WO2020013393A1 - 안구내 조절성 렌즈 제조방법 - Google Patents

안구내 조절성 렌즈 제조방법 Download PDF

Info

Publication number
WO2020013393A1
WO2020013393A1 PCT/KR2018/013779 KR2018013779W WO2020013393A1 WO 2020013393 A1 WO2020013393 A1 WO 2020013393A1 KR 2018013779 W KR2018013779 W KR 2018013779W WO 2020013393 A1 WO2020013393 A1 WO 2020013393A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
convex lens
adjustable
intraocular
convex
Prior art date
Application number
PCT/KR2018/013779
Other languages
English (en)
French (fr)
Inventor
현동원
Original Assignee
현동원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현동원 filed Critical 현동원
Publication of WO2020013393A1 publication Critical patent/WO2020013393A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1637Correcting aberrations caused by inhomogeneities; correcting intrinsic aberrations, e.g. of the cornea, of the surface of the natural lens, aspheric, cylindrical, toric lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/02Perforating by punching, e.g. with relatively-reciprocating punch and bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1681Intraocular lenses having supporting structure for lens, e.g. haptics

Definitions

  • the present invention relates to a method for manufacturing an intraocular adjustable lens, and more particularly, to a method for manufacturing an intraocular adjustable lens that can be implanted into the eye to align incident light.
  • Intraocular Lens refers to an intraocular lens implanted into the eye in place of the clouded lens of such a cataract patient.
  • ophthalmology has been performed to remove a clouded lens by inserting an ultrasonic emulsifier and to insert a lens-like intraocular lens in place to treat a cataract that has advanced to a daily life.
  • Korean Patent Publication No. 10-0856344 (2008.08.28) relates to a method for manufacturing an ophthalmic lens for high-order aberration correction, comprising the steps of measuring the basic refractive power prescription of the lens wearer (step a), at least the first distance and Providing a visible target at a distance of 2 to measure the wavefront aberration of the lens wearer (step b), converting the measured aberration value to a height difference (step c) and a basic refractive power prescription
  • a multifocal ophthalmic lens having at least two optical refractive power regions or focal length regions can be provided, including providing an ophthalmic lens for the lens wearer using the transformed altitude difference (step d).
  • Korean Patent Publication No. 10-0852101 (2007.08.07) relates to an eye lens design method, which uses a plurality of latitude lines and a meridian to form a coarse mesh.
  • a lower step (lower step i.) To draw, a lower step (lower step ii.) To record the intersections of latitudes and meridians according to one of orthogonal, cylindrical, or spherical coordinate systems, and thickness deviation for each of the plurality of latitude lines Determining a thickness for each intersection and forming a thickness map for part or all of the periphery of the lens (step a) and from the thickness map
  • a method of designing a contact lens can be provided in which the thickness around the lens is precisely controlled, including the step (step b) of inducing a geometric shape for a portion or the entire portion.
  • An embodiment of the present invention is to provide a method for manufacturing an intraocular adjustable lens that can create a through hole along the circumference of the convex lens and fill the convex lens and other materials in the through hole to be implanted in the eye to align incident light. .
  • One embodiment of the present invention provides a method for manufacturing an intraocular adjustable lens comprising the step of creating a through hole through a physical or optical perforation of the convex lens formed in a convex arc shape toward the center of the plate circumference in terms of the cross section. I would like to.
  • An embodiment of the present invention is to provide a method for manufacturing an intraocular adjustable lens comprising coating a convex lens formed with a through hole with another material and injecting the coated material into the through hole through a pressurized or negative pressure at a constant pressure. .
  • An embodiment of the present invention is to provide a method for manufacturing an intraocular adjustable lens comprising the step of molding in a variety of forms, such as adding a haptic by molding the convex lens filled with a different material in the through hole with the same material. .
  • a method for manufacturing an intraocular adjustable lens may include generating a through hole along a circumference of a convex lens and filling the through hole by coating the convex lens with a controllable optical alignment body (b). It includes.
  • the step (a) may include generating the through hole through physical or laser drilling.
  • the step (a) may include forming a single focus or multifocal by controlling the penetrating direction of the through hole.
  • the step (a) may include forming the convex lens in a convex or aspherical arc shape toward the center of the flat plate circumference in terms of a cross section.
  • the step (a) may include forming the arc shape to have a predetermined thickness.
  • the step (a) may further comprise the step of forming the arc shape in the center of the highest and mutually symmetrical step shape.
  • the step (a) may further comprise the step of forming the convex lens in a convex shape symmetrically with respect to the center direction of the flat plate circumference in terms of the cross section.
  • the step (a) may further comprise the step of forming the convex lens in a convex shape with respect to one surface toward the center direction of the flat plate circumference in terms of the cross section.
  • the step (b) may include forming the adjustable light alignment member from a material different from the convex lens.
  • the step (b) may include the step of injecting the adjustable optical alignment into the through hole through the coated convex lens through a constant pressure or negative pressure (Negative Pressure).
  • the intraocular adjustable lens manufacturing method may further include a step (c) of removing the adjustable light alignment on the convex lens through a polishing process.
  • Step (C) may include removing the remainder except for the adjustable light alignment filled in the through hole by polishing the adjustable light alignment on the convex lens.
  • the intraocular adjustable lens manufacturing method may further include a step (d) of molding the polished convex lens by molding or coating to form an intraocular lens.
  • the step (d) may further comprise the step of performing the molding treatment or coating treatment with the same material as the convex lens.
  • the disclosed technique can have the following effects. However, since a specific embodiment does not mean to include all of the following effects or only the following effects, it should not be understood that the scope of the disclosed technology is limited by this.
  • intraocular adjustable lens manufacturing method is to create a through hole along the circumference of the convex lens and to fill the convex lens and other materials in the through hole implanted in the eye to align the incident light
  • An adjustable lens manufacturing method can be provided.
  • An intraocular adjustable lens manufacturing method includes the step of creating a through-hole through a physical or optical perforation of the convex lens formed in a convex arc shape toward the center of the plate circumference from the perspective of the cross section An intraocular adjustable lens manufacturing method can be provided.
  • An intraocular adjustable lens manufacturing method includes coating a convex lens formed with a through hole with another material and injecting the coated material into the through hole through a constant pressure or negative pressure.
  • An adjustable lens manufacturing method can be provided.
  • An intraocular adjustable lens manufacturing method comprises molding the convex lens filled with a different material in the through-hole with the same material and molding in various forms such as adding a haptic.
  • An adjustable lens manufacturing method can be provided.
  • FIG. 1 is a perspective view showing an intraocular adjustable lens according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a method for manufacturing an intraocular adjustable lens according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in an arc shape.
  • FIG. 4 is a diagram illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in a step shape.
  • FIG. 5 is a diagram illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in an elliptic shape.
  • FIG. 6 is a diagram illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in a semi-elliptic shape.
  • FIG. 6 is a view for explaining a method for generating a through hole in step a according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an embodiment of generating a through hole in FIG. 1.
  • FIG. 8 is a view showing an embodiment for filling the adjustable light alignment body in FIG. 1.
  • FIG. 9 illustrates an embodiment for removing the remaining adjustable light alignment in FIG. 1.
  • FIG. 10 is a view showing an embodiment of intraocular lens molding in FIG. 1.
  • FIG. 10 is a view showing an embodiment of intraocular lens molding in FIG. 1.
  • first and second are intended to distinguish one component from another component, and the scope of rights should not be limited by these terms.
  • first component may be named a second component, and similarly, the second component may also be named a first component.
  • an identification code (e.g., a, b, c, etc.) is used for convenience of description, and the identification code does not describe the order of the steps, and each step is clearly in a context. Unless stated otherwise, they may occur out of the order noted. That is, each step may occur in the same order as specified, may be performed substantially simultaneously, or may be performed in the reverse order.
  • FIG. 1 is a perspective view showing an intraocular adjustable lens according to an embodiment of the present invention.
  • the intraocular adjustable lens 100 includes an intraocular lens 150 and a haptic 170.
  • the intraocular lens 150 has a central portion 110 formed in a convex arc shape toward the center of the flat plate circumference, a through hole 120 formed along the circumference of the central portion 110, and a central portion 110 in terms of a cross section. It is composed of a peripheral portion 130 formed in a flat plate shape coupled to the edge.
  • the arc shape may be formed into a spherical surface, and in another embodiment, the arc shape may be formed into an aspherical surface.
  • the intraocular lens 150 may further include a haptic 170 at the edge of the peripheral portion 130. The haptic 170 will be described in more detail with reference to FIG. 10.
  • the intraocular lens 150 may be composed of a relatively hard material, a relatively soft material, or a combination of these hard materials and soft materials.
  • the relatively hard material may correspond to polymethyl methacrylate (PMMA), polysulfone (PSF) and other relatively hard biological inert materials.
  • the relatively soft material may correspond to a semi-rigid, relatively soft, biologically inert material having a silicone resin (Silicone), hydrogel (Hydrogel) and other flexibility.
  • FIG. 2 is a flowchart illustrating a method for manufacturing an intraocular adjustable lens according to an embodiment of the present invention.
  • the intraocular adjustable lens manufacturing method includes the steps of forming the convex lens in an arc shape in terms of a cross section (step S210), generating a through hole along the circumference of the convex lens (step S220), and convex. Coating and filling the lens with the adjustable light alignment (step S230), polishing and removing the adjustable light alignment remaining on the convex lens (step S240) by molding and coating the convex lens to insert the intraocular lens. Molding (step S250).
  • a convex lens formed in an arc shape from the viewpoint of the cross section is prepared.
  • the convex lens corresponds to a basic material processed into the intraocular lens 150 through the intraocular adjustable lens manufacturing method.
  • the convex lens is formed in an arc shape from the viewpoint of the cross section, and more specifically, in the cross section cut through the center of the convex lens.
  • the arc shape may be composed of an aspherical surface, and in another embodiment, the arc shape may be composed of a spherical surface.
  • the through hole 120 is generated along the circumference of the convex lens.
  • the through hole 120 corresponds to a void formed by completely penetrating or partially penetrating the convex lens.
  • the through hole 120 may be implemented through various methods such as physical, chemical, and optical methods, and may provide a space for injecting the adjustable light alignment unit by removing a part of the convex lens 110.
  • the convex lens in which the through hole 120 is generated is coated with a modulated light alignment and filled.
  • the adjustable light aligner corresponds to an optical material that can align light incident by filling the through hole 120.
  • the adjustable light aligner may be composed of convex lenses and other materials among materials that are excellent in biocompatibility and machinability.
  • the adjustable light alignment may include a gas such as air, nitrogen (N 2) and helium (He).
  • step S240 the adjustable light alignment remaining on the convex lens is polished and removed.
  • polishing corresponds to a processing method of adjusting the surface roughness of the workpiece using abrasives such as iron oxide, chromium oxide, aluminum oxide, silicon carbide, and manganese oxide.
  • the polishing may not necessarily be limited thereto, and may correspond to a processing method of adjusting surface roughness using chemical and electrical properties of a workpiece.
  • the convex lens from which the remaining adjustable light alignment is removed is molded and coated to be molded into the intraocular lens 150.
  • the intraocular lens 150 is an intraocular lens implanted into the eye to replace the patient's turbid lens as a final result by the intraocular adjustable lens manufacturing method.
  • the intraocular lens 150 may be implemented to include a haptic 170 to secure the rear surface of the lens to be aligned with the macula of the patient's eye.
  • 3 to 6 illustrate various embodiments implementing the convex lens shape of FIG. 1.
  • FIG. 3 is a view illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in an arc shape.
  • the convex lens 300 has a central portion 310 formed in a convex arc shape toward the center of the flat plate circumference and a peripheral portion 330 formed in a flat plate shape by being coupled to an edge of the central portion 310 in a cross-sectional view. It consists of.
  • the convex lens 300 corresponds to a basic material processed into the intraocular lens 150 through the intraocular adjustable lens manufacturing method.
  • the convex lens 300 may be formed in a convex shape toward the center of the plate circumference using a base material having excellent biocompatibility and machinability. More specifically, the convex lens 300 may be formed by processing a central portion of a flat polymethyl methacrylate, polysulfone or other relatively hard biologically inert material into a spherical or aspherical surface. In addition, the convex lens 300 may be formed by processing a central portion of a semi-rigid, relatively soft, biologically inert material material having a flat silicone resin, a hydrogel, or other flexibility, into a spherical or aspherical surface.
  • the convex lens 300 may form the central portion 310 to a predetermined thickness. Therefore, the generation and placement of the through hole 120 can be easily performed in step S220. In addition, the filling of the adjustable light alignment may be easily performed in step S230.
  • FIG. 4 is a diagram illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in a step shape.
  • the convex lens 400 is coupled to the edges of the central portion 410 and the central portion 410 formed in a convex shape toward the center of the flat plate circumference, the highest in the center, and a mutually symmetrical step shape, in terms of a cross section. It is composed of a peripheral portion 430 formed in a shape.
  • the convex lens 400 corresponds to a basic material processed into the intraocular lens 150 through the intraocular adjustable lens manufacturing method.
  • the convex lens 400 may be formed in a convex shape toward the center of the flat plate circumference, the highest in the center, and a symmetrical step shape using a basic material having excellent biocompatibility and machinability. More specifically, the convex lens 400 may be formed by processing a central portion of flat polymethyl methacrylate, polysulfone, or other relatively hard biologically inert material into a step shape. In addition, the convex lens 400 may be formed by processing a central portion of a semi-rigid, relatively soft biologically inert material material having a flat silicone resin, hydrogel, and other bendability into a step shape.
  • the convex lens 400 may have a narrower step shape of the central portion 410 of the convex lens 400 as it is closer to the center and wider as it is farther from the center. Therefore, the convex lens 400 having a step shape has an effect that it is easier to generate and arrange larger as the through-hole becomes smaller and closer to the center in step S220 than the convex lens 300 having an arc shape. .
  • FIG. 5 is a diagram illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in an elliptic shape.
  • the convex lens 500 is coupled to the edges of the central portion 510 and the central portion 510 which are formed in a convexly symmetrical shape toward the center direction of the flat plate circumference from the perspective of the cross section, and the peripheral portion formed in the shape of a plate. 530.
  • the convex lens 500 corresponds to a basic material processed into an intraocular lens through a method for manufacturing an intraocular adjustable lens.
  • the convex lens 500 may be formed in a convex shape symmetrically with respect to the center direction of the plate circumference using a base material having excellent biocompatibility and machinability. More specifically, the convex lens 500 may be formed by processing a central portion of flat polymethyl methacrylate, polysulfone, or other relatively hard biologically inert material into an ellipse shape. In addition, the convex lens 500 may be formed by processing a central portion of a semi-rigid, relatively soft biologically inert material having a flat silicone resin, hydrogel, and other bends into an ellipse shape.
  • FIG. 6 is a diagram illustrating an embodiment in which the convex lens shape of FIG. 1 is implemented in a semi-ellipse shape.
  • the convex lens 600 is coupled to the edge of the central portion 610 and the central portion 610 formed in a convex shape with respect to one surface toward the center direction of the flat plate circumference from the perspective of the cross section and formed in the shape of a flat plate. 630.
  • the convex lens 600 corresponds to a basic material processed into the intraocular lens 150 through the intraocular adjustable lens manufacturing method.
  • the convex lens 600 may be formed in a convex shape with respect to one surface toward the center direction of the plate circumference using a base material having excellent biocompatibility and machinability. More specifically, the convex lens 600 may be formed by processing a central portion of flat polymethyl methacrylate, polysulfone, or other relatively hard biologically inert material into a semi-ellipse shape. In addition, the convex lens 600 may be formed by processing a central portion of a semi-rigid relatively soft biologically inert material having a flat silicone resin, a hydrogel, and other flexibility, into a semi-ellipse shape.
  • the convex lenses 300, 400, 500, 600 are convex toward the center direction of the plate circumference (FIG. 2), convex toward the center direction of the plate circumference, and in the center, in terms of the cross section through step S210.
  • the convex lens 300 formed in the convex arc shape toward the center direction of the flat plate circumference will be described.
  • FIG. 7 is a diagram illustrating an embodiment of generating a through hole in FIG. 1.
  • the through hole 350 may be formed on one surface of the convex central portion 310 of the convex lens 300.
  • the through hole 350 corresponds to a gap generated through all or part of the thickness of the convex lens 300.
  • the through hole 350 may be generated through various methods such as physical, chemical, and optical methods, and may provide a space for injecting the adjustable light alignment unit by removing a part of the convex lens 300.
  • the through hole 350 may be created on the convex lens 300 through a physical method such as drilling. Drilling is a cutting method that moves the cutting tool rotating about the axis of rotation up and down to create the through hole 350 in the workpiece. Through drilling has a diameter of 10 ⁇ m to 30 ⁇ m on one surface of the central part on the convex lens. The 350 may be generated to provide a space for injecting the adjustable light array.
  • the through hole 350 may be created on the convex lens 300 through an optical method such as laser processing.
  • Laser Beam Machining is a micro-machining method for locally heating a workpiece by using thermal energy of a microwave laser.
  • the through-hole 350 having a diameter of about 30 ⁇ m on one surface of the central portion 310 of the convex lens 300 is used. ) May be provided to provide a space for injecting the adjustable light array.
  • a person skilled in the art may generate a through hole 350 by adopting a suitable method among various conventional fine through hole processing methods such as electric discharge machining, electron beam machining, grinding wheel particle processing, and press machining. have.
  • the through hole 350 may be formed to be polygonal or circular in terms of cross section, more specifically in terms of cross section. Therefore, the through hole 350 may be formed in a polygonal column or a cylindrical shape.
  • the plurality of through holes 370 may be disposed in an annular shape to circumscribe the outer convex center portion 310 of the convex lens 300, and have a plurality of concentric rings having concentric circles sharing the center point of the central portion 310. Can be placed into the.
  • the plurality of through holes 370 may be formed in different sizes.
  • the size of the through hole 350 may be generated in proportion to the distance between the central axis of the through hole 350 and the center point of the central portion 310.
  • the plurality of through holes 370 may be formed at different angles.
  • the through hole 350 may be formed to have a predetermined angle with the convex central portion 310 of the convex lens 300.
  • the predetermined angle corresponds to an angle formed by the imaginary extension line extending the central axis of the through hole 350 and the imaginary center line passing through the center point of the central portion 310.
  • the predetermined angle may be generated in proportion to the distance between the central axis of the through hole 350 and the center point of the central portion 310.
  • the plurality of through holes 370 may be formed to converge virtual extension lines extending from the central axis to the first point, respectively. Therefore, the intraocular lens 150 may clarify the image formed on the retina by converging light incident on the front surface from the object to the first point. In another embodiment, the plurality of through holes 370 may be formed to converge virtual extension lines extending from the central axis to the first point and the second point, respectively. Therefore, the intraocular lens 150 may clarify the image formed on the retina by converging light incident on the front surface from both the far and near objects to the first and second points.
  • FIG. 8 is a view showing an embodiment for filling the adjustable light alignment body in FIG. 1.
  • the adjustable light aligner 390 corresponds to a fill material comprised of a material different from the convex lens 300. More specifically, the adjustable light aligner 390 can be made of relatively hard polymethyl methacrylate, polysulfone or other biocompatibility and machinability materials or relatively soft acrylic resins, silicone resins and hydrogels and other biocompatibility and Among the materials having excellent machinability, the convex lens 300 may be made of a material different from the convex lens 300, and the convex lens 300 may be made of a material having a different hardness characteristic. It may be injected into the through hole 350 formed in the lens 300.
  • the adjustable light aligner 390 may include a gas such as air, nitrogen (N 2), helium (He), or a vacuum state.
  • a gas such as air, nitrogen (N 2), helium (He), or a vacuum state.
  • N 2 nitrogen
  • He helium
  • the adjustable light aligner 390 determines the reflection or transmission of the incident light according to the refractive index, blocks the incident light above the critical angle, and passes the intraocular lens 150 to form an image on the retina. Can be sharpened.
  • the adjustable light aligner 390 is powdered to coat the convex lens 300 and a through hole 350 formed in the convex lens 300 by a pressing method such as cold isotropic pressing (CIP). Can be filled in. More specifically, the powdered adjustable light alignment unit 390 is coated on the through hole 350 formed in the convex lens 300 tightly and filled in the through hole 350 by an equal pressure applied in both directions. It can be processed into.
  • CIP cold isotropic pressing
  • the adjustable light alignment unit 390 may be viscous fluidized to coat the convex lens 300 and fill in the through hole 350 formed in the convex lens 300 by a negative pressure method. More specifically, the viscous fluidized adjustable optical alignment unit 390 is coated with the convex lens 300 sufficiently exposed to a gas having high solubility in liquids such as ammonia gas, thereby penetrating through the negative pressure effect generated by the instantaneous pressure effect. It may be filled in (350).
  • the adjustable light aligner 390 may be electrolyzed and filled in the through hole 350 formed in the convex lens 300 by a molecular self-assembly method.
  • the adjustable light aligner 390 is implemented with a polymer electrolyte having opposite charge characteristics of the positive electrode and the negative electrode, so that the through-hole 350 formed in the convex lens 300 by electrostatic mutual attraction in an aqueous solution environment. Can be filled in.
  • a person skilled in the art may fill the convex lens 300 by adopting a suitable method among various conventional fine through-hole filling methods.
  • FIG. 9 illustrates an embodiment for removing the remaining adjustable light alignment in FIG. 1.
  • Polishing is a processing method of adjusting the surface roughness of a workpiece by using abrasives such as iron oxide, chromium oxide, aluminum oxide, silicon carbide, and manganese oxide.
  • the polishing may not necessarily be limited thereto, and may correspond to a processing method of adjusting surface roughness using chemical and electrical properties of a workpiece.
  • step S240 the convex lens 300 removes the remaining adjustable light alignment unit on the convex lens 300 except for the adjustable light alignment unit 390 filled in the through hole 350 through polishing and smoothes the surface roughness. Adjusted.
  • the convex lens 300 may be restored to the same shape as in step S210 through polishing.
  • FIG. 10 is a view showing an embodiment of intraocular lens molding in FIG. 1.
  • FIG. 10 is a view showing an embodiment of intraocular lens molding in FIG. 1.
  • the convex lens 300 from which the remaining adjustable light alignment body has been removed is molded and coated to be molded into the intraocular lens 150.
  • the intraocular lens 150 is an intraocular lens implanted into the eye to replace the patient's turbid lens as a final result by the intraocular adjustable lens manufacturing method.
  • the convex lens 300 may be molded and coated with a material of the same material to be molded into the intraocular lens 150.
  • the molding process may mold the intraocular lens 150 in such a way that the rear surface of the intraocular lens 150 may be aligned with the macula of the patient's eyes.
  • the coating process may mold the intraocular implant lens 150 in a form in which the adjustable light aligner 390 is located inside the intraocular lens 150.
  • the intraocular implant lens may include the haptic 170.
  • the haptic 170 may be molded into various shapes such as C-shaped, J-shaped, and U-shaped according to the implantation position of the patient's eye to prevent movement, rotation, and detachment of the intraocular lens 150. More specifically, the haptic 170 may be supported on the inner surface of the patient's eye such as intracapsular or sulcus to fix the back of the intraocular lens 150 to be aligned with the macular of the patient's eye. have.
  • the intraocular adjustable lens manufacturing method comprises the steps of forming a convex lens in the shape of an arc in terms of the cross section (step S210), generating a through hole along the circumference of the convex lens (Ste S220), coating and filling the convex lens with the adjustable light alignment (step S230), polishing and removing the adjustable light alignment remaining on the convex lens (step S240) molding and coating the convex lens.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Cardiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Forests & Forestry (AREA)
  • Prostheses (AREA)

Abstract

본 발명은 안구내에 이식되어 입사광을 정렬할 수 있는 안구내 조절성 렌즈를 제조하는 방법에 관한 것으로, 본 발명의 일 실시예에 따른 안구내 조절성 렌즈 제조방법은 컨벡스 렌즈의 둘레를 따라 관통공을 생성하는 단계 및 컨벡스 렌즈를 조절성 광 정렬체로 코팅하여 관통공을 충진하는 단계를 포함할 수 있다.

Description

안구내 조절성 렌즈 제조방법
본 발명은 안구내 조절성 렌즈 제조방법에 관한 것으로, 보다 상세하게는, 안구내에 이식되어 입사광을 정렬할 수 있는 안구내 조절성 렌즈를 제조하는 방법에 관한 것이다.
알려진 바와 같이, 안구내의 수정체는 노안이나 질병 등에 의해 조절 능력이나 투명도 등의 특성이 저하되는 경우가 있고, 그와 동반하여, 굴절 이상이나 백내장 등의 문제를 유발할 수 있다. 안구내 렌즈(Intraocular Lens; IOL)는 이러한 백내장 환자의 혼탁해진 수정체를 대신하여 안구내에 이식되는 인공수정체를 의미한다. 일반적으로, 안과에서는 일상 생활에 불편을 줄 정도로 진행된 백내장을 치료하기 위해서 초음파유화술기 등을 삽입하여 혼탁해진 수정체를 제거하고 그 자리에 수정체와 유사한 형태의 인공수정체를 삽입하는 시술을 시행해왔다.
한국 등록특허공보 제10-0856344(2008.08.28)호는 고차 수차 교정용 안과용 렌즈의 제조방법에 관한 것으로, 렌즈 착용자의 기본 굴절력 처방을 측정하는 단계(단계 a), 적어도 제1 거리와 제2 거리에 가시적 표적물을 제공하여 렌즈 착용자의 파면 수차(wavefront aberration)를 측정하는 단계(단계 b), 측정된 수차값을 고도차(height difference)로 변환시키는 단계(단계 c) 및 기본 굴절력 처방과 변환된 고도차를 사용하여 렌즈 착용자에 대한 안과용 렌즈를 제공하는 단계(단계 d)를 포함하여 둘 이상의 광학 굴절력 영역 또는 초점 길이 영역을 구비한 다초점 안과용 렌즈를 제공할 수 있다.
한국 등록특허공보 제10-0852101(2007.08.07)호는 눈 렌즈 설계 방법에 관한 것으로, 코어스 메쉬(coarse mesh)를 형성하기 위해 다수의 위도선 및 자오선을 사용하여 렌즈 주변의 일부분 또는 전체부분을 그리는 하부 단계(하부 단계 i.)와, 직교, 원통, 또는 구 좌표계 중의 하나에 따라 위도선들과 자오선들의 교차점들을 기록하는 하부 단계(하부 단계 ii.)와, 다수의 위도선 각각에 대해 두께 편차를 정하고 각각의 교차점에 대한 두께를 계산하는 하부 단계(하부 단계 iii.)를 포함하고, 렌즈 주변의 일부분 또는 전체 부분에 대해 두께 맵을 형성하는 단계(단계 a) 및 상기 두께 맵으로부터 렌즈 주변의 일부분 또는 전체 부분에 대한 기하학적 형상을 유도하는 단계(단계 b)를 포함하여 렌즈 주변 두께가 정확히 제어되는 콘택트 렌즈 설계 방법을 제공할 수 있다.
본 발명의 일 실시예는 컨벡스 렌즈의 둘레를 따라 관통공을 생성하고 관통공 내에 컨벡스 렌즈와 다른 물질을 충진하여 안구내에 이식되어 입사광을 정렬할 수 있는 안구내 조절성 렌즈 제조방법을 제공하고자 한다.
본 발명의 일 실시예는 단면의 관점에서 평판 원둘레의 중심방향을 향하여 볼록한 아크 형상으로 형성된 컨벡스 렌즈를 물리적 또는 광학적 천공을 통해 관통공을 생성하는 단계를 포함하는 안구내 조절성 렌즈 제조방법을 제공하고자 한다.
본 발명의 일 실시예는 관통공이 형성된 컨벡스 렌즈를 다른 물질로 코팅하고 일정한 압력의 가압 또는 음압을 통해 관통공 내에 코팅된 물질을 주입하는 단계를 포함하는 안구내 조절성 렌즈 제조방법을 제공하고자 한다.
본 발명의 일 실시예는 관통공 내에 다른 물질이 충진된 컨벡스 렌즈를 동일한 소재와 함께 몰딩 가공하여 햅틱을 부가하는 등 다양한 형태로 조형하는 단계를 포함하는 안구내 조절성 렌즈 제조방법을 제공하고자 한다.
실시예들 중에서, 안구내 조절성 렌즈 제조방법은 컨벡스 렌즈의 둘레를 따라 관통공을 생성하는 단계(a) 및 상기 컨벡스 렌즈를 조절성 광 정렬체로 코팅하여 상기 관통공을 충진하는 단계(b)를 포함한다.
상기 (a) 단계는 물리적 천공 또는 레이저 천공을 통해 상기 관통공을 생성하는 단계를 포함할 수 있다.
상기 (a) 단계는 상기 관통공의 관통 방향을 제어하여 단일초점 또는 다초점을 형성하는 단계를 포함할 수 있다.
상기 (a) 단계는 상기 컨벡스 렌즈를 단면의 관점에서 평판 원둘레의 중심 방향을 향하여 볼록한 구면 또는 비구면의 아크 형상으로 형성하는 단계를 포함할 수 있다.
상기 (a) 단계는 상기 아크 형상을 일정한 두께를 가지도록 형성하는 단계를 포함할 수 있다.
상기 (a) 단계는 상기 아크 형상을 중앙에서 가장 높고 상호 대칭적인 계단 형상으로 형성하는 단계를 더 포함할 수 있다.
상기 (a) 단계는 상기 컨벡스 렌즈를 단면의 관점에서 평판 원둘레의 중심 방향을 향하여 상호 대칭적으로 볼록한 형상으로 형성하는 단계를 더 포함할 수 있다.
상기 (a) 단계는 상기 컨벡스 렌즈를 단면의 관점에서 평판 원둘레의 중심 방향을 향하여 일 면에 대하여 볼록한 형상으로 형성하는 단계를 더 포함할 수 있다.
상기 (b) 단계는 상기 조절성 광 정렬체를 상기 컨벡스 렌즈와 다른 물질로 형성하는 단계를 포함할 수 있다.
상기 (b) 단계는 상기 코팅된 컨벡스 렌즈를 일정한 압력의 가압 또는 음압(Negative Pressure)을 통해 상기 관통공에 상기 조절성 광 정렬체를 주입하는 단계를 포함할 수 있다.
상기 안구내 조절성 렌즈 제조방법은 폴리싱 가공을 통해 상기 컨벡스 렌즈 상에 있는 조절성 광 정렬체를 제거하는 단계(c)를 더 포함할 수 있다.
상기 (C) 단계는 상기 컨벡스 렌즈 상에 있는 조절성 광 정렬체를 폴리싱하여 상기 관통공에 충진된 조절성 광 정렬체를 제외한 나머지를 제거하는 단계를 포함할 수 있다.
상기 안구내 조절성 렌즈 제조방법은 상기 폴리싱 가공된 컨벡스 렌즈를 몰딩 처리 또는 코팅 처리를 수행하여 안구내 삽입 렌즈로 조형하는 단계(d)를 더 포함할 수 있다.
상기 (d) 단계는 상기 컨벡스 렌즈와 동일한 소재로 상기 몰딩 처리 또는 코팅 처리를 수행하는 단계를 더 포함할 수 있다.
개시된 기술은 다음의 효과를 가질 수 있다. 다만, 특정 실시예가 다음의 효과를 전부 포함하여야 한다거나 다음의 효과만을 포함하여야 한다는 의미는 아니므로, 개시된 기술의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명의 일 실시예에 따른 안구내 조절성 렌즈 제조방법은 컨벡스 렌즈의 둘레를 따라 관통공을 생성하고 관통공 내에 컨벡스 렌즈와 다른 물질을 충진하여 안구내에 이식되어 입사광을 정렬할 수 있는 안구내 조절성 렌즈 제조방법을 제공할 수 있다.
본 발명의 일 실시예에 따른 안구내 조절성 렌즈 제조방법은 단면의 관점에서 평판 원둘레의 중심방향을 향하여 볼록한 아크 형상으로 형성된 컨벡스 렌즈를 물리적 또는 광학적 천공을 통해 관통공을 생성하는 단계를 포함하는 안구내 조절성 렌즈 제조방법을 제공할 수 있다.
본 발명의 일 실시예에 따른 안구내 조절성 렌즈 제조방법은 관통공이 형성된 컨벡스 렌즈를 다른 물질로 코팅하고 일정한 압력의 가압 또는 음압을 통해 관통공 내에 코팅된 물질을 주입하는 단계를 포함하는 안구내 조절성 렌즈 제조방법을 제공할 수 있다.
본 발명의 일 실시예에 따른 안구내 조절성 렌즈 제조방법은 관통공 내에 다른 물질이 충진된 컨벡스 렌즈를 동일한 소재와 함께 몰딩 가공하여 햅틱을 부가하는 등 다양한 형태로 조형하는 단계를 포함하는 안구내 조절성 렌즈 제조방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 안구내 조절성 렌즈를 나타내는 사시도이다.
도 2은 본 발명의 일 실시예에 따른 안구내 조절성 렌즈 제조방법을 설명하는 순서도이다.
도 3는 본 발명의 도 1에서의 컨벡스 렌즈 형상을 아크 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 4는 본 발명의 도 1에서의 컨벡스 렌즈 형상을 계단 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 5는 본 발명의 도 1에서의 컨벡스 렌즈 형상을 타원 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 6는 본 발명의 도 1에서의 컨벡스 렌즈 형상을 반타원 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 6은 본 발명의 일 실시예에 따른 단계 a에서 관통공을 생성하는 방법을 설명하는 도면이다.
도 7은 도 1에서의 관통공 생성에 대한 실시예를 나타낸 도면이다.
도 8은 도 1에서의 조절성 광 정렬체 충진에 대한 실시예를 나타낸 도면이다.
도 9은 도 1에서의 잔여 조절성 광 정렬체 제거에 대한 실시예를 나타낸 도면이다.
도 10은 도 1에서의 안구내 삽입 렌즈 조형에 대한 실시예를 나타낸 도면이다.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
한편, 본 출원에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다"또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
각 단계들에 있어 식별부호(예를 들어, a, b, c 등)는 설명의 편의를 위하여 사용되는 것으로 식별부호는 각 단계들의 순서를 설명하는 것이 아니며, 각 단계들은 문맥상 명백하게 특정 순서를 기재하지 않는 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 단계들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
도 1은 본 발명의 일 실시예에 따른 안구내 조절성 렌즈를 나타내는 사시도이다.
도 1을 참조하면, 안구내 조절성 렌즈(100)는 안구내 삽입 렌즈(150) 및 햅틱(170)을 포함한다.
안구내 삽입 렌즈(150)는 단면의 관점에서, 평판 원둘레의 중심 방향을 향하여 볼록한 아크 형상으로 형성된 중앙부(110), 중앙부(110)의 둘레를 따라 형성된 관통공(120) 및 중앙부(110)의 가장자리에 결합하여 평판 형상으로 형성된 주위부(130)로 구성된다. 일 실시예에서, 아크 형상은 구면으로 형성될 수 있고, 다른 일 실시예에서, 아크 형상은 비구면으로 형성될 수 있다. 또한, 안구내 삽입 렌즈(150)는 주위부(130)의 가장자리에 햅틱(170)을 더 포함하여 형성될 수 있다. 햅틱(170)에 대해서는 도 10에서 보다 자세히 설명하도록 한다.
안구내 삽입 렌즈(150)는 비교적 경질 재료, 비교적 연질 재료 또는 이들 경질 재료와 연질 재료의 조합으로 구성될 수 있다. 여기에서 비교적 경질 재료는 폴리메틸 메타크릴레이트(Polymethyl Methacrylate, PMMA), 폴리술폰(Polysulfone, PSF) 기타 비교적 경질의 생물학적 불활성 재료에 해당할 수 있다. 또한, 비교적 연질 재료는 실리콘 수지(Silicone), 하이드로겔(Hydrogel) 기타 굴곡성을 가지면서 반강성인 비교적 연질의 생물학적 불활성 재료에 해당할 수 있다.
도 2는 본 발명의 일 실시예에 따른 안구내 조절성 렌즈 제조방법을 설명하는 순서도이다.
도 2를 참조하면, 안구내 조절성 렌즈 제조방법은 컨벡스 렌즈를 단면의 관점에서 아크 형상으로 형성하는 단계(단계 S210), 컨벡스 렌즈의 둘레를 따라 관통공을 생성하는 단계(단계 S220), 컨벡스 렌즈를 조절성 광 정렬체로 코팅하여 충진하는 단계(단계 S230), 컨벡스 렌즈 상에 남아있는 조절성 광 정렬체를 폴리싱하여 제거하는 단계(단계 S240) 컨벡스 렌즈를 몰딩 및 코팅 처리하여 안구내 삽입 렌즈로 조형하는 단계(단계 S250)를 포함한다.
단계 S210에서, 단면의 관점에서 아크 형상으로 형성된 컨벡스 렌즈가 준비된다. 여기에서, 컨벡스 렌즈는 안구내 조절성 렌즈 제조방법을 통해 안구내 삽입 렌즈(150)로 가공되는 기본 재료에 해당한다. 또한, 컨벡스 렌즈는 단면의 관점에서, 보다 구체적으로, 컨벡스 렌즈의 중앙을 관통하여 절개한 단면에서, 아크 형상으로 형성된다. 일 실시예에서, 아크 형상은 비구면으로 구성될 수 있고, 다른 일 실시예에서, 아크 형상은 구면으로 구성될 수 있다.
단계 S220에서, 컨벡스 렌즈의 둘레를 따라 관통공(120)이 생성된다. 여기에서, 관통공(120)은 컨벡스 렌즈를 완전하게 관통하거나 또는 부분적으로 관통하여 구현된 공극에 해당한다. 관통공(120)은 물리적, 화학적 및 광학적 방법 등 다양한 방법을 통해 구현될 수 있고 컨벡스 렌즈(110) 일부를 제거함으로써 조절성 광 정렬체를 주입할 수 있는 공간을 제공할 수 있다.
단계 S230에서, 관통공(120)이 생성된 컨벡스 렌즈는 조절성 광 정렬체로 코팅되어 충진된다. 여기에서, 조절성 광 정렬체는 관통공(120)에 충진되어 입사하는 빛을 정렬할 수 있는 광학 재료에 해당한다. 조절성 광 정렬체는 생체 적합성 및 기계 가공성이 우수한 재료들 중에서 컨벡스 렌즈와 다른 재료로 구성될 수 있다. 또한, 조절성 광 정렬체는 공기, 질소(N2) 및 헬륨(He) 등의 기체를 포함할 수 있다.
단계 S240에서, 컨벡스 렌즈 상에 남아있는 조절성 광 정렬체는 폴리싱되어 제거된다. 여기에서, 폴리싱(Polishing)은 산화철, 산화크로뮴, 산화알루미늄, 탄화규소 및 산화망가니즈 등의 연마재를 이용하여 공작물의 표면 조도를 조정하는 가공 방법에 해당한다. 반드시 이에 한정되지는 않고, 폴리싱은 공작물의 화학적 및 전기적 특성을 이용하여 표면 조도를 조정하는 가공 방법에 해당할 수 있다.
단계 S250에서, 잔여 조절성 광 정렬체가 제거된 컨벡스 렌즈는 몰딩 및 코팅 처리되어 안구내 삽입 렌즈(150)로 조형된다. 여기에서, 안구내 삽입 렌즈(150)는 안구내 조절성 렌즈 제조방법에 의한 최종 결과물로서 환자의 혼탁해진 수정체를 대체하여 안구내에 이식되는 인공수정체에 해당한다. 안구내 삽입 렌즈(150)는 렌즈의 후면을 환자 눈의 황반부에 정렬되도록 고정할 수 있도록 햅틱(170)을 포함하여 구현될 수 있다.
도 3 내지 도 6은 도 1에서의 컨벡스 렌즈 형상을 구현한 다양한 실시예들을 나타낸 도면들이다.
도 3은 본 발명의 도 1에서의 컨벡스 렌즈 형상을 아크 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 3에서, 컨벡스 렌즈(300)는 단면의 관점에서, 평판 원둘레의 중심 방향을 향하여 볼록한 아크 형상으로 형성된 중앙부(310) 및 중앙부(310)의 가장자리에 결합하여 평판 형상으로 형성된 주위부(330)로 구성된다. 여기에서, 컨벡스 렌즈(300)는 안구내 조절성 렌즈 제조방법을 통해 안구내 삽입 렌즈(150)로 가공되는 기본 재료에 해당한다.
단계 S210에서, 컨벡스 렌즈(300)는 생체 적합성 및 기계 가공성이 우수한 기본 재료를 사용하여 평판 원둘레의 중심 방향을 향하여 볼록한 형상으로 형성될 수 있다. 보다 상세하게는, 컨벡스 렌즈(300)는 평판 형태의 폴리메틸 메타크릴레이트, 폴리술폰 기타 비교적 경질의 생물학적 불활성 재료의 중앙 일부를 구면 또는 비구면으로 가공하여 형성될 수 있다. 또한, 컨벡스 렌즈(300)는 평판 형태의 실리콘 수지, 하이드로겔 기타 굴곡성을 가지면서 반강성인 비교적 연질의 생물학적 불활성 재료 재료의 중앙 일부를 구면 또는 비구면으로 가공하여 형성될 수 있다.
일 실시예에서, 컨벡스 렌즈(300)는 중앙부(310)를 일정한 두께로 형성할 수 있다. 따라서, 단계 S220에서 관통공(120)의 생성 및 배치를 용이하게 수행할 수 있다. 또한, 단계 S230에서 조절성 광 정렬체의 충진을 용이하게 수행할 수 있다.
도 4는 본 발명의 도 1에서의 컨벡스 렌즈 형상을 계단 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 4에서, 컨벡스 렌즈(400)는 단면의 관점에서, 평판 원둘레의 중심 방향을 향하여 볼록하고 중앙에서 가장 높으며 상호 대칭적인 계단 형상으로 형성된 중앙부(410) 및 중앙부(410)의 가장자리에 결합하여 평판 형상으로 형성된 주위부(430)로 구성된다. 여기에서, 컨벡스 렌즈(400)는 안구내 조절성 렌즈 제조방법을 통해 안구내 삽입 렌즈(150)로 가공되는 기본 재료에 해당한다.
단계 S210에서, 컨벡스 렌즈(400)는 생체 적합성 및 기계 가공성이 우수한 기본 재료를 사용하여 평판 원둘레의 중심 방향을 향하여 볼록하고 중앙에서 가장 높으며 상호 대칭적인 계단 형상으로 형성될 수 있다. 보다 상세하게는, 컨벡스 렌즈(400)는 평판 형태의 폴리메틸 메타크릴레이트, 폴리술폰 기타 비교적 경질의 생물학적 불활성 재료의 중앙 일부를 계단 형상으로 가공하여 형성될 수 있다. 또한, 컨벡스 렌즈(400)는 평판 형태의 실리콘 수지, 하이드로겔 기타 굴곡성을 가지면서 반강성인 비교적 연질의 생물학적 불활성 재료 재료의 중앙 일부를 계단 형상으로 가공하여 형성될 수 있다.
일 실시예에서, 컨벡스 렌즈(400)는 컨벡스 렌즈(400)의 중앙부(410) 계단 형상을 중앙에 근접할수록 좁게, 중앙에서 멀어질수록 넓게 형성할 수 있다. 따라서, 계단 형상을 가지는 컨벡스 렌즈(400)는 아크 형상을 가지는 컨벡스 렌즈(300)에 비해 단계 S220에서 관통공을 중앙에 근접할수록 작게, 중앙에서 멀어질수록 크게 생성 및 배치하기 용이한 효과가 있다.
도 5는 본 발명의 도 1에서의 컨벡스 렌즈 형상을 타원 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 5에서, 컨벡스 렌즈(500)는 단면의 관점에서, 평판 원둘레의 중심 방향을 향하여 상호 대칭적으로 볼록한 형상으로 형성된 중앙부(510) 및 중앙부(510)의 가장자리에 결합하여 평판 형상으로 형성된 주위부(530)로 구성된다. 여기에서, 컨벡스 렌즈(500)는 안구내 조절성 렌즈 제조방법을 통해 안구내 삽입 렌즈로 가공되는 기본 재료에 해당한다.
단계 S210에서, 컨벡스 렌즈(500)는 생체 적합성 및 기계 가공성이 우수한 기본 재료를 사용하여 평판 원둘레의 중심 방향을 향하여 상호 대칭적으로 볼록한 형상으로 형성될 수 있다. 보다 상세하게는, 컨벡스 렌즈(500)는 평판 형태의 폴리메틸 메타크릴레이트, 폴리술폰 기타 비교적 경질의 생물학적 불활성 재료의 중앙 일부를 타원 형상으로 가공하여 형성될 수 있다. 또한, 컨벡스 렌즈(500)는 평판 형태의 실리콘 수지, 하이드로겔 기타 굴곡성을 가지면서 반강성인 비교적 연질의 생물학적 불활성 재료의 중앙 일부를 타원 형상으로 가공하여 형성될 수 있다.
도 6은 본 발명의 도 1에서의 컨벡스 렌즈 형상을 반타원 형상으로 구현한 일 실시예를 나타낸 도면이다.
도 6에서, 컨벡스 렌즈(600)는 단면의 관점에서, 평판 원둘레의 중심 방향을 향하여 일 면에 대하여 볼록한 형상으로 형성된 중앙부(610) 및 중앙부(610)의 가장자리에 결합하여 평판 형상으로 형성된 주위부(630)로 구성된다. 여기에서, 컨벡스 렌즈(600)는 안구내 조절성 렌즈 제조방법을 통해 안구내 삽입 렌즈(150)로 가공되는 기본 재료에 해당한다.
단계 S210에서, 컨벡스 렌즈(600)는 생체 적합성 및 기계 가공성이 우수한 기본 재료를 사용하여 평판 원둘레의 중심 방향을 향하여 일 면에 대하여 볼록한 형상으로 형성될 수 있다. 보다 상세하게는, 컨벡스 렌즈(600)는 평판 형태의 폴리메틸 메타크릴레이트, 폴리술폰 기타 비교적 경질의 생물학적 불활성 재료의 중앙 일부를 반타원 형상으로 가공하여 형성될 수 있다. 또한, 컨벡스 렌즈(600)는 평판 형태의 실리콘 수지, 하이드로겔 기타 굴곡성을 가지면서 반강성인 비교적 연질의 생물학적 불활성 재료의 중앙 일부를 반타원 형상으로 가공하여 형성될 수 있다.
결과적으로, 컨벡스 렌즈(300, 400, 500, 600)는 단계 S210을 통해 단면의 관점에서, 평판 원둘레의 중심 방향을 향하여 볼록한 아크 형상(도 2), 평판 원둘레의 중심 방향을 향하여 볼록하고 중앙에서 가장 높으며 상호 대칭적인 계단 형상(도 3), 평판 원둘레의 중심 방향을 향하여 상호 대칭적으로 볼록한 형상(도 4) 및 평판 원둘레의 중심 방향을 향하여 일 면에 대하여 볼록한 형상(도 5)으로 형성될 수 있다. 이하에서, 설명의 편의를 위해 평판 원둘레의 중심 방향을 향하여 볼록한 아크 형상으로 형성된 컨벡스 렌즈(300)을 중심으로 설명하기로 한다.
도 7은 도 1에서의 관통공 생성에 대한 실시예를 나타낸 도면이다.
단계 S220에서, 관통공(350)은 컨벡스 렌즈(300)의 볼록한 중앙부(310) 일면에 생성될 수 있다. 관통공(350)은 컨벡스 렌즈(300) 두께의 전체 또는 일부를 관통하여 생성된 공극에 해당한다. 관통공(350)은 물리적, 화학적 및 광학적 방법 등 다양한 방법을 통해 생성될 수 있고 컨벡스 렌즈(300) 일부를 제거함으로써 조절성 광 정렬체를 주입할 수 있는 공간을 제공할 수 있다.
일 실시예에서, 관통공(350)은 드릴링과 같이 물리적 방법을 통해 컨벡스 렌즈(300) 상에 생성될 수 있다. 드릴링(Drilling)은 회전축을 중심으로 회전하는 절삭공구를 상하로 이동시켜 공작물에 관통공(350)을 생성하는 절삭가공 방법으로, 컨벡스 렌즈 상의 중앙부 일면에 10 μm ~ 30 μm의 직경을 가진 관통공(350)을 생성하여 조절성 광 정렬체를 주입할 수 있는 공간을 제공할 수 있다.
다른 일 실시예에서, 관통공(350)은 레이저 가공과 같이 광학적 방법을 통해 컨벡스 렌즈(300) 상에 생성될 수 있다. 레이저 가공(Laser Beam Machining)은 초단파 레이저의 열 에너지를 이용하여 공작물을 국부적으로 가열하는 미세가공 방법으로, 컨벡스 렌즈(300) 상의 중앙부(310) 일면에 대략 30 μm의 직경을 가진 관통공(350)을 생성하여 조절성 광 정렬체를 주입할 수 있는 공간을 제공할 수 있다.
이외에도, 해당 기술 분야의 숙련된 통상의 기술자는 방전가공, 전자 빔 가공, 숫돌 입자 가공 및 프레스 가공 등 종래의 다양한 미세 관통공 가공방법들 가운데 적합한 방법을 채택하여 관통공(350)을 생성할 수 있다.
일 실시예에서, 관통공(350)은 단면의 관점에서, 보다 구체적으로 횡단면의 관점에서, 다각형 또는 원형이 되도록 형성될 수 있다. 따라서, 관통공(350)은 다각기둥 또는 원기둥 형상으로 형성될 수 있다. 또한, 복수의 관통공들(370)은 컨벡스 렌즈(300)의 볼록한 중앙부(310) 외곽을 일주하도록 고리형상으로 배치될 수 있고, 중앙부(310)의 중심점을 공유하는 동심원으로 된 복수의 고리형상들로 배치될 수 있다.
일 실시예에서, 복수의 관통공들(370)을 서로 다른 크기로 형성될 수 있다. 예를 들어, 관통공(350)의 크기는 관통공(350)의 중심축과 중앙부(310)의 중심점 사이의 거리에 비례하여 생성될 수 있다. 또한, 복수의 관통공들(370)은 서로 다른 각도로 형성될 수 있다. 예를 들어, 관통공(350)은 컨벡스 렌즈(300)의 볼록한 중앙부(310)와 소정의 각을 이루도록 형성될 수 있다. 여기에서, 소정의 각은 관통공(350)의 중심축을 연장시킨 가상의 연장선과 중앙부(310)의 중심점을 관통하는 가상의 중심선이 형성하는 각에 해당한다. 소정의 각은 관통공(350)의 중심축과 중앙부(310)의 중심점 사이의 거리에 비례하여 생성될 수 있다.
일 실시예에서, 복수의 관통공들(370)은 중심축을 각각 연장시킨 가상의 연장선들을 제1 점에 수렴하도록 형성될 수 있다. 따라서, 안구내 삽입 렌즈(150)는 사물로부터 전면으로 입사하는 빛을 제1 점에 수렴하여 망막에 맺힌 상을 명확하게 할 수 있다. 다른 일 실시예에서, 복수의 관통공들(370)은 중심축을 각각 연장시킨 가상의 연장선들을 제1 점 및 제2 점에 수렴하도록 형성될 수 있다. 따라서, 안구내 삽입 렌즈(150)는 먼 곳에 위치한 사물 및 가까운 곳에 위치한 사물 모두로부터 전면으로 입사하는 빛을 제1 점 및 제2 점에 수렴하여 망막에 맺힌 상을 명확하게 할 수 있다.
도 8은 도 1에서의 조절성 광 정렬체 충진에 대한 실시예를 나타낸 도면이다.
도 8에서, 조절성 광 정렬체(390)는 컨벡스 렌즈(300)와 다른 물질로 구성된 충진 재료에 해당한다. 보다 상세하게는, 조절성 광 정렬체(390)는 비교적 경질의 폴리메틸 메타크릴레이트, 폴리술폰 기타 생체 적합성 및 기계 가공성이 우수한 재료 또는 비교적 연질의 아크릴 수지, 실리콘 수지 및 하이드로겔 기타 생체 적합성 및 기계 가공성이 우수한 재료들 중에서 컨벡스 렌즈(300)와 다른 재료로 구성될 수 있고 또한, 컨벡스 렌즈(300)와 다른 경도 특성을 갖는 재료로 구성되어 압출, 사출, 중공 및 진공 등 다양한 방법을 통해 컨벡스 렌즈(300)에 형성된 관통공(350)에 주입될 수 있다.
또한, 조절성 광 정렬체(390)는 공기, 질소(N2) 및 헬륨(He) 등의 기체 또는 진공 상태를 포함할 수 있다. 따라서, 조절성 광 정렬체(390)는 컨벡스 렌즈(300)와 다른 굴절률을 가지므로 컨벡스 렌즈(300)의 전면으로 입사하는 빛을 선택적으로 후면으로 투과시킬 수 있다. 보다 상세하게는, 조절성 광 정렬체(390)는 굴절률에 따라 입사되는 빛의 반사 또는 투과를 결정하고 임계각 이상으로 입사되는 빛을 차단하여 안구내 삽입 렌즈(150)를 투과해 망막에 맺힌 상을 선명하게 할 수 있다.
일 실시예에서, 조절성 광 정렬체(390)는 분말화되어 컨벡스 렌즈(300)를 코팅하고 냉간 등방압 가압법(CIP) 등 가압 방법에 의해 컨벡스 렌즈(300)에 형성된 관통공(350)에 충진될 수 있다. 보다 상세하게는, 분말화된 조절성 광 정렬체(390)는 컨벡스 렌즈(300)에 형성된 관통공(350)에 빈틈없이 코팅되고 양방향에서 가해지는 등압에 의해 관통공(350)에 충진된 형태로 가공될 수 있다.
다른 일 실시예에서, 조절성 광 정렬체(390)는 점성유체화되어 컨벡스 렌즈(300)를 코팅하고 음압 방법에 의해 컨벡스 렌즈(300)에 형성된 관통공(350)에 충진될 수 있다. 보다 상세하게는, 점성유체화된 조절성 광 정렬체(390)는 암모니아 기체 등 액체에 대한 용해도가 큰 기체에 충분히 노출시킨 컨벡스 렌즈(300)를 코팅하여 순간적으로 발생하는 음압효과에 의해 관통공(350)에 충진될 수 있다.
또 다른 일 실시예에서, 조절성 광 정렬체(390)는 전해질화되어 분자 자기조립(Molecular Self-assembly) 방법에 의해 컨벡스 렌즈(300)에 형성된 관통공(350)에 충진될 수 있다. 보다 상세하게는, 조절성 광 정렬체(390)는 양극 및 음극의 상반된 대전 특성을 가지는 고분자 전해질로 구현되어 수용액 환경 하에서, 정전기적 상호인력에 의해 컨벡스 렌즈(300)에 형성된 관통공(350)에 충진될 수 있다.
이외에도, 해당 기술 분야의 숙련된 통상의 기술자는 종래의 다양한 미세 관통공 충진방법들 가운데 적합한 방법을 채택하여 컨벡스 렌즈(300)를 충진할 수 있다.
도 9는 도 1에서의 잔여 조절성 광 정렬체 제거에 대한 실시예를 나타낸 도면이다.
폴리싱(Polishing)은 산화철, 산화크로뮴, 산화알루미늄, 탄화규소 및 산화망가니즈 등의 연마재를 이용하여 공작물의 표면 조도를 조정하는 가공 방법에 해당한다. 반드시 이에 한정되지는 않고, 폴리싱은 공작물의 화학적 및 전기적 특성을 이용하여 표면 조도를 조정하는 가공 방법에 해당할 수 있다.
단계 S240에서, 컨벡스 렌즈(300)는 폴리싱을 통해 관통공(350)에 충진된 조절성 광 정렬체(390)를 제외한 컨벡스 렌즈(300) 상의 잔여 조절성 광 정렬체가 제거되고, 표면 조도가 매끄럽게 조정된다. 컨벡스 렌즈(300)는 폴리싱을 통해 단계 S210에서와 같은 형태로 복원될 수 있다.
도 10은 도 1에서의 안구내 삽입 렌즈 조형에 대한 실시예를 나타낸 도면이다.
단계 S250에서, 잔여 조절성 광 정렬체가 제거된 컨벡스 렌즈(300)는 몰딩 및 코팅 처리되어 안구내 삽입 렌즈(150)로 조형된다. 여기에서, 안구내 삽입 렌즈(150)는 안구내 조절성 렌즈 제조방법에 의한 최종 결과물로서 환자의 혼탁해진 수정체를 대체하여 안구내에 이식되는 인공수정체에 해당한다. 컨벡스 렌즈(300)는 동일한 소재의 재료로 몰딩 및 코팅 처리되어 안구내 삽입 렌즈(150)로 조형될 수 있다. 몰딩 처리는 안구내 삽입 렌즈(150)의 후면을 환자 눈의 황반부에 정렬할 수 있는 형태로 안구내 삽입 렌즈(150)를 조형할 수 있다. 또한, 코팅 처리는 조절성 광 정렬체(390)를 안구내 삽입 렌즈(150)의 내부에 위치한 형태로 안구내 삽입 렌즈(150)를 조형할 수 있다.
일 실시예에서, 안구내 삽입 렌즈는 햅틱(170)을 포함할 수 있다. 햅틱(170)은 환자 눈의 이식 위치에 따라 C-형상, J-형상 및 U-형상 등 다양한 형태로 조형되어 안구내 삽입 렌즈(150)의 이동, 회전 및 이탈을 방지할 수 있다. 보다 상세하게는, 햅틱(170)은 수정체 낭내(Intracapsular) 또는 설커스(Sulcus) 등 환자 눈의 내측 면에 지지되어 안구내 삽입 렌즈(150)의 후면을 환자 눈의 황반부에 정렬되도록 고정할 수 있다.
결과적으로, 안구내 조절성 렌즈 제조방법은 안구내 조절성 렌즈 제조방법은 컨벡스 렌즈를 단면의 관점에서 아크 형상으로 형성하는 단계(단계 S210), 컨벡스 렌즈의 둘레를 따라 관통공을 생성하는 단계(단계 S220), 컨벡스 렌즈를 조절성 광 정렬체로 코팅하여 충진하는 단계(단계 S230), 컨벡스 렌즈 상에 남아있는 조절성 광 정렬체를 폴리싱하여 제거하는 단계(단계 S240) 컨벡스 렌즈를 몰딩 및 코팅 처리하여 안구내 삽입 렌즈로 조형하는 단계(단계 S250)를 순차적으로 수행함으로써 안구내에 이식되어 입사광을 정렬할 수 있는 안구내 조절성 렌즈를 제조하는 방법을 제공할 수 있다.
상기에서는 본 출원의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 통상의 기술자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (14)

  1. (a) 컨벡스 렌즈의 둘레를 따라 관통공을 생성하는 단계; 및
    (b) 상기 컨벡스 렌즈를 조절성 광 정렬체로 코팅하여 상기 관통공을 충진하는 단계를 포함하는 안구내 조절성 렌즈 제조방법.
  2. 제1항에 있어서, 상기 (a) 단계는
    물리적 천공 또는 레이저 천공을 통해 상기 관통공을 생성하는 단계를 포함하는 안구내 조절성 렌즈 제조방법.
  3. 제1항에 있어서, 상기 (a) 단계는
    상기 관통공의 관통 방향을 제어하여 단일초점 또는 다초점을 형성하는 단계를 포함하는 안구내 조절성 렌즈 제조방법.
  4. 제1항에 있어서, 상기 (a) 단계는
    상기 컨벡스 렌즈를 단면의 관점에서 평판 원둘레의 중심 방향을 향하여 볼록한 구면 또는 비구면의 아크 형상으로 형성하는 단계를 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  5. 제4항에 있어서, 상기 (a) 단계는
    상기 아크 형상을 일정한 두께를 가지도록 형성하는 단계를 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  6. 제4항에 있어서, 상기 (a) 단계는
    상기 아크 형상을 중앙에서 가장 높고 상호 대칭적인 계단 형상으로 형성하는 단계를 더 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  7. 제1항에 있어서, 상기 (a) 단계는
    상기 컨벡스 렌즈를 단면의 관점에서 평판 원둘레의 중심 방향을 향하여 상호 대칭적으로 볼록한 형상으로 형성하는 단계를 더 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  8. 제1항에 있어서, 상기 (a) 단계는
    상기 컨벡스 렌즈를 단면의 관점에서 평판 원둘레의 중심 방향을 향하여 일 면에 대하여 볼록한 형상으로 형성하는 단계를 더 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  9. 제1항에 있어서, 상기 (b) 단계는
    상기 조절성 광 정렬체를 상기 컨벡스 렌즈와 다른 물질로 형성하는 단계를 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  10. 제1항에 있어서, 상기 (b) 단계는
    상기 코팅된 컨벡스 렌즈를 일정한 압력의 가압 또는 음압(Negative Pressure)을 통해 상기 관통공에 상기 조절성 광 정렬체를 주입하는 단계를 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  11. 제1항에 있어서,
    (c) 폴리싱 가공을 통해 상기 컨벡스 렌즈 상에 있는 조절성 광 정렬체를 제거하는 단계를 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  12. 제11항에 있어서, 상기 (C) 단계는
    상기 컨벡스 렌즈 상에 있는 조절성 광 정렬체를 폴리싱하여 상기 관통공에 충진된 조절성 광 정렬체를 제외한 나머지를 제거하는 단계를 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  13. 제1항에 있어서,
    (d) 상기 폴리싱 가공된 컨벡스 렌즈를 몰딩 처리 또는 코팅 처리를 수행하여 안구내 삽입 렌즈로 조형하는 단계를 더 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
  14. 제13항에 있어서, 상기 (d) 단계는
    상기 컨벡스 렌즈와 동일한 소재로 상기 몰딩 처리 또는 코팅 처리를 수행하는 단계를 더 포함하는 것을 특징으로 하는 안구내 조절성 렌즈 제조방법.
PCT/KR2018/013779 2018-07-11 2018-11-13 안구내 조절성 렌즈 제조방법 WO2020013393A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180080347A KR102117329B1 (ko) 2018-07-11 2018-07-11 안구내 조절성 렌즈 제조방법
KR10-2018-0080347 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020013393A1 true WO2020013393A1 (ko) 2020-01-16

Family

ID=69142721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013779 WO2020013393A1 (ko) 2018-07-11 2018-11-13 안구내 조절성 렌즈 제조방법

Country Status (2)

Country Link
KR (1) KR102117329B1 (ko)
WO (1) WO2020013393A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102636556B1 (ko) * 2022-03-28 2024-02-15 (주)딥포커스 조절성 안내 렌즈의 제조장치 및 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068212B2 (ja) * 1989-12-27 2000-07-24 ネッスル ソシエテ アノニム 多焦点回折型眼球用レンズ
US20080269887A1 (en) * 2005-12-07 2008-10-30 C&C Vision International Limited Hydrolic accommodating intraocular lens
KR20120090041A (ko) * 2009-08-13 2012-08-16 아큐포커스, 인크. 양분 이동 구조체를 갖는 각막 인레이
US20130245754A1 (en) * 2010-11-15 2013-09-19 Elenza Inc. Adaptive intraocular lens
KR101796801B1 (ko) * 2009-08-13 2017-11-10 아큐포커스, 인크. 마스크형 안구 내 임플란트 및 렌즈

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6554425B1 (en) 2000-10-17 2003-04-29 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses for high order aberration correction and processes for production of the lenses
US6595640B1 (en) 2000-11-15 2003-07-22 Johnson & Johnson Vision Care, Inc. Method for designing contact lenses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3068212B2 (ja) * 1989-12-27 2000-07-24 ネッスル ソシエテ アノニム 多焦点回折型眼球用レンズ
US20080269887A1 (en) * 2005-12-07 2008-10-30 C&C Vision International Limited Hydrolic accommodating intraocular lens
KR20120090041A (ko) * 2009-08-13 2012-08-16 아큐포커스, 인크. 양분 이동 구조체를 갖는 각막 인레이
KR101796801B1 (ko) * 2009-08-13 2017-11-10 아큐포커스, 인크. 마스크형 안구 내 임플란트 및 렌즈
US20130245754A1 (en) * 2010-11-15 2013-09-19 Elenza Inc. Adaptive intraocular lens

Also Published As

Publication number Publication date
KR20200006680A (ko) 2020-01-21
KR102117329B1 (ko) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI468153B (zh) 非球面式環紋曲面性人工水晶體
CA2535654C (en) Ophthalmic lens with optimal power profile
EP1161705B1 (en) Vitrectomy lens
CA2701488C (en) Lens surface with combined diffractive, toric, and aspheric components
CN108430389A (zh) 调节性人工晶状体
JP5214707B2 (ja) 厚み差含有コンタクトレンズ及びその製造方法
EP1712947A2 (en) Multifocal contact lenses
CA2530033A1 (en) Intraocular lens system
RO117130B1 (ro) Lentilă inelară, circulară, multifocală, pentru astigmatism
KR20030023772A (ko) 난시 및 노안 교정에 유용한 안 렌즈
KR20050094864A (ko) 하이브리드 다초점 콘택트 렌즈
GB2071352A (en) Extraocular contact lens construction
JP2006517305A (ja) オプチカルゾーンブレンドデザインを有する眼科用レンズ
EP0243365A1 (en) Intraocular lens
GB2105866A (en) Intraocular and extraocular lens construction and making by selective erosion
WO2020013393A1 (ko) 안구내 조절성 렌즈 제조방법
CA2292354C (en) Toric contact lens with axis offset compensation and method and apparatus for manufacturing same
JP2002536701A (ja) コンタクトレンズおよびその製造方法
US20040135968A1 (en) Contact lens having an optimized optical zone
JPH0926502A (ja) 相隣接する環状セグメント間の角度が最小の同心円レンズ
WO2024089402A1 (en) Ophthalmic lenses including asymmetric gradient index optical elements
JP2799130B2 (ja) 眼用レンズの切削加工方法とそれに用いられる加工用治具
WO2023118813A1 (en) Contact lenses and methods relating thereto
CN1160853A (zh) 复合多焦点复曲面透镜设计
KR20110042242A (ko) 원환체 콘택트 렌즈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925857

Country of ref document: EP

Kind code of ref document: A1