JP2000258343A - Method and apparatus for measurement of blood sugar level - Google Patents

Method and apparatus for measurement of blood sugar level

Info

Publication number
JP2000258343A
JP2000258343A JP6707999A JP6707999A JP2000258343A JP 2000258343 A JP2000258343 A JP 2000258343A JP 6707999 A JP6707999 A JP 6707999A JP 6707999 A JP6707999 A JP 6707999A JP 2000258343 A JP2000258343 A JP 2000258343A
Authority
JP
Japan
Prior art keywords
value
wavelengths
absorbance
temperature
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6707999A
Other languages
Japanese (ja)
Inventor
Mitsuhiko Noda
光彦 野田
Mikio Kimura
美紀夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui and Co Ltd
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui and Co Ltd
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui and Co Ltd, Mitsui Mining and Smelting Co Ltd filed Critical Mitsui and Co Ltd
Priority to JP6707999A priority Critical patent/JP2000258343A/en
Publication of JP2000258343A publication Critical patent/JP2000258343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To relax a measuring condition when a blood sugar level is found by using the quadratic differential value of an absorbance and to enhance the measuring accuracy of the measurement of a noninvasive blood sugar level. SOLUTION: In a state that the flow of venous blood in a part F to be measured is stopped while a pressure force is made to act by a cuff 8, the part F, to be measured, in a living body is irradiated with near-infrared rays at near-field wavelengths λ1, λ2, λ3 from a light source 2. Intensities of transmitted rays at the three wavelengths λ1, λ2, λ3 are detected simultaneously by a photodetector 4. The temperature of the part F to be measured is measured by a temperature measuring device 9. In a computing and processing circuit 14, the quadratic differential value of the absorbance of the near-infrared rays n the part F to be measured is calculated on the basis of transmitted-light-intensity detection values which are obtained simultaneously regarding the three wavelengths. Its means value within a prescribed time is found, and it is corrected so as to correspond to a deviation from the reference temperature of a temperature detection value in the part F to be measured. A temperature-corrected mean value is found. A blood sugar level, in the living body, which corresponds to it is found.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体中の血糖値を
無侵襲で測定する方法及びその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for non-invasively measuring a blood glucose level in a living body.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】糖尿病
患者は、血糖値(一般的には血中グルコース濃度値)の
コントロールのためのインシュリン投与の目安を得るた
めに、頻繁に(たとえば1日に数回)血糖値を測定する
ことが要求されている。このような頻繁な測定のたびに
血液を採取することは患者にとって大きな苦痛となる。
そこで、患者から実際に血液を採取することなく即ち無
侵襲で血糖値を測定することが望まれており、そのため
の方法として、赤外光を患者の一部例えば耳たぶや手指
などの被測定部位に照射し、該被測定部位を透過した赤
外光を検出して、被測定部位による赤外線吸収の程度を
測定することが提案されている。この方法では、使用す
る赤外光の波長を適切に選択することで、被測定部位内
のグルコースによる赤外線吸収をかなりの程度反映した
吸光度値が得られ、この吸光度値に基づき血糖値を得
る。
2. Description of the Related Art Diabetics frequently (e.g., daily) receive an indication of insulin administration for controlling blood sugar levels (generally, blood glucose levels). It is required to measure the blood glucose level several times. Sampling blood at each such frequent measurement is a great pain for the patient.
Therefore, it is desired to measure the blood glucose level without actually collecting blood from the patient, that is, non-invasively, and as a method for this, infrared light is applied to a part of the patient, for example, a site to be measured such as an earlobe or a finger. It has been proposed to detect the infrared light transmitted through the measurement site and to measure the degree of infrared absorption by the measurement site. In this method, by appropriately selecting the wavelength of the infrared light to be used, an absorbance value that reflects the infrared absorption by glucose in the measurement site to a considerable extent is obtained, and a blood glucose value is obtained based on the absorbance value.

【0003】しかして、このような光学的な無侵襲血糖
値測定では、脈動などの影響により被測定部位の条件
(被測定部位を通過する赤外光の光路長など)は一定で
はなく変化しており、このような要因に基づき測定に或
る程度の誤差が伴うことは避けられない。この測定誤差
をできるだけ小さくすることが強く要望されている。
However, in such optical non-invasive blood glucose measurement, the condition of the measurement site (such as the optical path length of infrared light passing through the measurement site) is not constant but changes due to pulsation and the like. Therefore, it is inevitable that the measurement is accompanied by a certain error based on such factors. There is a strong demand for minimizing this measurement error.

【0004】測定誤差を小さくする1つの手法として、
吸光度自体から血糖値を測定するのではなく、吸光度の
2次微分値を用いて測定を行うことの可能性が指摘され
ている(特開平5−176917号公報参照)。この方
法では、互いに異なり且つ近接する3つの波長で吸光度
の測定を行い、これらの吸光度測定値から加減により算
出した2次微分に対応する変動分(吸光度2次微分値)
を血糖値測定に利用する。
[0004] One method for reducing the measurement error is as follows.
It has been pointed out that the measurement may be performed not by measuring the blood sugar level from the absorbance itself but by using a second derivative of the absorbance (see Japanese Patent Application Laid-Open No. 5-176917). In this method, the absorbance is measured at three wavelengths that are different and close to each other, and a variation (second absorbance value) corresponding to a second derivative calculated from these measured absorbance values by addition and subtraction.
Is used for blood glucose measurement.

【0005】しかし、吸光度2次微分値に基づき血糖値
測定を行う際にも、環境条件その他の測定条件が異なる
場合には測定される血糖値が異なりがちであり、従っ
て、測定精度の向上の観点からは環境条件その他の測定
条件をできるだけ一定に維持することが必要とされ、こ
のことが吸光度2次微分値に基づく血糖値測定を面倒な
ものとしている。
[0005] However, when measuring the blood sugar level based on the second derivative of the absorbance, the measured blood sugar level tends to be different when environmental conditions and other measurement conditions are different. From the viewpoint, it is necessary to keep environmental conditions and other measurement conditions as constant as possible, which complicates blood glucose measurement based on the second derivative of absorbance.

【0006】そこで、本発明の目的は、吸光度2次微分
値を用いて血糖値を求める際の測定条件を緩和しつつ、
無侵襲血糖値測定の測定精度を向上させることにある。
Accordingly, an object of the present invention is to relax the measurement conditions when obtaining a blood glucose level using the second derivative of the absorbance,
It is to improve the measurement accuracy of noninvasive blood glucose measurement.

【0007】[0007]

【課題を解決するための手段】本発明によれば、以上の
如き目的を達成するものとして、互いに異なり且つ近接
する3つの波長の近赤外光を生体の被測定部位に照射
し、該被測定部位を透過した前記3つの波長の透過光の
強度を検出し、これら3つの波長に関する透過光強度検
出値に基づき前記生体中の血糖値を求める血糖値測定方
法において、前記3つの波長の透過光の強度の検出とと
もに前記生体の温度の検出を行い、前記3つの波長に関
する透過光強度検出値から前記被測定部位による前記近
赤外光の吸光度の2次微分値を算出し、所定時間内にお
ける前記吸光度2次微分値の代表値を求め、前記生体温
度検出値の基準温度からのずれに対応して前記代表値を
補正して温度補正済代表値を求め、該温度補正済代表値
に相当する前記生体中の血糖値を求めることを特徴とす
る、血糖値測定方法、が提供される。
According to the present invention, in order to achieve the above-mentioned object, near-infrared light having three different wavelengths and being close to each other is irradiated to a site to be measured of a living body. In the blood sugar level measuring method for detecting the intensity of the transmitted light of the three wavelengths transmitted through the measurement site and obtaining the blood glucose level in the living body based on the detected transmitted light intensity values for the three wavelengths, the transmission of the three wavelengths is performed. The temperature of the living body is detected together with the detection of the light intensity, and the second derivative of the absorbance of the near-infrared light by the measured portion is calculated from the transmitted light intensity detection values for the three wavelengths, within a predetermined time. The representative value of the second derivative of the absorbance is obtained, and the representative value is corrected according to the deviation of the detected biological temperature from the reference temperature to obtain a temperature-corrected representative value. The corresponding organism And obtaining a blood glucose level of the blood glucose measuring method, it is provided.

【0008】本発明の一態様においては、前記生体温度
検出は、前記3つの波長とは異なる3つの波長の近赤外
光を用いて前記被測定部位による吸光度の2次微分値を
得、この吸光度2次微分値を検量線を用いて換算するこ
とにより行われる。
In one embodiment of the present invention, the living body temperature detection obtains a second derivative of the absorbance at the measurement site using near infrared light having three wavelengths different from the three wavelengths. It is performed by converting the second derivative of the absorbance using a calibration curve.

【0009】本発明の一態様においては、前記3つの波
長の透過光の強度の検出を同時に行い、同時に得た前記
透過光強度検出値に基づき前記吸光度2次微分値を算出
する。
In one embodiment of the present invention, the intensity of the transmitted light of the three wavelengths is simultaneously detected, and the second derivative of the absorbance is calculated based on the simultaneously detected transmitted light intensity.

【0010】本発明の一態様においては、前記吸光度2
次微分値の代表値として、前記吸光度2次微分値を所定
時間積分したものを前記所定時間で除して得られた値を
用いるか、あるいは、前記吸光度2次微分値の所定時間
内の最大値と最小値との平均値を用いる。
In one embodiment of the present invention, the absorbance 2
As a representative value of the second derivative, a value obtained by dividing the value obtained by integrating the second derivative of the absorbance for a predetermined time by the predetermined time is used, or the maximum value of the second derivative of the absorbance within a predetermined time is used. The average of the value and the minimum value is used.

【0011】本発明の一態様においては、前記生体に押
圧力を作用させることにより前記被測定部位の静脈血流
を停止させた状態で前記3つの波長の透過光の強度の検
出を行う。
In one aspect of the present invention, the intensity of the transmitted light of the three wavelengths is detected in a state where the venous blood flow at the measurement site is stopped by applying a pressing force to the living body.

【0012】本発明の一態様においては、前記被測定部
位を透過した3つの波長の透過光のうちの少なくとも1
つの強度の或る時間の積分値またはその時間平均値が所
定値の近傍になるように、前記被測定部位に入射する前
記3つの波長の近赤外光の強度を制御する。
In one embodiment of the present invention, at least one of the three wavelengths of transmitted light transmitted through the measurement site.
The intensity of the near-infrared light of the three wavelengths incident on the measurement site is controlled such that the integrated value of the three intensities over a certain period of time or the time average thereof is close to a predetermined value.

【0013】更に、本発明によれば、以上の如き目的を
達成するものとして、互いに異なり且つ近接する3つの
波長の近赤外光を生体の被測定部位に照射し、該被測定
部位を透過した前記3つの波長の透過光の強度を検出
し、これら3つの波長に関する透過光強度検出値に基づ
き前記生体中の血糖値を求める血糖値測定装置におい
て、前記3つの波長の近赤外光を発する光源と、該光源
から発せられ前記生体を透過した前記3つの波長の透過
光をそれぞれ検出する光検出器と、前記生体の温度を検
出する測温器と、前記光検出器から得られる前記3つの
波長に関する透過光強度検出値に基づく演算を行うこと
で前記被測定部位による前記近赤外光の吸光度の2次微
分値を算出し、所定時間内における前記吸光度2次微分
値の代表値を求め、前記生体温度検出値の基準温度から
のずれに対応して前記代表値を補正して温度補正済代表
値を求め、該温度補正済代表値に相当する前記生体中の
血糖値を求める演算処理手段とを備えていることを特徴
とする、血糖値測定装置、が提供される。
Further, according to the present invention, in order to achieve the above-mentioned object, near-infrared light having three different wavelengths and being close to each other is radiated to a measurement site of a living body and transmitted through the measurement site. In the blood glucose level measuring device that detects the intensity of the transmitted light of the three wavelengths and obtains the blood glucose level in the living body based on the transmitted light intensity detection values of the three wavelengths, the near infrared light of the three wavelengths is A light source that emits light, a photodetector that detects the transmitted light of the three wavelengths emitted from the light source and transmitted through the living body, a thermometer that detects the temperature of the living body, and the light detector that is obtained from the light detector A second derivative of the absorbance of the near-infrared light by the measurement site is calculated by performing an operation based on the detected values of the transmitted light intensities for the three wavelengths, and a representative value of the second derivative of the absorbance within a predetermined time is calculated. Seeking, before Arithmetic processing means for correcting the representative value in accordance with the deviation of the detected biological temperature from the reference temperature to obtain a temperature-corrected representative value, and obtaining a blood glucose level in the living body corresponding to the temperature-corrected representative value; A blood glucose level measuring device is provided, comprising:

【0014】本発明の一態様においては、前記測温手段
は、前記演算処理手段を利用するものであり、前記3つ
の波長とは異なる3つの波長の近赤外光を用いて前記被
測定部位による吸光度の2次微分値を得、この吸光度2
次微分値を検量線を用いて換算することにより前記被測
定部位の温度を測定するものである。
In one embodiment of the present invention, the temperature measuring means uses the arithmetic processing means, and uses the near-infrared light of three different wavelengths from the three wavelengths to measure the measured portion. To obtain the second derivative of the absorbance,
The temperature of the measurement site is measured by converting the next differential value using a calibration curve.

【0015】本発明の一態様においては、前記演算処理
手段は前記生体温度検出値の前記基準温度からのずれに
対応して温度補正係数を用いて前記代表値を補正するも
のである。
In one embodiment of the present invention, the arithmetic processing means corrects the representative value using a temperature correction coefficient in accordance with a deviation of the detected biological temperature from the reference temperature.

【0016】本発明の一態様においては、前記演算処理
手段は、前記吸光度2次微分値の代表値として、前記吸
光度2次微分値を所定時間積分したものを前記所定時間
で除して得られた値を用いるものであるか、あるいは、
前記吸光度2次微分値の所定時間内の最大値と最小値と
の平均値を用いるものである。
In one embodiment of the present invention, the arithmetic processing means is obtained by dividing a value obtained by integrating the second derivative of the absorbance for a predetermined time as a representative value of the second derivative of the absorbance by the predetermined time. Value, or
The average value of the maximum value and the minimum value of the second derivative of the absorbance within a predetermined time is used.

【0017】本発明の一態様においては、前記被測定部
位を透過した3つの波長の透過光のうちの少なくとも1
つの強度の所定時間の積分値またはその時間平均値が所
定値の近傍になるように、前記被測定部位に入射する前
記3つの波長の近赤外光の強度を制御する手段を有す
る。
In one embodiment of the present invention, at least one of the transmitted lights of the three wavelengths transmitted through the measurement site.
Means for controlling the intensity of the near-infrared light of the three wavelengths incident on the measurement site so that the integrated value of the three intensities for a predetermined time or the time average thereof is close to the predetermined value.

【0018】本発明の一態様においては、前記生体に対
して押圧力を作用させる手段を有する。
In one embodiment of the present invention, there is provided means for applying a pressing force to the living body.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本発明による血糖値測定方法の実施
される本発明の血糖値測定装置の一実施形態の構成を示
すブロック図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a blood sugar level measuring apparatus according to the present invention in which a blood sugar level measuring method according to the present invention is carried out.

【0021】図1において、2は光源であり、該光源は
互いに異なり且つ近接する3つの波長λ1,λ2,λ3
(λ1<λ2<λ3)の近赤外光を発する。波長λ1,
λ2,λ3としては、例えば、902nm、912nm
及び922nmを選択することができる。
In FIG. 1, reference numeral 2 denotes a light source. The light sources have three different wavelengths λ1, λ2, λ3 which are close to each other.
It emits near-infrared light of (λ1 <λ2 <λ3). Wavelength λ1,
As λ2 and λ3, for example, 902 nm, 912 nm
And 922 nm.

【0022】図2に、光源2の具体例を示す。図2
(a)のものは、波長λ1,λ2,λ3の近赤外光を含
む光を発するブロード光ランプ21を備えている。ラン
プ21から発せられた光のうちの一部は、被測定部位に
照射するための光として絞り22を通って前方(図2で
は右方)に出射される。ランプ21から発せられた光の
うちの他の一部は後方(図2では左方)のランプ光量モ
ニター23に入射する。モニター23の代わりに、絞り
22の前方に配置されたハーフミラー24と該ハーフミ
ラーによる反射光を検知するモニター25との組み合わ
せを用いることができる。モニター23,25からは光
量モニター電気信号が出力される。図2(b)のもの
は、波長λ1,λ2,λ3の近赤外光を発する半導体レ
ーザー26−1,26−2,26−3を備えている。こ
れらレーザーからは被測定部位に照射するための光が前
方(図2では右方)へと発せられる。また、半導体レー
ザー26−1,26−2,26−3からそれぞれ後方
(図2では左方)へと出射された光は光量モニター27
−1,27−2,27−3へと入射する。これらモニタ
ーからは光量モニター電気信号が出力される。レーザー
26−1,26−3から前方へと発せられた光は、それ
ぞれミラー28−1,28−2とハーフミラー29−
1,29−2とにより、レーザー26−2から前方へと
発せられた光と合成され、波長λ1,λ2,λ3の近赤
外光を含む1つの光束として前方へと出射される。
FIG. 2 shows a specific example of the light source 2. FIG.
1A includes a broad light lamp 21 that emits light including near-infrared light having wavelengths λ1, λ2, and λ3. Part of the light emitted from the lamp 21 is emitted forward (to the right in FIG. 2) through the stop 22 as light for irradiating the measured portion. Another part of the light emitted from the lamp 21 enters the rear (left side in FIG. 2) lamp light amount monitor 23. Instead of the monitor 23, a combination of a half mirror 24 disposed in front of the stop 22 and a monitor 25 for detecting light reflected by the half mirror can be used. Monitors 23 and 25 output light quantity monitor electric signals. 2B includes semiconductor lasers 26-1, 26-2, and 26-3 that emit near-infrared light having wavelengths λ1, λ2, and λ3. Light for irradiating the measurement site is emitted forward (to the right in FIG. 2) from these lasers. The light emitted from the semiconductor lasers 26-1, 26-2, and 26-3 to the rear (to the left in FIG. 2) is a light amount monitor 27.
-1, 27-2 and 27-3. These monitors output light quantity monitor electrical signals. Light emitted forward from the lasers 26-1 and 26-3 is reflected by the mirrors 28-1 and 28-2 and the half mirror 29-29, respectively.
The light emitted from the laser 26-2 is combined with the light emitted forward by the laser beams 1 and 29-2, and emitted forward as one light beam including near-infrared light having wavelengths λ1, λ2 and λ3.

【0023】図1において、4は光検出器であり、該光
検出器は上記光源2から発せられる光を受光し得る位置
に配置されている。光検出器4と光源2との間には、生
体例えば人体の被測定部位F例えば手指を配置するため
の被測定部位配置部6が存在しており、該被測定部位配
置部6内に挿入された被測定部位Fに対して空気圧印加
により所望の押圧力を作用させるためのカフ8が設けら
れている。尚、該カフ8としては、エアーポンプにより
エアー注入量を調節することで、適宜の時間、被測定部
位Fの動脈血流を維持しつつ静脈血流を停止(十分な抑
制をも含む)させた状態を維持することの可能なものを
用いるのが好ましい。カフ8は、少なくとも波長λ1,
λ2,λ3の近赤外光の通過経路では、該近赤外光を透
過させることが可能な材質からなるか或はこれら近赤外
光を透過させるような構造を有する。被測定部位Fの動
脈血流を維持しつつ静脈血流を停止させた状態を維持す
ることが可能なカフとしては、被測定部位Fを全体的に
包囲するものの他に、被測定部位Fよりも心臓に近い部
位(被測定部位Fが手指の先端部分である場合には当該
手指の根本部分)に巻回されるものを用いることも可能
である。被測定部位配置部6には、挿入された被測定部
位Fの表面温度を検出する接触式の測温器9が設けられ
ている(接触式の測温器の代わりに放射温度計を用いる
ことも可能である)。
In FIG. 1, reference numeral 4 denotes a photodetector, which is arranged at a position where it can receive the light emitted from the light source 2. Between the light detector 4 and the light source 2, there is a measurement site arrangement portion 6 for arranging a measurement site F of a living body, for example, a human body, for example, a finger, and is inserted into the measurement site arrangement portion 6. A cuff 8 for applying a desired pressing force to the measured portion F by applying air pressure is provided. In addition, the cuff 8 stops the venous blood flow (including sufficient suppression) while maintaining the arterial blood flow at the site F to be measured for an appropriate time by adjusting the air injection amount by an air pump. It is preferable to use one that can maintain the state. The cuff 8 has at least the wavelength λ1,
The passage of the near-infrared light of λ2 and λ3 is made of a material that can transmit the near-infrared light or has a structure that allows the transmission of the near-infrared light. As a cuff that can maintain a state in which venous blood flow is stopped while maintaining arterial blood flow in the measurement site F, besides the one that entirely surrounds the measurement site F, It is also possible to use a material wound around a part close to the heart (when the part F to be measured is the tip of a finger, the root part of the finger). A contact-type thermometer 9 that detects the surface temperature of the inserted measurement-target portion F is provided in the measurement-target-placement unit 6 (a radiation thermometer is used instead of the contact-type thermometer). Is also possible).

【0024】図3に、光検出器4の具体例を示す。光源
2から発せられ被測定部位配置部6に配置された被測定
部位Fを通過した波長λ1,λ2,λ3の近赤外光を含
む光は、回折格子31により分光され、波長λ1の光は
受光部32−1に入射し、波長λ2の光は受光部32−
2に入射し、波長λ3の光は受光部32−3に入射す
る。これら受光部からは光量検出電気信号が出力され
る。
FIG. 3 shows a specific example of the photodetector 4. The light including the near-infrared light of wavelengths λ1, λ2, and λ3 emitted from the light source 2 and passing through the measurement site F arranged in the measurement site arrangement unit 6 is separated by the diffraction grating 31, and the light of the wavelength λ1 is The light having the wavelength λ2 which is incident on the light receiving section 32-1 is
2, and the light having the wavelength λ3 enters the light receiving unit 32-3. These light receiving units output light quantity detection electric signals.

【0025】光源2として図2(a)のようなブロード
光を発するものを用いる場合には、該光源側において或
は光検出器側において、光路中に所望の波長λ1,λ
2,λ3のそれぞれの極く近傍の光のみを通過させるフ
ィルターを配置することができる。
When a light source that emits broad light as shown in FIG. 2A is used as the light source 2, the desired wavelengths λ1 and λ are provided in the optical path on the light source side or on the photodetector side.
It is possible to dispose a filter that passes only the light in the immediate vicinity of each of 2 and λ3.

【0026】光検出器4の3つの受光部32−1,32
−2,32−3の電気的出力(受光した光の強度に比例
する)は、それぞれ、図1に示されているように、増幅
率可変増幅器10−1,10−2,10−3により増幅
され、A/D変換器12−1,12−2,12−3によ
りA/D変換され、演算処理回路14に入力される。ま
た、光源2の光量モニター23,25,27−1,27
−2,27−3の出力も、A/D変換された上で演算処
理回路14に入力される。更に、測温器9の出力も、A
/D変換された上で演算処理回路14に入力される。
The three light receiving sections 32-1 and 32-2 of the photodetector 4
The electrical outputs (proportional to the intensity of the received light) of −2 and 32-3 are respectively supplied from variable gain amplifiers 10-1, 10-2 and 10-3 as shown in FIG. The signal is amplified, A / D converted by the A / D converters 12-1, 12-2, and 12-3, and input to the arithmetic processing circuit 14. Also, the light amount monitors 23, 25, 27-1, 27 of the light source 2
Outputs of −2 and 27-3 are also input to the arithmetic processing circuit 14 after being A / D converted. Further, the output of the thermometer 9 is also A
After being / D converted, it is input to the arithmetic processing circuit 14.

【0027】演算処理回路14において、血糖値測定は
次のようにして行われる。
In the arithmetic processing circuit 14, the blood sugar level is measured as follows.

【0028】被測定部位Fに入射する波長λの光の強度
をI0 (λ)とし、被測定部位Fを透過した波長λの光
の強度をI(λ)とすると、被測定部位Fの吸光度AB
S(λ)はln(I0 (λ)/I(λ))で求められ
る。入射光強度I0 (λ)は光源光量モニター27−
1,27−2,27−3の出力に所定の係数を乗ずるこ
とで得られる(光量モニター23,25の場合には、各
波長λ1,λ2,λ3ごとの所定係数を乗ずることで得
られる)。この吸光度ABS(λ)は、被測定部位Fの
脈動に対応して周期的に変化する。即ち、被測定部位F
は体組織部とそこを流れる動脈血流及び静脈血流とを含
んでおり、脈動により透過光路長が変動し、更に透過光
路内における成分構成比も変動し、これが吸光度ABS
(λ)の周期的変化をもたらす。
Assuming that the intensity of light of wavelength λ incident on the site F to be measured is I 0 (λ) and the intensity of light of wavelength λ transmitted through the site F to be measured is I (λ), Absorbance AB
S (λ) is obtained by ln (I 0 (λ) / I (λ)). The incident light intensity I 0 (λ) is measured by a light source light amount monitor 27−
It is obtained by multiplying the outputs of 1, 27-2, 27-3 by a predetermined coefficient (in the case of the light amount monitors 23, 25, it is obtained by multiplying the outputs by the predetermined coefficients for each of the wavelengths λ1, λ2, λ3). . This absorbance ABS (λ) periodically changes in accordance with the pulsation of the measurement site F. That is, the measured portion F
Includes a body tissue portion and arterial blood flow and venous blood flow flowing therethrough, the pulsation changes the transmitted light path length, and the component composition ratio in the transmitted light path also changes.
(Λ).

【0029】本実施形態では、波長λ1,λ2,λ3の
それぞれに関して、例えば10〜20msec程度ごと
の高速サンプリングで並行して得られたI0 (λ),I
(λ)に基づき、吸光度ABS(λ1),ABS(λ
2),ABS(λ3)を算出する。この吸光度ABS
(λ1),ABS(λ2),ABS(λ3)に基づき、
吸光度2次微分値ABS”(λ2)を算出する。吸光度
2次微分値ABS”(λ2)は、 ABS”(λ2)=[ABS(λ1)−ABS(λ2)] −[ABS(λ2)−ABS(λ3)] =[ABS(λ1)+ABS(λ3)]−2ABS(λ) として得られる。λ2−λ1=λ3−λ2=Δとし、λ
2=λとすれば、 ABS”(λ)=[ABS(λ−Δ)+ABS(λ+
Δ)]−2ABS(λ) である。上記のようにΔは例えば10nmとすることが
でき或は5nmとすることも可能である。
In the present embodiment, for each of the wavelengths λ1, λ2, and λ3, I 0 (λ), I 0 (λ) obtained in parallel by high-speed sampling, for example, about every 10 to 20 msec.
Based on (λ), absorbance ABS (λ1), ABS (λ
2), ABS (λ3) is calculated. This absorbance ABS
(Λ1), ABS (λ2), ABS (λ3)
Calculate the second derivative of the absorbance ABS ”(λ2). The second derivative of the absorbance ABS” (λ2) is calculated as: ABS ”(λ2) = [ABS (λ1) −ABS (λ2)] − [ABS (λ2) − ABS (λ3)] = [ABS (λ1) + ABS (λ3)] − 2ABS (λ), where λ2−λ1 = λ3−λ2 = Δ, and λ
If 2 = λ, ABS ”(λ) = [ABS (λ−Δ) + ABS (λ +
Δ)]-2 ABS (λ). As described above, Δ may be, for example, 10 nm or may be 5 nm.

【0030】吸光度2次微分値は、グルコースによる光
吸収が光の波長により変動することを利用し、この波長
による変動ができるだけ大きく現れる波長域の近接した
3つの波長を選択して、吸光度の波長2次微分に相当す
る値として定義されるものである。
The second derivative of the absorbance is determined by taking advantage of the fact that the light absorption by glucose fluctuates according to the wavelength of light, and selecting three wavelengths close to each other in a wavelength range where the fluctuation due to this wavelength appears as large as possible. It is defined as a value corresponding to the second derivative.

【0031】図4に吸光度ABS(λ)及び吸光度2次
微分値ABS”(λ)の時間変化の例を示す。尚、この
例は、エアーポンプによりカフ8へのエアー注入量を調
節することで、被測定部位Fの動脈血流を維持しつつ静
脈血流を停止させた状態を維持した時のものである。上
記のように、10〜20msec程度ごとの高速サンプ
リングに基づき同時に得られた吸光度ABS(λ1),
ABS(λ2),ABS(λ3)どうしを用いて、各サ
ンプリング時点での吸光度2次微分値ABS”(λ)が
得られ、この吸光度2次微分値ABS”(λ)は時間と
共に図4のように変化する。図4において、(a)と
(b)とは異なる測定対象(被測定部位F)に関するも
のである。
FIG. 4 shows an example of a temporal change of the absorbance ABS (λ) and the second derivative of the absorbance ABS ″ (λ). In this example, the amount of air injected into the cuff 8 by an air pump is adjusted. This is a case where the state where the venous blood flow is stopped while maintaining the arterial blood flow at the site F to be measured is obtained at the same time based on the high-speed sampling about every 10 to 20 msec as described above. Absorbance ABS (λ1),
Using ABS (λ2) and ABS (λ3), a second derivative of the absorbance ABS ”(λ) at each sampling point is obtained, and the second derivative of the absorbance ABS ″ (λ) is obtained with time in FIG. To change. In FIG. 4, (a) and (b) relate to a different measurement target (measurement site F).

【0032】演算処理回路14では、所定時間内(図4
における時刻TSからTEまで)における吸光度2次微
分値ABS”(λ)の代表値を求める。この代表値とし
て平均値P[図4(a)におけるPaや図4(b)にお
けるPb]を用いることができる。この平均値Pは、A
BS”(λ)を所定時間積分したものを所定時間で除す
ることで求められ、簡便には所定時間内のABS”
(λ)の最大値と最小値との平均値で代用することもで
きる。所定時間は、脈動の1周期以上の時間であればよ
いが、測定精度の点から数個の脈動を含む時間であるこ
とが好ましい。具体的には、この所定時間を例えば2〜
5秒程度とすることができ、この所定時間中、上記カフ
による静脈血流のみ停止の状態を維持する。
In the arithmetic processing circuit 14, within a predetermined time (FIG. 4)
(From time TS to TE) at step (A), a representative value of the second derivative of the absorbance ABS ”(λ) is determined. As the representative value, the average value P [Pa in FIG. 4A or Pb in FIG. The average value P is represented by A
It is obtained by dividing a value obtained by integrating BS "(λ) for a predetermined time by a predetermined time.
The average value of the maximum value and the minimum value of (λ) can be used instead. The predetermined time may be a time equal to or more than one cycle of pulsation, but is preferably a time including several pulsations from the viewpoint of measurement accuracy. Specifically, this predetermined time is, for example, 2 to
It can be about 5 seconds, and during this predetermined time, the state where only the venous blood flow by the cuff is stopped is maintained.

【0033】上記図4(a),(b)に示されているよ
うに、吸光度2次微分値ABS”(λ)の平均値Pa,
Pbは互いに異なる。これら平均値の相違は、先ず第1
に被測定部位Fの血糖値の相違に基づくものである。吸
光度2次微分値ABS”(λ)の平均値Pと血糖値との
関係は、生体外及び生体内の実験により得られた実測デ
ータから最小自乗法などを用いて、検量線として予め決
定することができる。図5に、吸光度2次微分値AB
S”(λ)と血糖値との関係の検量線の一例(或る温度
[基準温度とする]で得られたもの)を示す。ここで
は、図示されている実測値に基づき1次近似で得た直線
状の検量線M1を示している。
As shown in FIGS. 4 (a) and 4 (b), the average value Pa,
Pb is different from each other. The difference between these averages is first
This is based on the difference in the blood sugar level of the measurement site F. The relationship between the average value P of the second derivative of the absorbance ABS ”(λ) and the blood sugar level is determined in advance as a calibration curve from the actually measured data obtained by in vitro and in vivo experiments using the least square method or the like. Fig. 5 shows the second derivative AB of the absorbance.
An example of a calibration curve of the relationship between S ″ (λ) and blood glucose level (obtained at a certain temperature [reference temperature]) is shown here by a first-order approximation based on the actual measurement values shown in the figure. The obtained linear calibration curve M1 is shown.

【0034】但し、吸光度2次微分値ABS”(λ)や
その平均値Pは、測定条件たとえば被測定部位Fの温度
が周囲環境条件に応じて変動した場合には変動するもの
である。従って、平均値Pと血糖値との関係は、被測定
部位Fの温度に応じて変化する。そこで、本実施形態で
は、測定時における被測定部位Fの温度を一定に維持す
る管理を不要とするために、上記測温器9により得られ
た被測定部位Fの温度に応じた平均値Pの補正を行う。
However, the absorbance second derivative ABS "(λ) and its average value P fluctuate when the measurement conditions, for example, the temperature of the site F to be measured fluctuate in accordance with the surrounding environment conditions. , The relationship between the average value P and the blood glucose level changes according to the temperature of the measurement site F. Therefore, in the present embodiment, it is not necessary to manage to maintain the temperature of the measurement site F constant during measurement. For this purpose, the average value P according to the temperature of the measured portion F obtained by the temperature measuring device 9 is corrected.

【0035】即ち、演算処理回路14では、測温器9か
ら入力される被測定部位Fの温度Tと基準温度T0 との
温度差分dT(=T−T0 )を算出し、この温度差分d
Tに予め記憶されている波長λ(=λ2)における平均
値Pのための温度補正係数Cを乗じた補正値C・dTを
求める。
That is, the arithmetic processing circuit 14 calculates a temperature difference dT (= T−T 0 ) between the temperature T of the measured portion F input from the temperature measuring device 9 and the reference temperature T 0, and calculates this temperature difference. d
A correction value C · dT is obtained by multiplying T by a temperature correction coefficient C for an average value P at a wavelength λ (= λ2) stored in advance.

【0036】図6に、温度補正係数Cを得るために試験
により得られた被測定部位Fの温度と吸光度2次微分値
との関係の一例を示す。このような関係は、次のように
して得ることができる。即ち、吸光度2次微分値は被測
定部位温度と相関をもっており、その相関係数は吸光度
2次微分値を得る際に用いた波長(例えば3つの波長の
うちの中心波長)に応じて変化する。図7はこの相関図
を示す。上記λ1,λ2,λ3とは異なる波長域で大き
な相関係数が得られる中心波長(例えば1000nm)
とこの中心波長に近接した2つの波長(例えば990n
mと1010nm)とを選択し、これらの波長を用いて
得られる吸光度2次微分値と被測定部位温度との関係を
実験により求めると、図6のような関係が得られる。図
6から、吸光度2次微分値は温度に対してほぼ直線Eで
近似することができることがわかる。この直線の傾きに
対応するものとして、上記補正係数Cが求められる。
FIG. 6 shows an example of the relationship between the temperature of the measured portion F and the second derivative of the absorbance obtained by a test in order to obtain the temperature correction coefficient C. Such a relationship can be obtained as follows. That is, the second derivative of the absorbance has a correlation with the temperature of the portion to be measured, and the correlation coefficient changes according to the wavelength (for example, the center wavelength among the three wavelengths) used to obtain the second derivative of the absorbance. . FIG. 7 shows this correlation diagram. A center wavelength (for example, 1000 nm) at which a large correlation coefficient is obtained in a wavelength range different from λ1, λ2, λ3.
And two wavelengths close to this center wavelength (for example, 990n
m and 1010 nm), and the relationship between the second derivative of absorbance obtained using these wavelengths and the temperature of the portion to be measured is obtained by an experiment, whereby the relationship shown in FIG. 6 is obtained. FIG. 6 shows that the second derivative of the absorbance can be approximated by a straight line E with respect to the temperature. The correction coefficient C is determined as corresponding to the inclination of this straight line.

【0037】そして、演算処理回路14では、上記図5
の検量線を用いて血糖値を求める際に、吸光度2次微分
値の平均値として、上記実測値に基づく演算で得られた
補正前吸光度2次微分値ABS”(λ)の平均値Pに対
して上記補正値C・dTを加えた補正済平均値P’を用
いる。即ち、演算により、 P’=P+C・ΔT を得、図5の検量線M1を用いてP’に対応する温度補
正済血糖値を得ることができる。
Then, in the arithmetic processing circuit 14, FIG.
When the blood glucose level is obtained using the calibration curve, the average value of the absorbance secondary differential value ABS ″ (λ) obtained by the calculation based on the actual measurement value is used as the average value of the absorbance secondary differential value. On the other hand, the corrected average value P ′ obtained by adding the correction value C · dT is used, that is, P ′ = P + C · ΔT is obtained by the calculation, and the temperature correction corresponding to P ′ is performed using the calibration curve M1 in FIG. The blood sugar level can be obtained.

【0038】尚、上記測温器9による被測定部位Fの温
度測定に代えて、中心波長1000nmでの吸光度2次
微分値を求めることで、上記図6に直線Eで示される関
係を検量線として利用して換算を行うことにより、被測
定部位Fの温度を得ることができる。この場合には、光
源2としてこれらの波長域の光を持つものを使用し、光
検出器4としてこれらの波長域の光を検知し得るもの
(受光部32−1〜32−3に加えて更に3つの受光部
を持つもの)を使用し、演算処理回路14で吸光度2次
微分値(中心波長1000nm)を算出すればよい。こ
れによれば、測温器9及びそれに付随する機器を省略す
ることができる。
The relationship shown by the straight line E in FIG. 6 is obtained by calculating the second derivative of the absorbance at a center wavelength of 1000 nm instead of measuring the temperature of the measurement site F by the temperature measuring device 9. The temperature of the measured portion F can be obtained by performing the conversion using In this case, a light source having a light in these wavelength ranges is used as the light source 2, and a light detector 4 capable of detecting light in these wavelength ranges (in addition to the light receiving units 32-1 to 32-3). Further, a second derivative of absorbance (center wavelength: 1000 nm) may be calculated by the arithmetic processing circuit 14 using a light receiving unit having three light receiving units. According to this, the temperature measuring device 9 and the accompanying devices can be omitted.

【0039】以上のようにして温度補正を行うことで、
被測定部位Fの温度によらず測定誤差の少ない血糖値が
得られる。従って、測定精度の向上のために温度条件を
一定に維持する努力は必要ではなくなり、簡易に高精度
の血糖値測定を行うことができる。また、演算処理回路
14は、基準温度での吸光度2次微分値ABS”(λ)
と血糖値との関係の検量線及び温度補正係数に基づき温
度補正を行うので、温度ごとに吸光度2次微分値AB
S”(λ)と血糖値との関係を示す別々の検量線を用意
する必要がない。
By performing the temperature correction as described above,
A blood glucose level with a small measurement error is obtained irrespective of the temperature of the measurement site F. Therefore, it is not necessary to make an effort to keep the temperature conditions constant in order to improve the measurement accuracy, and high-accuracy blood sugar level measurement can be easily performed. Further, the arithmetic processing circuit 14 calculates the second derivative of the absorbance ABS ”(λ) at the reference temperature.
Temperature is corrected based on the calibration curve and the temperature correction coefficient of the relationship between the blood glucose level and the blood glucose level.
It is not necessary to prepare a separate calibration curve indicating the relationship between S ″ (λ) and the blood glucose level.

【0040】以上のような演算処理回路14の血糖値測
定動作のフロー図を図8に示す。即ち、概略的には、演
算処理回路14では、ステップS1において吸光度AB
S(λ1)〜ABS(λ3)を算出し、ステップS2に
おいて吸光度2次微分値ABS”(λ2)を算出し、ス
テップS3において吸光度2次微分値ABS”(λ2)
の所定時間内での平均値Pを算出し、ステップS4にお
いて検知温度と基準温度との差に基づく平均値Pの補正
値C・dTを算出し、ステップS5において補正済平均
値P’を算出し、ステップS6において検量線を用いて
温度補正済の血糖値へと換算する。
FIG. 8 is a flowchart of the blood sugar level measurement operation of the arithmetic processing circuit 14 as described above. That is, roughly, in the arithmetic processing circuit 14, in step S1, the absorbance AB
S (λ1) to ABS (λ3) are calculated, and a second derivative of absorbance ABS ”(λ2) is calculated in step S2, and a second derivative of absorbance ABS” (λ2) is calculated in step S3.
, A correction value C · dT of the average value P based on the difference between the detected temperature and the reference temperature is calculated in step S4, and a corrected average value P ′ is calculated in step S5. Then, in step S6, the blood glucose level is converted into a temperature-corrected blood glucose level using a calibration curve.

【0041】本実施形態の動作は、不図示の制御部によ
り制御される。この制御は、上記のような演算処理回路
の動作の制御の他に、図1の制御経路Xを介して行われ
る光源2のランプ21や半導体レーザー26−1〜26
−3の発光強度の制御あるいは光源2の絞り22の制
御、図1の制御経路Yを介して行われるカフ圧の制御、
図1の制御経路Zを介して行われる増幅器10−1,1
0−2,10−3の増幅率の制御である。
The operation of this embodiment is controlled by a control unit (not shown). This control is performed by controlling the operation of the arithmetic processing circuit as described above, and also by controlling the lamp 21 of the light source 2 and the semiconductor lasers 26-1 to 26-2 via the control path X in FIG.
-3 control of the light emission intensity or control of the stop 22 of the light source 2, control of the cuff pressure performed through the control path Y in FIG.
Amplifiers 10-1 and 10-1 performed via control path Z in FIG.
This is control of the amplification factors of 0-2 and 10-3.

【0042】被測定部位Fの寸法には固体差があるの
で、光検出器4で検出された波長λ1,λ2,λ3の透
過光のうちの少なくとも1つの強度の或る時間の積分値
またはその時間平均値が予め定められた所定値の近傍に
なるように、光源2から発せられる波長λ1,λ2,λ
3の光の強度を制御経路Xを介して制御することがで
き、これにより光検出器4での検出条件を一定に維持す
ることができる。尚、この制御は、被測定部位Fが変わ
るごとに最初に行えばよい。
Since there is an individual difference in the size of the portion to be measured F, the integrated value of the intensity of at least one of the transmitted lights of the wavelengths λ1, λ2, λ3 detected by the photodetector 4 for a certain time or the integrated value thereof. Wavelengths λ1, λ2, λ emitted from the light source 2 so that the time average value is close to a predetermined value.
The intensity of the light of No. 3 can be controlled via the control path X, whereby the detection conditions of the photodetector 4 can be kept constant. Note that this control may be performed first each time the measurement site F changes.

【0043】脈動する被測定部位Fに対してカフ8によ
り押圧力を作用させるように制御経路Yを介して制御し
て波長λ1,λ2,λ3の透過光の検出を行うことによ
り、被測定部位Fを固定して検出条件を一定に維持する
ことができる。
By controlling the pulsating measured portion F via the control path Y so as to apply a pressing force by the cuff 8 and detecting the transmitted light of the wavelengths λ1, λ2, λ3, the measured portion F is obtained. By fixing F, the detection condition can be kept constant.

【0044】制御経路Zを介して増幅器10−1,10
−2,10−3の増幅率を制御することで、演算処理系
の処理条件を所望に設定することができる。
The amplifiers 10-1 and 10-1 are connected via the control path Z.
By controlling the amplification factors of −2 and 10−3, the processing conditions of the arithmetic processing system can be set as desired.

【0045】[0045]

【発明の効果】以上説明したように、本発明の血糖値測
定方法及びその装置によれば、所定時間内における吸光
度2次微分値代表値を求め、該代表値を生体温度検出値
の基準温度からのずれに対応して補正して温度補正済代
表値を求め、この温度補正済代表値に相当する血糖値を
求めるので、温度による測定誤差の発生を極力少なくで
き、温度条件を一定に維持することなく簡易に無侵襲血
糖値測定の測定精度を向上させることが可能となる。
As described above, according to the blood sugar level measuring method and apparatus of the present invention, the representative value of the second derivative of the absorbance within a predetermined time is obtained, and the representative value is used as the reference temperature of the detected biological temperature. The temperature-corrected representative value is obtained by correcting for the deviation from the temperature, and the blood glucose level corresponding to the temperature-corrected representative value is obtained. Therefore, the occurrence of measurement errors due to temperature can be minimized, and the temperature condition is kept constant. It is possible to easily improve the measurement accuracy of the noninvasive blood glucose level measurement without performing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による血糖値測定方法の実施される本発
明の血糖値測定装置の一実施形態の構成を示すブロック
図である。
FIG. 1 is a block diagram showing a configuration of an embodiment of a blood sugar level measuring device of the present invention in which a blood sugar level measuring method according to the present invention is performed.

【図2】図1の装置における光源の具体例を示す模式図
である。
FIG. 2 is a schematic diagram showing a specific example of a light source in the apparatus of FIG.

【図3】図1の装置における光検出器の具体例を示す模
式図である。
FIG. 3 is a schematic diagram showing a specific example of a photodetector in the apparatus of FIG.

【図4】図1の装置において得られた吸光度値ABS
(λ)及び吸光度2次微分値ABS”(λ)の例を示す
図である。
FIG. 4 shows absorbance values ABS obtained in the apparatus of FIG.
FIG. 9 is a diagram illustrating an example of (λ) and a second derivative of the absorbance ABS ″ (λ).

【図5】図1の装置において用いられる吸光度2次微分
値ABS”(λ)と血糖値との関係の検量線の一例を示
す図である。
FIG. 5 is a diagram showing an example of a calibration curve of a relationship between a second derivative of absorbance ABS ″ (λ) and a blood sugar level used in the apparatus of FIG. 1;

【図6】温度と吸光度2次微分値ABS”(λ)との関
係の一例を示す図である。
FIG. 6 is a diagram illustrating an example of a relationship between a temperature and a second derivative of absorbance ABS ”(λ).

【図7】吸光度2次微分値と被測定部位温度との相関の
波長依存性を示す図である。
FIG. 7 is a diagram showing the wavelength dependence of the correlation between the second derivative of the absorbance and the temperature of the portion to be measured.

【図8】図1の装置における演算処理回路の血糖値測定
動作を示す図である。
FIG. 8 is a diagram showing a blood sugar level measuring operation of the arithmetic processing circuit in the apparatus of FIG. 1;

【符号の説明】[Explanation of symbols]

2 光源 4 光検出器 6 被測定部位配置部 8 カフ 9 測温器 10−1〜10−3 増幅率可変増幅器 12−1〜12−3 A/D変換器 21 ランプ 22 絞り 23 モニター 24 ハーフミラー 25 モニター 26−1〜26−3 半導体レーザー 27−1〜27−3 モニター 28−1,28−2 ミラー 29−1,29−2 ハーフミラー 31 回折格子 32−1〜32−3 受光部 F 被測定部位 Reference Signs List 2 light source 4 photodetector 6 portion to be measured 8 cuff 9 temperature detector 10-1 to 10-3 variable amplification rate amplifier 12-1 to 12-3 A / D converter 21 lamp 22 aperture 23 monitor 24 half mirror 25 Monitor 26-1 to 26-3 Semiconductor laser 27-1 to 27-3 Monitor 28-1, 28-2 Mirror 29-1, 29-2 Half mirror 31 Diffraction grating 32-1 to 32-3 Light receiving unit F Measurement site

フロントページの続き Fターム(参考) 2G045 AA01 CA25 CB30 DA31 FA12 FA25 FA29 GC10 JA01 JA02 2G059 AA01 AA05 BB12 CC16 DD01 EE01 EE11 FF04 GG01 GG03 GG05 HH01 HH06 JJ05 JJ13 JJ22 KK03 LL03 MM03 MM05 MM09 MM12 NN05 PP04 4C038 KK10 KL07 KM01 KM03 KX02Continued on the front page F term (reference) 2G045 AA01 CA25 CB30 DA31 FA12 FA25 FA29 GC10 JA01 JA02 2G059 AA01 AA05 BB12 CC16 DD01 EE01 EE11 FF04 GG01 GG03 GG05 HH01 HH06 JJ05 JJ13 JJ22 KK03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 MM03 KX02

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 互いに異なり且つ近接する3つの波長の
近赤外光を生体の被測定部位に照射し、該被測定部位を
透過した前記3つの波長の透過光の強度を検出し、これ
ら3つの波長に関する透過光強度検出値に基づき前記生
体中の血糖値を求める血糖値測定方法において、 前記3つの波長の透過光の強度の検出とともに前記生体
の温度の検出を行い、前記3つの波長に関する透過光強
度検出値から前記被測定部位による前記近赤外光の吸光
度の2次微分値を算出し、所定時間内における前記吸光
度2次微分値の代表値を求め、前記生体温度検出値の基
準温度からのずれに対応して前記代表値を補正して温度
補正済代表値を求め、該温度補正済代表値に相当する前
記生体中の血糖値を求めることを特徴とする、血糖値測
定方法。
1. A near-infrared light having three different wavelengths and being close to each other is irradiated on a measurement site of a living body, and the intensities of the transmitted light of the three wavelengths transmitted through the measurement site are detected. A blood glucose level measuring method for determining a blood glucose level in the living body based on the transmitted light intensity detection values for the three wavelengths, wherein the temperature of the living body is detected together with the detection of the transmitted light intensities of the three wavelengths. A second derivative of the absorbance of the near-infrared light by the measured site is calculated from the transmitted light intensity detection value, a representative value of the second derivative of the absorbance within a predetermined time is obtained, and a reference value of the biological temperature detection value is obtained. A method for correcting the representative value corresponding to the deviation from the temperature, obtaining a temperature-corrected representative value, and obtaining a blood glucose value in the living body corresponding to the temperature-corrected representative value. .
【請求項2】 前記生体温度検出は、前記3つの波長と
は異なる3つの波長の近赤外光を用いて前記被測定部位
による吸光度の2次微分値を得、この吸光度2次微分値
を検量線を用いて換算することにより行われることを特
徴とする、請求項1に記載の血糖値測定方法。
2. The living body temperature detection uses a near-infrared light of three wavelengths different from the three wavelengths to obtain a second derivative of the absorbance of the measurement site, and calculates the second derivative of the absorbance. The blood glucose level measuring method according to claim 1, wherein the method is performed by performing conversion using a calibration curve.
【請求項3】 前記3つの波長の透過光の強度の検出を
同時に行い、同時に得た前記透過光強度検出値に基づき
前記吸光度2次微分値を算出することを特徴とする、請
求項1〜2のいずれかに記載の血糖値測定方法。
3. The detection of the intensity of the transmitted light of the three wavelengths is performed simultaneously, and the second derivative of the absorbance is calculated based on the detected value of the transmitted light intensity obtained at the same time. 3. The blood glucose level measuring method according to any one of 2.
【請求項4】 前記吸光度2次微分値の代表値として、
前記吸光度2次微分値を所定時間積分したものを前記所
定時間で除して得られた値を用いることを特徴とする、
請求項1〜3のいずれかに記載の血糖値測定方法。
4. As a representative value of the second derivative of the absorbance,
Using a value obtained by dividing the value obtained by integrating the second derivative of the absorbance for a predetermined time by the predetermined time,
The blood glucose level measuring method according to claim 1.
【請求項5】 前記吸光度2次微分値の代表値として、
前記吸光度2次微分値の所定時間内の最大値と最小値と
の平均値を用いることを特徴とする、請求項1〜3のい
ずれかに記載の血糖値測定方法。
5. As a representative value of the second derivative of the absorbance,
The blood sugar level measuring method according to any one of claims 1 to 3, wherein an average value of a maximum value and a minimum value of the second derivative of the absorbance within a predetermined time is used.
【請求項6】 前記生体に押圧力を作用させることによ
り前記被測定部位の静脈血流を停止させた状態で前記3
つの波長の透過光の強度の検出を行うことを特徴とす
る、請求項1〜5のいずれかに記載の血糖値測定方法。
6. The apparatus according to claim 3, wherein the venous blood flow at the measurement site is stopped by applying a pressing force to the living body.
The blood glucose level measuring method according to any one of claims 1 to 5, wherein the intensity of transmitted light having two wavelengths is detected.
【請求項7】 前記被測定部位を透過した3つの波長の
透過光のうちの少なくとも1つの強度の或る時間の積分
値またはその時間平均値が所定値の近傍になるように、
前記被測定部位に入射する前記3つの波長の近赤外光の
強度を制御することを特徴とする、請求項1〜6のいず
れかに記載の血糖値測定方法。
7. An integrated value of the intensity of at least one of the three wavelengths of transmitted light transmitted through the portion to be measured for a certain time or a time average thereof is close to a predetermined value.
The blood glucose level measuring method according to any one of claims 1 to 6, wherein the intensity of the near-infrared light of the three wavelengths incident on the measurement site is controlled.
【請求項8】 互いに異なり且つ近接する3つの波長の
近赤外光を生体の被測定部位に照射し、該被測定部位を
透過した前記3つの波長の透過光の強度を検出し、これ
ら3つの波長に関する透過光強度検出値に基づき前記生
体中の血糖値を求める血糖値測定装置において、 前記3つの波長の近赤外光を発する光源と、該光源から
発せられ前記生体を透過した前記3つの波長の透過光を
それぞれ検出する光検出器と、前記生体の温度を検出す
る測温手段と、前記光検出器から得られる前記3つの波
長に関する透過光強度検出値に基づく演算を行うことで
前記被測定部位による前記近赤外光の吸光度の2次微分
値を算出し、所定時間内における前記吸光度2次微分値
の代表値を求め、前記生体温度検出値の基準温度からの
ずれに対応して前記代表値を補正して温度補正済代表値
を求め、該温度補正済代表値に相当する前記生体中の血
糖値を求める演算処理手段とを備えていることを特徴と
する、血糖値測定装置。
8. Irradiating near-infrared light having three different wavelengths and approaching each other on a measured portion of a living body, detecting the intensities of the transmitted light of the three wavelengths transmitted through the measured portion, A blood sugar level measuring device for determining a blood sugar level in the living body based on the transmitted light intensity detection values for the three wavelengths, wherein: a light source that emits near-infrared light of the three wavelengths; and the three light sources emitted from the light source and transmitted through the living body. A photodetector for detecting transmitted light of three wavelengths, a temperature measuring means for detecting the temperature of the living body, and an arithmetic operation based on the transmitted light intensity detection values for the three wavelengths obtained from the photodetector. A second derivative of the absorbance of the near-infrared light by the measured portion is calculated, a representative value of the second derivative of the absorbance within a predetermined time is obtained, and a deviation of the detected biological temperature from a reference temperature is calculated. And the representative The correction to seek the temperature corrected representative value, characterized in that an arithmetic processing means for calculating a blood glucose level in said living body corresponding to the temperature corrected representative values, blood glucose measuring device.
【請求項9】 前記測温手段は、前記演算処理手段を利
用するものであり、前記3つの波長とは異なる3つの波
長の近赤外光を用いて前記被測定部位による吸光度の2
次微分値を得、この吸光度2次微分値を検量線を用いて
換算することにより前記被測定部位の温度を測定するも
のであることを特徴とする、請求項8に記載の血糖値測
定装置。
9. The temperature measuring means uses the arithmetic processing means, and uses near-infrared light of three wavelengths different from the three wavelengths to calculate the absorbance of the part to be measured.
The blood glucose level measuring device according to claim 8, wherein the second differential value is obtained, and the temperature of the measurement site is measured by converting the second differential value of the absorbance using a calibration curve. .
【請求項10】 前記演算処理手段は前記生体温度検出
値の前記基準温度からのずれに対応して温度補正係数を
用いて前記代表値を補正するものであることを特徴とす
る、請求項8〜9のいずれかに記載の血糖値測定装置。
10. The apparatus according to claim 8, wherein the arithmetic processing means corrects the representative value using a temperature correction coefficient in accordance with a deviation of the detected biological temperature from the reference temperature. 10. The blood glucose level measuring device according to any one of claims 9 to 9.
【請求項11】 前記演算処理手段は、前記吸光度2次
微分値の代表値として、前記吸光度2次微分値を所定時
間積分したものを前記所定時間で除して得られた値を用
いるものであることを特徴とする、請求項8〜10のい
ずれかに記載の血糖値測定装置。
11. The arithmetic processing means uses, as a representative value of the second derivative of the absorbance, a value obtained by dividing a value obtained by integrating the second derivative of the absorbance for a predetermined time by the predetermined time. The blood glucose level measuring device according to any one of claims 8 to 10, wherein the blood glucose level measuring device is provided.
【請求項12】 前記演算処理手段は、前記吸光度2次
微分値の代表値として、前記吸光度2次微分値の所定時
間内の最大値と最小値との平均値を用いるものであるこ
とを特徴とする、請求項8〜10のいずれかに記載の血
糖値測定装置。
12. The arithmetic processing means uses an average value of a maximum value and a minimum value of the second derivative of the absorbance within a predetermined time as a representative value of the second derivative of the absorbance. The blood sugar level measuring device according to any one of claims 8 to 10.
【請求項13】 前記被測定部位を透過した3つの波長
の透過光のうちの少なくとも1つの強度の所定時間の積
分値またはその時間平均値が所定値の近傍になるよう
に、前記被測定部位に入射する前記3つの波長の近赤外
光の強度を制御する手段を有することを特徴とする、請
求項8〜12のいずれかに記載の血糖値測定装置。
13. The part to be measured such that an integrated value or an average of the time of the intensity of at least one of the three wavelengths of transmitted light transmitted through the part to be measured is close to the predetermined value. The blood glucose level measuring device according to any one of claims 8 to 12, further comprising: means for controlling the intensity of the near-infrared light having the three wavelengths incident on the blood glucose meter.
【請求項14】 前記生体に対して押圧力を作用させる
手段を有することを特徴とする、請求項8〜13のいず
れかに記載の血糖値測定装置。
14. The blood glucose level measuring device according to claim 8, further comprising means for applying a pressing force to the living body.
JP6707999A 1999-03-12 1999-03-12 Method and apparatus for measurement of blood sugar level Pending JP2000258343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6707999A JP2000258343A (en) 1999-03-12 1999-03-12 Method and apparatus for measurement of blood sugar level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6707999A JP2000258343A (en) 1999-03-12 1999-03-12 Method and apparatus for measurement of blood sugar level

Publications (1)

Publication Number Publication Date
JP2000258343A true JP2000258343A (en) 2000-09-22

Family

ID=13334520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6707999A Pending JP2000258343A (en) 1999-03-12 1999-03-12 Method and apparatus for measurement of blood sugar level

Country Status (1)

Country Link
JP (1) JP2000258343A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954661B2 (en) 2003-06-23 2005-10-11 Hitachi, Ltd. Blood sugar level measuring apparatus
EP1484006B1 (en) * 2003-05-07 2005-10-12 Hitachi, Ltd. Blood sugar level measuring apparatus
EP1642524A1 (en) * 2004-09-29 2006-04-05 Hitachi, Ltd. Method and apparatus for measuring blood sugar levels
US7120478B2 (en) 2003-07-11 2006-10-10 Hitachi, Ltd. Blood sugar level measuring apparatus
US7156810B2 (en) 2003-10-08 2007-01-02 Hitachi, Ltd. Blood sugar level measuring method and apparatus
US7215983B2 (en) 2004-06-30 2007-05-08 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251515B2 (en) 2004-02-17 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251514B2 (en) 2004-02-26 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251517B2 (en) 2004-06-30 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7254427B2 (en) 2003-09-24 2007-08-07 Hitachi, Ltd. Optical measurements apparatus and blood sugar level measuring apparatus using the same
US7254428B2 (en) 2004-02-17 2007-08-07 Hitachi, Ltd. Blood sugar level measuring apparatus
CN101799412A (en) * 2010-04-07 2010-08-11 中国科学院自动化研究所 Near infrared spectral transmission method and device for non-invasive measurement of blood sugar for human body
KR101494902B1 (en) 2008-07-15 2015-02-23 엘지전자 주식회사 Apparatus and method for noninvasively measuring blood sugar
CN107343791A (en) * 2017-08-14 2017-11-14 上海乐糖信息科技有限公司 Noninvasive dynamics monitoring device
CN108152244A (en) * 2017-12-15 2018-06-12 京东方科技集团股份有限公司 A kind of blood sugar detection apparatus and blood sugar detecting method
US10786186B2 (en) 2016-06-30 2020-09-29 Samsung Electronics Co., Ltd. Non-invasive biometric sensor based on organic photodetector
CN112351735A (en) * 2018-07-20 2021-02-09 桐生电子开发有限责任公司 Nondestructive measuring device
CN112450919A (en) * 2020-11-11 2021-03-09 云南省第一人民医院 Blood glucose monitoring device for evaluating nighttime hypoglycemia of type 2 diabetes patients
CN113349768A (en) * 2020-02-20 2021-09-07 株式会社理光 Measurement device and biological information measurement device
CN117084677A (en) * 2023-10-17 2023-11-21 广东百年医疗健康科技发展有限公司 Multidimensional PPG blood glucose value estimation method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7254430B2 (en) 2003-05-07 2007-08-07 Hitachi, Ltd. Measuring apparatus for measuring a metabolic characteristic in a human body
EP1484006B1 (en) * 2003-05-07 2005-10-12 Hitachi, Ltd. Blood sugar level measuring apparatus
US7254426B2 (en) 2003-05-07 2007-08-07 Hitachi, Ltd. Blood sugar level measuring apparatus
US6954661B2 (en) 2003-06-23 2005-10-11 Hitachi, Ltd. Blood sugar level measuring apparatus
US7120478B2 (en) 2003-07-11 2006-10-10 Hitachi, Ltd. Blood sugar level measuring apparatus
US7254427B2 (en) 2003-09-24 2007-08-07 Hitachi, Ltd. Optical measurements apparatus and blood sugar level measuring apparatus using the same
US7156810B2 (en) 2003-10-08 2007-01-02 Hitachi, Ltd. Blood sugar level measuring method and apparatus
US7251515B2 (en) 2004-02-17 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7254428B2 (en) 2004-02-17 2007-08-07 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251514B2 (en) 2004-02-26 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
US7215983B2 (en) 2004-06-30 2007-05-08 Hitachi, Ltd. Blood sugar level measuring apparatus
US7251517B2 (en) 2004-06-30 2007-07-31 Hitachi, Ltd. Blood sugar level measuring apparatus
EP1642524A1 (en) * 2004-09-29 2006-04-05 Hitachi, Ltd. Method and apparatus for measuring blood sugar levels
KR101494902B1 (en) 2008-07-15 2015-02-23 엘지전자 주식회사 Apparatus and method for noninvasively measuring blood sugar
CN101799412A (en) * 2010-04-07 2010-08-11 中国科学院自动化研究所 Near infrared spectral transmission method and device for non-invasive measurement of blood sugar for human body
US11690542B2 (en) 2016-06-30 2023-07-04 Samsung Electronics Co., Ltd. Non-invasive biometric sensor based on organic photodetector
US10786186B2 (en) 2016-06-30 2020-09-29 Samsung Electronics Co., Ltd. Non-invasive biometric sensor based on organic photodetector
CN107343791A (en) * 2017-08-14 2017-11-14 上海乐糖信息科技有限公司 Noninvasive dynamics monitoring device
CN107343791B (en) * 2017-08-14 2024-01-30 上海乐糖信息科技有限公司 Noninvasive blood glucose detection device
CN108152244A (en) * 2017-12-15 2018-06-12 京东方科技集团股份有限公司 A kind of blood sugar detection apparatus and blood sugar detecting method
US11678818B2 (en) 2017-12-15 2023-06-20 Boe Technology Group Co., Ltd. Blood glucose detection device and method of determining blood glucose level
CN112351735A (en) * 2018-07-20 2021-02-09 桐生电子开发有限责任公司 Nondestructive measuring device
CN112351735B (en) * 2018-07-20 2024-01-30 桐生电子开发有限责任公司 Blood glucose level change measuring device
CN113349768A (en) * 2020-02-20 2021-09-07 株式会社理光 Measurement device and biological information measurement device
CN112450919A (en) * 2020-11-11 2021-03-09 云南省第一人民医院 Blood glucose monitoring device for evaluating nighttime hypoglycemia of type 2 diabetes patients
CN112450919B (en) * 2020-11-11 2022-11-04 云南省第一人民医院 Blood glucose monitoring device for evaluating nighttime hypoglycemia of type 2 diabetes patients
CN117084677A (en) * 2023-10-17 2023-11-21 广东百年医疗健康科技发展有限公司 Multidimensional PPG blood glucose value estimation method
CN117084677B (en) * 2023-10-17 2023-12-19 广东百年医疗健康科技发展有限公司 Multidimensional PPG blood glucose value estimation method

Similar Documents

Publication Publication Date Title
JP3763687B2 (en) Blood glucose level measuring device
JP2000258343A (en) Method and apparatus for measurement of blood sugar level
JP3590409B2 (en) Self-luminous non-invasive infrared spectrophotometer with temperature compensation
US8175666B2 (en) Three diode optical bridge system
US7003337B2 (en) Non-invasive substance concentration measurement using and optical bridge
US5137023A (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
US6097975A (en) Apparatus and method for noninvasive glucose measurement
US6741876B1 (en) Method for determination of analytes using NIR, adjacent visible spectrum and discrete NIR wavelenths
US5112124A (en) Method and apparatus for measuring the concentration of absorbing substances
CN101346099B (en) A non-invasive system and method for measuring skin hydration of a subject
JPWO2006040841A1 (en) Non-invasive measuring device for blood glucose level
JP2002369814A (en) Noninvasive hemoglobin density and oxygen saturation degree monitoring method and device therefor
WO2006079797A2 (en) Apparatus for measurement of analyte concentration
EP1214577A1 (en) Method for determination of analytes using nir, adjacent visible spectrum and discrete nir wavelengths
WO2009102549A1 (en) Apparatus and method for non-invasive measurement of the concentration of a substance in a subject&#39;s blood
EP2259713A1 (en) Apparatus and method using light retro-reflected from a retina to non- invasively measure the blood concentration of a substance
JP5400483B2 (en) Component concentration analyzer and component concentration analysis method
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
JP2000258344A (en) Reference body for calibration in measurement of blood sugar level as well as method and apparatus for measurement of blood sugar level by using it
KR20070055614A (en) Instrument for noninvasively measuring blood sugar level
CN112351735B (en) Blood glucose level change measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080327