WO2020015371A1 - 频偏处理方法、装置、设备及存储介质 - Google Patents

频偏处理方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020015371A1
WO2020015371A1 PCT/CN2019/078070 CN2019078070W WO2020015371A1 WO 2020015371 A1 WO2020015371 A1 WO 2020015371A1 CN 2019078070 W CN2019078070 W CN 2019078070W WO 2020015371 A1 WO2020015371 A1 WO 2020015371A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
frequency offset
sub
wavelength
wss
Prior art date
Application number
PCT/CN2019/078070
Other languages
English (en)
French (fr)
Inventor
贾伟
潘超
赵晗
邓宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19838669.0A priority Critical patent/EP3809609A4/en
Publication of WO2020015371A1 publication Critical patent/WO2020015371A1/zh
Priority to US17/150,661 priority patent/US11316591B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0026Construction using free space propagation (e.g. lenses, mirrors)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0049Crosstalk reduction; Noise; Power budget

Definitions

  • the embodiments of the present application relate to optical communication technologies, and in particular, to a method, a device, a device, and a storage medium for frequency offset processing.
  • WSS Wavelength Selective Switch
  • ROADM Reconfigurable Optical Add and Drop Modules
  • the current network cannot accurately detect the frequency deviation of the center wavelength of each channel of the WSS, which easily causes service damage and even interruption.
  • the embodiments of the present application provide a frequency offset processing method, device, device, and storage medium, which are used to accurately detect the frequency offset of the WSS, improve the signal transmission quality, avoid service damage and interruption, and ensure the normal operation of the service.
  • an embodiment of the present application provides a frequency offset processing method.
  • the method is applied to a wavelength selection switch WSS.
  • the WSS includes a switching engine.
  • the WSS has multiple channels, and each channel includes a switching engine. At least one pixel column; the method includes:
  • the preset channel includes: at least two channels other than a service channel of the plurality of channels;
  • the frequency offset of the traffic channel is determined according to the correspondence between the frequency offset and the wavelength, or the correspondence between the frequency offset and the pixel position.
  • the preset channels are used as frequency offset monitoring and are distributed on both sides of the service channel, and the pixel columns included in the preset channels are located at the edge positions of the switching engine.
  • the frequency offset of the preset channel includes: a detection frequency offset of multiple subchannels in the preset channel; each subchannel includes at least one pixel column.
  • the determining a frequency offset of a preset channel of the WSS includes:
  • the detection frequency offset of each sub-channel is determined according to the detection wavelength of each sub-channel and the calibration wavelength of each sub-channel.
  • the detection wavelength of each sub-channel is a central wavelength
  • the switching engine is a silicon-based liquid crystal LCOS chip
  • determining the detection wavelength of each sub-channel in the preset channel includes: :
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is an LCOS chip
  • determining the detection wavelength of each subchannel in the preset channel includes:
  • the detection wavelength of each sub-channel is a central wavelength
  • the switching engine is a micro-electro-mechanical system MEMS chip
  • determining the detection wavelength of each sub-channel in the preset channel includes: :
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is a MEMS chip
  • determining the detection wavelength of each subchannel in the preset channel includes:
  • the determining a correspondence between a frequency offset and a wavelength according to a frequency offset of the preset channel, or a correspondence between a frequency offset and a pixel position includes:
  • each set of fitting coefficients includes : A set of fitting coefficients of each polynomial in the frequency offset fitting formula;
  • a correspondence between the frequency offset and a wavelength, or a correspondence between the frequency offset and a pixel position is determined.
  • the corresponding relationship between the frequency offset and the wavelength is determined according to the best fitting coefficient of each polynomial in the frequency offset fitting formula, or the corresponding relationship between the frequency offset and the pixel position can obtain the best frequency.
  • the correspondence between the offset and the wavelength, or the correspondence between the frequency offset and the pixel position Based on the optimal correspondence between the frequency offset and the wavelength, or the correspondence between the frequency offset and the pixel position, the obtained frequency offset of the service channel can be made more accurate, and accurate detection of the frequency offset can be achieved.
  • the determining a correspondence between a frequency offset and a wavelength according to a frequency offset of the preset channel, or a correspondence between a frequency offset and a pixel position includes:
  • a correspondence between the frequency offset and a wavelength, or a correspondence between the frequency offset and a pixel position is determined.
  • This method can obtain the fitting coefficients of the polynomials of the frequency offset fitting formula by solving the equations, which can make the coefficients of the polynomials obtained by the fitting more accurate, so that the frequency offset fitting formula can more accurately guarantee the WSS internal frequency
  • the correspondence between the offset and the wavelength or the correspondence between the frequency offset and the pixel position makes the frequency offset detection more accurate.
  • the frequency offset calibration is performed to improve the transmission quality of each channel, avoid service damage and interruption, and ensure the normal operation of the service.
  • the method further includes:
  • the traffic channel is calibrated according to the frequency offset of the traffic channel.
  • the embodiment of the present application may further provide a frequency offset processing device, which is applied to a wavelength selection switch WSS, the WSS includes a switching engine, the WSS has multiple channels, and each channel includes At least one pixel column of the switching engine; the frequency offset processing device includes:
  • a processing module configured to determine a frequency offset of a preset channel in the WSS; the preset channel includes: at least two channels other than a service channel of the plurality of channels; and determines according to the frequency offset of the preset channel The correspondence between the frequency offset and the wavelength, or the correspondence between the frequency offset and the pixel position; and the correspondence between the frequency offset and the wavelength, or the correspondence between the frequency offset and the pixel position, determining the frequency of the traffic channel Partial.
  • the frequency offset of the preset channel includes: detection frequency offsets of multiple subchannels in the preset channel; each subchannel includes at least one pixel column.
  • the processing module is specifically configured to determine a detection wavelength of each subchannel in the preset channel; and determine the preset channel according to a correspondence relationship between the preset subchannel and the wavelength.
  • the calibration wavelength of each sub-channel is described in the above; according to the detection wavelength of each sub-channel and the calibration wavelength of each sub-channel, the detection frequency offset of each sub-channel is determined.
  • the detection wavelength of each sub-channel is a central wavelength
  • the switching engine is a silicon-based liquid crystal LCOS chip
  • the processing module is specifically configured to adjust the phase information of each sub-channel so that the signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; and adjust the center wavelength of the calibration light source entering each of the sub-channels. Detecting a maximum optical power of an output port of the WSS; and determining a center wavelength of each subchannel according to the maximum optical power.
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is an LCOS chip
  • the processing module is specifically configured to adjust the phase information of each sub-channel so that the signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; and adjust the center wavelength of the calibration light source entering each of the sub-channels. Detecting the power of the WSS output port to generate the filter spectrum of each sub-channel; comparing the filter spectrum of each sub-channel with an adjacent sub-channel, and determining the wavelength at which the insertion loss is equal or where the filter spectrum meets as the Edge wavelength of each subchannel.
  • the detection wavelength of each sub-channel is a central wavelength
  • the switching engine is a micro-electromechanical system MEMS chip
  • the processing module is specifically configured to adjust a signal transmission direction corresponding to each sub-channel, so that a signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; and a calibration light source entering each of the sub-channels is adjusted.
  • the center wavelength detects the maximum optical power of the output port of the WSS; and determines the center wavelength of each sub-channel according to the maximum optical power.
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is a MEMS chip
  • the processing module is specifically configured to adjust a signal transmission direction corresponding to each sub-channel, so that a signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; and a calibration light source entering each of the sub-channels is adjusted.
  • Center wavelength detecting the power of the WSS output port to generate the filter spectrum of each sub-channel; comparing the filter spectrum of each sub-channel with an adjacent sub-channel, and determining the wavelength at which the insertion loss is equal or where the filter spectrum meets An edge wavelength of each subchannel.
  • the processing module is specifically configured to be based on the calibration wavelength or pixel position of each sub-channel, a preset frequency offset fitting formula, and a preset at least one set of fitting coefficients, Obtaining the fitted frequency offset of each sub-channel; each set of fitting coefficients includes: a set of fitting coefficients of each polynomial in the frequency offset fitting formula; calculating the fitted frequency offset of each sub-channel and the The sum of the squared error of the detection frequency offset of each sub-channel; adjusting the fitting coefficients of the polynomials in the frequency offset fitting formula until the detection frequency offset of the at least one sub-channel is determined, and The sum of squared error between the fitted frequency offsets is minimized; the best fit coefficient of each polynomial in the frequency offset fitting formula is determined according to the smallest sum of error squared; determined according to the best fit coefficient A correspondence between the frequency offset and a wavelength, or a correspondence between the frequency offset and a pixel position.
  • the processing module is specifically configured to determine a frequency of each subchannel according to a detection frequency offset of each subchannel and a calibration wavelength or pixel position of each subchannel.
  • a partial expression solving a system of equations for a frequency offset expression of at least one subchannel of the preset channel to obtain a fitting coefficient of each polynomial in a frequency offset fitting formula; determining the frequency according to the fitting coefficient The correspondence between the offset and the wavelength, or the correspondence between the frequency offset and the pixel position.
  • an embodiment of the present application may further provide a frequency offset processing device, including: a processor, the processor being coupled to a memory;
  • a processor configured to execute a computer program stored in the memory, so that the frequency offset processing device executes the frequency offset processing method according to the first aspect.
  • an embodiment of the present application may further provide a readable storage medium including a program or an instruction.
  • the program or the instruction is run on a computer, the frequency offset processing method according to the first aspect is performed.
  • the frequency offset processing method, device, device, and storage medium provided in the embodiments of the present application can determine the frequency offset of a preset channel in the WSS.
  • the preset channel includes: at least two channels other than the service channel among the multiple channels. And determine the correspondence between the frequency offset and the wavelength according to the frequency offset of the preset channel, or the correspondence between the frequency offset and the pixel position, and then according to the correspondence between the frequency offset and the wavelength, or Correspondence determines the frequency offset of the traffic channel.
  • This method can accurately detect the frequency offset of each service channel of the WSS, and then perform frequency offset calibration to improve the transmission quality of the service channel, avoid service damage and interruption, and ensure the normal operation of the service.
  • FIG. 1 is a schematic diagram of an optical transmission system of a frequency offset processing method according to an embodiment of the application
  • FIG. 2 is a schematic diagram of a ROADM in an optical transmission system of a frequency offset processing method according to an embodiment of the application;
  • FIG. 3 is a first schematic structural diagram of a WSS in a dispersion direction according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of frequency offsets corresponding to each wavelength of WSS at different temperatures according to an embodiment of the present application
  • FIG. 5 is a second schematic structural diagram of a WSS in the dispersion direction according to an embodiment of the present application.
  • FIG. 6 is a first flowchart of a frequency offset processing method according to an embodiment of the present application.
  • FIG. 7 is a second flowchart of a frequency offset processing method according to an embodiment of the present application.
  • FIG. 8A is a schematic diagram of a pixel distribution of calibration light on an LCOS chip in a frequency offset processing method according to an embodiment of the present application
  • FIG. 8B is a correspondence diagram of an edge wavelength and a center wavelength in a frequency offset processing method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of wavelengths and insertion loss of two pixel columns on an LCOS chip in a frequency offset processing method according to an embodiment of the present application.
  • FIG. 10 is a third flowchart of a frequency offset processing method according to an embodiment of the present application.
  • FIG. 11A is a schematic diagram of a detected frequency deviation of a WSS at an ambient temperature of ⁇ 5 degrees Celsius in a frequency deviation processing method provided by an embodiment of the present application and a detection method of a least squares polynomial fitting frequency detection method;
  • FIG. 11B is the least squares polynomial fitting method of the WSS at the ambient temperature of ⁇ 5 degrees Celsius in the frequency offset processing method provided by the embodiment of the present application, and the frequency obtained by the single-sided frequency offset detection method and the averaged two-sided frequency offset method. Schematic of the error of partial detection;
  • FIG. 12A is a schematic diagram of a detected frequency deviation of a WSS at an ambient temperature of 25 degrees Celsius in a frequency deviation processing method according to an embodiment of the present application and a detection method of a least squares polynomial fitting frequency detection method;
  • FIG. 12B is the frequency deviation obtained by the least squares polynomial fitting method of the WSS at the ambient temperature of 25 degrees Celsius in the frequency offset processing method provided by the embodiment of the present application, and the frequency offset obtained by the one-sided frequency offset detection method and the averaged two-sided frequency offset method. Detection error diagram;
  • FIG. 13A is a schematic diagram of a detected frequency deviation of a WSS at an ambient temperature of 65 degrees Celsius and a least square method polynomial fitting method in a frequency deviation processing method provided in an embodiment of the present application;
  • FIG. 13B is the frequency deviation obtained by the least squares polynomial fitting method of the WSS at an ambient temperature of 65 degrees Celsius in the frequency offset processing method provided by the embodiment of the present application, and the frequency offset obtained by the one-sided frequency offset detection method and the averaged two-sided frequency offset method. Detection error diagram;
  • FIG. 14 is a fourth flowchart of a frequency offset processing method according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a frequency offset processing apparatus according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a frequency offset processing device according to an embodiment of the present application.
  • optical transmission system such as a long-distance high-speed optical transmission system such as 200G or 400G.
  • long-distance high-speed optical transmission system such as 200G or 400G.
  • it can also be used in other optical transmission systems.
  • the word "exemplary” is used to indicate an example, illustration, or description. Any embodiment or design described as “example” in this application should not be construed as more preferred or advantageous over other embodiments or designs. Rather, the term usage example is intended to present the concept in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art may know that with the network The evolution of the architecture and the emergence of new business scenarios. The technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 1 is a schematic diagram of an optical transmission system of a frequency offset processing method according to an embodiment of the application.
  • FIG. 2 is a schematic diagram of a ROADM in an optical transmission system of a frequency offset processing method according to an embodiment of the application.
  • the optical transmission system can be applied to a range including multiple nodes, and each node can include a ROADM.
  • the multiple nodes may include, for example, A, B, C, D, and E shown in FIG. 1.
  • Each node can be located in one site, and nodes at different sites are interconnected.
  • each ROADM may include a multi-level WSS, and the multi-level WSSs are connected to each other.
  • FIG. 3 is a first schematic structural diagram of a WSS in a dispersion direction according to an embodiment of the present application.
  • the WSS may include a collimator, a grating, a main lens, and a switching engine.
  • the switching engine can be a Liquid Crystal Silicon (LCOS) chip or a MicroElectroMechanical Systems (MEMS) chip.
  • LCOS Liquid Crystal Silicon
  • MEMS MicroElectroMechanical Systems
  • An optical signal containing multiple wavelengths is collimated by a collimator and focused on the surface of the grating.
  • the angle at which the optical signal enters the grating is ⁇ .
  • the lens that transforms the spot shape between the collimator and the grating is not shown.
  • the grating diffracts light signals of different wavelengths into different directions of propagation, and the angle of the light beam exiting the grating is ⁇ , resulting in a divergence ⁇ .
  • ⁇ 2 is the middle wavelength of the entire spectrum
  • ⁇ 1 and ⁇ 3 are the wavelengths on both sides of the entire spectrum.
  • the optical signals of each wavelength are focused on the surface of the switching engine through the main lens, and the role dispersion ⁇ is converted into displacement dispersion, so that the optical signals of different wavelengths are focused at different positions p of the switching engine.
  • the main lens focal length is f.
  • the angle at which the optical signal enters the grating and the angle at which the grating exits satisfies formula (1).
  • m is the diffraction order of the grating
  • n is the refractive index of the propagation medium where the optical signal enters and exits the grating
  • d is the grating period interval.
  • Factors such as temperature, air pressure, and aging of the device will cause minor changes in the parameters such as the grating period interval of the WSS, the focal length of the main lens, and the position of each optical component in the WSS. These parameter changes cause the position of each wavelength signal on the switching engine to shift ⁇ p , Which causes the frequency deviation ⁇ of each channel of the WSS.
  • the relationship between the frequency shift and frequency offset of each channel position satisfies formula (4).
  • FIG. 4 is a schematic diagram of frequency offsets corresponding to different wavelengths of WSS at different temperatures according to an embodiment of the present application.
  • Figure 4 shows the corresponding relationship between wavelengths and frequency offsets in the C band of WSS at three different temperatures, such as -5 degrees Celsius, 25 degrees Celsius, and 65 degrees Celsius. According to Figure 4, it can be seen that different wavelengths have different frequency deviations.
  • the correspondence between frequency offset and wavelength is not a nonlinear relationship, but a curve relationship with a continuously changing slope. Among them, the wavelength range of the C band is 1530nm-1565nm.
  • p is a preset pixel position in the channel, such as the first pixel position or the second pixel position.
  • the formula (5) and the formula (6) can both be frequency offset fitting formulas, the formula (5) can be used to characterize the correspondence between the frequency offset and the wavelength, and the formula (6) can be used to characterize the correspondence between the frequency offset and the pixel position.
  • the coefficients of the polynomials of each order in the frequency offset fitting formula are also called the fitting coefficients of the polynomials, which are unknown. Therefore, the frequency offset processing methods provided in the following embodiments of the present application can accurately determine the WSS by determining the coefficients of the polynomials of each order in the frequency offset fitting formula shown in formula (5) or formula (6). Frequency offset of the inner channel.
  • FIG. 5 is a second schematic diagram of the structure of the WSS in the dispersion direction according to the embodiment of the present application.
  • the WSS may include a collimator, a grating, a main lens, a switching engine, a photodetector, an input port, and at least one output port.
  • one output port can be used as a frequency offset detection port and connected to a photodetector, and the other output ports can be used as service ports for transmitting optical signals carrying service data or information.
  • the switching engine can be an LCOS chip or a MEMS chip.
  • the calibration light ⁇ ref is accessed from the input port of the WSS, and is focused onto the switching engine via a collimator, a grating, and a main lens.
  • the calibration light ⁇ ref is switched to a certain port output, and the output port is connected to a photodetector.
  • the photodetector is used to detect the optical power of the calibration light ⁇ ref output from an output port, and the output port is a frequency offset detection port.
  • the WSS may have multiple channels, each channel including at least one pixel column on a switching engine.
  • the width of each channel may be, for example, 50 GHz, 100 Ghz, or other widths.
  • FIG. 6 is a first flowchart of a frequency offset processing method according to an embodiment of the present application. This method can be executed by a frequency offset processing device.
  • the frequency offset processing device can be called a control device or a calibration device of the WSS.
  • the frequency offset processing device can be a device external to the WSS and a photodetector, or the chip where the WSS is located.
  • a processing chip connected to the photodetector, and the processing chip may have a processor such as a microprocessor and the like.
  • the method may include the following:
  • the preset channel includes: at least two channels other than a service channel among multiple channels of the WSS.
  • the preset channel can be used as frequency offset monitoring, which is a frequency offset detection channel among the multiple channels of the WSS.
  • the frequency offset detection channel is a channel other than the service channel among the multiple channels of the WSS, and no service data can be transmitted thereon.
  • the service channel of multiple channels of the WSS can be used to transmit service data.
  • the preset channel may be distributed on both sides of the service channel, and a pixel column included in the preset information is located at an edge position of the switching engine.
  • the preset channel may be referred to as an edge channel.
  • the preset channel may include one channel or multiple channels. If the multiple channels are located, the multiple channels may be respectively located in symmetrical or asymmetrical positions in the switching engine.
  • the preset channel may include two channels located at an edge position of the switching engine, and the two channels may be located at two edge positions of the switching engine.
  • the calibration light corresponding to the wavelength of the preset channel can be input to the input port of the WSS, and the frequency offset of the preset channel or its subchannel is determined according to the optical power detected by the photodetector.
  • the frequency offset of the preset channel or its sub-channel may be the frequency offset of the center wavelength or edge wavelength of the preset channel or its sub-channel.
  • the preset channel includes two channels, for example, it may be the 0th channel and the 98th channel of the switching engine.
  • the wavelength corresponding to the 0th channel can be expressed as ⁇ 0
  • the wavelength corresponding to the 98th channel can be expressed as ⁇ 98 .
  • the frequency offset of the preset channel may include: a frequency offset of at least one pixel column included in the preset channel, wherein each pixel column has a corresponding frequency offset.
  • the frequency offset of the preset channel may include: a frequency offset of multiple sub-channels in the preset channel, and each sub-channel may include at least one pixel column.
  • the frequency offset of the preset channel may include multiple sub-channel frequency offsets in the preset channel, and the frequency offset of each sub-channel may be the center wavelength of the filtering spectrum generated by the single pixel column or Frequency offset of the edge wavelength.
  • the frequency offset of the preset channel may include the frequency offsets of multiple sub-channels of the preset channel, and the frequency offset of each sub-channel may be generated for multiple pixel columns in each sub-channel.
  • the frequency deviation of the center wavelength or edge wavelength of the filtered spectrum may include the frequency offsets of multiple sub-channels of the preset channel, and the frequency offset of each sub-channel may be generated for multiple pixel columns in each sub-channel.
  • S602. Determine the correspondence between the frequency offset and the wavelength or the correspondence between the frequency offset and the pixel position according to the frequency offset of the preset channel.
  • the frequency offset and the center wavelength or edge wavelength of the preset channel or its sub-channels and the center wavelength or edge wavelength of the calibrated preset channel or its sub-channels can be fitted to the frequency offset and Correspondence between wavelengths; or, according to the calibration center pixel or edge pixel of the preset channel or its sub-channel, the correspondence between the frequency offset and the pixel position is fitted.
  • the center wavelength calibrated by the preset channel or its subchannel is a standard wavelength of the International Telecommunication Union (ITU) (or a standard wavelength calculated based on the ITU standard wavelength), and the edge calibrated by the preset channel or its subchannel is The wavelength is the ITU standard wavelength (or the standard wavelength calculated from the ITU standard wavelength) minus or plus one-half the channel spacing.
  • ITU International Telecommunication Union
  • the channel spacing is the difference between the ITU standard wavelengths (or standard wavelengths calculated from the ITU standard wavelengths) of adjacent channels.
  • the center pixel calibrated by the preset channel or its subchannel is the pixel position corresponding to the ITU standard wavelength (or a standard wavelength calculated according to the ITU standard wavelength)
  • the edge pixel calibrated by the preset channel or its subchannel is the ITU standard wavelength ( (Or the standard wavelength calculated according to the ITU standard wavelength) minus or add half the pixel position corresponding to the channel spacing.
  • the channel spacing is the difference between adjacent channel ITU standard wavelengths (or standard wavelengths calculated from ITU standard wavelengths).
  • the polynomials of each order in the frequency offset fitting formula can be determined according to the detected frequency offset of the preset channel or its subchannels, and the calibrated center wavelength or calibrated edge wavelength of the preset channel or its subchannels. After the fitting coefficient is determined, the correspondence between the frequency offset and the wavelength is determined.
  • the polynomials of each order in the above-mentioned frequency offset fitting formula may be determined according to the detected frequency offset of the preset channel or its subchannel and the calibration center pixel or edge pixel position of the preset channel or its subchannel. Fitting coefficient. After the fitting coefficient is determined, the correspondence between the frequency offset and the pixel position is determined.
  • the corresponding relationship between the frequency offset and the wavelength described above may also be referred to as a mathematical expression of the wavelength frequency offset and the wavelength.
  • the correspondence between the frequency offset and the pixel position may also be referred to as a mathematical expression of the pixel frequency offset and the pixel position.
  • the service channel may include: all service channels or a part of service channels of the WSS. That is, in this method, the frequency offset of all channels in the WSS can be determined according to the correspondence between the frequency offset and the wavelength, or the correspondence between the frequency offset and the pixel position, and the service channel in the WSS can also be determined. Frequency offset.
  • the calibration center wavelength or edge wavelength of each channel and the corresponding relationship between the frequency offset and the wavelength fitted, or the corresponding relationship between the frequency offset and the pixel position may be used to determine the Frequency offset.
  • the frequency offset of the service channel may be a center wavelength or an edge wavelength of the service channel.
  • the method may further include:
  • the traffic channel is calibrated according to the frequency offset of the traffic channel.
  • the method may be used to calibrate the center wavelength or edge wavelength of the service channel according to the frequency offset of the service channel, so that the calibrated The center wavelength or edge wavelength of the service channel is the calibrated center wavelength or edge wavelength of the service channel, or the difference between the center wavelength or the edge wavelength of the service channel is within a preset range.
  • the channel calibration can be performed in different ways.
  • the center wavelength or edge wavelength of the service channel can be calibrated by adjusting the phase information of each pixel column of the service channel.
  • the center wavelength or edge wavelength of the service channel can be calibrated by adjusting the signal transmission direction of each pixel column of the service channel.
  • the frequency offset processing method provided in this embodiment may determine a frequency offset of a preset channel in the WSS.
  • the preset channel includes: at least two channels other than a service channel among the multiple channels, and according to the frequency of the preset channel. Offset to determine the correspondence between frequency offset and wavelength, or the correspondence between frequency offset and pixel position, and then determine the frequency of the service channel based on the correspondence between frequency offset and wavelength, or the correspondence between frequency offset and pixel position. Partial.
  • This method can accurately detect the frequency offset of each service channel of the WSS, and then perform frequency offset calibration to improve the transmission quality of the service channel, avoid service damage and interruption, and ensure the normal operation of the service.
  • FIG. 7 is a second flowchart of a frequency offset processing method according to an embodiment of the present application.
  • the method shown in FIG. 7 may be a possible example of determining the preset channel frequency offset in the method shown in FIG. 6.
  • the method for determining the preset channel frequency offset may be other examples, and details are not described herein again.
  • the frequency offset of the preset channel may include: detection frequency offsets of a plurality of sub-channels of the preset channel. Each subchannel may include at least one pixel column.
  • determining the frequency offset of the preset channel in the WSS in S601 shown above may include:
  • the detection wavelength of each sub-channel may include a center wavelength of each sub-channel.
  • the method can input the calibration light corresponding to the wavelength of the preset channel to the input port of the WSS, and form a filter by controlling the phase map of each subchannel on the switching engine.
  • the other subchannels other than each subchannel have no phase loading.
  • the signal reflected by each sub-channel is output to the WSS output port, that is, the frequency deviation detection port.
  • the center wavelength of the step calibration light is adjusted, and then the optical power of the WSS output port is detected to generate a filter spectrum corresponding to each sub-channel.
  • the maximum optical power or the minimum insertion loss value of the filter determines the center wavelength of each subchannel.
  • the filter spectrum of each sub-channel can also be detected by traditional grating spectrometer or high-precision spectrometer based on coherent detection technology.
  • a similar manner may be used to detect the center wavelength of another sub-channel in the preset channel until the center wavelength of at least one sub-channel in the preset channel is obtained.
  • the detection wavelength of each subchannel includes: an edge wavelength of each subchannel.
  • the method can input the calibration light corresponding to the wavelength of the preset channel to the input port of the WSS, and form a filter by controlling the phase map of each subchannel on the switching engine.
  • the other subchannels other than each subchannel have no phase loading.
  • the signal reflected by each sub-channel is output to the WSS output port, that is, the frequency offset detection port, the wavelength of the step calibration light is adjusted, and then the optical power of the WSS output port is detected and recorded to generate a filter spectrum corresponding to each sub-channel.
  • filter spectra of other subchannels can be obtained.
  • the filter spectra of adjacent subchannels are compared, and the wavelengths at which the insertion loss is equal or at the intersection of the filter spectra are determined as the edge wavelengths of each subchannel.
  • a similar manner may be used to detect the edge wavelength of another subchannel in the preset channel until the edge wavelength of at least one subchannel in the preset channel is obtained.
  • this method can control the sub-channel generation filters on the switching engine in different ways.
  • the switching engine may be an LCOS chip.
  • the phase information of each subchannel on the LCOS chip may be adjusted so that the signal reflected by each subchannel is output to the WSS output port, that is, frequency offset detection. Port to generate a filter corresponding to each subchannel.
  • the switching engine may be a MEMS chip.
  • the signal reflected by each subchannel can be output to the output of the WSS.
  • the port that is, the frequency offset detection port, generates a filter corresponding to each subchannel.
  • FIG. 8A is a schematic diagram of pixel distribution of calibration light on an LCOS chip in a frequency offset processing method according to an embodiment of the present application.
  • FIG. 8B is a diagram illustrating a correspondence between an edge wavelength and a center wavelength in a frequency offset processing method according to an embodiment of the present application.
  • the preset channel can be used for frequency offset monitoring, it can be called a preset monitoring channel, which can include the 0th channel and the 98th channel on the LCOS chip, where the 0th channel and the 98th channel can be located in FIG. 8 The two edge positions of the LCOS chip shown in the dispersion direction are shown.
  • the calibration light source can be controlled to output the calibration light corresponding to ⁇ 0 and the calibration light corresponding to ⁇ 98 , so that the calibration light corresponding to ⁇ 0 is incident from the 0th channel on the LCOS chip shown in FIG. 8, and the ⁇ 98 corresponds to The calibration light is incident from the 98th channel on the LCOS chip shown in FIG. 8.
  • the phase information of the first pixel column of the 0th channel in the dispersion direction on the LCOS chip can be adjusted to make the LCOS chip in the
  • the phase map of the first pixel column of the 0th channel in the dispersion direction becomes a filter, and the other pixel columns have no phase loading, so that the signal reflected by the LCOS chip in the first pixel column of the 0th channel in the dispersion direction is output to the WSS output Port, and the wavelength of the light source is calibrated by step scanning, and a filter spectrum is generated by the optical power detected by the photodetector of the output port of the WSS.
  • the center wavelength of the first pixel column of the LCOS chip in the dispersion direction of the 0th channel is determined.
  • M may be an integer greater than or equal to 1.
  • the phase information of the first pixel column of the 98th channel in the dispersion direction on the LCOS chip can be adjusted to make LCOS
  • the phase map of the chip in the first pixel column of the 98th channel in the dispersion direction becomes a filter, and the other pixel columns have no phase loading, so that the signal reflected by the LCOS chip in the first pixel column of the 98th channel in the dispersion direction is output to The output port of the WSS, and the wavelength of the light source is calibrated by step scanning.
  • the filter power is generated by the optical power detected by the photodetector of the output port of the WSS.
  • the LCOS chip is determined according to the maximum optical power or the minimum insertion loss value of the filter The center wavelength of the first pixel column of the 98th channel in the dispersion direction.
  • a similar method as described above can be used to determine the center wavelength of the LCOS chip in the second pixel column of the 98th channel in the dispersion direction until the second pixel column is determined.
  • the center wavelength of the L pixel columns of the 98 channel in the dispersion direction. L may be an integer greater than or equal to 1.
  • the filtering spectrum of pixels in each column in the dispersion direction in the LCOS channel 0 and channel 98 can be determined in a similar manner as described above.
  • the filter spectra of adjacent pixel columns in the 0th channel can be compared, and the wavelength at the intersection of the filter spectra of the two pixel columns shown in FIG. 8B is determined as the edge wavelength of each pixel column of the 0 channel.
  • the edge wavelength of each pixel column in the 98th channel can also be obtained.
  • FIG. 9 is a schematic diagram of wavelengths and insertion loss of two pixel columns on an LCOS chip in a frequency offset processing method according to an embodiment of the present application.
  • the wavelength corresponding to the minimum insertion loss value of the 1st pixel column in this channel is the center wavelength of the 1st pixel column.
  • the wavelength corresponding to the minimum insertion loss value of the second pixel column in the channel is the center wavelength of the second pixel column.
  • the output port corresponding to the pixel column can have the maximum optical power.
  • the generated filter of a single pixel column may also be a filter of multiple pixel columns, and the central wavelength of the multiple pixel columns may be the central wavelength of the intermediate pixel columns of the multiple pixel columns. That is, the sub-channel may be a single pixel column or multiple pixel columns.
  • the above example is a possible example of the sub-channels of a single pixel column, and the examples of the sub-channels of multiple pixel columns are similar to the above, and will not be repeated here.
  • the correspondence between the subchannel and the wavelength may be the correspondence between the subchannel and the center wavelength, or the correspondence between the subchannel and the edge wavelength.
  • the calibration center wavelength of each subchannel can be determined.
  • the calibrated edge wavelength of each subchannel can be determined.
  • the corresponding relationship between the preset subchannel and the center wavelength or the edge wavelength may be a table of the relationship between the factory-calibrated subchannel and the center wavelength or the edge wavelength.
  • the center wavelength calibrated by the preset channel or its subchannel is an ITU standard wavelength (or a standard wavelength calculated according to the ITU standard wavelength)
  • the edge wavelength calibrated by the preset channel or its subchannel is an ITU standard wavelength (or an ITU standard wavelength) (The standard wavelength calculated from the wavelength) minus or add a half of the channel spacing.
  • the channel spacing is the difference between adjacent channel ITU standard wavelengths (or standard wavelengths calculated from ITU standard wavelengths).
  • the center pixel calibrated by the preset channel or its subchannel is the pixel position corresponding to the ITU standard wavelength (or a standard wavelength calculated according to the ITU standard wavelength), and the edge pixel calibrated by the preset channel or its subchannel is the ITU standard wavelength ( (Or the standard wavelength calculated according to the ITU standard wavelength) minus or add half the pixel position corresponding to the channel spacing.
  • the channel spacing is the difference between adjacent channel ITU standard wavelengths (or standard wavelengths calculated from ITU standard wavelengths).
  • each subchannel there may be a calibrated center wavelength or the edge wavelength of each subchannel in the preset channel. If each subchannel is a pixel column, the calibrated center wavelength or edge wavelength of each subchannel is the calibrated central wavelength or edge wavelength of the one pixel column; if each subchannel is multiple pixel columns, then each The calibration center wavelength or edge wavelength of each sub-channel may be the calibration center wavelength or edge wavelength of the middle pixel column of the plurality of pixel columns.
  • the calibration center wavelength or edge wavelength of each subchannel in the 0th channel and the calibration center wavelength of each subchannel of the 98th channel can be obtained by executing S702. Or edge wavelength.
  • the central wavelength detection frequency of each sub-channel can be obtained by performing S703. Partial.
  • the edge wavelength detection frequency of each sub-channel can be obtained by performing S703. Partial.
  • the detection center wavelength or edge wavelength of each sub-channel may be the detection center wavelength or edge wavelength of each sub-channel detected through the above S701, and the calibrated center wavelength or edge wavelength of each sub-channel may be a preset one each.
  • the detection center wavelength or edge wavelength of each subchannel may be the detection center wavelength or edge wavelength of each sub-channel detected through the above S701, and the calibrated center wavelength or edge wavelength of each sub-channel may be a preset one each.
  • the frequency offset of each subchannel is determined to be the center of each subchannel. Wavelength or edge wavelength frequency offset.
  • the detection frequency offset of at least one sub-channel in the preset channel may be obtained by performing S703, and the at least one sub-channel may be all or part of the sub-channels in the preset channel.
  • the frequency offset processing method provided in this embodiment may determine the detection frequency offset of each sub-channel of the preset channel in the WSS by providing an example, so that the detection frequency offset of each sub-channel of the preset channel may be more accurate, thereby making the WSS
  • the frequency offset of the internal service channel is more accurate. Therefore, the method can accurately detect the frequency offset of the service channel, and then perform frequency offset calibration to improve the transmission quality of each service channel, avoid service damage and interruption, and ensure the normal operation of the service.
  • FIG. 10 is a third flowchart of a frequency offset processing method according to an embodiment of the present application.
  • the method shown in FIG. 10 may be a possible example of determining a correspondence between a frequency offset and a wavelength in the foregoing method.
  • the frequency offset of the preset channel may include: a frequency offset of at least one sub-channel of the preset channel. Each subchannel may include at least one pixel column.
  • determining the correspondence between the frequency offset and the wavelength, or the correspondence between the frequency offset and the pixel position may include:
  • the calibration wavelength can be a calibration center wavelength or a calibration edge wavelength.
  • Each set of fitting coefficients includes: a set of fitting coefficients of each polynomial in the frequency offset fitting formula.
  • the frequency offset fitting formula may be, for example, the frequency offset fitting formula shown in the above formula (5) or formula (6).
  • the at least one set of fitting coefficients may be candidate fitting coefficients of a frequency offset fitting formula, wherein each group of fitting coefficients includes fitting coefficients of polynomials of each order in the frequency offset fitting formula.
  • the best fitting coefficient may be the fitting coefficient corresponding to the minimum sum of squared errors in the at least one set of fitting coefficients.
  • the fitting coefficient of each polynomial in the frequency offset fitting formula is the best fitting coefficient, the minimum frequency offset between the frequency offset of the at least one subchannel and the fitted frequency offset of the at least one subchannel can be reached. Sum of squared errors.
  • the frequency offset fitting formula can be the best function of the relationship between frequency offset and wavelength or the best frequency offset and pixel
  • the relationship function of position can obtain the best corresponding relationship between the frequency offset and the wavelength, or the corresponding relationship between the frequency offset and the pixel position. Based on the optimal correspondence between the frequency offset and the wavelength, or the correspondence between the frequency offset and the pixel position, the obtained frequency offset of the service channel can be made more accurate, and accurate detection of the frequency offset can be achieved.
  • a single pixel column is used as an example for description below.
  • the following formula (7) can be used to determine the best fitting coefficient of each polynomial in the frequency offset fitting formula.
  • ⁇ v q is the wavelength deviation of the detected single pixel column.
  • ⁇ q is the calibration wavelength of a single pixel column, N is the order of each order polynomial, and N is an integer greater than or equal to 1 and less than or equal to P-1.
  • the calibration wavelength can be a calibration center wavelength or a calibration edge wavelength.
  • the number of pixel columns of the preset channel may be the number of pixel columns included in the one channel; if the preset channel includes multiple channels, the pixels of the preset channel The number of columns may be the sum of the number of pixel columns included in the multiple channels.
  • the number of pixel columns of the preset channel may be the sum of the pixel columns of the 0th channel and the 98th channel, such as Sum of M and L.
  • the preset channel includes multiple channels, for example, channel 0 and channel 98 of the LCOS chip, the number of pixel columns included in different channels in the multiple channels may be the same or different.
  • the calibration wavelengths of the pixel columns of the other channels of the LCOS chip are brought into formula (5) to obtain the frequency offsets of the multiple channels of the LCOS chip That is, the center wavelength or edge frequency offset of the multiple channels.
  • the calibration wavelength or pixel position of each pixel column of the other channels of the LCOS chip is brought into formula (6), and the multiples of the LCOS chip can also be obtained.
  • the frequency offset of each channel is the center wavelength or edge wavelength offset of the multiple channels.
  • the following is a schematic diagram of the results of detecting and fitting the center wavelength frequency offset of each channel obtained by using the method of the present application under different ambient temperatures.
  • FIG. 11A is a schematic diagram of a frequency offset detection method and a least squares polynomial fitting frequency offset of a WSS at an ambient temperature of ⁇ 5 degrees Celsius in a frequency offset processing method according to an embodiment of the present application.
  • FIG. 11A shows the detection frequency deviation curves of 40 channels of the WSS in the C band at an ambient temperature of ⁇ 5 degrees Celsius, and the frequency deviation curves obtained by the least square method polynomial fitting.
  • the channel interval is 100 GHz.
  • the maximum channel frequency offset is 1.57 GHz.
  • the least-squares polynomial fitting provided in the embodiment of the present application is used to perform the frequency offset fitting, the detected frequency offset of each of the four pixel columns of the left and right edge channels may be taken.
  • a first-order fitting may be adopted, and a multi-order fitting such as a second-order fitting or a third-order fitting may also be adopted.
  • the first-order fit includes a constant term and a first-order polynomial
  • the second-order fit includes a constant term, a first-order and second-order polynomial
  • the third-order fit includes a constant term, first-order, second-order, and third-order polynomial.
  • the frequency offset fitting is performed by the second-order fitting and the third-order fitting.
  • the obtained frequency offset results of the channels of the WSS are very close to the actual measured frequency offset results, which can better match the actual measured intermediate frequency.
  • the relationship between the offset and the center wavelength of the channel is greatly improved compared to the first-order linear fitting method.
  • FIG. 11B is the least squares polynomial fitting method of the WSS at the ambient temperature of ⁇ 5 degrees Celsius in the frequency offset processing method provided by the embodiment of the present application, and the frequency obtained by the single-sided frequency offset detection method and the averaged two-sided frequency offset method. Schematic diagram of errors in partial detection.
  • the largest channel frequency offset detection error among the 40 channels that can obtain the C-band WSS is 1.51 GHz.
  • the maximum channel frequency offset detection error in 40 channels is 0.825 GHz, and the maximum channel frequency offset detection error in 40 channels of C-band WSS obtained by the first-order linear fitting method is 0.411 GHz, and the second-order linear fitting method is used.
  • the maximum channel frequency offset detection error in the 40 channels of the C-band WSS is 0.187 GHz, and the maximum channel frequency offset detection error in the 40 channels of the C-band WSS by the third-order linear fitting method is 0.184 GHz. .
  • FIG. 12A is a schematic diagram of a frequency offset detection method and a least squares polynomial fitting frequency offset of a WSS at an ambient temperature of 25 degrees Celsius in a frequency offset processing method according to an embodiment of the present application.
  • FIG. 12A shows the detection frequency deviation curves of 40 channels of the WSS in the C band at an ambient temperature of 25 degrees Celsius, and the frequency deviation curves obtained by the least square method polynomial fitting.
  • the channel interval is 100 GHz.
  • the maximum channel frequency offset is 1.03 GHz.
  • the least-squares polynomial fitting provided in the embodiment of the present application is used to perform the frequency offset fitting, the detected frequency offset of each of the four pixel columns of the left and right edge channels may be taken.
  • a first-order fitting may be adopted, and a multi-order fitting such as a second-order fitting or a third-order fitting may also be adopted.
  • the first-order fit includes a constant term and a first-order polynomial
  • the second-order fit includes a constant term, a first-order and second-order polynomial
  • the third-order fit includes a constant term, first-order, second-order, and third-order polynomial.
  • frequency offset fitting is performed by the second-order fitting and the third-order fitting.
  • the obtained frequency offset results of the channels of the WSS are very close to the actual measured frequency offset results, and can well match the frequency offsets in the actual measurement.
  • the relationship with the curve function of the channel center wavelength is greatly improved compared to the first-order linear fitting.
  • FIG. 12B is the frequency deviation obtained by the least squares polynomial fitting method of the WSS at the ambient temperature of 25 degrees Celsius in the frequency offset processing method provided by the embodiment of the present application, and the frequency offset obtained by the one-sided frequency offset detection method and the averaged two-sided frequency offset method Schematic of detected errors.
  • the maximum channel frequency offset detection error of the 40 channels that can obtain the C-band WSS using the one-sided frequency offset detection method is 0.713 GHz.
  • the maximum channel frequency offset detection error in 40 channels is 0.544GHz, and the maximum channel frequency offset detection error in 40 channels of C-band WSS obtained by the first-order linear fitting method is 0.498GHz, and the second-order linear fitting method is used.
  • the maximum channel frequency offset detection error in the 40 channels of the C-band WSS is 0.155 GHz, and the maximum channel frequency offset detection error in the 40 channels of the C-band WSS by the third-order linear fitting method is 0.11 GHz. .
  • FIG. 13A is a schematic diagram of a frequency offset detection method and a least squares polynomial fitting frequency offset of a WSS at an ambient temperature of 65 degrees Celsius in a frequency offset processing method according to an embodiment of the present application.
  • FIG. 13A shows the detection frequency deviation curves of 40 channels of the WSS in the C-band at an ambient temperature of 65 degrees Celsius, and the frequency deviation curves obtained by the least square method polynomial fitting.
  • the channel interval is 100 GHz.
  • the maximum channel frequency offset is 2.41 GHz.
  • the least-squares polynomial fitting provided in the embodiment of the present application is used to perform the frequency offset fitting, the detected frequency offset of each of the four pixel columns of the left and right edge channels may be taken.
  • a first-order fitting may be adopted, and a multi-order fitting such as a second-order fitting or a third-order fitting may also be adopted.
  • the first-order fit includes a constant term and a first-order polynomial
  • the second-order fit includes a constant term, a first-order and second-order polynomial
  • the third-order fit includes a constant term, first-order, second-order, and third-order polynomial.
  • frequency offset fitting is performed by the second-order fitting and the third-order fitting.
  • the obtained frequency offset results of each channel of the WSS are very close to the actual measured frequency offset results, which can better match the actual measured frequency offset.
  • the relationship with the curve function of the channel center wavelength is greatly improved compared to the first-order linear fitting.
  • FIG. 13B is the frequency deviation obtained by the least squares polynomial fitting method of the WSS at an ambient temperature of 65 degrees Celsius in the frequency offset processing method provided by the embodiment of the present application, and the frequency offset obtained by the one-sided frequency offset detection method and the averaged two-sided frequency offset method. Schematic of detected errors.
  • the maximum channel frequency offset detection error among the 40 channels that can obtain the C-band WSS by using the one-sided frequency offset detection method is 0.815 GHz.
  • the maximum channel frequency offset detection error of 40 channels is 0.632GHz, and the maximum channel frequency offset detection error of 40 channels of C-band WSS obtained by the first-order linear fitting method is 0.493GHz, and the second-order linear fitting method is used.
  • the maximum channel frequency offset detection error in the 40 channels of the C-band WSS is 0.173 GHz, and the maximum channel frequency offset detection error in the 40 channels of the C-band WSS by the third-order linear fitting method is 0.145 GHz. .
  • the least-squares polynomial fitting method based on the embodiment of the present application is used to determine the best fitting coefficient of each polynomial of the frequency offset fitting formula, and then the frequency of the channel Partial fitting detection, compared with the single-sided frequency offset detection method and the averaged two-sided edge channel frequency offset detection method, the accuracy of each channel frequency offset detection is greatly improved.
  • the frequency offset detection error can be reduced to less than 0.2GHz. It should be noted that the higher the order of the participating fitting, the more accurate the fitting coefficients obtained, and the more accurate the frequency offset detection. However, the edge channels on both sides need to provide more actual frequency offset detection data.
  • the best fitting coefficients of each polynomial of the frequency offset fitting formula can be obtained by least square fitting, which can make the coefficients of the polynomial obtained by the fitting more accurate, and make the frequency offset fitting formula It can more accurately ensure the corresponding relationship between frequency offset and wavelength or the frequency offset and pixel position in the WSS, so that the frequency offset detection is more accurate, and then the frequency offset calibration is performed to improve the transmission quality of each channel to avoid service damage and interruption. To ensure the normal operation of the business.
  • FIG. 14 is a fourth flowchart of a frequency offset processing method according to an embodiment of the present application.
  • the method shown in FIG. 14 may be another possible example of determining the corresponding relationship between the frequency offset and the wavelength in the foregoing method.
  • the frequency offset of the preset channel may include: a frequency offset of at least one sub-channel of the preset channel. Each subchannel may include at least one pixel column.
  • the correspondence between the frequency offset and the wavelength is determined according to the frequency offset of the preset channel, or the correspondence between the frequency offset and the pixel position may include:
  • the calibration wavelength can be a calibration center wavelength or a calibration edge wavelength.
  • the calibrated center wavelength or edge wavelength of each sub-channel may be a preset center wavelength or edge wavelength of each sub-channel.
  • the frequency offset expression of each subchannel can be determined according to the frequency offset of each subchannel, the calibration wavelength of each subchannel, and the frequency offset fitting formula.
  • S1402 Solve a system of equations for a frequency offset expression of at least one sub-channel of the preset channel, and obtain a fitting coefficient of each polynomial in a frequency offset fitting formula.
  • this method can solve the polynomials in the frequency offset fitting formula by solving the equations of the frequency offset expression of at least one subchannel. Fitting coefficient.
  • the number of the at least one subchannel is equal to the number of polynomials in the frequency offset fitting formula.
  • the fitting coefficient of each polynomial in the frequency offset fitting formula can be determined by solving the system of equations shown in the following formula (8).
  • P is an integer greater than or equal to 2 and less than or equal to the number of pixel columns of the preset channel.
  • ⁇ v P is the wavelength deviation of a single pixel column detected.
  • P is equal to the number of polynomials n + 1.
  • is the calibration wavelength of a single pixel column
  • N is the order of each order polynomial
  • N is an integer greater than or equal to 1 and less than or equal to P-1.
  • the number of data P is equal to the number of polynomials n + 1. Solve the system of equations (8) directly to obtain the coefficients of each order polynomial.
  • the number of pixel columns of the preset channel may be the sum of the number of pixel columns of the 0th channel and the 98th channel, Such as the sum of M and L.
  • the preset channel includes multiple channels, for example, channel 0 and channel 98 of the LCOS chip
  • the number of pixel columns included in different channels in the multiple channels may be the same or different.
  • the best fitting coefficients of the polynomials of the frequency offset fitting formula obtained by the fitting can be made more accurate.
  • the calibration wavelengths of the sub-channels of the other channels of the LCOS chip are brought into formula (5), and the frequency offsets of the multiple channels of the LCOS chip are Wavelength frequency offset of multiple channels.
  • the calibrated pixel positions of the pixel columns of other channels of the LCOS chip are brought into formula (6), and multiple channels of the LCOS chip can also be obtained.
  • the frequency offset is the wavelength frequency offset of the multiple channels.
  • the fitting coefficients of the polynomials of the frequency offset fitting formula can be obtained by solving the equations, which can make the coefficients of the polynomials obtained by the fitting more accurate, and make the frequency offset fitting formula more accurate.
  • the frequency offset calibration is performed to improve the transmission quality of each channel and avoid service damage and interruption. To ensure the normal conduct of business.
  • FIG. 15 is a schematic structural diagram of a frequency offset processing apparatus according to an embodiment of the present application.
  • the frequency offset processing device 1500 may include a processing module 1501.
  • a processing module 1501 is configured to determine a frequency offset of a preset channel in the WSS; the preset channel includes: at least two channels other than a service channel of the multiple channels; and determines the frequency offset and the frequency offset according to the frequency offset of the preset channel.
  • the frequency offset of the preset channel includes: detection frequency offsets of multiple subchannels in the preset channel; each subchannel includes at least one pixel column.
  • the processing module 1501 is specifically configured to determine a detection wavelength of each sub-channel in the preset channel; and determine the preset channel according to the correspondence between the preset sub-channel and the wavelength.
  • the calibration wavelength of each sub-channel; according to the detection wavelength of each sub-channel and the calibration wavelength of each sub-channel, the detection frequency offset of each sub-channel is determined.
  • the detection wavelength of each subchannel is a center wavelength
  • the switching engine is an LCOS chip.
  • the processing module 1501 is specifically configured to adjust the phase information of each sub-channel so that the signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; adjust the center wavelength of the calibration light source entering each of the sub-channels to detect the WSS The maximum optical power of the output port; the center wavelength of each subchannel is determined according to the maximum optical power.
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is an LCOS chip.
  • the processing module 1501 is specifically configured to adjust the phase information of each sub-channel so that the signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; adjust the center wavelength of the calibration light source entering each sub-channel to detect the WSS output Port power to generate the filter spectrum of each sub-channel; compare the filter spectrum of each sub-channel with an adjacent sub-channel, and determine the wavelength at which the insertion loss is equal or where the filter spectrum meets as the edge wavelength of each sub-channel.
  • the detection wavelength of each subchannel is a center wavelength
  • the switching engine is a MEMS chip.
  • the processing module 1501 is specifically configured to adjust a signal transmission direction corresponding to each sub-channel, so that the signal reflected by each sub-channel is output to the WSS output port in a time-sharing manner; adjust the center wavelength of the calibration light source entering each sub-channel, and detect The maximum optical power of the WSS output port; according to the maximum optical power, determine the center wavelength of each subchannel.
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is a MEMS chip.
  • the processing module 1501 is specifically configured to adjust a signal transmission direction corresponding to each sub-channel, so that the signal reflected by each sub-channel is output to the WSS output port in a time-sharing manner; adjust the center wavelength of the calibration light source entering each sub-channel, and detect the The WSS output port power generates the filter spectrum of each subchannel; compares the filter spectrum of each subchannel with an adjacent subchannel, and determines the wavelength at which the insertion loss is equal or where the filter spectrum meets as the edge wavelength of each subchannel.
  • the processing module 1501 is specifically configured to obtain the calibration frequency or pixel position of each subchannel, a preset frequency offset fitting formula, and at least a set of fitting coefficients.
  • Fitting frequency offset of each subchannel; each set of fitting coefficients includes: a set of fitting coefficients of each polynomial in the frequency offset fitting formula; calculating the fitting frequency offset of each subchannel and the detection frequency of each subchannel Sum of squared deviations of errors; adjust the fitting coefficients of the polynomials in the frequency offset fitting formula until the detection frequency offset of the at least one subchannel is determined, and the squared error between the fitted frequency offset of the at least one subchannel The minimum sum of squares is reached; the best fitting coefficient of each polynomial in the frequency offset fitting formula is determined according to the smallest sum of squared errors; the corresponding relationship between the frequency offset and the wavelength is determined according to the best fit coefficient; or, the Correspondence between frequency offset and pixel position.
  • the processing module 1501 is specifically configured to determine a frequency offset expression of each sub-channel according to a detection frequency offset of each sub-channel and a calibration wavelength or pixel position of each sub-channel; The equations of the frequency offset of at least one sub-channel of the preset channel are solved to obtain the fitting coefficients of each polynomial in the frequency offset fitting formula; according to the fitting coefficients, the correspondence between the frequency offset and the wavelength is determined, Or, the correspondence between the frequency offset and the pixel position.
  • the frequency offset processing device provided in the embodiment of the present application can execute the frequency offset processing method shown in any one of FIG. 6 to FIG. 14.
  • FIG. 6 For a specific implementation process and beneficial effects thereof, refer to the foregoing, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of a frequency offset processing device according to an embodiment of the present application.
  • the frequency offset processing device 1600 may include: a memory 1601 and a processor 1602.
  • the memory 1601 is coupled to the processor 1602.
  • the memory 1601 is configured to store a computer program.
  • the processor 1602 is configured to execute a computer program stored in the memory 1601, so that the frequency offset processing device 1600 executes the frequency offset processing method shown in any one of FIG. 6 to FIG. 14.
  • the frequency offset of the preset channel includes: detection frequency offsets of multiple subchannels in the preset channel; each subchannel includes at least one pixel column.
  • the processor 1602 determines the detection wavelength of each sub-channel in the preset channel; and determines the sub-channel in each of the preset channels according to the correspondence between the preset sub-channel and the wavelength. Calibration wavelength; determining the detection frequency offset of each sub-channel according to the detection wavelength of each sub-channel and the calibration wavelength of each sub-channel.
  • the detection wavelength of each subchannel is a center wavelength
  • the switching engine is an LCOS chip.
  • the processor 1602 is specifically configured to adjust the phase information of each sub-channel so that the signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; adjust the center wavelength of the calibration light source that enters each sub-channel to detect the WSS The maximum optical power of the output port; the center wavelength of each subchannel is determined according to the maximum optical power.
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is an LCOS chip.
  • the processor 1602 is specifically configured to adjust the phase information of each sub-channel so that the signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; adjust the center wavelength of the calibration light source entering each sub-channel to detect the WSS output Port power to generate the filter spectrum of each sub-channel; compare the filter spectrum of each sub-channel with an adjacent sub-channel, and determine the wavelength at which the insertion loss is equal or where the filter spectrum meets as the edge wavelength of each sub-channel.
  • the detection wavelength of each subchannel is a center wavelength
  • the switching engine is a MEMS chip.
  • the processor 1602 is specifically configured to adjust a signal transmission direction corresponding to each sub-channel, so that a signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; adjust a center wavelength of a calibration light source entering each sub-channel, and detect the The maximum optical power of the WSS output port; according to the maximum optical power, determine the center wavelength of each subchannel.
  • the detection wavelength of each subchannel is an edge wavelength
  • the switching engine is a MEMS chip.
  • the processor 1602 is specifically configured to adjust a signal transmission direction corresponding to each sub-channel, so that a signal reflected by each sub-channel is output to the output port of the WSS in a time-sharing manner; adjust a center wavelength of a calibration light source entering each sub-channel, and detect the The WSS output port power generates the filter spectrum of each subchannel; compares the filter spectrum of each subchannel with an adjacent subchannel, and determines the wavelength at which the insertion loss is equal or where the filter spectrum meets as the edge wavelength of each subchannel.
  • the processor 1602 is specifically configured to obtain the calibration frequency or pixel position of each subchannel, a preset frequency offset fitting formula, and at least a set of fitting coefficients.
  • Fitting frequency offset of each subchannel; each set of fitting coefficients includes: a set of fitting coefficients of each polynomial in the frequency offset fitting formula; calculating the fitting frequency offset of each subchannel and the detection frequency of each subchannel Sum of squared deviations of errors; adjust the fitting coefficients of each polynomial in the frequency offset fitting formula until the detection frequency deviation of the at least one subchannel is determined, and the squared error between the fitted frequency offset of the at least one subchannel The minimum sum of squares is reached; the best fitting coefficient of each polynomial in the frequency offset fitting formula is determined according to the smallest sum of squared errors; the corresponding relationship between the frequency offset and the wavelength is determined according to the best fit coefficient; or, the Correspondence between frequency offset and pixel position.
  • the processor 1602 is specifically configured to determine a frequency offset expression of each sub-channel according to a detection frequency offset of each sub-channel and a calibration wavelength or pixel position of each sub-channel; The equations of the frequency offset of at least one sub-channel of the preset channel are solved to obtain the fitting coefficients of each polynomial in the frequency offset fitting formula; according to the fitting coefficients, the correspondence between the frequency offset and the wavelength is determined, Or, the correspondence between the frequency offset and the pixel position.
  • the embodiment of the present application may further provide a computer program product, and the computer program product includes program code for executing the frequency offset processing method shown in any one of FIG. 6 to FIG. 14 described above.
  • the computer can be caused to execute the frequency offset processing method shown in any one of 6 to 14 above.
  • the embodiment of the present application may further provide a computer-readable storage medium, where the storage medium is used to store a computer program product, and the computer program product includes program code.
  • the program code may include program code for executing the frequency offset processing method shown in any one of 6 to 14 above.
  • the computer When the computer program product is run on a computer, the computer can be caused to execute the frequency offset processing method shown in any one of FIG. 6 to FIG. 14.
  • the computer-readable storage medium may be an internal memory in the frequency offset processing device 1600 shown in FIG. 16 described above, or an external memory connected to the frequency offset processing device 1600 shown in FIG. 16 described above.
  • the program code in the computer program product may be executed by, for example, the processor 1602 in the frequency offset processing device 1600 shown in FIG. 16.
  • the frequency offset processing device, computer program product, and computer-readable storage medium provided in the embodiments of the present application can execute the frequency offset processing method shown in any one of FIG. 6 to FIG. 14 above.
  • the above-mentioned frequency offset processing apparatus 1500 shown in FIG. 15 may also be a chip, and the processing module 1501 is specifically a processing core (or processor) of the chip.
  • the processing core of the chip may be used to: determine a frequency offset of a preset channel in the WSS; the preset channel includes: at least two channels other than a service channel of the plurality of channels; and determine the frequency offset according to the frequency offset of the preset channel
  • processing core of the chip may also be used to perform other functions of the processing module 1501 described above.
  • the chip provided in the embodiment of the present application can also perform the frequency offset processing method shown in any of FIG. 6 to FIG. 14.
  • FIG. 6 For a specific implementation process and beneficial effects, refer to the foregoing, and details are not described herein again.
  • all or part may be implemented by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions include storage in a computer-readable storage medium, or transmission from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (SSD)), and the like.

Abstract

本申请实施例提供一种频偏处理方法、装置、设备及存储介质,该方法包括确定WSS中预设信道的频偏;根据预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系;并根据确定的对应关系,确定业务信道的频偏。本申请实施例可准确检测WSS的信道频偏,提高信号的传输质量。

Description

频偏处理方法、装置、设备及存储介质
本申请要求于2018年07月16日提交中国专利局、申请号为2018107751620、申请名称为“频偏处理方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光通信技术,尤其涉及一种频偏处理方法、装置、设备及存储介质
背景技术
在高速光传输系统中,为提高信号的传输效率,可采用星座整形或超奈奎斯特编码方式进行信号调整,使得信号波特率得到大幅度的提升,信号频率宽度也接近信道带宽。在光传输系统中,信号通常需要经过多级由波长选择开关(Wavelength Selective Switch,WSS)构成的可配光上下模块(Reconfigurable Optical Add Drop Module,ROADM)进行信号的上下波如信号的发送和/或接收。
在温度、气压、机械振动和老化等因素的影响下,WSS的信道中心波长发生偏移。频偏会对传输信号造成不对称滤波,恶化信号质量。多级WSS级联情况下频偏的影响更为恶化,会严重降低信道整体滤波带宽。
当前网络对WSS各信道的中心波长的频偏情况无法精确检测,易造成业务损伤,甚至中断。
发明内容
本申请实施例提供一种频偏处理方法、装置、设备及存储介质,用以准确检测WSS的频偏,提高信号的传输质量,避免业务损伤及中断,保证业务的正常进行。
第一方面,本申请实施例提供一种频偏处理方法,所述方法应用于波长选择开关WSS,所述WSS包括交换引擎,所述WSS具有多个信道,每个信道包括所述交换引擎的至少一个像素列;所述方法包括:
确定所述WSS中预设信道的频偏;所述预设信道包括:所述多个信道中业务信道外的至少两个信道;
根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系;
根据所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系,确定所述业务信道的频偏。
在一种可能的实现方式中,所述预设信道用作频偏监控,分布在所述业务信道的两侧,所述预设信道所包括的像素列位于所述交换引擎的边缘位置。
在另一种可能的实现方式中,所述预设信道的频偏包括:所述预设信道中多个子信道的检测频偏;每个子信道包括至少一个像素列。
在又一种可能的实现方式中,所述确定所述WSS的预设信道的频偏,包括:
确定所述预设信道中每个子信道的检测波长;
根据预设的子信道与波长的对应关系,确定所述预设信道中所述每个子信道的标定波长;
根据所述每个子信道的检测波长,和所述每个子信道的标定波长,确定所述每个子信道的检测频偏。
在再一种可能的实现方式中,所述每个子信道的检测波长为中心波长,所述交换引擎为硅基液晶LCOS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;
根据所述最大光功率,确定所述每个子信道的中心波长。
在再一种可能的实现方式中,所述每个子信道的检测波长为边缘波长,所述交换引擎为LCOS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;
比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
在再一种可能的实现方式中,所述每个子信道的检测波长为中心波长,所述交换引擎为微机电系统MEMS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;
根据所述最大光功率,确定所述每个子信道的中心波长。
在再一种可能的实现方式中,所述每个子信道的检测波长为边缘波长,所述交换引擎为MEMS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;
比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
在再一种可能的实现方式中,所述根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系,包括:
根据所述每个子信道的标定波长或者像素位置、预设的频偏拟合公式及预设的至少一组拟合系数,得到所述每个子信道的拟合频偏;每组拟合系数包括:一组所述频偏拟合公式中各多项式的拟合系数;
计算所述每个子信道的拟合频偏与所述每个子信道的检测频偏的误差平方和;
调整所述频偏拟合公式中各多项式的拟合系数,直至确定所述至少一个子信道的检测频偏,与,所述至少一个子信道的拟合频偏之间的误差平方和达到最小;
根据所述最小的误差平方和,确定所述频偏拟合公式中各多项式的最佳拟合系数;
根据所述最佳拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
该方法中,根据该频偏拟合公式中各多项式的最佳拟合系数,确定该频偏与波长的对应关系,或,该频偏与像素位置的对应关系,可得到最佳的该频偏与波长的对应关系,或,频偏与像素位置的对应关系。基于该最佳的频偏与波长的对应关系,或,频偏与像素位置的对应关系,可使得得到的该业务信道的频偏更加准确,实现频偏的准确检测。
在再一种可能的实现方式中,所述根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系,包括:
根据所述每个子信道的检测频偏,以及所述每个子信道的标定波长或像素位置,确定所述每个子信道的频偏表达式;
对所述预设信道的至少一个子信道的频偏表达式进行求解方程组,得到频偏拟合公式中各多项式的拟合系数;
根据所述拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
该方法可通过求解方程组的方式得到频偏拟合公式的各多项式的拟合系数,可使得拟合得到的多项式的系数更准确,使得频偏拟合公式可更准确的保证该WSS内频偏与波长的对应关系或,频偏与像素位置的对应关系,使得频偏检测更准确,继而进行频偏校准,提高各信道的传输质量,避免业务损伤及中断,保证业务的正常进行。
在再一种可能的实现方式中,所述方法还包括:
根据所述业务信道的频偏,对所述业务信道进行校准。
第二方面,本申请实施例还可提供一种频偏处理装置,所述频偏处理装置应用于波长选择开关WSS,所述WSS包括交换引擎,所述WSS具有多个信道,每个信道包括所述交换引擎的至少一个像素列;所述频偏处理装置包括:
处理模块,用于确定所述WSS中预设信道的频偏;所述预设信道包括:所述多个信道中业务信道外的至少两个信道;根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系;根据所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系,确定所述业务信道的频偏。
在一种可能的实现方式中,所述预设信道的频偏包括:所述预设信道中多个子信道的检测频偏;每个子信道包括至少一个像素列。
在另一种可能的实现方式中,所述处理模块,具体用于确定所述预设信道中每个子信道的检测波长;根据预设的子信道与波长的对应关系,确定所述预设信道中所述 每个子信道的标定波长;根据所述每个子信道的检测波长,和所述每个子信道的标定波长,确定所述每个子信道的检测频偏。
在又一种可能的实现方式中,所述每个子信道的检测波长为中心波长,所述交换引擎为硅基液晶LCOS芯片;
所述处理模块,具体用于调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;根据所述最大光功率,确定所述每个子信道的中心波长。
在再一种可能的实现方式中,所述每个子信道的检测波长为边缘波长,所述交换引擎为LCOS芯片;
所述处理模块,具体用于调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
在再一种可能的实现方式中,所述每个子信道的检测波长为中心波长,所述交换引擎为微机电系统MEMS芯片;
所述处理模块,具体用于调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;根据所述最大光功率,确定所述每个子信道的中心波长。
在再一种可能的实现方式中,所述每个子信道的检测波长为边缘波长,所述交换引擎为MEMS芯片;
所述处理模块,具体用于调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
在再一种可能的实现方式中,所述处理模块,具体用于根据所述每个子信道的标定波长或者像素位置、预设的频偏拟合公式及预设的至少一组拟合系数,得到所述每个子信道的拟合频偏;每组拟合系数包括:一组所述频偏拟合公式中各多项式的拟合系数;计算所述每个子信道的拟合频偏与所述每个子信道的检测频偏的误差平方和;调整所述频偏拟合公式中各多项式的拟合系数,直至确定所述至少一个子信道的检测频偏,与,所述至少一个子信道的拟合频偏之间的误差平方和达到最小;根据所述最小的误差平方和,确定所述频偏拟合公式中各多项式的最佳拟合系数;根据所述最佳拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
在再一种可能的实现方式中,所述处理模块,具体用于根据所述每个子信道的检测频偏,以及所述每个子信道的标定波长或像素位置,确定所述每个子信道的频偏表达式;对所述预设信道的至少一个子信道的频偏表达式进行求解方程组,得到频偏拟 合公式中各多项式的拟合系数;根据所述拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
第三方面,本申请实施例还可提供一种频偏处理设备,包括:处理器,所述处理器与存储器耦合;
存储器,用于存储计算机程序;
处理器,用于执行所述存储器中存储的计算机程序,以使得所述频偏处理设备执行上述第一方面所述的频偏处理方法。
第四方面,本申请实施例还可提供一种可读存储介质,包括程序或指令,当所述程序或指令在计算机上运行时,执行上述第一方面所述的频偏处理方法。
本申请实施例提供的频偏处理方法、装置、设备及存储介质,可通过确定该WSS中预设信道的频偏,该预设信道包括:该多个信道中业务信道外的至少两个信道,并根据该预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系,继而根据该频偏与波长的对应关系,或,频偏与像素位置的对应关系,确定该业务信道的频偏。该方法,可准确检测WSS的各业务信道的频偏,继而进行频偏校准,提高业务信道的传输质量,避免业务损伤及中断,保证业务的正常进行。
附图说明
图1为申请实施例的频偏处理方法的光传输系统的示意图;
图2为申请实施例的频偏处理方法的光传输系统中ROADM的示意图;
图3为本申请实施例的WSS在色散方向的结构示意图一;
图4为本申请实施例提供的不同温度下WSS的各波长对应的频偏示意图;
图5为本申请实施例的WSS在色散方向的结构示意图二;
图6为本申请实施例提供的一种频偏处理方法的流程图一;
图7为本申请实施例提供的一种频偏处理方法的流程图二;
图8A为本申请实施例提供的一种频偏处理方法中校准光在LCOS芯片上的像素分布示意图;
图8B为本申请实施例提供的一种频偏处理方法中边缘波长与中心波长的对应关系图;
图9为本申请实施例提供的一种频偏处理方法中LCOS芯片上两个像素列的波长与插损示意图;
图10为本申请实施例提供的一种频偏处理方法的流程图三;
图11A为本申请实施例提供的频偏处理方法中WSS在环境温度-5摄氏度时的检测频偏与最小二乘法多项式拟合方式的检测频偏的示意图;
图11B为本申请实施例提供的频偏处理方法中WSS在环境温度-5摄氏度时的最小二乘法多项式拟合方式,与单侧频偏检测方式、平均化两侧频偏方式所得到的频偏检测的误差示意图;
图12A为本申请实施例提供的频偏处理方法中WSS在环境温度25摄氏度时的检测频偏与最小二乘法多项式拟合方式的检测频偏的示意图;
图12B为本申请实施例提供的频偏处理方法中WSS在环境温度25摄氏度时的最 小二乘法多项式拟合方式,与单侧频偏检测方式、平均化两侧频偏方式所得到的频偏检测的误差示意图;
图13A为本申请实施例提供的频偏处理方法中WSS在环境温度65摄氏度时的检测频偏与最小二乘法多项式拟合方式的检测频偏的示意图;
图13B为本申请实施例提供的频偏处理方法中WSS在环境温度65摄氏度时的最小二乘法多项式拟合方式,与单侧频偏检测方式、平均化两侧频偏方式所得到的频偏检测的误差示意图;
图14为本申请实施例提供的一种频偏处理方法的流程图四;
图15为本申请实施例提供的一种频偏处理装置的结构示意图;
图16为本申请实施例提供的一种频偏处理设备的结构示意图。
具体实施方式
本申请下述各实施例的技术方案可适用于光传输系统中,例如200G或者400G等长距离高速光传输系统中。当然,也可以为其它的光传输系统中。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的光传输系统为例详细说明适用于本申请实施例的光传输系统。图1为申请实施例的频偏处理方法的光传输系统的示意图。图2为申请实施例的频偏处理方法的光传输系统中ROADM的示意图。如图1所示,该光传输系统可应用于包括多个节点的范围内,每个节点可包括一个ROADM。其中,该多个节点例如可以包括图1所示的A、B、C、D、E。每个节点可位于一个站点内,不同站点的节点之间相互连接。如图2所示,每个ROADM中可包括多级WSS,多级WSS之间彼此连接。
本申请下述各实施例提供的频偏处理方法,可应用于光传输系统中任一节点的任一WSS。图3为本申请实施例的WSS在色散方向的结构示意图一。如图3所示,该WSS可包括:准直镜、光栅、主透镜和交换引擎。交换引擎可以为硅基液晶(Liquid Crystal on Silicon,LCOS)芯片或者微机电系统(MicroElectroMechanical Systems,MEMS)芯片。
包含多个波长的光信号经过准直镜准直,聚焦到光栅表面,光信号入射光栅的角度为α。为了简化,准直镜与光栅之间对光斑形状进行变换的透镜并未画出。光栅将不同波长的光信号衍射至不同传播方向,出射光栅的角度为β,产生角色散θ。λ 2为整个光谱的中间波长,λ 1和λ 3为整个光谱的两侧波长。各波长的光信号经主透镜聚焦到交换引擎表面,将角色散θ转化为位移色散,使得不同波长的光信号聚焦到交换引擎的不同位置p。主透镜焦距为f。光信号入射光栅的角度和出射光栅的角度满足公式(1)。
mλ=nd(sin(α)+sin(β))     公式(1)
其中,m为光栅的衍射级次,n为光信号入射和出射光栅所在传播介质的折射率,d为光栅刻度周期间距。
光信号波长和频率之间的关系满足公式(2)。
λ=c/ν      公式(2)
其中,c为光传播速度,ν为光信号频率。
各波长光信号在交换引擎上位置和角色散的关系满足公式(3)。
p=ftan(θ)      公式(3)
温度、气压和器件老化等因素会造成WSS的光栅刻度周期间距、主透镜焦距和WSS内各光学组件位置等参量发生微小变化,这些参量变化使得各波长信号在交换引擎上的位置发生偏移Δp,从而引起WSS各信道频偏Δν。各信道位置频移和频偏的关系满足公式(4)。
Figure PCTCN2019078070-appb-000001
图4为本申请实施例提供的不同温度下WSS的各波长对应的频偏示意图。图4中示出了三种不同温度如-5摄氏度、25摄氏度及65摄氏度下,WSS的C波段中各波长与频偏的对应关系,根据图4可知波长不同,对应的频偏也不同,频偏与波长之间的对应关系并非线性关系,而是一个斜率不断变化的曲线关系。其中,C波段的波长范围为1530nm-1565nm。
综合上述公式(1)、公式(2)、公式(3)及公式(4),频偏与波长λ/像素位置p的对应关系可通过泰勒级数展开为下述公式(5)或公式(6)所示的多项式。
Δv=a 0+a 1λ+a 2λ 2+a 3λ 3+...+a nλ N      公式(5)
Δv=a 0+a 1p+a 2p 2+a 3p 3+...+a np N          公式(6)
其中,a i为各阶多项式的系数,i=0、1、2、…、n,n为大于等于1的整数,N为各阶多项式的阶数,N为大于等于1的整数。p为信道中的预设像素位置,例如第一个像素位置或第二个像素位置。
该公式(5)和公式(6)均可以为频偏拟合公式,公式(5)可用于表征频偏与波长的对应关系,公式(6)可用于表征频偏与像素位置的对应关系。通常情况下,该频偏拟合公式中各阶多项式的系数也称各多项式的拟合系数,是未知的。因此,本申请下述各实施例提供的频偏处理方法,可通过确定公式(5)或公式(6)所示的该频偏拟合公式中的各阶多项式的系数,继而准确确定该WSS内信道的频偏。
下述结合附图通过多个实施例对本申请实施例所提供的频偏处理方法进行说明。
图5为本申请实施例的WSS在色散方向的结构示意图二。如图5所示,WSS可包括:准直镜、光栅、主透镜、交换引擎、光电检测器、输入端口和至少一个输出端口。其中,一个输出端口可作为频偏检测端口,与光电检测器连接,其余输出端口可作为业务端口,用于传输携带业务数据或信息的光信号。交换引擎可以为LCOS芯片或者MEMS芯片。
在频偏处理方法的执行过程中,校准光λ ref从WSS的输入端口接入,经准直镜、光栅和主透镜,聚焦到交换引擎上面。通过调整该交换引擎的像素相位信息,将校准光λ ref交换至某一端口输出,该输出端口连接一个光电检测器。该光电检测器用于检测输出端口所输出的校准光λ ref的光功率,该输出端口为频偏检测端口。
该WSS可具有多个信道,每个信道包括交换引擎上的至少一个像素列。每个信道的宽度例如可以为50GHz、100Ghz或者其他宽度。
图6为本申请实施例提供的一种频偏处理方法的流程图一。该方法可由频偏处理设备执行,该频偏处理设备可以称为WSS的控制设备或校准设备,该频偏处理设备可以为WSS外部与光电检测器连接的一个设备,也可以为该WSS所在芯片上与光电检测器连接的处理芯片,该处理芯片上可具有一个处理器例如微处理器等。如图6所示,该方法可包括如下:
S601、确定该WSS中预设信道的频偏;该预设信道包括:该WSS的多个信道中业务信道外的至少两个信道。
该预设信道可以用作频偏监控,其为该WSS的多个信道中的频偏检测信道,该频偏检测信道为WSS的多个信道中业务信道外的信道,其上可不传输业务数据。而该WSS的多个信道中的业务信道上,可用于传输业务数据。
可选的,该预设信道可分布在该业务信道的两侧,该预设信息所包括的像素列位于该交换引擎的边缘位置。则该预设信道可以称为边缘信道。
该预设信道可包括一个信道,也可包括多个信道,若该多个信道,则该多个信道可分别位于该交换引擎中的对称或非对称位置。
例如,该预设信道可包括位于该交换引擎的边缘位置的两个信道,该两个信道可位于交换引擎的两侧边缘位置。
该S601中可将该预设信道对应波长的校准光输入WSS的输入端口,并根据光电检测器所检测的光功率,确定该预设信道或其子信道的频偏。该预设信道或其子信道的频偏可以为该预设信道或其子信道的中心波长或边缘波长的频偏。该方法中例如可通过控制校准光源,控制该校准光源输出至WSS的输入端口的校准光的波长。
例如,若该预设信道包括两个信道,例如可以为该交换引擎的第0信道和第98 信道。该第0信道对应的波长可表示为λ 0,该第98信道对应的波长可表示为λ 98
由于该WSS内的每个信道均可包括交换引擎上的至少一个像素列。因此,该预设信道的频偏可包括:该预设信道所包括的至少一个像素列的频偏,其中,每个像素列具有其对应的频偏。
可选的,在本申请的方案中,该预设信道的频偏可包括:该预设信道中多个子信道的频偏,该每个子信道可包括至少一个像素列。
若每个子信道为单个像素列,则该预设信道的频偏可包括该预设信道中多个子信道频偏,每个子信道的频偏可以为该单个像素列生成的滤波谱的中心波长或边缘波长的频偏。
若每个子信道为多个像素列,则该预设信道的频偏可包括该预设信道的多个子信道的频偏,每个子信道的频偏可以为该每个子信道中多个像素列生成的滤波谱的中心波长或边缘波长的频偏。
S602、根据该预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系。
该方法中可根据该预设信道或其子信道的实际检测的中心波长或边缘波长的频偏,以及标定的预设信道或其子信道的中心波长或边缘波长,拟合出该频偏与波长的对应关系;或,根据预设信道或其子信道的标定中心像素或边缘像素,拟合出该频偏与像素位置的对应关系。该预设信道或其子信道标定的中心波长为国际电信联盟(International Telecommunication Union,ITU)的标准波长(或根据ITU标准波长计算出的标准波长),该预设信道或其子信道标定的边缘波长为ITU标准波长(或根据ITU标准波长计算出的标准波长)减去或加上二分之一的信道间距。信道间距为相邻信道的ITU标准波长(或根据ITU标准波长计算出的标准波长)的差值。该预设信道或其子信道标定的中心像素为ITU标准波长(或根据ITU标准波长计算出的标准波长)对应的像素位置,该预设信道或其子信道标定的边缘像素为ITU标准波长(或根据ITU标准波长计算出的标准波长)减去或加上二分之一的信道间距对应的像素位置。信道间距为相邻信道ITU标准波长(或根据ITU标准波长计算出的标准波长)的差值。
例如,该方法中,可根据该预设信道或其子信道的检测频偏,以及该预设信道或其子信道的标定中心波长或者标定边缘波长,确定上述频偏拟合公式中各阶多项式的拟合系数,拟合系数确定后,该频偏与波长的对应关系便确定了。或者,该方法中,可根据该预设信道或其子信道的检测频偏,以及预设信道或其子信道的标定中心像素或边缘像素位置,确定上述频偏拟合公式中各阶多项式的拟合系数,拟合系数确定后,该频偏与像素位置的对应关系便确定了。
如上所述的频偏与波长的对应关系还可称为:波长频偏与波长的数学表达式。该频偏与像素位置的对应关系还可称为:像素频偏与像素位置的数学表达式。
S603、根据该频偏与波长的对应关系,或,该频偏与像素位置的对应关系,确定该业务信道的频偏。
其中,该业务信道可包括:WSS的所有业务信道或部分业务信道。也就是说,该方法中,可根据该频偏与波长的对应关系,或,该频偏与像素位置的对应关系,确定该WSS内的所有信道的频偏,也可确定该WSS内业务信道的频偏。
示例地,该方法中可根据该每个信道的标定中心波长或边缘波长,以及拟合的该频偏与波长的对应关系,或,该频偏与像素位置的对应关系,确定该业务信道的频偏。该业务信道的频偏可以为该业务信道的中心波长或边缘波长频偏。
可选的,在确定了该业务信道的频偏后,该方法还可包括:
根据该业务信道的频偏,对该业务信道进行校准。
由于该业务信道的频偏为该业务信道的中心波长或边缘波长频偏,则该方法中可根据该业务信道的频偏,对该业务信道的中心波长或边缘波长进行校准,使得校准后的业务信道的中心波长或边缘波长为该业务信道的标定中心波长或边缘波长,或者,与业务信道的标定中心波长或边缘波长的差值在预设范围内。
对于不同类型的交换引擎,其可采用不同的方式进行信道的校准。
例如,若该交换引擎为LCOS芯片,则该方法中,可通过调整该业务信道的各像素列的相位信息,对该业务信道的中心波长或边缘波长进行校准。
若该交换引擎为MEMS芯片,则该方法中,可通过调整该业务信道的各像素列的信号传输方向,对该业务信道的中心波长或边缘波长进行校准。
本实施例提供的频偏处理方法,可确定该WSS中预设信道的频偏,该预设信道包括:该多个信道中业务信道外的至少两个信道,并根据该预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系,继而根据该频偏与波长的对应关系,或,频偏与像素位置的对应关系,确定该业务信道的频偏。该方法,可准确检测WSS的各业务信道的频偏,继而进行频偏校准,提高业务信道的传输质量,避免业务损伤及中断,保证业务的正常进行。
可选的,本申请实施例还可提供一种频偏处理方法。图7为本申请实施例提供的一种频偏处理方法的流程图二。该图7所示的方法可为上述图6所示的方法中确定预设信道频偏的一种可能的示例。当然,该预设信道频偏的确定方法还可以为其它的示例,在此不再赘述。该预设信道的频偏可包括:该预设信道的多个子信道的检测频偏。每个子信道可包括至少一个像素列。
如图7所示,在如上所示的S601中确定该WSS中预设信道的频偏可以包括:
S701、确定该预设信道中每个子信道的检测波长。
在一种示例中,该每个子信道的检测波长可包括:该每个子信道的中心波长。
该方法可将该预设信道对应波长的校准光输入WSS的输入端口,并通过控制交换引擎上该每个子信道的相位图形成滤波器,该每个子信道之外的其它子信道无相位加载,使得该每个子信道反射的信号输出至WSS的输出端口即频偏检测端口,调整步进校准光的中心波长,继而检测WSS输出端口的光功率,生成一个该每个子信道对应的滤波谱,根据最大光功率或滤波器最小插损值确定该每个子信道的中心波长。
每个子信道的滤波谱也可采用传统光栅光谱仪或者基于相干检测技术的高精度光谱仪进行检测。
在检测该预设信道中一个子信道的中心波长后,可采用类似的方式,检测该预设信道中另一个子信道的中心波长,直至得到该预设信道中至少一个子信道的中心波长。
在另一种示例中,该每个子信道的检测波长包括:该每个子信道的边缘波长。
该方法可将该预设信道对应波长的校准光输入WSS的输入端口,并通过控制交换引擎上该每个子信道的相位图形成滤波器,该每个子信道之外的其它子信道无相位加载,使得该每个子信道反射的信号输出至WSS的输出端口即频偏检测端口,调整步进校准光的波长,继而检测并记录WSS输出端口的光功率,生成该每个子信道对应的滤波谱。采用类似的方式,可以得到其它子信道的滤波谱。比较相邻子信道滤波谱,并将插损相等或滤波谱交汇处的波长确定为该每个子信道的边缘波长。
在检测该预设信道中一个子信道的边缘波长后,可采用类似的方式,检测该预设信道中另一个子信道的边缘波长,直至得到该预设信道中至少一个子信道的边缘波长。
对于不同类型的交换引擎,该方法可通过不同的方式,控制该交换引擎上该每个子信道生成滤波器。
在一种示例中,该交换引擎可以为LCOS芯片,则该方法可通过调整LCOS芯片上该每个子信道的相位信息,使得该每个子信道反射的信号输出至WSS的输出端口,即频偏检测端口,生成该每个子信道对应的滤波器。
在另一种示例中,该交换引擎可以为MEMS芯片,则该方法中可通过调整MEMS芯片上该每个子信道对应的信号传输方向,而使得该每个子信道反射的信号可输出至WSS的输出端口,即频偏检测端口,生成该每个子信道对应的滤波器。
举例来说,如下以LCOS芯片上的两个信道作为该预设信道进行频偏检测进行说明。图8A为本申请实施例提供的一种频偏处理方法中校准光在LCOS芯片上的像素分布示意图。图8B为本申请实施例提供的一种频偏处理方法中边缘波长与中心波长的对应关系图。
若该预设信道可用作频偏监控,因此可称为预设监控信道,其可包括LCOS芯片上的第0信道和第98信道,其中,该第0信道和第98信道可位于图8所示的该LCOS芯片在色散方向的两个边缘位置。
该方法中可通过控制校准光源,输出λ 0对应的校准光以及λ 98对应的校准光,使得λ 0对应的校准光从图8所示的LCOS芯片上的第0信道入射,λ 98对应的校准光从图8所示的LCOS芯片上的第98信道入射。
在第0信道内,对于该LCOS芯片在色散方向的第1像素列,该方法中可通过调整该LCOS芯片上该第0信道在色散方向的第1像素列的相位信息,使得LCOS芯片在该第0信道在色散方向的第1像素列的相位图成为滤波器,其它像素列无相位加载,继而使得LCOS芯片在该第0信道在色散方向的第1像素列反射的信号输出至WSS的输出端口,并通过步进扫描校准光源波长,经WSS的输出端口的光电检测器所检测的光功率,生成一个滤波谱。根据最大光功率或滤波谱最小插损值,确定该LCOS芯片在该第0信道在色散方向的第1像素列的中心波长。
在第0信道内,对于该LCOS芯片在色散方向的第2像素列,可采用上述类似的方式,确定LCOS芯片在该第0信道在色散方向的第1像素列的中心波长,直至确定该第0信道在色散方向的M个像素列的中心波长。M可以为大于或等于1的整数。
类似地,在第98信道内,对于该LCOS芯片在色散方向的第1像素列,该方法中可通过调整该LCOS芯片上该第98信道在色散方向的第1像素列的相位信息,使得LCOS芯片在该第98信道在色散方向的第1像素列的相位图成为滤波器,其它像素列 无相位加载,继而使得LCOS芯片在该第98信道在色散方向的第1像素列反射的信号输出至WSS的输出端口,并通过步进扫描校准光源波长,经WSS的输出端口的光电检测器所检测的光功率,生成一个滤波谱,根据最大光功率或滤波谱最小插损值,确定该LCOS芯片在该第98信道在色散方向的第1像素列的中心波长。
在第98信道内,对于该LCOS芯片在色散方向的第2像素列,可采用上述类似的方式,确定LCOS芯片在该第98信道在色散方向的第2像素列的中心波长,直至确定该第98信道在色散方向的L个像素列的中心波长。L可以为大于或等于1的整数。
同样的,可采用上述类似方式,确定LCOS第0信道和第98信道内在色散方向各列像素的滤波谱。该方法中,可通过比较第0信道中相邻像素列的滤波谱,并将图8B所示的两个像素列的滤波谱交汇处的波长确定为该0信道的每个像素列的边缘波长。采用类似的方式,还可得到该第98信道中每个像素列的边缘波长。
图9为本申请实施例提供的一种频偏处理方法中LCOS芯片上两个像素列的波长与插损示意图。以第0信道和第98信道中一个信道为例,根据图9可知,该一个信道中的第1像素列的最小插损值所对应的波长即为该第1像素列的中心波长,该一个信道中的第2像素列的最小插损值所对应的波长即为该第2像素列的中心波长。图8所示的波长与插损的示意图中,最小插损值处,像素列对应的输出端口可具有最大的光功率。
上述方法中,生成的单个像素列的滤波器还可以为多个像素列的滤波器,该多个像素列的中心波长便可以为该多个像素列的中间像素列的中心波长。也就是说,子信道可以为单个像素列,也可以为多个像素列。上述示例为单个像素列的子信道的一种可能的示例,对于多个像素列的子信道的示例,与上述类似,在此不再赘述。
S702、根据预设的子信道与波长的对应关系,确定该预设信道中该每个子信道的标定波长。
该子信道与波长的对应关系可以为子信道与中心波长的对应关系,或者,子信道与边缘波长的对应关系。
若采用该子信道与中心波长的对应关系,则可确定该每个子信道的标定中心波长。
若采用该子信道与边缘波长的对应关系,则可确定该每个子信道的标定边缘波长。
该预设的子信道与中心波长或边缘波长的对应关系,可以为出厂标定的子信道与中心波长或边缘波长的关系表。该预设信道或其子信道标定的中心波长为ITU标准波长(或根据ITU标准波长计算出的标准波长),该预设信道或其子信道标定的边缘波长为ITU标准波长(或根据ITU标准波长计算出的标准波长)减去或加上二分之一的信道间距。信道间距为相邻信道ITU标准波长(或根据ITU标准波长计算出的标准波长)的差值。该预设信道或其子信道标定的中心像素为ITU标准波长(或根据ITU标准波长计算出的标准波长)对应的像素位置,该预设信道或其子信道标定的边缘像素为ITU标准波长(或根据ITU标准波长计算出的标准波长)减去或加上二分之一的信道间距对应的像素位置。信道间距为相邻信道ITU标准波长(或根据ITU标准波长计算出的标准波长)的差值。
在该子信道与中心波长或边缘波长的对应关系中,可具有该预设信道中每个子信道的标定中心波长或边缘波长。若该每个子信道为一个像素列,则该每个子信道的标 定中心波长或边缘波长即为该一个像素列的标定中心波长或边缘波长;若该每个子信道为多个像素列,则该每个子信道的标定中心波长或边缘波长便可以为该多个像素列的中间像素列的标定中心波长或边缘波长。
结合上述示例,对于LCOS芯片上的第0信道和第98信道,可通过执行S702得到该第0信道中每个子信道的标定中心波长或边缘波长,以及第98信道的每个子信道的标定中心波长或边缘波长。
S703、根据该预设信道中该每个子信道的检测波长,和该每个子信道的标定波长,确定该预设信道中该每个子信道的检测频偏。
若该每个子信道的检测波长为该每个子信道的检测中心波长,该每个子信道的标定波长为该每个子信道的标定中心波长,则通过执行S703可得到该每个子信道的中心波长检测频偏。
若该每个子信道的检测波长为该每个子信道的检测边缘波长,该每个子信道的标定波长为该每个子信道的标定边缘波长,则通过执行S703可得到该每个子信道的边缘波长检测频偏。
该每个子信道的检测中心波长或边缘波长可以为通过上述S701检测到的该每个子信道的检测中心波长或边缘波长,该每个子信道的标定中心波长或边缘波长可以为预先设定的该每个子信道的检测中心波长或边缘波长。
该方法中例如可根据该每个子信道的实际检测中心波长或边缘波长和该每个子信道的标定中心波长或边缘波长的差值,确定该每个子信道的频偏即为该每个子信道的中心波长或边缘波长频偏。
通过执行S703可得到该预设信道中至少一个子信道的检测频偏,该至少一个子信道可以为该预设信道中所有子信道或部分子信道。
本实施例提供的频偏处理方法,可通过提供示例确定该WSS中预设信道的每个子信道的检测频偏,可使得预设信道的每个子信道的检测频偏更加准确,从而使得该WSS内业务信道的频偏更加准确,因而,该方法可准确检测业务信道的频偏,继而进行频偏校准,提高各业务信道的传输质量,避免业务损伤及中断,保证业务的正常进行。
可选的,本申请实施例还可提供一种频偏处理方法。图10为本申请实施例提供的一种频偏处理方法的流程图三。该图10所示的方法可为上述方法中确定频偏与波长的对应关系的一种可能的示例。该预设信道的频偏可包括:该预设信道的至少一个子信道的频偏。每个子信道可包括至少一个像素列。
如图10所示,在如上所示的S602根据该预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系,可以包括:
S1001、根据该每个子信道的标定波长或像素位置、预设的频偏拟合公式及预设的至少一组拟合系数,得到该每个子信道的拟合频偏。
其中,标定波长可以为标定中心波长或标定边缘波长。每组拟合系数包括:一组该频偏拟合公式中各多项式的拟合系数。
该频偏拟合公式例如可以为上述公式(5)或公式(6)所示的频偏拟合公式。
该至少一组拟合系数可以为频偏拟合公式的候选拟合系数,其中,每组拟合系数包括了该频偏拟合公式中各阶多项式的拟合系数。
S1002、计算该每个子信道的拟合频偏与该每个子信道的检测频偏的误差平方和。
S1003、调整该频偏拟合公式中各多项式的拟合系数,直至确定该至少一个子信道的检测频偏,与,该至少一个子信道的拟合频偏之间的误差平方和达到最小。
S1004、根据该最小的误差平方和,确定该频偏拟合公式中各多项式的最佳拟合系数。
S1005、根据该最佳拟合系数,确定该频偏与波长的对应关系,或,该频偏与像素位置的对应关系
该最佳的拟合系数可以为该至少一组拟合系数中,得到该最小的误差平方和时所对应的拟合系数。
也就是说,该频偏拟合公式中各多项式的拟合系数为该最佳拟合系数时,该至少一个子信道的频偏与该至少一个子信道的拟合频偏之间可达到最小的误差平方和。
当该频偏拟合公式中各多项式的拟合系数为该最佳拟合系数时,该频偏拟合公式便可以为最佳的频偏与波长的关系函数或者最佳的频偏与像素位置的关系函数,即可得到最佳的该频偏与波长的对应关系,或,频偏与像素位置的对应关系。基于该最佳的频偏与波长的对应关系,或,频偏与像素位置的对应关系,可使得得到的该业务信道的频偏更加准确,实现频偏的准确检测。
例如,如下以单个像素列作为一个子信道为例进行说明,该方法中可采用下述公式(7)确定该频偏拟合公式中各多项式的最佳拟合系数。
Figure PCTCN2019078070-appb-000002
其中,P为大于等于2且小于等于该预设信道的像素列个数的整数。Δv q为检测到的单个像素列的波长频偏。a i为频偏拟合方式中各阶多项式的拟合系数,i=0、1、2、…、n,n为大于等于1且小于等于P-1的整数。λ q为单个像素列的标定波长,N为各阶多项式的阶数,N为大于等于1且小于等于P-1的整数。其中,标定波长可以为标定中心波长或标定边缘波长。
若该预设信道包括一个信道,则该预设信道的像素列个数可以为该一个信道所包括的像素列的个数;若该预设信道包括多个信道,则该预设信道的像素列的个数可以为该多个信道所包括的像素列的个数之和。
假设,该预设信道如上所述的LCOS芯片的第0信道和第98信道,则该预设信道的像素列的个数可以为该第0信道和该第98信道的像素列之和,如M与L之和。
若该预设信道包括多个信道,例如LCOS芯片的第0信道和第98信道,则该多个信道中不同信道所包括的像素列的个数可相同,也可不同。
当误差平方和最小时,可得到该频偏拟合公式的各多项式的最佳拟合系数。
当各阶多项式的最佳拟合系数a i拟合出来之后,再将LCOS芯片的其它信道的各像素列的标定波长带入公式(5)中,得到该LCOS芯片的多个信道的频偏即该多个信道的中心波长或边缘频偏。当各阶多项式的最佳拟合系数a i拟合出来之后,再将LCOS 芯片的其它信道的各像素列的标定波长或者像素位置带入公式(6)中,也可得到该LCOS芯片的多个信道的频偏即该多个信道的中心波长或者边缘波长频偏。
如下针对不同环境温度下,采用本申请的方法所得到的各信道中心波长频偏检测与拟合结果的示意图。
图11A为本申请实施例提供的频偏处理方法中WSS在环境温度-5摄氏度时的检测频偏与最小二乘法多项式拟合频偏的示意图。图11A示出了环境温度-5摄氏度时,C波段的WSS的40个信道的检测频偏曲线,以及最小二乘法多项式拟合得到的频偏曲线。其中,信道间隔为100GHz。
根据图11A可知,C波段的WSS的40个信道的检测频偏中,最大信道频偏为1.57GHz。采用本申请实施例提供的最小二乘法多项式拟合进行频偏拟合时,可取左右边缘信道各4个像素列的检测频偏。
其中,最小二乘法多项式拟合中,可采用1阶拟合,也可采用多阶拟合例如2阶拟合或3阶拟合。其中,1阶拟合包含常数项和1阶多项式,2阶拟合包含常数项、1阶和2阶多项式,3阶拟合包含常数项、1阶、2阶和3阶多项式,以下表述相同。
根据图11A可知,2阶拟合和3阶拟合方式进行频偏拟合,所得到的该WSS的各信道的频偏结果很接近实际测量的频偏结果,能够较好地匹配实际测量中频偏和信道中心波长的曲线函数关系,相比1阶线性拟合方式具有很大的提升。
图11B为本申请实施例提供的频偏处理方法中WSS在环境温度-5摄氏度时的最小二乘法多项式拟合方式,与单侧频偏检测方式、平均化两侧频偏方式所得到的频偏检测的误差示意图。
根据图11B可知,采用单侧频偏检测方式,可得到C波段的WSS的40个信道中最大的信道频偏检测误差是1.51GHz,采用平均化两侧频偏方式得到的C波段的WSS的40个信道中最大信道频偏检测误差是0.825GHz,而采用1阶线性拟合方式得到的C波段的WSS的40个信道中最大信道频偏检测误差是0.411GHz,采用2阶线性拟合方式得到的C波段的WSS的40个信道中的最大信道频偏检测误差是0.187GHz,采用3阶线性拟合方式得到的C波段的WSS的40个信道中的最大信道频偏检测误差是0.184GHz。
图12A为本申请实施例提供的频偏处理方法中WSS在环境温度25摄氏度时的检测频偏与最小二乘法多项式拟合频偏的示意图。图12A示出了环境温度25摄氏度时,C波段的WSS的40个信道的检测频偏曲线,以及最小二乘法多项式拟合得到的频偏曲线。其中,信道间隔为100GHz。
根据图12A可知,C波段的WSS的40个信道的检测频偏中,最大信道频偏为1.03GHz。采用本申请实施例提供的最小二乘法多项式拟合进行频偏拟合时,可取左右边缘信道各4个像素列的检测频偏。
其中,最小二乘法多项式拟合中,可采用1阶拟合,也可采用多阶拟合例如2阶拟合或3阶拟合。其中,1阶拟合包含常数项和1阶多项式,2阶拟合包含常数项、1阶和2阶多项式,3阶拟合包含常数项、1阶、2阶和3阶多项式,以下表述相同。
根据图12A可知,2阶拟合和3阶拟合方式进行频偏拟合,所得到的WSS的各信道的频偏结果很接近实际测量的频偏结果,能够较好地匹配实际测量中频偏和信道中 心波长的曲线函数关系,相比1阶线性拟合具有很大的提升。
图12B为本申请实施例提供的频偏处理方法中WSS在环境温度25摄氏度时的最小二乘法多项式拟合方式,与单侧频偏检测方式、平均化两侧频偏方式所得到的频偏检测的误差示意图。
根据图12B可知,采用单侧频偏检测方式,可得到C波段的WSS的40个信道中最大的信道频偏检测误差是0.713GHz,采用平均化两侧频偏方式得到的C波段的WSS的40个信道中最大信道频偏检测误差是0.544GHz,而采用1阶线性拟合方式得到的C波段的WSS的40个信道中最大信道频偏检测误差是0.498GHz,采用2阶线性拟合方式得到的C波段的WSS的40个信道中的最大信道频偏检测误差是0.155GHz,采用3阶线性拟合方式得到的C波段的WSS的40个信道中的最大信道频偏检测误差是0.11GHz。
图13A为本申请实施例提供的频偏处理方法中WSS在环境温度65摄氏度时的检测频偏与最小二乘法多项式拟合频偏的示意图。图13A示出了环境温度65摄氏度时,C波段的WSS的40个信道的检测频偏曲线,以及最小二乘法多项式拟合得到的频偏曲线。其中,信道间隔为100GHz。
根据图13A可知,C波段的WSS的40个信道的检测频偏中,最大信道频偏为2.41GHz。采用本申请实施例提供的最小二乘法多项式拟合进行频偏拟合时,可取左右边缘信道各4个像素列的检测频偏。
其中,最小二乘法多项式拟合中,可采用1阶拟合,也可采用多阶拟合例如2阶拟合或3阶拟合。其中,1阶拟合包含常数项和1阶多项式,2阶拟合包含常数项、1阶和2阶多项式,3阶拟合包含常数项、1阶、2阶和3阶多项式,以下表述相同。
根据图13A可知,2阶拟合和3阶拟合方式进行频偏拟合,所得到的WSS的各信道的频偏结果很接近实际测量的频偏结果,能够较好地匹配实际测量中频偏和信道中心波长的曲线函数关系,相比1阶线性拟合具有很大的提升。
图13B为本申请实施例提供的频偏处理方法中WSS在环境温度65摄氏度时的最小二乘法多项式拟合方式,与单侧频偏检测方式、平均化两侧频偏方式所得到的频偏检测的误差示意图。
根据图13B可知,采用单侧频偏检测方式,可得到C波段的WSS的40个信道中最大的信道频偏检测误差是0.815GHz,采用平均化两侧频偏方式得到的C波段的WSS的40个信道中最大信道频偏检测误差是0.632GHz,而采用1阶线性拟合方式得到的C波段的WSS的40个信道中最大信道频偏检测误差是0.493GHz,采用2阶线性拟合方式得到的C波段的WSS的40个信道中的最大信道频偏检测误差是0.173GHz,采用3阶线性拟合方式得到的C波段的WSS的40个信道中的最大信道频偏检测误差是0.145GHz。
结合上述图11A-图13B所示的示例可知,采用本申请实施例的基于最小二乘法多项式拟合方式,确定该频偏拟合公式的各多项式的最佳拟合系数,继而进行信道的频偏拟合检测,相比单侧频偏检测方法和平均化两侧边缘信道频偏检测方法,对各信道频偏检测准确度有较大的提升。上述三个不同温度下的示例中,采用多项式高阶拟合比如2阶拟合或3阶拟合,频偏检测误差可以降至0.2GHz以下。需要说明的是,参 与拟合的阶数越高,其得到的拟合系数越准确,继而进行频偏检测也越准确,然而需要两侧边缘信道提供更多的实际频偏检测数据。
本申请实施例提供的该方法,可通过最小二乘法拟合得到频偏拟合公式的各多项式的最佳拟合系数,可使得拟合得到的多项式的系数更准确,使得频偏拟合公式可更准确的保证该WSS内频偏与波长的对应关系或频偏与像素位置的对应关系,使得频偏检测更准确,继而进行频偏校准,提高各信道的传输质量,避免业务损伤及中断,保证业务的正常进行。
可选的,本申请实施例还可提供一种频偏处理方法。图14为本申请实施例提供的一种频偏处理方法的流程图四。该图14所示的方法可为上述方法中确定频偏与波长的对应关系的另一种可能的示例。该预设信道的频偏可包括:该预设信道的至少一个子信道的频偏。每个子信道可包括至少一个像素列。
如图14所示,在如上所示的S602根据该预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系可以包括:
S1401、根据该每个子信道的检测频偏,以及该每个子信道的标定波长,确定该每个子信道的频偏表达式。
该标定波长可以为标定中心波长或标定边缘波长。该每个子信道的标定中心波长或边缘波长可以为预先设定的该每个子信道的中心波长或边缘波长。
该方法中可根据该每个子信道的频偏、该每个子信道的标定波长以及频偏拟合公式,确定该每个子信道的频偏表达式。
S1402、对该预设信道的至少一个子信道的频偏表达式进行求解方程组,得到频偏拟合公式中各多项式的拟合系数。
S1403、根据该拟合系数,确定该频偏与波长的对应关系,或,频偏与像素位置的对应关系。
在该每个子信道的频偏表达式中,各多项式的拟合系数未知,因此,该方法可通过求解至少一个子信道的频偏表达式的方程组,进行频偏拟合公式中各多项式的拟合系数。
该至少一个子信道的个数等于频偏拟合公式的多项式个数。
例如,如下以单个像素列作为一个子信道为例进行说明,该方法中可通过求解下述公式(8)所示的方程组确定该频偏拟合公式中各多项式的拟合系数。
Figure PCTCN2019078070-appb-000003
其中,P为大于等于2且小于等于该预设信道的像素列个数的整数。Δv P为检测到的单个像素列的波长频偏。a i为频偏拟合方式中各阶多项式的拟合系数,i=0、1、2、…、n,n为大于等于1且小于等于P-1的整数。P等于多项式个数n+1。
λ为单个像素列的标定波长,N为各阶多项式的阶数,N为大于等于1且小于等于P-1的整数。数据个数P等于多项式个数n+1。直接求解方程组(8),获得各阶多项式的系数。
假设,该预设信道如上所述的LCOS芯片的第0信道和第98信道,则该预设信道的像素列个数可以为该第0信道和该第98信道的像素列个数之和,如M与L之和。
若该预设信道包括多个信道,例如LCOS芯片的第0信道和第98信道,则该多个信道中不同信道所包括的像素列的个数可相同,也可不同。当该多个信道中不同信道所包括的像素列的个数相同时,可使得拟合得到的该频偏拟合公式的各多项式的最佳拟合系数更准确。
当误差平方和最小时,可得到该频偏拟合公式的各多项式的最佳拟合系数。
当各阶多项式的拟合系数a i拟合出来之后,再将LCOS芯片的其它信道的各子信道的标定波长带入公式(5)中,得到该LCOS芯片的多个信道的频偏即该多个信道的波长频偏。当各阶多项式的最佳拟合系数a i拟合出来之后,再将LCOS芯片的其它信道的各像素列的标定像素位置带入公式(6)中,也可得到该LCOS芯片的多个信道的频偏即该多个信道的波长频偏。
本申请实施例提供的该方法,可通过求解方程组的方式得到频偏拟合公式的各多项式的拟合系数,可使得拟合得到的多项式的系数更准确,使得频偏拟合公式可更准确的保证该WSS内频偏与波长的对应关系或,频偏与像素位置的对应关系,使得频偏检测更准确,继而进行频偏校准,提高各信道的传输质量,避免业务损伤及中断,保证业务的正常进行。
可以理解的是,上述图6至图14中所示的频偏处理方法可以单独实施,也可以结合使用。在此不予限定。
如下结合附图对本申请实施例提供的频偏处理装置及设备等进行示例说明。图15为本申请实施例提供的一种频偏处理装置的结构示意图。如图15所示,频偏处理装置1500可包括:处理模块1501。
处理模块1501,用于确定该WSS中预设信道的频偏;该预设信道包括:该多个信道中业务信道外的至少两个信道;根据该预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系;根据该频偏与波长的对应关系,或,该频偏与像素位置的对应关系,确定该业务信道的频偏。
在一种可能的实现方式中,该预设信道的频偏包括:该预设信道中多个子信道的检测频偏;每个子信道包括至少一个像素列。
在另一种可能的实现方式中,处理模块1501,具体用于确定该预设信道中每个子信道的检测波长;根据预设的子信道与波长的对应关系,确定该预设信道中所述每个子信道的标定波长;根据该每个子信道的检测波长,和该每个子信道的标定波长,确定该每个子信道的检测频偏。
在又一种可能的实现方式中,该每个子信道的检测波长为中心波长,该交换引擎为LCOS芯片。
处理模块1501,具体用于调整该每个子信道的相位信息,使得该每个子信道反射 的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS的输出端口的最大光功率;根据该最大光功率,确定该每个子信道的中心波长。
在再一种可能的实现方式中,该每个子信道的检测波长为边缘波长,该交换引擎为LCOS芯片。
处理模块1501,具体用于调整该每个子信道的相位信息,使得该每个子信道反射的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS输出端口功率,生成该每个子信道的滤波谱;比较该每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为该每个子信道的边缘波长。
在再一种可能的实现方式中,该每个子信道的检测波长为中心波长,该交换引擎为MEMS芯片。
处理模块1501,具体用于调整该每个子信道对应的信号传输方向,使得该每个子信道反射的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS的输出端口的最大光功率;根据该最大光功率,确定该每个子信道的中心波长。
在再一种可能的实现方式中,该每个子信道的检测波长为边缘波长,该交换引擎为MEMS芯片。
处理模块1501,具体用于调整该每个子信道对应的信号传输方向,使得该每个子信道反射的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS输出端口功率,生成该每个子信道的滤波谱;比较该每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为该每个子信道的边缘波长。
在再一种可能的实现方式中,处理模块1501,具体用于根据该每个子信道的标定波长或者像素位置、预设的频偏拟合公式及预设的至少一组拟合系数,得到该每个子信道的拟合频偏;每组拟合系数包括:一组该频偏拟合公式中各多项式的拟合系数;计算该每个子信道的拟合频偏与该每个子信道的检测频偏的误差平方和;调整该频偏拟合公式中各多项式的拟合系数,直至确定该至少一个子信道的检测频偏,与,该至少一个子信道的拟合频偏之间的误差平方和达到最小;根据该最小的误差平方和,确定该频偏拟合公式中各多项式的最佳拟合系数;根据该最佳拟合系数,确定该频偏与波长的对应关系,或,该频偏与像素位置的对应关系。
在再一种可能的实现方式中,处理模块1501,具体用于根据该每个子信道的检测频偏,以及该每个子信道的标定波长或像素位置,确定该每个子信道的频偏表达式;对该预设信道的至少一个子信道的频偏表达式进行求解方程组,得到频偏拟合公式中各多项式的拟合系数;根据该拟合系数,确定该频偏与波长的对应关系,或,该频偏与像素位置的对应关系。
本申请实施例提供的频偏处理装置,可执行上述图6至图14中任一所示的频偏处理方法,其具体实现过程及有益效果参见上述,在此不再赘述。
本申请实施例还可提供一种频偏处理设备。该频偏处理设备可执行上述图6至图14中任一所示的频偏处理方法。图16为本申请实施例提供的一种频偏处理设备的结 构示意图。如图16所示,频偏处理设备1600可包括:存储器1601和处理器1602。存储器1601与处理器1602耦合。
存储器1601,用于存储计算机程序。
处理器1602,用于执行存储器1601中存储的计算机程序,以使得频偏处理设备1600执行图6至图14中任一所示的频偏处理方法。
在一种可能的实现方式中,该预设信道的频偏包括:该预设信道中多个子信道的检测频偏;每个子信道包括至少一个像素列。
在另一种可能的实现方式中,处理器1602确定该预设信道中每个子信道的检测波长;根据预设的子信道与波长的对应关系,确定该预设信道中所述每个子信道的标定波长;根据该每个子信道的检测波长,和该每个子信道的标定波长,确定该每个子信道的检测频偏。
在又一种可能的实现方式中,该每个子信道的检测波长为中心波长,该交换引擎为LCOS芯片。
处理器1602,具体用于调整该每个子信道的相位信息,使得该每个子信道反射的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS的输出端口的最大光功率;根据该最大光功率,确定该每个子信道的中心波长。
在再一种可能的实现方式中,该每个子信道的检测波长为边缘波长,该交换引擎为LCOS芯片。
处理器1602,具体用于调整该每个子信道的相位信息,使得该每个子信道反射的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS输出端口功率,生成该每个子信道的滤波谱;比较该每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为该每个子信道的边缘波长。
在再一种可能的实现方式中,该每个子信道的检测波长为中心波长,该交换引擎为MEMS芯片。
处理器1602,具体用于调整该每个子信道对应的信号传输方向,使得该每个子信道反射的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS的输出端口的最大光功率;根据该最大光功率,确定该每个子信道的中心波长。
在再一种可能的实现方式中,该每个子信道的检测波长为边缘波长,该交换引擎为MEMS芯片。
处理器1602,具体用于调整该每个子信道对应的信号传输方向,使得该每个子信道反射的信号分时输出至该WSS的输出端口;调整进入该每个子信道的校准光源中心波长,检测该WSS输出端口功率,生成该每个子信道的滤波谱;比较该每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为该每个子信道的边缘波长。
在再一种可能的实现方式中,处理器1602,具体用于根据该每个子信道的标定波长或者像素位置、预设的频偏拟合公式及预设的至少一组拟合系数,得到该每个子信道的拟合频偏;每组拟合系数包括:一组该频偏拟合公式中各多项式的拟合系数;计 算该每个子信道的拟合频偏与该每个子信道的检测频偏的误差平方和;调整该频偏拟合公式中各多项式的拟合系数,直至确定该至少一个子信道的检测频偏,与,该至少一个子信道的拟合频偏之间的误差平方和达到最小;根据该最小的误差平方和,确定该频偏拟合公式中各多项式的最佳拟合系数;根据该最佳拟合系数,确定该频偏与波长的对应关系,或,该频偏与像素位置的对应关系。
在再一种可能的实现方式中,处理器1602,具体用于根据该每个子信道的检测频偏,以及该每个子信道的标定波长或像素位置,确定该每个子信道的频偏表达式;对该预设信道的至少一个子信道的频偏表达式进行求解方程组,得到频偏拟合公式中各多项式的拟合系数;根据该拟合系数,确定该频偏与波长的对应关系,或,该频偏与像素位置的对应关系。
可选的,本申请实施例还可提供一种计算机程序产品,该计算机程序产品包括执行上述图6至图14中任一所示的频偏处理方法的程序代码。
当该计算机程序产品在计算机上运行时,可使得计算机执行上述6至图14中任一所示的频偏处理方法。
可选的,本申请实施例还可提供一种计算机可读存储介质,该存储介质用于存储计算机程序产品,该计算机程序产品包括:程序代码。该程序代码可以包括用于执行上述6至图14中任一所示的频偏处理方法的程序代码。
当该计算机程序产品在计算机上运行时,可使得计算机执行上述图6至图14中任一所示的频偏处理方法。
该计算机可读存储介质可以为上述图16所示的频偏处理设备1600中的内部存储器,也可以为与上述图16所示的频偏处理设备1600连接的外部存储器。该计算机程序产品中的程序代码例如可由上述图16所示的频偏处理设备1600中的处理器1602执行。
本申请实施例提供的频偏处理设备、计算机程序产品及计算机可读存储介质可执行上述图6至图14中任一所示的频偏处理方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
在一种示例中,上述图15所示的频偏处理装置1500还可以为一种芯片,处理模块1501具体为芯片的处理内核(或者处理器)。
在一种具体的实现方式中:
芯片的处理内核可用于:确定该WSS中预设信道的频偏;该预设信道包括:该多个信道中业务信道外的至少两个信道;根据该预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系;根据该频偏与波长的对应关系,或,该频偏与像素位置的对应关系,确定该业务信道的频偏。
可选的,芯片的处理内核,还可用于执行上述处理模块1501的其它功能。
本申请实施例提供的该种芯片也可执行上述图6至图14中任一所示的频偏处理方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
需要说明的是,在以上实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述 计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令包括存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。

Claims (22)

  1. 一种频偏处理方法,其特征在于,所述方法应用于波长选择开关WSS,所述WSS包括交换引擎,所述WSS具有多个信道,每个信道包括所述交换引擎的至少一个像素列;所述方法包括:
    确定所述WSS中预设信道的频偏;所述预设信道包括:所述多个信道中业务信道外的至少两个信道;
    根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系;
    根据所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系,确定所述业务信道的频偏。
  2. 根据权利要求1所述的方法,其特征在于,所述预设信道用作频偏监控,分布在所述业务信道的两侧,所述预设信道所包括的像素列位于所述交换引擎的边缘位置。
  3. 根据权利要求1所述的方法,其特征在于,所述预设信道的频偏包括:所述预设信道中多个子信道的检测频偏;每个子信道包括至少一个像素列。
  4. 根据权利要求3所述的方法,其特征在于,所述确定所述WSS的预设信道的频偏,包括:
    确定所述预设信道中每个子信道的检测波长;
    根据预设的子信道与波长的对应关系,确定所述预设信道中所述每个子信道的标定波长;
    根据所述每个子信道的检测波长,和所述每个子信道的标定波长,确定所述每个子信道的检测频偏。
  5. 根据权利要求4所述的方法,其特征在于,所述每个子信道的检测波长为中心波长,所述交换引擎为硅基液晶LCOS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
    调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
    调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;
    根据所述最大光功率,确定所述每个子信道的中心波长。
  6. 根据权利要求4所述的方法,其特征在于,所述每个子信道的检测波长为边缘波长,所述交换引擎为LCOS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
    调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
    调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;
    比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
  7. 根据权利要求4所述的方法,其特征在于,所述每个子信道的检测波长为中心波长,所述交换引擎为微机电系统MEMS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
    调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
    调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;
    根据所述最大光功率,确定所述每个子信道的中心波长。
  8. 根据权利要求4所述的方法,其特征在于,所述每个子信道的检测波长为边缘波长,所述交换引擎为MEMS芯片,所述确定所述预设信道中每个子信道的检测波长,包括:
    调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;
    调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;
    比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
  9. 根据权利要求3-8中任一项所述的方法,其特征在于,所述根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系,包括:
    根据所述每个子信道的标定波长或者像素位置、预设的频偏拟合公式及预设的至少一组拟合系数,得到所述每个子信道的拟合频偏;每组拟合系数包括:一组所述频偏拟合公式中各多项式的拟合系数;
    计算所述每个子信道的拟合频偏与所述每个子信道的检测频偏的误差平方和;
    调整所述频偏拟合公式中各多项式的拟合系数,直至确定所述至少一个子信道的检测频偏,与,所述至少一个子信道的拟合频偏之间的误差平方和达到最小;
    根据所述最小的误差平方和,确定所述频偏拟合公式中各多项式的最佳拟合系数;
    根据所述最佳拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
  10. 根据权利要求3-8中任一项所述的方法,其特征在于,所述根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系,包括:
    根据所述每个子信道的检测频偏,以及所述每个子信道的标定波长或像素位置,确定所述每个子信道的频偏表达式;
    对所述预设信道的至少一个子信道的频偏表达式进行求解方程组,得到频偏拟合公式中各多项式的拟合系数;
    根据所述拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述业务信道的频偏,对所述业务信道进行校准。
  12. 一种频偏处理装置,其特征在于,所述频偏处理装置应用于波长选择开关 WSS,所述WSS包括交换引擎,所述WSS具有多个信道,每个信道包括所述交换引擎的至少一个像素列;所述频偏处理装置包括:
    处理模块,用于确定所述WSS中预设信道的频偏;所述预设信道包括:所述多个信道中业务信道外的至少两个信道;根据所述预设信道的频偏,确定频偏与波长的对应关系,或,频偏与像素位置的对应关系;根据所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系,确定所述业务信道的频偏。
  13. 根据权利要求12所述的装置,其特征在于,所述预设信道的频偏包括:所述预设信道中多个子信道的检测频偏;每个子信道包括至少一个像素列。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理模块,具体用于确定所述预设信道中每个子信道的检测波长;根据预设的子信道与波长的对应关系,确定所述预设信道中所述每个子信道的标定波长;根据所述每个子信道的检测波长,和所述每个子信道的标定波长,确定所述每个子信道的检测频偏。
  15. 根据权利要求14所述的装置,其特征在于,所述每个子信道的检测波长为中心波长,所述交换引擎为硅基液晶LCOS芯片;
    所述处理模块,具体用于调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;根据所述最大光功率,确定所述每个子信道的中心波长。
  16. 根据权利要求14所述的装置,其特征在于,所述每个子信道的检测波长为边缘波长,所述交换引擎为LCOS芯片;
    所述处理模块,具体用于调整所述每个子信道的相位信息,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
  17. 根据权利要求14所述的装置,其特征在于,所述每个子信道的检测波长为中心波长,所述交换引擎为微机电系统MEMS芯片;
    所述处理模块,具体用于调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS的输出端口的最大光功率;根据所述最大光功率,确定所述每个子信道的中心波长。
  18. 根据权利要求14所述的装置,其特征在于,所述每个子信道的检测波长为边缘波长,所述交换引擎为MEMS芯片;
    所述处理模块,具体用于调整所述每个子信道对应的信号传输方向,使得所述每个子信道反射的信号分时输出至所述WSS的输出端口;调整进入所述每个子信道的校准光源中心波长,检测所述WSS输出端口功率,生成所述每个子信道的滤波谱;比较所述每个子信道与相邻子信道的滤波谱,并将插损相等或滤波谱交汇处的波长确定为所述每个子信道的边缘波长。
  19. 根据权利要求13-18中任一项所述的装置,其特征在于,
    所述处理模块,具体用于根据所述每个子信道的标定波长或者像素位置、预设的频偏拟合公式及预设的至少一组拟合系数,得到所述每个子信道的拟合频偏;每组拟合系数包括:一组所述频偏拟合公式中各多项式的拟合系数;计算所述每个子信道的拟合频偏与所述每个子信道的检测频偏的误差平方和;调整所述频偏拟合公式中各多项式的拟合系数,直至确定所述至少一个子信道的检测频偏,与,所述至少一个子信道的拟合频偏之间的误差平方和达到最小;根据所述最小的误差平方和,确定所述频偏拟合公式中各多项式的最佳拟合系数;根据所述最佳拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
  20. 根据权利要求13-18中任一项所述的装置,其特征在于,
    所述处理模块,具体用于根据所述每个子信道的检测频偏,以及所述每个子信道的标定波长或像素位置,确定所述每个子信道的频偏表达式;对所述预设信道的至少一个子信道的频偏表达式进行求解方程组,得到频偏拟合公式中各多项式的拟合系数;根据所述拟合系数,确定所述频偏与波长的对应关系,或,所述频偏与像素位置的对应关系。
  21. 一种频偏处理设备,其特征在于,包括:处理器,所述处理器与存储器耦合;
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述频偏处理设备执行如权利要求1-11中任一项所述的频偏处理方法。
  22. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,如权利要求1-11中任一项所述的频偏处理方法。
PCT/CN2019/078070 2018-07-16 2019-03-14 频偏处理方法、装置、设备及存储介质 WO2020015371A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19838669.0A EP3809609A4 (en) 2018-07-16 2019-03-14 FREQUENCY OFFSET PROCESS, DEVICE AND EQUIPMENT AND STORAGE MEDIA
US17/150,661 US11316591B2 (en) 2018-07-16 2021-01-15 Frequency offset processing method, apparatus, and device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810775162.0A CN110730034B (zh) 2018-07-16 2018-07-16 频偏处理方法、装置、设备及存储介质
CN201810775162.0 2018-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/150,661 Continuation US11316591B2 (en) 2018-07-16 2021-01-15 Frequency offset processing method, apparatus, and device and storage medium

Publications (1)

Publication Number Publication Date
WO2020015371A1 true WO2020015371A1 (zh) 2020-01-23

Family

ID=69164190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078070 WO2020015371A1 (zh) 2018-07-16 2019-03-14 频偏处理方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US11316591B2 (zh)
EP (1) EP3809609A4 (zh)
CN (1) CN110730034B (zh)
WO (1) WO2020015371A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737683B (zh) * 2019-10-14 2023-05-16 华为技术有限公司 功率均衡器及功率均衡器的调节方法
CN113973238B (zh) * 2020-07-23 2023-03-24 华为技术有限公司 一种波长选择开关wss的频偏处理方法和频偏处理装置
CN112261670B (zh) * 2020-10-15 2023-04-07 锐迪科(重庆)微电子科技有限公司 频率偏差的确定方法和装置
CN113624783A (zh) * 2021-08-04 2021-11-09 安捷芯科技有限公司 一种plc芯片等级检测方法
CN117369054A (zh) * 2022-06-30 2024-01-09 华为技术有限公司 波长选择开关,光束传输方向的调度方法以及光交换节点

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879864A (zh) * 2012-11-01 2013-01-16 武汉邮电科学研究院 硅基液晶波长选择开关的波长漂移检测及校正方法
CN105827319A (zh) * 2015-01-06 2016-08-03 中兴通讯股份有限公司 数据处理方法及装置
CN107872411A (zh) * 2016-09-23 2018-04-03 深圳市中兴微电子技术有限公司 一种光传输信道中频偏估计方法和装置
US20180138980A1 (en) * 2016-11-15 2018-05-17 Huawei Technologies Co., Ltd. Optical transceiver, communication system, and adaptive frequency control method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476140B2 (ja) * 2005-03-07 2010-06-09 富士通株式会社 波長選択スイッチ
JP5672011B2 (ja) 2011-01-04 2015-02-18 富士通株式会社 波長選択スイッチおよび波長ずれ補正方法
EP2520957B1 (en) * 2011-05-06 2017-02-01 Finisar Corporation Optical Channel Monitor
US8867917B2 (en) * 2011-06-27 2014-10-21 Finisar Corporation Optical wavelength selective switch calibration system
JP5871056B2 (ja) * 2012-03-19 2016-03-01 富士通株式会社 波長選択スイッチ、可変分散補償器、監視装置、監視方法、光伝送装置及び光伝送システム
GB2504970A (en) * 2012-08-15 2014-02-19 Swan Thomas & Co Ltd Optical device and methods to reduce cross-talk
ES2663239T3 (es) * 2013-08-22 2018-04-11 Huawei Technologies Co., Ltd. Conmutador selectivo de longitud de onda
WO2015042875A1 (zh) * 2013-09-27 2015-04-02 华为技术有限公司 波长选择开关和控制波长选择开关中的空间相位调制器的方法
US10677994B2 (en) * 2014-03-04 2020-06-09 Ii-Vi Delaware, Inc. Calibration system for a wavelength selective switch
US9680570B2 (en) * 2015-04-30 2017-06-13 Nistica, Inc. Optical channel monitor for a wavelength selective switch employing a single photodiode
CN107850738B (zh) * 2015-07-10 2020-02-14 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法
WO2018035865A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种用于波长选择开关wss的信号监控方法及装置
CN108121036B (zh) * 2016-11-29 2019-11-22 华为技术有限公司 一种波长选择开关和光信号传输系统
CN110557218B (zh) * 2018-05-31 2021-03-30 华为技术有限公司 一种波长选择开关的校准方法及装置
CN110780388B (zh) * 2018-07-31 2022-03-29 华为技术有限公司 一种波长交换装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102879864A (zh) * 2012-11-01 2013-01-16 武汉邮电科学研究院 硅基液晶波长选择开关的波长漂移检测及校正方法
CN105827319A (zh) * 2015-01-06 2016-08-03 中兴通讯股份有限公司 数据处理方法及装置
CN107872411A (zh) * 2016-09-23 2018-04-03 深圳市中兴微电子技术有限公司 一种光传输信道中频偏估计方法和装置
US20180138980A1 (en) * 2016-11-15 2018-05-17 Huawei Technologies Co., Ltd. Optical transceiver, communication system, and adaptive frequency control method

Also Published As

Publication number Publication date
EP3809609A1 (en) 2021-04-21
EP3809609A4 (en) 2021-09-01
CN110730034B (zh) 2022-02-25
US20210135763A1 (en) 2021-05-06
US11316591B2 (en) 2022-04-26
CN110730034A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
WO2020015371A1 (zh) 频偏处理方法、装置、设备及存储介质
CN102598707B (zh) 一种均衡链路性能的方法和装置
US9948389B2 (en) Optical carrier selector system and method
KR20140030868A (ko) 소형화 외부공진 파장가변 레이저 장치
EP3522408A1 (en) Optical signal transmission method and device, and wavelength selective switch
CN112217563B (zh) 一种光信号的处理方法、系统、电子设备及存储介质
US9306664B1 (en) In-service optical signal to noise ratio monitoring in an optical network
CN103856262B (zh) 基于一码元延时干涉和平衡探测的带内光信噪比测量系统
US8731400B2 (en) Characterizing a frequency channel in an optical network
US20190146306A1 (en) Optical transmission apparatus, optical transmission system, and method of controlling excitation light frequency
US9014556B2 (en) Optical power monitoring method and apparatus
WO2019140601A1 (zh) 一种微环滤波器的波长标定方法、装置和系统
WO2017054663A1 (zh) 光信号检测的方法及其网络设备
US20080138014A1 (en) Wide passband optical interleaver
WO2019165947A1 (zh) 光波导装置
CN116131992A (zh) 光通信方法、系统、通信设备及存储介质
CN110557218A (zh) 一种波长选择开关的校准方法及装置
CN103856261B (zh) 基于一码元延时干涉和平衡探测测量带内光信噪比的方法
WO2022016982A1 (zh) 一种波长选择开关wss的频偏处理方法和频偏处理装置
JP5563518B2 (ja) 可変分散補償器の位相最適化方法、位相最適化された可変分散補償器および位相最適化装置
CN218941260U (zh) 光通信系统
CN115441947B (zh) 基于时差测量的光纤实地链路色散测量系统及方法
CN111480306A (zh) 估计光链路的传播延迟差的方法和用于所述方法的装置
US10873398B1 (en) Dispersion monitor apparatus
KR20170115851A (ko) 위상 오차 보상 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019838669

Country of ref document: EP

Effective date: 20210114