the second communication unit 362 performs communication according to the second protocol. For example, the second communication unit 362 transmits the second message to the distributed power source according to the second protocol. The second communication unit 362 receives the second message response from the distributed power source according to the second protocol. In addition, the second communication unit 362 may transmit the second message to the load 350 according to the second protocol. Further, the second communication unit 362 may receive the second message response from the load 350 according to the second protocol.
 制御部363は、メモリ及びCPUなどによって構成されており、ローカル制御装置360に設けられる各構成を制御する。具体的には、制御部363は、施設300の電力を制御するために、第2メッセージの送信及び第2メッセージ応答の受信によって、分散電源の動作状態の設定を分散電源に指示する。制御部363は、施設300の電力を管理するために、第2メッセージの送信及び第2メッセージ応答の受信によって分散電源の情報の報告を分散電源に指示してもよい。また、制御部363は、第2メッセージの送信及び第2メッセージ応答の受信によって、負荷350の動作状態の設定を負荷350に指示してもよい。また、制御部363は、施設300の電力を管理するために、第2メッセージの送信及び第2メッセージ応答の受信によって負荷350の情報の報告を負荷350に指示してもよい。 The control unit 363 includes a memory and a CPU, and controls each component provided in the local control device 360. Specifically, in order to control the power of the facility 300, the control unit 363 instructs the distributed power supply to set the operating state of the distributed power supply by transmitting the second message and receiving the second message response. In order to manage the power of the facility 300, the control unit 363 may instruct the distributed power supply to report information on the distributed power supply by transmitting the second message and receiving the second message response. Further, the control unit 363 may instruct the load 350 to set the operation state of the load 350 by transmitting the second message and receiving the second message response. Further, the control unit 363 may instruct the load 350 to report information on the load 350 by transmitting the second message and receiving the second message response in order to manage the power of the facility 300.
 実施形態において、制御部363は、太陽電池311を少なくとも含む太陽電池装置、蓄電池312を少なくとも含む蓄電池装置及び燃料電池313を少なくとも含む燃料電池装置をコスト優先度に基づいて制御する(以下、計画制御)。例えば、制御部363は、太陽電池装置、蓄電池装置及び燃料電池装置が正常に動作していることを前提として、負荷350の消費電力の予測値に基づいて各分散電源の運転計画を決定する。運転計画は、所定期間(例えば、1日、1週間など)における計画である。制御部363は、各分散電源のコスト優先度に基づいて運転計画を決定するが、他の要因を考慮して運転計画を決定してもよい。他の要因は、太陽電池311の発電電力の売電価格、電力系統110から供給される電力の買電価格、CO排出量などの環境負荷、給湯装置314の湯量又は湯温、施設300のユーザの嗜好(設定)などである。 In the embodiment, the control unit 363 controls the solar cell device including at least the solar cell 311, the storage battery device including at least the storage battery 312, and the fuel cell device including at least the fuel cell 313 based on the cost priority (hereinafter, plan control). ). For example, the control unit 363 determines the operation plan of each distributed power source based on the predicted value of the power consumption of the load 350 on the assumption that the solar cell device, the storage battery device, and the fuel cell device are operating normally. The operation plan is a plan for a predetermined period (for example, one day, one week, etc.). The control unit 363 determines the operation plan based on the cost priority of each distributed power source, but may determine the operation plan in consideration of other factors. Other factors include the selling price of the generated power of the solar cell 311, the purchase price of the power supplied from the power system 110, the environmental load such as CO 2 emission, the amount of hot water or hot water of the hot water supply device 314, the facility 300 User preferences (settings).
 制御部363は、太陽電池装置、蓄電池装置及び燃料電池装置のいずれかの故障及び復旧を検知する。制御部363は、第2通信部362とPCS331~PCS333との間の通信エラーに基づいて故障を検知してもよく、PCS331~PCS333から第2通信部362が受信するメッセージに基づいて故障を検知してもよい。制御部363は、第2通信部362とPCS331~PCS333との間の通信エラーの解除に基づいて復旧を検知してもよく、PCS331~PCS333から第2通信部362が受信するメッセージに基づいて復旧を検知してもよい。従って、各分散電源の故障及び復旧を検知する検知部は制御部363である。但し、各分散電源の故障及び復旧を検知する検知部は第2通信部362であると考えてもよい。 The control unit 363 detects a failure and recovery of any of the solar cell device, the storage battery device, and the fuel cell device. The control unit 363 may detect a failure based on a communication error between the second communication unit 362 and the PCS 331 to PCS 333, or detect a failure based on a message received by the second communication unit 362 from the PCS 331 to PCS 333. May be. The control unit 363 may detect recovery based on the release of the communication error between the second communication unit 362 and the PCS 331 to PCS 333, and recover based on the message received by the second communication unit 362 from the PCS 331 to PCS 333. May be detected. Therefore, the detection unit that detects the failure and recovery of each distributed power supply is the control unit 363. However, the detection unit that detects failure and recovery of each distributed power supply may be considered to be the second communication unit 362.
 制御部363は、太陽電池装置の故障が検知された場合に第1故障制御を行う。制御部363は、太陽電池装置の復旧が検知された場合に第1復旧制御を行う。第1故障制御は、太陽電池装置の出力電力(計画値)を他の電源によって代替する制御である。他の電源は、太陽電池装置の出力電力(計画値)を代替する必要性から負荷追従性に基づいて選択される。他の電源は、例えば、優れた負荷追従性を有する蓄電池装置であってもよく、電力系統110であってもよい。但し、燃料電池装置の出力電力が最大出力ではない場合には、最大出力を超えない範囲で燃料電池装置の出力電力が増大してもよい。このような場合には、燃料電池装置の負荷追従性が考慮される。第1復旧制御は、太陽電池装置の出力電力を計画値に戻す制御である。運転計画は、コスト優先度に基づいて決定されているが、太陽電池装置の出力電力を直ちに計画値に戻すことができない場合には、太陽電池装置の負荷追従性が考慮される。第1故障制御及び第2復旧制御の詳細については後述する(図6及び図7を参照)。 The control unit 363 performs first failure control when a failure of the solar cell device is detected. The control unit 363 performs the first recovery control when the recovery of the solar cell device is detected. 1st failure control is control which substitutes the output electric power (planned value) of a solar cell apparatus with another power supply. The other power source is selected based on load followability from the necessity of replacing the output power (planned value) of the solar cell device. The other power source may be, for example, a storage battery device having excellent load followability, or the power system 110. However, when the output power of the fuel cell device is not the maximum output, the output power of the fuel cell device may increase within a range not exceeding the maximum output. In such a case, the load followability of the fuel cell device is considered. 1st restoration control is control which returns the output electric power of a solar cell apparatus to a plan value. Although the operation plan is determined based on the cost priority, when the output power of the solar cell device cannot be immediately returned to the planned value, the load followability of the solar cell device is taken into consideration. Details of the first failure control and the second recovery control will be described later (see FIGS. 6 and 7).
 制御部363は、燃料電池装置の故障が検知された場合に第2故障制御を行う。制御部363は、燃料電池装置の復旧が検知された場合に第2復旧制御を行う。第2故障制御は、燃料電池装置の出力電力(計画値)を他の電源によって代替する制御である。他の電源は、燃料電池装置の出力電力(計画値)を代替する必要性から負荷追従性に基づいて選択される。他の電源は、例えば、優れた負荷追従性を有する蓄電池装置であってもよく、電力系統110であってもよい。但し、太陽電池装置の出力電力が最大出力ではない場合には、最大出力を超えない範囲で太陽電池装置の出力電力が増大してもよい。このような場合には、太陽電池装置の負荷追従性が考慮される。第2復旧制御は、燃料電池装置の出力電力を計画値に戻す制御である。運転計画は、コスト優先度に基づいて決定されているが、燃料電池装置の出力電力を直ちに計画値に戻すことができない場合には、燃料電池装置の負荷追従性が考慮される。第2故障制御及び第2復旧制御の詳細については後述する(図8及び図9を参照)。 The control unit 363 performs second failure control when a failure of the fuel cell device is detected. The control unit 363 performs the second restoration control when the restoration of the fuel cell device is detected. The second failure control is control for substituting the output power (planned value) of the fuel cell device with another power source. The other power source is selected based on the load followability from the necessity of replacing the output power (planned value) of the fuel cell device. The other power source may be, for example, a storage battery device having excellent load followability, or the power system 110. However, when the output power of the solar cell device is not the maximum output, the output power of the solar cell device may be increased within a range not exceeding the maximum output. In such a case, the load followability of the solar cell device is considered. The second recovery control is control for returning the output power of the fuel cell device to a planned value. The operation plan is determined based on the cost priority. However, when the output power of the fuel cell device cannot be immediately returned to the planned value, the load followability of the fuel cell device is taken into consideration. Details of the second failure control and the second recovery control will be described later (see FIGS. 8 and 9).
 制御部363は、蓄電池装置の故障が検知された場合に第3故障制御を行う。制御部363は、蓄電池装置の復旧が検知された場合に第3復旧制御を行う。第3故障制御は、蓄電池装置の出力電力(計画値)を他の電源によって代替する制御である。他の電源は、蓄電池装置の出力電力(計画値)を代替する必要性から負荷追従性に基づいて選択される。他の電源は、例えば、電力系統110であってもよい。但し、太陽電池装置又は燃料電池装置の出力電力が最大出力ではない場合には、最大出力を超えない範囲で太陽電池装置又は燃料電池装置の出力電力が増大してもよい。このような場合には、太陽電池装置又は燃料電池装置の負荷追従性が考慮される。第3復旧制御は、蓄電池装置の出力電力を計画値に戻す制御である。蓄電池装置の負荷追従性は優れているため、第3復旧制御では、負荷追従性が考慮されなくてもよい。 The control unit 363 performs the third failure control when a failure of the storage battery device is detected. The control unit 363 performs the third recovery control when the recovery of the storage battery device is detected. 3rd failure control is control which substitutes the output electric power (planned value) of a storage battery apparatus with another power supply. The other power source is selected based on load followability from the necessity of replacing the output power (planned value) of the storage battery device. The other power source may be, for example, the power system 110. However, when the output power of the solar cell device or the fuel cell device is not the maximum output, the output power of the solar cell device or the fuel cell device may be increased within a range not exceeding the maximum output. In such a case, the load followability of the solar cell device or the fuel cell device is considered. The third recovery control is control for returning the output power of the storage battery device to the planned value. Since the load followability of the storage battery device is excellent, the load followability need not be considered in the third recovery control.
 このように、制御部363は、分散電源の故障が検知された場合において、故障が検知された分散電源以外の分散電源である正常分散電源を制御する。このような制御において、制御部363は、基本的に負荷追従性に基づいて正常分散電源を制御する。制御部363は、故障が生じている故障期間において、負荷追従性に基づいて正常分散電源を制御した後において、負荷追従性が許容する範囲内においてコスト優先度に基づいて正常分散電源を制御してもよい。制御部363は、分散電源の復旧が検知された場合において、コスト優先度に加えて負荷追従性に基づいて、復旧が検知された分散電源である復旧分散電源を制御してもよい。 As described above, when a failure of the distributed power source is detected, the control unit 363 controls a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected. In such control, the control unit 363 basically controls the normal distributed power supply based on load followability. The control unit 363 controls the normal distributed power source based on the cost priority within the range allowed by the load followability after controlling the normal distributed power source based on the load followability during the failure period in which the failure occurs. May be. When the recovery of the distributed power source is detected, the control unit 363 may control the recovery distributed power source that is the distributed power source in which the recovery is detected based on the load followability in addition to the cost priority.
 (適用シーン)
 以下において、実施形態の適用シーンについて説明する。以下においては、施設300がゼロエネルギー施設であるケースを例示する。ゼロエネルギー施設は、電力系統110から供給される電力に依存せずに、施設300に設けられる分散電源の出力電力によって負荷350の消費電力の全てを賄う施設を意味する。ここで、蓄電池装置が充電動作を行っている場合には、蓄電池装置は負荷350の一つであると考えてもよい。
(Applicable scene)
Hereinafter, application scenes of the embodiment will be described. In the following, a case where the facility 300 is a zero energy facility is illustrated. The zero energy facility means a facility that covers all the power consumption of the load 350 by the output power of the distributed power source provided in the facility 300 without depending on the power supplied from the power system 110. Here, when the storage battery device is performing the charging operation, the storage battery device may be considered as one of the loads 350.
 ローカル制御装置360は、太陽電池装置、蓄電池装置及び燃料電池装置が正常に動作していることを前提として、図5に示すように、負荷350の消費電力の予測値に基づいて各分散電源の運転計画を決定する。 As shown in FIG. 5, the local control device 360 assumes that the solar cell device, the storage battery device, and the fuel cell device are operating normally, based on the predicted value of the power consumption of the load 350. Determine the operation plan.
 図5において、「電力需要」は、負荷350の消費電力の予測値の推移である。「PV→負荷」は、太陽電池装置の出力電力の計画値である。「FC→負荷」は、燃料電池装置の出力電力の計画値である。「BAT→負荷」は、蓄電池装置の出力電力(放電電力)の計画値である。「PV→負荷」、「FC→負荷」及び「BAT→負荷」は、コスト優先度に基づいて決定されるが、最大出力を超えないことは勿論である。 In FIG. 5, “power demand” is the transition of the predicted value of the power consumption of the load 350. “PV → load” is a planned value of the output power of the solar cell device. “FC → load” is a planned value of output power of the fuel cell device. “BAT → Load” is a planned value of the output power (discharge power) of the storage battery device. “PV → load”, “FC → load” and “BAT → load” are determined based on the cost priority, but it is a matter of course that the maximum output is not exceeded.
 第1に、太陽電池装置の故障が生じるケースについて、図6及び図7を参照しながら説明する。図7は、太陽電池装置の故障期間(PV故障期間)にフォーカスを当てた図である。 First, a case where a failure of the solar cell device occurs will be described with reference to FIGS. FIG. 7 is a diagram focusing on the failure period (PV failure period) of the solar cell device.
 図6に示すように、12時及び13時の時間帯において太陽電池装置の故障が生じる。PV故障期間において、太陽電池装置の出力電力(計画値)は、基本的に、蓄電池装置及び燃料電池装置の出力電力によって代替される。 As shown in FIG. 6, a failure of the solar cell device occurs at 12:00 and 13:00. In the PV failure period, the output power (planned value) of the solar cell device is basically replaced by the output power of the storage battery device and the fuel cell device.
 詳細には、図7に示すように、PV故障期間の当初においては、負荷追従性に基づいて、蓄電池装置の出力電力が増大する。続いて、蓄電池装置の出力電力の減少によって、燃料電池装置の出力電力が増大する。ここで、燃料電池装置の最大出力を超えない範囲で、燃料電池装置の負荷追従性に従って蓄電池装置の出力電力が減少することによって、燃料電池装置の出力電力が増大する。 Specifically, as shown in FIG. 7, at the beginning of the PV failure period, the output power of the storage battery device increases based on the load following ability. Subsequently, the output power of the fuel cell device increases due to the decrease in the output power of the storage battery device. Here, within a range that does not exceed the maximum output of the fuel cell device, the output power of the storage cell device decreases according to the load followability of the fuel cell device, thereby increasing the output power of the fuel cell device.
 上述したように、燃料電池装置のコスト優先度は、蓄電池装置のコスト優先度よりも高い。すなわち、ローカル制御装置360は、PV故障期間において、負荷追従性に基づいて蓄電池装置の出力電力を増大した後において、燃料電池装置の負荷追従性が許容する範囲内においてコスト優先度に基づいて蓄電池装置の出力電力を減少することによって、最大出力を超えない範囲で燃料電池装置の出力電力を増大する。 As described above, the cost priority of the fuel cell device is higher than the cost priority of the storage battery device. That is, the local control device 360 increases the output power of the storage battery device based on the load followability during the PV failure period, and then the storage battery based on the cost priority within the range allowed by the load followability of the fuel cell device. By reducing the output power of the device, the output power of the fuel cell device is increased within a range not exceeding the maximum output.
 さらに、PV故障期間の直後においては、すなわち、太陽電池装置が復旧した場合において、太陽電池装置の出力電力がPV故障期間の直前のレベルに戻される。その後において、燃料電池装置の出力電力の減少によって、燃料電池装置の出力電力が計画値に戻されながら、太陽電池装置の出力電力が計画値に戻される。 Furthermore, immediately after the PV failure period, that is, when the solar cell apparatus is restored, the output power of the solar cell apparatus is returned to the level immediately before the PV failure period. Thereafter, as the output power of the fuel cell device decreases, the output power of the solar cell device returns to the planned value while the output power of the fuel cell device returns to the planned value.
 第2に、燃料電池装置の故障が生じるケースについて、図8及び図9を参照しながら説明する。図9は、燃料電池装置の故障期間(FC故障期間)にフォーカスを当てた図である。 Secondly, a case where a failure of the fuel cell device occurs will be described with reference to FIGS. FIG. 9 is a diagram focusing on the failure period (FC failure period) of the fuel cell device.
 図8に示すように、12時及び13時の時間帯において燃料電池装置の故障が生じる。FC故障期間において、燃料電池装置の出力電力(計画値)は、基本的に、蓄電池装置の出力電力によって代替される。なお、太陽電池装置の出力電力(計画値)が最大電力未満である場合には、太陽電池装置の出力電力が計画値よりも増大されてもよい。 As shown in FIG. 8, the fuel cell device fails at the time of 12:00 and 13:00. During the FC failure period, the output power (planned value) of the fuel cell device is basically replaced by the output power of the storage battery device. When the output power (planned value) of the solar cell device is less than the maximum power, the output power of the solar cell device may be increased from the planned value.
 詳細には、図9に示すように、FC故障期間においては、負荷追従性に基づいて、蓄電池装置の出力電力が増大する。太陽電池装置の出力電力(計画値)が最大電力未満である場合には、蓄電池装置の出力電力よりも優先して太陽電池装置の出力電力が増大する。 Specifically, as shown in FIG. 9, during the FC failure period, the output power of the storage battery device increases based on the load followability. When the output power (planned value) of the solar cell device is less than the maximum power, the output power of the solar cell device increases in preference to the output power of the storage battery device.
 さらに、FC故障期間の直後において、すなわち、燃料電池装置が復旧した場合において、蓄電池装置の出力電力の減少によって、燃料電池装置の出力電力が増大する。ここで、燃料電池装置の出力電力の計画値を超えない範囲で、燃料電池装置の負荷追従性に従って蓄電池装置の出力電力が減少することによって、燃料電池装置の出力電力が増大する。これによって、燃料電池装置の出力電力が計画値に戻される。 Furthermore, immediately after the FC failure period, that is, when the fuel cell device is restored, the output power of the fuel cell device increases due to a decrease in the output power of the storage battery device. Here, the output power of the fuel cell device increases as the output power of the storage battery device decreases in accordance with the load followability of the fuel cell device within a range not exceeding the planned value of the output power of the fuel cell device. As a result, the output power of the fuel cell device is returned to the planned value.
 すなわち、ローカル制御装置360は、燃料電池装置が復旧した場合において、負荷追従性及びコスト優先度に基づいて蓄電池装置の出力電力を減少することによって燃料電池装置の出力電力を計画値まで増大する。 That is, when the fuel cell device is restored, the local control device 360 increases the output power of the fuel cell device to the planned value by decreasing the output power of the storage battery device based on load followability and cost priority.
 (電源制御方法)
 以下において、実施形態に係る電源制御方法について説明する。
(Power control method)
Hereinafter, a power control method according to the embodiment will be described.
 第1に、分散電源の故障制御について図10を参照しながら説明する。 First, the failure control of the distributed power supply will be described with reference to FIG.
 図10に示すように、ステップS10において、ローカル制御装置360は、運転計画に基づいて各分散電源を制御する(計画制御)。運転計画は、上述したように、所定期間(例えば、1日、1週間など)における計画であり、負荷350の消費電力の予測値及び各分散電源のコスト優先度に基づいて決定される。 As shown in FIG. 10, in step S10, the local control device 360 controls each distributed power source based on the operation plan (plan control). As described above, the operation plan is a plan for a predetermined period (for example, one day, one week, etc.), and is determined based on the predicted value of the power consumption of the load 350 and the cost priority of each distributed power source.
 ステップS11において、ローカル制御装置360は、各分散電源の故障が検知されたか否かを判定する。判定結果がYESである場合には、ステップS12の処理が行われ、判定結果がNOである場合には、ステップS11の処理が継続する。 In step S11, the local control device 360 determines whether or not a failure of each distributed power source has been detected. If the determination result is YES, the process of step S12 is performed, and if the determination result is NO, the process of step S11 is continued.
 ステップS12において、ローカル制御装置360は、太陽電池装置が故障したか否かを判定する。判定結果がYESである場合には、ステップS14の処理が行われ、判定結果がNOである場合には、ステップS13の処理が行われる。 In step S12, the local control device 360 determines whether or not the solar cell device has failed. If the determination result is YES, the process of step S14 is performed, and if the determination result is NO, the process of step S13 is performed.
 ステップS13において、ローカル制御装置360は、燃料電池装置が故障したか否かを判定する。判定結果がYESである場合には、ステップS15の処理が行われ、判定結果がNOである場合には、ステップS16の処理が行われる。 In step S13, the local control device 360 determines whether or not the fuel cell device has failed. If the determination result is YES, the process of step S15 is performed, and if the determination result is NO, the process of step S16 is performed.
 ステップS14において、ローカル制御装置360は、第1故障制御(図6及び図7を参照)を行う。ローカル制御装置360は、PV故障期間において、太陽電池装置の出力電力(計画値)を蓄電池装置及び燃料電池装置の出力電力によって代替する。具体的には、ローカル制御装置360は、PV故障期間において、負荷追従性に基づいて蓄電池装置の出力電力を増大した後において、燃料電池装置の負荷追従性が許容する範囲内においてコスト優先度に基づいて蓄電池装置の出力電力を減少することによって、最大出力を超えない範囲で燃料電池装置の出力電力を増大する。 In step S14, the local control device 360 performs first failure control (see FIGS. 6 and 7). The local control device 360 replaces the output power (planned value) of the solar cell device with the output power of the storage battery device and the fuel cell device during the PV failure period. Specifically, the local control device 360 increases the output power of the storage battery device based on the load followability during the PV failure period, and then sets the cost priority within the range allowed by the load followability of the fuel cell device. Based on this, the output power of the fuel cell device is increased within a range not exceeding the maximum output by decreasing the output power of the storage battery device.
 ステップS15において、ローカル制御装置360は、第2故障制御(図8及び図9を参照)を行う。ローカル制御装置360は、FC故障期間において、燃料電池装置の出力電力(計画値)を蓄電池装置の出力電力によって代替する。ここで、ローカル制御装置360は、太陽電池装置の出力電力が最大出力ではない場合には、最大出力を超えない範囲で太陽電池装置の出力電力を増大してもよい。 In step S15, the local control device 360 performs the second failure control (see FIGS. 8 and 9). The local control device 360 substitutes the output power (planned value) of the fuel cell device with the output power of the storage battery device during the FC failure period. Here, when the output power of the solar cell device is not the maximum output, the local control device 360 may increase the output power of the solar cell device within a range not exceeding the maximum output.
 ステップS16において、ローカル制御装置360は、第3故障制御を行う。ローカル制御装置360は、蓄電池装置の出力電力(計画値)を電力系統110の供給電力によって代替する。ここで、ローカル制御装置360は、太陽電池装置又は燃料電池装置の出力電力が最大出力ではない場合には、最大出力を超えない範囲で太陽電池装置又は燃料電池装置の出力電力を増大してもよい。 In step S16, the local control device 360 performs the third failure control. The local control device 360 substitutes the output power (planned value) of the storage battery device with the power supplied from the power system 110. Here, when the output power of the solar cell device or the fuel cell device is not the maximum output, the local control device 360 may increase the output power of the solar cell device or the fuel cell device within a range not exceeding the maximum output. Good.
 第2に、分散電源の復旧制御について図11を参照しながら説明する。 Second, distributed power supply recovery control will be described with reference to FIG.
 図11に示すように、ステップS20において、ローカル制御装置360は、各分散電源の復旧が検知されたか否かを判定する。判定結果がYESである場合には、ステップS21の処理が行われ、判定結果がNOである場合には、各分散電源の復旧の検知待ち状態が維持される。 As shown in FIG. 11, in step S20, the local control device 360 determines whether recovery of each distributed power source has been detected. If the determination result is YES, the process of step S21 is performed, and if the determination result is NO, the detection waiting state for recovery of each distributed power source is maintained.
 ステップS21において、ローカル制御装置360は、太陽電池装置が復旧したか否かを判定する。判定結果がYESである場合には、ステップS23の処理が行われ、判定結果がNOである場合には、ステップS22の処理が行われる。 In step S21, the local control device 360 determines whether or not the solar cell device has been restored. If the determination result is YES, the process of step S23 is performed, and if the determination result is NO, the process of step S22 is performed.
 ステップS22において、ローカル制御装置360は、燃料電池装置が復旧したか否かを判定する。判定結果がYESである場合には、ステップS24の処理が行われ、判定結果がNOである場合には、ステップS25の処理が行われる。 In step S22, the local control device 360 determines whether or not the fuel cell device has been restored. If the determination result is YES, the process of step S24 is performed, and if the determination result is NO, the process of step S25 is performed.
 ステップS23において、ローカル制御装置360は、第1復旧制御を行う。ローカル制御装置360は、太陽電池装置の出力電力を計画値に戻す。ここで、ローカル制御装置360は、太陽電池装置の出力電力をPV故障期間の直前のレベルに戻した後において、燃料電池装置の出力電力の減少によって、燃料電池装置の出力電力を計画値に戻しながら、太陽電池装置の出力電力を計画値に戻してもよい。 In step S23, the local control device 360 performs first recovery control. The local control device 360 returns the output power of the solar cell device to the planned value. Here, after returning the output power of the solar cell device to the level immediately before the PV failure period, the local control device 360 returns the output power of the fuel cell device to the planned value due to the decrease in the output power of the fuel cell device. However, the output power of the solar cell device may be returned to the planned value.
 ステップS24において、ローカル制御装置360は、第2復旧制御を行う。ローカル制御装置360は、燃料電池装置の出力電力を計画値に戻す。ここで、ローカル制御装置360は、燃料電池装置の負荷追従性が許容する範囲内においてコスト優先度に基づいて蓄電池装置の出力電力を減少することによって、燃料電池装置の出力電力を計画値に戻してもよい。 In step S24, the local control device 360 performs second recovery control. The local control device 360 returns the output power of the fuel cell device to the planned value. Here, the local control device 360 returns the output power of the fuel cell device to the planned value by reducing the output power of the storage battery device based on the cost priority within the range allowed by the load followability of the fuel cell device. May be.
 ステップS25において、ローカル制御装置360は、第3復旧制御を行う。ローカル制御装置360は、蓄電池装置の出力電力を計画値に戻す。ここで、蓄電池装置の負荷追従性は優れているため、ローカル制御装置360は、蓄電池装置の出力電力を直ちに計画値に戻してもよい。 In step S25, the local control device 360 performs third recovery control. The local control device 360 returns the output power of the storage battery device to the planned value. Here, since the load followability of the storage battery device is excellent, the local control device 360 may immediately return the output power of the storage battery device to the planned value.
 (作用及び効果)
 ローカル制御装置360は、故障が検知された場合において、故障が検知された分散電源以外の分散電源である正常分散電源が単位時間に増大可能な出力に関する負荷追従性に基づいて、正常分散電源を制御する。このような構成によれば、故障が検知された分散電源の出力電力(計画値)を正常分散電源の出力電力によって適切に代替することができる。
(Function and effect)
When a failure is detected, the local control device 360 sets the normal distributed power supply based on the load followability with respect to the output that can be increased by a normal distributed power supply other than the distributed power supply in which the failure is detected per unit time. Control. According to such a configuration, the output power (planned value) of the distributed power source in which a failure is detected can be appropriately replaced with the output power of the normal distributed power source.
 [その他の実施形態]
 本開示は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
[Other Embodiments]
Although the present disclosure has been described by the above-described embodiments, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 実施形態では、第1分散電源として太陽電池装置を例示した。しかしながら、実施形態はこれに限定されるものではない。第1分散電源は、風力又は地熱などの自然エネルギーを利用する分散電源であってもよい。 In the embodiment, a solar cell device is exemplified as the first distributed power source. However, the embodiment is not limited to this. The first distributed power supply may be a distributed power supply that uses natural energy such as wind power or geothermal heat.
 実施形態では、第2分散電源として燃料電池装置を例示した。しかしながら、実施形態はこれに限定されるものではない。同様に、第3分散電源として蓄電池装置を例示した。しかしながら、実施形態はこれに限定されるものではない。第2分散電源及び第3分散電源は、第3分散電源の負荷追従性が第2分散電源の負荷追従性よりも相対的に優れた関係を満たす分散電源であればよい。第2分散電源及び第3分散電源は、第3分散電源のコスト優先度が第2分散電源のコスト優先度よりも相対的に低い関係を満たす分散電源であればよい。 In the embodiment, the fuel cell device is exemplified as the second distributed power source. However, the embodiment is not limited to this. Similarly, a storage battery device is illustrated as the third distributed power source. However, the embodiment is not limited to this. The second distributed power supply and the third distributed power supply may be any distributed power supply that satisfies a relationship in which the load followability of the third distributed power supply is relatively better than the load followability of the second distributed power supply. The second distributed power source and the third distributed power source may be any distributed power source that satisfies a relationship in which the cost priority of the third distributed power source is relatively lower than the cost priority of the second distributed power source.
 実施形態では、第1分散電源、第2分散電源及び第3分散電源は、コスト優先度及び負荷追従性の観点において種類が異なるものとした。しかしながら、実施形態はこれに限定されるものではない。例えば、各分散電源は、電池の種類が同じだった場合、分散電源の定格出力電力等のスペック、分散電源の保守情報、分散電源の制御履歴等の観点において種類が異なるようにしてもよい。この場合、電力コストは、それぞれの各分散電源で異なる。なお、分散電源の保守情報は、分散電源の総運転時間に関する情報、分散電源の寿命の情報、分散電源の劣化情報、分散電源の交換情報、分散電源の修理情報等を含んでもよい。また、分散電源の制御履歴は、分散電源の通常停止または異常停止に関する情報を含む分散電源の停止情報、分散電源の起動情報等を含んでもよい。なお、コスト優先度及び負荷追従性は、分散電源の保守情報、分散電源の制御履歴等の変化に応じて、変動するものであってもよい。 In the embodiment, the first distributed power source, the second distributed power source, and the third distributed power source are of different types in terms of cost priority and load followability. However, the embodiment is not limited to this. For example, when the types of batteries are the same, the types of the distributed power sources may be different in terms of specifications such as the rated output power of the distributed power source, the maintenance information of the distributed power source, and the control history of the distributed power source. In this case, the power cost is different for each distributed power source. The distributed power supply maintenance information may include information on the total operating time of the distributed power supply, distributed power life information, distributed power supply deterioration information, distributed power supply replacement information, distributed power supply repair information, and the like. The control history of the distributed power supply may include distributed power supply stop information including information related to the normal stop or abnormal stop of the distributed power supply, distributed power supply start information, and the like. Note that the cost priority and the load followability may vary according to changes in the maintenance information of the distributed power source, the control history of the distributed power source, and the like.
 実施形態では特に触れていないが、施設300に設けられるローカル制御装置360は、必ずしも施設300内に設けられていなくてもよい。例えば、ローカル制御装置360の機能の一部は、インターネット上に設けられるクラウドサーバによって提供されてもよい。すなわち、ローカル制御装置360がクラウドサーバを含むと考えてもよい。 Although not specifically mentioned in the embodiment, the local control device 360 provided in the facility 300 may not necessarily be provided in the facility 300. For example, some of the functions of the local control device 360 may be provided by a cloud server provided on the Internet. That is, it may be considered that the local control device 360 includes a cloud server.
 実施形態では、各分散電源を制御するローカル制御装置がローカル制御装置360(EMS)であるケースを例示した。しかしながら、このようなローカル制御装置は、PCS331~PCS333であってもよい。このようなケースにおいて、PCS331~PCS333は相互に通信を行う機能を有してもよい。 In the embodiment, the case where the local control device that controls each distributed power source is the local control device 360 (EMS) is exemplified. However, such local control devices may be PCS331 to PCS333. In such a case, the PCS 331 to PCS 333 may have a function of communicating with each other.
 実施形態では、第1プロトコルがOpen ADR2.0に準拠するプロトコルであり、第2プロトコルがECHONET Liteに準拠するプロトコルであるケースについて例示した。しかしながら、実施形態はこれに限定されるものではない。第1プロトコルは、電力管理サーバ200とローカル制御装置360との間の通信で用いるプロトコルとして規格化されたプロトコルであればよい。第2プロトコルは、施設300で用いるプロトコルとして規格化されたプロトコルであればよい。 In the embodiment, the case where the first protocol is a protocol conforming to Open ADR2.0 and the second protocol is a protocol conforming to ECHONET Lite is illustrated. However, the embodiment is not limited to this. The first protocol may be a protocol standardized as a protocol used for communication between the power management server 200 and the local control device 360. The second protocol may be a protocol standardized as a protocol used in the facility 300.
 実施形態では、燃料電池装置、太陽電池装置及び蓄電池装置のいずれかが故障するケース、具体的には、負荷350の消費電力は変化せずに、分散電源の出力電力が減少するケースについて例示した。しかしながら、これに限らず、分散電源が出力する電力は変化せずに、負荷350の消費電力が急激に変化する場合であってもよい。すなわち、分散電源の出力電力と負荷350の消費電力との間の電力値の相対関係に変化が生じた場合であってもよい。 In the embodiment, the case where any one of the fuel cell device, the solar cell device, and the storage battery device fails, specifically, the case where the output power of the distributed power source decreases without changing the power consumption of the load 350 is illustrated. . However, the present invention is not limited to this, and the power output by the distributed power supply may not change, and the power consumption of the load 350 may change rapidly. That is, a change may occur in the relative relationship between the power values of the output power of the distributed power source and the power consumption of the load 350.
 なお、日本国特許出願第2017-012850号(2017年1月27日出願)の全内容が、参照により、本願に組み込まれている。 Note that the entire content of Japanese Patent Application No. 2017-012850 (filed on Jan. 27, 2017) is incorporated herein by reference.

Claims (9)

  1.  コスト優先度として第1優先度を有する第1分散電源、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源及び前記コスト優先度として前記第2優先度よりも低い第3優先度を有する第3分散電源を、前記コスト優先度に基づいて制御するステップAと、
     前記第1分散電源、前記第2分散電源及び前記第3分散電源のいずれかの故障を検知するステップBと、
     前記故障が検知された場合において、前記故障が検知された分散電源以外の分散電源である正常分散電源を制御するステップCとを備え、
     前記ステップCは、前記正常分散電源が単位時間に増大可能な電力の出力に関する負荷追従性に基づいて、前記正常分散電源を制御するステップを含む、電源制御方法。
    The first distributed power source having the first priority as the cost priority, the second distributed power source having the second priority lower than the first priority as the cost priority, and the second priority as the cost priority. Controlling a third distributed power source having a lower third priority based on the cost priority;
    Detecting a failure of any of the first distributed power source, the second distributed power source, and the third distributed power source; and
    A step C for controlling a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected when the failure is detected;
    The step C includes a step of controlling the normal distributed power source based on load followability relating to an output of electric power that the normal distributed power source can increase per unit time.
  2.  前記ステップCは、前記故障が生じている故障期間において、前記負荷追従性に基づいて前記正常分散電源を制御した後において、前記コスト優先度に基づいて正常分散電源を制御するステップを含む、請求項1に記載の電源制御方法。 The step C includes a step of controlling the normal distributed power source based on the cost priority after the normal distributed power source is controlled based on the load followability in the failure period in which the failure occurs. Item 2. The power supply control method according to Item 1.
  3.  前記第1分散電源は、前記負荷追従性として第1負荷追従性を有する分散電源であり、
     前記第2分散電源は、前記負荷追従性として第2負荷追従性を有する分散電源であり、
     前記第3分散電源は、前記負荷追従性として前記第2負荷追従性よりも優れた第3負荷追従性を有する分散電源であり、
     前記ステップCは、前記第1分散電源が故障した場合において、前記故障が生じている故障期間において、前記負荷追従性に基づいて前記第3分散電源の出力を増大した後に、前記第3分散電源の電力の出力を減少することによって前記第2分散電源の出力を増大するステップを含む、請求項2に記載の電源制御方法。
    The first distributed power supply is a distributed power supply having a first load followability as the load followability,
    The second distributed power supply is a distributed power supply having a second load followability as the load followability,
    The third distributed power source is a distributed power source having a third load followability superior to the second load followability as the load followability,
    In the step C, when the first distributed power source fails, the third distributed power source is increased after the output of the third distributed power source is increased based on the load followability in the failure period in which the failure occurs. The power supply control method according to claim 2, further comprising increasing the output of the second distributed power supply by decreasing the output of the power of the second distributed power supply.
  4.  前記第2分散電源は、燃料電池装置であり、
     前記第3分散電源は、蓄電池装置である、請求項3に記載の電源制御方法。
    The second distributed power source is a fuel cell device,
    The power supply control method according to claim 3, wherein the third distributed power supply is a storage battery device.
  5.  前記故障からの復旧を検知するステップDと、
     前記復旧が検知された場合において、前記復旧が検知された分散電源である復旧分散電源を制御するステップEとを備え、
     前記ステップEは、前記コスト優先度及び前記負荷追従性に基づいて、前記復旧分散電源を制御するステップを含む、請求項1乃至請求項4のいずれかに記載の電源制御方法。
    Detecting step D for recovery from the failure;
    In the case where the restoration is detected, a step E for controlling a restoration distributed power source that is a distributed power source in which the restoration is detected comprises:
    5. The power supply control method according to claim 1, wherein the step E includes a step of controlling the restoration distributed power supply based on the cost priority and the load followability. 6.
  6.  前記第1分散電源は、前記負荷追従性として第1負荷追従性を有する分散電源であり、
     前記第2分散電源は、前記負荷追従性として第2負荷追従性を有する分散電源であり、
     前記第3分散電源は、前記負荷追従性として前記第2負荷追従性よりも優れた第3負荷追従性を有する分散電源であり、
     前記ステップEは、前記第2分散電源が復旧した場合において、前記復旧が検知された後において、前記第3分散電源の電力の出力を減少することによって前記第2分散電源の出力を増大するステップを含む、請求項5に記載の電源制御方法。
    The first distributed power supply is a distributed power supply having a first load followability as the load followability,
    The second distributed power supply is a distributed power supply having a second load followability as the load followability,
    The third distributed power source is a distributed power source having a third load followability superior to the second load followability as the load followability,
    The step E includes a step of increasing the output of the second distributed power supply by decreasing the power output of the third distributed power supply after the recovery is detected when the second distributed power supply is recovered. The power supply control method according to claim 5, comprising:
  7.  前記第2分散電源は、燃料電池装置である、請求項6に記載の電源制御方法。 The power supply control method according to claim 6, wherein the second distributed power supply is a fuel cell device.
  8.  コスト優先度として第1優先度を有する第1分散電源、前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源及び前記コスト優先度として前記第2優先度よりも低い第3優先度を有する第3分散電源を、前記コスト優先度に基づいて制御する制御部と、
     前記第1分散電源、前記第2分散電源及び前記第3分散電源のいずれかの故障を検知する検知部とを備え、
     前記制御部は、前記故障が検知された場合において、前記故障が検知された分散電源以外の分散電源である正常分散電源が単位時間に増大可能な電力の出力に関する負荷追従性に基づいて、前記正常分散電源を制御する、電源制御装置。
    The first distributed power source having the first priority as the cost priority, the second distributed power source having the second priority lower than the first priority as the cost priority, and the second priority as the cost priority. A control unit that controls a third distributed power source having a lower third priority based on the cost priority;
    A detection unit that detects a failure of any of the first distributed power supply, the second distributed power supply, and the third distributed power supply,
    The control unit, when the failure is detected, based on the load followability with respect to the output of power that can be increased in unit time a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected, A power supply control device that controls normal distributed power supplies.
  9.  コスト優先度として第1優先度を有する第1分散電源と、
     前記コスト優先度として前記第1優先度よりも低い第2優先度を有する第2分散電源と、
     前記コスト優先度として前記第2優先度よりも低い第3優先度を有する第3分散電源と、
     前記第1分散電源、前記第2分散電源及び前記第3分散電源を制御する電源制御装置とを備え、
     前記電源制御装置は、前記第1分散電源、前記第2分散電源及び前記第3分散電源のいずれかの故障を検知し、
     前記電源制御装置は、前記故障が検知された場合において、前記故障が検知された分散電源以外の分散電源である正常分散電源が単位時間に増大可能な電力の出力に関する負荷追従性に基づいて、前記正常分散電源を制御する、電源制御システム。
    A first distributed power source having a first priority as a cost priority;
    A second distributed power source having a second priority lower than the first priority as the cost priority;
    A third distributed power source having a third priority lower than the second priority as the cost priority;
    A power control device for controlling the first distributed power source, the second distributed power source, and the third distributed power source,
    The power supply control device detects a failure of any of the first distributed power supply, the second distributed power supply, and the third distributed power supply,
    When the failure is detected, the power supply control device is based on load followability related to the output of power that can be increased in unit time by a normal distributed power source that is a distributed power source other than the distributed power source in which the failure is detected. A power supply control system for controlling the normal distributed power supply.
PCT/JP2018/002558 2017-01-27 2018-01-26 Power supply control method, power supply control device, and power supply control system WO2018139603A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564662A JPWO2018139603A1 (en) 2017-01-27 2018-01-26 Power supply control method, power supply control device, and power supply control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017012850 2017-01-27
JP2017-012850 2017-01-27

Publications (1)

Publication Number Publication Date
WO2018139603A1 true WO2018139603A1 (en) 2018-08-02

Family

ID=62978488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002558 WO2018139603A1 (en) 2017-01-27 2018-01-26 Power supply control method, power supply control device, and power supply control system

Country Status (2)

Country Link
JP (1) JPWO2018139603A1 (en)
WO (1) WO2018139603A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058102A (en) * 2018-09-28 2020-04-09 大和ハウス工業株式会社 Power supply system
WO2021070745A1 (en) * 2019-10-11 2021-04-15 京セラ株式会社 Information processing device, information processing method, and program
JP7346211B2 (en) 2019-09-30 2023-09-19 大和ハウス工業株式会社 power supply system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151983A (en) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd Hybrid fuel cell system
JP2008061382A (en) * 2006-08-31 2008-03-13 Toshiba Corp Microgrid power supply and demand adjusting system
WO2011114422A1 (en) * 2010-03-15 2011-09-22 株式会社正興電機製作所 Power supply system, power supply method, program, recording medium, and power supply controller
JP2012100504A (en) * 2010-11-05 2012-05-24 Creative Techno Solution Co Ltd Power supply system
JP2015201973A (en) * 2014-04-08 2015-11-12 日本電信電話株式会社 power supply system
JP2016131434A (en) * 2015-01-13 2016-07-21 住友電気工業株式会社 Energy management system, energy management method, and computer program
JP2017121169A (en) * 2015-12-29 2017-07-06 ゼネラル・エレクトリック・カンパニイ Method and systems for managing power systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526912B2 (en) * 1994-05-24 2004-05-17 大阪瓦斯株式会社 DC hybrid power supply

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151983A (en) * 1991-11-29 1993-06-18 Sanyo Electric Co Ltd Hybrid fuel cell system
JP2008061382A (en) * 2006-08-31 2008-03-13 Toshiba Corp Microgrid power supply and demand adjusting system
WO2011114422A1 (en) * 2010-03-15 2011-09-22 株式会社正興電機製作所 Power supply system, power supply method, program, recording medium, and power supply controller
JP2012100504A (en) * 2010-11-05 2012-05-24 Creative Techno Solution Co Ltd Power supply system
JP2015201973A (en) * 2014-04-08 2015-11-12 日本電信電話株式会社 power supply system
JP2016131434A (en) * 2015-01-13 2016-07-21 住友電気工業株式会社 Energy management system, energy management method, and computer program
JP2017121169A (en) * 2015-12-29 2017-07-06 ゼネラル・エレクトリック・カンパニイ Method and systems for managing power systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058102A (en) * 2018-09-28 2020-04-09 大和ハウス工業株式会社 Power supply system
JP7221630B2 (en) 2018-09-28 2023-02-14 大和ハウス工業株式会社 power supply system
JP7346211B2 (en) 2019-09-30 2023-09-19 大和ハウス工業株式会社 power supply system
WO2021070745A1 (en) * 2019-10-11 2021-04-15 京セラ株式会社 Information processing device, information processing method, and program
JP2021064125A (en) * 2019-10-11 2021-04-22 京セラ株式会社 Information processing apparatus, information processing method and program
JP7058254B2 (en) 2019-10-11 2022-04-21 京セラ株式会社 Information processing equipment, information processing methods, and programs

Also Published As

Publication number Publication date
JPWO2018139603A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
WO2018139603A1 (en) Power supply control method, power supply control device, and power supply control system
WO2019107435A1 (en) Power management server and power management method
WO2020017428A1 (en) Electric power management server, energy accumulating device, and electric power management method
JP7203269B2 (en) Power management method and power management device
JP2019030123A (en) Power supply management method, power supply management server and power supply management device
JP7178429B2 (en) Power supply method and power management device
JP6975125B2 (en) Power management server and power management method
WO2020158591A1 (en) Power management device, power storage device, and power management method
JP7059394B2 (en) Power management device, power management system and power management method
JP6781274B2 (en) Power control method, power control device and power control system
JP7004819B2 (en) Distributed power system, control device, and distributed power control method
JP7237851B2 (en) Power management server and power management method
WO2021060142A1 (en) Electrical power management system and electrical power management method
JP7037583B2 (en) Power management system, power management server and power management method
JP6916149B2 (en) Data complement server, data complement system and data complement method
WO2021060143A1 (en) Electrical power management system and electrical power management method
WO2021079956A1 (en) Bidding assistance system and bidding assistance method
JP2022050576A (en) Power management device, power storage device, and power management method
JP2020124040A (en) Server device and control method
JP2018170882A (en) Power supply control method, distributed power supply, and control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744175

Country of ref document: EP

Kind code of ref document: A1