WO2021166140A1 - Drone - Google Patents

Drone Download PDF

Info

Publication number
WO2021166140A1
WO2021166140A1 PCT/JP2020/006685 JP2020006685W WO2021166140A1 WO 2021166140 A1 WO2021166140 A1 WO 2021166140A1 JP 2020006685 W JP2020006685 W JP 2020006685W WO 2021166140 A1 WO2021166140 A1 WO 2021166140A1
Authority
WO
WIPO (PCT)
Prior art keywords
generating element
heat generating
main body
drone
cooling plate
Prior art date
Application number
PCT/JP2020/006685
Other languages
French (fr)
Japanese (ja)
Inventor
小山 貴嗣
Original Assignee
株式会社ナイルワークス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナイルワークス filed Critical 株式会社ナイルワークス
Priority to PCT/JP2020/006685 priority Critical patent/WO2021166140A1/en
Priority to JP2022501493A priority patent/JPWO2021166140A1/ja
Publication of WO2021166140A1 publication Critical patent/WO2021166140A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/90Cooling

Definitions

  • the invention of the present application relates to a drone.
  • Patent Document 2 describes that the chassis is bent into an L shape and the heat generating parts and the cooling plate are arranged at positions close to the bent positions.
  • Patent Document 3 describes that a power element is attached to the outer edge of the substrate.
  • Patent Document 4 describes an assembly structure of a circuit board with a heat radiating plate in which a heat radiating plate to which a heat-generating electronic component is attached is attached to the circuit board and the surface of the heat radiating plate is brought into contact with the surface of a housing made of a thermally good conductor.
  • Patent Document 5 describes a printed circuit board mounting bracket capable of fixing a heating element by providing a raised portion.
  • Patent Document 6 describes a substrate mounting method in which a heat radiating member is provided in contact with a heat generating electronic component and the heat radiating member is brought into contact with an inner wall surface of a housing.
  • Patent Document 7 describes an assembly of electric parts in which heat-generating electric parts requiring a heat dissipation structure are attached to the inner side wall of a side plate of a case.
  • the drone according to one aspect of the present invention is provided with a main body equipped with a control unit for controlling the lift generating unit and a position surrounding the main body when viewed from above the main body, and constitutes the lift generating unit.
  • a plurality of rotor blades, a high heat generating element, and a low heat generating element having a smaller heat generation amount than the high heat generating element, which form at least a part of the housing of the main body, are arranged on the inner surface of the housing.
  • the low heat generating element is arranged in the central portion of the cooling plate, and the high heat generating element is arranged around the low heat generating element.
  • the high heat generating element may be held at a position closer to the side wall of the housing adjacent to the cooling plate than the low heat generating element.
  • a camera module provided at the front portion in the traveling direction of the main body is further provided, the high heat generating element includes a camera substrate for driving the camera module, and the camera substrate is arranged in front of the traveling direction of the low heat generating element. It may be a thing.
  • the high heat generating element may include a motor control device for controlling the rotation speed of the rotary blade, and the motor control device may be arranged sideways in the traveling direction of the low heat generating element.
  • a power source mounting portion that holds a power source inside the main body and rearward in the traveling direction is further provided, and the high heat generating element includes a power supply board that distributes power supplied from the power source.
  • the low heat generating element may be arranged behind in the traveling direction.
  • the power supply board includes a low voltage region that generates a first voltage from the power source and a high voltage region that generates a voltage higher than the first voltage, and the low voltage region is a central portion of the cooling plate.
  • the high voltage region may be arranged around the low voltage region.
  • the power supply board may include a plurality of high voltage regions, and the plurality of high voltage regions may be arranged on both sides of the low voltage region.
  • the voltage output terminal provided in the high voltage region may be connected to the high heat generating element arranged on the side in the traveling direction of the low heat generating element via wiring.
  • a drone is provided with a main body equipped with a control unit for controlling a lift generating unit and a position surrounding the main body when viewed from above the main body, and constitutes the lift generating unit.
  • the cooling plate includes a base portion and a rising portion bent from the base portion, and at least a part of the high heat generating element is joined to the rising portion.
  • the cooling plate has the rising portions on both sides in the traveling direction, the plurality of rotary blades are arranged on both sides of the main body, and the high heat generating element is the rotation speed of the plurality of rotary blades.
  • Each of the plurality of motor control devices may be included, and the plurality of motor control devices may be arranged on each of the rising portions on both sides.
  • a power source mounting portion that holds the power source may be further provided so that the power source is arranged in at least a part of the space surrounded by the rising portion and the base portion.
  • the cooling plate further includes a front rising portion bent from the base portion in the front portion in the traveling direction, further includes a camera module provided in the front portion in the traveling direction of the main body, and the high heat generating element includes the camera module.
  • the camera board may be arranged at the front rising portion, including the camera board to be driven.
  • the high heat generating element includes a power supply board that distributes power supplied from the power source, and the power supply board includes a low voltage region that generates a first voltage from the power source and a voltage higher than the first voltage.
  • the low voltage region may be arranged at the base portion, and at least a part of the high voltage region may be arranged at the rising portion.
  • the cooling plate further includes a rear rising portion that is bent from the base portion at the rear portion in the traveling direction, and the high heat generating element includes a power supply board that distributes electric power supplied from the power source, and at least the power supply board. A part may be arranged at the rear rising portion.
  • the heat generating element can be cooled in the drone with a simple configuration.
  • the traveling direction of the drone on the horizontal plane is defined as the + x direction
  • the direction orthogonal to the x direction on the horizontal plane from left to right when viewed from the front is defined as the + y direction
  • the vertically upward direction is defined as the + z direction.
  • the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
  • the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption.
  • Each rotor 101 is arranged on all sides of the main body 110 by an arm protruding from the main body 110 of the drone 100 aircraft, that is, at a position surrounding the main body 110 when viewed from above.
  • the rotors 101-1a and 101-1b are on the left rear side in the direction of travel, the rotor blades 101-2a and 101-2b are on the left front side, the rotor blades 101-3a and 101-3b are on the right rear side, and the rotor blades 101- are on the right front side. 4a and 101-4b are arranged respectively.
  • the rotor 101 constitutes a lift generating portion.
  • the drone 100 has the traveling direction facing downward on the paper in FIG.
  • a grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter.
  • the radial members for supporting the propeller guard have a wobbling structure rather than a horizontal structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
  • Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
  • Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one rotor is provided for each rotor. Has been done.
  • Motor 102 is an example of a propulsion device.
  • the upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc.
  • the axes are on the same straight line and rotate in opposite directions.
  • Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles.
  • the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
  • the tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance.
  • the hoses 105-1, 105-2, 1053, 105-4 are means for connecting the tank 104 and the nozzles 103-1, 103-2, 103-3, 103-4, and are made of a hard material. Therefore, it may also serve as a support for the nozzle.
  • the pump 106 is a means for discharging the sprayed material from the nozzle.
  • FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention.
  • This figure is a schematic view, and the scale is not accurate.
  • the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400.
  • These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire.
  • the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
  • Drone 100 and base station 404 communicate with GNSS positioning satellite 410 such as GPS to acquire drone 100 and base station 404 coordinates. There may be a plurality of positioning satellites 410 with which the drone 100 and the base station 404 communicate.
  • the operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program.
  • the actuator 401 includes an input unit and a display unit as a user interface device.
  • the drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency.
  • an emergency operation device (not shown) having a function dedicated to emergency stop may be used.
  • the emergency operation device may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly.
  • the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone.
  • the small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
  • Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, there may be intruders such as buildings and electric wires in the field 403.
  • Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the RTK-GNSS base station may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
  • the server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like.
  • the server 405 may be configured by a hardware device.
  • the server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route.
  • the topographical information of the stored field 403 may be provided to the drone 100.
  • the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
  • the small mobile terminal is, for example, a smart phone.
  • information on the expected operation of the drone 100 more specifically, the scheduled time when the drone 100 will return to the departure / arrival point, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
  • the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material.
  • the flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff.
  • the departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
  • FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention.
  • the flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like.
  • the flight controller 501 is an example of a control unit.
  • the flight controller 501 has ESC (Electronic Speed Control) 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h, etc. based on the input information received from the controller 401 and the input information obtained from various sensors described later.
  • ESC Electrical Speed Control
  • ESC22a to 22h are connected to motors 102-1a to 102-4b, respectively.
  • ESC22a to 22h include, for example, an inverter circuit.
  • the actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored.
  • the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
  • the software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by malicious software is not performed.
  • a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
  • the flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking.
  • the base station 404 also has an RTK-GPS base station function in addition to a communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
  • the 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration.
  • the 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity.
  • the geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism.
  • the barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone.
  • the laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser.
  • the sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed.
  • the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
  • the flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103.
  • the liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
  • Drone 100 is equipped with a camera module 522.
  • the camera module 522 has, for example, the functions of a growth diagnosis camera 512a, a pathology diagnosis camera 512b, and an obstacle detection camera 513.
  • the growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis.
  • the growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other.
  • the plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm).
  • the growth diagnosis camera 512a may be a camera that receives visible light.
  • the pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis.
  • the pathological diagnosis camera 512b is, for example, a red light camera.
  • the red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm.
  • the pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light.
  • the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects light amounts of at least three wavelengths in the visible light band.
  • the pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
  • the growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
  • the obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathological diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathological diagnosis camera 512b? Another device.
  • the switch 514 is a means for the user 402 of the drone 100 to make various settings.
  • the obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. ..
  • the obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505.
  • the cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state.
  • the inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is
  • sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed.
  • a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone.
  • the base station 404 may be provided with a wind sensor to transmit information on wind power and wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
  • the flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge.
  • the current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
  • the LED107 is a display means for notifying the drone operator of the drone status.
  • Display means such as a liquid crystal display may be used in place of or in addition to the LED.
  • the buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal.
  • the communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done.
  • other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it.
  • the speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective.
  • the warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
  • a circuit board for driving the drone 100 is arranged inside the main body 110 of the drone 100 aircraft.
  • the circuit board receives power supplied from the camera board 21 that drives the camera module 522, the ESC 22a to 22h, the main control board 23 that constitutes the flight controller 501 function, and the battery 502 (see FIGS. 7 and 9).
  • ESC 22a to 22h and a power supply board 24 that distributes power to the main control board 23.
  • the camera board 21, ESC 22a to 22h, and the power supply board 24 are examples of boards on which high heat generating elements are mounted.
  • the main control board 23 is an example of a board on which a low heat generation element having a smaller heat generation amount than a high heat generation element is mounted.
  • the camera board 21, ESC22a to 22h, the main control board 23, and the power supply board 24 are arranged on the cooling plate 20.
  • the camera board 21, ESC22a to 22h, the main control board 23, and the power supply board 24 may be connected to the cooling plate 20 via a spacer or the like, or may be directly connected to the cooling plate 20 after ensuring the insulation of each element on the board. It may be placed.
  • Each substrate and the cooling plate 20 are appropriately connected in a manner having good thermal conductivity.
  • the cooling plate 20 is a thin plate that spreads in a substantially xy plane.
  • the cooling plate 20 constitutes at least a part of the housing of the main body 110, and holds the camera board 21, the ESC 22a to 22h, the main control board 23, and the power supply board 24 on a substantially xy plane.
  • the main body 110 has a shape in which the cooling plate 20 has a shape in which a partial circle is connected to one side of a rectangle in a top view, and constitutes the bottom surface of the main body 110.
  • the cooling plate 20 may be rectangular in top view.
  • the cooling plate 20 is made of a material having high thermal conductivity, for example, metal. More specifically, the cooling plate 20 uses, for example, aluminum as a main raw material. According to the structure in which the cooling plate 20 is mainly made of aluminum, it is lightweight, so that the energy consumption of the drone 100 can be saved.
  • the high heat generation element is held at a position closer to the side wall of the main body 110 adjacent to the cooling plate 20 than the low heat generation element.
  • the main control board 23 is arranged in the central portion on the cooling plate 20, and at least a part of the high heat generating elements is arranged on the outer periphery of the main control board 23.
  • rotary blades 101-1a to 101-4b are provided around the main body 110. When the rotor blades 101-1a to 101-4b rotate, an air flow in the z direction, that is, in the vertical vertical direction is generated on the side of the main body 110. This air flow promotes heat dissipation of the main body 110.
  • the position near the side wall of the main body 110 is more likely to be cooled than the central portion of the main body 110. Therefore, by arranging the high heat generating element at a position close to the side wall of the main body 110, it is possible to cool the high heat generating element by utilizing the air flow generated during flight without providing a separate cooling configuration.
  • this configuration can achieve cooling performance with a simple configuration even in a narrow space, especially. Suitable.
  • the camera board 21 is arranged in front of the cooling plate 20 in the traveling direction.
  • the camera board 21 is arranged in front of the main control board 23 in the traveling direction. Since the camera module 522 is arranged at the front portion of the main body 110 in the traveling direction, the wiring can be shortened by arranging the camera board 21 at a position corresponding to the camera module 522. By shortening the wiring, the cost of wiring, the risk of noise generation, and the risk of failure can be reduced.
  • ESC22a to ESC22h are arranged on the left and right sides of the main control board 23 on the cooling plate 20.
  • the ESCs 22a to 22d connected to the motors 102-1a to 102-2b are provided on the + y side of the main control board 23 along the x direction.
  • the ESCs 22e to 22h connected to the motors 102-3a to 102-4b, respectively, are provided on the ⁇ y side of the main control board 23 along the x direction.
  • the motors 102-1a to 102-2b are provided on the + y side of the main body 110
  • the motors 102-3a to 102-4b are provided on the ⁇ y side of the main body 110, so that the wiring can be shortened. ..
  • the power supply board 24 is arranged on the cooling plate 20 behind the main control board 23 in the traveling direction.
  • the battery 502 is arranged inside the main body 110 and above the cooling plate 20.
  • the battery 502 is an example of a power source and may be a primary battery or a fuel cell.
  • the battery 502 is located above the power supply board 24. According to this configuration, the distance between the power supply board 24 and the battery 502 is short, and the wiring can be shortened. Further, by forming the cooling plate 20 and the battery 502 into a two-layer structure, the main body 110 can be compactly configured.
  • the first battery 502a and the second battery 502b are arranged side by side.
  • the battery 502 is connected to the battery mounting portion 30.
  • the battery mounting portion 30 is provided with a terminal for taking out the voltage from the battery 502, and holds the battery 502 detachably.
  • the battery mounting unit 30 is an example of a power source mounting unit.
  • the power supply board 24 distributes the power supplied from the battery 502 into a plurality of voltages. This is because the camera board 21, ESC22a to ESC22h, and the main control board 23 are driven by different voltages. Specifically, the ESC22a to ESC22h are driven by a voltage higher than that of the main control board 23 and the camera board 21.
  • the power supply board 24 includes a low voltage region 24a that generates a first voltage from the battery 502, and a plurality of high voltage regions 24b and 24c that generate a voltage higher than the first voltage. The voltages generated by the first high voltage region 24b and the second high voltage region 24c may be equal to or different from each other.
  • the low voltage region 24a is connected to the main control board 23 and the camera board 21, and the high voltage regions 24b and 24c are connected to ESC22a to ESC22h.
  • the low voltage region 24a is arranged at the center of the cooling plate 20, and the high voltage regions 24b and 24c are arranged closer to the side wall of the main body 110 than the low voltage region 24a.
  • the plurality of high voltage regions 24b and 24c are arranged on both sides of the low voltage region 24a, and on the left and right sides in the present embodiment, respectively. Since the high voltage regions 24b and 24c generate a larger amount of heat than the low voltage regions 24a, the high voltage regions 24b and 24c can be cooled more efficiently according to this configuration.
  • the main control board 23 is also arranged in the central portion in the lateral direction of the cooling plate 20, so that the wiring can be shortened. can.
  • the voltage output terminals provided in the high voltage regions 24b and 24c supply voltage to ESC22a to ESC22h arranged on the same side in the y direction via wiring. That is, the output terminal of the high voltage region 24b arranged on the + y side on the power supply board 24 is connected to ESC22a to ESC22d arranged on the + y side side of the main control board 23. Further, the output terminal of the high voltage region 24c arranged on the ⁇ y side on the power supply board 24 is connected to the ESC22e to ESC22h arranged on the ⁇ y side side of the main control board 23. According to this configuration, each wiring connecting the power supply board 24 and the ESC22a to ESC22h can be shortened.
  • the cooling plate 20 is composed of a base portion 20e on which a heat generating element is arranged and rising portions 20a and 20b formed by bending the left and right ends of the base portion 20e upward.
  • the rising portions 20a and 20b are composed of members equivalent to the base portion 20e of the cooling plate 20.
  • the rising portions 20a and 20b may be prepared as separate members and connected to both ends of the base portion 20e.
  • the base portion 20e constitutes the bottom surface of the main body 110, and the rising portions 20a and 20b form a part of the side wall of the main body 110. According to this configuration, the rigidity of the cooling plate can be increased as compared with the flat cooling plate.
  • the heat generated from ESC22a to ESC22h is transmitted to the rising portions 20a and 20b, and is cooled by the airflow flowing outside the side wall generated by the propulsion device, that is, the rotor blades, so that the cooling of the heat generating element can be promoted.
  • the angle formed by the rising portions 20a and 20b and the base portion 20e is arbitrary, and may extend upward at an angle looser or sharper than a right angle.
  • the cooling plate 201 included in the drone according to the second embodiment is different from the first embodiment in that a high heat generating element is bonded to the rising portions 201a and 201b.
  • the same reference numerals are given to the same configurations as those in the first embodiment.
  • At least a part of the high heat generating element is bonded to the rising portions 201a and 201b.
  • ESC22a to 22d and ESC22e to 22h are joined to the rising portions 201a and 201b, respectively. According to this configuration, cooling of the high heat generating element can be further promoted through the rising portions 201a and 201b.
  • the high heat generating element bonded to the rising portions 201a and 201b may be a part of the camera substrate 21. Twice
  • the battery mounting portion 30 holds the battery 502 so that the battery 502 is arranged in at least a part of the space surrounded by the rising portions 201a, 201b and the base 201e.
  • the space surrounded by the rising portions 201a, 201b and the base 201e is a space surrounded by the rising portions 201a, 201b and the base 201e and a virtual surface formed by connecting the opposite sides of the rising portions 201a and 201b, respectively.
  • This is the space where the center of gravity 201o of the cooling plate 201 exists.
  • the center of gravity 502o of the battery 502 and the center of gravity 201o of the cooling plate 201 are close to each other. Energy consumption can be further reduced.
  • the battery mounting portion 30 may hold the battery 502 so that the center of gravity 502o of the battery 502 is located in a space surrounded by the rising portions 201a, 201b and the base 201e. According to this configuration, the center of gravity 502o of the battery 502 and the center of gravity 201o of the cooling plate 201 are closer to each other.
  • a part of the power supply board 240 is joined to the rising portions 201a and 201b.
  • the high voltage regions 240b and 240c of the power supply board 240 are arranged in the rising portions 201a and 201b, respectively, and the low voltage regions 240a are arranged in the base portion 201e. According to this configuration, cooling of the high voltage regions 240b and 240c can be promoted. Further, by arranging the high voltage regions 240b and 240c connected to each other and the ESC22a to 22h on the same surface, the wiring can be simplified.
  • rising portions 202a and 202c are provided on both side surfaces with respect to the traveling direction of the cooling plate 202, and the rising portions 202a and 202c are provided on the front and rear sides of the cooling plate 202 in the traveling direction.
  • Parts 202b and 202d are provided.
  • At least a part of the power supply board 241 is joined to the rising portion 202d on the rear side of the cooling plate 202 in the traveling direction.
  • at least the high voltage regions 241b and 241c of the power supply board 241 are arranged in the rising portion 202d, respectively, and the low voltage region 241a is arranged in the base portion 202e.
  • the high-voltage regions 241b and 241c and the low-voltage regions 241a of the power supply board 241 may be arranged at the rising portions 202a, 202c, and 202d, respectively. According to this configuration, cooling of the high voltage regions 241b and 241c can be promoted. Further, by arranging the high voltage regions 241b and 241c connected to each other and the ESC22a to 22h on the same surface, the wiring can be simplified.
  • the camera board 21 is joined to the front rising portion 202b. Since the airflow generated by the rotor blades 102-1a to 102-4b is also generated in the vertical direction before and after the traveling direction of the main body 110, according to this configuration, the cooling of the camera substrate 21 is promoted through the front rising portion 202b. be able to.
  • a power supply board 24 is joined to the rear rising portion 202c. According to this configuration, cooling of the power supply board 24 can be promoted via the rear rising portion 202c.
  • the rising portions 203a, 203c, the front rising portion 203b, and the rear rising portion 203d are connected to each other, and the cooling plate 203 has a hollow box shape. May be good.
  • the sixth embodiment will be described with reference to FIG.
  • This embodiment is different from the first to fifth embodiments in that the upper part of the main body housing is composed of the cooling plate 204.
  • the rising portions 204a and 204b of the cooling plate 204 form the upper part of the side wall of the housing.
  • the battery 502 and the plate member 30 are arranged below the cooling plate 204. Further, the cooling plate 20 and the plate member 30 face each other with a gap, and the battery 502 is located in the gap.
  • a seventh embodiment will be described with reference to FIGS. 16 and 17.
  • This embodiment differs from the first to sixth embodiments in that the cooling plate 205 is configured to be substantially vertical.
  • the cooling plate 205 constitutes the rear portion of the main body 110 housing in the traveling direction.
  • the rising portions 205a and 205b of the cooling plate 205 form a part of the rear portion of the side wall of the main body housing in the traveling direction.
  • the camera substrate 21 is arranged close to the lower portion in the vertical direction, that is, the bottom portion of the main body 110.
  • the camera board 21 may be in contact with the bottom of the main body 110.
  • the main control board 23 is joined to the upper part of the camera board 21 and substantially in the center of the cooling plate 205.
  • ESC22s are arranged on the left and right sides of the main control board 23. Since the rotor blades are arranged diagonally left and right front and diagonally left and right rear with respect to the traveling direction, according to this configuration, the high heat generating element and the rotary blade are arranged relatively close to each other, and the high heat generating element is efficiently cooled. be able to.
  • the cooling plate 206 may be arranged in a substantially vertical direction to form a front portion of the main body 110 housing in the traveling direction.
  • the rising portions 206a and 206b of the cooling plate 206 form a part of the front portion in the traveling direction of the side walls of the main body housing.
  • the high heat generating element is arranged closer to the rotary blade 101 than the main control board 23, and the high heat generating element can be cooled efficiently.
  • the cooling plate may form a wall on the side in the traveling direction.
  • the rising portion of the cooling plate constitutes a part of the front surface and the rear surface in the traveling direction.
  • the camera board 21 is joined to the upper part in the traveling direction, and the power supply board 24 is joined to the lower part in the traveling direction.
  • the camera board 21 may be joined to the front portion in the traveling direction, and the power supply board 24 may be joined to the rear portion in the traveling direction.
  • the heat generating element can be cooled in the drone body with a simple configuration.

Abstract

[Problem] To cool a heating element with a simple configuration in a drone body. [Solution] This drone 100 comprises: a main body 110 on which a control unit for controlling a lift generation unit is installed; a plurality of rotary wings 102-1a to 102-4b that are provided at positions surrounding the main body when the main body is viewed from above, and that constitute the lift generation unit; and a cooling plate 20 which constitutes at least a portion of a housing of the main body and in which high-heat-generating elements 21, 22, 24 and a low-heat-generating element 23 having a heat-generating amount smaller than those of the high-heat-generating elements are joined to a surface inside the main body, wherein the low-heat-generating element is disposed at the central section of the cooling plate and the high-heat-generating elements are disposed around the low-heat-generating element.

Description

ドローンDrone
 本願発明は、ドローンに関する。 The invention of the present application relates to a drone.
 一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの散布が挙げられる(たとえば、特許文献1)。比較的狭い農地においては、有人の飛行機やヘリコプタではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multicopters) generally called drones is advancing. One of the important application fields is spraying agricultural land (field) with pesticides and liquid fertilizers (for example, Patent Document 1). In relatively small farmlands, it is often appropriate to use drones rather than manned planes or helicopters.
 特許文献2には、シャーシをL字に折り曲げて、折り曲げ位置に近接した位置に発熱部品および冷却板を配置することが記載されている。特許文献3には、基板の外縁にパワー素子が取り付けられていることが記載されている。特許文献4には、発熱電子部品を取り付けた放熱板を回路基板に取り付けると共に、放熱板の面を熱的良導体からなる筐体の面に当接させる放熱板付回路基板の組付構造が記載されている。特許文献5には、切り起し部を設けて発熱体を固定できるプリント基板取付け金具が記載されている。特許文献6には、発熱電子部品に当接させて放熱部材を設け、放熱部材を筐体の内壁面に当接させる基板実装方法が記載されている。特許文献7には、ケースの側板の内側壁に放熱構造を必要とする発熱性電気部品を取り付けた電気部品の組立体が記載されている。 Patent Document 2 describes that the chassis is bent into an L shape and the heat generating parts and the cooling plate are arranged at positions close to the bent positions. Patent Document 3 describes that a power element is attached to the outer edge of the substrate. Patent Document 4 describes an assembly structure of a circuit board with a heat radiating plate in which a heat radiating plate to which a heat-generating electronic component is attached is attached to the circuit board and the surface of the heat radiating plate is brought into contact with the surface of a housing made of a thermally good conductor. ing. Patent Document 5 describes a printed circuit board mounting bracket capable of fixing a heating element by providing a raised portion. Patent Document 6 describes a substrate mounting method in which a heat radiating member is provided in contact with a heat generating electronic component and the heat radiating member is brought into contact with an inner wall surface of a housing. Patent Document 7 describes an assembly of electric parts in which heat-generating electric parts requiring a heat dissipation structure are attached to the inner side wall of a side plate of a case.
特開2001-120151JP 2001-120151 特開平4-352389Japanese Patent Application Laid-Open No. 4-352389 特開平6-224575Japanese Patent Application Laid-Open No. 6-224575 実全平2-129785Jitsuzenpei 2-129785 実全平3-23981Jitsuzenpei 3-23981 特開1997-283886JP 1997-283886 特開昭63-175499Japanese Patent Application Laid-Open No. 63-175499
 ドローン機体内において、簡易な構成で発熱素子を冷却する。 Cool the heat generating element inside the drone with a simple configuration.
 本発明の一の観点に係るドローンは、揚力発生部を制御する制御部を搭載した本体と、前記本体の上方から見た場合に、前記本体を取り囲む位置に設けられ、前記揚力発生部を構成する複数の回転翼と、前記本体の筐体の少なくとも一部を構成し、高発熱素子と、前記高発熱素子よりも発熱量の小さい低発熱素子と、が前記筐体の内側の面に配置される冷却板と、を備え、前記低発熱素子は前記冷却板の中央部に配置され、前記高発熱素子は、前記低発熱素子の周囲に配置される。 The drone according to one aspect of the present invention is provided with a main body equipped with a control unit for controlling the lift generating unit and a position surrounding the main body when viewed from above the main body, and constitutes the lift generating unit. A plurality of rotor blades, a high heat generating element, and a low heat generating element having a smaller heat generation amount than the high heat generating element, which form at least a part of the housing of the main body, are arranged on the inner surface of the housing. The low heat generating element is arranged in the central portion of the cooling plate, and the high heat generating element is arranged around the low heat generating element.
 前記高発熱素子は前記低発熱素子よりも前記冷却板に隣接する前記筐体の側壁に近い位置に保持されているものとしてもよい。 The high heat generating element may be held at a position closer to the side wall of the housing adjacent to the cooling plate than the low heat generating element.
 前記本体の進行方向前部に設けられるカメラモジュールをさらに備え、前記高発熱素子は、前記カメラモジュールを駆動するカメラ基板を含み、前記カメラ基板は、前記低発熱素子の進行方向前方に配置されるものとしてもよい。 A camera module provided at the front portion in the traveling direction of the main body is further provided, the high heat generating element includes a camera substrate for driving the camera module, and the camera substrate is arranged in front of the traveling direction of the low heat generating element. It may be a thing.
 前記高発熱素子は、前記回転翼の回転数を制御するモータ制御装置を含み、前記モータ制御装置は、前記低発熱素子の進行方向側方に配置されるものとしてもよい。 The high heat generating element may include a motor control device for controlling the rotation speed of the rotary blade, and the motor control device may be arranged sideways in the traveling direction of the low heat generating element.
 前記本体の内部であって進行方向後部に電力源を保持する電力源搭載部をさらに備え、前記高発熱素子は、電力源から供給される電力を分電する電源基板を含み、前記電源基板は、前記低発熱素子の進行方向後方に配置されるものとしてもよい。 A power source mounting portion that holds a power source inside the main body and rearward in the traveling direction is further provided, and the high heat generating element includes a power supply board that distributes power supplied from the power source. , The low heat generating element may be arranged behind in the traveling direction.
 前記電源基板は、前記電力源から第1電圧を生成する低電圧領域と、前記第1電圧よりも高い電圧を生成する高電圧領域と、を備え、前記低電圧領域は前記冷却板の中央部に配置され、前記高電圧領域は前記低電圧領域の周囲に配置されているものとしてもよい。 The power supply board includes a low voltage region that generates a first voltage from the power source and a high voltage region that generates a voltage higher than the first voltage, and the low voltage region is a central portion of the cooling plate. The high voltage region may be arranged around the low voltage region.
 前記電源基板は複数の高電圧領域を備え、複数の前記高電圧領域は、前記低電圧領域の両側方にそれぞれ配置されているものとしてもよい。 The power supply board may include a plurality of high voltage regions, and the plurality of high voltage regions may be arranged on both sides of the low voltage region.
 前記高電圧領域に設けられる電圧の出力端子は、配線を介して、前記低発熱素子の進行方向側方に配置される高発熱素子に接続されているものとしてもよい。 The voltage output terminal provided in the high voltage region may be connected to the high heat generating element arranged on the side in the traveling direction of the low heat generating element via wiring.
 本発明の別の観点に係るドローンは、揚力発生部を制御する制御部を搭載した本体と、前記本体の上方から見た場合に、前記本体を取り囲む位置に設けられ、前記揚力発生部を構成する複数の回転翼と、前記本体の筐体の少なくとも一部を構成し、高発熱素子と、前記高発熱素子よりも発熱量の小さい低発熱素子と、が前記筐体の内側の面に配置される冷却板と、を備え、前記冷却板は、基部と、前記基部より屈曲してなる立ち上がり部と、を有し、前記高発熱素子の少なくとも一部が前記立ち上がり部に接合されている。 A drone according to another aspect of the present invention is provided with a main body equipped with a control unit for controlling a lift generating unit and a position surrounding the main body when viewed from above the main body, and constitutes the lift generating unit. A plurality of rotor blades, a high heat generating element, and a low heat generating element having a smaller heat generation amount than the high heat generating element, which form at least a part of the housing of the main body, are arranged on the inner surface of the housing. The cooling plate includes a base portion and a rising portion bent from the base portion, and at least a part of the high heat generating element is joined to the rising portion.
 前記冷却板は、前記立ち上がり部を進行方向両側方にそれぞれ有し、前記複数の回転翼は、前記本体の両側方にそれぞれ配設され、前記高発熱素子は、前記複数の回転翼の回転数をそれぞれ制御する複数のモータ制御装置を含み、前記複数のモータ制御装置は、両側方の前記立ち上がり部のそれぞれに配設されているものとしてもよい。 The cooling plate has the rising portions on both sides in the traveling direction, the plurality of rotary blades are arranged on both sides of the main body, and the high heat generating element is the rotation speed of the plurality of rotary blades. Each of the plurality of motor control devices may be included, and the plurality of motor control devices may be arranged on each of the rising portions on both sides.
 前記立ち上がり部および前記基部に囲われた空間の少なくとも一部に電力源が配置されるように、前記電力源を保持する電力源搭載部をさらに備えるものとしてもよい。 A power source mounting portion that holds the power source may be further provided so that the power source is arranged in at least a part of the space surrounded by the rising portion and the base portion.
 前記冷却板は、進行方向前部において前記基部より屈曲してなる前立ち上がり部をさらに備え、前記本体の進行方向前部に設けられるカメラモジュールをさらに備え、前記高発熱素子は、前記カメラモジュールを駆動するカメラ基板を含み、前記カメラ基板は、前記前立ち上がり部に配置されるものとしてもよい。 The cooling plate further includes a front rising portion bent from the base portion in the front portion in the traveling direction, further includes a camera module provided in the front portion in the traveling direction of the main body, and the high heat generating element includes the camera module. The camera board may be arranged at the front rising portion, including the camera board to be driven.
 前記高発熱素子は、電力源から供給される電力を分電する電源基板を含み、前記電源基板は、前記電力源から第1電圧を生成する低電圧領域と、前記第1電圧よりも高い電圧を生成する高電圧領域と、を備え、前記低電圧領域は前記基部に配置され、前記高電圧領域の少なくとも一部は前記立ち上がり部に配置されているものとしてもよい。 The high heat generating element includes a power supply board that distributes power supplied from the power source, and the power supply board includes a low voltage region that generates a first voltage from the power source and a voltage higher than the first voltage. The low voltage region may be arranged at the base portion, and at least a part of the high voltage region may be arranged at the rising portion.
 前記冷却板は、進行方向後部において前記基部より屈曲してなる後立ち上がり部をさらに備え、前記高発熱素子は、電力源から供給される電力を分電する電源基板を含み、前記電源基板の少なくとも一部は、前記後立ち上がり部に配置されるものとしてもよい。 The cooling plate further includes a rear rising portion that is bent from the base portion at the rear portion in the traveling direction, and the high heat generating element includes a power supply board that distributes electric power supplied from the power source, and at least the power supply board. A part may be arranged at the rear rising portion.
 ドローン機体内において、簡易な構成で発熱素子を冷却できる。 The heat generating element can be cooled in the drone with a simple configuration.
本願発明に係るドローンの平面図である。It is a top view of the drone which concerns on this invention. 上記ドローンの正面図である。It is a front view of the said drone. 上記ドローンの右側面図である。It is a right side view of the above drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the said drone. 上記ドローンの飛行制御システムの全体概念図である。It is an overall conceptual diagram of the flight control system of the above-mentioned drone. 上記ドローンが有する機能ブロック図である。It is a functional block diagram which the said drone has. 上記ドローンが有する機体本体の内部の様子を示す概略部分拡大横断面図である。It is a schematic partial enlarged cross-sectional view which shows the state of the inside of the body body which the drone has. 上記機体本体の内部であって、図8とは異なる階層の様子を示す概略部分拡大横断面図である。It is a schematic partial enlarged cross-sectional view which shows the state of the hierarchy different from FIG. 8 inside the main body of the machine body. 上記機体本体の内部の様子を示す概略縦断面図である。It is a schematic vertical sectional view which shows the state of the inside of the said body body. 上記機体本体が有する冷却板の、第2の実施形態の様子を示す図であって、(a)概略斜視図、(b)進行方向に直交する方向の断面を示す概略縦断面図であり、バッテリの配置関係を合わせて示す図である。It is a figure which shows the state of the 2nd Embodiment of the cooling plate which the machine body has, is (a) the schematic perspective view, (b) is the schematic vertical sectional view which shows the cross section in the direction orthogonal to the traveling direction. It is a figure which also shows the arrangement relation of a battery. 上記冷却板の、第3の実施形態の様子を示す概略斜視図である。It is a schematic perspective view which shows the state of the 3rd Embodiment of the said cooling plate. 上記冷却板の、第4の実施形態の様子を示す図であって、(a)概略斜視図、(b)進行方向に沿う断面を示す概略縦断面図である。It is a figure which shows the state of the 4th Embodiment of the said cooling plate, is (a) schematic perspective view, (b) schematic vertical sectional view which shows the cross section along the traveling direction. 上記冷却板の、第5の実施形態の様子を示す概略斜視図である。It is a schematic perspective view which shows the state of the 5th Embodiment of the said cooling plate. 上記機体本体の第6の実施形態の様子を示す概略縦断面図である。It is a schematic vertical sectional view which shows the state of the 6th Embodiment of the said body body. 第7の実施形態に係るドローンが有する冷却板の様子を示す正面から見た概略縦断面図である。It is a schematic vertical sectional view seen from the front which shows the state of the cooling plate which the drone which concerns on 7th Embodiment has. 上記ドローンの機体本体の概略横断面図である。It is a schematic cross-sectional view of the body body of the drone. 上記機体本体の第8の実施形態の様子を示す概略縦断面図である。It is a schematic vertical sectional view which shows the state of the 8th Embodiment of the said body body.
 以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。なお、以降の説明において、水平面上におけるドローンの進行方向を+x方向、水平面上においてx方向に直交する、正面からみて左から右に向かう方向を+y方向、鉛直上向きの方向を+z方向とする。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. All figures are illustrations. In the following detailed description, certain details are given for illustration purposes and to facilitate a complete understanding of the disclosed embodiments. However, embodiments are not limited to these particular details. Also, to simplify the drawings, well-known structures and devices are outlined. In the following description, the traveling direction of the drone on the horizontal plane is defined as the + x direction, the direction orthogonal to the x direction on the horizontal plane from left to right when viewed from the front is defined as the + y direction, and the vertically upward direction is defined as the + z direction.
 まず、本発明にかかるドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the configuration of the drone according to the present invention will be described. In the specification of the present application, the drone is regardless of the power means (electric power, prime mover, etc.) and the maneuvering method (wireless or wired, autonomous flight type, manual maneuvering type, etc.). It refers to all air vehicles with multiple rotor blades.
 図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100機体の本体110からのび出たアームにより本体110の四方に、すなわち上方から見て本体110を取り囲む位置に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。回転翼101は揚力発生部を構成している。なお、ドローン100は図1における紙面下向きを進行方向とする。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also referred to as rotors) are It is a means for flying the Drone 100, and is equipped with eight aircraft (four sets of two-stage rotor blades) in consideration of the balance between flight stability, aircraft size, and power consumption. Each rotor 101 is arranged on all sides of the main body 110 by an arm protruding from the main body 110 of the drone 100 aircraft, that is, at a position surrounding the main body 110 when viewed from above. That is, the rotors 101-1a and 101-1b are on the left rear side in the direction of travel, the rotor blades 101-2a and 101-2b are on the left front side, the rotor blades 101-3a and 101-3b are on the right rear side, and the rotor blades 101- are on the right front side. 4a and 101-4b are arranged respectively. The rotor 101 constitutes a lift generating portion. In addition, the drone 100 has the traveling direction facing downward on the paper in FIG.
 回転翼101の各セットの外周には、略円筒形を形成する格子状のプロペラガード115-1,115-2,115-3,115-4が設けられ、回転翼101が異物と干渉しづらくなるようにしている。図2および図3に示されるように、プロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 A grid-shaped propeller guard 115-1,115-2,115-3,115-4 forming a substantially cylindrical shape is provided on the outer circumference of each set of the rotor blade 101 to prevent the rotor blade 101 from interfering with foreign matter. As shown in FIGS. 2 and 3, the radial members for supporting the propeller guard have a wobbling structure rather than a horizontal structure. This is to encourage the member to buckle outside the rotor in the event of a collision and prevent it from interfering with the rotor.
 回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 Rod-shaped legs 107-1, 107-2, 107-3, 107-4 extend downward from the rotation axis of the rotor 101, respectively.
 モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。 Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are rotor blades 101-1a, 101-1b, 101-2a, 101- It is a means to rotate 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but it may also be a motor, etc.), and one rotor is provided for each rotor. Has been done. Motor 102 is an example of a propulsion device. The upper and lower rotors (eg, 101-1a and 101-1b) in one set, and their corresponding motors (eg, 102-1a and 102-1b), are used for drone flight stability, etc. The axes are on the same straight line and rotate in opposite directions.
 ノズル103-1、103-2、103-3、103-4は、散布物を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、散布物とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 Nozzles 103-1, 103-2, 103-3, 103-4 are means for spraying the sprayed material downward and are equipped with four nozzles. In the specification of the present application, the sprayed material generally refers to a liquid or powder sprayed on a field such as a pesticide, a herbicide, a liquid fertilizer, an insecticide, a seed, and water.
 タンク104は散布物を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。ホース105-1、105-2、105-3、105-4は、タンク104と各ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該ノズルを支持する役割を兼ねていてもよい。ポンプ106は、散布物をノズルから吐出するための手段である。 The tank 104 is a tank for storing the sprayed material, and is provided at a position close to the center of gravity of the drone 100 and at a position lower than the center of gravity from the viewpoint of weight balance. The hoses 105-1, 105-2, 1053, 105-4 are means for connecting the tank 104 and the nozzles 103-1, 103-2, 103-3, 103-4, and are made of a hard material. Therefore, it may also serve as a support for the nozzle. The pump 106 is a means for discharging the sprayed material from the nozzle.
 図6に本願発明に係るドローン100の飛行制御システムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、基地局404およびサーバ405が移動体通信網400を介して互いに接続されている。これらの接続は、移動体通信網400に代えてWi-Fiによる無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。また、構成要素間において、移動体通信網400に代えて、又は加えて、直接接続する構成を有していてもよい。 FIG. 6 shows an overall conceptual diagram of the flight control system of the drone 100 according to the present invention. This figure is a schematic view, and the scale is not accurate. In the figure, the drone 100, the actuator 401, the base station 404, and the server 405 are connected to each other via the mobile communication network 400. These connections may be wireless communication by Wi-Fi instead of the mobile communication network 400, or may be partially or wholly connected by wire. Further, the components may have a configuration in which they are directly connected to each other in place of or in addition to the mobile communication network 400.
 ドローン100および基地局404は、GPS等のGNSSの測位衛星410と通信を行い、ドローン100および基地局404座標を取得する。ドローン100および基地局404が通信する測位衛星410は複数あってもよい。 Drone 100 and base station 404 communicate with GNSS positioning satellite 410 such as GPS to acquire drone 100 and base station 404 coordinates. There may be a plurality of positioning satellites 410 with which the drone 100 and the base station 404 communicate.
 操作器401は、使用者の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、散布物の貯留量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。操作器401は、ユーザインターフェース装置としての入力部および表示部を備える。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末、例えばスマートホンがシステムに含まれていてもよい。小型携帯端末は、例えば基地局404と接続されていて、基地局404を介してサーバ405からの情報等を受信可能である。 The operator 401 transmits a command to the drone 100 by the operation of the user, and also displays information received from the drone 100 (for example, position, amount of sprayed material, battery level, camera image, etc.). It is a means and may be realized by a portable information device such as a general tablet terminal that runs a computer program. The actuator 401 includes an input unit and a display unit as a user interface device. The drone 100 according to the present invention is controlled to perform autonomous flight, but may be capable of manual operation during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operation device (not shown) having a function dedicated to emergency stop may be used. The emergency operation device may be a dedicated device provided with a large emergency stop button or the like so that an emergency response can be taken quickly. Further, apart from the operating device 401, the system may include a small mobile terminal capable of displaying a part or all of the information displayed on the operating device 401, for example, a smart phone. The small mobile terminal is connected to, for example, the base station 404, and can receive information and the like from the server 405 via the base station 404.
 圃場403は、ドローン100による散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他の作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。 Field 403 is a rice field, field, etc. that is the target of spraying with the drone 100. In reality, the terrain of the field 403 is complicated, and the topographic map may not be available in advance, or the topographic map and the situation at the site may be inconsistent. Field 403 is usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, etc. In addition, there may be intruders such as buildings and electric wires in the field 403.
 基地局404は、RTK-GNSS基地局として機能し、ドローン100の正確な位置を提供できるようになっている。また、Wi-Fi通信の親機機能等を提供する装置であってもよい。Wi-Fi通信の親機機能とRTK-GNSS基地局が独立した装置であってもよい。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、サーバ405と互いに通信可能であってもよい。基地局404およびサーバ405は、営農クラウドを構成する。 Base station 404 functions as an RTK-GNSS base station and can provide the exact location of the drone 100. Further, it may be a device that provides a master unit function of Wi-Fi communication. The base unit function of Wi-Fi communication and the RTK-GNSS base station may be independent devices. Further, the base station 404 may be able to communicate with the server 405 by using a mobile communication system such as 3G, 4G, and LTE. The base station 404 and the server 405 constitute a farming cloud.
 サーバ405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。サーバ405は、ハードウェア装置により構成されていてもよい。サーバ405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The server 405 is typically a group of computers operated on a cloud service and related software, and may be wirelessly connected to the actuator 401 by a mobile phone line or the like. The server 405 may be configured by a hardware device. The server 405 may analyze the image of the field 403 taken by the drone 100, grasp the growing condition of the crop, and perform a process for determining the flight route. In addition, the topographical information of the stored field 403 may be provided to the drone 100. In addition, the history of the flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.
 小型携帯端末は例えばスマートホン等である。小型携帯端末の表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点に帰還する予定時刻や、帰還時に使用者が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末からの入力に基づいて、ドローン100の動作を変更してもよい。 The small mobile terminal is, for example, a smart phone. On the display of the small mobile terminal, information on the expected operation of the drone 100, more specifically, the scheduled time when the drone 100 will return to the departure / arrival point, the content of the work to be performed by the user at the time of return, etc. Information is displayed as appropriate. Further, the operation of the drone 100 may be changed based on the input from the small mobile terminal.
 通常、ドローン100は圃場403の外部にある発着地点から離陸し、圃場403に散布物を散布した後に、あるいは、散布物の補充や充電等が必要になった時に発着地点に帰還する。発着地点から目的の圃場403に至るまでの飛行経路(侵入経路)は、サーバ405等で事前に保存されていてもよいし、使用者が離陸開始前に入力してもよい。発着地点は、ドローン100に記憶されている座標により規定される仮想の地点であってもよいし、物理的な発着台があってもよい。 Normally, the drone 100 takes off from the departure / arrival point outside the field 403 and returns to the departure / arrival point after spraying the sprayed material on the field 403 or when it becomes necessary to replenish or charge the sprayed material. The flight route (invasion route) from the departure / arrival point to the target field 403 may be stored in advance on the server 405 or the like, or may be input by the user before the start of takeoff. The departure / arrival point may be a virtual point defined by the coordinates stored in the drone 100, or may have a physical departure / arrival point.
 図7に本願発明に係る散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、制御部の例である。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)22a、22b、22c、22d、22e、22f、22g、22h等のモータ制御装置を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bの回転数を制御することで、ドローン100の飛行を制御する。ESC22a乃至22hは、モーター102-1a乃至102-4bにそれぞれ接続されている。ESC22a乃至22hは、例えばインバーター回路を含む。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 7 shows a block diagram showing a control function of an embodiment of the spraying drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and may be an embedded computer including a CPU, memory, related software, and the like. The flight controller 501 is an example of a control unit. The flight controller 501 has ESC (Electronic Speed Control) 22a, 22b, 22c, 22d, 22e, 22f, 22g, 22h, etc. based on the input information received from the controller 401 and the input information obtained from various sensors described later. By controlling the rotation speed of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b through the motor controller of Control 100 flights. ESC22a to 22h are connected to motors 102-1a to 102-4b, respectively. ESC22a to 22h include, for example, an inverter circuit. The actual rotation speeds of the motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are fed back to the flight controller 501, and normal rotation is performed. It is configured so that it can be monitored. Alternatively, the rotary blade 101 may be provided with an optical sensor or the like so that the rotation of the rotary blade 101 is fed back to the flight controller 501.
 フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、サーバ405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 can be rewritten through a storage medium for function expansion / change, problem correction, etc., or through communication means such as Wi-Fi communication or USB. In this case, protection is performed by encryption, checksum, electronic signature, virus check software, etc. so that rewriting by malicious software is not performed. In addition, a part of the calculation process used by the flight controller 501 for control may be executed by another computer located on the controller 401, the server 405, or somewhere else. Due to the high importance of the flight controller 501, some or all of its components may be duplicated.
 フライトコントローラー501は、通信機530を介して、さらに、移動体通信網400を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、移動体通信網400を介した通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局404の信号とGPS等の測位衛星410からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the actuator 401 via the communication device 530 and further via the mobile communication network 400, receives necessary commands from the actuator 401, and transmits necessary information to the actuator 401. Can be sent. In this case, the communication may be encrypted so as to prevent fraudulent acts such as interception, spoofing, and device hijacking. The base station 404 also has an RTK-GPS base station function in addition to a communication function via the mobile communication network 400. By combining the signal of the RTK base station 404 and the signal from the positioning satellite 410 such as GPS, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of about several centimeters. Flight controllers 501 are so important that they may be duplicated and multiplexed, and each redundant flight controller 501 should use a different satellite to handle the failure of a particular GPS satellite. It may be controlled.
 6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is a means for measuring the acceleration of the drone body in three directions orthogonal to each other, and further, a means for calculating the velocity by integrating the acceleration. The 6-axis gyro sensor 505 is a means for measuring the change in the attitude angle of the drone aircraft in the above-mentioned three directions, that is, the angular velocity. The geomagnetic sensor 506 is a means for measuring the direction of the drone body by measuring the geomagnetism. The barometric pressure sensor 507 is a means for measuring barometric pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is a means for measuring the distance between the drone body and the ground surface by utilizing the reflection of the laser light, and may be an IR (infrared) laser. The sonar 509 is a means for measuring the distance between the drone aircraft and the ground surface by utilizing the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the cost target and performance requirements of the drone. In addition, a gyro sensor (angular velocity sensor) for measuring the inclination of the aircraft, a wind power sensor for measuring wind power, and the like may be added. Further, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them, and if it fails, it may switch to an alternative sensor for use. Alternatively, a plurality of sensors may be used at the same time, and if the measurement results do not match, it may be considered that a failure has occurred.
 流量センサー510は散布物の流量を測定するための手段であり、タンク104からノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は散布物の量が所定の量以下になったことを検知するセンサーである。 The flow rate sensor 510 is a means for measuring the flow rate of the sprayed material, and is provided at a plurality of locations on the path from the tank 104 to the nozzle 103. The liquid drainage sensor 511 is a sensor that detects that the amount of sprayed material has fallen below a predetermined amount.
 ドローン100は、カメラモジュール522を備える。カメラモジュール522は、例えば、生育診断カメラ512a、病理診断カメラ512bおよび障害物検知カメラ513の各機能を有している。 Drone 100 is equipped with a camera module 522. The camera module 522 has, for example, the functions of a growth diagnosis camera 512a, a pathology diagnosis camera 512b, and an obstacle detection camera 513.
 生育診断カメラ512aは、圃場403を撮影し、生育診断のためのデータを取得する手段である。生育診断カメラ512aは例えばマルチスペクトルカメラであり、互いに波長の異なる複数の光線を受信する。当該複数の光線は、例えば赤色光(波長約650nm)と近赤外光(波長約774nm)である。また、生育診断カメラ512aは、可視光線を受光するカメラであってもよい。 The growth diagnosis camera 512a is a means for photographing the field 403 and acquiring data for the growth diagnosis. The growth diagnostic camera 512a is, for example, a multispectral camera and receives a plurality of light rays having different wavelengths from each other. The plurality of light rays are, for example, red light (wavelength of about 650 nm) and near-infrared light (wavelength of about 774 nm). Further, the growth diagnosis camera 512a may be a camera that receives visible light.
 病理診断カメラ512bは、圃場403に生育する作物を撮影し、病理診断のためのデータを取得する手段である。病理診断カメラ512bは、例えば赤色光カメラである。赤色光カメラは、植物に含有されるクロロフィルの吸収スペクトルに対応する周波数帯域の光量を検出するカメラであり、例えば波長650nm付近の帯域の光量を検出する。病理診断カメラ512bは、赤色光と近赤外光の周波数帯域の光量を検出してもよい。また、病理診断カメラ512bとして、赤色光カメラおよびRGBカメラ等の可視光帯域の少なくとも3波長の光量を検出する可視光カメラの両方を備えていてもよい。なお、病理診断カメラ512bはマルチスペクトルカメラであってもよく、波長650nm乃至680nm付近の帯域の光量を検出するものとしてもよい。 The pathological diagnosis camera 512b is a means for photographing the crops growing in the field 403 and acquiring the data for the pathological diagnosis. The pathological diagnosis camera 512b is, for example, a red light camera. The red light camera is a camera that detects the amount of light in the frequency band corresponding to the absorption spectrum of chlorophyll contained in the plant, and detects, for example, the amount of light in the band around 650 nm. The pathological diagnosis camera 512b may detect the amount of light in the frequency bands of red light and near infrared light. Further, the pathological diagnosis camera 512b may include both a red light camera and a visible light camera such as an RGB camera that detects light amounts of at least three wavelengths in the visible light band. The pathological diagnosis camera 512b may be a multispectral camera, and may detect the amount of light in the band having a wavelength of 650 nm to 680 nm.
 なお、生育診断カメラ512aおよび病理診断カメラ512bは、1個のハードウェア構成により実現されていてもよい。 The growth diagnosis camera 512a and the pathology diagnosis camera 512b may be realized by one hardware configuration.
 障害物検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きが生育診断カメラ512aおよび病理診断カメラ512bとは異なるため、生育診断カメラ512aおよび病理診断カメラ512bとは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。障害物接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、障害物接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。注入口センサー517はタンク104の注入口が開放状態であることを検知するセンサーである。 The obstacle detection camera 513 is a camera for detecting a drone intruder, and since the image characteristics and the orientation of the lens are different from the growth diagnosis camera 512a and the pathological diagnosis camera 512b, what are the growth diagnosis camera 512a and the pathological diagnosis camera 512b? Another device. The switch 514 is a means for the user 402 of the drone 100 to make various settings. The obstacle contact sensor 515 is a sensor for detecting that the drone 100, in particular, its rotor or propeller guard part, has come into contact with an intruder such as an electric wire, a building, a human body, a standing tree, a bird, or another drone. .. The obstacle contact sensor 515 may be replaced by a 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the cover for internal maintenance are in the open state. The inlet sensor 517 is a sensor that detects that the inlet of the tank 104 is in an open state.
 これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報を移動体通信網400経由又はWi-Fi通信経由でドローン100に送信するようにしてもよい。 These sensors may be selected according to the cost target and performance requirements of the drone, and may be duplicated / multiplexed. Further, a sensor may be provided at the base station 404, the actuator 401, or some other place outside the drone 100, and the read information may be transmitted to the drone. For example, the base station 404 may be provided with a wind sensor to transmit information on wind power and wind direction to the drone 100 via the mobile communication network 400 or Wi-Fi communication.
 フライトコントローラー501はポンプ106に対して制御信号を送信し、吐出量の調整や吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 sends a control signal to the pump 106 to adjust the discharge amount and stop the discharge. The current status of the pump 106 (for example, the number of revolutions) is fed back to the flight controller 501.
 LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザーは、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。通信機530は、3G、4G、およびLTE等の移動体通信網400と接続されており、移動体通信網400を介して基地局、サーバで構成される営農クラウド、操作器と通信可能に接続される。通信機に替えて、または、それに加えて、Wi‐Fi、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 LED107 is a display means for notifying the drone operator of the drone status. Display means such as a liquid crystal display may be used in place of or in addition to the LED. The buzzer is an output means for notifying the state of the drone (particularly the error state) by an audio signal. The communication device 530 is connected to a mobile communication network 400 such as 3G, 4G, and LTE, and can communicate with a farming cloud composed of a base station and a server and an operator via the mobile communication network 400. Will be done. In place of or in addition to the communication device, other wireless communication means such as Wi-Fi, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), NFC, or wired communication means such as USB connection. You may use it. The speaker 520 is an output means for notifying the state of the drone (particularly the error state) by means of recorded human voice, synthetic voice, or the like. Depending on the weather conditions, it may be difficult to see the visual display of the drone 100 in flight. In such cases, voice communication is effective. The warning light 521 is a display means such as a strobe light for notifying the state of the drone (particularly the error state). These input / output means may be selected according to the cost target and performance requirements of the drone, and may be duplicated or multiplexed.
●ドローン本体内部の構成(1)
 図8に示すように、ドローン100機体の本体110内部には、ドローン100を駆動するための回路基板が配置されている。回路基板は、カメラモジュール522を駆動するカメラ基板21、ESC22a乃至22h、フライトコントローラ501機能を構成する主制御基板23、ならびにバッテリ502(図7および図9参照)から供給される電力をカメラ基板21、ESC22a乃至22hおよび主制御基板23に分電する電源基板24を含む。カメラ基板21、ESC22a乃至22hおよび電源基板24は、高発熱素子が実装された基板の例である。主制御基板23は、高発熱素子よりも発熱量の小さい低発熱素子が実装された基板の例である。
● Internal configuration of the drone body (1)
As shown in FIG. 8, a circuit board for driving the drone 100 is arranged inside the main body 110 of the drone 100 aircraft. The circuit board receives power supplied from the camera board 21 that drives the camera module 522, the ESC 22a to 22h, the main control board 23 that constitutes the flight controller 501 function, and the battery 502 (see FIGS. 7 and 9). , ESC 22a to 22h and a power supply board 24 that distributes power to the main control board 23. The camera board 21, ESC 22a to 22h, and the power supply board 24 are examples of boards on which high heat generating elements are mounted. The main control board 23 is an example of a board on which a low heat generation element having a smaller heat generation amount than a high heat generation element is mounted.
 カメラ基板21、ESC22a乃至22h、主制御基板23および電源基板24は、冷却板20上に配置されている。カメラ基板21、ESC22a乃至22h、主制御基板23および電源基板24は、スペーサなどを介して冷却板20に連結されていてもよいし、基板上の各素子の絶縁性を確保した上で、直接載置されていてもよい。各基板と冷却板20とは、熱伝導性の良い態様で適宜連結されている。 The camera board 21, ESC22a to 22h, the main control board 23, and the power supply board 24 are arranged on the cooling plate 20. The camera board 21, ESC22a to 22h, the main control board 23, and the power supply board 24 may be connected to the cooling plate 20 via a spacer or the like, or may be directly connected to the cooling plate 20 after ensuring the insulation of each element on the board. It may be placed. Each substrate and the cooling plate 20 are appropriately connected in a manner having good thermal conductivity.
 冷却板20は、略xy平面に広がる薄板である。冷却板20は、本体110の筐体の少なくとも一部を構成し、略xy平面上において、カメラ基板21、ESC22a乃至22h、主制御基板23および電源基板24を保持している。本体110は図8においては、冷却板20は、上面視において矩形の1辺に部分円を連結させたような形状であり、本体110の底面を構成している。冷却板20は、上面視において矩形であってもよい。 The cooling plate 20 is a thin plate that spreads in a substantially xy plane. The cooling plate 20 constitutes at least a part of the housing of the main body 110, and holds the camera board 21, the ESC 22a to 22h, the main control board 23, and the power supply board 24 on a substantially xy plane. In FIG. 8, the main body 110 has a shape in which the cooling plate 20 has a shape in which a partial circle is connected to one side of a rectangle in a top view, and constitutes the bottom surface of the main body 110. The cooling plate 20 may be rectangular in top view.
 冷却板20は、熱伝導率の高い材料、例えば金属で構成されている。より具体的には、冷却板20は、例えばアルミニウムを主原料とする。冷却板20がアルミニウムを主原料とする構成によれば、軽量であるため、ドローン100のエネルギー消費量を節約することができる。 The cooling plate 20 is made of a material having high thermal conductivity, for example, metal. More specifically, the cooling plate 20 uses, for example, aluminum as a main raw material. According to the structure in which the cooling plate 20 is mainly made of aluminum, it is lightweight, so that the energy consumption of the drone 100 can be saved.
 高発熱素子は、低発熱素子よりも冷却板20に隣接する本体110側壁に近い位置に保持されている。例えば、主制御基板23は、冷却板20上において中央部に配置され、高発熱素子の少なくとも一部は、主制御基板23の外周に配置されている。図1乃至図5に示すように、本体110の周囲には回転翼101-1a乃至101-4bが設けられている。回転翼101-1a乃至101-4bが回転すると、本体110側方を、z方向、すなわち鉛直上下方向の気流が発生する。この気流が本体110の放熱を促進する。したがって、本体110内部において、本体110の側壁に近い位置は、本体110の中央部より冷却されやすくなる。そこで、高発熱素子を本体110の側壁に近い位置に配置することで、別途冷却のための構成を設けることなく、飛行に際し生じる気流を利用して高発熱素子を冷却することができる。ドローン100においては、回転翼101-1a乃至101-4bに囲まれた狭い空間に基板を設ける必要があるため、本構成は、狭い空間であっても簡素な構成で冷却性能を達成でき、特に好適である。 The high heat generation element is held at a position closer to the side wall of the main body 110 adjacent to the cooling plate 20 than the low heat generation element. For example, the main control board 23 is arranged in the central portion on the cooling plate 20, and at least a part of the high heat generating elements is arranged on the outer periphery of the main control board 23. As shown in FIGS. 1 to 5, rotary blades 101-1a to 101-4b are provided around the main body 110. When the rotor blades 101-1a to 101-4b rotate, an air flow in the z direction, that is, in the vertical vertical direction is generated on the side of the main body 110. This air flow promotes heat dissipation of the main body 110. Therefore, inside the main body 110, the position near the side wall of the main body 110 is more likely to be cooled than the central portion of the main body 110. Therefore, by arranging the high heat generating element at a position close to the side wall of the main body 110, it is possible to cool the high heat generating element by utilizing the air flow generated during flight without providing a separate cooling configuration. In the drone 100, since it is necessary to provide the substrate in a narrow space surrounded by the rotor blades 101-1a to 101-4b, this configuration can achieve cooling performance with a simple configuration even in a narrow space, especially. Suitable.
 カメラ基板21は、冷却板20の進行方向前部に配置されている。言い換えれば、カメラ基板21は主制御基板23の進行方向前方に配置されている。カメラモジュール522は本体110の進行方向前部に配置されているため、カメラ基板21がカメラモジュール522に対応する位置に配置されていることで、配線を短くすることができる。配線を短くすることで、配線にかかるコスト、ノイズの発生リスクおよび故障リスクを軽減できる。 The camera board 21 is arranged in front of the cooling plate 20 in the traveling direction. In other words, the camera board 21 is arranged in front of the main control board 23 in the traveling direction. Since the camera module 522 is arranged at the front portion of the main body 110 in the traveling direction, the wiring can be shortened by arranging the camera board 21 at a position corresponding to the camera module 522. By shortening the wiring, the cost of wiring, the risk of noise generation, and the risk of failure can be reduced.
 また、ESC22a乃至ESC22hは、冷却板20上において主制御基板23の左右側方に配置されている。具体的には、モーター102-1a乃至102-2bにそれぞれ接続されるESC22a乃至22dは、主制御基板23の+y側に、x方向に沿って併設されている。モーター102-3a乃至102-4bにそれぞれ接続されるESC22e乃至22hは、主制御基板23の-y側に、x方向に沿って併設されている。この構成によれば、モーター102-1a乃至102-2bは本体110の+y側、モーター102-3a乃至102-4bは本体110の-y側に設けられているため、配線を短くすることができる。 Further, ESC22a to ESC22h are arranged on the left and right sides of the main control board 23 on the cooling plate 20. Specifically, the ESCs 22a to 22d connected to the motors 102-1a to 102-2b are provided on the + y side of the main control board 23 along the x direction. The ESCs 22e to 22h connected to the motors 102-3a to 102-4b, respectively, are provided on the −y side of the main control board 23 along the x direction. According to this configuration, the motors 102-1a to 102-2b are provided on the + y side of the main body 110, and the motors 102-3a to 102-4b are provided on the −y side of the main body 110, so that the wiring can be shortened. ..
 電源基板24は、冷却板20上において主制御基板23の進行方向後方に配置されている。図9および図10に示すように、本体110内部であって冷却板20の上方には、バッテリ502が配設されている。バッテリ502は電力源の例であり、1次電池であっても燃料電池であってもよい。バッテリ502は電源基板24の上方に配置されている。この構成によれば、電源基板24とバッテリ502との距離が短く、配線を短くすることができる。また、冷却板20とバッテリ502とを2層構造にすることにより、本体110をコンパクトに構成できる。バッテリ502は、第1バッテリ502aおよび第2バッテリ502bが横方向に併設されている。バッテリ502は、バッテリ搭載部30に連結されている。バッテリ搭載部30にはバッテリ502からの電圧を取り出す端子が配設されていて、バッテリ502を着脱可能に保持している。なお、バッテリ搭載部30は、電力源搭載部の例である。 The power supply board 24 is arranged on the cooling plate 20 behind the main control board 23 in the traveling direction. As shown in FIGS. 9 and 10, the battery 502 is arranged inside the main body 110 and above the cooling plate 20. The battery 502 is an example of a power source and may be a primary battery or a fuel cell. The battery 502 is located above the power supply board 24. According to this configuration, the distance between the power supply board 24 and the battery 502 is short, and the wiring can be shortened. Further, by forming the cooling plate 20 and the battery 502 into a two-layer structure, the main body 110 can be compactly configured. As for the battery 502, the first battery 502a and the second battery 502b are arranged side by side. The battery 502 is connected to the battery mounting portion 30. The battery mounting portion 30 is provided with a terminal for taking out the voltage from the battery 502, and holds the battery 502 detachably. The battery mounting unit 30 is an example of a power source mounting unit.
 図8に示すように、電源基板24は、バッテリ502から供給される電力を複数の電圧に分電する。カメラ基板21、ESC22a乃至ESC22hおよび主制御基板23は、互いに異なる電圧により駆動されるためである。具体的には、ESC22a乃至ESC22hは、主制御基板23やカメラ基板21よりも高い電圧で駆動される。電源基板24は、バッテリ502から第1電圧を生成する低電圧領域24aと、第1電圧よりも高い電圧を生成する複数の高電圧領域24b、24cを備える。第1高電圧領域24bおよび第2高電圧領域24cが生成する電圧は、互いに同等であってもよいし異なっていてもよい。低電圧領域24aは、主制御基板23及びカメラ基板21に接続され、高電圧領域24b、24cは、ESC22a乃至ESC22hに接続されている。 As shown in FIG. 8, the power supply board 24 distributes the power supplied from the battery 502 into a plurality of voltages. This is because the camera board 21, ESC22a to ESC22h, and the main control board 23 are driven by different voltages. Specifically, the ESC22a to ESC22h are driven by a voltage higher than that of the main control board 23 and the camera board 21. The power supply board 24 includes a low voltage region 24a that generates a first voltage from the battery 502, and a plurality of high voltage regions 24b and 24c that generate a voltage higher than the first voltage. The voltages generated by the first high voltage region 24b and the second high voltage region 24c may be equal to or different from each other. The low voltage region 24a is connected to the main control board 23 and the camera board 21, and the high voltage regions 24b and 24c are connected to ESC22a to ESC22h.
 低電圧領域24aは、冷却板20の中央部に配置され、高電圧領域24b、24cは、低電圧領域24aよりも本体110の側壁に近い位置に配置される。複数の高電圧領域24b、24cは、低電圧領域24aの両側方、本実施形態においては左右側方にそれぞれ配置されている。高電圧領域24b、24cは、低電圧領域24aに比べて発熱量が大きいため、この構成によれば、高電圧領域24b、24cをより効率よく冷却することができる。 The low voltage region 24a is arranged at the center of the cooling plate 20, and the high voltage regions 24b and 24c are arranged closer to the side wall of the main body 110 than the low voltage region 24a. The plurality of high voltage regions 24b and 24c are arranged on both sides of the low voltage region 24a, and on the left and right sides in the present embodiment, respectively. Since the high voltage regions 24b and 24c generate a larger amount of heat than the low voltage regions 24a, the high voltage regions 24b and 24c can be cooled more efficiently according to this configuration.
 また、低電圧領域24aが冷却板20の中央部に配置されている構成によれば、主制御基板23も冷却板20の横方向中央部に配置されていることから、配線を短くすることができる。 Further, according to the configuration in which the low voltage region 24a is arranged in the central portion of the cooling plate 20, the main control board 23 is also arranged in the central portion in the lateral direction of the cooling plate 20, so that the wiring can be shortened. can.
 高電圧領域24b、24cに設けられる電圧の出力端子は、y方向において同側に配置されるESC22a乃至ESC22hに、配線を介して電圧を供給する。すなわち、電源基板24上において+y側に配置される高電圧領域24bの出力端子は、主制御基板23の+y側側方に配置されるESC22a乃至ESC22dに接続される。また、電源基板24上において-y側に配置される高電圧領域24cの出力端子は、主制御基板23の-y側側方に配置されるESC22e乃至ESC22hに接続されている。この構成によれば、電源基板24とESC22a乃至ESC22hを接続する各配線を短くすることができる。 The voltage output terminals provided in the high voltage regions 24b and 24c supply voltage to ESC22a to ESC22h arranged on the same side in the y direction via wiring. That is, the output terminal of the high voltage region 24b arranged on the + y side on the power supply board 24 is connected to ESC22a to ESC22d arranged on the + y side side of the main control board 23. Further, the output terminal of the high voltage region 24c arranged on the −y side on the power supply board 24 is connected to the ESC22e to ESC22h arranged on the −y side side of the main control board 23. According to this configuration, each wiring connecting the power supply board 24 and the ESC22a to ESC22h can be shortened.
 冷却板20は、発熱素子が配置される基部20eと、基部20eの左右端部を上方に屈曲させてなる立ち上がり部20a、20bとにより構成されている。立ち上がり部20a、20bは、冷却板20の基部20eと同等の部材で構成される。なお、立ち上がり部20a、20bを別途の部材で用意し、基部20eの両端部に連結させてなる構成であってもよい。本実施形態では、基部20eは本体110の底面を構成し、立ち上がり部20a、20bは、本体110の側壁の一部を構成する。この構成によれば、平板の冷却板に比べて、冷却板の剛性を大きくすることができる。 The cooling plate 20 is composed of a base portion 20e on which a heat generating element is arranged and rising portions 20a and 20b formed by bending the left and right ends of the base portion 20e upward. The rising portions 20a and 20b are composed of members equivalent to the base portion 20e of the cooling plate 20. The rising portions 20a and 20b may be prepared as separate members and connected to both ends of the base portion 20e. In the present embodiment, the base portion 20e constitutes the bottom surface of the main body 110, and the rising portions 20a and 20b form a part of the side wall of the main body 110. According to this configuration, the rigidity of the cooling plate can be increased as compared with the flat cooling plate.
 ESC22a乃至ESC22hから発生した熱が立ち上がり部20a、20bに伝わり、推進装置、すなわち回転翼により発生した側壁の外側を流れる気流により冷却されることで、発熱素子の冷却を促進することができる。なお、立ち上がり部20a、20bと基部20eとの成す角は任意であり、直角よりも緩い角度又は鋭い角度で上方に伸び出ていてもよい。 The heat generated from ESC22a to ESC22h is transmitted to the rising portions 20a and 20b, and is cooled by the airflow flowing outside the side wall generated by the propulsion device, that is, the rotor blades, so that the cooling of the heat generating element can be promoted. The angle formed by the rising portions 20a and 20b and the base portion 20e is arbitrary, and may extend upward at an angle looser or sharper than a right angle.
●ドローン本体内部の構成(2)
 図11を用いて、ドローン本体内部の構成に関する第2の実施形態について説明する。第2実施形態に係るドローンが有する冷却板201は、立ち上がり部201a、201bに高発熱素子が接合している点で、第1実施形態とは異なる。なお、第1実施形態と同様の構成に関しては、同じ符号を付した。
● Internal configuration of the drone body (2)
A second embodiment relating to the internal configuration of the drone body will be described with reference to FIG. The cooling plate 201 included in the drone according to the second embodiment is different from the first embodiment in that a high heat generating element is bonded to the rising portions 201a and 201b. The same reference numerals are given to the same configurations as those in the first embodiment.
 立ち上がり部201a、201bには高発熱素子の少なくとも一部が接合されている。本実施形態では、ESC22a乃至22dおよびESC22e乃至22hがそれぞれ立ち上がり部201a、201bに接合されている。この構成によれば、立ち上がり部201a、201bを介して高発熱素子の冷却をより促進することができる。なお、立ち上がり部201a、201bに接合される高発熱素子は、カメラ基板21の一部であってもよい。  At least a part of the high heat generating element is bonded to the rising portions 201a and 201b. In this embodiment, ESC22a to 22d and ESC22e to 22h are joined to the rising portions 201a and 201b, respectively. According to this configuration, cooling of the high heat generating element can be further promoted through the rising portions 201a and 201b. The high heat generating element bonded to the rising portions 201a and 201b may be a part of the camera substrate 21. Twice
 図11(b)に示すように、バッテリ搭載部30は、立ち上がり部201a、201bおよび基部201eに囲われた空間の少なくとも一部にバッテリ502が配置されるように、バッテリ502を保持する。立ち上がり部201a、201bおよび基部201eに囲われた空間とは、立ち上がり部201a、201bおよび基部201eと、立ち上がり部201aおよび201bの互いに対向する辺をそれぞれ繋ぎ合わせてなる仮想面とに囲われた空間であり、冷却板201の重心201oが存在する空間である。バッテリ502が当該空間に固定される構成によれば、バッテリ502の重心502oと冷却板201の重心201oとが近くなるため、ドローン100に生じる慣性モーメントが小さくなり、機体の姿勢変更にかかる時間およびエネルギー消費をさらに小さくすることができる。 As shown in FIG. 11B, the battery mounting portion 30 holds the battery 502 so that the battery 502 is arranged in at least a part of the space surrounded by the rising portions 201a, 201b and the base 201e. The space surrounded by the rising portions 201a, 201b and the base 201e is a space surrounded by the rising portions 201a, 201b and the base 201e and a virtual surface formed by connecting the opposite sides of the rising portions 201a and 201b, respectively. This is the space where the center of gravity 201o of the cooling plate 201 exists. According to the configuration in which the battery 502 is fixed in the space, the center of gravity 502o of the battery 502 and the center of gravity 201o of the cooling plate 201 are close to each other. Energy consumption can be further reduced.
 バッテリ搭載部30は、バッテリ502の重心502oが立ち上がり部201a、201bおよび基部201eに囲われた空間に位置するようにバッテリ502を保持してもよい。この構成によれば、バッテリ502の重心502oと冷却板201の重心201oとが一層近くなる。 The battery mounting portion 30 may hold the battery 502 so that the center of gravity 502o of the battery 502 is located in a space surrounded by the rising portions 201a, 201b and the base 201e. According to this configuration, the center of gravity 502o of the battery 502 and the center of gravity 201o of the cooling plate 201 are closer to each other.
●ドローン本体内部の構成(3)
 図12に示す第3の実施形態においては、立ち上がり部201a、201bに、電源基板240の一部が接合されている。具体的には、電源基板240の高電圧領域240b、240cが、それぞれ立ち上がり部201a、201bに配置され、低電圧領域240aが基部201eに配置されている。この構成によれば、高電圧領域240b、240cの冷却を促進することができる。また、互いに接続される高電圧領域240b、240cとESC22a乃至22hを同一面上に配置することにより、配線が簡素化できる。
● Internal configuration of the drone body (3)
In the third embodiment shown in FIG. 12, a part of the power supply board 240 is joined to the rising portions 201a and 201b. Specifically, the high voltage regions 240b and 240c of the power supply board 240 are arranged in the rising portions 201a and 201b, respectively, and the low voltage regions 240a are arranged in the base portion 201e. According to this configuration, cooling of the high voltage regions 240b and 240c can be promoted. Further, by arranging the high voltage regions 240b and 240c connected to each other and the ESC22a to 22h on the same surface, the wiring can be simplified.
●ドローン本体内部の構成(4)
 図13(a)および(b)に示す第4の実施形態においては、冷却板202の進行方向に対して両側面に立ち上がり部202a、202cを設け、冷却板202の進行方向の前後側に立ち上がり部202b、202dを設けている。冷却板202の進行方向後ろ側の立ち上がり部202dに電源基板241の少なくとも一部が接合されている。具体的には、電源基板241の少なくとも高電圧領域241b、241cが、それぞれ立ち上がり部202dに配置され、低電圧領域241aは基部202eに配置されている。もしくは、電源基板241の高電圧領域241b、241c及び低電圧領域241aがそれぞれ立ち上がり部202a、202c、202dに配置されていてもよい。この構成によれば、高電圧領域241b、241cの冷却を促進することができる。また、互いに接続される高電圧領域241b、241cとESC22a乃至22hを同一面上に配置することにより、配線が簡素化できる。
● Internal configuration of the drone body (4)
In the fourth embodiment shown in FIGS. 13 (a) and 13 (b), rising portions 202a and 202c are provided on both side surfaces with respect to the traveling direction of the cooling plate 202, and the rising portions 202a and 202c are provided on the front and rear sides of the cooling plate 202 in the traveling direction. Parts 202b and 202d are provided. At least a part of the power supply board 241 is joined to the rising portion 202d on the rear side of the cooling plate 202 in the traveling direction. Specifically, at least the high voltage regions 241b and 241c of the power supply board 241 are arranged in the rising portion 202d, respectively, and the low voltage region 241a is arranged in the base portion 202e. Alternatively, the high- voltage regions 241b and 241c and the low-voltage regions 241a of the power supply board 241 may be arranged at the rising portions 202a, 202c, and 202d, respectively. According to this configuration, cooling of the high voltage regions 241b and 241c can be promoted. Further, by arranging the high voltage regions 241b and 241c connected to each other and the ESC22a to 22h on the same surface, the wiring can be simplified.
 図13(b)に示すように、前立ち上がり部202bには、カメラ基板21が接合されている。回転翼102-1a乃至102-4bにより発生する気流は本体110の進行方向前後においても上下方向に発生するため、この構成によれば、前立ち上がり部202bを介してカメラ基板21の冷却を促進することができる。また、後立ち上がり部202cには、電源基板24が接合されている。この構成によれば、後立ち上がり部202cを介して電源基板24の冷却を促進することができる。 As shown in FIG. 13 (b), the camera board 21 is joined to the front rising portion 202b. Since the airflow generated by the rotor blades 102-1a to 102-4b is also generated in the vertical direction before and after the traveling direction of the main body 110, according to this configuration, the cooling of the camera substrate 21 is promoted through the front rising portion 202b. be able to. A power supply board 24 is joined to the rear rising portion 202c. According to this configuration, cooling of the power supply board 24 can be promoted via the rear rising portion 202c.
●ドローン本体内部の構成(5)
 図14に示す第5の実施形態のように、立ち上がり部203a、203c、前立ち上がり部203bおよび後立ち上がり部203dの隣接する端辺が互いに連結され、冷却板203が中空の箱状になっていてもよい。
● Internal configuration of the drone body (5)
As in the fifth embodiment shown in FIG. 14, the rising portions 203a, 203c, the front rising portion 203b, and the rear rising portion 203d are connected to each other, and the cooling plate 203 has a hollow box shape. May be good.
●ドローン本体内部の構成(6)
 図15を用いて、第6の実施形態について説明する。本実施例では、本体筐体の上部が冷却板204で構成されている点で、第1乃至5の実施形態とは相違する。冷却板204の立ち上がり部204a、204bは、筐体側壁の上部を構成する。本実施形態においては冷却板204の下方にバッテリ502および板部材30が配置されている。また、冷却板20と板部材30は隙間を空けて対向しており、バッテリ502は当該隙間に位置している。
● Internal configuration of the drone body (6)
The sixth embodiment will be described with reference to FIG. This embodiment is different from the first to fifth embodiments in that the upper part of the main body housing is composed of the cooling plate 204. The rising portions 204a and 204b of the cooling plate 204 form the upper part of the side wall of the housing. In the present embodiment, the battery 502 and the plate member 30 are arranged below the cooling plate 204. Further, the cooling plate 20 and the plate member 30 face each other with a gap, and the battery 502 is located in the gap.
●ドローン本体内部の構成(7)
 図16及び図17を用いて、第7の実施形態について説明する。本実施例では、冷却板205が略垂直となるように構成されている点で、第1乃至6の実施形態とは相違する。本実施形態においては、冷却板205が本体110筐体の進行方向後部を構成している。冷却板205の立ち上がり部205a、205bは本体筐体の側壁のうち進行方向後部の一部を構成している。冷却板205において、カメラ基板21は、鉛直方向下部、すなわち本体110の底部に近接して配置されている。カメラ基板21は本体110の底部に当接していてもよい。カメラ基板21の上方であって、冷却板205の略中央には主制御基板23が接合されている。主制御基板23の左右側方のそれぞれには、ESC22が配置されている。回転翼は、進行方向に対して斜め左右前方および斜め左右後方に配置されているため、この構成によれば、高発熱素子と回転翼が比較的近い配置となり、高発熱素子を効率よく冷却することができる。
● Internal configuration of the drone body (7)
A seventh embodiment will be described with reference to FIGS. 16 and 17. This embodiment differs from the first to sixth embodiments in that the cooling plate 205 is configured to be substantially vertical. In the present embodiment, the cooling plate 205 constitutes the rear portion of the main body 110 housing in the traveling direction. The rising portions 205a and 205b of the cooling plate 205 form a part of the rear portion of the side wall of the main body housing in the traveling direction. In the cooling plate 205, the camera substrate 21 is arranged close to the lower portion in the vertical direction, that is, the bottom portion of the main body 110. The camera board 21 may be in contact with the bottom of the main body 110. The main control board 23 is joined to the upper part of the camera board 21 and substantially in the center of the cooling plate 205. ESC22s are arranged on the left and right sides of the main control board 23. Since the rotor blades are arranged diagonally left and right front and diagonally left and right rear with respect to the traveling direction, according to this configuration, the high heat generating element and the rotary blade are arranged relatively close to each other, and the high heat generating element is efficiently cooled. be able to.
●ドローン本内部の構成(8)
 図18に示す第8実施形態のように、冷却板206が略鉛直方向に配置され、本体110筐体の進行方向前部を構成していてもよい。冷却板206の立ち上がり部206a、206bは本体筐体の側壁のうち進行方向前部の一部を構成している。この構成によっても、高発熱素子が主制御基板23に比べて回転翼101に近い配置となり、高発熱素子を効率よく冷却することができる。
● Internal configuration of the drone book (8)
As in the eighth embodiment shown in FIG. 18, the cooling plate 206 may be arranged in a substantially vertical direction to form a front portion of the main body 110 housing in the traveling direction. The rising portions 206a and 206b of the cooling plate 206 form a part of the front portion in the traveling direction of the side walls of the main body housing. Even with this configuration, the high heat generating element is arranged closer to the rotary blade 101 than the main control board 23, and the high heat generating element can be cooled efficiently.
 また、冷却板が略鉛直方向に配置されている態様において、冷却板が進行方向側方の壁を構成していてもよい。この場合、冷却板の立ち上がり部は、進行方向前面および後面の一部を構成している。また、冷却板上において、例えばカメラ基板21が進行方向上部、電源基板24が進行方向下部に接合されている。なお、カメラ基板21が進行方向前部、電源基板24が進行方向後部に接合されていてもよい。 Further, in a mode in which the cooling plate is arranged in a substantially vertical direction, the cooling plate may form a wall on the side in the traveling direction. In this case, the rising portion of the cooling plate constitutes a part of the front surface and the rear surface in the traveling direction. Further, on the cooling plate, for example, the camera board 21 is joined to the upper part in the traveling direction, and the power supply board 24 is joined to the lower part in the traveling direction. The camera board 21 may be joined to the front portion in the traveling direction, and the power supply board 24 may be joined to the rear portion in the traveling direction.
(本願発明による技術的に顕著な効果)
 本発明にかかるドローンにおいては、ドローン機体内において、簡易な構成で発熱素子を冷却することができる。

 
(Technically remarkable effect of the present invention)
In the drone according to the present invention, the heat generating element can be cooled in the drone body with a simple configuration.

Claims (14)

  1.  揚力発生部を制御する制御部を搭載した本体と、
     前記本体の上方から見た場合に、前記本体を取り囲む位置に設けられ、前記揚力発生部を構成する複数の回転翼と、
     前記本体の筐体の少なくとも一部を構成し、高発熱素子と、前記高発熱素子よりも発熱量の小さい低発熱素子と、が前記筐体の内側の面に配置される冷却板と、
    を備え、
     前記低発熱素子は前記冷却板の中央部に配置され、前記高発熱素子は、前記低発熱素子の周囲に配置される、
    ドローン。
     
    A main body equipped with a control unit that controls the lift generating unit,
    When viewed from above the main body, a plurality of rotary blades provided at a position surrounding the main body and constituting the lift generating portion, and
    A cooling plate that constitutes at least a part of the housing of the main body and in which a high heat generating element and a low heat generating element having a smaller heat generation amount than the high heat generating element are arranged on the inner surface of the housing.
    With
    The low heat generation element is arranged in the central portion of the cooling plate, and the high heat generation element is arranged around the low heat generation element.
    Drone.
  2.  前記高発熱素子は前記低発熱素子よりも前記冷却板に隣接する前記筐体の側壁に近い位置に保持されている、
    請求項1記載のドローン。
     
    The high heat generating element is held at a position closer to the side wall of the housing adjacent to the cooling plate than the low heat generating element.
    The drone according to claim 1.
  3.  前記本体の進行方向前部に設けられるカメラモジュールをさらに備え、
     前記高発熱素子は、前記カメラモジュールを駆動するカメラ基板を含み、
     前記カメラ基板は、前記低発熱素子の進行方向前方に配置される、
    請求項1又は2記載のドローン。
     
    Further equipped with a camera module provided at the front portion in the traveling direction of the main body,
    The high heat generating element includes a camera substrate that drives the camera module.
    The camera substrate is arranged in front of the low heat generating element in the traveling direction.
    The drone according to claim 1 or 2.
  4.  前記高発熱素子は、前記回転翼の回転数を制御するモータ制御装置を含み、
     前記モータ制御装置は、前記低発熱素子の進行方向側方に配置される、
    請求項1乃至3のいずれかに記載のドローン。
     
    The high heat generating element includes a motor control device that controls the rotation speed of the rotary blade.
    The motor control device is arranged on the side in the traveling direction of the low heat generating element.
    The drone according to any one of claims 1 to 3.
  5.  前記本体の内部であって進行方向後部に電力源を保持する電力源搭載部をさらに備え、
     前記高発熱素子は、電力源から供給される電力を分電する電源基板を含み、
     前記電源基板は、前記低発熱素子の進行方向後方に配置される、
    請求項1乃至4のいずれかに記載のドローン。
     
    A power source mounting part that holds a power source inside the main body and at the rear in the traveling direction is further provided.
    The high heat generating element includes a power supply board that distributes electric power supplied from a power source.
    The power supply board is arranged behind the low heat generating element in the traveling direction.
    The drone according to any one of claims 1 to 4.
  6.  前記電源基板は、前記電力源から第1電圧を生成する低電圧領域と、前記第1電圧よりも高い電圧を生成する高電圧領域と、を備え、
     前記低電圧領域は前記冷却板の中央部に配置され、前記高電圧領域は前記低電圧領域の周囲に配置されている、
    請求項5記載のドローン。
     
    The power supply board includes a low voltage region that generates a first voltage from the power source and a high voltage region that generates a voltage higher than the first voltage.
    The low voltage region is arranged in the central portion of the cooling plate, and the high voltage region is arranged around the low voltage region.
    The drone according to claim 5.
  7.  前記電源基板は複数の高電圧領域を備え、
     複数の前記高電圧領域は、前記低電圧領域の両側方にそれぞれ配置されている、
    請求項6記載のドローン。
     
    The power supply board has a plurality of high voltage regions and has a plurality of high voltage regions.
    The plurality of high voltage regions are arranged on both sides of the low voltage region, respectively.
    The drone according to claim 6.
  8.  前記高電圧領域に設けられる電圧の出力端子は、配線を介して、前記低発熱素子の進行方向側方に配置される高発熱素子に接続されている、
    請求項6又は7記載のドローン。
     
    The voltage output terminal provided in the high voltage region is connected to the high heat generating element arranged on the side in the traveling direction of the low heat generating element via wiring.
    The drone according to claim 6 or 7.
  9.  揚力発生部を制御する制御部を搭載した本体と、
     前記本体の上方から見た場合に、前記本体を取り囲む位置に設けられ、前記揚力発生部を構成する複数の回転翼と、
     前記本体の筐体の少なくとも一部を構成し、高発熱素子と、前記高発熱素子よりも発熱量の小さい低発熱素子と、が前記筐体の内側の面に配置される冷却板と、
    を備え、
     前記冷却板は、
      基部と、
      前記基部を屈曲してなる立ち上がり部と、
    を有し、
     前記高発熱素子の少なくとも一部が前記立ち上がり部に接合されている、
    ドローン。
     
    A main body equipped with a control unit that controls the lift generating unit,
    When viewed from above the main body, a plurality of rotary blades provided at a position surrounding the main body and constituting the lift generating portion, and
    A cooling plate that constitutes at least a part of the housing of the main body and in which a high heat generating element and a low heat generating element having a smaller heat generation amount than the high heat generating element are arranged on the inner surface of the housing.
    With
    The cooling plate is
    At the base,
    A rising portion formed by bending the base portion and a rising portion
    Have,
    At least a part of the high heat generating element is bonded to the rising portion.
    Drone.
  10.  前記冷却板は、前記立ち上がり部を進行方向両側方にそれぞれ有し、
     前記複数の回転翼は、前記本体の両側方にそれぞれ配設され、
     前記高発熱素子は、前記複数の回転翼の回転数をそれぞれ制御する複数のモータ制御装置を含み、
     前記複数のモータ制御装置は、両側方の前記立ち上がり部のそれぞれに配設されている、
    請求項9記載のドローン。
     
    The cooling plate has the rising portions on both sides in the traveling direction, respectively.
    The plurality of rotor blades are arranged on both sides of the main body, respectively.
    The high heat generating element includes a plurality of motor control devices for controlling the rotation speeds of the plurality of rotary blades.
    The plurality of motor control devices are arranged on each of the rising portions on both sides.
    The drone according to claim 9.
  11.  前記立ち上がり部および前記基部に囲われた空間の少なくとも一部に電力源が配置されるように、前記電力源を保持する電力源搭載部をさらに備える、
    請求項9又は10記載のドローン。
     
    A power source mounting portion that holds the power source is further provided so that the power source is arranged in at least a part of the space surrounded by the rising portion and the base portion.
    The drone according to claim 9 or 10.
  12.  前記冷却板は、進行方向前部において前記基部より屈曲してなる前立ち上がり部をさらに備え、
     前記本体の進行方向前部に設けられるカメラモジュールをさらに備え、
     前記高発熱素子は、前記カメラモジュールを駆動するカメラ基板を含み、
     前記カメラ基板は、前記前立ち上がり部に配置される、
    請求項9乃至11のいずれかに記載のドローン。
     
    The cooling plate further includes a front rising portion formed by bending from the base portion in the front portion in the traveling direction.
    Further equipped with a camera module provided at the front portion in the traveling direction of the main body,
    The high heat generating element includes a camera substrate that drives the camera module.
    The camera board is arranged at the front rising portion.
    The drone according to any one of claims 9 to 11.
  13.  前記高発熱素子は、電力源から供給される電力を分電する電源基板を含み、
     前記電源基板は、前記電力源から第1電圧を生成する低電圧領域と、前記第1電圧よりも高い電圧を生成する高電圧領域と、を備え、
     前記低電圧領域は前記基部に配置され、前記高電圧領域の少なくとも一部は前記立ち上がり部に配置されている、
    請求項9乃至12のいずれかに記載のドローン。
     
    The high heat generating element includes a power supply board that distributes electric power supplied from a power source.
    The power supply board includes a low voltage region that generates a first voltage from the power source and a high voltage region that generates a voltage higher than the first voltage.
    The low voltage region is arranged at the base, and at least a part of the high voltage region is arranged at the rising portion.
    The drone according to any one of claims 9 to 12.
  14.  前記冷却板は、進行方向後部において前記基部より屈曲してなる後立ち上がり部をさらに備え、
     前記高発熱素子は、電力源から供給される電力を分電する電源基板を含み、
     前記電源基板の少なくとも一部は、前記後立ち上がり部に配置される、
     請求項9乃至12のいずれかに記載のドローン。
     
     

     
    The cooling plate further includes a rear rising portion that is bent from the base portion at the rear portion in the traveling direction.
    The high heat generating element includes a power supply board that distributes electric power supplied from a power source.
    At least a part of the power supply board is arranged at the rear rising portion.
    The drone according to any one of claims 9 to 12.



PCT/JP2020/006685 2020-02-20 2020-02-20 Drone WO2021166140A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/006685 WO2021166140A1 (en) 2020-02-20 2020-02-20 Drone
JP2022501493A JPWO2021166140A1 (en) 2020-02-20 2020-02-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006685 WO2021166140A1 (en) 2020-02-20 2020-02-20 Drone

Publications (1)

Publication Number Publication Date
WO2021166140A1 true WO2021166140A1 (en) 2021-08-26

Family

ID=77391868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006685 WO2021166140A1 (en) 2020-02-20 2020-02-20 Drone

Country Status (2)

Country Link
JP (1) JPWO2021166140A1 (en)
WO (1) WO2021166140A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210031908A1 (en) * 2018-03-01 2021-02-04 Textron Innovations Inc. Propulsion Systems for Rotorcraft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051545A (en) * 2010-09-02 2012-03-15 Dream Space World Corp Unmanned flying object using printed circuit board
US20180170553A1 (en) * 2016-12-20 2018-06-21 Qualcomm Incorporated Systems, methods, and apparatus for passive cooling of uavs
JP2019022134A (en) * 2017-07-20 2019-02-07 株式会社ザクティ Aerial camera, electronic device, and unmanned aerial vehicle equipped with same
JP2019085006A (en) * 2017-11-08 2019-06-06 株式会社イームズラボ Housing of movable body and wall member for housing of movable body
CN110203393A (en) * 2019-06-19 2019-09-06 山西大学 A kind of quickly mapping multi-rotor unmanned aerial vehicle and its mapping method
WO2019225607A1 (en) * 2018-05-23 2019-11-28 株式会社ナイルワークス Aircraft and frame for aircraft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051545A (en) * 2010-09-02 2012-03-15 Dream Space World Corp Unmanned flying object using printed circuit board
US20180170553A1 (en) * 2016-12-20 2018-06-21 Qualcomm Incorporated Systems, methods, and apparatus for passive cooling of uavs
JP2019022134A (en) * 2017-07-20 2019-02-07 株式会社ザクティ Aerial camera, electronic device, and unmanned aerial vehicle equipped with same
JP2019085006A (en) * 2017-11-08 2019-06-06 株式会社イームズラボ Housing of movable body and wall member for housing of movable body
WO2019225607A1 (en) * 2018-05-23 2019-11-28 株式会社ナイルワークス Aircraft and frame for aircraft
CN110203393A (en) * 2019-06-19 2019-09-06 山西大学 A kind of quickly mapping multi-rotor unmanned aerial vehicle and its mapping method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210031908A1 (en) * 2018-03-01 2021-02-04 Textron Innovations Inc. Propulsion Systems for Rotorcraft
US11718390B2 (en) * 2018-03-01 2023-08-08 Textron Innovations Inc. Propulsion systems for rotorcraft

Also Published As

Publication number Publication date
JPWO2021166140A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
CN111556986B (en) Unmanned aerial vehicle, control method thereof and computer readable recording medium
JP6727525B2 (en) Drone, drone control method, and drone control program
JP6727498B2 (en) Agricultural drone with improved foolproof
WO2019168045A1 (en) Drone, control method thereof, and program
JP7008999B2 (en) Driving route generation system, driving route generation method, and driving route generation program, and drone
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
JP6811976B2 (en) Aircraft
WO2020095842A1 (en) Drone
JP6745519B2 (en) Drone, drone control method, and drone control program
JP6733949B2 (en) Unmanned multi-copter for drug spraying, and control method and control program therefor
WO2021166140A1 (en) Drone
JPWO2020022263A1 (en) Flying body
WO2021140657A1 (en) Drone system, flight management device, and drone
JP6888219B2 (en) Drone
WO2021161392A1 (en) Drone
WO2021161393A1 (en) Drone
WO2021166175A1 (en) Drone system, controller, and method for defining work area
JP7412039B2 (en) Display device, computer program
JP7285557B2 (en) Driving route generation system, driving route generation method, driving route generation program, and drone
JP6806403B2 (en) Drones, drone control methods, and drone control programs
JP7333947B2 (en) Drone, drone control method, and drone control program
JP7359489B2 (en) Positioning system, moving object, speed estimation system, positioning method, and speed estimation method
WO2021199243A1 (en) Positioning system, drone, surveying machine, and positioning method
WO2021205501A1 (en) Resurvey necessity determination device, survey system, drone system, and resurvey necessity determination method
WO2019235585A1 (en) Chemical discharge control system, control method therefor, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920627

Country of ref document: EP

Kind code of ref document: A1