WO2020017275A1 - Optical glass, preform and optical element - Google Patents

Optical glass, preform and optical element Download PDF

Info

Publication number
WO2020017275A1
WO2020017275A1 PCT/JP2019/025752 JP2019025752W WO2020017275A1 WO 2020017275 A1 WO2020017275 A1 WO 2020017275A1 JP 2019025752 W JP2019025752 W JP 2019025752W WO 2020017275 A1 WO2020017275 A1 WO 2020017275A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
component
glass
optical
mass
Prior art date
Application number
PCT/JP2019/025752
Other languages
French (fr)
Japanese (ja)
Inventor
浄行 桃野
Original Assignee
株式会社オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オハラ filed Critical 株式会社オハラ
Priority to JP2020531208A priority Critical patent/JP7424978B2/en
Priority to CN201980047359.5A priority patent/CN112424135A/en
Publication of WO2020017275A1 publication Critical patent/WO2020017275A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present invention relates to an optical glass, a preform, and an optical element.
  • optical glasses for producing an optical element in particular, it has a refractive index ( nd ) of 1.70 or more, and an Abbe number ( ⁇ d ) of 35 or more and 55 or less, which can reduce the size of the entire optical system.
  • nd refractive index
  • ⁇ d Abbe number
  • Patent Document 1 a glass composition represented by Patent Document 1 is known.
  • the stability of the glass may be insufficient, and it has been demanded to enhance the stability.
  • glass that has been devitrified when the glass is manufactured is liable to be clouded when polishing a glass formed by press using a reheat press or when manufacturing a preform material by polishing the glass.
  • the present invention has been made in view of the above-described problems, and has as its object the purpose of polishing by polishing while the refractive index (n d ) and Abbe number ( ⁇ d ) are within desired ranges.
  • An object of the present invention is to obtain a stable optical glass in which a reforming material and an optical element can be easily manufactured.
  • the inventors of the present invention have conducted intensive tests and studies. As a result, the glass containing the SiO 2 component, the B 2 O 3 component, the La 2 O 3 component, and the Al 2 O 3 component was refracted. while there rate (n d) and Abbe number ([nu d) is within a desired range, chemical durability, particularly susceptible perform polishing for high acid resistance, it found that stable glass can be obtained,
  • the present invention has been completed. Specifically, the present invention provides the following.
  • SiO 2 component more than 0% and 35.0% or less SiO 2 component more than 0% and 35.0% or less, B 2 O 3 component more than 0% and 35.0% or less, La 2 O 3 component more than 20.0% and 65.0% or less, Al 2 O 3 component more than 0% and 30.0% or less, Contains Has 1.70 or more of refractive index (n d), has a 35 to 55 following the Abbe number ( ⁇ d), An optical glass having a chemical durability (acid resistance) of a class 1 to 4 by a powder method.
  • Ln 2 O 3 components where Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu
  • a sum of contents of RO components (where R is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) is 0 to less than 10.0%
  • Any of (1) to (5), wherein the sum of the contents of Rn 2 O components (where Rn is at least one selected from the group consisting of Li, Na, and K) is 0 to less than 10.0%;
  • Ln 2 O 3 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is more than 0.30 and not more than 10.00.
  • Ln is at least one selected from the group consisting of La, Gd, Y, and Yb).
  • a preform comprising the optical glass according to any one of (1) to (7).
  • An optical element comprising the optical glass according to any one of (1) to (7).
  • the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, easy to perform the production of a preform or an optical element by grinding, to obtain a stable optical glass Can be.
  • the SiO 2 component is more than 0% to 35.0% or less
  • the B 2 O 3 component is more than 0% to 35.0% or less
  • the La 2 O 3 component is more than 20.0% by mass%.
  • the Al 2 O 3 component contained less 0% and 30.0% has 1.70 or more of refractive index (n d), 35 or more 55 or less of Abbe number ([nu d) And has a chemical durability (acid resistance) of 1 to 4 in the powder method.
  • the present inventor has, SiO 2 component, the B 2 O 3 component and La 2 O 3 component as a base, when it is contained the Al 2 O 3 component to 1.70 or more refractive index (n d) and A stable glass having high Abs number ( ⁇ d ) of 35 or more and 55 or less and high chemical durability, particularly high acid resistance, can be obtained. Therefore, the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, easy to perform the production of a preform or an optical element according to a high polishing acid resistance, to obtain a stable optical glass Can be.
  • the optical glass of the present invention can contribute to weight reduction of an optical element and an optical device due to its low specific gravity.
  • each component constituting the optical glass of the present invention The composition range of each component constituting the optical glass of the present invention will be described below.
  • the content of each component is expressed in terms of% by mass with respect to the total mass of the oxide-converted composition.
  • the ⁇ oxide-equivalent composition '' refers to an oxide, a composite salt, a metal fluoride, and the like used as a raw material of the glass component of the present invention, when it is assumed that all are decomposed at the time of melting and change to an oxide.
  • the composition is a composition in which each component contained in the glass is described, with the total mass of the generated oxide being 100% by mass.
  • the SiO 2 component is an essential component as a glass-forming oxide.
  • it is a component that can improve the chemical durability of the glass, especially the acid resistance, and also enhances the stability of the glass to make it easier to obtain a glass that can withstand mass production. Further, the viscosity of the molten glass can be increased, and the coloring of the glass can be reduced. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, still more preferably more than 5.0%, and even more preferably 7.0%. More than, more preferably more than 10.0%.
  • the content of the SiO 2 component is preferably 35.0% or less, more preferably less than 30.0%, further preferably less than 27.0%, further preferably less than 24.0%, and still more preferably 21.0%. Less than 0%, more preferably less than 18.0%.
  • the B 2 O 3 component is an essential component as a glass-forming oxide.
  • the content of the B 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 4.0%, still more preferably more than 5.0%, and even more preferably 7. More than 0%, more preferably more than 10.0%.
  • the content of the B 2 O 3 component is set to 35.0% or less, a higher refractive index can be easily obtained, and deterioration of chemical durability, particularly deterioration of acid resistance can be suppressed.
  • the content of the B 2 O 3 component is preferably 35.0% or less, more preferably less than 30.0%, further preferably less than 27.0%, further preferably less than 25.0%, and still more preferably. It is less than 20.0%, more preferably less than 18.0%, and still more preferably less than 15.0%.
  • the La 2 O 3 component is an essential component for increasing the refractive index and Abbe number of glass. Moreover, since the rare earth is relatively inexpensive, the material cost of the glass can be reduced. Therefore, the content of the La 2 O 3 component is preferably more than 20.0%, more preferably more than 25.0%, furthermore preferably more than 28.0%, still more preferably more than 30.0%, and still more preferably. The content is more than 35.0%, more preferably more than 37.0%, further preferably more than 40.0%. On the other hand, by setting the content of the La 2 O 3 component to 65.0% or less, destabilization can be reduced by increasing the stability of the glass. Further, the melting property of the glass raw material can be improved.
  • the content of the La 2 O 3 component is preferably at most 65.0%, more preferably less than 60.0%, further preferably less than 58.0%, further preferably less than 55.0%, further preferably less than 55.0%. It is less than 53.0%, more preferably less than 50.0%.
  • the Al 2 O 3 component is an essential component that can improve the chemical durability of the glass, especially the acid resistance, and the devitrification resistance of the glass. Therefore, the content of the Al 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, further preferably more than 2.0%, further preferably more than 3.0%, and still more preferably 5. More than 0%. On the other hand, by setting the content of the Al 2 O 3 component to 30.0% or less, the liquidus temperature of the glass can be lowered and the devitrification resistance can be increased. Therefore, the content of the Al 2 O 3 component is preferably 30.0% or less, more preferably less than 25.0%, further preferably less than 20.0%, further preferably less than 15.0%, and still more preferably. Is less than 13.0%.
  • the Y 2 O 3 component is an optional component that can suppress the material cost of the glass and reduce the specific gravity of the glass while maintaining a high refractive index and a high Abbe number when containing more than 0%. Therefore, the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, further preferably more than 5.0%, further preferably more than 8.0%, and still more preferably 10. It may be more than 0%. On the other hand, when the content of the Y 2 O 3 component is less than 25.0%, a decrease in the refractive index of the glass can be suppressed, and the stability of the glass can be increased. Further, the deterioration of the melting property of the glass raw material can be suppressed. Therefore, the content of the Y 2 O 3 component is preferably less than 25.0%, more preferably less than 20.0%, further preferably less than 18.0%, and still more preferably less than 16.0%.
  • the Gd 2 O 3 component is an optional component that can increase the refractive index and Abbe number of glass when containing more than 0%.
  • the raw material price of the Gd 2 O 3 component is high, and if the content is high, the production cost increases and the specific gravity of the glass increases. Therefore, the content of the Gd 2 O 3 component is preferably less than 40.0%, more preferably less than 30.0%, further preferably less than 20.0%, and still more preferably less than 10.0%.
  • the Yb 2 O 3 component and the Lu 2 O 3 component are optional components that can increase the refractive index and Abbe number of the glass when containing more than 0%.
  • the Yb 2 O 3 component and the Lu 2 O 3 component have a high raw material price, and if the content is large, the production cost increases and the specific gravity of the glass increases. Therefore, the content of each of the Yb 2 O 3 component and the Lu 2 O 3 component is preferably less than 10.0%, more preferably less than 7.0%, further preferably less than 4.0%, and still more preferably 1. Less than 0%. In particular, from the viewpoint of reducing material costs, it is most preferable not to contain these components.
  • the MgO component, the CaO component, the SrO component and the BaO component are optional components that can adjust the refractive index, melting property, and devitrification resistance of the glass when containing more than 0%.
  • the content of each of the MgO component, CaO component, SrO component and BaO component is less than 10.0%, a decrease in the refractive index can be suppressed, and devitrification due to excessive content of these components. Can be reduced. Therefore, the content of each of the MgO component, the CaO component, the SrO component, and the BaO component is preferably less than 10.0%, more preferably less than 5.0%, still more preferably 3.0% or less, and further preferably 1. Less than 0%. Particularly, from the viewpoint of obtaining a glass having a high refractive index, it is most preferable not to contain these components.
  • the Li 2 O component is an optional component that can improve the melting property of the glass and lower the glass transition point when it contains more than 0%.
  • the content of the Li 2 O component is preferably less than 5.0%, more preferably less than 3.0%, further preferably less than 1.0%, further preferably less than 0.5%, and still more preferably 0%. 0.3% or less.
  • the Na 2 O component and the K 2 O component are optional components that can improve the melting property of the glass and lower the glass transition point when containing more than 0%.
  • the content of each of the Na 2 O component and the K 2 O component is less than 10.0%, the refractive index of the glass is hardly reduced, and the devitrification of the glass can be reduced. Therefore, the content of each of the Na 2 O component and the K 2 O component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably 1.0%. , More preferably less than 0.5%.
  • the TiO 2 component is an optional component that increases the refractive index of the glass and lowers the liquidus temperature of the glass to increase the stability. It is also a component that reduces the specific gravity of glass.
  • the content of the TiO 2 component is less than 15.0%, the devitrification due to the excessive content of the TiO 2 component can be reduced, and the transmittance of the glass to visible light (particularly, a wavelength of 500 nm or less) can be reduced. Can be suppressed.
  • a decrease in the Abbe number can be suppressed. Therefore, the content of the TiO 2 component is preferably less than 15.0%, more preferably less than 10.0%, further preferably less than 8.0%, still more preferably 5.0% or less, and further preferably 3.0% or less. 0% or less.
  • the Nb 2 O 5 component is an optional component that, when contained more than 0%, can increase the refractive index of the glass and lower the liquidus temperature of the glass to increase the devitrification resistance. Therefore, the content of the Nb 2 O 5 component may be preferably more than 0%, more preferably more than 1.0%, and even more preferably more than 2.0%. On the other hand, by setting the content of the Nb 2 O 5 component to less than 15.0%, the material cost of the glass can be suppressed, and the decrease in Abbe number can be suppressed. In addition, devitrification due to excessive Nb 2 O 5 content can be reduced, and a decrease in transmittance of glass with respect to visible light (particularly, a wavelength of 500 nm or less) can be suppressed. Therefore, the content of the Nb 2 O 5 component is preferably less than 15.0%, more preferably less than 12.0%, and still more preferably less than 10.0%.
  • the ZrO 2 component is an optional component that, when contained at more than 0%, can increase the refractive index and Abbe number of the glass and improve the devitrification resistance. Therefore, the content of the ZrO 2 component may be preferably more than 0%, more preferably more than 1.0%, and still more preferably more than 1.5%. On the other hand, when the content of the ZrO 2 component is less than 15.0%, devitrification due to excessive content of the ZrO 2 component can be reduced. Therefore, the content of the ZrO 2 component is preferably less than 15.0%, more preferably less than 12.0%, further preferably less than 10.0%, and still more preferably less than 7.0%.
  • the Ta 2 O 5 component is an optional component that, when contained in more than 0%, can increase the refractive index of the glass and increase the devitrification resistance.
  • the Ta 2 O 5 component has a high raw material price, and a high content thereof increases the production cost.
  • the content of the Ta 2 O 5 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
  • the WO 3 component contains more than 0%, an optional component that can increase the refractive index, lower the glass transition point, and increase the devitrification resistance while reducing coloring of the glass due to other high refractive index components. It is. Therefore, the content of WO 3 ingredient is preferably 0 percent, more preferably from 0.3%, even more preferably may be 0.5% greater. On the other hand, by the content of WO 3 components below 10.0%, it suppressed the material cost of the glass, suppressing a decrease in the Abbe number. Also, it increased visible light transmittance to reduce the coloration of the glass due WO 3 components. Therefore, the content of WO 3 component is preferably less than 10.0%, more preferably less than 5.0%, more preferably less than 3.0%, more preferably less than 1.0%.
  • the ZnO component is an optional component that can enhance the stability of the glass and reduce the coloring when contained in an amount exceeding 0%. It is also a component that can lower the glass transition point and improve chemical durability.
  • the content of the ZnO component is less than 30.0%, a decrease in the refractive index of the glass can be suppressed, and devitrification due to an excessive decrease in the viscosity can be reduced. Therefore, the content of the ZnO component is preferably less than 30.0%, more preferably less than 25.0%, further preferably less than 22.0%, further preferably less than 20.0%, and still more preferably 15.0%. %, More preferably less than 10.0%.
  • the P 2 O 5 component is an optional component that can act as a glass-forming component and, when contained in more than 0%, can lower the liquidus temperature of the glass and increase the devitrification resistance.
  • the content of the P 2 O 5 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
  • the GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when contained more than 0%.
  • GeO 2 has a high raw material price, and a high content thereof increases production costs. Therefore, the content of the GeO 2 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%. In particular, from the viewpoint of reducing material costs, it is not necessary to contain the GeO 2 component.
  • the Ga 2 O 3 component is an optional component that can improve the chemical durability of the glass and improve the devitrification resistance of the glass when containing more than 0%.
  • the content of the Ga 2 O 3 component is less than 10.0%, the liquidus temperature of the glass can be lowered and the devitrification resistance can be increased. Therefore, the content of the Ga 2 O 3 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
  • the Bi 2 O 3 component is an optional component that can increase the refractive index and lower the glass transition point when containing more than 0%.
  • the content of the Bi 2 O 3 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
  • the TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when containing more than 0%.
  • TeO 2 can be alloyed with platinum when melting a glass raw material in a platinum crucible or a melting tank in which a portion in contact with the molten glass is formed of platinum. Therefore, the content of the TeO 2 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
  • the SnO 2 component is an optional component that, when contained in more than 0%, can reduce the oxidization of the molten glass to clarify it and increase the visible light transmittance of the glass.
  • the content of the SnO 2 component is less than 3.0%, coloring of the glass due to reduction of the molten glass and devitrification of the glass can be reduced.
  • the alloying of the SnO 2 component and the melting equipment particularly, a noble metal such as Pt
  • the content of the SnO 2 component is preferably less than 3.0%, more preferably less than 1.0%, further preferably less than 0.5%, and still more preferably less than 0.1%.
  • the Sb 2 O 3 component is an optional component capable of defoaming the molten glass when containing more than 0%.
  • the content of the Sb 2 O 3 component is preferably less than 1.0%, more preferably less than 0.5%, and still more preferably less than 0.3%.
  • the component for clarifying and defoaming the glass is not limited to the above-mentioned Sb 2 O 3 component, and a known fining agent, defoaming agent or a combination thereof in the field of glass production can be used.
  • the F component is an optional component that, when contained at more than 0%, can increase the Abbe number of the glass, lower the glass transition point, and improve the devitrification resistance.
  • the content of the F component that is, the total amount of the fluorides substituted with part or all of one or more oxides of the above-described metal elements as F exceeds 10.0%, Since the volatilization amount of the component is large, it is difficult to obtain a stable optical constant, and it is difficult to obtain a homogeneous glass. Therefore, the content of the F component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
  • the ratio (mass ratio) of the content of the SiO 2 component to the content of the B 2 O 3 component is preferably from 0.15 to 10.00.
  • the stability of the glass can be enhanced, and the chemical durability, particularly, the acid resistance of the glass can be improved.
  • the glass of the present invention can be vitrified even when the content of the B 2 O 3 component is relatively small and the content of the SiO 2 component is relatively large. Therefore, the mass ratio SiO 2 / B 2 O 3 is preferably at least 0.15, more preferably at least 0.30, further preferably at least 0.50, further preferably at least 0.60, further preferably at least 0.70. The above may be used.
  • the mass ratio SiO 2 / B 2 O 3 is preferably 10.00 or less, more preferably 7.00 or less, further preferably 5.00 or less, and further preferably 4.65 or less.
  • the sum (mass sum) of the contents of the B 2 O 3 component and the SiO 2 component is preferably from 15.0% to 40.0%.
  • the mass sum B 2 O 3 + SiO 2 is preferably 15.0% or more, more preferably more than 18.0%, and further preferably 20.0% or more.
  • this sum 40.0% or less a decrease in the refractive index due to excessive inclusion of these components can be suppressed. Further, the chemical durability of the glass, particularly the acid resistance, can be improved.
  • the mass sum B 2 O 3 + SiO 2 is preferably 40.0% or less, more preferably less than 38.0%, further preferably less than 35.0%, further preferably less than 32.0%, further preferably less than 32.0%. It is less than 30.0%.
  • the sum (mass sum) of the contents of the B 2 O 3 component, the SiO 2 component, and the Al 2 O 3 component is preferably 15.0% or more and less than 50.0%. In particular, by making this sum 15.0% or more, more stable glass can be obtained. Therefore, the mass sum SiO 2 + B 2 O 3 + Al 2 O 3 is preferably at least 15.0%, more preferably more than 18.0%, further preferably more than 20.0%, further preferably more than 22.0%. , More preferably more than 25.0%. On the other hand, when the sum is less than 50.0%, a decrease in the refractive index due to an excessive content of these components can be suppressed.
  • the mass sum SiO 2 + B 2 O 3 + Al 2 O 3 is preferably less than 50.0%, more preferably less than 47.0%, even more preferably less than 44.0%, even more preferably less than 42.0%. , More preferably less than 39.0%.
  • the ratio of the sum of the content of the SiO 2 component and the content of the Al 2 O 3 component to the content of the B 2 O 3 component is preferably more than 0.30 and 10.00 or less.
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably more than 0.30, more preferably more than 0.45, still more preferably more than 0.60, and still more preferably more than 0.90. I do.
  • this ratio to 10.00 or less, more stable glass can be obtained.
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably at most 10.00, more preferably at most 10.00, further preferably at most 8.00, further preferably at most 6.00, More preferably, it is set to 5.50 or less.
  • the sum (mass sum) of the contents of Ln 2 O 3 components is 40.0% or more and 70.0% or more. % Or less is preferable.
  • the mass sum of the Ln 2 O 3 component is preferably 40.0% or more, more preferably more than 43.0%, still more preferably 45.0% or more, and further preferably more than 47.0%.
  • the mass sum of the Ln 2 O 3 component is preferably 70.0% or less, more preferably less than 65.0%, more preferably less than 64.0%, and still more preferably less than 63.0%.
  • the sum (mass sum) of the content of the RO component (where R is at least one selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably less than 10.0%. Thereby, a decrease in the refractive index can be suppressed, and the stability of the glass can be increased. Therefore, the mass sum of the RO component is preferably less than 10.0%, more preferably less than 5.0%, still more preferably 3.0% or less, and further preferably less than 1.0%.
  • the sum (mass sum) of the contents of Rn 2 O components is preferably less than 10.0%.
  • Rn is one or more selected from the group consisting of Li, Na, and K
  • the mass sum of the Rn 2 O component is preferably less than 10.0%, more preferably less than 6.0%, further preferably less than 4.0%, further preferably less than 2.0%, further preferably less than 1%. 0.0% or less.
  • the ratio (mass ratio) of the sum of the Ln 2 O 3 components to the sum of the contents of the B 2 O 3 component, the SiO 2 component and the Al 2 O 3 component is preferably more than 0.30 and 10.00 or less (in the formula).
  • Ln is at least one selected from the group consisting of La, Gd, Y, and Yb). In particular, when the mass ratio is more than 0.30, the refractive index and Abbe number of the glass can be increased.
  • the mass ratio Ln 2 O 3 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is preferably more than 0.30, more preferably more than 0.50, further preferably more than 0.80, and still more preferably 1 It is more than 0.000, more preferably 1.27 or more, further preferably 1.35 or more, further preferably 1.50 or more.
  • the mass ratio Ln 2 O 3 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is preferably 10.00 or less, more preferably 5.00 or less, further preferably 3.00 or less, and further preferably 2 or less. .60 or less, more preferably 2.30 or less, and still more preferably 2.10 or less.
  • the ratio (mass ratio) of the sum of the component contents is preferably 0.80 or more and 6.00 or less (where Ln is at least one selected from the group consisting of La, Gd, Y, and Yb, and R is One or more members selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and Rn one or more members selected from the group consisting of Li, Na and K).
  • the mass ratio is preferably 0.80, more preferably 1.00, further preferably 1.20,
  • the lower limit is further preferably 1.50, further preferably 1.80, preferably 6.00, more preferably 5.50, and even more preferably 5.00.
  • the mass ratio (Al 2 O 3 / Ln 2 O 3 ) is preferably 0.01 or more (where Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu). .
  • Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu.
  • the mass ratio of (Al 2 O 3 / Ln 2 O 3 ) may be preferably 0.01 or more, more preferably 0.03 or more, and further preferably 0.05 or more.
  • the mass ratio by setting the mass ratio to 1.00 or less, it is possible to suppress deterioration of the melting property of the glass raw material and excessive rise in viscosity.
  • the mass ratio of (Al 2 O 3 / Ln 2 O 3 ) is preferably 1.00 or less, more preferably 0.50 or less, further preferably 0.0.30 or less, and further more preferably 0.25 or less. , And more preferably 0.20 or less.
  • the mass sum (ZrO 2 + TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + TeO 2 ) is preferably 20.0% or less.
  • the mass sum of (ZrO 2 + TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + TeO 2 ) is preferably 20.0% or less, more preferably 18.0% or less, and still more preferably 15% or less. 0.0% or less, more preferably 5.0% or less, and still more preferably 4.0% or less.
  • the mass ratio (Ln 2 O 3 / RO) is preferably 1.0 or more (where Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu).
  • Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu.
  • the mass ratio of (Ln 2 O 3 / RO) is preferably 1.0 or more, more preferably 3.0 or more, further preferably 5.0 or more, further preferably 10.0 or more, and further preferably 20 or more. 0.0 or more. Note that, even when no RO component is contained, the effect of improving the chemical durability can be obtained, and thus the upper limit of the mass ratio of (Ln 2 O 3 / RO) may be infinite.
  • the mass ratio (Ln 2 O 3 / Rn 2 O) is preferably 3.0 or more.
  • the mass ratio of (Ln 2 O 3 / Rn 2 O) is preferably 3.0 or more, more preferably 5.0 or more, further preferably 8.0 or more, further preferably 10.0 or more, and still more preferably. May be 15.0 or more, more preferably 20.0 or more, further preferably 25.0 or more, and most preferably 30.0 or more. Note that, even when the Rn 2 O component is not contained, the effect of improving the chemical durability can be obtained, so that the upper limit of the mass ratio of (Ln 2 O 3 / Rn 2 O) is infinite even if it is infinite. Good.
  • the mass product (BaO ⁇ Gd 2 O 3 ) is preferably less than 8.0. By reducing this product, the effect of suppressing both the specific gravity of glass and the cost can be easily obtained. Therefore, the mass product of (BaO ⁇ Gd 2 O 3 ) is preferably less than 8.0, more preferably 7.0 or less, still more preferably 6.0 or less, still more preferably 5.0 or less, and even more preferably 4 or less. 0.0 or less, more preferably 3.0 or less, further preferably 2.0 or less, further preferably 1.0 or less, and still more preferably 0.1 or less.
  • the mass sum (SiO 2 + Al 2 O 3 ) is preferably 5.0% or more. Thereby, the effect of improving the chemical durability of the glass can be easily obtained. Accordingly, the mass sum of (SiO 2 + Al 2 O 3 ) is preferably at least 5.0%, more preferably at least 7.0%, further preferably at least 9.0%, further preferably at least 10.0%. Is also good. On the other hand, by setting the mass sum to 40.0% or less, it is possible to suppress the deterioration of the melting property of the glass raw material and the excessive increase in viscosity. Accordingly, the mass sum of (SiO 2 + Al 2 O 3 ) is preferably 40.0% or less, more preferably 45.0% or less, more preferably 35.0% or less, and still more preferably 30.0% or less. Good.
  • transition metal components such as Nd, V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is Even if a small amount is contained singly or in combination, the glass is colored and has a property of causing absorption at a specific wavelength in the visible region. Is preferred.
  • lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components that have a high environmental load, and therefore, should not substantially be contained, that is, should not be contained at all except for unavoidable contamination.
  • each component of Th, Cd, Tl, Os, Be, and Se tends to refrain from using as harmful chemicals in recent years, and is used not only in the glass manufacturing process but also in the processing process and disposal after commercialization. Environmental measures are required to this extent. Therefore, when importance is placed on environmental influences, it is preferable that these are not substantially contained.
  • substantially not contained means that the content is preferably less than 0.1%, and more preferably not contained except for inevitable impurities.
  • the content of components contained as inevitable impurities is, for example, less than 0.01% or less than 0.001%, but is not limited thereto.
  • the optical glass of the present invention is produced, for example, as follows. That is, the above-mentioned raw materials are uniformly mixed so that each component is within a predetermined content range, the prepared mixture is put into a platinum crucible, and is heated at 1100 to 1500 ° C. in an electric furnace according to the melting difficulty of the glass raw materials. The mixture is melted for 2 to 5 hours in the above temperature range, stirred and homogenized, cooled to an appropriate temperature, cast into a mold, and gradually cooled.
  • the optical glass of the present invention preferably has a high refractive index and a high Abbe number (low dispersion).
  • the lower limit of the refractive index ( nd ) of the optical glass of the present invention is preferably 1.70, more preferably 1.73, and even more preferably 1.75.
  • the upper limit of the refractive index ( nd ) of the optical glass of the present invention is preferably 2.00, more preferably 1.95, and even more preferably 1.90.
  • the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 35, more preferably 38, further preferably 40, and further preferably 42.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is preferably 55, more preferably 53, and even more preferably 51.
  • a high refractive index By having such a high refractive index, a large amount of light refraction can be obtained even if the optical element is made thin.
  • a shift in focus (chromatic aberration) due to the wavelength of light can be reduced. Therefore, for example, when an optical system is configured in combination with an optical element having high dispersion (low Abbe number), aberrations can be reduced as a whole of the optical system, and high imaging characteristics can be achieved.
  • the optical glass of the present invention is useful in optical design. Particularly, when an optical system is configured, it is possible to reduce the size of the optical system while achieving high imaging characteristics and the like. Can be expanded.
  • the optical glass of the present invention has a refractive index (n d ) and an Abbe number ( ⁇ d ) of ( ⁇ 0.01 ⁇ d +2.15) ⁇ n d ⁇ ( ⁇ 0.01 ⁇ d +2.35). It is preferable to satisfy the relationship.
  • the glass composition specified in the present invention refractive index (n d) and Abbe number ([nu d) is that satisfies this relationship, it is possible to obtain a relatively stable glass.
  • refractive index (n d) and Abbe number ([nu d) is, it is preferable to satisfy the relation of n d ⁇ (-0.01 ⁇ d +2.15) , n d ⁇ (- it is more preferable to satisfy the relationship 0.01 ⁇ d +2.20), it is more preferable to satisfy the relation of n d ⁇ (-0.01 ⁇ d +2.22) .
  • the refractive index (n d ) and the Abbe number ( ⁇ d ) preferably satisfy the relationship of n d ⁇ ( ⁇ 0.01 ⁇ d +2.35), and n d ⁇ ( It is more preferable to satisfy the relationship of ⁇ 0.01 ⁇ d +2.30), and it is still more preferable to satisfy the relationship of n d ⁇ ( ⁇ 0.01 ⁇ d +2.28).
  • the optical glass of the present invention has high acid resistance.
  • the chemical durability (acid resistance) of the glass by the powder method according to JOGIS06-2006 is preferably Class 1-4, more preferably Class 1-3, further preferably Class 1-2, and most preferably Class 1-2. It is one. Accordingly, when the optical glass is polished, the fogging of the glass due to an acidic polishing liquid or a cleaning liquid is reduced, so that the polishing processing can be performed more easily.
  • “acid resistance” refers to the durability against erosion of glass by an acid
  • the acid resistance is measured by JOGIS06-2006, "Method for measuring the chemical durability of optical glass” specified by Japan Optical Glass Industrial Association. Can be.
  • the chemical durability (acid resistance) by powder method is class 1 to class 4” means that the chemical durability (acid resistance) performed according to JOGIS06-2006 is the mass of the sample before and after the measurement. It means that the weight loss is less than 1.20% by mass.
  • class 1 of chemical durability (acid resistance) means that the weight loss of the sample before and after the measurement is less than 0.20% by mass
  • class 2 means the weight loss of the sample before and after the measurement.
  • Class 3 means that the weight loss rate of the sample before and after the measurement is 0.35 mass% or more and less than 0.65 mass%.
  • the optical glass of the present invention has high devitrification resistance, and more specifically, has a low liquidus temperature. That is, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1300 ° C, more preferably 1280 ° C, and further preferably 1250 ° C. As a result, even if the melted glass flows out at a lower temperature, the crystallization of the produced glass is reduced, so that the devitrification when the glass is formed from the molten state can be reduced, and the optics using the glass can be reduced. The influence on the optical characteristics of the element can be reduced.
  • the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is generally 800 ° C or higher, specifically 850 ° C or higher, more specifically 900 ° C or higher. Often above ° C.
  • liquid phase temperature refers to a 5 ml cullet-shaped glass sample placed in a platinum crucible having a capacity of 50 ml, completely melted at 1400 ° C., and cooled to a predetermined temperature.
  • the predetermined temperature at the time of cooling is a temperature between 1300 ° C. and 800 ° C. in steps of 10 ° C.
  • the upper limit of the specific gravity of the optical glass of the present invention is preferably 5.50, more preferably 5.00, and preferably 4.80, from the viewpoint of reducing the weight of the optical element and the optical device.
  • the specific gravity of the optical glass of the present invention is generally about 3.00 or more, more specifically 3.50 or more, and more specifically 4.00 or more.
  • the specific gravity of the optical glass of the present invention is measured based on JOGIS05-1975 “Method for measuring specific gravity of optical glass” specified by Japan Optical Glass Industrial Association.
  • the optical glass of the present invention preferably has both high acid resistance and light weight. That is, the optical glass of the present invention preferably has a value of d ⁇ RA of 18.0 or less, where d is a specific gravity and RA is a series of chemical durability (acid resistance) by a powder method. In such an optical glass, both acid resistance and specific gravity are low values, so that both high acid resistance and weight reduction can be achieved, and further improvement in workability by polishing and reduction in the weight of optical elements and optical devices. Can be compatible. Therefore, the value of d ⁇ RA in the optical glass of the present invention is preferably 18.0, more preferably 15.0, further preferably 13.0, further preferably 10.0, and still more preferably 9.0. And On the other hand, the lower limit of d ⁇ RA is often about 2.0 or more, more specifically 3.0 or more, and more specifically 4.0 or more.
  • a glass molded body can be produced, for example, by means of polishing or by means of mold press molding such as reheat press molding or precision press molding. That is, mechanical processing such as grinding and polishing is performed on the optical glass to produce a glass molded body, or a preform for mold press molding is produced from the optical glass, and reheat press molding is performed on the preform.
  • a glass molded body is manufactured by performing a polishing process, or a preform manufactured by performing a polishing process or a preform formed by a known floating molding or the like is subjected to precision press molding to perform a glass molded body.
  • the means for producing the glass molded body is not limited to these means.
  • the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the optical glass of the present invention and perform reheat press molding or precision press molding using the preform to produce an optical element such as a lens or a prism. This makes it possible to form a preform having a large diameter, so that the size of the optical element can be increased, and when used in an optical device such as a camera or a projector, high-definition and high-precision imaging and projection characteristics can be achieved. Can be realized.
  • the following embodiments are for illustrative purposes only, and are not limited to these embodiments.
  • the glasses of Examples and Comparative Examples of the present invention are used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc., each of which is a raw material of each component.
  • High-purity raw materials were selected, weighed so as to have the composition ratios of the respective examples shown in the table, and uniformly mixed. Then, they were put into a platinum crucible, and were placed in an electric furnace according to the melting difficulty of the glass raw materials. After melting in a temperature range of ⁇ 1500 ° C. for 2 to 5 hours, the mixture was homogenized with stirring, then cast into a mold or the like, and gradually cooled to prepare.
  • the refractive index (n d ) of the glasses of the examples and comparative examples was indicated by a measured value with respect to the d-line (587.56 nm) of a helium lamp according to the V-block method specified in JIS B 7071-2: 2018. .
  • the Abbe number ( ⁇ d ) is the refractive index of the d line, the refractive index (n F ) of the hydrogen lamp for the F line (486.13 nm), and the refractive index (n C ) for the C line (656.27 nm).
  • Abbe number ( ⁇ d ) [(n d ⁇ 1) / (n F ⁇ n C )].
  • the slope a is determined intercept b when the 0.01.
  • the acid resistance of the glasses of Examples and Comparative Examples was measured according to JOGIS06-2006, "Method for Measuring Chemical Durability of Optical Glass", Japan Optical Glass Industry Association Standard. That is, a glass sample crushed to a particle size of 425 to 600 ⁇ m was placed in a specific gravity bottle and placed in a platinum basket. The platinum basket was placed in a quartz glass round bottom flask containing a 0.01 N nitric acid aqueous solution and treated in a boiling water bath for 60 minutes. Calculate the weight loss rate (% by mass) of the glass sample after the treatment, and class 1 when the weight loss rate is less than 0.20, and class 1 when the weight loss rate is less than 0.20 to 0.35. 2.
  • Class 3 when the weight loss rate is less than 0.35 to 0.65
  • Class 4 when the weight loss rate is less than 0.65 to 1.20
  • Class 4 when the weight loss rate is less than 1.20 to 2.20.
  • Class 5 and the case where the weight loss rate was 2.20 or more were classified as Class 6. At this time, the smaller the number of classes (series RA), the better the acid resistance of the glass.
  • the specific gravity d of the glasses of the examples and comparative examples was measured based on JOGIS05-1975 “Method for measuring the specific gravity of optical glass” specified by Japan Optical Glass Industrial Association. From the value of the measured specific gravity d and the value of the acid resistance series RA, the value of d ⁇ RA, which is the product of these, was determined.
  • the liquidus temperature of the glass of the example and the comparative example is such that a 5 ml cullet-shaped glass sample is put into a platinum crucible having a capacity of 50 ml and completely melted at 1400 ° C. in a platinum crucible. The temperature was lowered to any temperature set in units of ° C, held for 1 hour, taken out of the furnace and cooled, and immediately after observation of the glass surface and the presence or absence of crystals in the glass, the lowest value where no crystals were observed The temperature was determined.
  • the optical glasses of Examples of the present invention are both refractive index (n d) of 1.70 or more, with more detail is 1.71 or more, the refractive index (n d ) was 2.10 or less, more specifically 1.87 or less, within the desired range.
  • optical glasses of the examples of the present invention each have an Abbe number ( ⁇ d ) of 35 or more, more specifically 38 or more, and an Abbe number ( ⁇ d ) of 55 or less, more specifically 54 And within the desired range.
  • the optical glasses of Examples of the present invention all had chemical durability (acid resistance) according to the powder method of Classes 1 to 4, and more specifically Classes 1 to 3.
  • the glass of the comparative example had a chemical durability (acid resistance) of class 5 by the powder method. For this reason, it became clear that the optical glasses of the examples of the present invention had better acid resistance than the glasses of the comparative examples.
  • the optical glass of the present invention formed a stable glass, and devitrification hardly occurred during glass production. This is inferred from the fact that the liquidus temperature of the optical glass of the present invention is 1300 ° C. or lower, more specifically 1250 ° C. or lower.
  • the optical glasses of Examples of the present invention is a refractive index (n d) and Abbe number ([nu d) is, (- 0.01 ⁇ d +2.15) ⁇ n d ⁇ (-0.01 ⁇ d +2.35 ) Was satisfied, and more specifically, the relationship ( ⁇ 0.02 ⁇ d +2.22) ⁇ n d ⁇ ( ⁇ 0.02 ⁇ d +2.28) was satisfied.
  • the relationship between the refractive index of the glass of the present embodiment (n d) and Abbe number ([nu d) became as shown in Figure 1.
  • optical glasses of the examples of the present invention all had a specific gravity of 5.50 or less, more specifically 4.80 or less.
  • the value of d ⁇ RA when the specific gravity is d and the series of chemical durability (acid resistance) by the powder method is RA is 18.0 or less. In detail, it was 4.0 or more and 13.0 or less.
  • the optical glass of the comparative example had a value of d ⁇ RA of 19.10, and was not compatible with the suitability for polishing and the reduction in weight.
  • the optical glasses of Examples of the present invention while remaining refractive index (n d) and Abbe number ([nu d) is within the desired range, high acid resistance, and clear that the hard watermarks stable and lost Became. Therefore, it is presumed that the optical glass of the example of the present invention can easily produce a preform material and an optical element by polishing.
  • the optical glass of the example of the present invention a glass block was formed, and the glass block was ground and polished to form lenses and prisms. As a result, it was possible to stably process into various lens and prism shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a stable optical glass which has a refractive index (nd) and an Abbe number (νd) each falling within a desired range and yet from which a preform material or an optical element can be easily produced by polishing processing. The optical glass comprises, in mass%, more than 0% and not more than 35.0% of an SiO2 component, more than 0% and not more than 35.0% a B2O3 component, more than 20.0% and not more than 65.0% of an La2O3 component and more than 0% and not more than 30.0% of an Al2O3 component, and has a refractive index (nd) of 1.70 or greater, an Abbe number (νd) of 35-55 inclusive, and a chemical durability (acid tolerance) measured by the powder method of class 1-4.

Description

光学ガラス、プリフォーム及び光学素子Optical glass, preform and optical element
 本発明は、光学ガラス、プリフォーム及び光学素子に関する。 The present invention relates to an optical glass, a preform, and an optical element.
 近年、光学系を使用する機器のデジタル化や高精細化が急速に進んでおり、デジタルカメラやビデオカメラ等の撮影機器や、プロジェクタやプロジェクションテレビ等の画像再生(投影)機器等の各種光学機器の分野では、光学系で用いられるレンズやプリズム等の光学素子の枚数を削減し、光学系全体を軽量化及び小型化する要求が強まっている。 2. Description of the Related Art In recent years, digitalization and high-definition of devices using optical systems have been rapidly progressing, and various optical devices such as photographing devices such as digital cameras and video cameras, and image reproducing (projection) devices such as projectors and projection televisions. In the field of, there is an increasing demand to reduce the number of optical elements such as lenses and prisms used in the optical system, and to reduce the weight and size of the entire optical system.
 光学素子を作製する光学ガラスの中でも特に、光学系全体の小型化を図ることが可能な、1.70以上の屈折率(n)を有し、35以上55以下のアッベ数(ν)を有する高屈折率低分散ガラスの需要が非常に高まっている。このような高屈折率低分散ガラスとして、特許文献1に代表されるようなガラス組成物が知られている。 Among optical glasses for producing an optical element, in particular, it has a refractive index ( nd ) of 1.70 or more, and an Abbe number (ν d ) of 35 or more and 55 or less, which can reduce the size of the entire optical system. The demand for high refractive index and low dispersion glass having As such a high-refractive-index low-dispersion glass, a glass composition represented by Patent Document 1 is known.
特開平11-071129号公報JP-A-11-071129
 しかし、特許文献1で開示されたガラスでは、ガラスの安定性が不十分な場合があり、その安定性を高めることが求められていた。さらに、ガラスを作製した際の失透を免れたガラスは、リヒートプレスによりプレス成形されたガラスを研磨加工する際や、ガラスを研磨加工してプリフォーム材を作製する際に、曇りが生じ易い問題点があった。ひとたび失透や曇りが生じたガラスからは、特に可視領域の光を制御するような光学素子を作製することが困難であった。 However, in the glass disclosed in Patent Document 1, the stability of the glass may be insufficient, and it has been demanded to enhance the stability. Furthermore, glass that has been devitrified when the glass is manufactured is liable to be clouded when polishing a glass formed by press using a reheat press or when manufacturing a preform material by polishing the glass. There was a problem. It has been difficult to produce an optical element that controls light in the visible region, in particular, from glass once devitrified or clouded.
 本発明は、上記問題点に鑑みてなされたものであって、その目的とするところは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、研磨加工によるプリフォーム材や光学素子の作製を行い易い、安定な光学ガラスを得ることにある。 The present invention has been made in view of the above-described problems, and has as its object the purpose of polishing by polishing while the refractive index (n d ) and Abbe number (ν d ) are within desired ranges. An object of the present invention is to obtain a stable optical glass in which a reforming material and an optical element can be easily manufactured.
 本発明者らは、上記課題を解決するために、鋭意試験研究を重ねた結果、SiO成分、B成分、La成分及びAl成分を含有するガラスにおいて、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながらも、化学的耐久性、特に耐酸性の高いために研磨加工を行い易い、安定なガラスが得られることを見出し、本発明を完成するに至った。
 具体的には、本発明は以下のようなものを提供する。
Means for Solving the Problems To solve the above-mentioned problems, the inventors of the present invention have conducted intensive tests and studies. As a result, the glass containing the SiO 2 component, the B 2 O 3 component, the La 2 O 3 component, and the Al 2 O 3 component was refracted. while there rate (n d) and Abbe number ([nu d) is within a desired range, chemical durability, particularly susceptible perform polishing for high acid resistance, it found that stable glass can be obtained, The present invention has been completed.
Specifically, the present invention provides the following.
 (1) 質量%で、
SiO成分を0%超35.0%以下、
成分を0%超35.0%以下、
La成分を20.0%超65.0%以下、
Al成分を0%超30.0%以下、
含有し、
 1.70以上の屈折率(n)を有し、35以上55以下のアッベ数(ν)を有し、
 粉末法による化学的耐久性(耐酸性)がクラス1~4である光学ガラス。
(1) In mass%,
SiO 2 component more than 0% and 35.0% or less,
B 2 O 3 component more than 0% and 35.0% or less,
La 2 O 3 component more than 20.0% and 65.0% or less,
Al 2 O 3 component more than 0% and 30.0% or less,
Contains
Has 1.70 or more of refractive index (n d), has a 35 to 55 following the Abbe number (ν d),
An optical glass having a chemical durability (acid resistance) of a class 1 to 4 by a powder method.
 (2) 質量%で、
成分 0~25.0%未満、
Gd成分 0~40.0%未満、
Yb成分 0~10.0%未満、
Lu成分 0~10.0%未満、
MgO成分 0~10.0%未満、
CaO成分 0~10.0%未満、
SrO成分 0~10.0%未満、
BaO成分 0~10.0%未満、
LiO成分 0~5.0%未満、
NaO成分 0~10.0%未満、
O成分 0~10.0%未満、
TiO成分 0~15.0%未満、
Nb成分 0~15.0%未満、
ZrO成分 0~15.0%未満、
Ta成分 0~10.0%未満、
WO成分 0~10.0%未満、
ZnO成分 0~30.0%未満、
成分 0~10.0%未満、
GeO成分 0~10.0%未満、
Ga成分 0~10.0%未満、
Bi成分 0~10.0%未満、
TeO成分 0~10.0%未満、
SnO成分 0~3.0%未満、
Sb成分 0~1.0%未満
であり、
 上記各元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~10.0質量%未満である(1)記載の光学ガラス。
(2) In mass%,
Y 2 O 3 component 0 to less than 25.0%,
Gd 2 O 3 component 0 to less than 40.0%,
Yb 2 O 3 component 0 to less than 10.0%,
Lu 2 O 3 component 0 to less than 10.0%,
MgO component 0 to less than 10.0%,
CaO component 0 to less than 10.0%,
SrO component 0 to less than 10.0%,
BaO component 0 to less than 10.0%,
Li 2 O component 0 to less than 5.0%,
Na 2 O component 0 to less than 10.0%,
K 2 O component 0 to less than 10.0%,
TiO 2 component 0 to less than 15.0%,
Nb 2 O 5 component 0 to less than 15.0%,
ZrO 2 component 0 to less than 15.0%,
Ta 2 O 5 component 0 to less than 10.0%,
WO 3 components 0 to less than 10.0%,
ZnO component 0 to less than 30.0%,
P 2 O 5 component 0 to less than 10.0%,
GeO 2 component 0 to less than 10.0%,
Ga 2 O 3 component 0 to less than 10.0%,
Bi 2 O 3 component 0 to less than 10.0%,
TeO 2 component 0 to less than 10.0%,
SnO 2 component 0 to less than 3.0%,
Sb 2 O 3 component 0 to less than 1.0%;
(1) The optical glass according to (1), wherein the content of F as a fluorine which is partially or entirely substituted with one or more oxides of each of the above elements is 0 to less than 10.0% by mass.
 (3) 質量和SiO+Bが15.0%以上40.0%以下である(1)又は(2)に記載の光学ガラス。 (3) The optical glass according to (1) or (2), wherein the mass sum of SiO 2 + B 2 O 3 is 15.0% or more and 40.0% or less.
 (4) 質量和SiO+B+Alが15.0%以上50.0%未満である(1)から(3)のいずれかに記載の光学ガラス。 (4) The optical glass according to any one of (1) to (3), wherein the mass sum of SiO 2 + B 2 O 3 + Al 2 O 3 is 15.0% or more and less than 50.0%.
 (5) 質量比(SiO+Al)/Bが0.30超10.00以下である(1)から(4)のいずれか記載の光学ガラス。 (5) The optical glass according to any one of (1) to (4), wherein the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is more than 0.30 and 10.00 or less.
 (6) 質量%で、
 Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)の含有量の和が40.0%以上70.0%以下であり、
 RO成分(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)の含有量の和が0~10.0%未満であり、
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和が0~10.0%未満である(1)から(5)のいずれか記載の光学ガラス。
(6) In mass%,
The sum of the contents of Ln 2 O 3 components (where Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu) is 40.0% or more and 70.0% or less;
A sum of contents of RO components (where R is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) is 0 to less than 10.0%;
Any of (1) to (5), wherein the sum of the contents of Rn 2 O components (where Rn is at least one selected from the group consisting of Li, Na, and K) is 0 to less than 10.0%; The optical glass of the above.
 (7) 質量比Ln/(SiO+B+Al)が0.30超10.00以下である(1)から(6)のいずれか記載の光学ガラス(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)。 (7) The optical glass according to any one of (1) to (6), wherein the mass ratio Ln 2 O 3 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is more than 0.30 and not more than 10.00. , Ln is at least one selected from the group consisting of La, Gd, Y, and Yb).
 (8) (1)から(7)のいずれか記載の光学ガラスからなるプリフォーム。 {(8)} A preform comprising the optical glass according to any one of (1) to (7).
 (9) (1)から(7)のいずれか記載の光学ガラスからなる光学素子。 {(9)} An optical element comprising the optical glass according to any one of (1) to (7).
 (10) (9)に記載の光学素子を備える光学機器。 (10) An optical device including the optical element according to (9).
 本発明によれば、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、研磨加工によるプリフォーム材や光学素子の作製を行い易い、安定な光学ガラスを得ることができる。 According to the present invention, the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, easy to perform the production of a preform or an optical element by grinding, to obtain a stable optical glass Can be.
本願の実施例のガラスについての屈折率(n)とアッベ数(ν)の関係を示す図である。It is a diagram showing the relationship between the refractive index of the glass of the present embodiment (n d) and Abbe number (ν d).
 本発明の光学ガラスは、質量%で、SiO成分を0%超35.0%以下、B成分を0%超35.0%以下、La成分を20.0%超65.0%以下、Al成分を0%超30.0%以下含有し、1.70以上の屈折率(n)を有し、35以上55以下のアッベ数(ν)を有し、粉末法による化学的耐久性(耐酸性)がクラス1~4である。本発明者は、SiO成分、B成分及びLa成分をベースとし、これにAl成分を含有させた場合に、1.70以上の屈折率(n)及び35以上55以下のアッベ数(ν)を有しながらも、化学的耐久性、特に耐酸性が高く、安定なガラスが得られる。従って、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐酸性が高く研磨加工によるプリフォーム材や光学素子の作製を行い易い、安定な光学ガラスを得ることができる。 In the optical glass of the present invention, the SiO 2 component is more than 0% to 35.0% or less, the B 2 O 3 component is more than 0% to 35.0% or less, and the La 2 O 3 component is more than 20.0% by mass%. 65.0% or less, the Al 2 O 3 component contained less 0% and 30.0%, has 1.70 or more of refractive index (n d), 35 or more 55 or less of Abbe number ([nu d) And has a chemical durability (acid resistance) of 1 to 4 in the powder method. The present inventor has, SiO 2 component, the B 2 O 3 component and La 2 O 3 component as a base, when it is contained the Al 2 O 3 component to 1.70 or more refractive index (n d) and A stable glass having high Abs number (ν d ) of 35 or more and 55 or less and high chemical durability, particularly high acid resistance, can be obtained. Therefore, the refractive index (n d) and Abbe number ([nu d) is while remaining within the desired range, easy to perform the production of a preform or an optical element according to a high polishing acid resistance, to obtain a stable optical glass Can be.
 加えて、本発明の光学ガラスは、比重が小さいことで、光学素子や光学機器の軽量化に寄与することができる。 In addition, the optical glass of the present invention can contribute to weight reduction of an optical element and an optical device due to its low specific gravity.
 以下、本発明の光学ガラスの実施形態について詳細に説明する。本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所について、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。 Hereinafter, embodiments of the optical glass of the present invention will be described in detail. The present invention is not limited to the following embodiments at all, and can be implemented with appropriate modifications within the scope of the present invention. In addition, although the description may be omitted as appropriate for portions where the description is duplicated, the purpose of the invention is not limited.
[ガラス成分]
 本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算組成の全質量に対する質量%で表示されるものとする。ここで、「酸化物換算組成」は、本発明のガラス構成成分の原料として使用される酸化物、複合塩、金属弗化物等が熔融時に全て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物の総質量を100質量%として、ガラス中に含有される各成分を表記した組成である。
[Glass component]
The composition range of each component constituting the optical glass of the present invention will be described below. In the present specification, unless otherwise specified, the content of each component is expressed in terms of% by mass with respect to the total mass of the oxide-converted composition. Here, the `` oxide-equivalent composition '' refers to an oxide, a composite salt, a metal fluoride, and the like used as a raw material of the glass component of the present invention, when it is assumed that all are decomposed at the time of melting and change to an oxide. The composition is a composition in which each component contained in the glass is described, with the total mass of the generated oxide being 100% by mass.
<必須成分、任意成分について>
 SiO成分は、ガラス形成酸化物として必須の成分である。特に、SiO成分を0%超含有することで、ガラスの化学的耐久性、特に耐酸性を向上でき、また、ガラスの安定性を高めて量産に耐えるガラスを得易くする成分である。また、熔融ガラスの粘度を高め、ガラスの着色を低減することができる。従って、SiO成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは3.0%超、さらに好ましくは5.0%超、さらに好ましくは7.0%超、さらに好ましくは10.0%超とする。
 他方で、SiO成分の含有量を35.0%以下にすることで、ガラス転移点の上昇を抑えられ、且つ屈折率の低下を抑えられる。従って、SiO成分の含有量は、好ましくは35.0%以下、より好ましくは30.0%未満、さらに好ましくは27.0%未満、さらに好ましくは24.0%未満、さらに好ましくは21.0%未満、さらに好ましくは18.0%未満とする。
<About essential and optional components>
The SiO 2 component is an essential component as a glass-forming oxide. In particular, by containing more than 0% of the SiO 2 component, it is a component that can improve the chemical durability of the glass, especially the acid resistance, and also enhances the stability of the glass to make it easier to obtain a glass that can withstand mass production. Further, the viscosity of the molten glass can be increased, and the coloring of the glass can be reduced. Therefore, the content of the SiO 2 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 3.0%, still more preferably more than 5.0%, and even more preferably 7.0%. More than, more preferably more than 10.0%.
On the other hand, by setting the content of the SiO 2 component to 35.0% or less, an increase in the glass transition point can be suppressed and a decrease in the refractive index can be suppressed. Therefore, the content of the SiO 2 component is preferably 35.0% or less, more preferably less than 30.0%, further preferably less than 27.0%, further preferably less than 24.0%, and still more preferably 21.0%. Less than 0%, more preferably less than 18.0%.
 B成分は、ガラス形成酸化物として必須の成分である。特に、B成分を0%超含有することで、ガラスの安定性を高めて耐失透性を高め、且つガラスのアッベ数を高めることができる。従って、B成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは4.0%超、さらに好ましくは5.0%超、さらに好ましくは7.0%超、さらに好ましくは10.0%超とする。
 他方で、B成分の含有量を35.0%以下にすることで、より大きな屈折率を得易くでき、且つ化学的耐久性の悪化、特に耐酸性の悪化を抑えられる。従って、B成分の含有量は、好ましくは35.0%以下、より好ましくは30.0%未満、さらに好ましくは27.0%未満、さらに好ましくは25.0%未満、さらに好ましくは20.0%未満、さらに好ましくは18.0%未満、さらに好ましくは15.0%未満とする。
The B 2 O 3 component is an essential component as a glass-forming oxide. In particular, by containing more than 0% of the B 2 O 3 component, the stability of the glass can be increased, the devitrification resistance can be increased, and the Abbe number of the glass can be increased. Therefore, the content of the B 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, still more preferably more than 4.0%, still more preferably more than 5.0%, and even more preferably 7. More than 0%, more preferably more than 10.0%.
On the other hand, by setting the content of the B 2 O 3 component to 35.0% or less, a higher refractive index can be easily obtained, and deterioration of chemical durability, particularly deterioration of acid resistance can be suppressed. Therefore, the content of the B 2 O 3 component is preferably 35.0% or less, more preferably less than 30.0%, further preferably less than 27.0%, further preferably less than 25.0%, and still more preferably. It is less than 20.0%, more preferably less than 18.0%, and still more preferably less than 15.0%.
 La成分は、ガラスの屈折率及びアッベ数を高める必須成分である。また、希土類の中では比較的安価なため、ガラスの材料コストを低減することができる。従って、La成分の含有量は、好ましくは20.0%超、より好ましくは25.0%超、さらに好ましくは28.0%超、さらに好ましくは30.0%超、さらに好ましくは35.0%超、さらに好ましくは37.0%超、さらに好ましくは40.0%超とする。
 他方で、La成分の含有量を65.0%以下にすることで、ガラスの安定性を高めることで失透を低減できる。また、ガラス原料の熔解性を高められる。従って、La成分の含有量は、好ましくは65.0%以下、より好ましくは60.0%未満、さらに好ましくは58.0%未満、さらに好ましくは55.0%未満、さらに好ましくは53.0%未満、さらに好ましくは50.0%未満とする。
The La 2 O 3 component is an essential component for increasing the refractive index and Abbe number of glass. Moreover, since the rare earth is relatively inexpensive, the material cost of the glass can be reduced. Therefore, the content of the La 2 O 3 component is preferably more than 20.0%, more preferably more than 25.0%, furthermore preferably more than 28.0%, still more preferably more than 30.0%, and still more preferably. The content is more than 35.0%, more preferably more than 37.0%, further preferably more than 40.0%.
On the other hand, by setting the content of the La 2 O 3 component to 65.0% or less, destabilization can be reduced by increasing the stability of the glass. Further, the melting property of the glass raw material can be improved. Therefore, the content of the La 2 O 3 component is preferably at most 65.0%, more preferably less than 60.0%, further preferably less than 58.0%, further preferably less than 55.0%, further preferably less than 55.0%. It is less than 53.0%, more preferably less than 50.0%.
 Al成分は、ガラスの化学的耐久性、特に耐酸性を向上でき、且つガラスの耐失透性を向上できる必須成分である。従って、Al成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは2.0%超、さらに好ましくは3.0%超、さらに好ましくは5.0%超とする。
 他方で、Al成分の含有量を30.0%以下にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Al成分の含有量は、それぞれ好ましくは30.0%以下、より好ましくは25.0%未満、さらに好ましくは20.0%未満、さらに好ましくは15.0%未満、さらに好ましくは13.0%未満とする。
The Al 2 O 3 component is an essential component that can improve the chemical durability of the glass, especially the acid resistance, and the devitrification resistance of the glass. Therefore, the content of the Al 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, further preferably more than 2.0%, further preferably more than 3.0%, and still more preferably 5. More than 0%.
On the other hand, by setting the content of the Al 2 O 3 component to 30.0% or less, the liquidus temperature of the glass can be lowered and the devitrification resistance can be increased. Therefore, the content of the Al 2 O 3 component is preferably 30.0% or less, more preferably less than 25.0%, further preferably less than 20.0%, further preferably less than 15.0%, and still more preferably. Is less than 13.0%.
 Y成分は、0%超含有する場合に、高屈折率及び高アッベ数を維持しながらも、ガラスの材料コストを抑えられ、且つ、ガラスの比重を低減できる任意成分である。従って、Y成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは5.0%超、さらに好ましくは8.0%超、さらに好ましくは10.0%超としてもよい。
 他方で、Y成分の含有量を25.0%未満にすることで、ガラスの屈折率の低下を抑えられ、且つガラスの安定性を高められる。また、ガラス原料の熔解性の悪化を抑えられる。従って、Y成分の含有量は、好ましくは25.0%未満、より好ましくは20.0%未満、さらに好ましくは18.0%未満、さらに好ましくは16.0%未満とする。
The Y 2 O 3 component is an optional component that can suppress the material cost of the glass and reduce the specific gravity of the glass while maintaining a high refractive index and a high Abbe number when containing more than 0%. Therefore, the content of the Y 2 O 3 component is preferably more than 0%, more preferably more than 1.0%, further preferably more than 5.0%, further preferably more than 8.0%, and still more preferably 10. It may be more than 0%.
On the other hand, when the content of the Y 2 O 3 component is less than 25.0%, a decrease in the refractive index of the glass can be suppressed, and the stability of the glass can be increased. Further, the deterioration of the melting property of the glass raw material can be suppressed. Therefore, the content of the Y 2 O 3 component is preferably less than 25.0%, more preferably less than 20.0%, further preferably less than 18.0%, and still more preferably less than 16.0%.
 Gd成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められる任意成分である。
 しかしながら、Gd成分は原料価格が高く、その含有量が多いと生産コストが上昇し、且つ、ガラスの比重が増大する。従って、Gd成分の含有量は、好ましくは40.0%未満、より好ましくは30.0%未満、さらに好ましくは20.0%未満、さらに好ましくは10.0%未満とする。
The Gd 2 O 3 component is an optional component that can increase the refractive index and Abbe number of glass when containing more than 0%.
However, the raw material price of the Gd 2 O 3 component is high, and if the content is high, the production cost increases and the specific gravity of the glass increases. Therefore, the content of the Gd 2 O 3 component is preferably less than 40.0%, more preferably less than 30.0%, further preferably less than 20.0%, and still more preferably less than 10.0%.
 Yb成分及びLu成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められる任意成分である。
 しかしながら、Yb成分及びLu成分は原料価格が高く、その含有量が多いと生産コストが上昇し、且つ、ガラスの比重が増大する。従って、Yb成分及びLu成分の含有量は、それぞれ好ましくは10.0%未満、より好ましくは7.0%未満、さらに好ましくは4.0%未満、さらに好ましくは1.0%未満とする。特に材料コストを低減させる観点では、これらの成分を含有しないことが最も好ましい。
The Yb 2 O 3 component and the Lu 2 O 3 component are optional components that can increase the refractive index and Abbe number of the glass when containing more than 0%.
However, the Yb 2 O 3 component and the Lu 2 O 3 component have a high raw material price, and if the content is large, the production cost increases and the specific gravity of the glass increases. Therefore, the content of each of the Yb 2 O 3 component and the Lu 2 O 3 component is preferably less than 10.0%, more preferably less than 7.0%, further preferably less than 4.0%, and still more preferably 1. Less than 0%. In particular, from the viewpoint of reducing material costs, it is most preferable not to contain these components.
 MgO成分、CaO成分、SrO成分及びBaO成分は、0%超含有する場合に、ガラスの屈折率や熔融性、耐失透性を調整できる任意成分である。
 他方で、MgO成分、CaO成分、SrO成分及びBaO成分の含有量をそれぞれ10.0%未満にすることで、屈折率の低下を抑えることができ、且つこれらの成分の過剰な含有による失透を低減できる。従って、MgO成分、CaO成分、SrO成分及びBaO成分の含有量は、それぞれ好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%以下、さらに好ましくは1.0%未満とする。特に屈折率の高いガラスを得る観点では、これらの成分を含有しないことが最も好ましい。
The MgO component, the CaO component, the SrO component and the BaO component are optional components that can adjust the refractive index, melting property, and devitrification resistance of the glass when containing more than 0%.
On the other hand, when the content of each of the MgO component, CaO component, SrO component and BaO component is less than 10.0%, a decrease in the refractive index can be suppressed, and devitrification due to excessive content of these components. Can be reduced. Therefore, the content of each of the MgO component, the CaO component, the SrO component, and the BaO component is preferably less than 10.0%, more preferably less than 5.0%, still more preferably 3.0% or less, and further preferably 1. Less than 0%. Particularly, from the viewpoint of obtaining a glass having a high refractive index, it is most preferable not to contain these components.
 LiO成分は、0%超含有する場合に、ガラスの熔融性を改善でき、ガラス転移点を低くできる任意成分である。
 他方で、LiO成分の含有量を5.0%未満にすることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。従って、LiO成分の含有量は、好ましくは5.0%未満、より好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.3%未満とする。
The Li 2 O component is an optional component that can improve the melting property of the glass and lower the glass transition point when it contains more than 0%.
On the other hand, when the content of the Li 2 O component is less than 5.0%, the refractive index of the glass is hardly reduced, and the devitrification of the glass can be reduced. Therefore, the content of the Li 2 O component is preferably less than 5.0%, more preferably less than 3.0%, further preferably less than 1.0%, further preferably less than 0.5%, and still more preferably 0%. 0.3% or less.
 NaO成分及びKO成分は、0%超含有する場合に、ガラスの熔融性を改善でき、ガラス転移点を低くできる任意成分である。
 他方で、NaO成分及びKO成分の含有量をそれぞれ10.0%未満にすることで、ガラスの屈折率を低下し難くし、且つガラスの失透を低減できる。従って、NaO成分及びKO成分の含有量は、それぞれ好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満、さらに好ましくは0.5%未満とする。
The Na 2 O component and the K 2 O component are optional components that can improve the melting property of the glass and lower the glass transition point when containing more than 0%.
On the other hand, when the content of each of the Na 2 O component and the K 2 O component is less than 10.0%, the refractive index of the glass is hardly reduced, and the devitrification of the glass can be reduced. Therefore, the content of each of the Na 2 O component and the K 2 O component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably 1.0%. , More preferably less than 0.5%.
 TiO成分は、ガラスの屈折率を高め、且つガラスの液相温度を低くすることで安定性を高められる任意成分である。また、ガラスの比重を低減させる成分でもある。
 他方で、TiO成分の含有量を15.0%未満にすることで、TiO成分の過剰な含有による失透を低減でき、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。また、これによりアッベ数の低下を抑えられる。従って、TiO成分の含有量は、好ましくは15.0%未満、より好ましくは10.0%未満、さらに好ましくは8.0%未満、さらに好ましくは5.0%以下、さらに好ましくは3.0%以下とする。
The TiO 2 component is an optional component that increases the refractive index of the glass and lowers the liquidus temperature of the glass to increase the stability. It is also a component that reduces the specific gravity of glass.
On the other hand, when the content of the TiO 2 component is less than 15.0%, the devitrification due to the excessive content of the TiO 2 component can be reduced, and the transmittance of the glass to visible light (particularly, a wavelength of 500 nm or less) can be reduced. Can be suppressed. In addition, a decrease in the Abbe number can be suppressed. Therefore, the content of the TiO 2 component is preferably less than 15.0%, more preferably less than 10.0%, further preferably less than 8.0%, still more preferably 5.0% or less, and further preferably 3.0% or less. 0% or less.
 Nb成分は、0%超含有する場合に、ガラスの屈折率を高め、且つガラスの液相温度を低くすることで耐失透性を高められる任意成分である。従って、Nb成分の含有量は、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは2.0%超としてもよい。
 他方で、Nb成分の含有量を15.0%未満にすることで、ガラスの材料コストを抑えられ、アッベ数の低下を抑えられる。また、Nb成分の過剰な含有による失透を低減でき、且つ、ガラスの可視光(特に波長500nm以下)に対する透過率の低下を抑えられる。従って、Nb成分の含有量は、好ましくは15.0%未満、より好ましくは12.0%未満、さらに好ましくは10.0%未満とする。
The Nb 2 O 5 component is an optional component that, when contained more than 0%, can increase the refractive index of the glass and lower the liquidus temperature of the glass to increase the devitrification resistance. Therefore, the content of the Nb 2 O 5 component may be preferably more than 0%, more preferably more than 1.0%, and even more preferably more than 2.0%.
On the other hand, by setting the content of the Nb 2 O 5 component to less than 15.0%, the material cost of the glass can be suppressed, and the decrease in Abbe number can be suppressed. In addition, devitrification due to excessive Nb 2 O 5 content can be reduced, and a decrease in transmittance of glass with respect to visible light (particularly, a wavelength of 500 nm or less) can be suppressed. Therefore, the content of the Nb 2 O 5 component is preferably less than 15.0%, more preferably less than 12.0%, and still more preferably less than 10.0%.
 ZrO成分は、0%超含有する場合に、ガラスの屈折率及びアッベ数を高められ、且つ耐失透性を向上できる任意成分である。従って、ZrO成分の含有量を、好ましくは0%超、より好ましくは1.0%超、さらに好ましくは1.5%超としてもよい。
 他方で、ZrO成分の含有量を15.0%未満にすることで、ZrO成分の過剰な含有による失透を低減できる。従って、ZrO成分の含有量は、好ましくは15.0%未満、より好ましくは12.0%未満、さらに好ましくは10.0%未満、さらに好ましくは7.0%未満とする。
The ZrO 2 component is an optional component that, when contained at more than 0%, can increase the refractive index and Abbe number of the glass and improve the devitrification resistance. Therefore, the content of the ZrO 2 component may be preferably more than 0%, more preferably more than 1.0%, and still more preferably more than 1.5%.
On the other hand, when the content of the ZrO 2 component is less than 15.0%, devitrification due to excessive content of the ZrO 2 component can be reduced. Therefore, the content of the ZrO 2 component is preferably less than 15.0%, more preferably less than 12.0%, further preferably less than 10.0%, and still more preferably less than 7.0%.
 Ta成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を高められる任意成分である。
 しかしながら、Ta成分は原料価格が高く、その含有量が多いと生産コストが上昇する。また、Ta成分の含有量を10.0%未満にすることで、原料の熔解温度が低くなり、原料の熔解に要するエネルギーが低減されるため、光学ガラスの製造コストも低減できる。従って、Ta成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。特に材料コストを低減させる観点では、Ta成分を含有しないことが最も好ましい。
The Ta 2 O 5 component is an optional component that, when contained in more than 0%, can increase the refractive index of the glass and increase the devitrification resistance.
However, the Ta 2 O 5 component has a high raw material price, and a high content thereof increases the production cost. Further, by setting the content of the Ta 2 O 5 component to less than 10.0%, the melting temperature of the raw material is lowered, and the energy required for melting the raw material is reduced, so that the production cost of the optical glass can be reduced. Therefore, the content of the Ta 2 O 5 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%. Particularly, from the viewpoint of reducing the material cost, it is most preferable not to contain the Ta 2 O 5 component.
 WO成分は、0%超含有する場合に、他の高屈折率成分によるガラスの着色を低減しながら、屈折率を高め、ガラス転移点を低くでき、且つ耐失透性を高められる任意成分である。従って、WO成分の含有量は、好ましくは0%超、より好ましくは0.3%超、さらに好ましくは0.5%超としてもよい。
 他方で、WO成分の含有量を10.0%未満にすることで、ガラスの材料コストを抑えられ、アッベ数の低下を抑えられる。また、WO成分によるガラスの着色を低減して可視光透過率を高められる。従って、WO成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
When the WO 3 component contains more than 0%, an optional component that can increase the refractive index, lower the glass transition point, and increase the devitrification resistance while reducing coloring of the glass due to other high refractive index components. It is. Therefore, the content of WO 3 ingredient is preferably 0 percent, more preferably from 0.3%, even more preferably may be 0.5% greater.
On the other hand, by the content of WO 3 components below 10.0%, it suppressed the material cost of the glass, suppressing a decrease in the Abbe number. Also, it increased visible light transmittance to reduce the coloration of the glass due WO 3 components. Therefore, the content of WO 3 component is preferably less than 10.0%, more preferably less than 5.0%, more preferably less than 3.0%, more preferably less than 1.0%.
 ZnO成分は、0%超含有する場合に、ガラスの安定性を高められ、着色を低減できる任意成分である。また、ガラス転移点を低くでき、化学的耐久性を改善できる成分でもある。
 他方で、ZnO成分の含有量を30.0%未満にすることで、ガラスの屈折率の低下を抑えられ、且つ、過剰な粘性の低下による失透を低減できる。従って、ZnO成分の含有量は、好ましくは30.0%未満、より好ましくは25.0%未満、さらに好ましくは22.0%未満、さらに好ましくは20.0%未満、さらに好ましくは15.0%未満、さらに好ましくは10.0%未満とする。
The ZnO component is an optional component that can enhance the stability of the glass and reduce the coloring when contained in an amount exceeding 0%. It is also a component that can lower the glass transition point and improve chemical durability.
On the other hand, when the content of the ZnO component is less than 30.0%, a decrease in the refractive index of the glass can be suppressed, and devitrification due to an excessive decrease in the viscosity can be reduced. Therefore, the content of the ZnO component is preferably less than 30.0%, more preferably less than 25.0%, further preferably less than 22.0%, further preferably less than 20.0%, and still more preferably 15.0%. %, More preferably less than 10.0%.
 P成分は、ガラス形成成分として作用することができ、0%超含有する場合に、ガラスの液相温度を下げて耐失透性を高められる任意成分である。
 他方で、P成分の含有量を10.0%未満にすることで、ガラスの化学的耐久性、特に耐水性の低下を抑えられる。従って、P成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The P 2 O 5 component is an optional component that can act as a glass-forming component and, when contained in more than 0%, can lower the liquidus temperature of the glass and increase the devitrification resistance.
On the other hand, by reducing the content of the P 2 O 5 component to less than 10.0%, a decrease in chemical durability, particularly water resistance, of the glass can be suppressed. Therefore, the content of the P 2 O 5 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
 GeO成分は、0%超含有する場合に、ガラスの屈折率を高められ、且つ耐失透性を向上できる任意成分である。
 しかしながら、GeOは原料価格が高く、その含有量が多いと生産コストが上昇する。従って、GeO成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。特に、材料コストを低減させる観点では、GeO成分を含有しなくてもよい。
The GeO 2 component is an optional component that can increase the refractive index of the glass and improve the devitrification resistance when contained more than 0%.
However, GeO 2 has a high raw material price, and a high content thereof increases production costs. Therefore, the content of the GeO 2 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%. In particular, from the viewpoint of reducing material costs, it is not necessary to contain the GeO 2 component.
 Ga成分は、0%超含有する場合に、ガラスの化学的耐久性を向上でき、且つガラスの耐失透性を向上できる任意成分である。
 他方で、Ga成分の含有量を10.0%未満にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Ga成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The Ga 2 O 3 component is an optional component that can improve the chemical durability of the glass and improve the devitrification resistance of the glass when containing more than 0%.
On the other hand, when the content of the Ga 2 O 3 component is less than 10.0%, the liquidus temperature of the glass can be lowered and the devitrification resistance can be increased. Therefore, the content of the Ga 2 O 3 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
 Bi成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
 他方で、Bi成分の含有量を10.0%未満にすることで、ガラスの液相温度を下げて耐失透性を高められる。従って、Bi成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The Bi 2 O 3 component is an optional component that can increase the refractive index and lower the glass transition point when containing more than 0%.
On the other hand, by setting the content of the Bi 2 O 3 component to less than 10.0%, the liquidus temperature of the glass can be lowered and the devitrification resistance can be increased. Therefore, the content of the Bi 2 O 3 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
 TeO成分は、0%超含有する場合に、屈折率を高められ、且つガラス転移点を下げられる任意成分である。
 他方で、TeOは白金製の坩堝や、熔融ガラスと接する部分が白金で形成されている熔融槽でガラス原料を熔融する際、白金と合金化しうる問題がある。従って、TeO成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The TeO 2 component is an optional component that can increase the refractive index and lower the glass transition point when containing more than 0%.
On the other hand, there is a problem that TeO 2 can be alloyed with platinum when melting a glass raw material in a platinum crucible or a melting tank in which a portion in contact with the molten glass is formed of platinum. Therefore, the content of the TeO 2 component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
 SnO成分は、0%超含有する場合に、熔融ガラスの酸化を低減して清澄し、且つガラスの可視光透過率を高められる任意成分である。
 他方で、SnO成分の含有量を3.0%未満にすることで、熔融ガラスの還元によるガラスの着色や、ガラスの失透を低減できる。また、SnO成分と熔解設備(特にPt等の貴金属)の合金化が低減されるため、熔解設備の長寿命化を図れる。従って、SnO成分の含有量は、好ましくは3.0%未満、より好ましくは1.0%未満、さらに好ましくは0.5%未満、さらに好ましくは0.1%未満とする。
The SnO 2 component is an optional component that, when contained in more than 0%, can reduce the oxidization of the molten glass to clarify it and increase the visible light transmittance of the glass.
On the other hand, when the content of the SnO 2 component is less than 3.0%, coloring of the glass due to reduction of the molten glass and devitrification of the glass can be reduced. Further, since the alloying of the SnO 2 component and the melting equipment (particularly, a noble metal such as Pt) is reduced, the life of the melting equipment can be extended. Therefore, the content of the SnO 2 component is preferably less than 3.0%, more preferably less than 1.0%, further preferably less than 0.5%, and still more preferably less than 0.1%.
 Sb成分は、0%超含有する場合に、熔融ガラスを脱泡できる任意成分である。
 他方で、Sb量が多すぎると、可視光領域の短波長領域における透過率が悪くなる。従って、Sb成分の含有量は、好ましくは1.0%未満、より好ましくは0.5%未満、さらに好ましくは0.3%未満とする。
The Sb 2 O 3 component is an optional component capable of defoaming the molten glass when containing more than 0%.
On the other hand, if the amount of Sb 2 O 3 is too large, the transmittance in the short wavelength region of the visible light region becomes poor. Therefore, the content of the Sb 2 O 3 component is preferably less than 1.0%, more preferably less than 0.5%, and still more preferably less than 0.3%.
 なお、ガラスを清澄し脱泡する成分は、上記のSb成分に限定されるものではなく、ガラス製造の分野における公知の清澄剤、脱泡剤或いはそれらの組み合わせを用いることができる。 The component for clarifying and defoaming the glass is not limited to the above-mentioned Sb 2 O 3 component, and a known fining agent, defoaming agent or a combination thereof in the field of glass production can be used.
 F成分は、0%超含有する場合に、ガラスのアッベ数を高め、ガラス転移点を低くし、且つ耐失透性を向上できる任意成分である。
 しかし、F成分の含有量、すなわち上述した各金属元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての合計量が10.0%を超えると、F成分の揮発量が多くなるため、安定した光学恒数が得られ難くなり、均質なガラスが得られ難くなる。
 従って、F成分の含有量は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%未満、さらに好ましくは1.0%未満とする。
The F component is an optional component that, when contained at more than 0%, can increase the Abbe number of the glass, lower the glass transition point, and improve the devitrification resistance.
However, when the content of the F component, that is, the total amount of the fluorides substituted with part or all of one or more oxides of the above-described metal elements as F exceeds 10.0%, Since the volatilization amount of the component is large, it is difficult to obtain a stable optical constant, and it is difficult to obtain a homogeneous glass.
Therefore, the content of the F component is preferably less than 10.0%, more preferably less than 5.0%, further preferably less than 3.0%, and still more preferably less than 1.0%.
 B成分の含有量に対するSiO成分の含有量の比率(質量比)は、0.15以上10.00以下が好ましい。
 特に、この比率SiO/Bを0.15以上にすることで、ガラスの安定性を高められ、また、ガラスの化学的耐久性、特に耐酸性を向上できる。本願発明のガラスは、このようにB成分の含有量が相対的に少なく、SiO成分の含有量が相対的に多くても、ガラス化させることが可能である。従って、質量比SiO/Bは、好ましくは0.15以上、より好ましくは0.30以上、さらに好ましくは0.50以上、さらに好ましくは0.60以上、さらに好ましくは0.70以上にしてもよい。
 他方で、この比率SiO/Bを10.00以下とすることで、ガラス転移点の上昇を抑えられるため、より低温で成形し易くできる。従って、質量比SiO/Bは、好ましくは10.00以下、より好ましくは7.00以下、さらに好ましくは5.00以下、さらに好ましくは4.65以下とする。
The ratio (mass ratio) of the content of the SiO 2 component to the content of the B 2 O 3 component is preferably from 0.15 to 10.00.
In particular, by setting the ratio SiO 2 / B 2 O 3 to 0.15 or more, the stability of the glass can be enhanced, and the chemical durability, particularly, the acid resistance of the glass can be improved. The glass of the present invention can be vitrified even when the content of the B 2 O 3 component is relatively small and the content of the SiO 2 component is relatively large. Therefore, the mass ratio SiO 2 / B 2 O 3 is preferably at least 0.15, more preferably at least 0.30, further preferably at least 0.50, further preferably at least 0.60, further preferably at least 0.70. The above may be used.
On the other hand, by setting the ratio SiO 2 / B 2 O 3 to 10.00 or less, the rise of the glass transition point can be suppressed, so that molding at a lower temperature can be facilitated. Therefore, the mass ratio SiO 2 / B 2 O 3 is preferably 10.00 or less, more preferably 7.00 or less, further preferably 5.00 or less, and further preferably 4.65 or less.
 B成分及びSiO成分の含有量の和(質量和)は、15.0%以上40.0%以下が好ましい。
 特に、この和を15.0%以上にすることで、ガラスのネットワーク構造が形成されるため、安定なガラスを形成することができる。従って、質量和B+SiOは、好ましくは15.0%以上、より好ましくは18.0%超、さらに好ましくは20.0%以上とする。
 他方で、この和を40.0%以下にすることで、これらの成分の過剰な含有による屈折率の低下を抑えられる。また、ガラスの化学的耐久性、特に耐酸性を向上できる。従って、質量和B+SiOは、好ましくは40.0%以下、より好ましくは38.0%未満、さらに好ましくは35.0%未満、さらに好ましくは32.0%未満、さらに好ましくは30.0%未満とする。
The sum (mass sum) of the contents of the B 2 O 3 component and the SiO 2 component is preferably from 15.0% to 40.0%.
In particular, by setting the sum to 15.0% or more, a glass network structure is formed, so that stable glass can be formed. Therefore, the mass sum B 2 O 3 + SiO 2 is preferably 15.0% or more, more preferably more than 18.0%, and further preferably 20.0% or more.
On the other hand, by making this sum 40.0% or less, a decrease in the refractive index due to excessive inclusion of these components can be suppressed. Further, the chemical durability of the glass, particularly the acid resistance, can be improved. Therefore, the mass sum B 2 O 3 + SiO 2 is preferably 40.0% or less, more preferably less than 38.0%, further preferably less than 35.0%, further preferably less than 32.0%, further preferably less than 32.0%. It is less than 30.0%.
 B成分、SiO成分及びAl成分の含有量の和(質量和)は、15.0%以上50.0%未満が好ましい。
 特に、この和を15.0%以上にすることで、より安定なガラスにすることができる。従って、質量和SiO+B+Alは、好ましくは15.0%以上、より好ましくは18.0%超、さらに好ましくは20.0%超、さらに好ましくは22.0%超、さらに好ましくは25.0%超とする。
 他方で、この和を50.0%未満にすることで、これらの成分の過剰な含有による屈折率の低下を抑えられる。従って、質量和SiO+B+Alは、好ましくは50.0%未満、より好ましくは47.0%未満、さらに好ましくは44.0%未満、さらに好ましくは42.0%未満、さらに好ましくは39.0%未満とする。
The sum (mass sum) of the contents of the B 2 O 3 component, the SiO 2 component, and the Al 2 O 3 component is preferably 15.0% or more and less than 50.0%.
In particular, by making this sum 15.0% or more, more stable glass can be obtained. Therefore, the mass sum SiO 2 + B 2 O 3 + Al 2 O 3 is preferably at least 15.0%, more preferably more than 18.0%, further preferably more than 20.0%, further preferably more than 22.0%. , More preferably more than 25.0%.
On the other hand, when the sum is less than 50.0%, a decrease in the refractive index due to an excessive content of these components can be suppressed. Thus, the mass sum SiO 2 + B 2 O 3 + Al 2 O 3 is preferably less than 50.0%, more preferably less than 47.0%, even more preferably less than 44.0%, even more preferably less than 42.0%. , More preferably less than 39.0%.
 B成分の含有量に対する、SiO成分及びAl成分の含有量の和の比率は、0.30超10.00以下が好ましい。
 特に、この比率を0.30超にすることで、ガラスの化学的耐久性、特に耐酸性を向上できる。従って、質量比(SiO+Al)/Bは、好ましくは0.30超、より好ましくは0.45超、さらに好ましくは0.60超、さらに好ましくは0.90超とする。
 他方で、この比率を10.00以下にすることで、より安定なガラスにすることができる。従って、質量比(SiO+Al)/Bは、好ましくは10.00以下、より好ましくは10.00以下、さらに好ましくは8.00以下、さらに好ましくは6.00以下、さらに好ましくは5.50以下とする。
The ratio of the sum of the content of the SiO 2 component and the content of the Al 2 O 3 component to the content of the B 2 O 3 component is preferably more than 0.30 and 10.00 or less.
In particular, by setting the ratio to be more than 0.30, the chemical durability of the glass, particularly the acid resistance, can be improved. Therefore, the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably more than 0.30, more preferably more than 0.45, still more preferably more than 0.60, and still more preferably more than 0.90. I do.
On the other hand, by setting this ratio to 10.00 or less, more stable glass can be obtained. Therefore, the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably at most 10.00, more preferably at most 10.00, further preferably at most 8.00, further preferably at most 6.00, More preferably, it is set to 5.50 or less.
 Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)の含有量の和(質量和)は、40.0%以上70.0%以下が好ましい。
 特に、この和を40.0%以上にすることで、ガラスの屈折率及びアッベ数が高められるため、所望の屈折率及びアッベ数を有するガラスを得易くすることができる。従って、Ln成分の質量和は、好ましくは40.0%以上、より好ましくは43.0%超、さらに好ましくは45.0%以上、さらに好ましくは47.0%超とする。
 他方で、この和を70.0%以下にすることで、ガラスの液相温度が低くなるため、ガラスの失透を低減できる。従って、Ln成分の質量和は、好ましくは70.0%以下、より好ましくは65.0%未満、より好ましくは64.0%未満、さらに好ましくは63.0%未満とする。
The sum (mass sum) of the contents of Ln 2 O 3 components (where Ln is one or more selected from the group consisting of La, Gd, Y, Yb, and Lu) is 40.0% or more and 70.0% or more. % Or less is preferable.
In particular, by setting the sum to 40.0% or more, the refractive index and Abbe number of the glass are increased, so that glass having desired refractive index and Abbe number can be easily obtained. Therefore, the mass sum of the Ln 2 O 3 component is preferably 40.0% or more, more preferably more than 43.0%, still more preferably 45.0% or more, and further preferably more than 47.0%.
On the other hand, by setting the sum to 70.0% or less, the liquidus temperature of the glass is lowered, so that the devitrification of the glass can be reduced. Therefore, the mass sum of the Ln 2 O 3 component is preferably 70.0% or less, more preferably less than 65.0%, more preferably less than 64.0%, and still more preferably less than 63.0%.
 RO成分(式中、RはMg、Ca、Sr、Baからなる群より選択される1種以上)の含有量の和(質量和)は、10.0%未満が好ましい。これにより、屈折率の低下を抑えられ、また、ガラスの安定性を高められる。従って、RO成分の質量和は、好ましくは10.0%未満、より好ましくは5.0%未満、さらに好ましくは3.0%以下、さらに好ましくは1.0%未満とする。 The sum (mass sum) of the content of the RO component (where R is at least one selected from the group consisting of Mg, Ca, Sr, and Ba) is preferably less than 10.0%. Thereby, a decrease in the refractive index can be suppressed, and the stability of the glass can be increased. Therefore, the mass sum of the RO component is preferably less than 10.0%, more preferably less than 5.0%, still more preferably 3.0% or less, and further preferably less than 1.0%.
 RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和(質量和)は、10.0%未満が好ましい。これにより、溶融ガラスの粘性の低下を抑えられ、ガラスの屈折率を低下し難くでき、且つガラスの失透を低減できる。従って、RnO成分の質量和は、好ましくは10.0%未満、より好ましくは6.0%未満、さらに好ましくは4.0%未満、さらに好ましくは2.0%未満、さらに好ましくは1.0%未満とする。 The sum (mass sum) of the contents of Rn 2 O components (where Rn is one or more selected from the group consisting of Li, Na, and K) is preferably less than 10.0%. Thereby, a decrease in the viscosity of the molten glass can be suppressed, the refractive index of the glass can be hardly reduced, and the devitrification of the glass can be reduced. Therefore, the mass sum of the Rn 2 O component is preferably less than 10.0%, more preferably less than 6.0%, further preferably less than 4.0%, further preferably less than 2.0%, further preferably less than 1%. 0.0% or less.
 B成分、SiO成分及びAl成分の含有量の和に対する、Ln成分の和の比率(質量比)は、0.30超10.00以下が好ましい(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)。
 特に、この質量比を0.30超にすることで、ガラスの屈折率及びアッベ数を高められる。従って、質量比Ln/(SiO+B+Al)は、好ましくは0.30超、より好ましくは0.50超、さらに好ましくは0.80超、さらに好ましくは1.00超、さらに好ましくは1.27以上、さらに好ましくは1.35以上、さらに好ましくは1.50以上とする。
 他方で、この質量比を10.00以下にすることで、ガラスの安定性を高めることができる。従って、質量比Ln/(SiO+B+Al)は、好ましくは10.00以下、より好ましくは5.00以下、さらに好ましくは3.00以下、さらに好ましくは2.60以下、さらに好ましくは2.30以下、さらに好ましくは2.10以下とする。
The ratio (mass ratio) of the sum of the Ln 2 O 3 components to the sum of the contents of the B 2 O 3 component, the SiO 2 component and the Al 2 O 3 component is preferably more than 0.30 and 10.00 or less (in the formula). , Ln is at least one selected from the group consisting of La, Gd, Y, and Yb).
In particular, when the mass ratio is more than 0.30, the refractive index and Abbe number of the glass can be increased. Therefore, the mass ratio Ln 2 O 3 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is preferably more than 0.30, more preferably more than 0.50, further preferably more than 0.80, and still more preferably 1 It is more than 0.000, more preferably 1.27 or more, further preferably 1.35 or more, further preferably 1.50 or more.
On the other hand, by setting the mass ratio to 10.00 or less, the stability of the glass can be increased. Therefore, the mass ratio Ln 2 O 3 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is preferably 10.00 or less, more preferably 5.00 or less, further preferably 3.00 or less, and further preferably 2 or less. .60 or less, more preferably 2.30 or less, and still more preferably 2.10 or less.
 RO成分、RnO成分、ZnO成分及びB成分の含有量の和に屈折率ndの数値の10倍を足した値に対する、SiO成分、Al成分及びLn成分の含有量の和の比率(質量比)は、0.80以上6.00以下が好ましい(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上、RnはLi、Na、Kからなる群より選択される1種以上)。
 この質量比を0.80以上6.00以下の範囲内にすることで、ガラスの化学的耐久性、特に耐酸性を向上することができる。従って、質量比(SiO+Al+Ln)/(RO+RnO+ZnO+B+nd×10)は、好ましくは0.80、より好ましくは1.00、さらに好ましくは1.20、さらに好ましくは1.50、さらに好ましくは1.80を下限とし、好ましくは6.00、より好ましくは5.50、さらに好ましくは5.00を上限とする。
SiO 2 component, Al 2 O 3 component and Ln 2 O 3 with respect to a value obtained by adding 10 times the value of the refractive index nd to the sum of the contents of the RO component, Rn 2 O component, ZnO component and B 2 O 3 component The ratio (mass ratio) of the sum of the component contents is preferably 0.80 or more and 6.00 or less (where Ln is at least one selected from the group consisting of La, Gd, Y, and Yb, and R is One or more members selected from the group consisting of Mg, Ca, Sr, Ba and Zn, and Rn one or more members selected from the group consisting of Li, Na and K).
By setting the mass ratio in the range of 0.80 or more and 6.00 or less, the chemical durability, particularly the acid resistance, of the glass can be improved. Accordingly, the mass ratio (SiO 2 + Al 2 O 3 + Ln 2 O 3 ) / (RO + Rn 2 O + ZnO + B 2 O 3 + nd × 10) is preferably 0.80, more preferably 1.00, further preferably 1.20, The lower limit is further preferably 1.50, further preferably 1.80, preferably 6.00, more preferably 5.50, and even more preferably 5.00.
 質量比(Al/Ln)は、0.01以上とすることが好ましい(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)。これにより、耐失透性を向上させる効果が得られ易くなる。従って、(Al/Ln)の質量比は、好ましくは0.01以上、より好ましくは0.03以上、さらに好ましくは0.05以上としてもよい。
 他方で、この質量比を1.00以下にすることで、ガラス原料の熔融性の悪化や、過剰な粘性の上昇を抑えることができる。従って、(Al/Ln)の質量比は、好ましくは1.00以下、より好ましくは0.50以下、さらに好ましくは0.0.30以下、さらに好ましくは0.25以下、さらに好ましくは0.20以下としてもよい。
The mass ratio (Al 2 O 3 / Ln 2 O 3 ) is preferably 0.01 or more (where Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu). . Thereby, the effect of improving the devitrification resistance is easily obtained. Therefore, the mass ratio of (Al 2 O 3 / Ln 2 O 3 ) may be preferably 0.01 or more, more preferably 0.03 or more, and further preferably 0.05 or more.
On the other hand, by setting the mass ratio to 1.00 or less, it is possible to suppress deterioration of the melting property of the glass raw material and excessive rise in viscosity. Therefore, the mass ratio of (Al 2 O 3 / Ln 2 O 3 ) is preferably 1.00 or less, more preferably 0.50 or less, further preferably 0.0.30 or less, and further more preferably 0.25 or less. , And more preferably 0.20 or less.
 質量和(ZrO+TiO+Nb+Ta+WO+Bi+TeO)は、20.0%以下とすることが好ましい。これにより、耐失透性を向上する効果を得易くすることができ、また、アッベ数の過剰な低下を抑えて低分散性能を得易くすることができる。従って、(ZrO+TiO+Nb+Ta+WO+Bi+TeO)の質量和は、好ましくは20.0%以下、より好ましくは18.0%以下、さらに好ましくは15.0%以下、さらに好ましくは5.0%以下、さらに好ましくは4.0%以下とする。 The mass sum (ZrO 2 + TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + TeO 2 ) is preferably 20.0% or less. As a result, the effect of improving the devitrification resistance can be easily obtained, and an excessive decrease in Abbe number can be suppressed to easily obtain low dispersion performance. Therefore, the mass sum of (ZrO 2 + TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + TeO 2 ) is preferably 20.0% or less, more preferably 18.0% or less, and still more preferably 15% or less. 0.0% or less, more preferably 5.0% or less, and still more preferably 4.0% or less.
 質量比(Ln/RO)は、1.0以上とすることが好ましい(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)。これにより、ガラスの化学的耐久性を向上させる効果を得易くすることができる。従って、(Ln/RO)の質量比は、好ましくは1.0以上、より好ましくは3.0以上、さらに好ましくは5.0以上、さらに好ましくは10.0以上、さらに好ましくは20.0以上としてもよい。
 なお、RO成分を含有しない場合であっても、化学的耐久性を向上させる効果は得られるため、(Ln/RO)の質量比の上限値は、無限大としてもよい。
The mass ratio (Ln 2 O 3 / RO) is preferably 1.0 or more (where Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu). Thereby, the effect of improving the chemical durability of the glass can be easily obtained. Therefore, the mass ratio of (Ln 2 O 3 / RO) is preferably 1.0 or more, more preferably 3.0 or more, further preferably 5.0 or more, further preferably 10.0 or more, and further preferably 20 or more. 0.0 or more.
Note that, even when no RO component is contained, the effect of improving the chemical durability can be obtained, and thus the upper limit of the mass ratio of (Ln 2 O 3 / RO) may be infinite.
 質量比(Ln/RnO)は、3.0以上とすることが好ましい。これにより、ガラスの化学的耐久性を向上させる効果を得易くすることができる。従って、(Ln/RnO)の質量比は、好ましくは3.0以上、より好ましくは5.0以上、さらに好ましくは8.0以上、さらに好ましくは10.0以上、さらに好ましくは15.0以上、さらに好ましくは20.0以上、さらに好ましくは25.0以上、最も好ましくは30.0以上としてもよい。
 なお、RnO成分を含有しない場合であっても、化学的耐久性を向上させる効果は得られるため、(Ln/RnO)の質量比の上限値は、無限大としてもよい。
The mass ratio (Ln 2 O 3 / Rn 2 O) is preferably 3.0 or more. Thereby, the effect of improving the chemical durability of the glass can be easily obtained. Therefore, the mass ratio of (Ln 2 O 3 / Rn 2 O) is preferably 3.0 or more, more preferably 5.0 or more, further preferably 8.0 or more, further preferably 10.0 or more, and still more preferably. May be 15.0 or more, more preferably 20.0 or more, further preferably 25.0 or more, and most preferably 30.0 or more.
Note that, even when the Rn 2 O component is not contained, the effect of improving the chemical durability can be obtained, so that the upper limit of the mass ratio of (Ln 2 O 3 / Rn 2 O) is infinite even if it is infinite. Good.
 質量積(BaO×Gd)は、8.0未満とすることが好ましい。この積を小さくすることで、ガラスの比重とコストの双方を抑える効果を得易くすることができる。従って、(BaO×Gd)の質量積は、好ましくは8.0未満、より好ましくは7.0以下、さらに好ましくは6.0以下、さらに好ましくは5.0以下、さらに好ましくは4.0以下、さらに好ましくは3.0以下、さらに好ましくは2.0以下、さらに好ましくは1.0以下、さらに好ましくは0.1以下としてもよい。 The mass product (BaO × Gd 2 O 3 ) is preferably less than 8.0. By reducing this product, the effect of suppressing both the specific gravity of glass and the cost can be easily obtained. Therefore, the mass product of (BaO × Gd 2 O 3 ) is preferably less than 8.0, more preferably 7.0 or less, still more preferably 6.0 or less, still more preferably 5.0 or less, and even more preferably 4 or less. 0.0 or less, more preferably 3.0 or less, further preferably 2.0 or less, further preferably 1.0 or less, and still more preferably 0.1 or less.
 質量和(SiO+Al)は、5.0%以上とすることが好ましい。これにより、ガラスの化学的耐久性を向上させる効果を得易くすることができる。従って、(SiO+Al)の質量和は、好ましくは5.0%以上、より好ましくは7.0%以上、さらに好ましくは9.0%以上、さらに好ましくは10.0%以上としてもよい。
 他方で、この質量和を40.0%以下にすることで、ガラス原料の熔融性の悪化や、過剰な粘性の上昇を抑えることができる。従って(SiO+Al)の質量和は、好ましくは40.0%以下、より好ましくは45.0%以下、より好ましくは35.0%以下、さらに好ましくは30.0%以下としてもよい。
The mass sum (SiO 2 + Al 2 O 3 ) is preferably 5.0% or more. Thereby, the effect of improving the chemical durability of the glass can be easily obtained. Accordingly, the mass sum of (SiO 2 + Al 2 O 3 ) is preferably at least 5.0%, more preferably at least 7.0%, further preferably at least 9.0%, further preferably at least 10.0%. Is also good.
On the other hand, by setting the mass sum to 40.0% or less, it is possible to suppress the deterioration of the melting property of the glass raw material and the excessive increase in viscosity. Accordingly, the mass sum of (SiO 2 + Al 2 O 3 ) is preferably 40.0% or less, more preferably 45.0% or less, more preferably 35.0% or less, and still more preferably 30.0% or less. Good.
<含有すべきでない成分について>
 次に、本発明の光学ガラスに含有すべきでない成分、及び含有することが好ましくない成分について説明する。
<Ingredients that should not be contained>
Next, components that should not be contained in the optical glass of the present invention and components that are not preferably contained will be described.
 他の成分を本願発明のガラスの特性を損なわない範囲で必要に応じ、添加することができる。ただし、Ti、Zr、Nb、W、La、Gd、Y、Yb、Luを除く、Nd、V、Cr、Mn、Fe、Co、Ni、Cu、Ag及びMo等の各遷移金属成分は、それぞれを単独又は複合して少量含有した場合でもガラスが着色し、可視域の特定の波長に吸収を生じる性質があるため、特に可視領域の波長を使用する光学ガラスにおいては、実質的に含まないことが好ましい。 Other components can be added as needed as long as the properties of the glass of the present invention are not impaired. However, each of transition metal components such as Nd, V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo, excluding Ti, Zr, Nb, W, La, Gd, Y, Yb, and Lu, is Even if a small amount is contained singly or in combination, the glass is colored and has a property of causing absorption at a specific wavelength in the visible region. Is preferred.
 また、PbO等の鉛化合物及びAs等の砒素化合物は、環境負荷が高い成分であるため、実質的に含有しないこと、すなわち、不可避な混入を除いて一切含有しないことが望ましい。 Further, lead compounds such as PbO and arsenic compounds such as As 2 O 3 are components that have a high environmental load, and therefore, should not substantially be contained, that is, should not be contained at all except for unavoidable contamination.
 さらに、Th、Cd、Tl、Os、Be、及びSeの各成分は、近年有害な化学物資として使用を控える傾向にあり、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るまで環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には、これらを実質的に含有しないことが好ましい。 Furthermore, each component of Th, Cd, Tl, Os, Be, and Se tends to refrain from using as harmful chemicals in recent years, and is used not only in the glass manufacturing process but also in the processing process and disposal after commercialization. Environmental measures are required to this extent. Therefore, when importance is placed on environmental influences, it is preferable that these are not substantially contained.
 なお、本明細書における「実質的に含有しない」とは、好ましくは含有量を0.1%未満にすることであり、より好ましくは不可避不純物を除いて含有しないことである。ここで、不可避不純物として含まれる成分の含有量は、例えば0.01%未満や0.001%未満であるが、これに限定されない。 「In this specification,“ substantially not contained ”means that the content is preferably less than 0.1%, and more preferably not contained except for inevitable impurities. Here, the content of components contained as inevitable impurities is, for example, less than 0.01% or less than 0.001%, but is not limited thereto.
[製造方法]
 本発明の光学ガラスは、例えば以下のように作製される。すなわち、上記原料を各成分が所定の含有量の範囲内になるように均一に混合し、作製した混合物を白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔解させて攪拌均質化した後、適当な温度に下げてから金型に鋳込み、徐冷することにより作製される。
[Production method]
The optical glass of the present invention is produced, for example, as follows. That is, the above-mentioned raw materials are uniformly mixed so that each component is within a predetermined content range, the prepared mixture is put into a platinum crucible, and is heated at 1100 to 1500 ° C. in an electric furnace according to the melting difficulty of the glass raw materials. The mixture is melted for 2 to 5 hours in the above temperature range, stirred and homogenized, cooled to an appropriate temperature, cast into a mold, and gradually cooled.
[物性]
 本発明の光学ガラスは、高屈折率及び高アッベ数(低分散)を有することが好ましい。特に、本発明の光学ガラスの屈折率(n)は、好ましくは1.70、より好ましくは1.73、さらに好ましくは1.75を下限とする。本発明の光学ガラスの屈折率(n)は、好ましくは2.00、より好ましくは1.95、さらに好ましくは1.90を上限としてもよい。また、本発明の光学ガラスのアッベ数(ν)は、好ましくは35、より好ましくは38、さらに好ましくは40、さらに好ましくは42を下限とする。本発明の光学ガラスのアッベ数(ν)は、好ましくは55、より好ましくは53、さらに好ましくは51を上限とする。
 このような高屈折率を有することで、光学素子の薄型化を図っても大きな光の屈折量を得ることができる。また、このような低分散を有することで、単レンズとして用いたときに光の波長による焦点のずれ(色収差)を小さくできる。そのため、例えば高分散(低いアッベ数)を有する光学素子と組み合わせて光学系を構成した場合に、その光学系の全体として収差を低減させて高い結像特性等を図ることができる。
 このように、本発明の光学ガラスは、光学設計上有用であり、特に光学系を構成したときに、高い結像特性等を図りながらも、光学系の小型化を図ることができ、光学設計の自由度を広げることができる。
[Physical properties]
The optical glass of the present invention preferably has a high refractive index and a high Abbe number (low dispersion). In particular, the lower limit of the refractive index ( nd ) of the optical glass of the present invention is preferably 1.70, more preferably 1.73, and even more preferably 1.75. The upper limit of the refractive index ( nd ) of the optical glass of the present invention is preferably 2.00, more preferably 1.95, and even more preferably 1.90. In addition, the lower limit of the Abbe number (ν d ) of the optical glass of the present invention is preferably 35, more preferably 38, further preferably 40, and further preferably 42. The upper limit of the Abbe number (ν d ) of the optical glass of the present invention is preferably 55, more preferably 53, and even more preferably 51.
By having such a high refractive index, a large amount of light refraction can be obtained even if the optical element is made thin. In addition, by having such a low dispersion, when used as a single lens, a shift in focus (chromatic aberration) due to the wavelength of light can be reduced. Therefore, for example, when an optical system is configured in combination with an optical element having high dispersion (low Abbe number), aberrations can be reduced as a whole of the optical system, and high imaging characteristics can be achieved.
As described above, the optical glass of the present invention is useful in optical design. Particularly, when an optical system is configured, it is possible to reduce the size of the optical system while achieving high imaging characteristics and the like. Can be expanded.
 ここで、本発明の光学ガラスは、屈折率(n)及びアッベ数(ν)が、(-0.01ν+2.15)≦n≦(-0.01ν+2.35)の関係を満たすことが好ましい。本発明で特定される組成のガラスでは、屈折率(n)及びアッベ数(ν)がこの関係を満たすことで、より安定なガラスを得られる。
 従って、本発明の光学ガラスでは、屈折率(n)及びアッベ数(ν)が、n≧(-0.01ν+2.15)の関係を満たすことが好ましく、n≧(-0.01ν+2.20)の関係を満たすことがより好ましく、n≧(-0.01ν+2.22)の関係を満たすことがさらに好ましい。
 一方で、本発明の光学ガラスでは、屈折率(n)及びアッベ数(ν)が、n≦(-0.01ν+2.35)の関係を満たすことが好ましく、n≦(-0.01ν+2.30)の関係を満たすことがより好ましく、n≦(-0.01ν+2.28)の関係を満たすことがさらに好ましい。
Here, the optical glass of the present invention has a refractive index (n d ) and an Abbe number (ν d ) of (−0.01ν d +2.15) ≦ n d ≦ (−0.01ν d +2.35). It is preferable to satisfy the relationship. The glass composition specified in the present invention refractive index (n d) and Abbe number ([nu d) is that satisfies this relationship, it is possible to obtain a relatively stable glass.
Accordingly, in the optical glass of the present invention refractive index (n d) and Abbe number ([nu d) is, it is preferable to satisfy the relation of n d ≧ (-0.01ν d +2.15) , n d ≧ (- it is more preferable to satisfy the relationship 0.01ν d +2.20), it is more preferable to satisfy the relation of n d ≧ (-0.01ν d +2.22) .
On the other hand, in the optical glass of the present invention, the refractive index (n d ) and the Abbe number (ν d ) preferably satisfy the relationship of n d ≦ (−0.01ν d +2.35), and n d ≦ ( It is more preferable to satisfy the relationship of −0.01ν d +2.30), and it is still more preferable to satisfy the relationship of n d ≦ (−0.01ν d +2.28).
 本発明の光学ガラスは、高い耐酸性を有する。特に、JOGIS06-2006に準じたガラスの粉末法による化学的耐久性(耐酸性)は、好ましくはクラス1~4、より好ましくはクラス1~3、さらに好ましくはクラス1~2、最も好ましくはクラス1である。これにより、光学ガラスを研磨加工する際に、酸性の研磨液や洗浄液によるガラスの曇りが低減されるため、研磨加工をより行い易くすることができる。ここで「耐酸性」とは、酸によるガラスの侵食に対する耐久性であり、この耐酸性は、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-2006により測定することができる。また、「粉末法による化学的耐久性(耐酸性)がクラス1~4である」とは、JOGIS06-2006に準じて行った化学的耐久性(耐酸性)が、測定前後の試料の質量の減量率で、1.20質量%未満であることを意味する。なお、化学的耐久性(耐酸性)の「クラス1」は、測定前後の試料の質量の減量率が0.20質量%未満であり、「クラス2」は、測定前後の試料の質量の減量率が0.20質量%以上0.35質量%未満であり、「クラス3」は、測定前後の試料の質量の減量率が0.35質量%以上0.65質量%未満であり、「クラス4」は、測定前後の試料の質量の減量率が0.65質量%以上1.20質量%未満であり、「クラス5」は、測定前後の試料の質量の減量率が1.20質量%以上2.20質量%未満であり、「クラス6」は、測定前後の試料の質量の減量率が2.20質量%以上である。 光学 The optical glass of the present invention has high acid resistance. In particular, the chemical durability (acid resistance) of the glass by the powder method according to JOGIS06-2006 is preferably Class 1-4, more preferably Class 1-3, further preferably Class 1-2, and most preferably Class 1-2. It is one. Accordingly, when the optical glass is polished, the fogging of the glass due to an acidic polishing liquid or a cleaning liquid is reduced, so that the polishing processing can be performed more easily. Here, "acid resistance" refers to the durability against erosion of glass by an acid, and the acid resistance is measured by JOGIS06-2006, "Method for measuring the chemical durability of optical glass" specified by Japan Optical Glass Industrial Association. Can be. Further, “the chemical durability (acid resistance) by powder method is class 1 to class 4” means that the chemical durability (acid resistance) performed according to JOGIS06-2006 is the mass of the sample before and after the measurement. It means that the weight loss is less than 1.20% by mass. In addition, "class 1" of chemical durability (acid resistance) means that the weight loss of the sample before and after the measurement is less than 0.20% by mass, and "class 2" means the weight loss of the sample before and after the measurement. "Class 3" means that the weight loss rate of the sample before and after the measurement is 0.35 mass% or more and less than 0.65 mass%. "4" indicates that the weight loss rate of the sample before and after the measurement is 0.65% by mass or more and less than 1.20% by weight, and "Class 5" indicates that the weight loss rate of the sample before and after the measurement is 1.20% by weight. It is less than 2.20% by mass, and in "Class 6", the weight loss rate of the sample before and after the measurement is 2.20% by mass or more.
 本発明の光学ガラスは、耐失透性が高いこと、より具体的には、低い液相温度を有することが好ましい。すなわち、本発明の光学ガラスの液相温度は、好ましくは1300℃、より好ましくは1280℃、さらに好ましくは1250℃を上限とする。これにより、熔解後のガラスをより低い温度で流出しても、作製されたガラスの結晶化が低減されるため、熔融状態からガラスを形成したときの失透を低減でき、ガラスを用いた光学素子の光学特性への影響を低減できる。また、ガラスの熔解温度を低くしてもガラスを成形できるため、ガラスの成形時に消費するエネルギーを抑えることで、ガラスの製造コストを低減できる。一方、本発明の光学ガラスの液相温度の下限は特に限定しないが、本発明によって得られるガラスの液相温度は、概ね800℃以上、具体的には850℃以上、さらに具体的には900℃以上であることが多い。なお、本明細書中における「液相温度」とは、50mlの容量の白金製坩堝に5ccのカレット状のガラス試料を白金坩堝に入れて1400℃で完全に熔融状態にし、所定の温度まで降温して1時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察したときに、結晶が認められない一番低い温度を表す。ここで降温する際の所定の温度は、1300℃~800℃の間の10℃刻みの温度である。 光学 It is preferable that the optical glass of the present invention has high devitrification resistance, and more specifically, has a low liquidus temperature. That is, the upper limit of the liquidus temperature of the optical glass of the present invention is preferably 1300 ° C, more preferably 1280 ° C, and further preferably 1250 ° C. As a result, even if the melted glass flows out at a lower temperature, the crystallization of the produced glass is reduced, so that the devitrification when the glass is formed from the molten state can be reduced, and the optics using the glass can be reduced. The influence on the optical characteristics of the element can be reduced. Further, since the glass can be formed even when the melting temperature of the glass is lowered, the manufacturing cost of the glass can be reduced by suppressing the energy consumed at the time of forming the glass. On the other hand, the lower limit of the liquidus temperature of the optical glass of the present invention is not particularly limited, but the liquidus temperature of the glass obtained by the present invention is generally 800 ° C or higher, specifically 850 ° C or higher, more specifically 900 ° C or higher. Often above ° C. In this specification, "liquid phase temperature" refers to a 5 ml cullet-shaped glass sample placed in a platinum crucible having a capacity of 50 ml, completely melted at 1400 ° C., and cooled to a predetermined temperature. The temperature was maintained for 1 hour, taken out of the furnace, cooled, and immediately observed, and the lowest temperature at which no crystal was observed when the surface of the glass and the presence or absence of crystals in the glass were observed. Here, the predetermined temperature at the time of cooling is a temperature between 1300 ° C. and 800 ° C. in steps of 10 ° C.
 本発明の光学ガラスの比重は、光学素子や光学機器の軽量化に寄与する観点から、好ましくは5.50、より好ましくは5.00、好ましくは4.80を上限とする。他方で、本発明の光学ガラスの比重は、概ね3.00以上、より詳細には3.50以上、さらに詳細には4.00以上であることが多い。
 本発明の光学ガラスの比重は、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定する。
The upper limit of the specific gravity of the optical glass of the present invention is preferably 5.50, more preferably 5.00, and preferably 4.80, from the viewpoint of reducing the weight of the optical element and the optical device. On the other hand, the specific gravity of the optical glass of the present invention is generally about 3.00 or more, more specifically 3.50 or more, and more specifically 4.00 or more.
The specific gravity of the optical glass of the present invention is measured based on JOGIS05-1975 “Method for measuring specific gravity of optical glass” specified by Japan Optical Glass Industrial Association.
 本発明の光学ガラスは、高い耐酸性と軽量化とを両立させたものであることが好ましい。すなわち、本発明の光学ガラスは、比重をd、粉末法による化学的耐久性(耐酸性)の級数をRAとしたとき、d×RAの値が18.0以下であることが好ましい。このような光学ガラスでは、耐酸性と比重がともに低い値であるため、高い耐酸性と軽量化とを両立させることができ、ひいては研磨加工による加工性の向上と、光学素子や光学機器の軽量化とを両立させることができる。従って、本発明の光学ガラスにおけるd×RAの値は、好ましくは18.0、より好ましくは15.0、さらに好ましくは13.0、さらに好ましくは10.0、さらに好ましくは9.0を上限とする。
 他方で、d×RAの下限については、概ね2.0以上、より詳細には3.0以上、さらに詳細には4.0以上であることが多い。
The optical glass of the present invention preferably has both high acid resistance and light weight. That is, the optical glass of the present invention preferably has a value of d × RA of 18.0 or less, where d is a specific gravity and RA is a series of chemical durability (acid resistance) by a powder method. In such an optical glass, both acid resistance and specific gravity are low values, so that both high acid resistance and weight reduction can be achieved, and further improvement in workability by polishing and reduction in the weight of optical elements and optical devices. Can be compatible. Therefore, the value of d × RA in the optical glass of the present invention is preferably 18.0, more preferably 15.0, further preferably 13.0, further preferably 10.0, and still more preferably 9.0. And
On the other hand, the lower limit of d × RA is often about 2.0 or more, more specifically 3.0 or more, and more specifically 4.0 or more.
[プリフォーム及び光学素子]
 作製された光学ガラスから、例えば研磨加工の手段、又は、リヒートプレス成形や精密プレス成形等のモールドプレス成形の手段を用いて、ガラス成形体を作製することができる。すなわち、光学ガラスに対して研削及び研磨等の機械加工を行ってガラス成形体を作製したり、光学ガラスからモールドプレス成形用のプリフォームを作製し、このプリフォームに対してリヒートプレス成形を行った後で研磨加工を行ってガラス成形体を作製したり、研磨加工を行って作製したプリフォームや、公知の浮上成形等により成形されたプリフォームに対して精密プレス成形を行ってガラス成形体を作製したりすることができる。なお、ガラス成形体を作製する手段は、これらの手段に限定されない。
[Preform and optical element]
From the produced optical glass, a glass molded body can be produced, for example, by means of polishing or by means of mold press molding such as reheat press molding or precision press molding. That is, mechanical processing such as grinding and polishing is performed on the optical glass to produce a glass molded body, or a preform for mold press molding is produced from the optical glass, and reheat press molding is performed on the preform. After that, a glass molded body is manufactured by performing a polishing process, or a preform manufactured by performing a polishing process or a preform formed by a known floating molding or the like is subjected to precision press molding to perform a glass molded body. Can be produced. The means for producing the glass molded body is not limited to these means.
 このように、本発明の光学ガラスは、様々な光学素子及び光学設計に有用である。その中でも特に、本発明の光学ガラスからプリフォームを形成し、このプリフォームを用いてリヒートプレス成形や精密プレス成形等を行い、レンズやプリズム等の光学素子を作製することが好ましい。これにより、径の大きなプリフォームの形成が可能になるため、光学素子の大型化を図りながらも、カメラやプロジェクタ等の光学機器に用いたときに高精細で高精度な結像特性及び投影特性を実現できる。 As described above, the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the optical glass of the present invention and perform reheat press molding or precision press molding using the preform to produce an optical element such as a lens or a prism. This makes it possible to form a preform having a large diameter, so that the size of the optical element can be increased, and when used in an optical device such as a camera or a projector, high-definition and high-precision imaging and projection characteristics can be achieved. Can be realized.
 本発明の実施例(No.1~No.43)及び比較例(No.A)の組成、並びに、これらのガラスの屈折率(n)、アッベ数(ν)、粉末法による化学的耐久性(耐酸性)、液相温度及び比重の結果を表1~表6に示す。なお、以下の実施例はあくまで例示の目的であり、これらの実施例のみ限定されるものではない。 Compositions of Examples (No.1 ~ No.43) of the present invention and comparative examples (No. A), and the refractive index of these glasses (n d), Abbe number ([nu d), a chemical by a powder method Tables 1 to 6 show the results of durability (acid resistance), liquidus temperature and specific gravity. The following embodiments are for illustrative purposes only, and are not limited to these embodiments.
 本発明の実施例及び比較例のガラスは、いずれも各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、メタ燐酸化合物等の通常の光学ガラスに使用される高純度原料を選定し、表に示した各実施例の組成の割合になるように秤量して均一に混合した後、白金坩堝に投入し、ガラス原料の熔解難易度に応じて電気炉で1100~1500℃の温度範囲で2~5時間熔解させた後、攪拌均質化してから金型等に鋳込み、徐冷して作製した。 The glasses of Examples and Comparative Examples of the present invention are used for ordinary optical glasses such as oxides, hydroxides, carbonates, nitrates, fluorides, metaphosphate compounds, etc., each of which is a raw material of each component. High-purity raw materials were selected, weighed so as to have the composition ratios of the respective examples shown in the table, and uniformly mixed. Then, they were put into a platinum crucible, and were placed in an electric furnace according to the melting difficulty of the glass raw materials. After melting in a temperature range of ~ 1500 ° C. for 2 to 5 hours, the mixture was homogenized with stirring, then cast into a mold or the like, and gradually cooled to prepare.
 実施例及び比較例のガラスの屈折率(n)は、JIS B 7071-2:2018に規定されるVブロック法に準じて、ヘリウムランプのd線(587.56nm)に対する測定値で示した。また、アッベ数(ν)は、上記d線の屈折率と、水素ランプのF線(486.13nm)に対する屈折率(n)、C線(656.27nm)に対する屈折率(n)の値を用いて、アッベ数(ν)=[(n-1)/(n-n)]の式から算出した。そして、求められた屈折率(n)及びアッベ数(ν)の値から、関係式n=-a×ν+bにおける、傾きaが0.01のときの切片bを求めた。 The refractive index (n d ) of the glasses of the examples and comparative examples was indicated by a measured value with respect to the d-line (587.56 nm) of a helium lamp according to the V-block method specified in JIS B 7071-2: 2018. . The Abbe number (ν d ) is the refractive index of the d line, the refractive index (n F ) of the hydrogen lamp for the F line (486.13 nm), and the refractive index (n C ) for the C line (656.27 nm). Was calculated from the equation of Abbe number (ν d ) = [(n d −1) / (n F −n C )]. Then, from the value of the refractive index obtained (n d) and Abbe number ([nu d), in relation n d = -a × ν d + b, the slope a is determined intercept b when the 0.01.
 実施例及び比較例のガラスの耐酸性は、日本光学硝子工業会規格「光学ガラスの化学的耐久性の測定方法」JOGIS06-2006に準じて測定した。すなわち、粒度425~600μmに破砕したガラス試料を比重ビンにとり、白金かごの中に入れた。白金かごを0.01N硝酸水溶液の入った石英ガラス製丸底フラスコに入れて、沸騰水浴中で60分間処理した。処理後のガラス試料の減量率(質量%)を算出して、この減量率(質量%)が0.20未満の場合をクラス1、減量率が0.20~0.35未満の場合をクラス2、減量率が0.35~0.65未満の場合をクラス3、減量率が0.65~1.20未満の場合をクラス4、減量率が1.20~2.20未満の場合をクラス5、減量率が2.20以上の場合をクラス6とした。このとき、クラス(級数RA)の数が小さいほど、ガラスの耐酸性が優れていることを意味する。 (4) The acid resistance of the glasses of Examples and Comparative Examples was measured according to JOGIS06-2006, "Method for Measuring Chemical Durability of Optical Glass", Japan Optical Glass Industry Association Standard. That is, a glass sample crushed to a particle size of 425 to 600 μm was placed in a specific gravity bottle and placed in a platinum basket. The platinum basket was placed in a quartz glass round bottom flask containing a 0.01 N nitric acid aqueous solution and treated in a boiling water bath for 60 minutes. Calculate the weight loss rate (% by mass) of the glass sample after the treatment, and class 1 when the weight loss rate is less than 0.20, and class 1 when the weight loss rate is less than 0.20 to 0.35. 2. Class 3 when the weight loss rate is less than 0.35 to 0.65, Class 4 when the weight loss rate is less than 0.65 to 1.20, and Class 4 when the weight loss rate is less than 1.20 to 2.20. Class 5 and the case where the weight loss rate was 2.20 or more were classified as Class 6. At this time, the smaller the number of classes (series RA), the better the acid resistance of the glass.
 実施例及び比較例のガラスの比重dは、日本光学硝子工業会規格JOGIS05-1975「光学ガラスの比重の測定方法」に基づいて測定した。また、測定された比重dの値と、耐酸性の級数RAの値から、これらの積であるd×RAの値を求めた。 比 The specific gravity d of the glasses of the examples and comparative examples was measured based on JOGIS05-1975 “Method for measuring the specific gravity of optical glass” specified by Japan Optical Glass Industrial Association. From the value of the measured specific gravity d and the value of the acid resistance series RA, the value of d × RA, which is the product of these, was determined.
 実施例及び比較例のガラスの液相温度は、50mlの容量の白金製坩堝に5ccのカレット状のガラス試料を白金坩堝に入れて1400℃で完全に熔融状態にし、1350℃~800℃まで10℃刻みで設定したいずれかの温度まで降温して1時間保持し、炉外に取り出して冷却した後直ちにガラス表面及びガラス中の結晶の有無を観察したときに、結晶が認められない一番低い温度を求めた。 The liquidus temperature of the glass of the example and the comparative example is such that a 5 ml cullet-shaped glass sample is put into a platinum crucible having a capacity of 50 ml and completely melted at 1400 ° C. in a platinum crucible. The temperature was lowered to any temperature set in units of ° C, held for 1 hour, taken out of the furnace and cooled, and immediately after observation of the glass surface and the presence or absence of crystals in the glass, the lowest value where no crystals were observed The temperature was determined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表に表されるように、本発明の実施例の光学ガラスは、いずれも屈折率(n)が1.70以上、より詳細には1.71以上であるとともに、この屈折率(n)は2.10以下、より詳細には1.87以下であり、所望の範囲内であった。 As represented in the table, the optical glasses of Examples of the present invention are both refractive index (n d) of 1.70 or more, with more detail is 1.71 or more, the refractive index (n d ) Was 2.10 or less, more specifically 1.87 or less, within the desired range.
 また、本発明の実施例の光学ガラスは、いずれもアッベ数(ν)が35以上、より詳細には38以上であるとともに、このアッベ数(ν)は55以下、より詳細には54以下であり、所望の範囲内であった。 Further, the optical glasses of the examples of the present invention each have an Abbe number (ν d ) of 35 or more, more specifically 38 or more, and an Abbe number (ν d ) of 55 or less, more specifically 54 And within the desired range.
 また、本発明の実施例の光学ガラスは、いずれも粉末法による化学的耐久性(耐酸性)がクラス1~4、より詳細にはクラス1~3であった。一方で、比較例のガラスは、粉末法による化学的耐久性(耐酸性)がクラス5であった。このため、本発明の実施例の光学ガラスは、比較例のガラスに比べて耐酸性に優れていることが明らかになった。 光学 Further, the optical glasses of Examples of the present invention all had chemical durability (acid resistance) according to the powder method of Classes 1 to 4, and more specifically Classes 1 to 3. On the other hand, the glass of the comparative example had a chemical durability (acid resistance) of class 5 by the powder method. For this reason, it became clear that the optical glasses of the examples of the present invention had better acid resistance than the glasses of the comparative examples.
 また、本発明の光学ガラスは、安定なガラスを形成しており、ガラス作製時において失透が起こり難いものであった。このことは、本発明の光学ガラスの液相温度が1300℃以下、より詳細には1250℃以下であることからも推察される。 光学 Further, the optical glass of the present invention formed a stable glass, and devitrification hardly occurred during glass production. This is inferred from the fact that the liquidus temperature of the optical glass of the present invention is 1300 ° C. or lower, more specifically 1250 ° C. or lower.
 また、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が、(-0.01ν+2.15)≦n≦(-0.01ν+2.35)の関係を満たしており、より詳細には(-0.02ν+2.22)≦n≦(-0.02ν+2.28)の関係を満たしていた。なお、本願の実施例のガラスについての屈折率(n)及びアッベ数(ν)の関係は、図1に示されるようになった。 The optical glasses of Examples of the present invention is a refractive index (n d) and Abbe number ([nu d) is, (- 0.01ν d +2.15) ≦ n d ≦ (-0.01ν d +2.35 ) Was satisfied, and more specifically, the relationship (−0.02ν d +2.22) ≦ n d ≦ (−0.02ν d +2.28) was satisfied. The relationship between the refractive index of the glass of the present embodiment (n d) and Abbe number ([nu d) became as shown in Figure 1.
 また、本発明の実施例の光学ガラスは、いずれも比重が5.50以下、より詳細には4.80以下であった。 光学 Further, the optical glasses of the examples of the present invention all had a specific gravity of 5.50 or less, more specifically 4.80 or less.
 そして、本発明の実施例の光学ガラスは、比重をd、粉末法による化学的耐久性(耐酸性)の級数をRAとしたときのd×RAの値が、18.0以下であり、より詳細には4.0以上13.0以下であった。他方で、比較例の光学ガラスは、d×RAの値が19.10であり、研磨加工への好適性と軽量化とを両立できないものであった。 In the optical glass of the example of the present invention, the value of d × RA when the specific gravity is d and the series of chemical durability (acid resistance) by the powder method is RA is 18.0 or less. In detail, it was 4.0 or more and 13.0 or less. On the other hand, the optical glass of the comparative example had a value of d × RA of 19.10, and was not compatible with the suitability for polishing and the reduction in weight.
 従って、本発明の実施例の光学ガラスは、屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、耐酸性が高く、且つ安定であり失透し難いことが明らかになった。そのため、本発明の実施例の光学ガラスは、研磨加工によってプリフォーム材や光学素子の作製を行い易いことが推察される。 Accordingly, the optical glasses of Examples of the present invention, while remaining refractive index (n d) and Abbe number ([nu d) is within the desired range, high acid resistance, and clear that the hard watermarks stable and lost Became. Therefore, it is presumed that the optical glass of the example of the present invention can easily produce a preform material and an optical element by polishing.
 さらに、本発明の実施例の光学ガラスを用いて、ガラスブロックを形成し、このガラスブロックに対して研削及び研磨を行い、レンズ及びプリズムの形状に加工した。その結果、安定に様々なレンズ及びプリズムの形状に加工することができた。 Furthermore, using the optical glass of the example of the present invention, a glass block was formed, and the glass block was ground and polished to form lenses and prisms. As a result, it was possible to stably process into various lens and prism shapes.
 以上、本発明を例示の目的で詳細に説明したが、本実施例はあくまで例示の目的のみであって、本発明の思想及び範囲を逸脱することなく多くの改変を当業者により成し得ることが理解されよう。 As described above, the present invention has been described in detail for the purpose of illustration. However, this example is for the purpose of illustration only, and many modifications can be made by those skilled in the art without departing from the spirit and scope of the present invention. Will be understood.

Claims (10)

  1.  質量%で、
    SiO成分を0%超35.0%以下、
    成分を0%超35.0%以下、
    La成分を20.0%超65.0%以下、
    Al成分を0%超30.0%以下
    含有し、
     1.70以上の屈折率(n)を有し、35以上55以下のアッベ数(ν)を有し、
     粉末法による化学的耐久性(耐酸性)がクラス1~4である光学ガラス。
    In mass%,
    SiO 2 component more than 0% and 35.0% or less,
    B 2 O 3 component more than 0% and 35.0% or less,
    La 2 O 3 component more than 20.0% and 65.0% or less,
    Containing more than 0% and not more than 30.0% of an Al 2 O 3 component,
    Has 1.70 or more of refractive index (n d), has a 35 to 55 following the Abbe number (ν d),
    An optical glass having a chemical durability (acid resistance) of a class 1 to 4 by a powder method.
  2.  質量%で、
    成分 0~25.0%未満、
    Gd成分 0~40.0%未満、
    Yb成分 0~10.0%未満、
    Lu成分 0~10.0%未満、
    MgO成分 0~10.0%未満、
    CaO成分 0~10.0%未満、
    SrO成分 0~10.0%未満、
    BaO成分 0~10.0%未満、
    LiO成分 0~5.0%未満、
    NaO成分 0~10.0%未満、
    O成分 0~10.0%未満、
    TiO成分 0~15.0%未満、
    Nb成分 0~15.0%未満、
    ZrO成分 0~15.0%未満、
    Ta成分 0~10.0%未満、
    WO成分 0~10.0%未満、
    ZnO成分 0~30.0%未満、
    成分 0~10.0%未満、
    GeO成分 0~10.0%未満、
    Ga成分 0~10.0%未満、
    Bi成分 0~10.0%未満、
    TeO成分 0~10.0%未満、
    SnO成分 0~3.0%未満、
    Sb成分 0~1.0%未満
    であり、
     上記各元素の1種又は2種以上の酸化物の一部又は全部と置換した弗化物のFとしての含有量が0~10.0質量%未満である請求項1記載の光学ガラス。
    In mass%,
    Y 2 O 3 component 0 to less than 25.0%,
    Gd 2 O 3 component 0 to less than 40.0%,
    Yb 2 O 3 component 0 to less than 10.0%,
    Lu 2 O 3 component 0 to less than 10.0%,
    MgO component 0 to less than 10.0%,
    CaO component 0 to less than 10.0%,
    SrO component 0 to less than 10.0%,
    BaO component 0 to less than 10.0%,
    Li 2 O component 0 to less than 5.0%,
    Na 2 O component 0 to less than 10.0%,
    K 2 O component 0 to less than 10.0%,
    TiO 2 component 0 to less than 15.0%,
    Nb 2 O 5 component 0 to less than 15.0%,
    ZrO 2 component 0 to less than 15.0%,
    Ta 2 O 5 component 0 to less than 10.0%,
    WO 3 components 0 to less than 10.0%,
    ZnO component 0 to less than 30.0%,
    P 2 O 5 component 0 to less than 10.0%,
    GeO 2 component 0 to less than 10.0%,
    Ga 2 O 3 component 0 to less than 10.0%,
    Bi 2 O 3 component 0 to less than 10.0%,
    TeO 2 component 0 to less than 10.0%,
    SnO 2 component 0 to less than 3.0%,
    Sb 2 O 3 component 0 to less than 1.0%;
    2. The optical glass according to claim 1, wherein the content of F as a F, which is substituted with part or all of one or more kinds of oxides of each element, as F is 0 to less than 10.0% by mass.
  3.  質量和SiO+Bが15.0%以上40.0%以下である請求項1又は2に記載の光学ガラス。 The optical glass according to claim 1, wherein the mass sum SiO 2 + B 2 O 3 is 15.0% or more and 40.0% or less.
  4.  質量和SiO+B+Alが15.0%以上50.0%未満である請求項1から3のいずれかに記載の光学ガラス。 The optical glass according to any one of claims 1 to 3, wherein the mass sum SiO 2 + B 2 O 3 + Al 2 O 3 is 15.0% or more and less than 50.0%.
  5.  質量比(SiO+Al)/Bが0.30超10.00以下である請求項1から4のいずれか記載の光学ガラス。 Mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is 0.30 ultra 10.00 any description of the optical glass of claims 1 to 4, which is.
  6.  質量%で、
     Ln成分(式中、LnはLa、Gd、Y、Yb、Luからなる群より選択される1種以上)の含有量の和が40.0%以上70.0%以下であり、
     RO成分(式中、RはMg、Ca、Sr、Ba、Znからなる群より選択される1種以上)の含有量の和が0~10.0%未満であり、
     RnO成分(式中、RnはLi、Na、Kからなる群より選択される1種以上)の含有量の和が0~10.0%未満である請求項1から5のいずれか記載の光学ガラス。
    In mass%,
    The sum of the contents of Ln 2 O 3 components (where Ln is at least one selected from the group consisting of La, Gd, Y, Yb, and Lu) is 40.0% or more and 70.0% or less;
    A sum of contents of RO components (where R is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn) is 0 to less than 10.0%;
    6. The method according to claim 1, wherein the sum of the contents of Rn 2 O components (where Rn is at least one selected from the group consisting of Li, Na, and K) is 0 to less than 10.0%. Optical glass.
  7.  質量比Ln/(SiO+B+Al)が0.30超10.00以下である請求項1から6のいずれか記載の光学ガラス(式中、LnはLa、Gd、Y、Ybからなる群より選択される1種以上)。 The optical glass according to any one of claims 1 to 6, wherein the mass ratio Ln 2 O 3 / (SiO 2 + B 2 O 3 + Al 2 O 3 ) is more than 0.30 and not more than 10.00. One or more selected from the group consisting of Gd, Y, and Yb).
  8.  請求項1から7のいずれか記載の光学ガラスからなるプリフォーム。 (8) A preform comprising the optical glass according to any one of (1) to (7).
  9.  請求項1から7のいずれか記載の光学ガラスからなる光学素子。 An optical element comprising the optical glass according to any one of claims 1 to 7.
  10.  請求項9に記載の光学素子を備える光学機器。 An optical device comprising the optical element according to claim 9.
PCT/JP2019/025752 2018-07-18 2019-06-27 Optical glass, preform and optical element WO2020017275A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020531208A JP7424978B2 (en) 2018-07-18 2019-06-27 Optical glass, preforms and optical elements
CN201980047359.5A CN112424135A (en) 2018-07-18 2019-06-27 Optical glass, preform, and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-134838 2018-07-18
JP2018134838 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020017275A1 true WO2020017275A1 (en) 2020-01-23

Family

ID=69164063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025752 WO2020017275A1 (en) 2018-07-18 2019-06-27 Optical glass, preform and optical element

Country Status (4)

Country Link
JP (1) JP7424978B2 (en)
CN (1) CN112424135A (en)
TW (1) TWI808214B (en)
WO (1) WO2020017275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026381A (en) * 2018-08-16 2020-02-20 Hoya株式会社 Optical glass, optical element blank, and optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415991A (en) * 2021-07-28 2021-09-21 成都光明光电股份有限公司 Optical glass and optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003720A1 (en) * 2016-06-29 2018-01-04 株式会社 オハラ Optical glass, preform material, and optical element
WO2018105279A1 (en) * 2016-12-07 2018-06-14 株式会社 オハラ Optical glass, preform, and optical element
JP2018108920A (en) * 2016-12-28 2018-07-12 株式会社オハラ Optical glass, preform, and optical element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010126141A1 (en) * 2009-04-30 2010-11-04 株式会社オハラ Optical glass, optical element, and preform for precision press molding
CN104341101A (en) * 2013-07-31 2015-02-11 株式会社小原 Optical glass, preform material and optical element
JP5979723B2 (en) * 2013-07-31 2016-08-31 株式会社オハラ Optical glass and optical element
JP6321312B1 (en) * 2016-07-28 2018-05-09 旭硝子株式会社 Optical glass and optical components
JP6973905B2 (en) * 2016-11-29 2021-12-01 株式会社オハラ Optical glass, preforms and optics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003720A1 (en) * 2016-06-29 2018-01-04 株式会社 オハラ Optical glass, preform material, and optical element
WO2018105279A1 (en) * 2016-12-07 2018-06-14 株式会社 オハラ Optical glass, preform, and optical element
JP2018108920A (en) * 2016-12-28 2018-07-12 株式会社オハラ Optical glass, preform, and optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020026381A (en) * 2018-08-16 2020-02-20 Hoya株式会社 Optical glass, optical element blank, and optical element
JP7305317B2 (en) 2018-08-16 2023-07-10 Hoya株式会社 Optical glasses, optical element blanks and optical elements

Also Published As

Publication number Publication date
TWI808214B (en) 2023-07-11
JP7424978B2 (en) 2024-01-30
TW202010717A (en) 2020-03-16
CN112424135A (en) 2021-02-26
JPWO2020017275A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP5979723B2 (en) Optical glass and optical element
JP6096502B2 (en) Optical glass and optical element
JP7325927B2 (en) Optical glass, preforms and optical elements
JP2019131465A (en) Optical glass and optical element
WO2018066577A1 (en) Optical glass, preform, and optical element
JP6560651B2 (en) Optical glass and optical element
JP6906870B2 (en) Optical glass, preform materials and optical elements
WO2013094619A1 (en) Optical glass and optical element
JP7112856B2 (en) Optical glass, preforms and optical elements
JP7048348B2 (en) Optical glass, preforms and optical elements
JP7224099B2 (en) Optical glass, preforms and optical elements
WO2018003582A1 (en) Optical glass, preform, and optical element
JP2018052764A (en) Optical glass, preform, and optical element
WO2020017275A1 (en) Optical glass, preform and optical element
JP7049192B2 (en) Optical glass, preforms and optical elements
JP2018052763A (en) Optical glass, preform, and optical element
JPWO2019031095A1 (en) Optical glass, optical element and optical equipment
TW201908257A (en) Optical glass, preforms and optical components
WO2020262014A1 (en) Optical glass, preform, and optical element
JP2017171578A (en) Optical glass and optical element
JP2018087109A (en) Optical glass, preform and optical element
JP6033487B2 (en) Optical glass and optical element
JP6033488B1 (en) Optical glass and optical element
JP6165281B2 (en) Optical glass and optical element
WO2018142980A1 (en) Optical glass, preform and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838437

Country of ref document: EP

Kind code of ref document: A1