WO2020016912A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2020016912A1
WO2020016912A1 PCT/JP2018/026648 JP2018026648W WO2020016912A1 WO 2020016912 A1 WO2020016912 A1 WO 2020016912A1 JP 2018026648 W JP2018026648 W JP 2018026648W WO 2020016912 A1 WO2020016912 A1 WO 2020016912A1
Authority
WO
WIPO (PCT)
Prior art keywords
outdoor
indoor
air
blower
control device
Prior art date
Application number
PCT/JP2018/026648
Other languages
French (fr)
Japanese (ja)
Inventor
伸哲 上原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/026648 priority Critical patent/WO2020016912A1/en
Priority to JP2020530750A priority patent/JPWO2020016912A1/en
Publication of WO2020016912A1 publication Critical patent/WO2020016912A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/12Vibration or noise prevention thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/87Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units
    • F24F11/871Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling absorption or discharge of heat in outdoor units by controlling outdoor fans

Definitions

  • the present invention relates to an air conditioner, and more particularly to drive control of an outdoor unit blower.
  • the duct through which the air to be conveyed flows is a duct having a different wind path resistance such as various shapes and branch flows of the installation site.
  • the required rotation speed of the blower according to the different air path resistance is calculated by the calculation at the installation site situation, and the air flow control unit will set the required air volume to the set air volume. Executed.
  • the blower control unit knows the deviation of the current actual airflow from the set airflow so that the airflow at the time of air conditioning becomes a preset airflow, and controls the rotation speed of the blower by feedback control to eliminate the deviation. (See, for example, Patent Document 1).
  • the rotation speed of the blower is controlled so as to compensate for a deviation in the actual air flow in order to satisfy a target set air flow.
  • the noise value may be deteriorated due to the fan characteristics.
  • the heat exchanger required for air conditioning may cause fin clogging due to use over time, which may result in an increase in blast pressure loss.
  • the operating point of the blower fan changes due to the increase of the blower pressure loss, resulting in deterioration of noise.
  • the present invention has been made in order to solve the problems as described above, and an air conditioner that suppresses noise deterioration due to aging of clogging in heat exchanger fins for installation environment and installation conditions or air conditioning heat exchange.
  • the purpose is to gain.
  • the air conditioner according to the present invention annularly includes a compressor that compresses a refrigerant, an outdoor heat exchanger that is disposed in an outdoor unit, an expansion valve that decompresses the refrigerant, and an indoor heat exchanger that is disposed indoors.
  • a connected refrigeration cycle an indoor blower for supplying indoor air to the indoor heat exchanger, an outdoor blower fan and outdoor fan motor for supplying outdoor air to the outdoor heat exchanger, and input of air conditioning conditions desired by the user.
  • the outdoor unit control device includes a torque calculating unit that calculates the torque of the outdoor fan motor, and an aerodynamic noise based on the torque calculated by the torque calculating unit.
  • a noise level estimating means for estimating a value, a, and controls the rotational speed of the outdoor blower fan such that the estimated noise value calculated by the noise level estimation means becomes a predetermined noise value.
  • the air conditioner of the present invention includes an indoor blower that supplies indoor air to an indoor heat exchanger, an outdoor blower fan and an outdoor fan motor that supply outdoor air to an outdoor heat exchanger, and an air conditioning condition desired by a user.
  • a remote controller for input, an indoor unit controller for rotating the indoor blower in response to a signal from the remote controller, and an outdoor unit for transmitting and receiving operation information signals to and from the indoor unit controller to rotate the outdoor blower fan and the outdoor fan motor
  • a control device, the outdoor unit control device includes a torque calculation unit that calculates a torque of the outdoor fan motor, and a noise value estimation unit that estimates an aerodynamic noise value from the torque calculated by the torque calculation unit.
  • the noise of the outdoor unit is emphasized. To the user, an effect that is suppressed noise deterioration due to aging of the installation environment and installation conditions or heat exchanger fins clogging.
  • FIG. 2 is a configuration diagram of a refrigerant circuit of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • 4 is a flowchart illustrating a control flow of driving an outdoor blower fan of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing air volume-static pressure characteristics and air volume-aerodynamic noise characteristics of a blowing fan of the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram for illustrating air volume-static pressure characteristics and air volume-aerodynamic noise characteristics of a blowing fan of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing air volume-static pressure characteristics and air volume-aerodynamic noise characteristics of a blowing fan of the air conditioner according to Embodiment 1 of the present invention.
  • FIG. FIGS. 1 to 5 illustrate an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 1 is a configuration diagram of a refrigerant circuit schematically showing a configuration of a refrigerant circuit
  • FIG. 2 is an air conditioner.
  • FIG. 3 to FIG. 5 are diagrams showing the air volume-static pressure characteristics and the air volume-aerodynamic noise characteristics of the outdoor unit blower fan.
  • the air conditioner includes an outdoor unit 1 and an indoor unit 2 connected to each other by a refrigerant pipe 15.
  • the outdoor unit 1 has a compressor 11 capable of changing the operation frequency (compressor operation frequency) for compressing the refrigerant, a four-way valve for switching the flow direction of the refrigerant, and outdoor heat for exchanging heat with outdoor air.
  • An exchanger 12, an outdoor blower fan 131 and an outdoor blower motor 132 for supplying outdoor air to the outdoor heat exchanger 12, and an expansion valve 14 for expanding the refrigerant are provided.
  • the indoor unit 2 is provided with an indoor heat exchanger 21 that exchanges heat with indoor air and an indoor blower 22 that supplies indoor air to the indoor heat exchanger 21.
  • the outdoor unit 1 and the indoor unit 2 are connected by a gas-side connection refrigerant pipe and a liquid-side connection refrigerant pipe, and the refrigerant circulates.
  • refrigerant used in the air conditioner examples include HFC refrigerants such as R410A, R407C, R404A, and R32, HFO refrigerants such as R1234yf, mixed refrigerants of HFO refrigerants and HFC refrigerants such as R32, and carbon dioxide ( CO2), hydrocarbons, natural refrigerants such as helium, propane and the like.
  • HFC refrigerants such as R410A, R407C, R404A, and R32
  • HFO refrigerants such as R1234yf
  • mixed refrigerants of HFO refrigerants and HFC refrigerants such as R32
  • carbon dioxide ( CO2) hydrocarbons
  • natural refrigerants such as helium, propane and the like.
  • the refrigerant discharged from the compressor 11 flows in the order of the four-way valve, the outdoor heat exchanger 12, the expansion valve 14, and the indoor heat exchanger 6, and again the four-way valve.
  • a refrigerant circuit returning to the compressor 11 via the valve is formed, and a refrigeration cycle is executed.
  • the refrigerant discharged from the compressor 11 flows in the order of the four-way valve, the indoor heat exchanger 21, the expansion valve 14, and the outdoor heat exchanger 3, and again passes through the four-way valve 2.
  • a refrigerant circuit returning to the compressor 1 is formed, and a refrigeration cycle is executed.
  • the remote controller 3, the indoor unit control unit 23 of the indoor unit 2, and the outdoor unit control unit 16 of the outdoor unit 1 are connected by a communication line, and transmit and receive operation control information to each other to set a user setting condition. Air conditioning control is performed so as to satisfy the conditions.
  • the air conditioner is provided with various sensors such as a discharge pipe temperature sensor, an outdoor heat exchanger temperature sensor, an outdoor air temperature sensor, an indoor heat exchanger temperature sensor, and an indoor suction temperature sensor (not shown).
  • the air conditioner uses the detected temperatures detected by these temperature sensors to control the driving of the actuators and blower fans provided in the refrigerant circuit so as to satisfy the indoor air conditioning conditions set by the user through the remote controller 3. I do.
  • the indoor unit control unit 23 uses the indoor suction temperature detected by the indoor suction temperature sensor and the indoor heat exchanger temperature detected by the indoor heat exchanger temperature sensor so that the indoor air conditioning becomes a comfortable environment.
  • the rotation of the indoor blower 22 according to the temperature of the exchanger is performed.
  • the outdoor heat exchanger 12 that exchanges heat with the outdoor air of the outdoor unit 1 is a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins. It functions as a refrigerant condenser and functions as a refrigerant evaporator during the heating operation.
  • the outdoor blower fan 131 and the outdoor blower fan motor 132 that supply outdoor air to the outdoor heat exchanger 12 are fans that can change the flow rate of supplied air, and are driven by, for example, a DC motor. It has a function of sucking outdoor air into the outdoor unit 1 and discharging the air that has exchanged heat with the refrigerant by the outdoor heat exchanger 12 to the outside.
  • the outdoor unit control unit 16 receives the operation command information from the indoor unit control unit 23, and detects the outdoor air suction temperature detected by the outdoor air temperature sensor, the discharge pipe temperature sensor, and the outdoor heat exchanger temperature sensor. A valve opening for changing the operating frequency of the compressor 11 and the throttle amount of the expansion valve 14 so that the circulating refrigerant required for indoor air conditioning is in an appropriate state using the refrigerant temperature of each part of the circulating refrigerant. And the number of rotations of the outdoor blower fan motor 132 is controlled to drive each of them.
  • the control operation of the outdoor unit controller 16 will be described with reference to the flowchart of FIG. 2 illustrating the driving of the outdoor unit blower fan of the air conditioner.
  • the current flowing through the outdoor blower fan motor 132 is detected using a current sensor or a current detection device using a current transformer (S1).
  • Tq is the generated shaft torque
  • IL the detected fan motor current
  • f1 the torque-current characteristic function of the fan motor.
  • N is the rotation speed of the outdoor blower fan
  • f2 is the airflow-torque characteristic function of the outdoor blower fan
  • f3 is the airflow-static pressure characteristic function of the outdoor blower fan
  • f4 is the airflow-aerodynamic noise function function of the outdoor blower fan.
  • the aerodynamic noise value SPL0 (operating point B in FIG. 5) and the pressure loss are stored in advance without the installation or fin clogging external pressure loss (pressure loss characteristics indicated by the solid line in the figure).
  • N ′ is the fan rotation speed calculated so that the aerodynamic noise value is SPL0
  • Ps ′ is the generated static pressure when the fan rotation speed is N ′
  • Q ′ is the fan rotation speed. Is the air volume when N becomes N '
  • the horizontal axis indicates the fan airflow Q
  • the vertical axis indicates the fan static pressure Ps and the aerodynamic noise value SPL
  • the solid line indicates the blower characteristics at the time of installation and no fin clogging external pressure loss
  • the dotted line indicates the actual fan characteristics. The blower characteristics when the installation fin is clogged and the external pressure loss of the machine is shown.
  • the case where the fan rotation speed is N is indicated by a solid line
  • the case where the fan rotation speed decreases from N and becomes N ′ is indicated by a dotted line.
  • FIG. 3 illustrates a characteristic change when the external pressure loss of the blower fan due to heat exchanger fin clogging or the like changes.
  • the horizontal axis indicates the fan airflow Q
  • the vertical axis indicates the fan static pressure Ps and the aerodynamic noise value SPL.
  • the solid line indicates the case where there is no external pressure loss of the fin clogging machine
  • the dotted line indicates the actual installation fin clogging machine. This shows the characteristics when there is an external pressure loss.
  • the pressure loss characteristics in the figure change from the solid line to the dotted line to increase the pressure loss resistance, and at the same rotation speed, the air volume decreases and the noise value decreases. Will rise.
  • the rotation speed of the blower fan is reduced so that the increased noise value SPL0 is reduced to the noise value SPL at the time when there is no fin clogging external pressure loss (indicated by the arrow in FIG. 3). Accordingly, the fan airflow also changes in a decreasing direction.
  • Nnew N + ⁇ * (N'-N).
  • is a relaxation coefficient for converging the aerodynamic noise value to SPL0. Then, after the fan motor is driven at the fan rotation speed Nnew, this control operation is repeated.
  • the aerodynamic noise value is suppressed to a value equivalent to the case where there is no external pressure loss. Therefore, it is possible to provide an air conditioner that suppresses noise deterioration due to the installation form or aging clogging of fins for a user who attaches importance to the noise of the outdoor unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The air conditioner of the present invention has an outdoor unit control device that receives operation information from an indoor unit control device and rotationally drives an outdoor blower fan and an outdoor fan motor, wherein the outdoor unit control device that rotationally drives the outdoor fan motor: comprises a torque calculation means for calculating the torque of the outdoor fan motor and a noise value estimation means for estimating an aerodynamic noise value on the basis of the torque calculated by the torque calculation means; and controls the rotational speed of the outdoor blower fan such that the estimated noise value calculated by the noise value estimation means reaches a prescribed noise value.

Description

空気調和装置Air conditioner
 この発明は、空気調和装置に関し、特に、室外機送風機の駆動制御に関するものである。 発 明 The present invention relates to an air conditioner, and more particularly to drive control of an outdoor unit blower.
 一般に、空気調和装置の送風機駆動運転において、例えば、ダクト接続型空気調和装置であれば搬送される空気が流通するダクトが設置現場の様々な形状や分流など風路抵抗が異なるダクトとなるため、適正な空調を実施するための要求風量を満足するように、設置現場の状況で異なる風路抵抗に応じた送風機の必要な回転速度を演算により求めて、送風制御部で設定風量となるように実行処理される。 In general, in the blower driving operation of the air conditioner, for example, if the duct connection type air conditioner, the duct through which the air to be conveyed flows is a duct having a different wind path resistance such as various shapes and branch flows of the installation site, In order to satisfy the required air volume for performing appropriate air conditioning, the required rotation speed of the blower according to the different air path resistance is calculated by the calculation at the installation site situation, and the air flow control unit will set the required air volume to the set air volume. Executed.
 その送風制御部では、空調時の風量が予め設定された設定風量となるように、設定風量に対する現在の実風量のずれを知り、そのずれを解消するようフィードバック制御にて送風機の回転速度を制御することが開示されている(例えば、特許文献1参照)。 The blower control unit knows the deviation of the current actual airflow from the set airflow so that the airflow at the time of air conditioning becomes a preset airflow, and controls the rotation speed of the blower by feedback control to eliminate the deviation. (See, for example, Patent Document 1).
特開2016-166698号公報JP 2016-166698 A
 しかしながら、特許文献1に記載された空気調和装置では、目標となる設定風量を満たすためには実風量のずれを補うように送風機の回転速度を制御するが、要求風量を満足する反面、送風抵抗や送風機特性から騒音値の悪化が懸念されるという問題がある。また、空気調和に必要な熱交換器が経年の使用によるフィン目詰まりを起こし、それに伴い送風圧損が増加することがある。この送風圧損の増加により送風ファンの動作点が変化して騒音の悪化を招くという問題もある。 However, in the air conditioner described in Patent Literature 1, the rotation speed of the blower is controlled so as to compensate for a deviation in the actual air flow in order to satisfy a target set air flow. There is a problem that the noise value may be deteriorated due to the fan characteristics. In addition, the heat exchanger required for air conditioning may cause fin clogging due to use over time, which may result in an increase in blast pressure loss. There is also a problem that the operating point of the blower fan changes due to the increase of the blower pressure loss, resulting in deterioration of noise.
 この発明は、上記のよう課題を解決するためになされたもので、設置環境や設置条件あるいは空調熱交換のための熱交換器フィンにおける目詰まりの経年変化による騒音悪化を抑制した空気調和装置を得ることを目的とする。 The present invention has been made in order to solve the problems as described above, and an air conditioner that suppresses noise deterioration due to aging of clogging in heat exchanger fins for installation environment and installation conditions or air conditioning heat exchange. The purpose is to gain.
 この発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、室外機に配される室外熱交換器と、冷媒を減圧する膨張弁と、室内に配される室内熱交換器とを環状に接続した冷凍サイクルと、室内の空気を室内熱交換器に供給する室内送風機と、室外の空気を室外熱交換器に供給する室外送風ファンおよび室外ファンモータと、ユーザーが所望する空調条件を入力するリモコンと、リモコンからの信号を受けて室内送風機を回転駆動させる室内機制御装置と、室内機制御装置と運転情報の信号を送受信して室外送風ファンおよび室外ファンモータを回転駆動させる室外機制御装置とを有した空気調和装置において、室外機制御装置は、室外ファンモータのトルクを演算するトルク演算手段と、トルク演算手段より演算されたトルクから空力騒音値を推定する騒音値推定手段と、を備え、騒音値推定手段により算出された推定騒音値が所定の騒音値となるように室外送風ファンの回転数を制御するものである。 The air conditioner according to the present invention annularly includes a compressor that compresses a refrigerant, an outdoor heat exchanger that is disposed in an outdoor unit, an expansion valve that decompresses the refrigerant, and an indoor heat exchanger that is disposed indoors. A connected refrigeration cycle, an indoor blower for supplying indoor air to the indoor heat exchanger, an outdoor blower fan and outdoor fan motor for supplying outdoor air to the outdoor heat exchanger, and input of air conditioning conditions desired by the user. A remote controller, an indoor unit controller that rotates the indoor blower in response to a signal from the remote controller, and an outdoor unit controller that transmits and receives a signal of operation information to and from the indoor unit controller to rotate the outdoor blower fan and the outdoor fan motor In the air conditioner having an air conditioner, the outdoor unit control device includes a torque calculating unit that calculates the torque of the outdoor fan motor, and an aerodynamic noise based on the torque calculated by the torque calculating unit. Comprising a noise level estimating means for estimating a value, a, and controls the rotational speed of the outdoor blower fan such that the estimated noise value calculated by the noise level estimation means becomes a predetermined noise value.
 この発明の空気調和装置は、室内の空気を室内熱交換器に供給する室内送風機と、室外の空気を室外熱交換器に供給する室外送風ファンおよび室外ファンモータと、ユーザーが所望する空調条件を入力するリモコンと、リモコンからの信号を受けて室内送風機を回転駆動させる室内機制御装置と、室内機制御装置と運転情報の信号を送受信して室外送風ファンおよび室外ファンモータを回転駆動させる室外機制御装置とを有し、該室外機制御装置は、室外ファンモータのトルクを演算するトルク演算手段と、トルク演算手段より演算されたトルクから空力騒音値を推定する騒音値推定手段と、を備え、騒音値推定手段により算出された推定騒音値が所定の騒音値となるように室外送風ファンの回転数を制御するので、室外機の騒音を重視する使用者に対して、据付環境や据付条件あるいは熱交換器フィン目詰まりの経年変化による騒音悪化を抑制させるという効果を奏する。 The air conditioner of the present invention includes an indoor blower that supplies indoor air to an indoor heat exchanger, an outdoor blower fan and an outdoor fan motor that supply outdoor air to an outdoor heat exchanger, and an air conditioning condition desired by a user. A remote controller for input, an indoor unit controller for rotating the indoor blower in response to a signal from the remote controller, and an outdoor unit for transmitting and receiving operation information signals to and from the indoor unit controller to rotate the outdoor blower fan and the outdoor fan motor A control device, the outdoor unit control device includes a torque calculation unit that calculates a torque of the outdoor fan motor, and a noise value estimation unit that estimates an aerodynamic noise value from the torque calculated by the torque calculation unit. Since the number of revolutions of the outdoor blower fan is controlled so that the estimated noise value calculated by the noise value estimating means becomes a predetermined noise value, the noise of the outdoor unit is emphasized. To the user, an effect that is suppressed noise deterioration due to aging of the installation environment and installation conditions or heat exchanger fins clogging.
本発明の実施の形態1に係る空気調和装置の冷媒回路構成図である。FIG. 2 is a configuration diagram of a refrigerant circuit of the air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の室外送風ファン駆動の制御フローを示すフローチャートである。4 is a flowchart illustrating a control flow of driving an outdoor blower fan of the air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の送風ファンの風量-静圧特性及び風量-空力騒音特性を示す図である。FIG. 3 is a diagram showing air volume-static pressure characteristics and air volume-aerodynamic noise characteristics of a blowing fan of the air conditioner according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の送風ファンの風量-静圧特性及び風量-空力騒音特性を示す説明するための図である。FIG. 4 is a diagram for illustrating air volume-static pressure characteristics and air volume-aerodynamic noise characteristics of a blowing fan of the air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置の送風ファンの風量-静圧特性及び風量-空力騒音特性を示す図である。FIG. 3 is a diagram showing air volume-static pressure characteristics and air volume-aerodynamic noise characteristics of a blowing fan of the air conditioner according to Embodiment 1 of the present invention.
実施の形態1.
 図1~図5は、本発明の実施の形態1に係る空気調和装置を説明するものであって、図1は冷媒回路の構成を模式的に示す冷媒回路構成図、図2は空気調和装置の室外機送風ファン駆動を説明する制御フローを示すフローチャート、図3~図5は室外機送風ファンの風量-静圧特性及び風量-空力騒音特性を示す図である。
Embodiment 1 FIG.
FIGS. 1 to 5 illustrate an air conditioner according to Embodiment 1 of the present invention. FIG. 1 is a configuration diagram of a refrigerant circuit schematically showing a configuration of a refrigerant circuit, and FIG. 2 is an air conditioner. And FIG. 3 to FIG. 5 are diagrams showing the air volume-static pressure characteristics and the air volume-aerodynamic noise characteristics of the outdoor unit blower fan.
 図1において、空気調和装置は互いに冷媒配管15によって接続された室外機1と室内機2から構成されている。
 室外機1には、冷媒を圧縮する運転周波数(圧縮機運転周波数)を変更可能な圧縮機11と、冷媒の流れ方向を切換えるための四方弁と、室外空気との間で熱交換する室外熱交換器12と、室外熱交換器12に向けて室外空気を供給する室外送風ファン131及び室外送風ファンモータ132と、冷媒を膨張する膨張弁14とが設けられている。一方、室内機2には、室内空気との間で熱交換する室内熱交換器21と、室内熱交換器21に向けて室内空気を供給する室内送風機22とが設けられている。そして、室外機1と室内機2は、ガス側接続冷媒配管と液側接続冷媒配管とで接続され冷媒が循環する。
In FIG. 1, the air conditioner includes an outdoor unit 1 and an indoor unit 2 connected to each other by a refrigerant pipe 15.
The outdoor unit 1 has a compressor 11 capable of changing the operation frequency (compressor operation frequency) for compressing the refrigerant, a four-way valve for switching the flow direction of the refrigerant, and outdoor heat for exchanging heat with outdoor air. An exchanger 12, an outdoor blower fan 131 and an outdoor blower motor 132 for supplying outdoor air to the outdoor heat exchanger 12, and an expansion valve 14 for expanding the refrigerant are provided. On the other hand, the indoor unit 2 is provided with an indoor heat exchanger 21 that exchanges heat with indoor air and an indoor blower 22 that supplies indoor air to the indoor heat exchanger 21. The outdoor unit 1 and the indoor unit 2 are connected by a gas-side connection refrigerant pipe and a liquid-side connection refrigerant pipe, and the refrigerant circulates.
 空気調和装置に用いられる冷媒としては、例えば、R410A、R407C、R404A、R32などのHFC冷媒や、R1234yfなどのHFO冷媒、又はHFO冷媒とR32などのHFC冷媒との混合冷媒や、もしくは二酸化炭素(CO2)や炭化水素、ヘリウム、プロパン等のような自然冷媒などである。 Examples of the refrigerant used in the air conditioner include HFC refrigerants such as R410A, R407C, R404A, and R32, HFO refrigerants such as R1234yf, mixed refrigerants of HFO refrigerants and HFC refrigerants such as R32, and carbon dioxide ( CO2), hydrocarbons, natural refrigerants such as helium, propane and the like.
 空気調和装置の空調運転において、室内を冷房する場合には、圧縮機11から吐出された冷媒は、四方弁、室外熱交換器12、膨張弁14、室内熱交換器6の順に流れ、再度四方弁を経由して圧縮機11に戻る冷媒回路が形成され、冷凍サイクルが実行される。また、室内を暖房する場合には、圧縮機11から吐出された冷媒は、四方弁、室内熱交換器21、膨張弁14、室外熱交換器3の順に流れ、再度四方弁2を経由して圧縮機1に戻る冷媒回路が形成され、冷凍サイクルが実行される。 In the air-conditioning operation of the air conditioner, when cooling the room, the refrigerant discharged from the compressor 11 flows in the order of the four-way valve, the outdoor heat exchanger 12, the expansion valve 14, and the indoor heat exchanger 6, and again the four-way valve. A refrigerant circuit returning to the compressor 11 via the valve is formed, and a refrigeration cycle is executed. Further, when heating the room, the refrigerant discharged from the compressor 11 flows in the order of the four-way valve, the indoor heat exchanger 21, the expansion valve 14, and the outdoor heat exchanger 3, and again passes through the four-way valve 2. A refrigerant circuit returning to the compressor 1 is formed, and a refrigeration cycle is executed.
 空気調和装置は、リモコン3と、室内機2の室内機制御部23と、室外機1の室外機制御部16とが通信線で接続され運転制御情報を互いに送受信して利用者の設定条件を満たすように空調制御を行う。 In the air-conditioning apparatus, the remote controller 3, the indoor unit control unit 23 of the indoor unit 2, and the outdoor unit control unit 16 of the outdoor unit 1 are connected by a communication line, and transmit and receive operation control information to each other to set a user setting condition. Air conditioning control is performed so as to satisfy the conditions.
 また、空気調和装置には、吐出配管温度センサ、室外熱交換器温度センサ、室外気温度センサ、室内熱交換器温度センサ、室内吸込温度センサの各種センサが設置されている(図示せず)。空気調和装置は、これらの各温度センサから検出された検出温度を用いて、利用者がリモコン3から入力設定した室内空調条件を満たすように、冷媒回路に設けられたアクチュエータや送風ファンの駆動制御を行う。 空 気 In addition, the air conditioner is provided with various sensors such as a discharge pipe temperature sensor, an outdoor heat exchanger temperature sensor, an outdoor air temperature sensor, an indoor heat exchanger temperature sensor, and an indoor suction temperature sensor (not shown). The air conditioner uses the detected temperatures detected by these temperature sensors to control the driving of the actuators and blower fans provided in the refrigerant circuit so as to satisfy the indoor air conditioning conditions set by the user through the remote controller 3. I do.
 室内機制御部23は室内吸込温度センサにより検出された室内吸込温度や室内熱交換器温度センサにより検出された室内熱交換器温度を用いて、室内空調が快適な環境となるように、室内熱交換器の温度に応じた室内送風機22の回転駆動を行う。 The indoor unit control unit 23 uses the indoor suction temperature detected by the indoor suction temperature sensor and the indoor heat exchanger temperature detected by the indoor heat exchanger temperature sensor so that the indoor air conditioning becomes a comfortable environment. The rotation of the indoor blower 22 according to the temperature of the exchanger is performed.
 室外機1の室外空気との間で熱交換する室外熱交換器12は伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型の熱交換器からなり、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。また、室外熱交換器12に向けて室外空気を供給する室外送風ファン131及び室外送風ファンモータ132は供給する空気の流量を可変することが可能なファンであり、例えば、DCモータによって駆動されており、室外機1内へ室外空気を吸入し、室外熱交換器12により冷媒との間で熱交換した空気を室外に排出する機能を有する。 The outdoor heat exchanger 12 that exchanges heat with the outdoor air of the outdoor unit 1 is a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins. It functions as a refrigerant condenser and functions as a refrigerant evaporator during the heating operation. The outdoor blower fan 131 and the outdoor blower fan motor 132 that supply outdoor air to the outdoor heat exchanger 12 are fans that can change the flow rate of supplied air, and are driven by, for example, a DC motor. It has a function of sucking outdoor air into the outdoor unit 1 and discharging the air that has exchanged heat with the refrigerant by the outdoor heat exchanger 12 to the outside.
 室外機制御部16は、室内機制御部23からの運転指令情報を受けて、室外気温度センサにより検出された室外気吸込温度や、吐出配管温度センサ及び室外熱交換器温度センサにより検出された循環冷媒の各部位での冷媒温度を用いて、室内空調に必要な循環冷媒が適正な状態となるように、圧縮機11の運転周波数や膨張弁14の絞り量を変更させるための弁開度や室外送風ファンモータ132の回転数を制御して、それぞれを運転駆動させる。 The outdoor unit control unit 16 receives the operation command information from the indoor unit control unit 23, and detects the outdoor air suction temperature detected by the outdoor air temperature sensor, the discharge pipe temperature sensor, and the outdoor heat exchanger temperature sensor. A valve opening for changing the operating frequency of the compressor 11 and the throttle amount of the expansion valve 14 so that the circulating refrigerant required for indoor air conditioning is in an appropriate state using the refrigerant temperature of each part of the circulating refrigerant. And the number of rotations of the outdoor blower fan motor 132 is controlled to drive each of them.
 ここで、室外機制御部16が空調運転を行うに際して、室外送風ファンモータ132の回転数を制御するにあたり、空力騒音推定・ファン回転数設定制御が選択されると、図2に示す制御フローを実行することになる。 Here, when the outdoor unit control unit 16 performs the air-conditioning operation and selects the aerodynamic noise estimation / fan rotation speed setting control to control the rotation speed of the outdoor blower fan motor 132, the control flow illustrated in FIG. Will run.
 図2の空気調和装置の室外機送風ファン駆動を説明するフローチャートに従って、室外機制御部16における制御動作を説明する。
 空力騒音推定・ファン回転数設定制御が開始されると、室外送風ファンモータ132に流れる電流を電流センサやカレントトランスを用いた電流検出装置を使って検出する(S1)。そして、検出したファンモータ電流値ILを室外機制御部16の演算装置に入力し、予め登録された関係式Tq=f1(IL)により、その時の室外送風ファンモータ132の発生軸トルクを算出する。ここで、Tqは発生軸トルク、ILは検出したファンモータ電流、f1はファンモータのトルク-電流特性関数である。
The control operation of the outdoor unit controller 16 will be described with reference to the flowchart of FIG. 2 illustrating the driving of the outdoor unit blower fan of the air conditioner.
When the aerodynamic noise estimation / fan rotation speed setting control is started, the current flowing through the outdoor blower fan motor 132 is detected using a current sensor or a current detection device using a current transformer (S1). Then, the detected fan motor current value IL is input to the arithmetic unit of the outdoor unit control unit 16, and the generated shaft torque of the outdoor blower fan motor 132 at that time is calculated by a relational expression Tq = f1 (IL) registered in advance. . Here, Tq is the generated shaft torque, IL is the detected fan motor current, and f1 is the torque-current characteristic function of the fan motor.
 算出した発生軸トルクTqより、この室外機制御部16内のメモリーに予め格納されている送風機特性による送風機の風量と軸動力及び風量と静圧、騒音値の関係を用いて、Q=f2(N、Tq)、Ps=f3(N、Q)、SPL=f4(N、Q)の関係式により、室外送風ファンの風量Q、発生静圧Ps、室外送風ファンの空力騒音値SPL(図5の動作点A)を算出する。
 ここで、Nは室外送風ファンの回転数、f2は室外送風ファンの風量-トルク特性関数、f3は室外送風ファンの風量-静圧特性関数、f4は室外送風ファンの風量-空力騒音特性関数である。
From the calculated generated shaft torque Tq, Q = f2 (using the relationship between the air volume and the shaft power, the air volume, the static pressure, and the noise value of the blower according to the blower characteristics stored in the memory in the outdoor unit control unit 16 in advance. N, Tq), Ps = f3 (N, Q), SPL = f4 (N, Q), the air volume Q of the outdoor blower, the generated static pressure Ps, and the aerodynamic noise value SPL of the outdoor blower (FIG. 5) Is calculated.
Here, N is the rotation speed of the outdoor blower fan, f2 is the airflow-torque characteristic function of the outdoor blower fan, f3 is the airflow-static pressure characteristic function of the outdoor blower fan, and f4 is the airflow-aerodynamic noise function function of the outdoor blower fan. is there.
 室外機制御部では、あらかじめ記憶されている、据付やフィン目詰まり機外圧損無し(図中の実線で示す圧損特性)での空力騒音値SPL0(図5の動作点B)と圧損あり(図中の太実線で示す圧損特性)となる実運転検知時の騒音値SPL(図5の動作点A)との差ΔSPL(=SPL-SPL0)を算出する。この差ΔSPL=が、所定偏差以下である場合、空力騒音推定・ファン回転数設定制御は終了する。この動作については、図2の制御フローにおけるステップS2、S3に示す。 In the outdoor unit control unit, the aerodynamic noise value SPL0 (operating point B in FIG. 5) and the pressure loss are stored in advance without the installation or fin clogging external pressure loss (pressure loss characteristics indicated by the solid line in the figure). The difference ΔSPL (= SPL−SPL0) from the noise value SPL (operating point A in FIG. 5) at the time of actual operation detection, which becomes the pressure drop characteristic indicated by the thick solid line in the middle, is calculated. If the difference ΔSPL = is equal to or smaller than the predetermined deviation, the aerodynamic noise estimation / fan speed setting control ends. This operation is shown in steps S2 and S3 in the control flow of FIG.
 一方、ΔSPLが所定偏差以上である場合は、Ps’= ζ*Q’^2、Ps’=f3(N’、Q’)、SPL0=f4(N’、Q’)の方程式を満足する室外送風ファン回転数N’を算出する(図5の動作点C)。なお、ここで、N’は空力騒音値がSPL0となるよう算出された送風ファン回転数、Ps’は送風ファン回転数がN’となった場合の発生静圧、Q’は送風ファン回転数がN’となった場合の風量、ζはζ=Ps/Q^2で算出される機外圧損も含めた送風圧損の損失係数である。ここでの動作は、図2の制御フローにおけるステップS4、S5に示す。 On the other hand, when ΔSPL is equal to or larger than the predetermined deviation, an outdoor satisfying the equations of Ps ′ = ζ * Q ′ ζ2, Ps ′ = f3 (N ′, Q ′), and SPL0 = f4 (N ′, Q ′) The fan speed N ′ is calculated (operating point C in FIG. 5). Here, N ′ is the fan rotation speed calculated so that the aerodynamic noise value is SPL0, Ps ′ is the generated static pressure when the fan rotation speed is N ′, and Q ′ is the fan rotation speed. Is the air volume when N becomes N ', and ζ is the loss coefficient of the blast pressure loss including the external pressure loss calculated by ζ = Ps / Q ^ 2. This operation is shown in steps S4 and S5 in the control flow of FIG.
 上述の算出する動作変化について、変更前のファン回転数Nおよび算出したN’における室外送風ファンの風量-静圧特性および風量-空力騒音特性を図3、図4を用いて説明する。図3、図4において、横軸にファン風量Q、縦軸にファン静圧Psおよび空力騒音値SPLをとり、実線が据付やフィン目詰まり機外圧損無し時の送風機特性を示し、点線が実据え付けフィン目詰まり機外圧損有り時の送風機特性を示す。 With respect to the operation change calculated above, the airflow-static pressure characteristics and the airflow-aerodynamic noise characteristics of the outdoor blower fan at the pre-change fan rotation speed N and calculated N 'will be described with reference to FIGS. 3 and 4, the horizontal axis indicates the fan airflow Q, the vertical axis indicates the fan static pressure Ps and the aerodynamic noise value SPL, the solid line indicates the blower characteristics at the time of installation and no fin clogging external pressure loss, and the dotted line indicates the actual fan characteristics. The blower characteristics when the installation fin is clogged and the external pressure loss of the machine is shown.
 ここで、送風ファンの送風機特性においては、ファン回転数がNの場合を実線で示し、ファン回転数がNから低下してN’となった場合を点線にて示す。このように、回転数が低下すると図中矢印の方向に特性が変化する。つまり、送風ファンの回転数が低下すると、それに伴いファン静圧Ps、騒音値SPLが減少方向に変化する。 Here, in the blower characteristics of the blower fan, the case where the fan rotation speed is N is indicated by a solid line, and the case where the fan rotation speed decreases from N and becomes N ′ is indicated by a dotted line. As described above, when the rotation speed decreases, the characteristics change in the direction of the arrow in the figure. That is, when the rotation speed of the blower fan decreases, the fan static pressure Ps and the noise value SPL change in the decreasing direction.
 次に、送風ファンに対して、熱交換器フィン目詰まりなどによる機外圧損が変化した場合の特性変化を図3で説明する。図3において、横軸にファン風量Q、縦軸にファン静圧Psおよび空力騒音値SPLをとり、圧損特性において、実線がフィン目詰まり機外圧損無し時、そして点線が実据え付けフィン目詰まり機外圧損有り時の特性を示す。圧損が発生して送風ファンへの負荷が高くなるに伴い、図中の圧損特性が実線から点線で示すように変化して圧損抵抗が高くなると、同一回転数では風量が減少すると共に騒音値は上昇することになる。そこで、高くなった騒音値SPL0をフィン目詰まり機外圧損無し時の騒音値SPLまで減少させるように(図3中の矢印で示す)、送風ファンの回転数を低下させることになる。それに伴いファン風量も減少方向に変化する。 (3) Next, FIG. 3 illustrates a characteristic change when the external pressure loss of the blower fan due to heat exchanger fin clogging or the like changes. In FIG. 3, the horizontal axis indicates the fan airflow Q, the vertical axis indicates the fan static pressure Ps and the aerodynamic noise value SPL. In the pressure loss characteristics, the solid line indicates the case where there is no external pressure loss of the fin clogging machine, and the dotted line indicates the actual installation fin clogging machine. This shows the characteristics when there is an external pressure loss. As pressure loss occurs and the load on the blower fan increases, the pressure loss characteristics in the figure change from the solid line to the dotted line to increase the pressure loss resistance, and at the same rotation speed, the air volume decreases and the noise value decreases. Will rise. Therefore, the rotation speed of the blower fan is reduced so that the increased noise value SPL0 is reduced to the noise value SPL at the time when there is no fin clogging external pressure loss (indicated by the arrow in FIG. 3). Accordingly, the fan airflow also changes in a decreasing direction.
 上述で算出した回転数N’を用いて、室外機制御部では、Nnew=N+α*(N’-N)などの補正式を用いて、新しいファン回転数Nnewを設定する。ここでαは空力騒音値をSPL0に収束させるための緩和係数である。そして、ファン回転数Nnewにてファンモータが駆動された後、この制御動作を繰り返す。 Using the rotational speed N 'calculated above, the outdoor unit control unit sets a new fan rotational speed Nnew using a correction formula such as Nnew = N + α * (N'-N). Here, α is a relaxation coefficient for converging the aerodynamic noise value to SPL0. Then, after the fan motor is driven at the fan rotation speed Nnew, this control operation is repeated.
 本発明の制御により、据付形態やフィン目詰まりにより機外圧損が増加した場合においても、空力騒音値が機外圧損無しの場合と同等の値まで抑制される。よって、室外機の騒音を重視する使用者に対して、据付形態あるいは経年のフィン目詰まりによる騒音悪化を抑制した空気調和装置を提供することが可能となる。 According to the control of the present invention, even when the external pressure loss increases due to the installation form or the clogging of the fins, the aerodynamic noise value is suppressed to a value equivalent to the case where there is no external pressure loss. Therefore, it is possible to provide an air conditioner that suppresses noise deterioration due to the installation form or aging clogging of fins for a user who attaches importance to the noise of the outdoor unit.
 1 室外機
 2 室内機
 3 リモコン
 11 圧縮機
 12 室外熱交換器
 131 室外送風ファン
 132 室外送風ファンモータ
 14 膨張弁
 15 配管
 16 室外機制御部
 21 室内熱交換器
 22 室内送風機
 23 室内機制御部
REFERENCE SIGNS LIST 1 outdoor unit 2 indoor unit 3 remote controller 11 compressor 12 outdoor heat exchanger 131 outdoor blower fan 132 outdoor blower fan motor 14 expansion valve 15 piping 16 outdoor unit control unit 21 indoor heat exchanger 22 indoor blower 23 indoor unit control unit

Claims (3)

  1.  冷媒を圧縮する圧縮機と、室外機に配される室外熱交換器と、冷媒を減圧する膨張弁と、室内に配される室内熱交換器とを環状に接続した冷凍サイクルと、室内の空気を前記室内熱交換器に供給する室内送風機と、室外の空気を前記室外熱交換器に供給する室外送風ファンおよび室外ファンモータと、ユーザーが所望する空調条件を入力するリモコンと、前記リモコンからの信号を受けて前記室内送風機を回転駆動させる室内機制御装置と、前記室内機制御装置と運転情報の信号を送受信して前記室外送風ファンおよび室外ファンモータを回転駆動させる室外機制御装置とを有した空気調和装置において、前記室外機制御装置は、前記室外ファンモータのトルクを演算するトルク演算手段と、前記トルク演算手段より演算されたトルクから空力騒音値を推定する騒音値推定手段と、を備え、前記騒音値推定手段により算出された推定騒音値が所定の騒音値となるように室外送風ファンの回転数を制御する空気調和装置。 A refrigeration cycle in which a compressor that compresses a refrigerant, an outdoor heat exchanger disposed in the outdoor unit, an expansion valve that decompresses the refrigerant, and an indoor heat exchanger disposed indoors are connected in a ring shape; An indoor blower for supplying the indoor heat exchanger, an outdoor blower fan and an outdoor fan motor for supplying outdoor air to the outdoor heat exchanger, a remote controller for inputting an air conditioning condition desired by a user, and An indoor unit control device that receives the signal and rotationally drives the indoor blower; and an outdoor unit control device that transmits and receives a signal of operation information to and from the indoor unit control device and rotationally drives the outdoor blower fan and the outdoor fan motor. In the air conditioner described above, the outdoor unit control device includes a torque calculation unit that calculates a torque of the outdoor fan motor, and a torque calculated by the torque calculation unit. Comprising a noise level estimating means for estimating the force noise value, the air conditioning apparatus for controlling the rotational speed of the outdoor blower fan such that the estimated noise value calculated is a predetermined noise value by the noise level estimator.
  2.  前記室外機制御装置は、前記室外ファンモータへ通電される電流を計測する電流検知手段を備え、前記電流検知手段により検出される電流値を用いてトルクを演算する請求項1記載の空気調和装置。 The air conditioner according to claim 1, wherein the outdoor unit control device includes a current detection unit that measures a current supplied to the outdoor fan motor, and calculates a torque using a current value detected by the current detection unit. .
  3.  前記室外機制御装置は、予め送風機の風量と空力騒音との関係を表した送風機特性をメモリーに格納した請求項2記載の空気調和装置。 The air conditioner according to claim 2, wherein the outdoor unit control device stores in advance a fan characteristic indicating a relationship between an air volume of the blower and aerodynamic noise in a memory.
PCT/JP2018/026648 2018-07-17 2018-07-17 Air conditioner WO2020016912A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/026648 WO2020016912A1 (en) 2018-07-17 2018-07-17 Air conditioner
JP2020530750A JPWO2020016912A1 (en) 2018-07-17 2018-07-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026648 WO2020016912A1 (en) 2018-07-17 2018-07-17 Air conditioner

Publications (1)

Publication Number Publication Date
WO2020016912A1 true WO2020016912A1 (en) 2020-01-23

Family

ID=69165036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026648 WO2020016912A1 (en) 2018-07-17 2018-07-17 Air conditioner

Country Status (2)

Country Link
JP (1) JPWO2020016912A1 (en)
WO (1) WO2020016912A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202442A (en) * 1981-06-03 1982-12-11 Sharp Corp Speed controlling circuit for fan motor of air conditioner
JP2014215008A (en) * 2013-04-30 2014-11-17 三菱電機株式会社 Air conditioner and air conditioner operation method
WO2016002074A1 (en) * 2014-07-04 2016-01-07 三菱電機株式会社 Power converter, dehumidifier, air conditioner, and refrigeration equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679521B2 (en) * 1991-06-20 1997-11-19 三菱電機株式会社 Air conditioner and air flow controller for air conditioner
JP2002315264A (en) * 2001-04-11 2002-10-25 Nippon Steel Corp Method for reducing noise and vibration of electromagnetic apparatus
JP2007292007A (en) * 2006-04-27 2007-11-08 Toyota Motor Corp Fan/coupling control device
JP4698726B2 (en) * 2008-12-18 2011-06-08 三菱電機株式会社 Floor-standing air conditioner
JP5821565B2 (en) * 2011-11-21 2015-11-24 富士通株式会社 Blower control device, blower control method, and blower control program
JP6046446B2 (en) * 2012-10-26 2016-12-14 日立アプライアンス株式会社 Vector control device, motor control device using the same, and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202442A (en) * 1981-06-03 1982-12-11 Sharp Corp Speed controlling circuit for fan motor of air conditioner
JP2014215008A (en) * 2013-04-30 2014-11-17 三菱電機株式会社 Air conditioner and air conditioner operation method
WO2016002074A1 (en) * 2014-07-04 2016-01-07 三菱電機株式会社 Power converter, dehumidifier, air conditioner, and refrigeration equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURASE, MASATAKA ET AL.: "Analysis of noise and torque of capacitor motor by simulation", AICHI ELECTRIC TECHNICAL REPORT, 30 March 1998 (1998-03-30), pages 10 - 15 *

Also Published As

Publication number Publication date
JPWO2020016912A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
JP2018189365A5 (en)
AU2016346536B2 (en) Air conditioning apparatus
WO2010131336A1 (en) Air conditioning device
JP6906311B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
JP2010223494A (en) Air conditioner
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
WO2019163346A1 (en) Air conditioner
JP2015021656A (en) Air conditioner
JP2014190600A (en) Air conditioner
CN110741208A (en) Air conditioner
JP6297176B2 (en) Indoor unit and air conditioner using the same
JP6567086B2 (en) Air conditioner
WO2020016912A1 (en) Air conditioner
JP6403413B2 (en) Air conditioner
JP2011257097A (en) Multi-room type air conditioning apparatus
JP6038264B1 (en) Air conditioning system
JP6879322B2 (en) Refrigerator
JP6562139B2 (en) Refrigeration equipment
JP4910577B2 (en) Reverse phase detection device, air conditioner including the same, and reverse phase detection method
WO2013172196A1 (en) Air conditioner
JP2005133970A (en) Air-conditioner
JP7227103B2 (en) air conditioner
WO2020189588A1 (en) Air-conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926479

Country of ref document: EP

Kind code of ref document: A1