WO2020013264A1 - Flight vehicle - Google Patents

Flight vehicle Download PDF

Info

Publication number
WO2020013264A1
WO2020013264A1 PCT/JP2019/027453 JP2019027453W WO2020013264A1 WO 2020013264 A1 WO2020013264 A1 WO 2020013264A1 JP 2019027453 W JP2019027453 W JP 2019027453W WO 2020013264 A1 WO2020013264 A1 WO 2020013264A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
drone
flying object
support arm
object according
Prior art date
Application number
PCT/JP2019/027453
Other languages
French (fr)
Japanese (ja)
Inventor
千大 和氣
洋 柳下
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to JP2020530250A priority Critical patent/JP6811976B2/en
Publication of WO2020013264A1 publication Critical patent/WO2020013264A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/299Rotor guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/70Constructional aspects of the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/24Coaxial rotors

Definitions

  • the present invention relates to an air vehicle represented by a drone.
  • drones are a flying object.
  • Agricultural drones that spray chemicals such as pesticides and liquid fertilizer on fields are one of the applied fields.
  • “drone” refers to a flying object.
  • An industrial drone is a large drone having a relatively large-diameter propeller capable of generating a thrust capable of withstanding the load of the load, for loading a load such as a drug, as seen in, for example, an agricultural drone. Is used.
  • a drone having a large-diameter propeller has a large body vibration caused by the rotation of the propeller.
  • An aircraft such as an agricultural drone is equipped with various sensors for performing various controls such as automatic driving control, attitude control, speed control, and flying height control for flying according to a predetermined route.
  • a GPS sensor for the drone itself to detect its own position.
  • a GPS sensor including, for example, an RTK antenna and an RTK-GPS (Real Time Kinematic Global Positioning System) module is often configured.
  • RTK-GPS Radio waves in a short wavelength band are used to increase the resolution. Therefore, when the RTK antenna vibrates together with the airframe, the position detection accuracy is significantly reduced.
  • a 6-axis gyro sensor is used for controlling the attitude and flight direction of the drone.
  • the six-axis gyro sensor is used to measure the acceleration of the drone in three orthogonal directions, and to calculate the velocity by integrating the acceleration. Further, the six-axis gyro sensor is also used for measuring an angular velocity around the above three axes. When the six-axis gyro sensor vibrates together with the airframe, the accuracy of acceleration measurement decreases, and the accuracy of attitude control and flight direction control decreases.
  • Industrial drones are designed with a fuselage structure that makes it difficult for the aircraft to vibrate.However, as the number of operations increases, rattling occurs in the aircraft, and the accuracy of various controls decreases with this. .
  • Patent Document 1 discloses an invention in which an unmanned aerial vehicle detects an abnormality and land the aerial vehicle.
  • the invention described in Patent Document 1 detects rotation speeds of a plurality of motors driving a plurality of rotors and currents flowing through the respective motors, and based on the relationship between the rotation speeds and the currents, each motor or a motor corresponding thereto is abnormal. It is to determine whether or not.
  • Patent Document 1 detects abnormality of each motor driving a plurality of propellers and abnormality of each propeller, but does not detect vibration of the body of the flying body. Therefore, the invention described in Patent Literature 1 does not consider reduction in detection accuracy of various sensors and reduction in various control accuracy due to vibration of the body.
  • the present invention relates to an air vehicle capable of detecting looseness or rattling of an airframe structural component, performing an evacuation action when detecting loosening or rattling, and previously avoiding a problem caused by a decrease in various control accuracy.
  • the purpose is to obtain.
  • the present invention An airframe, a plurality of propeller drive motors mounted on the airframe and individually driving a plurality of propellers, and the airframe is coupled with a plurality of support arms supporting the plurality of propeller drive motors.
  • a flying object having a frame comprising A relaxation sensor that detects looseness and rattling of structural parts of the body including the frame is attached to the body, When the relaxation sensor outputs an abnormal signal, the most important feature is to perform an evacuation action.
  • the relaxation sensor since the relaxation sensor outputs an abnormal signal when detecting the looseness or rattling of the body structural parts including the frame, it is possible to take appropriate measures based on the output of the abnormal signal, and to detect the relaxation sensor. It is possible to avoid a decrease in various control accuracy due to a decrease in accuracy.
  • FIG. 3 is a plan view of the embodiment. It is a front view of the said example. It is a right view of the said Example.
  • FIG. 4 is a bottom view of the embodiment.
  • FIG. 3 is a plan view showing the embodiment with a propeller removed.
  • FIG. 2 is a front view showing the embodiment with a propeller removed.
  • FIG. 3 is a right side view showing the embodiment with a propeller removed.
  • It is a perspective view which expands and shows the principal part of the said Example. It is a mimetic diagram showing roughly the example in the case of using the flying object concerning the present invention for agriculture.
  • FIG. 3 is a block diagram illustrating an example of a control system of the flying object according to the present invention.
  • a drone refers to an entire flying object having a plurality of rotary wings or flying means regardless of a power system or a steering system.
  • the power system there are a system using electric power and a system using a prime mover such as an internal combustion engine.
  • the control method includes a wireless or wired control method, an autonomous flight type, and a manual control type.
  • the drone includes four upper and lower propellers 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-a. 4b.
  • These propellers are means for flying the drone, and are provided with four sets of two-stage propellers, for a total of eight aircraft, in consideration of the balance of flight stability, aircraft size, and battery consumption.
  • the rotation centers of the four sets of propellers are located at corners of the rectangle in plan view.
  • the propellers 101-2a and 101-4a are on the front side in the traveling direction of the drone.
  • Each of the above-mentioned propellers is a propeller drive motor (hereinafter sometimes simply referred to as “motor”) 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b.
  • motor a propeller drive motor
  • a pair of upper and lower propellers for example, 101-1a and 101-1b, are coaxial with each other for flight stability of the drone, and are in opposite directions by motors 102-1a and 102-1b. Is driven to rotate.
  • the upper and lower propellers of each set are driven to rotate in opposite directions to generate a downward flow, thereby generating a thrust in a direction to raise the drone.
  • Other sets of upper and lower propellers are similarly configured and similarly generate thrust.
  • the illustrated embodiment is an agricultural drone provided with four medicine nozzles 103-1, 103-2, 103-3, 103-4 for spraying medicine downward.
  • agents generally refer to liquids or powders that are sprayed on the field, such as pesticides, herbicides, liquid manures, pesticides, seeds, and water.
  • the drone has a medicine tank 104 for containing the medicine to be sprayed.
  • the medicine tank 104 is provided at a position close to the center of gravity of the drone and lower than the center of gravity from the viewpoint of weight balance.
  • a pump 106 is mounted below the medicine tank 104, and the pump 106 is connected to a medicine hose 105.
  • the drug hose 105 extends linearly at a lower portion on the front side in the traveling direction of the drone and substantially over the entire width of the drone.
  • Four drug nozzles 103-1, 103-2, 103-3, and 103-4 are arranged at regular intervals in the length direction of the drug hose 105.
  • the "fuselage” is a portion on which control parts for controlling the operation of the drone, a battery or a sensor serving as a driving power source, and the like are mounted, and corresponds to a fuselage of a helicopter or an airplane.
  • the entire drone, including its fuselage, frame, propeller, and propeller drive motor, is called the "airframe.”
  • the frame of the drone is composed of a plurality of support arms integrally connected to each other and supporting the plurality of propeller drive motors.
  • the frame composed of a plurality of support arms is composed of a pair of frames that are integrally connected at predetermined intervals in the vertical direction.
  • the plurality of support arms forming the upper frame include one first support arm 10 that supports a propeller drive motor at each end, and two second support arms 11 and 12 that extend from the first support arm 10. Having.
  • the second support arms 11 and 12 extend obliquely symmetrically from the middle of the length direction of the first support arm 10 and extend in a direction in which the distal ends spread out from each other.
  • the second support arms 11 and 12 are connected by a reinforcing beam 13 in the middle of the length direction.
  • the reinforcing beam 13 is parallel to the first supporting arm 10, and is formed in a trapezoidal shape in plan view by the first supporting arm 10, the second supporting arms 11, 12, and the reinforcing beam 13, and is close to a so-called truss structure. It has a structure. Since the frame has a structure close to the truss structure, the mechanical strength can be increased while having a relatively simple configuration.
  • the first support arm 10, the second support arms 11, 12 and the reinforcing beam 13 are connected via an appropriate connection member so as to be located on the same plane.
  • Motors 102-2a and 102-4a are supported at both ends of the first support arm 10, respectively.
  • Propellers 101-2a and 101-4a are respectively attached to the rotation output shafts of the motors 102-2a and 102-4a, and the propellers are individually driven to rotate by the motors.
  • Motors 102-1a and 102-3a different from the above-mentioned motors are supported at the respective distal ends of the second support arms 11 and 12.
  • Propellers 101-1a and 101-3a are attached to the rotation output shafts of the motors 102-1a and 103-3a, respectively, and the propellers are individually rotated by the motors.
  • the lower frame has almost the same structure as the upper frame.
  • the lower frame has one first support arm 20 that supports a propeller drive motor at each end, and two second support arms 21 and 22 extending from the first support arm 20.
  • the second support arms 21 and 22 extend obliquely symmetrically from the middle in the length direction of the first support arm 20 and extend in a direction in which the distal ends are widened.
  • the first support arm 20 and the second support arms 21 and 22 are coupled via an appropriate coupling member so as to be located on the same plane.
  • the upper and lower frames are connected under an appropriate number of columns so as to be parallel to each other.
  • the upper and lower pairs of the second support arms 11 and 21 and another pair of the second support arms 12 and 22 are connected by pillars 30 at an intermediate portion in the longitudinal direction.
  • the upper and lower pair of first support arms 10 and 20 are respectively provided with columns 31 near the joint with the upper second support arms 11 and 21 and near the joint with the lower second support arms 12 and 22. , 31.
  • Each support arm and each column are connected by interposing an appropriate connecting member.
  • the pair of pillars 30, 30 are connected to each other by reinforcing beams 23 at positions lower in the vertical direction.
  • the reinforcing beam 23 is a reinforcing beam for the lower frame composed of the first support arm 20 and the second support arms 21 and 22, and also functions as a reinforcing beam for the entire upper and lower frames.
  • the reinforcing beam 13 is parallel to the first supporting arm 10, and is formed in a trapezoidal shape in plan view by the first supporting arm 10, the second supporting arms 11, 12, and the reinforcing beam 13, and is close to a so-called truss structure. It has a structure.
  • the first support arms 10, 20, the second support arms 11, 12, 21, 22, the reinforcing beams 13, 23, and the columns 30, 31, which connect the upper and lower frames, which constitute the upper and lower frames, are pipe-shaped members. is there.
  • the above-mentioned members constituting the frame, at least the first support arm, the second support arm, and the material of the reinforcing beam are made of a heat conductive material, for example, an aluminum alloy or a carbon fiber composite material.
  • the carbon fiber composite include carbon fiber reinforced plastic (CFRP) and carbon fiber reinforced carbon composite. Since the material of the members constituting the frame is made of an aluminum alloy or a carbon fiber composite material and is a pipe-shaped member, the weight of the frame can be reduced while having the necessary strength for the frame. Further, as will be described in detail later, the heat radiation effect can be enhanced.
  • the propellers 101-1a and 101-1b supported by the distal ends of the pair of upper and lower second support arms 11 and 21 are surrounded by the propeller guard 41 and rotate in the propeller guard 41.
  • the propeller guard 41 includes a pair of upper and lower annular frames, a columnar interposed member that connects these frames in parallel at a fixed interval, a hub at the center of the upper and lower frames, and upper and lower frames. And a plurality of spokes for coupling with the hub.
  • the upper and lower hubs are coupled to the distal ends of the second support arms 11 and 21 with their centers aligned with the rotation centers of the propellers 101-1a and 101-1b.
  • the propellers 101-2a and 101-2b supported at the right ends when viewed from the front of the pair of upper and lower first support arms 10 and 20 are surrounded by the propeller guard 42 and rotate in the propeller guard 42.
  • the propellers 101-3 a and 101-3 b supported by the distal ends of the pair of upper and lower second support arms 12 and 22 are surrounded by the propeller guard 43 and rotate in the propeller guard 43.
  • each of the propeller guards 42, 43, and 44 has the same configuration as the propeller guard 41. That is, each of the propeller guards 42, 43, and 44 includes a pair of upper and lower annular frames, a plurality of columnar intervening members that connect these frames in parallel, a hub at the center of the upper and lower frames, And a plurality of spokes for connecting the frame and the hub.
  • the upper and lower hubs of the propeller guard 42 are coupled to the right end when viewed from the front of the first support arms 10 and 20.
  • the upper and lower hubs of the propeller guard 43 are connected to the distal ends of the second support arms 12 and 22.
  • the upper and lower hubs of the propeller guard 44 are connected to the left end when viewed from the front of the first support arms 10 and 20.
  • the distance between the propellers 101-1a and 101-1b located on the right rear of the drone and the propellers 101-2a and 101-2b located on the right front is small, and the annular frame forming these propeller guards 41 and 42 is In contact.
  • the distance between the propellers 101-3a and 101-3b located on the left rear of the drone and the propellers 101-4a and 101-4b located on the left front is also small, and the annular frame forming these propeller guards 43 and 44 is In contact.
  • the frame, hub, and spokes constituting the propeller guards 41, 42, 43, 44 are made of a heat conductive material. It is desirable that at least the spokes arranged in a lattice on the upper and lower surfaces of the propeller guards 41, 42, 43, 44 are made of a heat conductive material.
  • the distance between the propellers located on the left and right is wider than the distance between the propellers located before and after the drone. That is, the distance between the propellers 101-4a and 101-4b and the propellers 101-2a and 101-2b and the distance between the propellers 101-3a and 101-3b and the propellers 101-1a and 101-1b are located on the left and right sides of the drone. It is getting wider.
  • These propeller guards 44 and 42 and 43, 41 are spaced apart from each other.
  • the lines connecting the rotation centers of the four sets of propellers 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, and 101-4a, 101-4b are horizontally long. It is a rectangle.
  • Body 50 is disposed.
  • the body 50 has a flat dish-shaped bottom plate 51 and a cover 52 placed on the bottom plate 51.
  • the bottom plate 51 and the cover 52 are made of a heat conductor such as an aluminum alloy or a carbon fiber composite material.
  • the internal space surrounded by the bottom plate 51 and the cover 52 serves as a component mounting part for incorporating built-in components such as a power supply battery, a motor drive circuit, and a control circuit.
  • the body 50 is long in the front-rear direction, and has a semicircular planar shape at the front end in the traveling direction.
  • the body 50 is disposed in a space formed between the left and right propellers and the left and right propeller guards 41, 42 and 43, 44 and between the upper and lower reinforcing beams 13, 23.
  • the bottom plate 51 of the body 50 is coupled to the lower reinforcing beam 23 via a coupling member at the bottom surface.
  • the coupling member is a plate-shaped member made of a material having good heat conductivity, and holds the reinforcing beam 23 over substantially half a circumference, and is fastened in a state where both side edges are in surface contact with the bottom surface of the bottom plate 51.
  • the cover 52 constituting the body 50 is connected to the upper reinforcing beam 13 via a connecting member 59.
  • the coupling member 59 is also a plate-shaped member made of a material having good heat conductivity, and is wound around the reinforcement beam 13 over substantially half a circumference, and is fastened in a state where both side edges are in surface contact with the upper surface of the cover 52.
  • FIG. 9 shows an outline of a component arrangement in a component mounting portion in the body 50.
  • a space 56 about half of the rear side (obliquely lower right side in FIG. 9) in the body 50 is close to the upper and lower reinforcing beams 13 and 23 and has a high cooling effect.
  • This space 56 is vertically divided into layers, and a battery mounting space 153 is provided in an upper layer portion.
  • the battery mounting space 153 includes a battery receiving member 152 and two battery fasteners 154 so that two secondary batteries, that is, rechargeable batteries 55 can be arranged in parallel.
  • two batteries 55 are loaded in the battery mounting space 153.
  • One battery is the main battery and is used during normal operation, and the other battery is a spare battery. If the storage capacity of the main battery decreases while the main battery is in use, or if the main battery malfunctions, continue the flight to switch to the spare battery and perform the evacuation behavior described later. Let me take. In this way, by attaching the two batteries 55, the power supply system is provided with so-called redundancy, and appropriate processing is performed when a power supply trouble occurs, thereby avoiding a fatal trouble. can do.
  • FIG. 9 shows a state in which only one battery 55 is loaded.
  • the battery 55 is also one of the heat-generating components, and is designed so that the battery 55 is loaded into the space 56 having a high cooling effect and the temperature of the battery 55 is suppressed from rising.
  • the battery 55 itself is a component having high mechanical strength and rigidity, and the strength and rigidity of the body 50 can be increased by tightly mounting the battery 55 with the battery fastener 154.
  • the battery 55, the battery mounting space 153, the battery receiving member 152, and the battery fastener 154 also contribute as members for securing the strength of the frame.
  • a lid that can be opened and closed so that the battery 55 can be attached to and detached from the battery mounting space 153.
  • the reinforcing beam 13 of the upper frame is provided at a position shifted forward of the reinforcing beam 23 of the lower frame in order to allow the lid to be opened and closed.
  • a mounting board for a heat-generating component is disposed in a layer below the battery mounting space 153 in surface contact with the bottom plate 51.
  • a rotational speed control component (ESC: Electronic Speed Control) of the motor and a step-down distribution machine are mounted on the mounting board.
  • the step-down distribution machine steps down the DC power supplied from the battery 55 to a voltage suitable for the drive voltage of the motor and the drive voltage of the control circuit and distributes the voltage.
  • the ESC and the step-down electric generator generate high heat.
  • circuit boards 58 are arranged on the bottom plate 51 of the body 50 in front of the space 56.
  • a control circuit such as a flight controller, a circuit for processing signals from various sensors, a communication circuit, and the like are mounted on these circuit boards 58.
  • a six-axis gyro sensor which is a means for measuring the acceleration of the drone and calculating the speed by integrating the acceleration, is arranged on the back surface, that is, the lower surface side of the battery receiving member 152 constituting the battery mounting space 153.
  • the six-axis gyro sensor has an acceleration sensor that detects accelerations in three axes directions orthogonal to each other, and an angular velocity sensor that detects angular velocities of rotation around the three axes, for example, pitching, rolling, and yawing. ing.
  • the position of the center of gravity of the drone when two batteries 55 are loaded in the battery mounting space 153 is in a planar direction, that is, between the two batteries 55 when the drone is viewed from above, and the heavy battery 55 is loaded. By doing so, it is at a relatively lower position in the vertical direction.
  • the rotation center P of the attitude control of the drone by the rotation control of the four sets of motors is, as viewed from the plane, the intersection of the lines connecting the centers of the diagonal motors as shown in FIG. , As shown in FIG. 3, at the center of the distance between the upper and lower motors.
  • the horizontal line of the lift generated by the rotation of the four sets of motors is above the position of the center of gravity of the drone.
  • the center of gravity of the drone is located below the rotation center P.
  • the stability of the posture of the drone and the energy saving required for the posture control can be achieved.
  • a medicine tank 104 is arranged below the body 50 with a space 70 between the medicine tank 104 and the lower surface of the body 50.
  • the medicine tank 104 stores the medicine to be sprayed. Since the medicine is sprayed while flying over the field, the medicine tank 104 is a variable weight material.
  • the drug tank 104 which is a variable weight object, is disposed further below the center of gravity of the drone, and is designed to reduce the influence of weight fluctuation on the attitude control of the drone.
  • GPS sensors 60, 60 are attached to the two second support arms 11, 12 constituting the upper frame, facing upward.
  • the GPS sensors 60, 60 are composed of, for example, an RTK antenna and an RTK-GPS (Real Time Kinematic-Global Positioning System) module.
  • the GPS sensors 60, 60 measure the absolute position of the drone, determine whether the measured position is, for example, a position according to a program, and rotate each of the drive motors to a correct position if the position is shifted. Control.
  • the GPS sensors 60, 60 vibrate, the accuracy of the drone's absolute position measurement decreases, and the accuracy of the position control also decreases. Therefore, in the illustrated embodiment, the GPS sensors 60, 60 are located at the positions farthest from the respective drive motors so that the second support arms 11 are not affected by the vibration of the respective drive motors serving as vibration sources. , 12 are installed substantially at the center in the length direction.
  • the installation positions of the GPS sensors 60 and 60 are located between the front and rear propeller guards 41 and 42 and between the propeller guards 43 and 44, respectively, when viewed from the plane.
  • the second support arms 11, 12 are located near the columns 30, 30, which connect the upper and lower frames of the GPS sensors 60, 60, to positions where the second support arms 11, 12 are less likely to vibrate. Therefore, the GPS sensors 60, 60 are hardly affected by the vibrations of the drive motors, and can measure the position of the drone with high accuracy.
  • the body 50 is mounted on the body 50.
  • the bottom plate 51 and the cover 52 constituting the body 50 are made of a heat conductive material, and the heat generated from the heat-generating components is transmitted to the body 50 and dissipated. Therefore, the body 50 is a main part for dissipating the heat generated by the heat-generating components.
  • the bottom plate 51 of the body 50 is connected to the reinforcing beams 23 of the lower frame made of a heat conductive material, and the reinforcing beams 23 are further connected to the second support arms 21 and 22.
  • the cover 52 of the body 50 is also connected to the reinforcing beam 13 of the upper frame made of a heat conductive material, and the reinforcing beam 13 is connected to the second support arms 11 and 12.
  • the body 50 is surrounded by a pair of front and rear propellers located on the left and right sides.
  • a downward flow of air is generated along the left and right sides of the body 50.
  • the downward flow of the air flows at a relatively high speed in a substantially triangular space viewed from the plane direction defined by the left and right side surfaces of the body 50 and the front and rear propeller guards.
  • four propellers each have a two-stage configuration with upper and lower portions, and it is known that the downflow is more concentrated and a stronger downflow occurs than the one-stage configuration of the propeller.
  • both sides of the body 50 and a part of the frame are located in the flow path of the downward flow generated by the two-stage propeller intensively and at a high speed. More specifically, a downward flow flows along both side surfaces of the body 50, and both ends of the first support arms 10 and 20, substantially the entirety of the second support arms 11, 12, 21 and 22, and the reinforcing beams 13 and 23. Are traversing the downflow channel. Therefore, the heat transmitted to the body 50 and the frame from the body 50 is effectively dissipated, and the temperature rise of the built-in components is suppressed.
  • FIG. 10 schematically shows an overall conceptual diagram of a system using an embodiment of the drone 100 according to the present invention for spraying medicine.
  • the pilot 401 can transmit a command to the drone 100 by an operation of the user 402, and can display information received from the drone 100, for example, information such as a position, a medicine amount, a battery remaining amount, and a camera image.
  • the pilot 401 may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the drone 100 is controlled so as to perform an autonomous flight, but it is preferable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device having a function dedicated to emergency stop may be used. It is desirable that the emergency operating device is a dedicated device equipped with a large emergency stop button and the like so that an emergency operation can be quickly performed. It is desirable that the pilot 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
  • the field 403 is a field or a field to which the drone 100 is to apply the medicine.
  • the terrain of the field 403 is complicated, and there is a case where a topographic map cannot be obtained in advance, or a case where the topographic map and the situation of the site are different.
  • the field 403 is adjacent to houses, hospitals, schools, other crop fields, roads, railways, and the like. Further, an obstacle such as a building or an electric wire may exist in the field 403.
  • the base station 404 is a device that provides a master device function or the like of Wi-Fi communication, and also functions as an RTK-GPS base station, and desirably provides an accurate position of the drone 100.
  • the master device function of Wi-Fi communication and the RTK-GPS base station may be independent devices.
  • the farming cloud 405 is typically a group of computers and related software operated on a cloud service, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
  • the farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route.
  • the farming cloud 405 can provide the stored topographical information of the field 403 to the drone 100, and in addition, accumulates the history of the flight and photographed images of the drone 100 and may perform various analysis processes. .
  • the drone 100 takes off from the departure / departure point 406 outside the field 403 and returns to the departure / departure point 406 after spraying the medicine on the field 403 or when it becomes necessary to replenish or charge the medicine.
  • the flight route (also referred to as the intrusion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input before the user 402 starts takeoff. .
  • FIG. 11 is a block diagram showing a control function of the embodiment of the medicine spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may specifically be an embedded computer including a CPU, a memory, related software, and the like.
  • the flight controller 501 controls the motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below. , 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, and 102-4b to control the rotation speed of the drone 100.
  • ESC Electronic Speed Control
  • the actual rotation speed of each motor is fed back to the flight controller 501 so that it can be monitored whether normal rotation is being performed.
  • An optical sensor or the like may be provided on the propeller so that the rotation speed of the propeller is fed back to the flight controller 501.
  • the software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or the like, or through communication means such as Wi-Fi communication or USB. It is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed.
  • Part of the calculation processing used by the flight controller 501 for control may be executed on the pilot 401, on the farming cloud 405, or by another computer existing in another place.
  • the flight controller 501 is a highly important part that forms the core of the drone, and it is desirable that some or all of its components be duplicated.
  • the battery 55 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably a rechargeable battery.
  • the battery 55 is connected to the flight controller 501 via a fuse or a power supply unit including a circuit breaker or the like. It is desirable that the battery 55 be a smart battery having a function of transmitting the internal state, that is, the amount of stored power, the accumulated use time, and the like to the flight controller 501 in addition to the power supply function.
  • the flight controller 501 communicates with the pilot 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the pilot 401, and receives necessary information from the pilot 401. Can be sent to The communication should be encrypted so as to prevent eavesdropping, impersonation, hijacking of devices, and other illegal acts.
  • the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi.
  • the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate and multiplex the GPS module. Further, in order to cope with a failure of a specific GPS satellite, it is preferable that each redundant GPS module 504 is controlled to use another satellite.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three orthogonal directions orthogonal to each other, a means for calculating the velocity by integrating the acceleration, and a means for detecting the angular velocity of rotation about the three axes. .
  • the geomagnetic sensor 506 is means for measuring the direction of the drone body by measuring geomagnetism.
  • the air pressure sensor 507 is a means for measuring the air pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone aircraft and the surface of the earth using reflection of laser light, and it is preferable to use an infrared (IR) laser.
  • the sonar 509 is a unit that measures the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves.
  • sensors may be selected according to the cost objectives and performance requirements of the drone.
  • a gyro sensor angular velocity sensor
  • a wind sensor for measuring wind power, and the like
  • these sensors are duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and may switch to an alternative sensor when it fails.
  • a plurality of sensors may be used simultaneously, and if the respective measurement results do not match, it may be determined that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is desirably provided at a plurality of locations on the path from the medicine tank 104 to the medicine nozzle 103.
  • the liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount.
  • the multispectral camera 512 is a unit that captures the image of the field 403 and acquires data for image analysis.
  • the obstacle detection camera 513 is a camera for detecting a drone obstacle, and is mounted separately from the multispectral camera 512 because the image characteristics and the lens direction are different from those of the multispectral camera 512.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, particularly its rotor or propeller guard portion, has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 or a cover for internal maintenance is open.
  • the drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is open.
  • a sensor may be provided at the external base station 404, the pilot 401, or another place, and the read information may be transmitted to the drone.
  • a wind sensor may be provided in the base station 404 to transmit information about the wind and the wind direction to the drone 100 via Wi-Fi communication.
  • the flight controller 501 transmits a control signal to the pump 106 to adjust the amount of medicine to be ejected and to stop the ejection of medicine. It is desirable that the current state of the pump 106, for example, the number of revolutions, be fed back to the flight controller 501.
  • the LED 107 is display means for notifying the drone operator of the status of the drone.
  • a display means such as a liquid crystal display may be used instead of or in addition to the LED.
  • the buzzer 518 is an output unit for notifying a drone state, particularly an error state, by an audio signal.
  • the Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, separately from the controller 401.
  • the speaker 520 is an output unit that notifies a drone state, particularly an error state, by using a recorded human voice or a synthesized voice. Depending on the weather conditions, the visual display of the drone 100 during flight may be difficult to see, and in such a case, voice communication of the situation is effective.
  • the warning light 521 is a display means such as a strobe light for notifying a drone state, particularly an error state.
  • a relaxation sensor 530 is provided, and a detection signal of the relaxation sensor 530 is input to the flight controller 501.
  • the relaxation sensor 530 is a sensor that detects looseness or rattling of a structural component of a body mainly composed of a frame having the first support arms 10 and 20 and the second support arms 11, 12, 21 and 22. is there. Further, as described later, the relaxation sensor 530 may be arranged inside the accommodation space of the substrate of the drone body.
  • a microphone can be used.
  • the difference between the sound or noise in the normal state and the abnormal state is mainly a difference in frequency or an abnormal sound generated only in the abnormal state. Therefore, a microphone for detecting the noise of the drone is attached to the drone, and the detection signal converted into electroacoustic by the microphone is processed to detect an abnormality.
  • the output signal of the microphone is filtered for each frequency band, and if an abnormality is found in a specific frequency band, it can be determined that the body is loose or rattling. Alternatively, when an abnormal signal that does not appear in a normal state is detected in comparison with a detection signal in a normal state, it can be determined that the machine body is loosened or rattled.
  • the method of determining looseness and rattling of the body based on the output signal of the microphone is not limited to these methods, and other methods may be used.
  • the relaxation sensor 530 using a microphone also serves as a sensor (hereinafter, also referred to as an “existing sensor” for convenience) used for flight control of the drone, such as an acceleration sensor, a 6-axis gyro sensor 505, and an angular velocity sensor described later. It has a higher sampling frequency as compared with the case where a relaxation sensor is configured by using the above-described method.
  • the sampling frequency of the existing sensor depends on the control cycle of the drone aircraft, and is, for example, about 100 Hz.
  • the frequency band of the vibration that increases due to the aged deterioration of the drone is a high frequency band of 1 kHz to 2 kHz.
  • the vibration in this frequency band is caused, for example, by a gel washer such as a silicon washer or a bush between frames or fixing a substrate becoming loose.
  • the vibration in this frequency band is a vibration that affects the elements on the substrate, and is a vibration that has a high possibility of causing a failure such as breakage of defective soldering.
  • the sensor generally uses a frequency that is sufficiently lower than the Nyquist frequency and about one third of the sampling frequency as a detectable range. Therefore, it is difficult to detect the above-mentioned vibration in the frequency band by the existing sensor.
  • the sampling frequency of the existing sensor is set to be high, the control cycle of the drone body will be changed, which has a great influence on other configurations. Therefore, by separately providing a microphone driven at a higher sampling frequency than the existing sensor, vibration in a high frequency band can be measured independently of the control cycle of the drone body.
  • the sampling frequency of the microphone may be a frequency capable of sufficiently measuring at least a frequency of 1 kHz to 2 kHz, for example, 6 kHz or more, and may be a microphone capable of collecting sound in an audible region.
  • the relaxation sensor 530 may be configured by combining a plurality of sensors that detect vibrations in different frequency bands.
  • the microphone is located inside the drone fuselage, especially inside the accommodation space for the substrate. Further, the microphone is connected to a recording medium different from a recording area in which data of the existing sensor is recorded, and sound collection data by the microphone is stored in the recording medium. According to the configuration in which the microphone is arranged inside the accommodation space of the substrate, the microphone can be prevented from being stained with dust or water, as compared with the configuration in which the microphone is exposed outside the body. In addition, the microphone can be isolated from the sound from the outside of the drone, so that the collection of noise generated outside the drone can be prevented.
  • an acceleration sensor may be used as the relaxation sensor 530.
  • the acceleration sensor may be mounted as a dedicated device for detecting the relaxation of the body, or the six-axis gyro sensor 505 may also be used as the relaxation sensor 530.
  • the six-axis gyro sensor 505 is also used as the relaxation sensor 530, not only the acceleration sensor of the six-axis gyro sensor 505 but also the angular velocity sensor can be used as the relaxation sensor 530.
  • the attachment position of the relaxation sensor 530 is arbitrary, but it is desirable that the attachment position be a position where the looseness and rattling of the body can be effectively detected.
  • the frames having the first and second support arms form a vertical pair, and the upper and lower frames are connected by columns.
  • the upper and lower pairs of frames each have a reinforcing beam to form a trapezoidal three-dimensional space.
  • the relaxation sensor 530 is arranged inside the trapezoidal three-dimensional space. More specifically, a body 50 is arranged in the trapezoidal three-dimensional space, and a relaxation sensor 530 is arranged in the body 50.
  • the 6-axis gyro sensor 505 also serves as the relaxation sensor 530
  • the 6-axis gyro sensor 505 is disposed in the body 50 as described above.
  • a component mounting portion for mounting components including vibration suppressing components such as the battery 55, the battery receiving member 152, and the battery fastener 154 is arranged.
  • the component mounting portion is vertically layered, and the six-axis sensor is arranged in a layer below the layer on which the vibration suppressing component is mounted. Therefore, when the six-axis gyro sensor 505 also functions as the relaxation sensor, the relaxation sensor is disposed in the body 50 and below the mounting portion of the vibration suppression component.
  • the abnormal noise is a sound in a frequency band different from a normal state, or a sound generated suddenly or irregularly.
  • the abnormal sound is detected by the relaxation sensor 530 (see FIG. 11) including the microphone, the acceleration sensor, and the like, and an abnormal signal is output.
  • the flight controller 501 controls the rotation of each of the propeller drive motors 102-1a to 102-4b via the ESC to cause the drone to perform an evacuation action.
  • the evacuation action is any of emergency return, emergency landing, and emergency stop
  • the flight controller 501 causes any of the above-described evacuation actions according to the degree of abnormal noise, that is, the strength of the abnormality detection signal of the relaxation sensor 530.
  • Emergency return is performed if the noise is relatively slight
  • emergency landing is performed if the noise is moderate
  • emergency stop is performed if the noise is strong.
  • the emergency return is, for example, returning to the original position from which the aircraft has taken off and landing.
  • Emergency landing is landing on the spot.
  • Emergency stop means stopping all propeller drive motors and crashing on the spot. It is safer to crash the drone than to lose control.
  • hovering may be performed once, and when the abnormality detection signal from the relaxation sensor 530 disappears during hovering, the hovering may be returned to a normal operation state.
  • an abnormality detection signal is output from the relaxation sensor 530 during hovering, one of emergency return, emergency landing, and emergency stop is performed according to the intensity of the abnormality detection signal.
  • the flight controller 501 stops the pump 106 to stop spraying the medicine. Further, the flight controller 501 may activate the LED 107 and the warning light 521 to visually display the emergency, and may activate the buzzer 518 and the speaker 520 to acoustically display the emergency.
  • the relaxed sensor detects the loosened or rattled and outputs an abnormal signal. Since the drone performs the evacuation action by the output of the abnormal signal, it is possible to avoid in advance the problems caused by the deterioration of various control accuracy due to the looseness and rattling of the body structural parts.
  • the faults include departure from the planned flight path, variations in flight altitude, variations in attitude control and speed control, and in some cases, collisions with obstacles, but according to the present embodiment. Thus, such a problem can be avoided.
  • the agricultural chemical spraying drone has been described as an example of the present embodiment, but the technical idea of the present invention is not limited to this, and can be applied to drones in general.

Abstract

[Problem] To obtain a flight vehicle in which it is possible to detect looseness and play of fuselage structure components, and take evasive action when looseness or play is detected, and to avoid in advance defects occurring due to the reduction of various types of control precision. [Solution] A flight vehicle having a fuselage and a plurality of propeller drive motors 102-1a to 102-4b that are mounted on the fuselage and separately rotationally drive a plurality of propellers, the fuselage having a frame obtained by joining a plurality of support arms that support the plurality of propeller drive motors 102-1a to 102-4b, wherein a loosening sensor 530, which detects looseness or play of structure components of the fuselage including the frame, is attached to the fuselage, and the aerial vehicle takes evasive action when the loosening sensor 530 has outputted an abnormality signal.

Description

飛行体Flying object
 本発明は、一般にドローンと称されているものに代表される飛行体に関する。 (4) The present invention relates to an air vehicle represented by a drone.
 ドローンと呼ばれる複数のプロペラを有する飛行体、特に無人の飛行体の産業分野での応用が進んでいる。圃場への農薬や液肥などの薬剤散布などを行う農業用ドローンは応用分野の一つである。以下の説明において、「ドローン」とは飛行体のことである。 飛行 Applications of flying vehicles having a plurality of propellers called drones, particularly unmanned flying vehicles, in the industrial field are increasing. Agricultural drones that spray chemicals such as pesticides and liquid fertilizer on fields are one of the applied fields. In the following description, "drone" refers to a flying object.
 産業用ドローンは、例えば農業用ドローンに見られるように、薬剤などの荷物を積載するため、荷物の荷重に耐えうる推力を発生することができるように比較的大径のプロペラを有する大型のドローンが用いられる。大径のプロペラを有するドローンは、プロペラの回転によって生じる機体の振動が大きい。農業用ドローンなどの機体には、定められたルートに従って飛行させるための自動運転制御、姿勢制御、速度制御、飛行高さ制御など様々な制御を行うために、様々なセンサーが装着されている。 An industrial drone is a large drone having a relatively large-diameter propeller capable of generating a thrust capable of withstanding the load of the load, for loading a load such as a drug, as seen in, for example, an agricultural drone. Is used. A drone having a large-diameter propeller has a large body vibration caused by the rotation of the propeller. An aircraft such as an agricultural drone is equipped with various sensors for performing various controls such as automatic driving control, attitude control, speed control, and flying height control for flying according to a predetermined route.
 プロペラの回転によってドローンの機体が振動すると、センサーも機体とともに振動し、各センサーによるそれぞれの検出データの精度が低下し、前記様々な制御の精度が低下する。 (4) When the body of the drone vibrates due to the rotation of the propeller, the sensors also vibrate with the body, and the accuracy of each sensor's detection data decreases, and the accuracy of the various controls decreases.
 センサーの一つとして、ドローン自身が自己の位置を検出するためのGPSセンサーがある。産業用ドローンでは、より高精度に位置を検出するために、例えばRTKアンテナおよびRTK-GPS(Real Time Kinematic - Global Positioning System)モジュールによるGPSセンサーが構成されることが多い。RTK-GPSは、分解能を高めるために波長の短い帯域の電波が用いられるため、機体とともにRTKアンテナが振動すると、位置検出精度の低下が著しい。 As one of the sensors, there is a GPS sensor for the drone itself to detect its own position. In an industrial drone, in order to detect a position with higher accuracy, for example, a GPS sensor including, for example, an RTK antenna and an RTK-GPS (Real Time Kinematic Global Positioning System) module is often configured. In RTK-GPS, radio waves in a short wavelength band are used to increase the resolution. Therefore, when the RTK antenna vibrates together with the airframe, the position detection accuracy is significantly reduced.
 ドローンの姿勢制御や飛行方向制御のために6軸ジャイロセンサーが用いられる。6軸ジャイロセンサーは、ドローンの加速度を互いに直交する3軸方向において測定し、さらに、加速度を積分することによって速度を計算するために用いられる。また、6軸ジャイロセンサーは、上記3軸を中心とした角速度の測定にも用いられる。機体とともに6軸ジャイロセンサーが振動すると、加速度の測定精度が低下し、姿勢制御や飛行方向制御の精度が低下する。 6 A 6-axis gyro sensor is used for controlling the attitude and flight direction of the drone. The six-axis gyro sensor is used to measure the acceleration of the drone in three orthogonal directions, and to calculate the velocity by integrating the acceleration. Further, the six-axis gyro sensor is also used for measuring an angular velocity around the above three axes. When the six-axis gyro sensor vibrates together with the airframe, the accuracy of acceleration measurement decreases, and the accuracy of attitude control and flight direction control decreases.
 産業用ドローンは、機体が振動しにくいように機体構造が工夫されているが、稼働回数を重ねるにしたがって機体にがたつきが発生するようになり、これに伴って各種制御の精度が低下する。 Industrial drones are designed with a fuselage structure that makes it difficult for the aircraft to vibrate.However, as the number of operations increases, rattling occurs in the aircraft, and the accuracy of various controls decreases with this. .
 無人飛行体の異常を検知して飛行体を着陸させるようにした発明が特許文献1に記載されている。特許文献1記載の発明は、複数のローターを駆動する複数のモーターの回転速度および各モーターに流れる電流を検出し、前記回転速度と電流の関係から、各モーターまたはそれに対応するモーターが異常であるか否かを判定するものである。 Patent Document 1 discloses an invention in which an unmanned aerial vehicle detects an abnormality and land the aerial vehicle. The invention described in Patent Document 1 detects rotation speeds of a plurality of motors driving a plurality of rotors and currents flowing through the respective motors, and based on the relationship between the rotation speeds and the currents, each motor or a motor corresponding thereto is abnormal. It is to determine whether or not.
 特許文献1記載の発明は、複数のプロペラを駆動する各モーターの異常および各プロペラの異常を検出するものであり、飛行体の機体の振動を検出するものではない。したがって、特許文献1記載の発明は、機体の振動を原因とする各種センサーの検出精度の低下、各種制御精度の低下に関しては何ら考慮されていない。 The invention described in Patent Document 1 detects abnormality of each motor driving a plurality of propellers and abnormality of each propeller, but does not detect vibration of the body of the flying body. Therefore, the invention described in Patent Literature 1 does not consider reduction in detection accuracy of various sensors and reduction in various control accuracy due to vibration of the body.
特開2007-210111号公報JP 2007-210111 A
 本発明は、機体構造部品の緩みやがたつきを検出し、緩みやがたつきを検出した場合は退避行動を行い、各種制御精度の低下により生ずる不具合を事前に回避することができる飛行体を得ることを目的とする。 The present invention relates to an air vehicle capable of detecting looseness or rattling of an airframe structural component, performing an evacuation action when detecting loosening or rattling, and previously avoiding a problem caused by a decrease in various control accuracy. The purpose is to obtain.
 本発明は、
 機体と、前記機体に搭載されていて複数のプロペラを個別に回転駆動する複数のプロペラ駆動モーターと、を有し、前記機体は、前記複数のプロペラ駆動モーターを支持する複数の支持アームが結合されてなるフレームを有する飛行体であって、
 前記フレームを含む前記機体の構造部品の緩みやがたつきを検出する弛緩センサーが機体に取り付けられ、
 前記弛緩センサーが異常信号を出力したとき、退避行動を行うことを最も主要な特徴とする。
The present invention
An airframe, a plurality of propeller drive motors mounted on the airframe and individually driving a plurality of propellers, and the airframe is coupled with a plurality of support arms supporting the plurality of propeller drive motors. A flying object having a frame comprising
A relaxation sensor that detects looseness and rattling of structural parts of the body including the frame is attached to the body,
When the relaxation sensor outputs an abnormal signal, the most important feature is to perform an evacuation action.
 本発明によれば、弛緩センサーが、フレームを含む機体構造部品の緩みやがたつきを検出すると異常信号を出力するので、異常信号の出力によって適切な対策をとることができ、弛緩センサーの検出精度の低下による各種制御精度の低下を回避することができる。 According to the present invention, since the relaxation sensor outputs an abnormal signal when detecting the looseness or rattling of the body structural parts including the frame, it is possible to take appropriate measures based on the output of the abnormal signal, and to detect the relaxation sensor. It is possible to avoid a decrease in various control accuracy due to a decrease in accuracy.
本願発明に係る飛行体の実施例を示す斜視図である。It is a perspective view showing an example of a flight object concerning the present invention. 前記実施例の平面図である。FIG. 3 is a plan view of the embodiment. 前記実施例の正面図である。It is a front view of the said example. 前記実施例の右側面図である。It is a right view of the said Example. 前記実施例の底面図である。FIG. 4 is a bottom view of the embodiment. 前記実施例を、プロペラを除去した状態で示す平面図である。FIG. 3 is a plan view showing the embodiment with a propeller removed. 前記実施例を、プロペラを除去した状態で示す正面図である。FIG. 2 is a front view showing the embodiment with a propeller removed. 前記実施例を、プロペラを除去した状態で示す右側面図である。FIG. 3 is a right side view showing the embodiment with a propeller removed. 前記実施例の主要部分を拡大して示す斜視図である。It is a perspective view which expands and shows the principal part of the said Example. 本発明に係る飛行体を農業に使用する場合の例を概略的に示す模式図である。It is a mimetic diagram showing roughly the example in the case of using the flying object concerning the present invention for agriculture. 本発明に係る飛行体の制御系統の例を示すブロック図である。FIG. 3 is a block diagram illustrating an example of a control system of the flying object according to the present invention.
 以下、図面を参照しながら、本発明に係る飛行体(以下「ドローン」という)の実施形態について説明する。図はすべて例示であって、本発明に係る飛行体の構成が実施例の構成に限定されるものではない。本明細書において、ドローンとは、動力方式や操縦方式を問わず、複数の回転翼または飛行手段を有する飛行体全般を指すこととする。動力方式としては、電力によるもの、内燃機関などの原動機によるものなどがある。操縦方式としては、無線または有線によるもの、および、自律飛行型あるいは手動操縦型などがある。 Hereinafter, an embodiment of a flying object (hereinafter, referred to as “drone”) according to the present invention will be described with reference to the drawings. The drawings are all examples, and the configuration of the flying object according to the present invention is not limited to the configuration of the embodiment. In this specification, a drone refers to an entire flying object having a plurality of rotary wings or flying means regardless of a power system or a steering system. As the power system, there are a system using electric power and a system using a prime mover such as an internal combustion engine. The control method includes a wireless or wired control method, an autonomous flight type, and a manual control type.
 [ドローン全体の構成]
 図1乃至図5において、ドローンは、4か所の上下にローターとも呼ばれるプロペラ101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを有する。これらのプロペラは、ドローンを飛行させるための手段であり、飛行の安定性、機体サイズ、および、バッテリー消費量のバランスを考慮し、2段構成のプロペラが4組、合計8機備えられている。4組のプロペラの回転中心は平面視において長方形の角に位置している。プロペラ101-2a、101-4a側がドローンの進行方向前側になっている。
[Configuration of the entire drone]
In FIG. 1 to FIG. 5, the drone includes four upper and lower propellers 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-a. 4b. These propellers are means for flying the drone, and are provided with four sets of two-stage propellers, for a total of eight aircraft, in consideration of the balance of flight stability, aircraft size, and battery consumption. . The rotation centers of the four sets of propellers are located at corners of the rectangle in plan view. The propellers 101-2a and 101-4a are on the front side in the traveling direction of the drone.
 上記各プロペラは、プロペラ駆動モーター(以下単に「モーター」という場合もある)102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bによって個別に回転駆動される。1組の上下のプロペラ、例えば101-1aと101-1bは、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、モーター102-1aと102-1bにより、互いに反対方向に回転駆動される。各組の上下のプロペラは互いに反対方向に回転駆動されることによりともに下降流を発生させ、ドローンを上昇させる向きの推力を発生させる。他の組の上下のプロペラも同様に構成され、同様に推力を発生させる。 Each of the above-mentioned propellers is a propeller drive motor (hereinafter sometimes simply referred to as “motor”) 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b. Are individually driven to rotate. A pair of upper and lower propellers, for example, 101-1a and 101-1b, are coaxial with each other for flight stability of the drone, and are in opposite directions by motors 102-1a and 102-1b. Is driven to rotate. The upper and lower propellers of each set are driven to rotate in opposite directions to generate a downward flow, thereby generating a thrust in a direction to raise the drone. Other sets of upper and lower propellers are similarly configured and similarly generate thrust.
 図示の実施形態は農業用のドローンであり、薬剤を下方に向けて散布するための4つの薬剤ノズル103-1、103-2、103-3、103-4が備えられている。本明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種および水など、圃場に散布される液体または粉体を一般的に指す。 The illustrated embodiment is an agricultural drone provided with four medicine nozzles 103-1, 103-2, 103-3, 103-4 for spraying medicine downward. As used herein, agents generally refer to liquids or powders that are sprayed on the field, such as pesticides, herbicides, liquid manures, pesticides, seeds, and water.
 ドローンは、散布する薬剤を収容するための薬剤タンク104を有している。薬剤タンク104は、重量バランスの観点からドローンの重心に近い位置でかつ重心より低い位置に設けられている。薬剤タンク104の下側にはポンプ106が取り付けられ、ポンプ106は薬剤ホース105につながっている。薬剤ホース105は、ドローンの進行方向前側下部に、ドローンのほぼ幅方向全体にまたがって直線状に伸びている。薬剤ホース105にはその長さ方向に一定間隔で4個の薬剤ノズル103-1、103-2、103-3、103-4が配置されている。ポンプ106が作動することにより、薬剤タンク104内の薬剤が各薬剤ノズルから吐出され、圃場に散布される。 The drone has a medicine tank 104 for containing the medicine to be sprayed. The medicine tank 104 is provided at a position close to the center of gravity of the drone and lower than the center of gravity from the viewpoint of weight balance. A pump 106 is mounted below the medicine tank 104, and the pump 106 is connected to a medicine hose 105. The drug hose 105 extends linearly at a lower portion on the front side in the traveling direction of the drone and substantially over the entire width of the drone. Four drug nozzles 103-1, 103-2, 103-3, and 103-4 are arranged at regular intervals in the length direction of the drug hose 105. By operating the pump 106, the medicine in the medicine tank 104 is discharged from each medicine nozzle and is sprayed on the field.
 [フレームの構成]
 次に、図6乃至図9も併せて参照しながら、実施形態に係るドローンのフレーム構成および胴体50の構成を詳細に説明する。本明細書において、「胴体」とは、ドローンの動作を制御する制御部品や駆動電源となるバッテリーやセンサー類などを搭載する部分で、ヘリコプターや飛行機の胴体に相当する。胴体やフレーム、プロペラ、プロペラ駆動モーターを含むドローン全体を「機体」という。ドローンのフレームは、互いに一体に結合され、かつ、前記複数のプロペラ駆動モーターを支持する複数の支持アームで構成されている。複数の支持アームで構成されるフレームは、上下に所定の間隔をおいて一体に結合された一対のフレームからなる。
[Frame configuration]
Next, the configuration of the frame of the drone and the configuration of the body 50 according to the embodiment will be described in detail with reference to FIGS. 6 to 9. In this specification, the "fuselage" is a portion on which control parts for controlling the operation of the drone, a battery or a sensor serving as a driving power source, and the like are mounted, and corresponds to a fuselage of a helicopter or an airplane. The entire drone, including its fuselage, frame, propeller, and propeller drive motor, is called the "airframe." The frame of the drone is composed of a plurality of support arms integrally connected to each other and supporting the plurality of propeller drive motors. The frame composed of a plurality of support arms is composed of a pair of frames that are integrally connected at predetermined intervals in the vertical direction.
 上側のフレームを構成する前記複数の支持アームは、両端部においてそれぞれプロペラ駆動モーターを支持する一つの第1支持アーム10と、第1支持アーム10から延びた二つの第2支持アーム11,12とを有してなる。第2支持アーム11,12は、第1支持アーム10の長さ方向の途中から斜めに対称形に、かつ、先端部が互いに広がる方向に伸びている。 The plurality of support arms forming the upper frame include one first support arm 10 that supports a propeller drive motor at each end, and two second support arms 11 and 12 that extend from the first support arm 10. Having. The second support arms 11 and 12 extend obliquely symmetrically from the middle of the length direction of the first support arm 10 and extend in a direction in which the distal ends spread out from each other.
 第2支持アーム11,12は、長さ方向の途中において補強梁13によって結合されている。補強梁13は第1支持アーム10と平行になっていて、第1支持アーム10と第2支持アーム11,12と補強梁13とで、平面視で台形状に形成され、いわゆるトラス構造に近い構造になっている。フレームは、トラス構造に近い構造になっていることにより、比較的簡単な構成でありながら、機械的強度を高めることができる。第1支持アーム10、第2支持アーム11,12および補強梁13は、同一平面内に位置するように、適宜の結合部材を介して結合されている。 2The second support arms 11 and 12 are connected by a reinforcing beam 13 in the middle of the length direction. The reinforcing beam 13 is parallel to the first supporting arm 10, and is formed in a trapezoidal shape in plan view by the first supporting arm 10, the second supporting arms 11, 12, and the reinforcing beam 13, and is close to a so-called truss structure. It has a structure. Since the frame has a structure close to the truss structure, the mechanical strength can be increased while having a relatively simple configuration. The first support arm 10, the second support arms 11, 12 and the reinforcing beam 13 are connected via an appropriate connection member so as to be located on the same plane.
 第1支持アーム10の両端部においてそれぞれモーター102-2a、102-4aが支持されている。モーター102-2a、102-4aの回転出力軸にはそれぞれプロペラ101-2a、101-4aが取り付けられていて、各プロペラが上記各モーターによって個別に回転駆動される。第2支持アーム11,12の各先端部で上記モーターとは別のモーター102-1a、102-3aが支持されている。モーター102-1a、103-3aの回転出力軸にはそれぞれプロペラ101-1a、101-3aが取り付けられていて、各プロペラが上記各モーターによって個別に回転駆動される。 モ ー タ ー Motors 102-2a and 102-4a are supported at both ends of the first support arm 10, respectively. Propellers 101-2a and 101-4a are respectively attached to the rotation output shafts of the motors 102-2a and 102-4a, and the propellers are individually driven to rotate by the motors. Motors 102-1a and 102-3a different from the above-mentioned motors are supported at the respective distal ends of the second support arms 11 and 12. Propellers 101-1a and 101-3a are attached to the rotation output shafts of the motors 102-1a and 103-3a, respectively, and the propellers are individually rotated by the motors.
 下側のフレームも上側のフレームとほぼ同様の構造になっている。下側のフレームは、両端部においてそれぞれプロペラ駆動モーターを支持する一つの第1支持アーム20と、第1支持アーム20から延びた二つの第2支持アーム21,22とを有してなる。第2支持アーム21,22は、第1支持アーム20の長さ方向の途中から斜めに対称形に、かつ、先端部が互いに広がる方向に伸びている。第1支持アーム20および第2支持アーム21,22は同一平面内に位置するように、適宜の結合部材を介して結合されている。 The lower frame has almost the same structure as the upper frame. The lower frame has one first support arm 20 that supports a propeller drive motor at each end, and two second support arms 21 and 22 extending from the first support arm 20. The second support arms 21 and 22 extend obliquely symmetrically from the middle in the length direction of the first support arm 20 and extend in a direction in which the distal ends are widened. The first support arm 20 and the second support arms 21 and 22 are coupled via an appropriate coupling member so as to be located on the same plane.
 上下のフレームは、互いに平行をなすように適宜数の柱の介在の下に結合されている。上下に対をなす第2支持アーム11,21および別の対をなす第2支持アーム12,22は、長さ方向の中間部でそれぞれ柱30,30によって結合されている。また、上下一対の第1支持アーム10,20は、上側の第2支持アーム11,21との結合部付近と、下側の第2支持アーム12,22との結合部付近において、それぞれ柱31,31によって結合されている。上記各支持アームと各柱は、適宜の結合部材を介在させることによって結合されている。 (4) The upper and lower frames are connected under an appropriate number of columns so as to be parallel to each other. The upper and lower pairs of the second support arms 11 and 21 and another pair of the second support arms 12 and 22 are connected by pillars 30 at an intermediate portion in the longitudinal direction. The upper and lower pair of first support arms 10 and 20 are respectively provided with columns 31 near the joint with the upper second support arms 11 and 21 and near the joint with the lower second support arms 12 and 22. , 31. Each support arm and each column are connected by interposing an appropriate connecting member.
 一対の柱30,30は、上下方向下寄りの位置において補強梁23によって結合されている。補強梁23は、第1支持アーム20と第2支持アーム21,22からなる下側のフレームの補強梁でもあり、上下のフレーム全体の補強梁としても機能する。補強梁13は第1支持アーム10と平行になっていて、第1支持アーム10と第2支持アーム11,12と補強梁13とで、平面視で台形状に形成され、いわゆるトラス構造に近い構造になっている。 (4) The pair of pillars 30, 30 are connected to each other by reinforcing beams 23 at positions lower in the vertical direction. The reinforcing beam 23 is a reinforcing beam for the lower frame composed of the first support arm 20 and the second support arms 21 and 22, and also functions as a reinforcing beam for the entire upper and lower frames. The reinforcing beam 13 is parallel to the first supporting arm 10, and is formed in a trapezoidal shape in plan view by the first supporting arm 10, the second supporting arms 11, 12, and the reinforcing beam 13, and is close to a so-called truss structure. It has a structure.
 上下のフレームを構成する前記第1支持アーム10,20、第2支持アーム11,12,21,22、補強梁13,23、上下のフレームを結合する柱30,31は、パイプ状の部材である。また、フレームを構成する上記の部材、少なくとも第1支持アーム、第2支持アームおよび補強梁の素材は、熱伝導素材、例えばアルミニウム合金または炭素繊維複合材からなる。炭素繊維複合材としては、炭素繊維強化プラスチック(CFRP)、炭素繊維強化炭素複合材料などがある。フレームを構成する部材の素材がアルミニウム合金または炭素繊維複合材などからなり、かつ、パイプ状の部材であることによって、フレームに必要な強度を持たせながらフレームの軽量化を図ることができる。また、後で詳細に説明するように、放熱効果を高めることができる。 The first support arms 10, 20, the second support arms 11, 12, 21, 22, the reinforcing beams 13, 23, and the columns 30, 31, which connect the upper and lower frames, which constitute the upper and lower frames, are pipe-shaped members. is there. Further, the above-mentioned members constituting the frame, at least the first support arm, the second support arm, and the material of the reinforcing beam are made of a heat conductive material, for example, an aluminum alloy or a carbon fiber composite material. Examples of the carbon fiber composite include carbon fiber reinforced plastic (CFRP) and carbon fiber reinforced carbon composite. Since the material of the members constituting the frame is made of an aluminum alloy or a carbon fiber composite material and is a pipe-shaped member, the weight of the frame can be reduced while having the necessary strength for the frame. Further, as will be described in detail later, the heat radiation effect can be enhanced.
 [プロペラガード]
 上下一対の第2支持アーム11,21の先端部で支持されているプロペラ101-1a、101-1bは、プロペラガード41によって囲まれ、プロペラガード41内で回転する。プロペラガード41は、上下一対の円環状の枠と、これらの枠を一定の間隔をおいて平行に結合する柱状の介在部材と、上下の枠の中心位置にあるハブと、上下それぞれの枠とハブとを結合する複数のスポークと、を有してなる。上下のハブは、その中心をプロペラ101-1a、101-1bの回転中心に一致させて第2支持アーム11,21の先端部に結合されている。
[Propeller guard]
The propellers 101-1a and 101-1b supported by the distal ends of the pair of upper and lower second support arms 11 and 21 are surrounded by the propeller guard 41 and rotate in the propeller guard 41. The propeller guard 41 includes a pair of upper and lower annular frames, a columnar interposed member that connects these frames in parallel at a fixed interval, a hub at the center of the upper and lower frames, and upper and lower frames. And a plurality of spokes for coupling with the hub. The upper and lower hubs are coupled to the distal ends of the second support arms 11 and 21 with their centers aligned with the rotation centers of the propellers 101-1a and 101-1b.
 上下一対の第1支持アーム10,20の正面から見て右側の端部で支持されているプロペラ101-2a、101-2bは、プロペラガード42によって囲まれ、プロペラガード42内で回転する。 プ ロ The propellers 101-2a and 101-2b supported at the right ends when viewed from the front of the pair of upper and lower first support arms 10 and 20 are surrounded by the propeller guard 42 and rotate in the propeller guard 42.
 上下一対の第2支持アーム12,22の先端部で支持されているプロペラ101-3a、101-3bは、プロペラガード43によって囲まれ、プロペラガード43内で回転する。 プ ロ The propellers 101-3 a and 101-3 b supported by the distal ends of the pair of upper and lower second support arms 12 and 22 are surrounded by the propeller guard 43 and rotate in the propeller guard 43.
 上下一対の第1支持アーム10,20の正面から見て左側の端部で支持されているプロペラ101-4a、101-4bは、プロペラガード44によって囲まれ、プロペラガード44内で回転する。 (4) The propellers 101-4a and 101-4b supported at the left ends when viewed from the front of the pair of upper and lower first support arms 10 and 20 are surrounded by the propeller guard 44 and rotate in the propeller guard 44.
 各プロペラガード42,43,44は、プロペラガード41と同様に構成されている。すなわち、各プロペラガード42,43,44は、上下一対の円環状の枠と、これらの枠を平行に結合する複数の柱状の介在部材と、上下の枠の中心位置にあるハブと、上下それぞれの枠とハブとを結合する複数のスポークと、を有してなる。プロペラガード42は、その上下のハブが第1支持アーム10,20の正面から見て右側の端部に結合されている。プロペラガード43は、その上下のハブが第2支持アーム12,22の先端部に結合されている。プロペラガード44は、その上下のハブが第1支持アーム10,20の正面から見て左側の端部に結合されている。 Each of the propeller guards 42, 43, and 44 has the same configuration as the propeller guard 41. That is, each of the propeller guards 42, 43, and 44 includes a pair of upper and lower annular frames, a plurality of columnar intervening members that connect these frames in parallel, a hub at the center of the upper and lower frames, And a plurality of spokes for connecting the frame and the hub. The upper and lower hubs of the propeller guard 42 are coupled to the right end when viewed from the front of the first support arms 10 and 20. The upper and lower hubs of the propeller guard 43 are connected to the distal ends of the second support arms 12 and 22. The upper and lower hubs of the propeller guard 44 are connected to the left end when viewed from the front of the first support arms 10 and 20.
 ドローンの右後ろに位置するプロペラ101-1a、101-1bと、右前に位置するプロペラ101-2a、101-2bとの間隔は狭く、これらのプロペラガード41,42を構成する円環状の枠が接触している。ドローンの左後ろに位置するプロペラ101-3a、101-3bと、左前に位置するプロペラ101-4a、101-4bとの間隔も狭く、これらのプロペラガード43,44を構成する円環状の枠が接触している。 The distance between the propellers 101-1a and 101-1b located on the right rear of the drone and the propellers 101-2a and 101-2b located on the right front is small, and the annular frame forming these propeller guards 41 and 42 is In contact. The distance between the propellers 101-3a and 101-3b located on the left rear of the drone and the propellers 101-4a and 101-4b located on the left front is also small, and the annular frame forming these propeller guards 43 and 44 is In contact.
 各プロペラガード41,42,43,44を構成する前記枠、ハブおよびスポークの素材は熱伝導素材であることが望ましい。少なくともプロペラガード41,42,43,44の上下の面に格子状に配置されているスポークは熱伝導素材からなっていることが望ましい。 枠 It is preferable that the frame, hub, and spokes constituting the propeller guards 41, 42, 43, 44 are made of a heat conductive material. It is desirable that at least the spokes arranged in a lattice on the upper and lower surfaces of the propeller guards 41, 42, 43, 44 are made of a heat conductive material.
 ドローンの前後に位置するプロペラ相互の間隔に対して左右に位置するプロペラ相互の間隔は広くなっている。すなわち、ドローンの左右に位置するプロペラ101-4a、101-4bとプロペラ101-2a、101-2bとの間隔およびプロペラ101-3a、101-3bとプロペラ101-1a、101-1bとの間隔は広くなっている。これらのプロペラガード44と42および43,41は互いに離間している。 間隔 The distance between the propellers located on the left and right is wider than the distance between the propellers located before and after the drone. That is, the distance between the propellers 101-4a and 101-4b and the propellers 101-2a and 101-2b and the distance between the propellers 101-3a and 101-3b and the propellers 101-1a and 101-1b are located on the left and right sides of the drone. It is getting wider. These propeller guards 44 and 42 and 43, 41 are spaced apart from each other.
 [胴体]
 平面視において、4組の各プロペラ101-1a、101-1bと、101-2a、101-2bと、101-3a、101-3bおよび101-4a、101-4bの回転中心を結ぶ線は横長の長方形になっている。前後に並ぶ左側のプロペラガード43,44と、前後に並ぶ右側のプロペラガード41,42との間には空間があり、この空間に、電源バッテリー、制御回路、モーター駆動回路などの内蔵部品を支持する胴体50が配置されている。
[body]
In plan view, the lines connecting the rotation centers of the four sets of propellers 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, and 101-4a, 101-4b are horizontally long. It is a rectangle. There is a space between the left and right propeller guards 43 and 44 arranged in front and rear and the right propeller guards 41 and 42 arranged in front and back, and this space supports built-in components such as a power supply battery, a control circuit, and a motor drive circuit. Body 50 is disposed.
 胴体50は、扁平な皿状の底板51と、底板51の上に被せられたカバー52を有してなる。底板51およびカバー52は、アルミニウム合金または炭素繊維複合材などの熱伝導体からなる。底板51とカバー52で囲まれた内部空間が、電源バッテリー、モーター駆動回路、制御回路などの内蔵部品を組み込む部品搭載部になっている。胴体50は、前後方向に長く、進行方向前端の平面形状は半円形である。 The body 50 has a flat dish-shaped bottom plate 51 and a cover 52 placed on the bottom plate 51. The bottom plate 51 and the cover 52 are made of a heat conductor such as an aluminum alloy or a carbon fiber composite material. The internal space surrounded by the bottom plate 51 and the cover 52 serves as a component mounting part for incorporating built-in components such as a power supply battery, a motor drive circuit, and a control circuit. The body 50 is long in the front-rear direction, and has a semicircular planar shape at the front end in the traveling direction.
 胴体50は、左右の前記プロペラおよび左右のプロペラガード41,42と43,44との間に生じている空間に、かつ、上下の補強梁13,23の間に配置されている。胴体50を構成する底板51は、その底面が、下側の補強梁23に結合部材を介して結合されている。上記結合部材は熱伝導性の良好な素材からなる板状の部材で、補強梁23をほぼ半周にわたって抱え込むとともに、両側縁部が底板51の底面に面接触した状態で締結されている。 The body 50 is disposed in a space formed between the left and right propellers and the left and right propeller guards 41, 42 and 43, 44 and between the upper and lower reinforcing beams 13, 23. The bottom plate 51 of the body 50 is coupled to the lower reinforcing beam 23 via a coupling member at the bottom surface. The coupling member is a plate-shaped member made of a material having good heat conductivity, and holds the reinforcing beam 23 over substantially half a circumference, and is fastened in a state where both side edges are in surface contact with the bottom surface of the bottom plate 51.
 胴体50を構成するカバー52は上側の補強梁13に結合部材59を介して結合されている。結合部材59も熱伝導性の良好な素材からなる板状の部材で、補強梁13をほぼ半周にわたって巻き込むとともに、両側縁部がカバー52の上面に面接触した状態で締結されている。 カ バ ー The cover 52 constituting the body 50 is connected to the upper reinforcing beam 13 via a connecting member 59. The coupling member 59 is also a plate-shaped member made of a material having good heat conductivity, and is wound around the reinforcement beam 13 over substantially half a circumference, and is fastened in a state where both side edges are in surface contact with the upper surface of the cover 52.
 図9は、胴体50内の部品搭載部における部品配置の概要を示す。胴体50内の後ろ側(図9において斜め右下側)の約半分の空間56は、上下の補強梁13,23に近く、冷却効果の高い空間になっている。この空間56は上下に層状に区分されていて、上層部分にはバッテリー装着空間153が設けられている。バッテリー装着空間153には、二次バッテリーすなわち充電可能なバッテリー55を2個平行に並べて配置できるように、バッテリー受け部材152と、2個のバッテリー締め具154を備えている。 FIG. 9 shows an outline of a component arrangement in a component mounting portion in the body 50. A space 56 about half of the rear side (obliquely lower right side in FIG. 9) in the body 50 is close to the upper and lower reinforcing beams 13 and 23 and has a high cooling effect. This space 56 is vertically divided into layers, and a battery mounting space 153 is provided in an upper layer portion. The battery mounting space 153 includes a battery receiving member 152 and two battery fasteners 154 so that two secondary batteries, that is, rechargeable batteries 55 can be arranged in parallel.
 飛行体の運用時は、バッテリー装着空間153に2個のバッテリー55が装填される。一方のバッテリーがメインのバッテリーであって通常の稼働時に使用され、他方のバッテリーは予備のバッテリーである。メインのバッテリーの使用中に、メインのバッテリーの蓄電容量が少なくなった場合、あるいはメインのバッテリーに不具合が生じた場合は、予備のバッテリーに切り替える飛行を継続させるとともに、後で説明する退避行動をとらせる。このように、2個のバッテリー55を装着することにより、電源系統にいわゆる冗長性を持たせ、電源のトラブルが発生した場合に適切な処理を行って、致命的なトラブルに発展することを回避することができる。 During operation of the flying vehicle, two batteries 55 are loaded in the battery mounting space 153. One battery is the main battery and is used during normal operation, and the other battery is a spare battery. If the storage capacity of the main battery decreases while the main battery is in use, or if the main battery malfunctions, continue the flight to switch to the spare battery and perform the evacuation behavior described later. Let me take. In this way, by attaching the two batteries 55, the power supply system is provided with so-called redundancy, and appropriate processing is performed when a power supply trouble occurs, thereby avoiding a fatal trouble. can do.
 図9は1個のバッテリー55のみが装填されている状態を示す。バッテリー55も発熱部品の一つであり、冷却効果の高い上記空間56にバッテリー55を装填して、バッテリー55の温度上昇を抑制するように工夫されている。バッテリー55自体が機械的強度および剛性の高い部品であり、バッテリー55をバッテリー締め具154によって強固に締め付けて装填することにより、胴体50の強度および剛性を高めることができる。バッテリー55、バッテリー装着空間153、バッテリー受け部材152およびバッテリー締め具154は、それぞれフレームの強度を確保する部材としても貢献している。 FIG. 9 shows a state in which only one battery 55 is loaded. The battery 55 is also one of the heat-generating components, and is designed so that the battery 55 is loaded into the space 56 having a high cooling effect and the temperature of the battery 55 is suppressed from rising. The battery 55 itself is a component having high mechanical strength and rigidity, and the strength and rigidity of the body 50 can be increased by tightly mounting the battery 55 with the battery fastener 154. The battery 55, the battery mounting space 153, the battery receiving member 152, and the battery fastener 154 also contribute as members for securing the strength of the frame.
 前記カバー52の後ろ側の約半分は、バッテリー装着空間153にバッテリー55を着脱することができるように、開閉可能な蓋になっている。上側のフレームの補強梁13は、上記蓋の開閉を可能にするために、下側のフレームの補強梁23よりも前側に位置をずらして設けられている。 約 About half of the rear side of the cover 52 is a lid that can be opened and closed so that the battery 55 can be attached to and detached from the battery mounting space 153. The reinforcing beam 13 of the upper frame is provided at a position shifted forward of the reinforcing beam 23 of the lower frame in order to allow the lid to be opened and closed.
 前記空間56には、バッテリー装着空間153の下側の層に、発熱部品の実装基板が前記底板51に面接触させて配置されている。前記実装基板には、前記モーターの回転速度制御部品(ESC:Electronic Speed Control)や、降圧分電機が実装される。降圧分電機は、バッテリー55から供給される直流電源を、前記モーターの駆動電圧や制御回路の駆動電圧に適した電圧に降圧して分配する。上記ESCや降圧分電機は高熱を発する。 (4) In the space 56, a mounting board for a heat-generating component is disposed in a layer below the battery mounting space 153 in surface contact with the bottom plate 51. A rotational speed control component (ESC: Electronic Speed Control) of the motor and a step-down distribution machine are mounted on the mounting board. The step-down distribution machine steps down the DC power supplied from the battery 55 to a voltage suitable for the drive voltage of the motor and the drive voltage of the control circuit and distributes the voltage. The ESC and the step-down electric generator generate high heat.
 胴体50の底板51には、前記空間56よりも前側において適宜数の回路基板58が配置されている。これらの回路基板58には、フライトコントローラーなどの制御回路、各種センサー類からの信号の処理回路、通信回路などが実装されている。 適宜 An appropriate number of circuit boards 58 are arranged on the bottom plate 51 of the body 50 in front of the space 56. A control circuit such as a flight controller, a circuit for processing signals from various sensors, a communication circuit, and the like are mounted on these circuit boards 58.
 バッテリー装着空間153を構成する前記バッテリー受け部材152の裏面すなわち下面側には、ドローンの加速度を測定し、さらに、加速度の積分により速度を計算する手段である6軸ジャイロセンサーが配置されている。6軸ジャイロセンサーは、互いに直交する3つの軸方向における加速度をそれぞれ検出する加速度センサーと、上記3つの軸を中心とする回転、例えばピッチング、ローリングおよびヨーイングの角速度をそれぞれ検出する角速度センサーを有している。 (6) A six-axis gyro sensor, which is a means for measuring the acceleration of the drone and calculating the speed by integrating the acceleration, is arranged on the back surface, that is, the lower surface side of the battery receiving member 152 constituting the battery mounting space 153. The six-axis gyro sensor has an acceleration sensor that detects accelerations in three axes directions orthogonal to each other, and an angular velocity sensor that detects angular velocities of rotation around the three axes, for example, pitching, rolling, and yawing. ing.
 バッテリー装着空間153に2個のバッテリー55を装填した状態でのドローンの重心位置は、平面方向すなわちドローンを上方から見て2個のバッテリー55の間にあり、かつ、重量の重いバッテリー55を装填することによって上下方向においては比較的下の位置にある。一方、4組のモーターの回転制御によるドローンの姿勢制御の回転中心Pは、平面方向から見て、図2に示すように対角位置にあるモーターの中心を結ぶ線の交差位置、上下方向では、図3に示すように上下のモーターの離間距離の中央位置にある。 The position of the center of gravity of the drone when two batteries 55 are loaded in the battery mounting space 153 is in a planar direction, that is, between the two batteries 55 when the drone is viewed from above, and the heavy battery 55 is loaded. By doing so, it is at a relatively lower position in the vertical direction. On the other hand, the rotation center P of the attitude control of the drone by the rotation control of the four sets of motors is, as viewed from the plane, the intersection of the lines connecting the centers of the diagonal motors as shown in FIG. , As shown in FIG. 3, at the center of the distance between the upper and lower motors.
 4組のモーターの回転により生じる揚力の水平線すなわち姿勢制御の回転中心Pを含む水平線は、ドローンの重心位置よりも上側にある。換言すれば、固定重量物であるバッテリー55を配置することによって、ドローンの重心が上記回転中心Pよりも下に位置する構成になっている。 The horizontal line of the lift generated by the rotation of the four sets of motors, that is, the horizontal line including the rotation center P of the attitude control, is above the position of the center of gravity of the drone. In other words, by arranging the battery 55 which is a fixed weight, the center of gravity of the drone is located below the rotation center P.
 ドローンの重心位置と揚力発生の水平線の位置関係を上記のように設定することにより、ドローンの姿勢の安定性と、姿勢制御に必要なエネルギーの省力化を図ることができる。 By setting the positional relationship between the position of the center of gravity of the drone and the horizontal line for generating lift as described above, the stability of the posture of the drone and the energy saving required for the posture control can be achieved.
 胴体50の下方には、胴体50の下面との間に空間70をおいて薬剤タンク104が配置されている。薬剤タンク104は散布する薬剤を収容するものであり、薬剤は圃場の上を飛行しながら散布されるものであるから、薬剤タンク104は変動重量物である。変動重量物である薬剤タンク104は、ドローンの重心位置よりもさらに下方に配置されていて、重量の変動がドローンの姿勢制御に与える影響が少なくなるように考慮されている。 薬 剤 A medicine tank 104 is arranged below the body 50 with a space 70 between the medicine tank 104 and the lower surface of the body 50. The medicine tank 104 stores the medicine to be sprayed. Since the medicine is sprayed while flying over the field, the medicine tank 104 is a variable weight material. The drug tank 104, which is a variable weight object, is disposed further below the center of gravity of the drone, and is designed to reduce the influence of weight fluctuation on the attitude control of the drone.
 [GPSセンサー]
 前記上側のフレームを構成する二つの第2支持アーム11,12には、GPSセンサー60,60が上向きに取り付けられている。GPSセンサー60,60は、例えばRTKアンテナおよびRTK-GPS(Real Time Kinematic - Global Positioning System)モジュールにより構成されている。GPSセンサー60,60は、ドローンの絶対位置を計測し、計測した位置が例えばプログラム通りの位置であるかどうかを判定し、位置がずれていれば正しい位置になるように前記各駆動モーターの回転を制御する。
[GPS sensor]
GPS sensors 60, 60 are attached to the two second support arms 11, 12 constituting the upper frame, facing upward. The GPS sensors 60, 60 are composed of, for example, an RTK antenna and an RTK-GPS (Real Time Kinematic-Global Positioning System) module. The GPS sensors 60, 60 measure the absolute position of the drone, determine whether the measured position is, for example, a position according to a program, and rotate each of the drive motors to a correct position if the position is shifted. Control.
 GPSセンサー60,60が振動すると、ドローンの絶対位置計測精度が低下し、位置制御の制度も低下する。そこで図示の実施例では、GPSセンサー60,60が、振動源である前記各駆動モーターの振動の影響を受けないように、前記各駆動モーターから最大限離れた位置である前記第2支持アーム11,12の長さ方向のほぼ中央部に設置されている。 When the GPS sensors 60, 60 vibrate, the accuracy of the drone's absolute position measurement decreases, and the accuracy of the position control also decreases. Therefore, in the illustrated embodiment, the GPS sensors 60, 60 are located at the positions farthest from the respective drive motors so that the second support arms 11 are not affected by the vibration of the respective drive motors serving as vibration sources. , 12 are installed substantially at the center in the length direction.
 上記GPSセンサー60,60の設置位置は、平面方向から見てそれぞれ前後のプロペラガード41,42の間と、プロペラガード43,44の間にある。また、GPSセンサー60,60上下のフレームを結合する柱30,30の近傍にあって、第2支持アーム11,12が振動しにくい位置にある。よって、GPSセンサー60,60は前記各駆動モーターの振動の影響を受けにくく、ドローンの位置を高い精度で計測することができる。 The installation positions of the GPS sensors 60 and 60 are located between the front and rear propeller guards 41 and 42 and between the propeller guards 43 and 44, respectively, when viewed from the plane. The second support arms 11, 12 are located near the columns 30, 30, which connect the upper and lower frames of the GPS sensors 60, 60, to positions where the second support arms 11, 12 are less likely to vibrate. Therefore, the GPS sensors 60, 60 are hardly affected by the vibrations of the drive motors, and can measure the position of the drone with high accuracy.
 [フレームの冷却効果]
 以上説明した飛行体およびそのフレームの構成によれば、以下のような冷却効果を得ることができる。
[Frame cooling effect]
According to the configuration of the flying object and its frame described above, the following cooling effects can be obtained.
 胴体50には、モーターの回転制御部品や分電機といった発熱部品を含む内蔵部品が実装されている。胴体50を構成する底板51、カバー52は熱伝導素材からなり、前記発熱部品から発せられる熱は胴体50に伝達されて放散される。したがって、胴体50は、発熱部品で生じた熱を放散する主要な部分になっている。 内 蔵 Built-in components including heat-generating components, such as a motor rotation control component and a distribution machine, are mounted on the body 50. The bottom plate 51 and the cover 52 constituting the body 50 are made of a heat conductive material, and the heat generated from the heat-generating components is transmitted to the body 50 and dissipated. Therefore, the body 50 is a main part for dissipating the heat generated by the heat-generating components.
 さらに、胴体50の底板51は熱伝導素材からなる下側のフレームの補強梁23に結合され、補強梁23はさらに第2支持アーム21,22に結合されている。胴体50のカバー52も、熱伝導素材からなる上側のフレームの補強梁13に結合され、補強梁13は第2支持アーム11,12に結合されている。このように、内蔵部品で生じる熱が、胴体50からフレームに伝達されやすい構造になっていて、胴体50による熱放散が不足しているとしても、フレームが熱放散を補う構造になっている。 Furthermore, the bottom plate 51 of the body 50 is connected to the reinforcing beams 23 of the lower frame made of a heat conductive material, and the reinforcing beams 23 are further connected to the second support arms 21 and 22. The cover 52 of the body 50 is also connected to the reinforcing beam 13 of the upper frame made of a heat conductive material, and the reinforcing beam 13 is connected to the second support arms 11 and 12. As described above, the heat generated in the built-in components is easily transmitted from the body 50 to the frame. Even if the heat dissipation by the body 50 is insufficient, the frame compensates for the heat dissipation.
 胴体50は、その左右に位置している前後一対のプロペラによって囲まれている。各プロペラが回転駆動されると、胴体50の左右両側面に沿って空気の下降流が生じる。空気の下降流は、胴体50の左右両側面と前後のプロペラガードで画される平面方向から見たほぼ三角形状の空間を比較的高速で流れる。本実施例は、4か所のプロペラがそれぞれ上下2段構成になっており、一段構成のプロペラよりも、下降流が集中的にかつ強い下降流が生じることがわかっている。 The body 50 is surrounded by a pair of front and rear propellers located on the left and right sides. When each propeller is rotationally driven, a downward flow of air is generated along the left and right sides of the body 50. The downward flow of the air flows at a relatively high speed in a substantially triangular space viewed from the plane direction defined by the left and right side surfaces of the body 50 and the front and rear propeller guards. In this embodiment, four propellers each have a two-stage configuration with upper and lower portions, and it is known that the downflow is more concentrated and a stronger downflow occurs than the one-stage configuration of the propeller.
 以上説明したように、本実施例において二段構成のプロペラによって集中的に、かつ、高速度で生じる下降流の流路に、胴体50の両側面およびフレームの一部が位置している。より具体的には、胴体50の両側面に沿って下降流が流れ、第1支持アーム10,20の両端部、第2支持アーム11,12,21,22のほぼ全体、補強梁13,23の両端部が下降流の流路を横切っている。そのため、胴体50自体および胴体50からフレームに伝達される熱が効果的に放散され、内蔵部品の温度上昇が抑制される。 As described above, in the present embodiment, both sides of the body 50 and a part of the frame are located in the flow path of the downward flow generated by the two-stage propeller intensively and at a high speed. More specifically, a downward flow flows along both side surfaces of the body 50, and both ends of the first support arms 10 and 20, substantially the entirety of the second support arms 11, 12, 21 and 22, and the reinforcing beams 13 and 23. Are traversing the downflow channel. Therefore, the heat transmitted to the body 50 and the frame from the body 50 is effectively dissipated, and the temperature rise of the built-in components is suppressed.
 [ドローンの使用例]
 図10に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を模式的に示す。操縦器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報、例えば、位置、薬剤量、バッテリー残量、カメラ映像等の情報を表示することができる。操縦器401は、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。
[Drone use example]
FIG. 10 schematically shows an overall conceptual diagram of a system using an embodiment of the drone 100 according to the present invention for spraying medicine. The pilot 401 can transmit a command to the drone 100 by an operation of the user 402, and can display information received from the drone 100, for example, information such as a position, a medicine amount, a battery remaining amount, and a camera image. . The pilot 401 may be realized by a portable information device such as a general tablet terminal that runs a computer program.
 本実施例に係るドローン100は、自律飛行を行なうように制御されるものであるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていることが望ましい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作機を使用してもよい。非常用操作機は緊急時に迅速に対応が取れるように、大型の緊急停止ボタン等を備えた専用機器であることが望ましい。操縦器401とドローン100はWi-Fi等による無線通信を行なうことが望ましい。 The drone 100 according to the present embodiment is controlled so as to perform an autonomous flight, but it is preferable that a manual operation can be performed at the time of basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operation device having a function dedicated to emergency stop may be used. It is desirable that the emergency operating device is a dedicated device equipped with a large emergency stop button and the like so that an emergency operation can be quickly performed. It is desirable that the pilot 401 and the drone 100 perform wireless communication by Wi-Fi or the like.
 圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の障害物が存在する場合もある。 The field 403 is a field or a field to which the drone 100 is to apply the medicine. Actually, the terrain of the field 403 is complicated, and there is a case where a topographic map cannot be obtained in advance, or a case where the topographic map and the situation of the site are different. Usually, the field 403 is adjacent to houses, hospitals, schools, other crop fields, roads, railways, and the like. Further, an obstacle such as a building or an electric wire may exist in the field 403.
 基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようにすることが望ましい。Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい。営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピューター群と関連ソフトウェアであり、操縦器401と携帯電話回線等で無線接続されていることが望ましい。 The base station 404 is a device that provides a master device function or the like of Wi-Fi communication, and also functions as an RTK-GPS base station, and desirably provides an accurate position of the drone 100. The master device function of Wi-Fi communication and the RTK-GPS base station may be independent devices. The farming cloud 405 is typically a group of computers and related software operated on a cloud service, and is desirably wirelessly connected to the controller 401 via a mobile phone line or the like.
 営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行なってよい。営農クラウド405は、保存していた圃場403の地形情報等をドローン100に提供することができ、加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行なってもよい。 The farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growing condition of the crop, and perform a process for determining a flight route. The farming cloud 405 can provide the stored topographical information of the field 403 to the drone 100, and in addition, accumulates the history of the flight and photographed images of the drone 100 and may perform various analysis processes. .
 通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路ともいえる)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Normally, the drone 100 takes off from the departure / departure point 406 outside the field 403 and returns to the departure / departure point 406 after spraying the medicine on the field 403 or when it becomes necessary to replenish or charge the medicine. The flight route (also referred to as the intrusion route) from the departure / arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input before the user 402 starts takeoff. .
 [ドローンの制御系統]
 図11は、本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図である。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピューターであってよい。フライトコントローラー501は、操縦器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102―4bの回転数を制御して、ドローン100の飛行を制御する。
[Drone control system]
FIG. 11 is a block diagram showing a control function of the embodiment of the medicine spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and may specifically be an embedded computer including a CPU, a memory, related software, and the like. The flight controller 501 controls the motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from the pilot 401 and input information obtained from various sensors described below. , 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, and 102-4b to control the rotation speed of the drone 100.
 上記各モーターの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。プロペラに光学センサー等を設けてプロペラの回転数がフライトコントローラー501にフィードバックされる構成でもよい。 The actual rotation speed of each motor is fed back to the flight controller 501 so that it can be monitored whether normal rotation is being performed. An optical sensor or the like may be provided on the propeller so that the rotation speed of the propeller is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっていることが望ましい。不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護を行なうことが望ましい。 The software used by the flight controller 501 is desirably rewritable through a storage medium or the like for function expansion / change, problem correction, or the like, or through communication means such as Wi-Fi communication or USB. It is desirable to protect by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by unauthorized software is not performed.
 また、フライトコントローラー501が制御に使用する計算処理の一部が、操縦器401上、または、営農クラウド405上や他の場所に存在する別のコンピューターによって実行されてもよい。フライトコントローラー501はドローンの中核をなす重要度の高い部分であり、その構成要素の一部または全部が二重化されていることが望ましい。 Part of the calculation processing used by the flight controller 501 for control may be executed on the pilot 401, on the farming cloud 405, or by another computer existing in another place. The flight controller 501 is a highly important part that forms the core of the drone, and it is desirable that some or all of its components be duplicated.
 バッテリー55は、フライトコントローラー501およびドローンのその他の構成要素に電力を供給する手段であり、充電式であることが望ましい。バッテリー55はヒューズ、または、サーキットブレーカー等を含む電源ユニットを介してフライトコントローラー501に接続されている。バッテリー55は電力供給機能に加えて、その内部状態すなわち蓄電量、積算使用時間等をフライトコントローラー501に伝達する機能を有するスマートバッテリーであることが望ましい。 The battery 55 is a means for supplying power to the flight controller 501 and other components of the drone, and is preferably a rechargeable battery. The battery 55 is connected to the flight controller 501 via a fuse or a power supply unit including a circuit breaker or the like. It is desirable that the battery 55 be a smart battery having a function of transmitting the internal state, that is, the amount of stored power, the accumulated use time, and the like to the flight controller 501 in addition to the power supply function.
 フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操縦器401とやり取りを行ない、必要な指令を操縦器401から受信し、必要な情報を操縦器401に送信することができる。通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておくとよい。 The flight controller 501 communicates with the pilot 401 via the Wi-Fi slave unit function 503 and further via the base station 404, receives necessary commands from the pilot 401, and receives necessary information from the pilot 401. Can be sent to The communication should be encrypted so as to prevent eavesdropping, impersonation, hijacking of devices, and other illegal acts.
 基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えていることが望ましい。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、GPSモジュール504により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。GPSモジュール504は重要性が高いため、二重化・多重化しておくことが望ましい。また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのGPSモジュール504は別の衛星を使用するよう制御することが望ましい。 It is desirable that the base station 404 has a function of an RTK-GPS base station in addition to a communication function by Wi-Fi. By combining the signal from the RTK base station and the signal from the GPS positioning satellite, the GPS module 504 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Since the GPS module 504 is highly important, it is desirable to duplicate and multiplex the GPS module. Further, in order to cope with a failure of a specific GPS satellite, it is preferable that each redundant GPS module 504 is controlled to use another satellite.
 6軸ジャイロセンサー505は、ドローン機体の互いに直交する3軸方向における加速度を測定する手段、加速度の積分により速度を計算する手段、さらに、上記3軸を中心として回転の角速度を検出する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、赤外線(IR)レーザーを使用することが望ましい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three orthogonal directions orthogonal to each other, a means for calculating the velocity by integrating the acceleration, and a means for detecting the angular velocity of rotation about the three axes. . The geomagnetic sensor 506 is means for measuring the direction of the drone body by measuring geomagnetism. The air pressure sensor 507 is a means for measuring the air pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone aircraft and the surface of the earth using reflection of laser light, and it is preferable to use an infrared (IR) laser. The sonar 509 is a unit that measures the distance between the drone body and the ground surface using reflection of sound waves such as ultrasonic waves.
 これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていることが望ましい。同一目的の複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 These sensors may be selected according to the cost objectives and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind sensor for measuring wind power, and the like may be added. Also, it is desirable that these sensors are duplicated or multiplexed. When there are a plurality of sensors for the same purpose, the flight controller 501 may use only one of them, and may switch to an alternative sensor when it fails. Alternatively, a plurality of sensors may be used simultaneously, and if the respective measurement results do not match, it may be determined that a failure has occurred.
 流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられていることが望ましい。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。障害物検知カメラ513はドローン障害物を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別に装着されている。 The flow rate sensor 510 is a means for measuring the flow rate of the medicine, and is desirably provided at a plurality of locations on the path from the medicine tank 104 to the medicine nozzle 103. The liquid shortage sensor 511 is a sensor that detects that the amount of the medicine has become equal to or less than a predetermined amount. The multispectral camera 512 is a unit that captures the image of the field 403 and acquires data for image analysis. The obstacle detection camera 513 is a camera for detecting a drone obstacle, and is mounted separately from the multispectral camera 512 because the image characteristics and the lens direction are different from those of the multispectral camera 512.
 スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または他のドローン等の障害物に接触したことを検知するためのセンサーである。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。 The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, particularly its rotor or propeller guard portion, has come into contact with an obstacle such as an electric wire, a building, a human body, a tree, a bird, or another drone. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 or a cover for internal maintenance is open. The drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is open.
 これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、外部の基地局404、操縦器401、またはその他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。例えば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 セ ン サ ー These sensors may be selected according to the cost targets and performance requirements of the drone, and may be duplicated or multiplexed. Further, a sensor may be provided at the external base station 404, the pilot 401, or another place, and the read information may be transmitted to the drone. For example, a wind sensor may be provided in the base station 404 to transmit information about the wind and the wind direction to the drone 100 via Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況、例えば、回転数等は、フライトコントローラー501にフィードバックされる構成となっていることが望ましい。 (4) The flight controller 501 transmits a control signal to the pump 106 to adjust the amount of medicine to be ejected and to stop the ejection of medicine. It is desirable that the current state of the pump 106, for example, the number of revolutions, be fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態、特にエラー状態を知らせるための出力手段である。Wi-Fi子機機能519は操縦器401とは別に、例えば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。 The LED 107 is display means for notifying the drone operator of the status of the drone. A display means such as a liquid crystal display may be used instead of or in addition to the LED. The buzzer 518 is an output unit for notifying a drone state, particularly an error state, by an audio signal. The Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, separately from the controller 401.
 Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態、特にエラー状態を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態、特にエラー状態を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 Instead of or in addition to the Wi-Fi slave function, other wireless communication means such as infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection may be used. May be used. The speaker 520 is an output unit that notifies a drone state, particularly an error state, by using a recorded human voice or a synthesized voice. Depending on the weather conditions, the visual display of the drone 100 during flight may be difficult to see, and in such a case, voice communication of the situation is effective. The warning light 521 is a display means such as a strobe light for notifying a drone state, particularly an error state. These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
 [弛緩センサー]
 次に、本発明の特徴的な構成部分について説明する。図11に示すように、前述の各種センサーに加えて、弛緩センサー530が設けられていて、弛緩センサー530の検出信号がフライトコントローラー501に入力されるように構成されている。弛緩センサー530は、前記第1支持アーム10,20、第2支持アーム11,12,21,22を有してなるフレームを主体とする機体の構造部品の緩みやがたつきを検出するセンサーである。また、後述する通り、弛緩センサー530は、ドローン機体の基板の収容空間内部に配置されていてもよい。
[Relaxation sensor]
Next, the characteristic components of the present invention will be described. As shown in FIG. 11, in addition to the various sensors described above, a relaxation sensor 530 is provided, and a detection signal of the relaxation sensor 530 is input to the flight controller 501. The relaxation sensor 530 is a sensor that detects looseness or rattling of a structural component of a body mainly composed of a frame having the first support arms 10 and 20 and the second support arms 11, 12, 21 and 22. is there. Further, as described later, the relaxation sensor 530 may be arranged inside the accommodation space of the substrate of the drone body.
 弛緩センサー530として、例えば、マイクロホンを利用することができる。機体の構造部品に緩みやがたつきなどがない正常な状態と、緩みやがたつきなどが生じている場合とでは、プロペラが回転駆動されているときに発せられる音乃至は騒音に違いが生じる。正常時と異常時の音乃至は騒音の違いは、主として周波数の違いであったり、異常時のみに生じる異音であったりする。そこで、ドローンの騒音を検出するマイクロホンをドローンに装着しておき、マイクロホンで電気音響変換された検出信号を処理して異常を検出する。 マ イ ク ロ As the relaxation sensor 530, for example, a microphone can be used. There is a difference in the sound or noise emitted when the propeller is driven to rotate between a normal condition where there is no looseness or rattling of the structural components of the aircraft and a case where there is loosening or rattling. Occurs. The difference between the sound or noise in the normal state and the abnormal state is mainly a difference in frequency or an abnormal sound generated only in the abnormal state. Therefore, a microphone for detecting the noise of the drone is attached to the drone, and the detection signal converted into electroacoustic by the microphone is processed to detect an abnormality.
 マイクロホンの出力信号を周波数帯域ごとにフィルタ処理し、特定の周波数帯域に異常がみられる場合は、機体に緩みやがたつきが生じているものと判断することができる。あるいは正常時の検出信号と対比し、正常時には表れない異常な信号が検出された場合も、機体に緩みやがたつきが生じているものと判断することができる。マイクロホンの出力信号による機体の緩みやがたつきの判断手法は、これらの手法に限らず、他の手法を用いてもよい。 フ ィ ル タ The output signal of the microphone is filtered for each frequency band, and if an abnormality is found in a specific frequency band, it can be determined that the body is loose or rattling. Alternatively, when an abnormal signal that does not appear in a normal state is detected in comparison with a detection signal in a normal state, it can be determined that the machine body is loosened or rattled. The method of determining looseness and rattling of the body based on the output signal of the microphone is not limited to these methods, and other methods may be used.
 特に、マイクロホンを利用した弛緩センサー530は、後述する加速度センサー、6軸ジャイロセンサー505、角速度センサー等のドローンの飛行制御に用いられるセンサー(以下、便宜的に「既存センサー」ともいう。)を兼用して弛緩センサーを構成する場合と比較して、高いサンプリング周波数を有する。 In particular, the relaxation sensor 530 using a microphone also serves as a sensor (hereinafter, also referred to as an “existing sensor” for convenience) used for flight control of the drone, such as an acceleration sensor, a 6-axis gyro sensor 505, and an angular velocity sensor described later. It has a higher sampling frequency as compared with the case where a relaxation sensor is configured by using the above-described method.
 既存センサーのサンプリング周波数は、ドローン機体の制御周期に依存しており、例えば100Hz程度である。これに対し、ドローンの経年劣化により増加する振動が有する周波数の帯域は1kHzから2kHzの高周波数帯域である。この周波数帯域の振動は、例えばシリコンワッシャ等のゲルワッシャ、もしくはフレーム間又は基板を固定するブッシュが緩んでくることにより生じる。また、この周波数帯域の振動は、基板上の素子に影響を及ぼす振動であり、不良なはんだ付けを破断する等、故障につながるおそれの大きい振動である。 サ ン プ リ ン グ The sampling frequency of the existing sensor depends on the control cycle of the drone aircraft, and is, for example, about 100 Hz. On the other hand, the frequency band of the vibration that increases due to the aged deterioration of the drone is a high frequency band of 1 kHz to 2 kHz. The vibration in this frequency band is caused, for example, by a gel washer such as a silicon washer or a bush between frames or fixing a substrate becoming loose. Further, the vibration in this frequency band is a vibration that affects the elements on the substrate, and is a vibration that has a high possibility of causing a failure such as breakage of defective soldering.
 センサーは、ナイキスト周波数より十分低い、サンプリング周波数の3分の1程度の周波数までを検出可能範囲として使用することが一般的である。したがって、上述の周波数帯域の振動を既存センサーによって検出することは困難である。また、既存センサーのサンプリング周波数を高いものとすると、ドローン機体の制御周期を変更することになり、他の構成への影響が大きい。したがって、既存センサーよりも高いサンプリング周波数で駆動するマイクロホンを別途備えることにより、ドローン機体の制御周期とは独立して高周波数帯域の振動を計測することができる。 The sensor generally uses a frequency that is sufficiently lower than the Nyquist frequency and about one third of the sampling frequency as a detectable range. Therefore, it is difficult to detect the above-mentioned vibration in the frequency band by the existing sensor. In addition, if the sampling frequency of the existing sensor is set to be high, the control cycle of the drone body will be changed, which has a great influence on other configurations. Therefore, by separately providing a microphone driven at a higher sampling frequency than the existing sensor, vibration in a high frequency band can be measured independently of the control cycle of the drone body.
 マイクロホンのサンプリング周波数は、少なくとも1kHzから2kHzの周波数を十分計測できる周波数、例えば6kHz以上であればよく、可聴領域を収音可能なマイクロホンであってよい。 The sampling frequency of the microphone may be a frequency capable of sufficiently measuring at least a frequency of 1 kHz to 2 kHz, for example, 6 kHz or more, and may be a microphone capable of collecting sound in an audible region.
 なお、弛緩センサー530は、互いに異なる周波数帯域の振動を検知する複数のセンサーが組み合わされて構成されていてもよい。 Note that the relaxation sensor 530 may be configured by combining a plurality of sensors that detect vibrations in different frequency bands.
 マイクロホンは、ドローン機体内部、特に基板の収容空間の内部に配置されている。また、マイクロホンは、既存センサーのデータが記録される記録領域とは別の記録媒体に接続され、マイクロホンによる収音データは当該記録媒体に記憶される。マイクロホンが基板の収容空間の内部に配置されている構成によれば、マイクロホンが機体外部に露出されている構成に比べて、マイクロホンが埃や水により汚れるのを防ぐことができる。また、機体外部からの音からマイクロホンを隔離し、ドローン機体外部で生じるノイズの収音を防ぐことができる。 The microphone is located inside the drone fuselage, especially inside the accommodation space for the substrate. Further, the microphone is connected to a recording medium different from a recording area in which data of the existing sensor is recorded, and sound collection data by the microphone is stored in the recording medium. According to the configuration in which the microphone is arranged inside the accommodation space of the substrate, the microphone can be prevented from being stained with dust or water, as compared with the configuration in which the microphone is exposed outside the body. In addition, the microphone can be isolated from the sound from the outside of the drone, so that the collection of noise generated outside the drone can be prevented.
 ドローンの機体に弛緩がみられる場合、ドローンに装着されている加速度センサーの出力信号に異常が生じる。そこで、弛緩センサー530として、加速度センサーを用いてもよい。加速度センサーは、機体の弛緩検出専用のものとして装着してもよいし、前記6軸ジャイロセンサー505を弛緩センサー530として兼用させてもよい。6軸ジャイロセンサー505を弛緩センサー530として兼用させる場合、6軸ジャイロセンサー505の加速度センサーはもちろん、角速度センサーも弛緩センサー530として兼用させることができる。 場合 If the drone's body is loose, the output signal of the acceleration sensor attached to the drone will be abnormal. Therefore, an acceleration sensor may be used as the relaxation sensor 530. The acceleration sensor may be mounted as a dedicated device for detecting the relaxation of the body, or the six-axis gyro sensor 505 may also be used as the relaxation sensor 530. When the six-axis gyro sensor 505 is also used as the relaxation sensor 530, not only the acceleration sensor of the six-axis gyro sensor 505 but also the angular velocity sensor can be used as the relaxation sensor 530.
 弛緩センサー530の装着位置は任意であるが、機体の緩みやがたつきなどを効果的に検出することができる位置であることが望ましい。既に説明した実施例に係るドローンの機体は、第1、第2の支持アームを有するフレームが上下に対をなし、上下のフレームが柱によって結合されている。上下に対をなすフレームはそれぞれ補強梁を有することにより台形状の立体空間を構成している。この台形状の立体空間の内側に弛緩センサー530が配置されている。より具体的には、上記台形状の立体空間には胴体50が配置されており、この胴体50内に弛緩センサー530が配置されている。 (4) The attachment position of the relaxation sensor 530 is arbitrary, but it is desirable that the attachment position be a position where the looseness and rattling of the body can be effectively detected. In the drone body according to the above-described embodiment, the frames having the first and second support arms form a vertical pair, and the upper and lower frames are connected by columns. The upper and lower pairs of frames each have a reinforcing beam to form a trapezoidal three-dimensional space. The relaxation sensor 530 is arranged inside the trapezoidal three-dimensional space. More specifically, a body 50 is arranged in the trapezoidal three-dimensional space, and a relaxation sensor 530 is arranged in the body 50.
 6軸ジャイロセンサー505が弛緩センサー530を兼用する場合、既に説明したように、胴体50内に6軸ジャイロセンサー505が配置される。胴体50内には、前記バッテリー55、バッテリー受け部材152、バッテリー締め具154などの振動抑制部品を含む部品を搭載する部品搭載部が配置されている。部品搭載部は上下方向に層をなしており、前記振動抑制部品が装着されている層の下の層に前記6軸センサーが配置されている。したがって、6軸ジャイロセンサー505が前記弛緩センサーを兼ねている場合、この弛緩センサーは、胴体50内に、かつ、振動抑制部品の装着部の下側に配置されている。 When the 6-axis gyro sensor 505 also serves as the relaxation sensor 530, the 6-axis gyro sensor 505 is disposed in the body 50 as described above. In the body 50, a component mounting portion for mounting components including vibration suppressing components such as the battery 55, the battery receiving member 152, and the battery fastener 154 is arranged. The component mounting portion is vertically layered, and the six-axis sensor is arranged in a layer below the layer on which the vibration suppressing component is mounted. Therefore, when the six-axis gyro sensor 505 also functions as the relaxation sensor, the relaxation sensor is disposed in the body 50 and below the mounting portion of the vibration suppression component.
 [退避行動]
 前記フレームを有してなるドローンの機体の構造部品に緩みやがたつきが生じると、機体が異音を発生する。異音は、正常な状態とは異なる周波数帯の音であったり、突発的に、あるいは不規則的に発生する音であったりする。この異音を、前記マイクロホンや加速度センサーなどからなる弛緩センサー530(図11参照)が検出し、異常信号を出力する。フライトコントローラー501は、弛緩センサー530から異常検出信号が入力されると、前記ESCを介して前記各プロペラ駆動モーター102-1a~102-4bの回転を制御してドローンに退避行動を行わせる。
[Evacuation behavior]
If the structural components of the body of the drone having the frame become loose or rattle, the body generates abnormal noise. The abnormal noise is a sound in a frequency band different from a normal state, or a sound generated suddenly or irregularly. The abnormal sound is detected by the relaxation sensor 530 (see FIG. 11) including the microphone, the acceleration sensor, and the like, and an abnormal signal is output. When an abnormality detection signal is input from the relaxation sensor 530, the flight controller 501 controls the rotation of each of the propeller drive motors 102-1a to 102-4b via the ESC to cause the drone to perform an evacuation action.
 退避行動は緊急帰還、緊急着陸または緊急停止のいずれかであり、フライトコントローラー501は異音の程度すなわち弛緩センサー530の異常検出信号強度に応じて上記いずれかの退避行動を行わせる。異音が比較的軽微であれば緊急帰還、異音が中程度であれば緊急着陸、異音の強度が高い場合は緊急停止させる。緊急帰還とは、例えば離陸した元の位置に戻って着陸することである。緊急着陸とはその場で着陸させることである。緊急停止とは、すべてのプロペラ駆動モーターを停止させ、その場で墜落させることである。ドローンが制御不能になるよりも、墜落させる方が安全であるからである。 The evacuation action is any of emergency return, emergency landing, and emergency stop, and the flight controller 501 causes any of the above-described evacuation actions according to the degree of abnormal noise, that is, the strength of the abnormality detection signal of the relaxation sensor 530. Emergency return is performed if the noise is relatively slight, emergency landing is performed if the noise is moderate, and emergency stop is performed if the noise is strong. The emergency return is, for example, returning to the original position from which the aircraft has taken off and landing. Emergency landing is landing on the spot. Emergency stop means stopping all propeller drive motors and crashing on the spot. It is safer to crash the drone than to lose control.
 退避行動の一つとして、一旦ホバリングを行わせ、ホバリング中に弛緩センサー530による異常検出信号が消滅した場合は通常の稼働状態に復帰させるようにしてもよい。ホバリング中も弛緩センサー530から異常検出信号が出力される場合は、異常検出信号強度に応じて、緊急帰還、緊急着陸または緊急停止のいずれかを行わせる。 As one of the evacuation actions, hovering may be performed once, and when the abnormality detection signal from the relaxation sensor 530 disappears during hovering, the hovering may be returned to a normal operation state. When an abnormality detection signal is output from the relaxation sensor 530 during hovering, one of emergency return, emergency landing, and emergency stop is performed according to the intensity of the abnormality detection signal.
 退避行動をとらせる場合、フライトコントローラー501は、ポンプ106を停止させて薬剤の散布を停止させる。また、フライトコントローラー501は、LED107や警告灯521を作動させて、緊急事態を視覚的に表示し、ブザー518やスピーカー520を作動させて、緊急事態を音響的に表示してもよい。 フ ラ イ ト When the evacuation action is taken, the flight controller 501 stops the pump 106 to stop spraying the medicine. Further, the flight controller 501 may activate the LED 107 and the warning light 521 to visually display the emergency, and may activate the buzzer 518 and the speaker 520 to acoustically display the emergency.
 以上説明したように、本発明に係る飛行体の実施例によれば、機体構造部品の緩みやがたつきが生じると、これを弛緩センサーが検出して異常信号を出力する。異常信号の出力によりドローンは退避行動をとるため、機体構造部品の緩みやがたつきを原因とする各種制御精度の低下により生ずる不具合を事前に回避することができる。前記不具合とは、予定されている飛行経路からの離脱、飛行高度のばらつき、姿勢制御や速度制御のばらつきなどがあり、場合によっては障害物への衝突などもあるが、本実施例によれば、かかる不具合を回避することができる。 As described above, according to the embodiment of the flying body according to the present invention, when the structural members of the airframe are loosened or rattled, the relaxed sensor detects the loosened or rattled and outputs an abnormal signal. Since the drone performs the evacuation action by the output of the abnormal signal, it is possible to avoid in advance the problems caused by the deterioration of various control accuracy due to the looseness and rattling of the body structural parts. The faults include departure from the planned flight path, variations in flight altitude, variations in attitude control and speed control, and in some cases, collisions with obstacles, but according to the present embodiment. Thus, such a problem can be avoided.
 以上、本説明の実施例として、農業用薬剤散布ドローンを例に挙げて説明したが、本発明の技術的思想はこれに限られるものではなく、ドローン全般に適用可能である。 As described above, the agricultural chemical spraying drone has been described as an example of the present embodiment, but the technical idea of the present invention is not limited to this, and can be applied to drones in general.
 10  第1支持アーム
 11  第2支持アーム
 12  第2支持アーム
 13  補強梁
 20  第1支持アーム
 21  第2支持アーム
 22  第2支持アーム
 23  補強梁
 50  胴体
 51  底板
 60  GPSセンサー
 153  バッテリー装着空間
 530  弛緩センサー
 
10 First Support Arm 11 Second Support Arm 12 Second Support Arm 13 Reinforcement Beam 20 First Support Arm 21 Second Support Arm 22 Second Support Arm 23 Reinforcement Beam 50 Body 51 Bottom Plate 60 GPS Sensor 153 Battery Mounting Space 530 Relaxation Sensor

Claims (12)

  1.  機体と、前記機体に搭載されていて複数のプロペラを個別に回転駆動する複数のプロペラ駆動モーターと、を有し、前記機体は、前記複数のプロペラ駆動モーターを支持するフレームを有する飛行体であって、
     前記フレームを含む前記機体の構造部品の緩みやがたつきを検出する弛緩センサーが機体に取り付けられ、
     前記弛緩センサーが異常信号を出力したとき、退避行動を行う飛行体。
    An airframe having an airframe, and a plurality of propeller drive motors mounted on the airframe and individually driving a plurality of propellers, wherein the airframe has a frame supporting the plurality of propeller drive motors. hand,
    A relaxation sensor that detects looseness and rattling of structural parts of the body including the frame is attached to the body,
    A flying object that performs an evacuation action when the relaxation sensor outputs an abnormal signal.
  2.  前記弛緩センサーはマイクロホンであり、前記マイクロホンが異音を検出したとき退避行動を行う請求項1記載の飛行体。 The flying object according to claim 1, wherein the relaxation sensor is a microphone, and performs an evacuation action when the microphone detects abnormal noise.
  3.  前記異音は、正常時に生じる周波数帯の音とは異なる周波数帯の音である請求項2記載の飛行体。 The flying object according to claim 2, wherein the abnormal noise is a sound in a frequency band different from a sound in a frequency band generated in a normal state.
  4.  前記弛緩センサーは加速度センサーであり、前記加速度センサーが異常な加速度を検出したとき退避行動を行う請求項1記載の飛行体。 The flying object according to claim 1, wherein the relaxation sensor is an acceleration sensor, and performs an evacuation action when the acceleration sensor detects abnormal acceleration.
  5.  前記加速度センサーは、機体の姿勢を制御するための6軸センサーが兼ねている請求項4記載の飛行体。 The aircraft according to claim 4, wherein the acceleration sensor is also used as a six-axis sensor for controlling the attitude of the aircraft.
  6.  前記フレームは、一つの第1支持アームと、前記第1支持アームの長さ方向の途中から斜めに対称形に伸びる二つの第2支持アームとを有してなり、前記第1支持アームの両端部および前記第2支持アームの先端部でそれぞれ前記プロペラ駆動モーターを支持している請求項1乃至5のいずれかに記載の飛行体。 The frame includes one first support arm, and two second support arms that extend obliquely symmetrically from the middle of the length of the first support arm, and both ends of the first support arm. The flying object according to any one of claims 1 to 5, wherein the propeller drive motor is supported by a portion and a tip portion of the second support arm, respectively.
  7.  前記二つの第2支持アームは、それぞれの先端部が広がる方向に前記第1支持アームから延びている請求項6記載の飛行体。 7. The flying object according to claim 6, wherein the two second support arms extend from the first support arm in a direction in which respective tip portions spread.
  8.  前記フレームは、前記二つの第2支持アームを長さ方向の途中位置で連結する補強梁を有する請求項6または7記載の飛行体。 8. The flying object according to claim 6, wherein the frame has a reinforcing beam that connects the two second support arms at an intermediate position in a length direction. 9.
  9.  前記第1支持アームと前記第2支持アームと前記補強梁を有してなる前記フレームが上下に配置され、上下の前記フレームが柱によって結合され、前記第1支持アーム、前記第2支持アーム、前記補強梁によって台形状の立体空間を構成し、前記立体空間内に前記弛緩センサーが配置されている請求項8記載の飛行体。 The first support arm, the second support arm, and the frame having the reinforcing beam are vertically arranged, and the upper and lower frames are connected by columns, and the first support arm, the second support arm, The flying object according to claim 8, wherein a trapezoidal three-dimensional space is formed by the reinforcing beams, and the relaxation sensor is disposed in the three-dimensional space.
  10.  前記プロペラは、平面視において前後左右の計4か所に配置され、前後のプロペラ間隔よりも左右のプロペラ間隔が広く、前記左右のプロペラの間に振動抑制部品を含む部品を搭載する部品搭載部が配置されている請求項1乃至9のいずれかに記載の飛行体。 The propellers are arranged at a total of four places in front, rear, left and right in a plan view, and the left and right propeller intervals are wider than the front and rear propeller intervals, and a component mounting unit for mounting a component including a vibration suppression component between the left and right propellers. The flying object according to any one of claims 1 to 9, wherein is disposed.
  11.  前記部品搭載部は上下方向に層をなしており、前記振動抑制部品が装着されている層の下の層に前記弛緩センサーが配置されている請求項10記載の飛行体。 11. The flying object according to claim 10, wherein the component mounting portion is vertically layered, and the relaxation sensor is disposed in a layer below the layer on which the vibration suppression component is mounted.
  12.  前記退避行動は、緊急帰還、緊急着陸または緊急停止のいずれかである請求項1乃至11のいずれかに記載の飛行体。
     
    The flying object according to any one of claims 1 to 11, wherein the evacuation action is one of an emergency return, an emergency landing, and an emergency stop.
PCT/JP2019/027453 2018-07-11 2019-07-11 Flight vehicle WO2020013264A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530250A JP6811976B2 (en) 2018-07-11 2019-07-11 Aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018131776 2018-07-11
JP2018-131776 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020013264A1 true WO2020013264A1 (en) 2020-01-16

Family

ID=69142619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027453 WO2020013264A1 (en) 2018-07-11 2019-07-11 Flight vehicle

Country Status (2)

Country Link
JP (1) JP6811976B2 (en)
WO (1) WO2020013264A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112061408A (en) * 2020-09-17 2020-12-11 广州鼎奥科技有限公司 Unmanned aerial vehicle with gasbag protection device
WO2021161755A1 (en) * 2020-02-14 2021-08-19 株式会社デンソー Electric drive system control device
WO2023272445A1 (en) * 2021-06-28 2023-01-05 深圳市大疆创新科技有限公司 Frame, stand, and unmanned aerial vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082774A (en) * 2004-09-17 2006-03-30 Hiroboo Kk Unmanned flying object and its controlling method
JP2011046355A (en) * 2009-08-28 2011-03-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Flying body
US20170183074A1 (en) * 2015-12-29 2017-06-29 Qualcomm Incorporated Unmanned aerial vehicle structures and methods
WO2017115669A1 (en) * 2015-12-31 2017-07-06 日本電産サーボ株式会社 Multicopter
WO2017123347A2 (en) * 2015-12-11 2017-07-20 Amazon Technologies, Inc. Feathering propeller clutch mechanisms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100651A (en) * 2015-12-04 2017-06-08 株式会社Soken Flight device
WO2017206032A1 (en) * 2016-05-30 2017-12-07 SZ DJI Technology Co., Ltd. Operational parameter based flight restriction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082774A (en) * 2004-09-17 2006-03-30 Hiroboo Kk Unmanned flying object and its controlling method
JP2011046355A (en) * 2009-08-28 2011-03-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Flying body
WO2017123347A2 (en) * 2015-12-11 2017-07-20 Amazon Technologies, Inc. Feathering propeller clutch mechanisms
US20170183074A1 (en) * 2015-12-29 2017-06-29 Qualcomm Incorporated Unmanned aerial vehicle structures and methods
WO2017115669A1 (en) * 2015-12-31 2017-07-06 日本電産サーボ株式会社 Multicopter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161755A1 (en) * 2020-02-14 2021-08-19 株式会社デンソー Electric drive system control device
JP2021129436A (en) * 2020-02-14 2021-09-02 株式会社デンソー Control device of electric drive system
JP7230848B2 (en) 2020-02-14 2023-03-01 株式会社デンソー Controller for electric drive system
CN112061408A (en) * 2020-09-17 2020-12-11 广州鼎奥科技有限公司 Unmanned aerial vehicle with gasbag protection device
CN112061408B (en) * 2020-09-17 2022-05-24 广州鼎奥科技有限公司 Unmanned aerial vehicle with gasbag protection device
WO2023272445A1 (en) * 2021-06-28 2023-01-05 深圳市大疆创新科技有限公司 Frame, stand, and unmanned aerial vehicle

Also Published As

Publication number Publication date
JP6811976B2 (en) 2021-01-13
JPWO2020013264A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2020013264A1 (en) Flight vehicle
JP6744615B2 (en) Flying body
JPWO2019168042A1 (en) Drone, its control method, and program
JP6733948B2 (en) Drone, its control method, and control program
JP6727525B2 (en) Drone, drone control method, and drone control program
WO2006106730A1 (en) Fuselage information display panel
JP6913980B2 (en) Aircraft and frame of air vehicle
WO2020137554A1 (en) Drone, method of controlling drone, and drone control program
WO2020116442A1 (en) Moving body
WO2020116392A1 (en) Drone system, drone, movable body, drone system control method, and drone system control program
WO2020209255A1 (en) Drone system, drone, control device, drone system control method, and drone system control program
JP6913979B2 (en) Drone
JP6745519B2 (en) Drone, drone control method, and drone control program
JP6979729B2 (en) Flying object
JPWO2019168052A1 (en) Drone, its control method, and program
WO2021166140A1 (en) Drone
JP6806403B2 (en) Drones, drone control methods, and drone control programs
JP7333947B2 (en) Drone, drone control method, and drone control program
WO2020090671A1 (en) Drone, drone control method, and drone control program
WO2020116494A1 (en) Drone system
WO2020116341A1 (en) Drone system
WO2021161392A1 (en) Drone
WO2019189077A1 (en) Drone, control method thereof, and program
WO2021161393A1 (en) Drone
JP7329858B2 (en) drone system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530250

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833463

Country of ref document: EP

Kind code of ref document: A1