WO2020017028A1 - Nondestructive inspection device - Google Patents

Nondestructive inspection device Download PDF

Info

Publication number
WO2020017028A1
WO2020017028A1 PCT/JP2018/027299 JP2018027299W WO2020017028A1 WO 2020017028 A1 WO2020017028 A1 WO 2020017028A1 JP 2018027299 W JP2018027299 W JP 2018027299W WO 2020017028 A1 WO2020017028 A1 WO 2020017028A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
light
measured
value
substance
Prior art date
Application number
PCT/JP2018/027299
Other languages
French (fr)
Japanese (ja)
Inventor
木暮一也
Original Assignee
桐生電子開発合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桐生電子開発合同会社 filed Critical 桐生電子開発合同会社
Priority to CN201880095412.4A priority Critical patent/CN112351735B/en
Priority to PCT/JP2018/027299 priority patent/WO2020017028A1/en
Publication of WO2020017028A1 publication Critical patent/WO2020017028A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a nondestructive measuring device for measuring, calculating and displaying a relative change amount of a rise and fall amount and a temporal differential value of a change amount from a time when a substance to be measured is a non-destructive reference.
  • One of the non-destructive means for measurement is a light measurement method such as spectroscopic analysis.
  • One of the indications is a non-invasive blood glucose measurement technique. This is to identify the blood glucose level by the amount of change in physical properties such as light absorbance and polarization, depending on the concentration of the blood glucose level.
  • a plurality of methods based on near-infrared spectroscopy as shown in FIG. 1 have been reported in the past. This method measures the mass (concentration) of a substance to be measured based on the intensity distribution of the spectral spectrum.
  • this analysis method is generally applied under specific conditions, and when applied to a plurality of unspecified samples, there is a very difficult problem. That is, the components other than the substance to be measured differ from individual to individual. It is almost impossible to adapt and use the measurement widely due to physical variation and individual differences.
  • the method based on the spectroscopic analysis is basically a method for measuring the absorbance of light, but the same can be said for other methods using polarized light. After all, if the problems in the case of measuring a substance which changes with time by light with time are determined and sorted out, it will result in the problems of reproducibility and measurement accuracy due to generation of a calibration curve, physical variation and the like. It is difficult to realize a destructible measurement device that measures the amount of a substance that changes with time by light with time.
  • Patent No. 3692751 2003 Application of infrared spectroscopy to noninvasive blood component measurement, IEEJ Trans. EIS. Vol. 127, No. 5, 686-691 (2007). (Shinshu University)
  • the problem to be solved is that, although it is understood that the measured value changes with time due to light, the mass (concentration) of the substance to be measured is measured because the accuracy of the calibration curve and the measurement accuracy are reduced due to physical variation.
  • the mass (concentration) of the substance to be measured is measured because the accuracy of the calibration curve and the measurement accuracy are reduced due to physical variation.
  • the present invention changes the way of thinking about the measurement of a substance by light, does not create a calibration curve, and measures and calculates the relative change and the temporal change of the substance to be measured from a certain time to a certain time.
  • the main feature is a method of using the light emitting portion as an action point for applying pressure to a measurement site, and adjusting the optical axis for measurement in real time to perform measurement.
  • the destructive measuring device of the present invention does not directly measure the amount (concentration) of the substance to be measured, it can perform destructive measurement using light with good reproducibility as an index instead of the mass (concentration) of the substance to be measured. become.
  • non-invasive in measuring blood glucose levels using light.
  • identification is based on light absorbance and diffusion degree.
  • PD Photo Device
  • the degree of diffusion is proportional to the blood glucose concentration, so a Photo Device (hereinafter referred to as PD) is used to measure the amount of light.
  • the sensitivity is Differently, the size is equal to or larger than the light diameter of the light to be used (the size is determined from the range of the assumed diffusion degree).
  • the amount of light detected by the PD is reduced by absorption by blood sugar, and at the same time, is diffused by tissue (diffuser) and blood sugar.
  • the amount of light detected by the PD expands the absorbance by the degree of diffusion, and the amount measured by the PD increases the sensitivity of detecting a change in blood glucose level.
  • the measured value obtained by superimposing the absorbance and the diffusivity is used as a basic detection amount.
  • the absorbance is determined from the detected amount.
  • the temperature of the measurement site is measured and corrected by the temperature value to obtain the final light absorption.
  • Blood sugar is one of blood components, but there are a plurality of substances other than blood sugar that have light absorption properties near a wavelength called near infrared. If you eat a meal, your blood level will rise about 20 to 40 minutes after the meal for a certain period of time, usually as a response change of the human body, and about 2 hours after the meal due to the action of insulin etc., about the same as before the meal It is estimated that only blood glucose and water are the only components that change rapidly in the blood due to this eating action. The reason is that substances other than blood sugar level are components generated from each organ or components generated by reaction, and it is very slow compared to changes in blood sugar level before appearing as changes in blood components It is.
  • a factor in which the absorbance and the diffusivity change in a short time of about 2 hours can be almost identified as a blood glucose level. It is possible to separate blood by measuring the absorbance of a light source at a wavelength different from the absorption spectrum wavelength of blood glucose. In other words, it indicates that the change amount of the blood sugar level can be corrected based on the absorbance sensitivity characteristic due to the moisture and the difference in the blood sugar level absorbance. However, it is necessary that the two light sources be observed coaxially. Originally, a blood glucose level cannot be identified unless a calibration curve based on a large amount of data is created for identification of non-blood glucose.However, a calibration curve is not required for such a change in blood glucose level. become.
  • the present apparatus is basically characterized in that the amount of increase or decrease in blood sugar level is measured. Further, when measuring the amount of increase or decrease in blood sugar level as in this measurement, errors due to individual variations such as skin pigments and skin conditions can be offset, so that measurement accuracy and reproducibility can be improved.
  • FIG. 2 shows a general example of a temporal change of the blood sugar level.
  • the measurement of a blood sugar level performed in a health check or the like is a so-called fasting blood sugar level. Even if the value is measured somewhat high, it is possible to overlook the severity.
  • the response called “hidden diabetes” is also a rapid rise in blood glucose level after eating, and this time differential value can detect this symptom.
  • the optical path length In the case of measurement using light, a change in the optical path length causes an error and a reduction in accuracy. Therefore, the optical path length must be constrained at a fixed position so as not to change, which is extremely inconvenient. Considering convenience, the method of measuring with reflected light is excellent, but if the part to which light is actually applied changes, the subcutaneous tissue at the measurement part may change, With a decrease in In addition, accuracy is also reduced by the light incident state, vibration, and the like. Therefore, as a structure of the measuring device, first, a structure for limiting a part to be measured is adopted. This is, for example, a structure of being sandwiched between ear tabs and fingers (FIG. 6). In this case, the measurement is performed at a substantially constant site. Also, the ear tabs and the area between the fingers may be less susceptible to the change in pigment. In addition, it is known that the absorbance changes when the temperature changes, and it can be expected that a portion that can be sandwiched does not involve a large temperature change
  • the sandwiching structure allows the optical path length to be kept constant, and also allows a constant pressure to be applied to the measurement site, which can suppress changes in blood flow. Become. When measuring by light, the most influential thing is hemoglobin of blood, and a change in this decreases measurement accuracy. In particular, the change in blood flow is large, such as after a meal. Even if the part to be measured is limited to some extent, blood vessels are present in the subcutaneous tissue, and if blood vessels on the optical path are included, accuracy is expected to decrease. Therefore, using a Actuator (same structure as an optical pickup such as a CD or DVD, etc., not shown) to reduce the light beam, provide a mechanism to adjust the irradiation position at the site and to adjust the detection light to the maximum. .
  • a Actuator similar structure as an optical pickup such as a CD or DVD, etc., not shown
  • FIG. 3 is a diagram for explaining measurement by moving the Actuator.
  • the blood glucose level is corrected by a light source that is arranged coaxially with the beam that measures the blood glucose level and has the same optical path and has a different wavelength, and at the same time, corrects the physical variation and correction. Physical variation is possible because it is considered to vary in the same way as variation in wavelength by measuring blood glucose levels.
  • FIG. 4 shows an optical basic configuration.
  • a near-infrared light source (a semiconductor laser diode is used in this configuration) uses a plurality of different wavelengths, and the plurality of light sources are emitted coaxially.
  • a wavelength a light source exhibiting large absorption in Glucose, for example, a light source near 1500 nm (measurement light: 23a), a second wavelength light source (hereinafter, LD2) and a 1300 nm light source (reference light: 23b), a first wavelength light source (hereinafter, LD1) Use Laser light is desirable as the light source. The reason is that the emission wavelength range is very narrow and can be treated as a single wavelength.
  • a light source having a light emission characteristic with a deviation of about 10 nm as a range considered as a single wavelength may be used.
  • the reason for choosing a wavelength around 1300 nm is that, while showing high absorbance for moisture, Glucose is a light source with a wavelength that does not show large absorption, and combining that light source, from the change in the absorbance,
  • the detection amount is corrected by the measurement light as the change amount of the water content and the physical change amount.
  • This correction method may be a method of obtaining a difference or a method of obtaining a ratio.
  • FIG. 4 shows a configuration in which transmitted light is used for a measurement site
  • FIG. 5 shows a configuration for detecting diffuse reflection light. Both configurations are detected in a state where irradiated light passes through the inside of the measurement site.
  • the light from the light sources (23a, 23b) is condensed to a small beam by the lenses (24a, 24b) to become collimation light (14).
  • the reason for narrowing the beam to a small diameter is that it is possible to secure the brightness without using a light source with a large output, to reduce the power consumption and to suppress the cost. This is because it can be avoided when there is a blood vessel (13) .
  • Beam becomes coaxial light by PBS (25a, 25b) etc.
  • two light sources emit light at the same time.
  • FIG. 6 shows the structure, and incorporates the structure of the optical structure shown in FIGS.
  • the light from the light source (14) is guided by the mirror (29) in the housing (27).
  • a configuration in which the light is guided to Actuator Lens by a fiber or the like is also possible (not shown).
  • FIG. 6 shows the configuration of transmitted light, but the same mechanism is used for diffuse reflection, and the optical structure shown in FIG. 5 is incorporated.
  • the converging objective lens (20b) arranged on the PD side in the structure using transmitted light becomes the measured object support component (26).
  • FIG. 7 is a basic electric circuit block diagram. Although FIG. 7 shows a configuration using transmitted light, the same configuration is used in an electric circuit when diffuse reflection light is used.
  • OSC1 (30a) (not shown) is a signal used for measurement, for example, a signal for AC-modulating the optical output at 1 Khz. The measured value is the amplitude at which the signal obtained by absorbing and diffusing the signal by the OSC1 (30a) by the measurement site is detected by the PD (17).
  • OSC2 (30b) switches between light source 1 (23a) (hereinafter LD1) and light source 2 (23b) (hereinafter LD2). When LD1 emits light, LD2 stops, and when LD2 emits light, LD1 stops.
  • the light emission is alternately switched by the light source changeover switch circuit (31) as described above.
  • OSC2 (30b) when the output of OSC2 (30b) is H, LD1 emits light, and when it is L, LD2 emits light.
  • LD1 is the reference light
  • LD2 is the measurement light.
  • the output of the PD (17) (shared with the reference light and the measurement light) is IV-converted (35) and amplified by the synchronous AMP (36).
  • the light source drive circuits 1 and 2 (hereinafter LDD 1 and 2) (32a and 32b) have a high-frequency superimposing function (34) on the laser diode, and in order to avoid instability of laser emission due to reflected light, switch from single mode to multi
  • the optical output is kept constant by an APC circuit (not shown) such as Front Monitor and Back Monitor Diode used in -Mode oscillation.
  • a temperature sensor (34) is arranged to correct for changes due to temperature.
  • the RMS circuit (37) outputs the effective value of the detected signal and inputs it to Servo @ AMP (38, 40).
  • the LD1 Servo AMP (38) calculates and obtains the input amount of LDD1 (32a). If this output is large, it indicates that the amount of light attenuation in the DUT (21) is large. This is the reference value for LD2. This reference value means that the optical power necessary for basically measuring the object under measurement (21) is automatically obtained.
  • the detected amount of LD1 as a reference of the LD2 measurement light is equivalent to correcting the physical displacement of the measured object (21) and the displacement of the water content. Since the physical displacement (systematic variation of the DUT (21)) is considered to have the same attenuation characteristics (does not affect the light absorption characteristics and diffusivity characteristics) for both LD1 and LD2, the amount detected by LD1 is physical. This reflects the amount of displacement and the amount of correction of the absorbance due to moisture that may vary with time.
  • the difference between the output of the circuit (41c) that holds the output of the RMS circuit (37) when the LD2 emits light and the output value of the circuit (41a) that holds the control amount of the LD1 is calculated, and the control of the LD2 is performed.
  • the output of LD2 can be kept constant.
  • the output of the measurement value correction circuit (42) that calculates the difference between the two is finally a measurement value obtained by correcting the physical displacement and the water displacement from the LD2 detection amount.
  • the measurement is performed three times with a time lag. A method of obtaining a final result by these three measurements will be described later.
  • Actuator @ Lens (22) adjusts according to the light emission period (49) of LD1.
  • the difference between the outputs (17s, 17b) of the Side SUB-PDs of the Main @ PD (17) is calculated (43), and it is possible to detect which side the Beam center is on. Accordingly, the center of the intensity of light detected by the PD becomes the center of the PD.
  • the light intensity distribution detection circuit produces an output on the (+) side from the reference voltage, and the Shift Drive circuit (44b) is driven in a direction in which this output becomes smaller.
  • the control output of the reference light by the LD1 is measured a plurality of times using the LD1 emission period (49) before starting the measurement, and the Tilt Drive reference voltage generation circuit (46) is used each time.
  • the Tilt Drive reference voltage generation circuit (46) is used each time.
  • the new Tilt-Drive mechanism (48) and Shift-Drive mechanism (47) provide real-time adjustments to eliminate the influence of the tissue structure of the measurement site and to correct for deviations due to vibration and the like.
  • the configuration of an analog Servo-Loop is shown as an electric circuit, but it is naturally possible to realize the digital circuit by using an MPU (52) or the like.
  • the light emission of LD1 and LD2 is considered to emit light with a waveform (30c) from the oscillator as shown in FIG. 9, but this light emission is considered to be a short pulse light emission (30d), for example, 10 ns or less.
  • This can be realized by performing pulse emission of about 30 ns, and this pulse emission also makes it possible to avoid a rise in the temperature of the measurement site due to light energy. By suppressing the temperature rise, improvement in measurement accuracy can be expected.
  • the safety zone for the human body with respect to the light intensity is determined based on internationally standardized safety standards.
  • the synchronous AMP (36) is also realized by digital signal processing.
  • the control amount of LD1 and LD2 of Servo Loop itself becomes a detection amount corresponding to the absorbance and the diffusion degree as a result.
  • FIG. 9 shows a configuration diagram in that case.
  • the value (36a) at the time of light emission of LD1 (light emission control amount is a predetermined amount) is input to AD several times, and the drive amount of the Tilt drive circuit (45b) is changed so that the detection amount of LD1 is minimized.
  • the signal (35s, 35b) from the Sub-PD is AD-input to the MPU (52) for adjustment by the Shift-Drive mechanism (47) with the optimal drive amount detected and determined as the optimal state of Tilt.
  • calculation operation corresponding to the light intensity distribution detection circuit (43) is performed in the MPU (52) so as to be at the center of Beam, and the Shift ⁇ ⁇ Drive circuit (44b) is driven.
  • This series of Tilt control and Shift control are performed before the measurement by LD1 and LD2.
  • LD1PUON / OFF signal (32d) and LD2ON / OFF signal (32e) drive LD1 and LD2 from MPU (52), but correspond to modulation by OSC1 (30a).
  • the output from the MPU is adjusted by a certain amount in the LD1 emission control amount (32c), and the value input from the AD (36a) becomes a predetermined value (corresponding to the LD1 reference voltage generation circuit (39)).
  • the detection amount is determined so as to be the detection value of LD1.
  • the LD2 emission control amount (32f) is adjusted so that the value input (36a) to the MPU by the AD becomes a constant amount based on the amount detected by the LD1.
  • the LD2 emission control amount (32f) is a detection amount by LD2.
  • the detection amount of LD1 is subtracted from the detection amount of LD2 by the MPU (52), and corrected by the signal (33a) from the temperature correction sensor (33).
  • the correction amount is based on the value obtained from the absorbance characteristics with temperature.
  • (Determined experimentally) is the final measured value. With this configuration, it is assumed that the measured blood sugar level is in the range of 50 mg / dl to 200 mg / dl.
  • SMBG actually used for the treatment of diabetes requires a range of about 0 mg / dl to 900 mg / dl. If this Range is assumed, a considerably large Laser output may be required, but by reducing the Range, low power consumption and Cost Down can be realized.
  • the pre-meal operation switch (54a) is operated to measure the pre-meal value.
  • the measured value at this time is (t1, S1).
  • the post-meal operation switch (54b) is operated to perform measurement.
  • the measured value at this time is (t2, S2).
  • the after-meal operation switch is operated to perform measurement.
  • the measured value at this time is (t3, S3).
  • This increased blood sugar level is called a blood sugar spike, and the fact that the value of this spike is large is also called so-called hidden diabetes. If the current time derivative is large, it is estimated that there is a large blood glucose spike.
  • the measurement is equivalent to the measurement of the blood glucose spike even if the measurement is not performed continuously. Also.
  • the difference between the measured values and the rate of change are completed and calculated within a short period of time, so that the deviation from the accuracy is canceled out, and the measurement accuracy and reproducibility are improved.
  • Graph in FIG. 10 is a graph for obtaining a final judgment value.
  • the horizontal axis represents the value of ds (56), and the vertical axis represents the final measurement result dds (57).
  • a plurality of curves in this space correspond to dts (58).
  • the ds, dts, and dds characteristics indicate that dds (57) increases when the dts (57) value is high even when the ds (56) value is low.
  • Which dts (58) curve is selected is selected, for example, by a value obtained by normalizing the dts value to about 20. (How to draw this dts curve is determined as a product specification based on medical test standards for actual blood glucose levels.)
  • the measured value may be abnormal or may be an abnormal measurement result.
  • the dds (57) value is displayed on the display (53) and flashes at the same time, indicating that the measured value result needs attention.
  • glucose metabolism is abnormal (severe)
  • the ds value may be small.
  • the dts value can be small. This state corresponds to a case where the blood sugar level is extremely high before the meal and the blood sugar level does not rise further by the meal.
  • the setting of the area shown in (59) assumes breakfast, lunch, and dinner, and prepares three types of graphs, and selects which graph is selected depending on the time zone of the measurement. For example, if the clock (55) is in the morning, it is possible that a considerable amount of time has passed since the previous day's meal, and in this case, the blood sugar level may have dropped accordingly.
  • Use the Graph that works from time to time.
  • this measurement device does not display a numerical value.
  • Use Color Gradation instead. For example, “blue” is set based on the case where the dds value is 0, and the numerical value vs. Color is mapped (60) so that the maximum value is set to “red”, for example.
  • It can be used as an index for the purpose of new health management instead of blood sugar level, and can be applied as a diagnostic device for early detection of so-called hidden diabetes, which has not been able to measure and detect fasting blood sugar level until now.
  • a method of measuring the state of change for example, by measuring a change in sugars generated by photosynthesis of a plant, the method can be applied to an agricultural control device.

Abstract

[Problem] To develop a device that uses light to accurately measure the amount of temporal increase/decrease and the amount of change over time of a substance which changes temporally, and that displays the results thereof. [Solution] The present invention irradiates a sample including a substance to be measured with light from at least two light sources, and measures fluctuations relative to components other than the substance to be measured with light from at least one light source and measures fluctuations of the substance to be measured with light for measuring the substance to be measured. In order to accurately measure the amount of change of the substance to be measured, the fluctuation amount of the components other than the substance to be measured is set as a correction value. Measurement is conducted three times at certain intervals therebetween, and the difference between the first measurement value and the third measurement value is calculated, a temporal differential value of the difference between the first and second measurement values is computed, and a final result is found using the difference value between the first and third measurement values and the temporal differential value between the first and second measurement values.

Description

非破壊検査装置Non-destructive inspection equipment
本発明は、非破壊で被測定物質が基準とした時点からの上昇、下降量の相対変化量と変化量の時間的微分値を測定、計算し表示する非破壊測定装置に関するものである。 The present invention relates to a nondestructive measuring device for measuring, calculating and displaying a relative change amount of a rise and fall amount and a temporal differential value of a change amount from a time when a substance to be measured is a non-destructive reference.
試料に含まれる時間的変化を伴う物質量を時間と共に測定する場合で特に時間的な変化が重要な場合では非破壊で測定する事が望まし。その非破壊で測定する手段の一つとして、分光分析など、光による測定方法がある。この適応の一つとして非侵襲な血糖値測定技術がある。これは、血糖値の濃度によって、光の吸光度、偏光などの物理的特性の変化量によって、血糖値を同定するものである。その代表的な手法として、図1に示すような近赤外分光分析を基本とする方法が過去において複数報告されている。この手法は分光Spectrumの強度分布によって、被測定物質の質量(濃度)を測定する方法であるが、そのSpectrum強度分布から被測定物質を同定するために、基本的な分光Spectrum強度分布を示す検量線と言われるものを必要とし、その検量線の作成のために、Simulation技術などを活用して効率的に作成する手法なども提案されているが大量の測定Dataの分析を必要とする。 It is desirable to measure nondestructively when measuring the amount of a substance accompanying a time change included in a sample with time, especially when the time change is important. One of the non-destructive means for measurement is a light measurement method such as spectroscopic analysis. One of the indications is a non-invasive blood glucose measurement technique. This is to identify the blood glucose level by the amount of change in physical properties such as light absorbance and polarization, depending on the concentration of the blood glucose level. As a typical technique, a plurality of methods based on near-infrared spectroscopy as shown in FIG. 1 have been reported in the past. This method measures the mass (concentration) of a substance to be measured based on the intensity distribution of the spectral spectrum. In order to identify the substance to be measured from the spectrum intensity distribution, a calibration method showing the basic spectral spectrum intensity distribution is used. A method called a curve is required, and a method of efficiently creating the calibration curve by utilizing a simulation technique or the like has been proposed. However, analysis of a large amount of measurement data is required.
さらに、この分析方法は特定の条件の元で適応される事が殆どであり、これを不特定の複数の試料に適応した場合、非常に困難な問題がある。それは被測定物質以外の成分が個々によって異なる事。物理的な変異、個体差などが原因で広く測定を適応して使用する事はほぼ無理とできる。この分光分析による方法は基本的に光の吸光度を測定する手法であるが、偏光を使用する他の方法であっても同様な事がいえる。結局、光によって時間的変化を伴う物質を時間と共に測定する場合における問題を突き詰め整理すると、検量線の生成及び物理的な変異などによる再現性、測定精度の問題に帰着する。光によって時間的変化を伴う物質量を時間と共に測定する被破壊測定装置の実現が困難である。 Furthermore, this analysis method is generally applied under specific conditions, and when applied to a plurality of unspecified samples, there is a very difficult problem. That is, the components other than the substance to be measured differ from individual to individual. It is almost impossible to adapt and use the measurement widely due to physical variation and individual differences. The method based on the spectroscopic analysis is basically a method for measuring the absorbance of light, but the same can be said for other methods using polarized light. After all, if the problems in the case of measuring a substance which changes with time by light with time are determined and sorted out, it will result in the problems of reproducibility and measurement accuracy due to generation of a calibration curve, physical variation and the like. It is difficult to realize a destructible measurement device that measures the amount of a substance that changes with time by light with time.
特許第3692751号Patent No. 3692751
解決しようとする問題点は、光により測定値は時間と共に変化する事は解かるものの、検量線の作成精度と物理的変異により測定精度が低下する事で被測定物質の質量(濃度)の測定が困難であるため光による被破壊測定装置の実現ができない点である。 The problem to be solved is that, although it is understood that the measured value changes with time due to light, the mass (concentration) of the substance to be measured is measured because the accuracy of the calibration curve and the measurement accuracy are reduced due to physical variation. However, it is difficult to implement a destructible measurement device using light.
本発明は、光による物質の測定に対する考え方を変え、検量線を作成せず、ある時点からある時点までの被測定物質の相対的な変化量と時間的変化量の測定、演算を行う。また、光出射部を測定部位に圧力をかける作用点として使用し、測定するための光軸を実時間で調整して測定する方法が主要な特徴とする。 The present invention changes the way of thinking about the measurement of a substance by light, does not create a calibration curve, and measures and calculates the relative change and the temporal change of the substance to be measured from a certain time to a certain time. The main feature is a method of using the light emitting portion as an action point for applying pressure to a measurement site, and adjusting the optical axis for measurement in real time to perform measurement.
本発明の被破壊測定装置は直接被測定物質量(濃度)を測定しているわけではないが、被測定物質の質量(濃度)に代わる指標として再現性の良い光による被破壊な測定が可能になる。 Although the destructive measuring device of the present invention does not directly measure the amount (concentration) of the substance to be measured, it can perform destructive measurement using light with good reproducibility as an index instead of the mass (concentration) of the substance to be measured. become.
今まで離散的な測定では発見出来なかった急激に被測定物質質量(濃度)が上昇する状態を被破壊で検出する事が可能になる。 It becomes possible to detect a state in which the mass (concentration) of the substance to be measured suddenly increases, which cannot be found by discrete measurement until now, by being destroyed.
分光分析を使用した非破壊測定装置の構成例Configuration example of non-destructive measurement device using spectroscopic analysis 食事と血糖値の変化の例Examples of changes in diet and blood sugar Actuator LensのShift動作と、Tilt動作の様子Actuator Lens Shift operation and Tilt operation 透過光を使用した場合の光学部構成Optical configuration when using transmitted light 反射光を使用した場合の光学部構成Optical configuration when using reflected light Clip機構に光学部を内蔵した構成Configuration with built-in optical unit in Clip mechanism Analog回路を中心とした測定装置の電気回路Block図Electrical circuit block diagram of the measuring device centering on the analog circuit LD1による調整期間と、LD2による測定期間の様子Adjustment period by LD1 and measurement period by LD2 MPUによるDigital処理を中心とした場合の電気回路Block図Electric circuit block diagram when digital processing by MPU is centered 測定値から最終測定結果を表示するためのdds値Graph例Example of dds value Graph to display the final measurement result from the measurement value
次に図を使用しながら本発明の実施の形態の一つとして血糖値の測定に適応した場合について説明する。勿論、血糖値と限らず時間的に被測定物質が時間的に変化する事を測定する事が重要な例えば植物の光合成の変化を測定する事も可能である。 Next, a case where the present invention is applied to measurement of a blood glucose level will be described as one embodiment of the present invention with reference to the drawings. Of course, it is also possible to measure not only the blood sugar level but also a change in the photosynthesis of a plant, for example, in which it is important to measure the temporal change of the substance to be measured.
光によって、非破壊(以下、血糖値の測定にあたっては非侵襲という)で血糖値を測定する場合、各種方法が提案されているが、ここでは光の吸光度と、拡散度によって同定する事にしている。拡散度は、血糖値の濃度に比例する事が知られているため、光の量を測定するためにPhoto Device(以下PD)を使用するが、PDの大きさ(面積)によって、その感度は異り、その大きさは使用する光の光径と同じか、それよりも大きい(大きさは想定される拡散度の範囲から決定)ものにする。この場合、PDにて検出される光量は、血糖により吸収によって小さくなると同時に組織(拡散体)と血糖により拡散される。そのため、PDにて検出される光量は、拡散度によって吸光度を拡張する事になりPDで測定される量は血糖値の変化の検出感度を増感する事になる。この吸光と拡散度を重畳した測定値を基本的な検出量とする。この検出量から吸光率が求められる。また、吸光は温度によって変化する事がしられているため、測定部位の温度を測定し、温度の値によって補正し、最終的な吸光率となる。 Various methods have been proposed for measuring blood glucose levels non-destructively (hereinafter referred to as non-invasive in measuring blood glucose levels) using light. Here, identification is based on light absorbance and diffusion degree. I have. It is known that the degree of diffusion is proportional to the blood glucose concentration, so a Photo Device (hereinafter referred to as PD) is used to measure the amount of light. Depending on the size (area) of the PD, the sensitivity is Differently, the size is equal to or larger than the light diameter of the light to be used (the size is determined from the range of the assumed diffusion degree). In this case, the amount of light detected by the PD is reduced by absorption by blood sugar, and at the same time, is diffused by tissue (diffuser) and blood sugar. Therefore, the amount of light detected by the PD expands the absorbance by the degree of diffusion, and the amount measured by the PD increases the sensitivity of detecting a change in blood glucose level. The measured value obtained by superimposing the absorbance and the diffusivity is used as a basic detection amount. The absorbance is determined from the detected amount. In addition, since the light absorption changes depending on the temperature, the temperature of the measurement site is measured and corrected by the temperature value to obtain the final light absorption.
まず、血糖値の性質についてここで確認をする事にする。血糖は血中成分の一つであるが、近赤外と言われる波長付近で吸光特性を持つ物質は血糖以外複数存在する。今、食事をした場合、通常人体の応答変化として食後一定時間おおよそ20分~40分程度経過後血値は上昇し、インスリン等の作用などによって食事後時間約2時間程度で食事まえと同程度の値になる事がしられているが、この食事行為によって血中成分の中で急激に変化するものは血糖値と、水分だけと推定する。その理由として血糖値以外の物質は、各臓器などから生成される成分か、反応によって生成される成分であり、血中成分の変化として現れるまでには血糖値の変化と比較すると非常に遅いためである。従って、2時間程度の短時間の中で、吸光度、拡散度が変化する要因としては、ほぼ血糖値であると同定可能と考える。この変化の可能性のある血糖と、水分であるが、水分は血糖の吸光Spectrum波長と別な波長による光源における吸光度を観測する事で分離する事が可能である。つまり、水分による吸光度感度特性と、血糖値の吸光度感差によって血糖値の変化量の補正が可能ということを示している。ただし、2つの光源が同軸にて観測される事が必要である。本来、この血糖以外の同定のために、多くのDataに元づく検量線を作成しなければ血糖値は同定できないが、このように血糖値の変化量であれは、検量線を必要としない事になる。このように今回の装置では、基本的に血糖値の上昇量、下降量の測定する事を特徴としている。また、今回の測定のように血糖値の上昇、下降の変化量を計測する場合、肌色素、皮膚状態など個々のばらつきによる誤差を相殺できるため、測定精度、再現性の向上が可能である。 First, the nature of the blood sugar level will be confirmed here. Blood sugar is one of blood components, but there are a plurality of substances other than blood sugar that have light absorption properties near a wavelength called near infrared. If you eat a meal, your blood level will rise about 20 to 40 minutes after the meal for a certain period of time, usually as a response change of the human body, and about 2 hours after the meal due to the action of insulin etc., about the same as before the meal It is estimated that only blood glucose and water are the only components that change rapidly in the blood due to this eating action. The reason is that substances other than blood sugar level are components generated from each organ or components generated by reaction, and it is very slow compared to changes in blood sugar level before appearing as changes in blood components It is. Therefore, it is considered that a factor in which the absorbance and the diffusivity change in a short time of about 2 hours can be almost identified as a blood glucose level. It is possible to separate blood by measuring the absorbance of a light source at a wavelength different from the absorption spectrum wavelength of blood glucose. In other words, it indicates that the change amount of the blood sugar level can be corrected based on the absorbance sensitivity characteristic due to the moisture and the difference in the blood sugar level absorbance. However, it is necessary that the two light sources be observed coaxially. Originally, a blood glucose level cannot be identified unless a calibration curve based on a large amount of data is created for identification of non-blood glucose.However, a calibration curve is not required for such a change in blood glucose level. become. As described above, the present apparatus is basically characterized in that the amount of increase or decrease in blood sugar level is measured. Further, when measuring the amount of increase or decrease in blood sugar level as in this measurement, errors due to individual variations such as skin pigments and skin conditions can be offset, so that measurement accuracy and reproducibility can be improved.
生体における血糖値は、健康な場合、食後2時間程度で食事前とほぼ同じ値になる。しかし、所謂、糖尿病における糖代謝では、その変化量に特徴が表れる事がわかっている。図2に血糖値の時間的変化の一般的例を示したものである。 In a healthy state, the blood sugar level in a living body becomes almost the same as that before a meal about 2 hours after a meal. However, in glucose metabolism in so-called diabetes, it is known that the amount of change is characteristic. FIG. 2 shows a general example of a temporal change of the blood sugar level.
そこで、食前、食後30分程度、2時間程度の3回の測定をおこない、判断を行う。これは、糖尿病の臨床診断手法における糖負荷試験と類似したものである。また、重度の場合(12c)、食事前、30分、2時間の血糖値は変化しない場合がある。そのため、測定値の時間的な変化量、時間微分値を計算し、変化量と、実時間における時間微分値の複合的判断を行う。 Therefore, three measurements are performed before and after the meal, about 30 minutes after the meal, and about 2 hours, and the judgment is made. This is similar to a glucose tolerance test in a clinical diagnosis method of diabetes. In the case of severe (12c), the blood glucose level before meals, 30 minutes, and 2 hours may not change. Therefore, a temporal change amount and a time differential value of the measured value are calculated, and a composite judgment of the change amount and the time differential value in real time is performed.
通常、健康診断などで行われる血糖値の測定は所謂空腹時血糖値である。多少、値が高く測定されたとしても、重度を見過ごす可能性がある。隠れ糖尿病といわれる応答は食後に急激に血糖値が上昇する事でもあり、この時間微分値によって、この症状を検出する事が可能である。 Usually, the measurement of a blood sugar level performed in a health check or the like is a so-called fasting blood sugar level. Even if the value is measured somewhat high, it is possible to overlook the severity. The response called "hidden diabetes" is also a rapid rise in blood glucose level after eating, and this time differential value can detect this symptom.
ではつぎに物理的な変異に対する解決方法について示す。 Next, a solution to the physical variation will be described.
光によって測定する場合、その光路長が変化する事によって誤差、精度の低下となる。そのため、光路長が変化しないように一定の位置で拘束するしかなく、甚だ利便性に欠く。利便性を考慮した場合、反射される光により測定する手法が優れているが、実際に光を当てる部位が変わった場合、その測定部位での皮下組織が変化してしまう可能性があり、精度の低下を伴う。また光の入射状態、振動などによっても精度の低下となる。そこで、測定装置の構造として、まず、測定する部位を制限する構造をとる。これは、例えば耳タブや、指の間などに挟む構造(図6)である。これならば、ほぼ一定の部位で測定をする事になる。また、耳タブや、指の間の部位は、色素の変化の影響を受けにくい可能性もある。また、温度が変化した場合、吸光度が変化する事が知られ、挟む事が可能な部位では、大きな温度変化を伴わないものと期待できる。 In the case of measurement using light, a change in the optical path length causes an error and a reduction in accuracy. Therefore, the optical path length must be constrained at a fixed position so as not to change, which is extremely inconvenient. Considering convenience, the method of measuring with reflected light is excellent, but if the part to which light is actually applied changes, the subcutaneous tissue at the measurement part may change, With a decrease in In addition, accuracy is also reduced by the light incident state, vibration, and the like. Therefore, as a structure of the measuring device, first, a structure for limiting a part to be measured is adopted. This is, for example, a structure of being sandwiched between ear tabs and fingers (FIG. 6). In this case, the measurement is performed at a substantially constant site. Also, the ear tabs and the area between the fingers may be less susceptible to the change in pigment. In addition, it is known that the absorbance changes when the temperature changes, and it can be expected that a portion that can be sandwiched does not involve a large temperature change.
挟む構造とする事で、光路長を一定に保つ事が可能であると共に、測定部位に対して一定の圧力を印加する事が可能となり、その圧で血流の変化を抑制する事が可能となる。光で測定する場合、最も影響があるものは血液のヘモグロビンであり、これが変化する事で測定精度が低下する。特に、食後など血流の変化が大きいためである。測定する部位がある程度制限したとしても、皮下組織には血管が存在し、光路上血管が含まれる場合は精度の低下が予想される。そこで、光経を小さくしActuator(CDやDVDなどの光ピックアップと同じ構造など。図示せず)を使用し、部位に照射位置を調整し、検出光が最大になるように調整する機構を設ける。また、この機構は、不覚筋動の抑制や、入射状態など実時間で調整する機構を持たせ、精度の確保を行う。図3はそのActuatorを動かし測定する事を説明した図である。しかしこの調整機構でも補正できない物理的な変異が存在する。このために、血糖値を測定するBeamと、同軸に配置され、同じ光路による別波長による光源によって、血糖値を補正すると同時に、物理的な変異も補正も行う。物理的な変異は、血糖値の測定による波長における変異と、同様に変化すると考えられるため可能としている。 The sandwiching structure allows the optical path length to be kept constant, and also allows a constant pressure to be applied to the measurement site, which can suppress changes in blood flow. Become. When measuring by light, the most influential thing is hemoglobin of blood, and a change in this decreases measurement accuracy. In particular, the change in blood flow is large, such as after a meal. Even if the part to be measured is limited to some extent, blood vessels are present in the subcutaneous tissue, and if blood vessels on the optical path are included, accuracy is expected to decrease. Therefore, using a Actuator (same structure as an optical pickup such as a CD or DVD, etc., not shown) to reduce the light beam, provide a mechanism to adjust the irradiation position at the site and to adjust the detection light to the maximum. . In addition, this mechanism is provided with a mechanism that suppresses the movement of the blind muscles and adjusts the incident state in real time to ensure accuracy. FIG. 3 is a diagram for explaining measurement by moving the Actuator. However, there are physical mutations that cannot be corrected by this adjustment mechanism. For this purpose, the blood glucose level is corrected by a light source that is arranged coaxially with the beam that measures the blood glucose level and has the same optical path and has a different wavelength, and at the same time, corrects the physical variation and correction. Physical variation is possible because it is considered to vary in the same way as variation in wavelength by measuring blood glucose levels.
図4は光学的な基本的な構成である。特徴として近赤外の光源(この構成の場合は半導体Laser Diodeを使用)を異なる複数波長を使用し、その複数の光源を同軸に出射する。波長として、Glucose に大きな吸光を示す波長例えば1500nm付近の光源(測定光:23a)第2波長光源、以下(LD2)と1300nmの光源(参照光:23b)第1波長光源(以下LD1)
を使用する。光源としてLaser光が望ましい。その理由は、発光波長範囲が非常に狭く、単一波長として扱う事が可能なためである。当然、単一波長とみなされる範囲としてその偏差が10nm程度の発光特性を持つ光源であっても良い。
1300nm付近の波長を選択する理由は、水分に対して高い吸光度を示すのに対し、Glucoseに対しては、大きな吸光を示さない波長の光源であり、その光源を組み合わせ、その吸光度の変化から、水分量の変化量及び物理的な変化量として測定光による検出量の補正を行う。この補正の方法は差分を取る方法或は比を求める方法でも良い。また、参照光による検出量は、測定部位の振動や入光状態の補正、光路上の障害物の回避を行うための制御量として使用し、この波長により検出される光量が最大となるように、後述するActuatorを電気的に制御する。図4は測定部位に対して透過光を使用した場合の構成と図5は拡散反射光を検出するための構成でありどちらも照射した光が測定部位の内部を通過した状態で検出される。光源(23a、23b)からの光はLens(24a,24b)によって小径Beamに絞りCollimation光(14)となる。(小径のBeamに絞る理由は大きな出力の光源を使用せずに輝度を確保する事が可能であり、消費電力を抑え、Costを抑える事が可能になる。また、光路上に障害物(具体的には血管(13))があった場合回避する事ができるようになるためである。このBeamはPBS(25a,25b)などによって同軸光となる。ただし、2個の光源が同時に発光する事はさせない。その後Actuator Lens(22)によって測定部位(21)に照射する位置を補正する機能を有する。このActuatorの動作は、Shift(16)とTilt(15)する事が可能であり、参照光による検出値が最大になるようの実時間で調整を行う。この調整のためのこのActuatorの応答速度は速い必要はなく、所謂不覚筋動と同程度の特性をCoverすればよい。また、実際に測定部位に接する部分(20a,20b)は表面から直接反射される光の影響を排除する機能も有する。また、測定部位に対して一定の圧力(18)をかけるための作用点としても機能する。
FIG. 4 shows an optical basic configuration. As a feature, a near-infrared light source (a semiconductor laser diode is used in this configuration) uses a plurality of different wavelengths, and the plurality of light sources are emitted coaxially. As a wavelength, a light source exhibiting large absorption in Glucose, for example, a light source near 1500 nm (measurement light: 23a), a second wavelength light source (hereinafter, LD2) and a 1300 nm light source (reference light: 23b), a first wavelength light source (hereinafter, LD1)
Use Laser light is desirable as the light source. The reason is that the emission wavelength range is very narrow and can be treated as a single wavelength. Of course, a light source having a light emission characteristic with a deviation of about 10 nm as a range considered as a single wavelength may be used.
The reason for choosing a wavelength around 1300 nm is that, while showing high absorbance for moisture, Glucose is a light source with a wavelength that does not show large absorption, and combining that light source, from the change in the absorbance, The detection amount is corrected by the measurement light as the change amount of the water content and the physical change amount. This correction method may be a method of obtaining a difference or a method of obtaining a ratio. In addition, the detection amount by the reference light is used as a control amount for correcting the vibration of the measurement site and the incident light state and avoiding an obstacle on the optical path, so that the amount of light detected by this wavelength is maximized. , And electrically controls an Actuator described later. FIG. 4 shows a configuration in which transmitted light is used for a measurement site, and FIG. 5 shows a configuration for detecting diffuse reflection light. Both configurations are detected in a state where irradiated light passes through the inside of the measurement site. The light from the light sources (23a, 23b) is condensed to a small beam by the lenses (24a, 24b) to become collimation light (14). (The reason for narrowing the beam to a small diameter is that it is possible to secure the brightness without using a light source with a large output, to reduce the power consumption and to suppress the cost. This is because it can be avoided when there is a blood vessel (13) .Beam becomes coaxial light by PBS (25a, 25b) etc. However, two light sources emit light at the same time. After that, it has a function to correct the irradiation position on the measurement site (21) by Actuator Lens (22) .The operation of this Actuator can be Shift (16) and Tilt (15), see The adjustment is performed in real time so that the value detected by light is maximized, and the response speed of the Actuator for this adjustment does not need to be fast, and the characteristics may be covered as well as the so-called inactive muscle movement. The part (20a, 20b) that actually touches the measurement site is reflected directly from the surface Also has a function to eliminate the effects. In addition, also functions as a working point for applying a constant pressure (18) with respect to the measurement site.
この光学的な構造を保持する機構として、Clipのような構造とする。その理由は前述べた様に、測定部位の制限、血流の制限である。図6はその構造をしめしたもので、上記の光学的構造図4、図5の構造を内蔵する。図6筐体(27)では光源からの光(14)からの光はミラー(29)によって導光されているが、ファイバーなどでActuator Lensまで導光する構成も可能(図示ぜず)また、図6は透過光の構成であるが、拡散反射でも同じ機構を使用し、図5に示す光学的な構造を内蔵させる。この場合、透過光による構造におけるPD側に配置される集光用対物Lens(20b)が被測定物支持部品(26)になる。  As a mechanism for holding this optical structure, a structure like a clip is used. The reason is, as described above, the limitation of the measurement site and the limitation of blood flow. FIG. 6 shows the structure, and incorporates the structure of the optical structure shown in FIGS. In FIG. 6, the light from the light source (14) is guided by the mirror (29) in the housing (27). However, a configuration in which the light is guided to Actuator Lens by a fiber or the like is also possible (not shown). FIG. 6 shows the configuration of transmitted light, but the same mechanism is used for diffuse reflection, and the optical structure shown in FIG. 5 is incorporated. In this case, the converging objective lens (20b) arranged on the PD side in the structure using transmitted light becomes the measured object support component (26).
図7は基本となる電気回路Block図である。この図7は透過光による構成であるが、拡散反射光を使用した場合も電気回路では同じ構成である。(図示せず)OSC1(30a)は測定するために使用する信号例えば1Khzにて光出力をAC変調する信号である。測定値はこのOSC1(30a)による信号が測定部位によって吸光、拡散された信号をPD(17)により検出される振幅である。OSC2(30b)は光源1(23a)(以降LD1)と、光源2(23b)(以降LD2)を切り替えるもので、LD1が発光の場合はLD2が休止、LD2が発光の場合はLD1が休止のように交互に発光を光源切り替えスイッチ回路(31)で切り替える。例えばOSC2(30b)の出力がHの時にLD1が発光し、Lの時はLD2が発光する。また、LD1が参照光、LD2が測定光としている。PD(17)(参照光と測定光用と共有)の出力はIV変換(35)され、同期AMP(36)によって増幅される。光源駆動回路1,2(以降LDD1,2)(32a,32b)はLaser Diodeに高周波重畳機能(34)を有し、反射光によるLaser発光が不安定になる事を避けるため、Single Modeから Multi-Mode発振で使用されFront MonitorやBack Monitor DiodeなどのAPC回路(図示せず)によって光出力を一定に保つ。また、温度Sensor(34)を配置し、温度による変化を補正も行う。RMS回路(37)では、検出された信号の実効値を出力し、Servo AMP(38、40)に入力される。LD1が発光した時のRMS回路(37)の出力をHoldする回路(41b)と基準電圧(39)(参照光量に相当)がLD1 Servo AMPに入力され差分を演算し、LD1の発光量を自動制御するServo Loopを形成する。この動作によってPD(17)でうける参照光の光量は基本的な透過量の影響を排し一定になる。LD1 Servo AMP(38)にて、演算しLDD1(32a)の入力量として求めるがこの出力が大きい場合、被測定物(21)における光の減衰量が大きい事を示し、このLD1の制御量がLD2の基準値となる。この基準値は、被測定物(21)における基本的に測定をするために必要な光Powerを自動的に求めた事になる。また、このLD1検出量をLD2測定光の基準とする事で被測定物(21)の物理的な変位及び、水分量の変位を補正した事に相当する。物理的変位(被測定物(21)の組織的変異)はLD1,LD2共同じ減衰特性(吸光特性、拡散度特性に影響を与えない)であると考えられるためLD1による検出量は物理的な変位量と時間的に変変位する可能性がある水分による吸光度の補正量を反映している事となる。また、LD2が発光した時のRMS回路(37)の出力をHoldする回路(41c)の出力と、LD1の制御量をHoldする回路(41a)の出力の値の差分を演算し、LD2の制御出力とする事で、LD2の出力を一定に保つ事が可能になる。(LD1の発光量とLD2の発光量の比率は事前に最適な値を求めておき、その比率に従ってLDDのGainが決定される。)LD1制御量をHoldする回路(41a)(OSC2(30b)の出力が例えばHの時にLD1からのRMS回路(37)からの出力をLD1検出値Hold回路(41b)がHoldし、Lの時にはLD2検出Hold回路(41c)がHoldする)とLD2の制御量の差分を演算する測定値補正回路(42)の出力は、最終的にLD2検出量から物理的な変位と、水分の変位を補正した測定値になる。今回の装置では、この測定を3回、時間をずらして測定を行う事になる。この3回の測定によって、最終的な結果とする方法は後述する。 FIG. 7 is a basic electric circuit block diagram. Although FIG. 7 shows a configuration using transmitted light, the same configuration is used in an electric circuit when diffuse reflection light is used. OSC1 (30a) (not shown) is a signal used for measurement, for example, a signal for AC-modulating the optical output at 1 Khz. The measured value is the amplitude at which the signal obtained by absorbing and diffusing the signal by the OSC1 (30a) by the measurement site is detected by the PD (17). OSC2 (30b) switches between light source 1 (23a) (hereinafter LD1) and light source 2 (23b) (hereinafter LD2). When LD1 emits light, LD2 stops, and when LD2 emits light, LD1 stops. The light emission is alternately switched by the light source changeover switch circuit (31) as described above. For example, when the output of OSC2 (30b) is H, LD1 emits light, and when it is L, LD2 emits light. LD1 is the reference light, and LD2 is the measurement light. The output of the PD (17) (shared with the reference light and the measurement light) is IV-converted (35) and amplified by the synchronous AMP (36). The light source drive circuits 1 and 2 (hereinafter LDD 1 and 2) (32a and 32b) have a high-frequency superimposing function (34) on the laser diode, and in order to avoid instability of laser emission due to reflected light, switch from single mode to multi The optical output is kept constant by an APC circuit (not shown) such as Front Monitor and Back Monitor Diode used in -Mode oscillation. In addition, a temperature sensor (34) is arranged to correct for changes due to temperature. The RMS circuit (37) outputs the effective value of the detected signal and inputs it to Servo @ AMP (38, 40). The circuit (41b) that holds the output of the RMS circuit (37) when the LD1 emits light and the reference voltage (39) (corresponding to the reference light amount) are input to the LD1 Servo AMP and the difference is calculated to automatically calculate the light emission amount of the LD1. Form Servo Loop to control. With this operation, the light amount of the reference light received by the PD (17) becomes constant without the influence of the basic transmission amount. The LD1 Servo AMP (38) calculates and obtains the input amount of LDD1 (32a). If this output is large, it indicates that the amount of light attenuation in the DUT (21) is large. This is the reference value for LD2. This reference value means that the optical power necessary for basically measuring the object under measurement (21) is automatically obtained. Using the detected amount of LD1 as a reference of the LD2 measurement light is equivalent to correcting the physical displacement of the measured object (21) and the displacement of the water content. Since the physical displacement (systematic variation of the DUT (21)) is considered to have the same attenuation characteristics (does not affect the light absorption characteristics and diffusivity characteristics) for both LD1 and LD2, the amount detected by LD1 is physical. This reflects the amount of displacement and the amount of correction of the absorbance due to moisture that may vary with time. Also, the difference between the output of the circuit (41c) that holds the output of the RMS circuit (37) when the LD2 emits light and the output value of the circuit (41a) that holds the control amount of the LD1 is calculated, and the control of the LD2 is performed. By using the output, the output of LD2 can be kept constant. (The optimal value of the ratio between the light emission amount of LD1 and the light emission amount of LD2 is determined in advance, and the gain of the LDD is determined according to the ratio.) Circuit (41a) for holding LD1 control amount (OSC2 (30b) For example, when the output is H, the output from the RMS circuit (37) from LD1 is held by the LD1 detection value hold circuit (41b), and when the output is L, the LD2 detection hold circuit (41c) is held) and the control amount of LD2 The output of the measurement value correction circuit (42) that calculates the difference between the two is finally a measurement value obtained by correcting the physical displacement and the water displacement from the LD2 detection amount. In this apparatus, the measurement is performed three times with a time lag. A method of obtaining a final result by these three measurements will be described later.
Actuator Lens(22)はLD1の発光期間(49)によって調整を行う。初回発光した時、Main PD(17)のSideのSUB-PDの出力(17s,17b)の差分を演算する事(43)でBeamの中心がどちら側にあるかが検出可能であり、この動作によって、PDで検出される光の強度の中心がPDの中心になる。図7の構成ではSの出力(35s)が大きい場合は光強度分布検出回路では基準電圧より(+)側出力が現れ、この出力が小さくなる方向にShift Drive回路(44b)を駆動し、Bの出力(35b)が大きい場合は基準電圧より(-)の出力が現れるので、この出力が小さくなるように、S(35s)信号の時とは逆にShift Drive回路(44b)を駆動する。測定のためのLD1の駆動とこのShift Drive機構(47)の駆動を同時に行い、LD1検出量を求めた後、LD2の発光期間(50)にてLD2による検出を行い、最終的な測定値を得る。図8はLD1、LD2の切り替えを示している。また、測定値のSNRを改善するため、平均した値(重ね合わせ値)によって行う。この例では、変調信号(30c)として連続した信号であるが、これをDutyの低いパルスでおこなって同様である。また、Actuator LensにTilt機能を含ませた場合、まず測定に入る前にLD1による参照光に制御出力を複数回LD1発光期間(49)を使って測定しその都度Tilt Drive基準電圧発生回路(46)(これは極小規模なMPUなどを使用する)からの出力を変更しTilt Drive機構(48)を駆動、LD1制御量が最少になるような状態を求めた後に、Shit Drive機構による調整と、測定Cycleに入る。今回のTilt Drive機構(48)と、Shift Drive機構(47)は測定部位の組織構造の影響を排除するためと振動などによるずれを補正するため、実時間にて調整する事を提供する。 Actuator @ Lens (22) adjusts according to the light emission period (49) of LD1. When the light is emitted for the first time, the difference between the outputs (17s, 17b) of the Side SUB-PDs of the Main @ PD (17) is calculated (43), and it is possible to detect which side the Beam center is on. Accordingly, the center of the intensity of light detected by the PD becomes the center of the PD. In the configuration shown in FIG. 7, when the output of S (35 s) is large, the light intensity distribution detection circuit produces an output on the (+) side from the reference voltage, and the Shift Drive circuit (44b) is driven in a direction in which this output becomes smaller. When the output (35b) is large, an output of (-) appears from the reference voltage, so that the Shift Drive circuit (44b) is driven in reverse to the S (35s) signal so that this output becomes small. Driving LD1 for measurement and this Shift Drive mechanism (47) are performed at the same time, and the amount of LD1 detected is determined. Then, LD2 is detected during the emission period (50) of LD2, and the final measured value is calculated. obtain. FIG. 8 shows switching between LD1 and LD2. In addition, in order to improve the SNR of the measured value, the average value (superimposed value) is used. In this example, the signal is a continuous signal as the modulated signal (30c). If the Actuator Lens has a Tilt function, the control output of the reference light by the LD1 is measured a plurality of times using the LD1 emission period (49) before starting the measurement, and the Tilt Drive reference voltage generation circuit (46) is used each time. ) (This uses a very small MPU, etc.) to change the output, drive the Tilt Drive mechanism (48), find the state that minimizes the LD1 control amount, and then adjust with the Shit Drive mechanism. Enter the measurement cycle. The new Tilt-Drive mechanism (48) and Shift-Drive mechanism (47) provide real-time adjustments to eliminate the influence of the tissue structure of the measurement site and to correct for deviations due to vibration and the like.
図7では、電気回路としてAnalog的Servo Loopでの構成をしめしたが、当然、MPU(52)になどによりDigital的な処理によって実現する事も可能である。また、Analog 的Servo Loopのため、LD1,LD2の発光は図9に示すように発振器からの波形(30c)で発光する事が考えられるが、この発光を短いパルス発光(30d)、例えば10ns~30ns程度のパルス発光で行う事でも実現可能であり、このパルス発光によって、光のエネルギーによって測定部位の温度上昇を避ける事も可能となる。温度上昇を抑える事で、測定精度の向上も期待できる。また、血糖値の場合測定部位は人体に皮膚が被測定部位となるため、非常に強い光を連続して照射した場合には、光によって火傷する可能性がある事もさける事が可能。この光の強さ(エネルギー量)に対する人体への安全域は国際的に安全規格としてまとめられている基準を元に定める事になる。また、同期AMP(36)もDigital信号処理によって実現している。このServo LoopのLD1,LD2制御量そのものが、結果的に吸光度及び拡散度に相当する検出量となる。その場合の構成図を図9に示す。まず、何度かLD1の発光時(発光制御量は事前に決めた量)の値(36a)をAD入力し、Tilt駆動回路(45b)の駆動量を変えLD1の検出量が最少になるような駆動量を検出しTiltの最適な状態として求た状態でShift Drive機構(47)による調整のため、Sub-PDのからの信号(35s,35b)をMPU(52)にAD入力され、PD(17)にBeamの中心になるように、MPU(52)内で演算(光強度分布検出回路(43)に相当する演算)し、Shift Drive回路(44b)を駆動する。この一連のTilt制御と、Shift制御はLD1、LD2による測定の前に行う。尚、LD1、LD2を駆動する時、MPU(52)からLD1、LD2を駆動するがOSC1(30a)による変調に相当するようにLD1 ON/OFF信号(32d)と、LD2ON/OFF信号(32e)を制御する。測定はまず、MPUからの出力を一定量づつLD1発光制御量(32c)加減し、ADからの入力される値(36a)が予め決めた値(LD1基準電圧発生回路(39)に相当)になるよう検出量を求めLD1の検出値とする。続いて同様にADによってMPUに入力(36a)される値がLD1により検出される量を基準として一定量となるようにLD2発光制御量(32f)を加減する。この時のLD2発光制御量(32f)がLD2による検出量とする。次に、LD2による検出量からLD1による検出量をMPU(52)で減算し、温度補正センサー(33)からの信号(33a)により補正(補正量は温度による吸光度特性から求めた値を基本とし実験的に求める)した値が最終的な測定値となる。この構成によって、測定される血糖値としては50mg/dlから200mg/dlの範囲と想定している。実際に糖尿病の治療に使用されるSMBGでは0mg/dlから900mg/dl程度のRangeを必要とする。もしこのRangeを想定した場合、かなり大きなLaser出力を必要となる可能性があるが、Rangeを狭める事で、低消費電力化、Cost Downを実現可能としている。 In FIG. 7, the configuration of an analog Servo-Loop is shown as an electric circuit, but it is naturally possible to realize the digital circuit by using an MPU (52) or the like. In addition, because of the analog-like Servo-Loop, the light emission of LD1 and LD2 is considered to emit light with a waveform (30c) from the oscillator as shown in FIG. 9, but this light emission is considered to be a short pulse light emission (30d), for example, 10 ns or less. This can be realized by performing pulse emission of about 30 ns, and this pulse emission also makes it possible to avoid a rise in the temperature of the measurement site due to light energy. By suppressing the temperature rise, improvement in measurement accuracy can be expected. In the case of a blood glucose level, the skin is measured on the human body at the measurement site. Therefore, when extremely intense light is continuously irradiated, it is possible to avoid the possibility of burning due to the light. The safety zone for the human body with respect to the light intensity (energy amount) is determined based on internationally standardized safety standards. The synchronous AMP (36) is also realized by digital signal processing. The control amount of LD1 and LD2 of Servo Loop itself becomes a detection amount corresponding to the absorbance and the diffusion degree as a result. FIG. 9 shows a configuration diagram in that case. First, the value (36a) at the time of light emission of LD1 (light emission control amount is a predetermined amount) is input to AD several times, and the drive amount of the Tilt drive circuit (45b) is changed so that the detection amount of LD1 is minimized. The signal (35s, 35b) from the Sub-PD is AD-input to the MPU (52) for adjustment by the Shift-Drive mechanism (47) with the optimal drive amount detected and determined as the optimal state of Tilt. In (17), calculation (operation corresponding to the light intensity distribution detection circuit (43)) is performed in the MPU (52) so as to be at the center of Beam, and the Shift 駆 動 Drive circuit (44b) is driven. This series of Tilt control and Shift control are performed before the measurement by LD1 and LD2. When driving LD1 and LD2, LD1PUON / OFF signal (32d) and LD2ON / OFF signal (32e) drive LD1 and LD2 from MPU (52), but correspond to modulation by OSC1 (30a). Control. First, the output from the MPU is adjusted by a certain amount in the LD1 emission control amount (32c), and the value input from the AD (36a) becomes a predetermined value (corresponding to the LD1 reference voltage generation circuit (39)). The detection amount is determined so as to be the detection value of LD1. Subsequently, similarly, the LD2 emission control amount (32f) is adjusted so that the value input (36a) to the MPU by the AD becomes a constant amount based on the amount detected by the LD1. At this time, the LD2 emission control amount (32f) is a detection amount by LD2. Next, the detection amount of LD1 is subtracted from the detection amount of LD2 by the MPU (52), and corrected by the signal (33a) from the temperature correction sensor (33). (The correction amount is based on the value obtained from the absorbance characteristics with temperature.) (Determined experimentally) is the final measured value. With this configuration, it is assumed that the measured blood sugar level is in the range of 50 mg / dl to 200 mg / dl. SMBG actually used for the treatment of diabetes requires a range of about 0 mg / dl to 900 mg / dl. If this Range is assumed, a considerably large Laser output may be required, but by reducing the Range, low power consumption and Cost Down can be realized.
では次に本装置の特徴である3回の測定値の扱いと最終的な結果の出力について具体的な装置の操作を踏まえて説明する。まず、食事前操作スイッチ(54a)操作し、食事前値を測定する。この時の測定値を(t1,S1)とする。次に食後30分程度経過したときに食後操作スイッチ(54b)を操作し、測定を行う。この時の測定値を(t2,S2)とする。さらに、2時間程度経過したときに食後操作スイッチを操作し測定を行う。この時の測定値を(t3,S3)とする。(30分後、2時間後などの判断は、装置内部の時計(55)により判断を行う)この測定値から ds=S3-S1を求める。この値がこの装置の基本的な測定量となる。次に、dts=(s2-s1)/(t2-t1)として求める。この値は短時間にたいして、どの程度変化したかを示す時間微分値となり、装置として、dsの値と、dtsの値から判断される結果を表示器(53)に表示する事になる。この値は血糖値の上昇速度を示すものとなる。血糖値は代謝の状態や、食事のとり方、内容によって大きく変化する事がしられていて、空腹時血糖値が正常であっても食事によって急激に上昇する事がある。この上昇した血糖値を血糖値スパイクと言われ、このスパイクの値が大きい事がある事を所謂隠れ糖尿病ともいわれる。今回の時間微分値が大きい場合、大きな血糖値スパイクがあると推定する。通常の血糖値の測定においてこの血糖値スパイクを検出する場合には、連続して血糖値を測定し、最大値を測定しなければならないが。今回のこの方式では、連続して測定しなくとも、血糖値スパイクの測定と同等の測定となる。また。今回の測定方法では、測定値の差分及び、変化率を短時間内で完了し演算するため、精度に対する偏差が相殺され、測定精度、再現性が向上する。 Next, the handling of three measured values and the output of the final result, which are the features of the present apparatus, will be described based on the specific operation of the apparatus. First, the pre-meal operation switch (54a) is operated to measure the pre-meal value. The measured value at this time is (t1, S1). Next, when about 30 minutes have passed after the meal, the post-meal operation switch (54b) is operated to perform measurement. The measured value at this time is (t2, S2). Further, when about two hours have elapsed, the after-meal operation switch is operated to perform measurement. The measured value at this time is (t3, S3). (Judgment after 30 minutes, 2 hours, etc. is made by the clock (55) inside the apparatus.) From this measurement value, ds = S3-S1 is obtained. This value is the basic measurand of this device. Next, it is determined as dts = (s2-s1) / (t2-t1). This value is a time differential value indicating how much the value has changed in a short time, and as a device, the result determined from the value of ds and the value of dts is displayed on the display (53). This value indicates the rising speed of the blood sugar level. Blood sugar levels are greatly changed depending on the state of metabolism, how to eat, and the contents, and even if the fasting blood sugar levels are normal, they may rise sharply by eating. This increased blood sugar level is called a blood sugar spike, and the fact that the value of this spike is large is also called so-called hidden diabetes. If the current time derivative is large, it is estimated that there is a large blood glucose spike. When detecting this blood sugar level spike in normal blood sugar level measurement, it is necessary to continuously measure the blood sugar level and measure the maximum value. In this method, the measurement is equivalent to the measurement of the blood glucose spike even if the measurement is not performed continuously. Also. In the present measurement method, the difference between the measured values and the rate of change are completed and calculated within a short period of time, so that the deviation from the accuracy is canceled out, and the measurement accuracy and reproducibility are improved.
図10のGraphは最終的な判断値を求めるGraphである。横軸にds(56)の値をとり、縦軸にはその最終測定結果dds(57)となる。この空間に複数する曲線はdts(58)に相当するものである。このds、dts、dds特性はds(56)値が低い場合でもdts(57)値が高い場合、dds(57)が高くなる事をしめしたものである。どのdts(58)曲線選択するかは例えばdts値を20程度に正規化した値によって選択する。(このdts曲線の描き方は実際の血糖値の医学的な検査基準を元に製品仕様として決定する) Graph in FIG. 10 is a graph for obtaining a final judgment value. The horizontal axis represents the value of ds (56), and the vertical axis represents the final measurement result dds (57). A plurality of curves in this space correspond to dts (58). The ds, dts, and dds characteristics indicate that dds (57) increases when the dts (57) value is high even when the ds (56) value is low. Which dts (58) curve is selected is selected, for example, by a value obtained by normalizing the dts value to about 20. (How to draw this dts curve is determined as a product specification based on medical test standards for actual blood glucose levels.)
図10(59)で示した領域にds値(56)及びdts(58)が該当する場合、測定値が正常でない可能性または、あまりにも異常な測定結果である可能性がある。このような場合はdds(57)値を表示器(53)に表示し同時に点滅をさせ、測定値結果の取扱いに注意が必要である事を示す。これは例えば、糖代謝が異常(重度)な場合、ds値が小さい場合がある。また、dts値も小さい事がありえる。この状態は血糖値が食事前から非常に高く、食事によってこれ以上血糖値が上昇しない場合などに相当する。また、この(59)で示した領域の設定は朝食、昼食、夕食を想定し、3種類Graphを用意し、どのGraphを選択するかは測定の時間帯によっておこなう。例えば、時計(55)が朝の時間帯であれば、前日の食事からかなりの時間が経過している可能性があり、この場合血糖値はそれなりに低下している可能性があるなど、その時々に応じたGraphを使用する。最終的に求められたdds値は表示器に表示される事になるが、この測定装置ではでは、数値による表示は行わない。その代わりにColor Gradationで行う。dds値が0の場合を基準に例えば“青”とし、最大値を例えば“赤”となるように、数値対ColorをMapping(60)する。 When the ds value (56) and dts (58) correspond to the area shown in FIG. 10 (59), the measured value may be abnormal or may be an abnormal measurement result. In such a case, the dds (57) value is displayed on the display (53) and flashes at the same time, indicating that the measured value result needs attention. For example, when glucose metabolism is abnormal (severe), the ds value may be small. Also, the dts value can be small. This state corresponds to a case where the blood sugar level is extremely high before the meal and the blood sugar level does not rise further by the meal. Further, the setting of the area shown in (59) assumes breakfast, lunch, and dinner, and prepares three types of graphs, and selects which graph is selected depending on the time zone of the measurement. For example, if the clock (55) is in the morning, it is possible that a considerable amount of time has passed since the previous day's meal, and in this case, the blood sugar level may have dropped accordingly. Use the Graph that works from time to time. Although the finally obtained dds value will be displayed on the display, this measurement device does not display a numerical value. Use Color Gradation instead. For example, “blue” is set based on the case where the dds value is 0, and the numerical value vs. Color is mapped (60) so that the maximum value is set to “red”, for example.
血糖値に代わる新しい健康管理を目的とした指標とする事が可能であり、今まで空腹血糖値の測定発見出来なかった所謂隠れ糖尿病の早期発見する診断装置としても適応できる。また、変化の状態を測定する手法を使用する事で例えば植物の光合成によって生成される糖の変化を測定する事で、農業用の制御装置にも適応可能である。 It can be used as an index for the purpose of new health management instead of blood sugar level, and can be applied as a diagnostic device for early detection of so-called hidden diabetes, which has not been able to measure and detect fasting blood sugar level until now. In addition, by using a method of measuring the state of change, for example, by measuring a change in sugars generated by photosynthesis of a plant, the method can be applied to an agricultural control device.
1  光源 
2  絞り
3a  対物レンズ(カップリング用)
3b  対物レンズ(集光用)
4  ファイバー
5  被測定物
6  シャッター   
7  解析格子
8  ミラー 
9  フォトアレー    
10 AD変換器
11 プロセッサ
12a 正常の血糖値の時間的変化の例
12b 糖代謝異常時の時間的変化の例
12c 糖代謝異常の場合の時間的変化の例(重度)
13 血管等
14 光束   
15 Tilt による傾いたActuator Lens
16 Shitによる移動したActuator Lens 
17 PD(Photo Device)
18 光路  
19 加圧
20a 光出射用対物Lens
20b 集光用対物Lens
21 被測定物
22 Actuator Lens  
23a 光源1
23b 光源2
24a コリメーションLens1
24b コリメーションLens2
25a PBS(合成用)
25b PBS(反射光分離用)
26  被測定物支持部品
27  装置筐体
28  支点
29  ミラー
17s PD Side Sub-PD(s)
17b PD Side Sub-PD(b)
30a OSC1(信号用発振器)
30b OSC2(光源切り替え用信号発生器)
30c OSC1出力(光源変調出力)
30d LD1,LD2 パルス発光波形
31  光源切り替えスイッチ
32a 光源駆動回路1(LDD1)
32b 恋減駆動回路2(LDD2)
33  温度補正センサー
34  マルチ発光用発振器
35  I/V 変換回路
36  同期増幅回路
37 RMS(実効値回路)
38 LD1 Servo AMP
39 LD1基準電圧発生回路
40 LD2 Servo AMP
41a LD1 制御量Hold回路
41b LD1 発光検出値Hold回路
41c LD2 発光検出値Hold回路 
42 測定値補正回路
43 光強度分布検出回路
44a Shit Drive Buffer回路
44b Shift Drive回路
45a Tilt Drive Buffer回路
45b Tilt Drive回路
46  Tilt Drive基準電圧発生回路
47  Shit Drive機構
48  Tilt Drive機構
30  OSC1出力(光源変調出力)
49  LD1発光期間、Actuator Lens 調整機関
50  LD2発光期間(測定期間)
51  OSC2出力
32c LD1発光量制御量信号
32d LD1 ON/OFF制御信号
32e LD2 ON/OFF制御信号
32f LD2発光量制御量信号
33a 温度センサー信号
36a PD Side Sub-PD信号入力
36b PD Side Sub-PD信号入力
52  MPU
53 表示装置
54a 操作スイッチ(食前)
54b 操作スイッチ(食後)
55  時計
56  ds計算値
57  dds 最終測定結果
58  dts曲線
59  点滅表示柳雄値
60  dds 表示色Mapping
1 light source
2 Aperture
3a Objective lens (for coupling)
3b Objective lens (for focusing)
4 Fiber 5 DUT 6 Shutter
7 Analysis grid 8 Mirror
9 Photo Array
10 AD converter
11 processor
12a Example of normal blood glucose level over time
12b Examples of temporal changes in abnormal glucose metabolism
Example of temporal change in 12c glucose metabolism disorder (severe)
13 Blood vessels, etc.
14 luminous flux
15 Tilt Actuator Lens by Tilt
Actuator Lens moved by 16 Shit
17 PD (Photo Device)
18 Light Path
19 Pressurization
20a Objective lens for light emission
20b Focusing Lens
21 DUT
22 Actuator Lens
23a Light source 1
23b Light source 2
24a Collimation Lens1
24b Collimation Lens2
25a PBS (for synthesis)
25b PBS (for reflected light separation)
26 DUT support parts
27 Equipment housing
28 fulcrum
29 mirror
17s PD Side Sub-PD (s)
17b PD Side Sub-PD (b)
30a OSC1 (signal oscillator)
30b OSC2 (light source switching signal generator)
30c OSC1 output (light source modulation output)
30d LD1, LD2 pulse emission waveform
31 Light source switch
32a Light source drive circuit 1 (LDD1)
32b Love reduction drive circuit 2 (LDD2)
33 Temperature compensation sensor
34 Multi-emission oscillator
35 I / V conversion circuit
36 Synchronous amplification circuit
37 RMS (RMS circuit)
38 LD1 Servo AMP
39 LD1 reference voltage generator
40 LD2 Servo AMP
41a LD1 Control amount Hold circuit
41b LD1 Emission detection value Hold circuit
41c LD2 emission detection value Hold circuit
42 Measured value correction circuit
43 Light intensity distribution detection circuit
44a Shit Drive Buffer circuit
44b Shift Drive circuit
45a Tilt Drive Buffer circuit
45b Tilt Drive circuit
46 Tilt Drive reference voltage generation circuit
47 Shit Drive mechanism
48 Tilt Drive mechanism
30 OSC1 output (light source modulation output)
49 LD1 emission period, Actuator Lens adjustment organization
50 LD2 emission period (measurement period)
51 OSC2 output
32c LD1 emission amount control amount signal
32d LD1 ON / OFF control signal
32e LD2 ON / OFF control signal
32f LD2 emission amount control amount signal
33a Temperature sensor signal
36a PD Side Sub-PD signal input
36b PD Side Sub-PD signal input
52 MPU
53 Display device
54a Operation switch (before meal)
54b Operation switch (after meal)
55 clock
56 ds calculated
57 dds final measurement result
58 dts curve
59 Flashing display Yanagi value
60 dds Display color Mapping

Claims (9)

  1.  発光部と受光部と制御部を有し、被測定部位における内部物質の濃度を測定する光学測定部と、前記測定結果を表示する表示部と外部に出力する通信機能を有する測定装置であって、
      前記発光部は、前記被測定部位に対して出射波長がそれぞれ第1波長、第2波長の単一波長で発光する光を個別に出力し、
      前記受光部は、前記被測定部位で測定部位内部を通過した前記光源からの光をそれぞれ検出し、
      前記制御部は演算処理部を備え、該演算処理部は測定部位内部を通過した光源からの光を前記第1波長、第2波長の前記測定部位内部を通過した光源からの光が前記被測定部位の前記被測定部位の内部の被測定物質にそれぞれ吸光された割合である第1吸光率、第2吸光率に換算し、該第2吸光率を第1吸光率を使って補正演算し
    これを制御部にて第1測定値として保持し、一定時間経過後再度同じ測定を行いこれを制御部において第2測定値として保持し、更に時間が経過後に同じ測定方法で測定した測定値を第3測定値として制御部に保持、
    第1測定値と第3測定値の差分を制御部にて前記被測定部位における測定物質の濃度変化として算出し、第1測定値と第2測定値の差分を第1測定値の測定時間から第2測定値を測定するまでの経過時間長にて時間変化率として演算し前記表示部に濃度変化量データ及び時間変化率データを前記表示部に出力することとそのデータを外部に通信によってデータを送出する機能を有する事を特徴とする非破壊測定装置。
    A measurement device having a light-emitting unit, a light-receiving unit, and a control unit, an optical measurement unit that measures the concentration of an internal substance in a measurement target site, a display unit that displays the measurement result, and a communication device that has a communication function of outputting to the outside. ,
    The light emitting unit individually outputs light emitted at a single wavelength of the first wavelength and the second wavelength to the measurement site, respectively,
    The light receiving unit detects light from the light source that has passed through the inside of the measurement site at the measurement site, respectively.
    The control unit includes an arithmetic processing unit, and the arithmetic processing unit converts the light from the light source that has passed through the inside of the measurement part into the first wavelength and the light from the light source that has passed through the inside of the measurement part having the second wavelength. The first absorbance and the second absorbance, which are the proportions of the substance to be measured inside the part to be measured, are converted into the first and second absorbances, and the second absorbance is corrected using the first absorbance. Is held as a first measurement value by the control unit, the same measurement is performed again after a lapse of a certain time, and this is held as a second measurement value by the control unit. 3 control values are stored in the control unit.
    The difference between the first measurement value and the third measurement value is calculated by the control unit as a change in the concentration of the measurement substance at the measurement site, and the difference between the first measurement value and the second measurement value is calculated from the measurement time of the first measurement value. Calculating the time change rate based on the elapsed time length until the second measurement value is measured and outputting the density change amount data and the time change rate data to the display unit to the display unit; A non-destructive measuring device characterized by having a function of transmitting a signal.
  2. 請求項1に示す濃度変化量データ及び時間変化率データの被測定部位における被測定物質が体内の血糖値とした非破壊測定装置 A non-destructive measuring device in which a substance to be measured at a measurement site of the concentration change amount data and the time change ratio data according to claim 1 is a blood glucose level in the body.
  3. 請求項1に示す濃度変化量データ及び時間変化率データを表示する機能を有する非破壊測定装置。 A nondestructive measurement device having a function of displaying the concentration change amount data and the time change rate data according to claim 1.
  4. 請求項1に示す濃度変化量データ及び時間変化率データを外部装置に出力するための通信機能を持つ非破壊測定装置。 A nondestructive measurement device having a communication function for outputting the concentration change amount data and the time change rate data according to claim 1 to an external device.
  5. 請求項1、請求項2に示す非破壊測定装置において、補正演算として請求項1における第2吸光率から第1吸光率を減算する事により測定値を求める事を特徴とする非破壊測定装置。 3. The non-destructive measuring device according to claim 1, wherein a measured value is obtained by subtracting the first absorbance from the second absorbance in claim 1 as a correction operation.
  6. 請求項1、請求項2に示す非破壊測定装置において、補正演算として請求項1における第2吸光率をと第1吸光率で除算演算する事により測定値を求める事を特徴とする非破壊測定装置。 The nondestructive measurement apparatus according to claim 1 or 2, wherein a measured value is obtained by dividing the second absorbance and the first absorbance in claim 1 as a correction operation. apparatus.
  7.  請求項1に示す濃度変化データ値と請求項1に示す時間変化率データ値を軸とする2次元のデータテーブルを持ち、測定された濃度変化データ値と、測定された時間変化率デーデータテーブルにあらかじめ設定されていた値から色へと変換する演算を行い請求項1に示す表示部に色を表示する機能を有する事を特徴とする請求項1から請求項6のいずれかに記載の非破壊検査装置。 A two-dimensional data table having axes of the density change data value shown in claim 1 and the time change data value shown in claim 1 as axes, wherein a measured density change data value and a measured time change rate data data table are provided. 7. The non-display device according to claim 1, further comprising a function of performing an operation of converting a value set in advance into a color and displaying the color on a display unit according to claim 1. Destructive inspection equipment.
  8.  被測定部位に照射する光の照射位置、角度を補正する機構を持つ事を特徴とする請求項1から7のいずれか1項に記載に記載の非破壊検査装置。 The nondestructive inspection apparatus according to any one of claims 1 to 7, further comprising a mechanism for correcting an irradiation position and an angle of light to be irradiated on the measured part.
  9.  光の出射部を被測定物質を含む被測定部位に一定の圧力をかける作用点として使用し、被測定部位に一定の圧力をかける構造を有し、被測定部位に一定の圧力を印加した状態で被測定部位の内部の被測定物質の測定する構造を持つ事を特徴とする請求項1から8のいずれか1項に記載の非破壊検査装置。
     
    A structure in which the light emitting part is used as an application point for applying a constant pressure to the measurement site including the substance to be measured, and a constant pressure is applied to the measurement site, and a constant pressure is applied to the measurement site 9. The nondestructive inspection apparatus according to claim 1, wherein the non-destructive inspection apparatus has a structure for measuring a substance to be measured inside a part to be measured.
PCT/JP2018/027299 2018-07-20 2018-07-20 Nondestructive inspection device WO2020017028A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880095412.4A CN112351735B (en) 2018-07-20 2018-07-20 Blood glucose level change measuring device
PCT/JP2018/027299 WO2020017028A1 (en) 2018-07-20 2018-07-20 Nondestructive inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027299 WO2020017028A1 (en) 2018-07-20 2018-07-20 Nondestructive inspection device

Publications (1)

Publication Number Publication Date
WO2020017028A1 true WO2020017028A1 (en) 2020-01-23

Family

ID=69164393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027299 WO2020017028A1 (en) 2018-07-20 2018-07-20 Nondestructive inspection device

Country Status (2)

Country Link
CN (1) CN112351735B (en)
WO (1) WO2020017028A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212114A (en) * 2000-02-02 2001-08-07 Matsushita Electric Ind Co Ltd Blood sugar meter
JP2001221803A (en) * 2000-02-09 2001-08-17 Omron Corp Apparatus for determining saccharometabolic capacity
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
WO2005107592A1 (en) * 2004-05-06 2005-11-17 Nippon Telegraph And Telephone Corporation Component concentration measuring device and method of controlling component concentration measuring device
JP2009142322A (en) * 2007-12-11 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2014018478A (en) * 2012-07-19 2014-02-03 Panasonic Corp Method and device for blood sugar level measurement

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE241315T1 (en) * 1993-08-12 2003-06-15 Kurashiki Boseki Kk NON-INVASIVE METHOD AND INSTRUMENT FOR MEASURING BLOOD SUGAR LEVELS
JPH11173977A (en) * 1997-12-16 1999-07-02 Matsushita Electric Ind Co Ltd Optical component meter
JP3692751B2 (en) * 1997-12-24 2005-09-07 松下電器産業株式会社 Blood glucose meter with diabetes judgment function
JP2000258343A (en) * 1999-03-12 2000-09-22 Mitsui Mining & Smelting Co Ltd Method and apparatus for measurement of blood sugar level
JP2000258344A (en) * 1999-03-12 2000-09-22 Mitsui Mining & Smelting Co Ltd Reference body for calibration in measurement of blood sugar level as well as method and apparatus for measurement of blood sugar level by using it
JP2002202258A (en) * 2000-12-28 2002-07-19 Bios Ikagaku Kenkyusho:Kk Spectroscopic blood sugar level measuring instrument
US20040142403A1 (en) * 2001-08-13 2004-07-22 Donald Hetzel Method of screening for disorders of glucose metabolism
US20060063983A1 (en) * 2002-03-25 2006-03-23 Ken-Ichi Yamakoshi Non-invasive blood component value measuring instrument and method
TW200411178A (en) * 2002-12-31 2004-07-01 Veutron Corp Method for determining the resolution of blood glucose by using rising time curve
TW592667B (en) * 2003-04-04 2004-06-21 Veutron Corp Method for determining the resolution of blood glucose
JP3612324B1 (en) * 2003-09-29 2005-01-19 株式会社日立製作所 Blood glucose level display method and apparatus
JP3557425B1 (en) * 2004-02-17 2004-08-25 株式会社日立製作所 Blood glucose meter
JP3557424B1 (en) * 2004-02-17 2004-08-25 株式会社日立製作所 Blood glucose meter
JP3590054B1 (en) * 2004-02-26 2004-11-17 株式会社日立製作所 Blood glucose measurement device
CN101305904B (en) * 2004-05-06 2010-12-15 日本电信电话株式会社 Constituent concentration measuring apparatus and control method
JP2008104751A (en) * 2006-10-27 2008-05-08 Sanyo Electric Co Ltd Blood-sugar level measuring instrument and method
JP2008113891A (en) * 2006-11-06 2008-05-22 Sanyo Electric Co Ltd Optical measurement unit
JP2009168670A (en) * 2008-01-17 2009-07-30 Sanyo Electric Co Ltd Optical measurement unit
CN102469962A (en) * 2009-07-28 2012-05-23 松下电工株式会社 Device for estimating blood sugar level
JP5839489B2 (en) * 2012-09-07 2016-01-06 日本電信電話株式会社 Component concentration measurement method
JP6415606B2 (en) * 2015-01-21 2018-10-31 国立研究開発法人量子科学技術研究開発機構 Blood substance concentration measuring device and blood substance concentration measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212114A (en) * 2000-02-02 2001-08-07 Matsushita Electric Ind Co Ltd Blood sugar meter
JP2001221803A (en) * 2000-02-09 2001-08-17 Omron Corp Apparatus for determining saccharometabolic capacity
JP2001356089A (en) * 2000-11-10 2001-12-26 Citizen Watch Co Ltd Concentration measuring instrument
WO2005107592A1 (en) * 2004-05-06 2005-11-17 Nippon Telegraph And Telephone Corporation Component concentration measuring device and method of controlling component concentration measuring device
JP2009142322A (en) * 2007-12-11 2009-07-02 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2014018478A (en) * 2012-07-19 2014-02-03 Panasonic Corp Method and device for blood sugar level measurement

Also Published As

Publication number Publication date
CN112351735B (en) 2024-01-30
CN112351735A (en) 2021-02-09

Similar Documents

Publication Publication Date Title
EP2207474B1 (en) Optical sensor for determining the concentration of an analyte
US8271063B2 (en) System and method for a non-invasive medical sensor
US5360004A (en) Non-invasive determination of analyte concentration using non-continuous radiation
US20050168722A1 (en) Device and method for measuring constituents in blood
JP2013523362A (en) Apparatus and method for determining biological, chemical and / or physiological parameters in biological tissue
JPH06319728A (en) Arterial blood monitoring probe
JP2000506258A (en) Near-infrared quantitative analysis method and equipment
JP2002095652A (en) Device of measuring concentration of light-absorbing material in blood
US20120057164A1 (en) Biological information measuring apparatus
JPH11183377A (en) Optical content meter
JP6807060B2 (en) Blood glucose level change measuring device
JP2010230662A (en) Component measuring device
EP1307708B1 (en) System and method for a self-calibrating non-invasive sensor
EP0623307A1 (en) Non-invasive determination of constituent concentration using non-continuous radiation
WO2020017028A1 (en) Nondestructive inspection device
JP3903147B2 (en) Non-destructive sugar content measuring device for fruits and vegetables
JP7123428B2 (en) Blood sugar change measuring device, blood sugar change measuring method, and blood sugar metabolism determination method
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
EP3203912B1 (en) System and method for a non-invasive medical sensor
EP3135198B1 (en) Pulse photometer and method for evaluating reliability of calculated value of blood light absorber concentration
CN110178006A (en) NDIR glucose detection in liquid
JP5403430B2 (en) Component measuring device
KR100300960B1 (en) Method and device for noninvasive determination of the concentrations of blood components
JP5477058B2 (en) Component measuring device
KR20070055614A (en) Instrument for noninvasively measuring blood sugar level

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP