WO2020012924A1 - Film forming method - Google Patents

Film forming method Download PDF

Info

Publication number
WO2020012924A1
WO2020012924A1 PCT/JP2019/024787 JP2019024787W WO2020012924A1 WO 2020012924 A1 WO2020012924 A1 WO 2020012924A1 JP 2019024787 W JP2019024787 W JP 2019024787W WO 2020012924 A1 WO2020012924 A1 WO 2020012924A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
film
film forming
ceramic substrate
forming method
Prior art date
Application number
PCT/JP2019/024787
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 榊
周平 松原
仲村 圭史
Original Assignee
国立大学法人信州大学
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人信州大学, Koa株式会社 filed Critical 国立大学法人信州大学
Publication of WO2020012924A1 publication Critical patent/WO2020012924A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/075Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques
    • H01C17/12Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thin film techniques by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation

Definitions

  • the present invention relates to a film forming method for forming a plurality of metal films made of a metal material on a ceramic substrate.
  • a substrate in which activated copper foil is directly bonded to a ceramic substrate using a brazing material or the like is produced, and a sheet-shaped resistor (shunt resistor element) is brazed thereon.
  • a circuit board has been proposed (see JPH11-097203A).
  • solder is used for joining the resistor and the ceramic substrate.
  • the ceramic substrate has excellent heat resistance, the coefficient of thermal expansion between the thermal expansion coefficient of the ceramic substrate, the thermal expansion coefficient of electronic components such as resistors mounted on the ceramic substrate, and the thermal expansion coefficient of the circuit pattern made of conductors is reduced. There is a difference. Therefore, heat cycle durability is required between the electronic component and the substrate or between the circuit pattern and the substrate.
  • the object of the present invention is to provide a film forming method capable of bonding a metal film to a ceramic substrate with higher bonding strength.
  • a film forming method is a film forming method for forming a plurality of metal films made of a metal material on a ceramic substrate, wherein a first metal material is applied to the ceramic substrate by a sputtering method to form a first metal film.
  • the second metal film made of the second metal material is formed on the first metal film formed on the ceramic substrate by the sputtering method by the cold spray method, so that the resinous adhesive or the like can be formed. Even without using a brazing material, the second metal coating and the ceramic substrate can be joined with higher joining strength.
  • FIG. 1 is a schematic diagram illustrating an outline of a film forming method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a process of forming a metal thin film made of a resistor material on a ceramic substrate using the film forming method according to the present embodiment.
  • FIG. 3 is a schematic diagram illustrating a step following FIG.
  • FIG. 4 is a plan view illustrating a device manufactured by using the film forming method according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a device manufactured by using the film forming method according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating the measurement result of the temperature coefficient of resistance.
  • FIG. 1 is a schematic diagram illustrating a film forming method according to an embodiment of the present invention.
  • the film forming method according to the present embodiment is a film forming method for forming a plurality of metal films made of a metal material on a ceramic substrate, and applying a first metal material to the ceramic substrate by a sputtering method to form the first metal film.
  • a first coating film forming step (referred to as step S1), and a second coating forming step of applying a second metal material to a predetermined area of the first metal coating by a cold spray method to form a second metal coating ( Step S2).
  • a functional film having a specific function can be formed on a ceramic substrate.
  • a metal film referred to as a resistor film
  • a resistor film functioning as a resistor
  • titanium or aluminum is used as the first metal material applied to form the first metal film in step S1.
  • Nickel and chromium can be used.
  • a resistor material can be used as the second metal material applied to form the second metal film.
  • a first metal film is formed by applying at least one metal material selected from the group consisting of titanium, aluminum, nickel and chromium to a ceramic substrate by sputtering, and a predetermined region of the formed first metal film is formed. Then, a resistor material is applied by a cold spray method to form a resistor film as a second metal film.
  • the first metal film functions as a bonding layer for bonding the resistor film to the ceramic substrate.
  • FIGS. 2 and 3 show that a first metal coating made of at least one metal material selected from the group consisting of titanium, aluminum, nickel and chromium is formed on a ceramic substrate by using the film forming method according to the present embodiment;
  • FIG. 4 is a schematic view illustrating a step of forming a second metal coating made of a resistor material.
  • a first metal material is applied to a ceramic substrate 11 by a sputtering method to form a first metal film 12.
  • the ceramic substrate 11 at least one material selected from the group consisting of aluminum oxide, silicon nitride, and aluminum nitride can be used.
  • a ceramic substrate having a thickness of 0.1 mm or more and 1.0 mm or less can be used. From the viewpoint of the strength of the substrate, the thickness of the ceramic substrate is preferably 0.1 mm or more. In addition, from the viewpoint of heat dissipation, it is preferably 1.0 mm or less.
  • the metal material applied to form the first metal film 12 is at least one metal material selected from the group consisting of titanium, aluminum, nickel and chromium. Can be used. An oxide of each of these metal materials can also be used.
  • the second metal film 13 is a resistor film as a metal material for forming the first metal film 12, from the viewpoint of increasing the adhesion strength between the ceramic substrate 11 and the second metal film 13, titanium or Preferably, aluminum is used, and more preferably, titanium is used.
  • the sputtering conditions are as follows. -Target: titanium-Discharge gas: argon gas-Gas flow rate: 50 sccm ⁇ Gas pressure: 0.7Pa ⁇ DC power: 1000W
  • the thickness of the first metal film 12 formed on the ceramics substrate 11 by using the sputtering method can be 50 nm or more and 1000 nm or less.
  • the thickness of the first metal coating 12 is preferably 50 nm or more in order to obtain the adhesion strength between the ceramic substrate 11 and the second metal coating 13. Further, from the viewpoints of resistance characteristics and cost-effectiveness, the thickness is preferably 1000 nm or less.
  • the first metal film 12 formed on the ceramic substrate 11 is processed into a desired pattern by photolithographic etching.
  • the area other than the area where the second metal film 13 is formed is shielded, and the ceramic substrate 11 is formed of a second metal material using a cold spray device (CS).
  • CS cold spray device
  • the average particle size of the metal powder applied to the cold spray method is preferably 50 ⁇ m or less from the viewpoint of “the flatness of the metal powder after plastic deformation is changed from 50% to 90%” which will be described later.
  • the average particle size of the metal powder is preferably 10 ⁇ m or more from the viewpoint of obtaining a powder speed at which a film can be formed by cold spraying.
  • the spraying speed of the metal powder toward the ceramic substrate 11 is set such that the flatness of the metal powder after the metal powder collides with the ceramic substrate 11 and is plastically deformed becomes 50% to 90%.
  • the speed of the metal powder is set so that the flatness of the metal powder after plastic deformation is in the range of 50% to 90%, contact between the metal particles when the metal powder collides with the ceramic substrate 11 is performed. Since the area increases and densification progresses, the adhesion between the ceramic substrate 11 and the second metal film can be improved.
  • the adhesion of the second metal film to the ceramic substrate 11 becomes insufficient due to the reaction force received from the ceramic substrate 11.
  • the flatness of the metal powder after plastic deformation exceeds 90%, the metal powder scatters when colliding with the ceramic substrate 11, and a metal film having a stable shape cannot be obtained.
  • the adhesion to the ceramic substrate 11 is reduced.
  • a resistor film is formed as the second metal film 13
  • an alloy containing at least one metal material selected from the group consisting of copper, nickel, and manganese can be used as the resistor material.
  • a metal material that can generally constitute a resistor can be used as the resistor material.
  • the resistor film is formed, when the resistor material collides with the ceramic substrate 11 on which the first metal film 12 is formed, the resistor material is favorably plastically deformed, and the resistor materials are densely packed. It is preferable that a material containing copper as a main component is used as the resistor material, from the viewpoint that it is easily bonded to the resistor. Further, a manganin alloy is preferably used as the resistor material.
  • various conditions in the cold spray method can be set as follows.
  • ⁇ Working gas Compressed nitrogen
  • Gas pressure 1-6MPa
  • Gas temperature 400-450 ° C
  • Spray distance 15mm
  • Traverse speed 20 to 80 mm / sec
  • Powder spray rate for thermal spraying Manganin: 10 to 30 g / min
  • the thickness of the resistor film to be formed can be adjusted to 20 ⁇ m or more and 1000 ⁇ m or less by adjusting the above cold spray conditions.
  • a third metal material is applied by a cold spray method, and a third metal film 14 is formed over the first metal film 12 and the second metal film 13.
  • a region other than the region where the third metal film 14 is formed is shielded by using the metal mask M2.
  • a third metal material is applied by a cold spray method to form a third metal film 14 extending over the first metal film 12 and the second metal film 13. Note that the cold spray device is omitted in FIG. 3 (b).
  • the adhesion between the first metal film 12 and the ceramic substrate 11, and the second metal film 13 and the ceramic Adhesion with the substrate 11 can be further enhanced.
  • a conductive film according to the pattern of the opening of the metal mask M2 can be formed.
  • Copper can be used as a conductor material for forming the conductive film.
  • the conductor material other than copper, any material that normally constitutes a circuit pattern can be used.
  • the conditions of the cold spray method suitable for forming the third metal film 14 can be the same as those described above.
  • ⁇ Working gas Compressed nitrogen ⁇ Gas pressure: 1-6MPa ⁇ Gas temperature: 400-450 ° C ⁇ Spray distance: 15mm ⁇ Traverse speed: 20 to 80 mm / sec ⁇ Powder spray rate for thermal spraying: Manganin: 10 to 30 g / min
  • the thickness of the conductor film to be formed can be several tens ⁇ m to several hundred ⁇ m by adjusting the above cold spray conditions. This is a thickness that can support a conductor pattern corresponding to a large current application.
  • At least one metal selected from the group consisting of titanium, aluminum, nickel, and chromium is used as the first metal material for forming the first metal film.
  • FIG. 4 is a plan view illustrating a device 1 manufactured by using the film forming method according to the present embodiment.
  • FIG. 5 is a cross-sectional view of the device 1 manufactured by using the film forming method according to the embodiment of the present invention.
  • the device 1 is used as a resistor, considering that the resistor film generates more heat than the conductive film formed on the ceramic substrate 11, as shown in FIG.
  • the first metal film 12 and the third metal film 14 can be formed by using the film forming method described above. Thereby, the thermal stress applied to the front and back surfaces of the ceramic substrate 11 can be balanced.
  • the third metal film 14 formed on the back surface can be used for solder mounting on another circuit board or component.
  • the second metal film 13 functioning as a resistor is formed in tight contact with the ceramic substrate 11, so that the device 1 is formed by brazing or using a resin adhesive.
  • a resin adhesive As compared with a general resistor that is fixed, there is no occurrence of cracks at the joints or inhibition of heat dissipation due to the resin adhesive, and the heat dissipation and durability are excellent.
  • Aluminum oxide (alumina) was used as a ceramic substrate.
  • Manganin was used as a resistor material.
  • titanium, aluminum, nichrome, and nickel were used as metal materials for forming the metal film.
  • a 100-nm-thick bonding layer was formed on a 30 mm-long x 50 mm-wide x 1 mm-thick alumina substrate by sputtering using titanium or aluminum.
  • the sputtering conditions are as follows. -Target: titanium-Discharge gas: argon gas-Gas flow rate: 50 sccm ⁇ Gas pressure: 0.7Pa ⁇ DC power: 1000W
  • a manganin alloy as a resistor material was sprayed on the metal film formed by the sputtering method by a cold spray method to form a resistor film (mask size: 10 mm ⁇ 40 mm).
  • the conditions of the cold spray method are as follows. ⁇ Working gas: Compressed nitrogen ⁇ Gas pressure: 1-6MPa ⁇ Gas temperature: 400-450 ° C ⁇ Spray distance: 15mm ⁇ Traverse speed: 20 to 80 mm / sec ⁇ Powder spray rate for thermal spraying: Manganin: 10 to 30 g / min
  • Ta is a reference temperature
  • T is a temperature at which a steady state is established
  • Ra is a resistance value of the resistor material at the reference temperature
  • R is a resistance value of the resistor material at the steady state.
  • FIG. 6 shows the results of the temperature coefficient of resistance. As shown in FIG. 6, when aluminum is used as the first metal film, it can be seen that as the film thickness increases, the change in the resistance temperature characteristic increases. In addition, when titanium is used as the first metal film, even if the film thickness increases, the change in the temperature coefficient of resistance is small, and it can be seen that the film has a stable resistance temperature characteristic.
  • the film forming method according to the present embodiment is suitable for use in manufacturing a device in which a resistor is integrally formed on a ceramic substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Non-Adjustable Resistors (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

This film forming method forms a plurality of metal films, which are formed from metal materials, on a ceramic substrate. This film forming method comprises: a first film formation step wherein a first metal film is formed by applying a first metal material onto the ceramic substrate by means of a sputtering method; and a second film formation step wherein a second metal film is formed by applying a powder of a second metal material onto a predetermined region of the first metal film by means of a cold spray method.

Description

成膜方法Film formation method
 本発明は、セラミックス基板に金属材料からなる複数の金属被膜を形成する成膜方法に関する。 The present invention relates to a film forming method for forming a plurality of metal films made of a metal material on a ceramic substrate.
 セラミックス基板上に、活性化処理された銅箔をロウ材等を用いて直接接合した基板を作製し、この上に、シート状に形成した抵抗器(シャント抵抗素子)をロウ付けして得られる回路基板が提案されている(JPH11-097203A参照)。 A substrate in which activated copper foil is directly bonded to a ceramic substrate using a brazing material or the like is produced, and a sheet-shaped resistor (shunt resistor element) is brazed thereon. A circuit board has been proposed (see JPH11-097203A).
 JPH11-097203Aに記載された回路基板では、抵抗器とセラミックス基板との接合に、半田が用いられている。セラミックス基板は、耐熱性に優れるが、セラミックス基板の熱膨張係数と、セラミックス基板上に実装される抵抗体等の電子部品の熱膨張係数と、導体からなる回路パターンとの熱膨張係数との間には差がある。このため、電子部品と基板との間、或いは、回路パターンと基板との間には、ヒートサイクル耐久性が要求される。 In the circuit board described in JPH11-097203A, solder is used for joining the resistor and the ceramic substrate. Although the ceramic substrate has excellent heat resistance, the coefficient of thermal expansion between the thermal expansion coefficient of the ceramic substrate, the thermal expansion coefficient of electronic components such as resistors mounted on the ceramic substrate, and the thermal expansion coefficient of the circuit pattern made of conductors is reduced. There is a difference. Therefore, heat cycle durability is required between the electronic component and the substrate or between the circuit pattern and the substrate.
 一方、近年、電子機器の高機能化に伴って、電子部品を実装するための回路基板に対する高電力要求及び高耐熱要求がより一層高まっているため、セラミックス基板と抵抗体との接合方法には、更なる改良が望まれている。 On the other hand, in recent years, with the advancement of functions of electronic devices, high power requirements and high heat resistance requirements for circuit boards for mounting electronic components have been further increased. Further improvement is desired.
 本発明は、金属被膜をセラミックス基板に、より高い接合強度で接合することができる成膜方法を提供することを目的とする。 The object of the present invention is to provide a film forming method capable of bonding a metal film to a ceramic substrate with higher bonding strength.
 本発明の一態様としての成膜方法は、セラミックス基板に金属材料からなる複数の金属被膜を形成する成膜方法であって、前記セラミックス基板にスパッタ法により第1の金属材料を施して第1金属被膜を形成する第1の被膜形成工程と、前記第1金属被膜の所定領域にコールドスプレー法により第2の金属材料の粉体を施して第2金属被膜を形成する第2の被膜形成工程と、を有する。 A film forming method according to one embodiment of the present invention is a film forming method for forming a plurality of metal films made of a metal material on a ceramic substrate, wherein a first metal material is applied to the ceramic substrate by a sputtering method to form a first metal film. A first coating forming step of forming a metal coating, and a second coating forming step of applying a powder of a second metal material to a predetermined area of the first metal coating by a cold spray method to form a second metal coating. And
 この成膜方法によれば、セラミックス基板にスパッタ法により形成された第1金属被膜に、コールドスプレー法により第2の金属材料からなる第2金属被膜を形成することによって、樹脂性の接着剤や、ロウ材を用いなくとも、第2金属被膜とセラミックス基板とをより高い接合強度で接合することができる。 According to this film forming method, the second metal film made of the second metal material is formed on the first metal film formed on the ceramic substrate by the sputtering method by the cold spray method, so that the resinous adhesive or the like can be formed. Even without using a brazing material, the second metal coating and the ceramic substrate can be joined with higher joining strength.
 したがって、金属被膜をセラミックス基板に、より高い接合強度で接合することができる成膜方法を提供できる。 Therefore, it is possible to provide a film forming method capable of bonding a metal film to a ceramic substrate with higher bonding strength.
図1は、本発明の実施形態に係る成膜方法の概略を説明する模式図である。FIG. 1 is a schematic diagram illustrating an outline of a film forming method according to an embodiment of the present invention. 図2は、本実施形態に係る成膜方法を用いて、セラミックス基板に抵抗体材料からなる金属薄膜を形成する工程を説明する模式図である。FIG. 2 is a schematic diagram illustrating a process of forming a metal thin film made of a resistor material on a ceramic substrate using the film forming method according to the present embodiment. 図3は、図2に続く工程を説明する模式図である。FIG. 3 is a schematic diagram illustrating a step following FIG. 図4は、本発明の実施形態に係る成膜方法を用いて作製されたデバイスを説明する平面図である。FIG. 4 is a plan view illustrating a device manufactured by using the film forming method according to the embodiment of the present invention. 図5は、本発明の実施形態に係る成膜方法を用いて作製されたデバイスの断面図である。FIG. 5 is a cross-sectional view of a device manufactured by using the film forming method according to the embodiment of the present invention. 図6は、抵抗温度係数の測定結果を説明する図である。FIG. 6 is a diagram illustrating the measurement result of the temperature coefficient of resistance.
 [成膜方法の説明]
 本発明の実施形態に係る成膜方法について、図面を用いて詳細に説明する。図1は、本発明の実施形態に係る成膜方法を説明する模式図である。
[Explanation of film formation method]
A film forming method according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram illustrating a film forming method according to an embodiment of the present invention.
 本実施形態に係る成膜方法は、セラミックス基板に金属材料からなる複数の金属被膜を形成する成膜方法であって、セラミックス基板にスパッタ法により第1の金属材料を施して第1金属被膜を形成する第1の被膜形成工程(工程S1と記す)と、第1金属被膜の所定領域にコールドスプレー法により第2の金属材料を施して第2金属被膜を形成する第2の被膜形成工程(工程S2と記す)とを有する。 The film forming method according to the present embodiment is a film forming method for forming a plurality of metal films made of a metal material on a ceramic substrate, and applying a first metal material to the ceramic substrate by a sputtering method to form the first metal film. A first coating film forming step (referred to as step S1), and a second coating forming step of applying a second metal material to a predetermined area of the first metal coating by a cold spray method to form a second metal coating ( Step S2).
 本実施形態に係る成膜方法によれば、セラミックス基板に特定の機能を有する機能膜を形成することができる。以下では、一例として、セラミックス基板に、抵抗体として機能する金属被膜(抵抗体被膜という)を成膜する場合について説明する。 According to the film forming method of the present embodiment, a functional film having a specific function can be formed on a ceramic substrate. Hereinafter, as an example, a case where a metal film (referred to as a resistor film) functioning as a resistor is formed on a ceramic substrate will be described.
 本実施形態に係る成膜方法によって、セラミックス基板に抵抗体被膜を成膜する場合には、工程S1において、第1金属被膜を形成するために施される第1の金属材料として、チタン、アルミニウム、ニッケル及びクロムからなる群から選択される少なくとも1つの金属材料を用いることができる。また、工程S2において、第2金属被膜を形成するために施される第2の金属材料として、抵抗体材料を用いることができる。 When the resistor film is formed on the ceramic substrate by the film forming method according to the present embodiment, titanium or aluminum is used as the first metal material applied to form the first metal film in step S1. , Nickel and chromium can be used. In step S2, a resistor material can be used as the second metal material applied to form the second metal film.
 すなわち、セラミックス基板に、スパッタ法により、チタン、アルミニウム、ニッケル及びクロムからなる群から選択される少なくとも1つの金属材料を施して第1金属被膜を形成し、形成された第1金属被膜の所定領域に、コールドスプレー法により抵抗体材料を施して第2金属被膜としての抵抗体被膜を形成するというものである。この場合、第1金属被膜は、セラミックス基板に対して抵抗体被膜を接合するための接合層として機能する。 That is, a first metal film is formed by applying at least one metal material selected from the group consisting of titanium, aluminum, nickel and chromium to a ceramic substrate by sputtering, and a predetermined region of the formed first metal film is formed. Then, a resistor material is applied by a cold spray method to form a resistor film as a second metal film. In this case, the first metal film functions as a bonding layer for bonding the resistor film to the ceramic substrate.
 図2及び図3は、本実施形態に係る成膜方法を用いて、セラミックス基板に、チタン、アルミニウム、ニッケル及びクロムからなる群から選択される少なくとも1つの金属材料からなる第1金属被膜と、抵抗体材料からなる第2金属被膜を形成する工程を説明する模式図である。 FIGS. 2 and 3 show that a first metal coating made of at least one metal material selected from the group consisting of titanium, aluminum, nickel and chromium is formed on a ceramic substrate by using the film forming method according to the present embodiment; FIG. 4 is a schematic view illustrating a step of forming a second metal coating made of a resistor material.
 まず、図2(a)に示すように、セラミックス基板11に、スパッタ法により第1の金属材料を施して第1金属被膜12を形成する。 First, as shown in FIG. 2A, a first metal material is applied to a ceramic substrate 11 by a sputtering method to form a first metal film 12.
 ここで、セラミックス基板11としては、酸化アルミニウム、窒化ケイ素及び窒化アルミからなる群から選択される少なくとも1つの材料を用いることができる。 Here, as the ceramic substrate 11, at least one material selected from the group consisting of aluminum oxide, silicon nitride, and aluminum nitride can be used.
 セラミックス基板の厚みは、0.1mm以上1.0mm以下のものを使用することができる。基板としての強度の観点から、セラミックス基板の厚みは、0.1mm以上であることが好ましい。また、放熱性の観点から、1.0mm以下であることが好ましい。 A ceramic substrate having a thickness of 0.1 mm or more and 1.0 mm or less can be used. From the viewpoint of the strength of the substrate, the thickness of the ceramic substrate is preferably 0.1 mm or more. In addition, from the viewpoint of heat dissipation, it is preferably 1.0 mm or less.
 また、第1金属被膜12を形成するために施される金属材料としては、チタン、アルミニウム、ニッケル及びクロムからなる群から選択される少なくとも1つの金属材料であり、これらを単体で、または合金で用いることができる。またこれら各金属材料の酸化物を用いることもできる。第1金属被膜12を形成するための金属材料としては、第2金属被膜13を抵抗体被膜とした場合には、セラミックス基板11と第2金属被膜13との密着強度を高める観点から、チタン或いはアルミニウムを用いることが好ましく、チタンを用いることがより好ましい。 Further, the metal material applied to form the first metal film 12 is at least one metal material selected from the group consisting of titanium, aluminum, nickel and chromium. Can be used. An oxide of each of these metal materials can also be used. When the second metal film 13 is a resistor film as a metal material for forming the first metal film 12, from the viewpoint of increasing the adhesion strength between the ceramic substrate 11 and the second metal film 13, titanium or Preferably, aluminum is used, and more preferably, titanium is used.
 スパッタ条件は、下記のとおりである。
・ターゲット:チタン
・放電ガス:アルゴンガス
・ガス流量:50sccm
・ガス圧力:0.7Pa
・DC電力:1000W
The sputtering conditions are as follows.
-Target: titanium-Discharge gas: argon gas-Gas flow rate: 50 sccm
・ Gas pressure: 0.7Pa
・ DC power: 1000W
 セラミックス基板11にスパッタ法を用いて形成される第1金属被膜12の厚みは、50nm以上1000nm以下とすることができる。第1金属被膜12の厚みは、セラミックス基板11と第2金属被膜13との密着強度を得るために、50nm以上であることが好ましい。また、抵抗特性及び費用対効果の観点から、1000nm以下であることが好ましい。 (4) The thickness of the first metal film 12 formed on the ceramics substrate 11 by using the sputtering method can be 50 nm or more and 1000 nm or less. The thickness of the first metal coating 12 is preferably 50 nm or more in order to obtain the adhesion strength between the ceramic substrate 11 and the second metal coating 13. Further, from the viewpoints of resistance characteristics and cost-effectiveness, the thickness is preferably 1000 nm or less.
 続いて、図2(b)に示すように、セラミックス基板11に形成された第1金属被膜12をフォトリソエッチングにより所望パターンに加工する。 Next, as shown in FIG. 2B, the first metal film 12 formed on the ceramic substrate 11 is processed into a desired pattern by photolithographic etching.
 次に、図3(a)に示すように、第2金属被膜13が形成される領域以外を遮蔽し、コールドスプレー装置(CS)を用いて、セラミックス基板11に第2の金属材料からなる第2金属被膜を成膜する。 Next, as shown in FIG. 3A, the area other than the area where the second metal film 13 is formed is shielded, and the ceramic substrate 11 is formed of a second metal material using a cold spray device (CS). (2) A metal film is formed.
 コールドスプレー法に適用される金属粉体の平均粒径は、後述する「塑性変形後の金属粉体の扁平率を50%から90%にする」観点から50μm以下とすることが好ましい。また、金属粉体の平均粒径は、コールドスプレーにより着膜可能な粉体速度を得る観点から10μm以上とすることが好ましい。この粒径範囲であれば、金属粉体が溶射されて、第1金属被膜12が形成されたセラミックス基板11に衝突した際に、良好な塑性変形を生じさせることができる。また、金属粉体が衝突することで、粉体に生じた新生面同士が金属結合を繰り返し、良好な金属被膜が形成されやすくなる。 平均 The average particle size of the metal powder applied to the cold spray method is preferably 50 μm or less from the viewpoint of “the flatness of the metal powder after plastic deformation is changed from 50% to 90%” which will be described later. The average particle size of the metal powder is preferably 10 μm or more from the viewpoint of obtaining a powder speed at which a film can be formed by cold spraying. When the particle size is in this range, good plastic deformation can be generated when the metal powder is sprayed and collides with the ceramic substrate 11 on which the first metal coating 12 is formed. In addition, when the metal powder collides, new surfaces generated in the powder repeat metal bonding, and a good metal coating is easily formed.
 また、セラミックス基板11に向けた金属粉体の溶射速度は、金属粉体がセラミックス基板11に衝突して塑性変形した後の金属粉体の扁平率が50%から90%になるように設定する。塑性変形後の金属粉体の扁平率が50%から90%の範囲になるように、金属粉体の速度を設定すると、金属粉体がセラミックス基板11に衝突した際に、金属粒子間の接触面積が増加し、緻密化が進むため、セラミックス基板11と第2金属被膜との密着性を向上させることができる。 The spraying speed of the metal powder toward the ceramic substrate 11 is set such that the flatness of the metal powder after the metal powder collides with the ceramic substrate 11 and is plastically deformed becomes 50% to 90%. . When the speed of the metal powder is set so that the flatness of the metal powder after plastic deformation is in the range of 50% to 90%, contact between the metal particles when the metal powder collides with the ceramic substrate 11 is performed. Since the area increases and densification progresses, the adhesion between the ceramic substrate 11 and the second metal film can be improved.
 塑性変形した後の金属粉体の扁平率が50%以下であると、セラミックス基板11から受ける反力によって、セラミックス基板11に対する第2金属被膜の密着性が不十分となる。また、塑性変形した後の金属粉体の扁平率が90%を超えると、金属粉体がセラミックス基板11に衝突した際に飛散し、安定した形状の金属被膜が得られない。また、セラミックス基板11と第2金属被膜との間に隙間が発生するため、セラミックス基板11との密着性が低下する。 If the flatness of the metal powder after the plastic deformation is 50% or less, the adhesion of the second metal film to the ceramic substrate 11 becomes insufficient due to the reaction force received from the ceramic substrate 11. On the other hand, if the flatness of the metal powder after plastic deformation exceeds 90%, the metal powder scatters when colliding with the ceramic substrate 11, and a metal film having a stable shape cannot be obtained. In addition, since a gap is generated between the ceramic substrate 11 and the second metal coating, the adhesion to the ceramic substrate 11 is reduced.
 第2金属被膜13として抵抗体被膜を形成する場合には、銅、ニッケル、及びマンガンからなる群から選択される少なくとも1つの金属材料を含む合金を抵抗体材料として用いることができる。また上記金属材料のほか、通常、抵抗体を構成することが可能な金属材料は、抵抗体材料として適用可能である。抵抗体被膜を成膜する場合には、第1金属被膜12が形成されたセラミックス基板11に抵抗体材料が衝突した際、抵抗体材料が良好に塑性変形を生じて、抵抗体材料同士が緻密に結合しやすくなるという観点から、抵抗体材料として、銅を主成分とする材料が用いられることが好ましい。さらには、抵抗体材料として、マンガニン合金が用いられることが好ましい。 In the case where a resistor film is formed as the second metal film 13, an alloy containing at least one metal material selected from the group consisting of copper, nickel, and manganese can be used as the resistor material. In addition to the above-mentioned metal materials, a metal material that can generally constitute a resistor can be used as the resistor material. When the resistor film is formed, when the resistor material collides with the ceramic substrate 11 on which the first metal film 12 is formed, the resistor material is favorably plastically deformed, and the resistor materials are densely packed. It is preferable that a material containing copper as a main component is used as the resistor material, from the viewpoint that it is easily bonded to the resistor. Further, a manganin alloy is preferably used as the resistor material.
 本実施形態に係る成膜方法では、コールドスプレー法における各種条件は、以下のように設定することができる。
・作動ガス:圧縮窒素
・ガス圧:1~6MPa
・ガス温度:400~450℃
・溶射距離:15mm
・トラバース速度:20~80mm/sec
・溶射用粉末溶射速度:マンガニン:10~30g/min
In the film forming method according to the present embodiment, various conditions in the cold spray method can be set as follows.
・ Working gas: Compressed nitrogen ・ Gas pressure: 1-6MPa
・ Gas temperature: 400-450 ° C
・ Spray distance: 15mm
・ Traverse speed: 20 to 80 mm / sec
・ Powder spray rate for thermal spraying: Manganin: 10 to 30 g / min
 第2の金属材料として、抵抗体材料を用いた場合には、成膜される抵抗体被膜の厚みは、上記コールドスプレー条件を調整することにより、20μm以上1000μm以下に調整することができる。 (4) When a resistor material is used as the second metal material, the thickness of the resistor film to be formed can be adjusted to 20 μm or more and 1000 μm or less by adjusting the above cold spray conditions.
 続いて、コールドスプレー法により第3の金属材料を施して、第1金属被膜12及び第2金属被膜13に跨がって、第3金属被膜14を成膜する。この工程では、図3(b)に示すように、メタルマスクM2を用いて、第3金属被膜14が形成される領域以外を遮蔽する。そして、コールドスプレー装置(CS)を用い、コールドスプレー法により第3の金属材料を施して、第1金属被膜12及び第2金属被膜13に跨がる第3金属被膜14を成膜する。なお、図3(b)では、コールドスプレー装置は省略されている。 Next, a third metal material is applied by a cold spray method, and a third metal film 14 is formed over the first metal film 12 and the second metal film 13. In this step, as shown in FIG. 3B, a region other than the region where the third metal film 14 is formed is shielded by using the metal mask M2. Then, using a cold spray device (CS), a third metal material is applied by a cold spray method to form a third metal film 14 extending over the first metal film 12 and the second metal film 13. Note that the cold spray device is omitted in FIG. 3 (b).
 第3金属被膜14を第1金属被膜12及び第2金属被膜13に跨がって成膜することにより、第1金属被膜12とセラミックス基板11との密着性、及び第2金属被膜13とセラミックス基板11との密着性を、さらに高めることができる。 By forming the third metal film 14 over the first metal film 12 and the second metal film 13, the adhesion between the first metal film 12 and the ceramic substrate 11, and the second metal film 13 and the ceramic Adhesion with the substrate 11 can be further enhanced.
 第3の金属材料として導電性材料を用いた場合には、メタルマスクM2の開口部のパターンに応じた導電膜を成膜することができる。導電膜を形成するための導体材料としては、銅を用いることができる。導体材料としては、銅のほか、通常、回路パターンを構成する材料であれば使用可能である。 (4) When a conductive material is used as the third metal material, a conductive film according to the pattern of the opening of the metal mask M2 can be formed. Copper can be used as a conductor material for forming the conductive film. As the conductor material, other than copper, any material that normally constitutes a circuit pattern can be used.
 第3金属被膜14の成膜に適したコールドスプレー法の条件は、上述した条件と同じくすることができる。
・作動ガス:圧縮窒素
・ガス圧:1~6MPa
・ガス温度:400~450℃
・溶射距離:15mm
・トラバース速度:20~80mm/sec
・溶射用粉末溶射速度:マンガニン:10~30g/min
The conditions of the cold spray method suitable for forming the third metal film 14 can be the same as those described above.
・ Working gas: Compressed nitrogen ・ Gas pressure: 1-6MPa
・ Gas temperature: 400-450 ° C
・ Spray distance: 15mm
・ Traverse speed: 20 to 80 mm / sec
・ Powder spray rate for thermal spraying: Manganin: 10 to 30 g / min
 第3の金属材料として、導体材料を用いた場合には、成膜される導体膜の厚みは、上記コールドスプレー条件を調整することにより、数十μm~数百μmとすることができる。これは、大電流用途に対応した導体パターンに対応できる厚みである。 (4) When a conductor material is used as the third metal material, the thickness of the conductor film to be formed can be several tens μm to several hundred μm by adjusting the above cold spray conditions. This is a thickness that can support a conductor pattern corresponding to a large current application.
 また、本実施形態に係る成膜方法において、第1金属被膜を形成するために施される第1の金属材料として、チタン、アルミニウム、ニッケル、及びクロムからなる群から選択される少なくとも1つの金属材料を用い、第2金属被膜を形成するために施される第2の金属材料として、抵抗体材料を用いることにより、セラミックス基板に抵抗体を一体的に形成されたデバイス1を得ることができる。 Further, in the film forming method according to the present embodiment, at least one metal selected from the group consisting of titanium, aluminum, nickel, and chromium is used as the first metal material for forming the first metal film. By using a material and a resistor material as a second metal material applied to form a second metal film, it is possible to obtain a device 1 in which a resistor is integrally formed on a ceramic substrate. .
 図4は、本実施形態に係る成膜方法を用いて作製されたデバイス1を説明する平面図である。また、図5は、本発明の実施形態に係る成膜方法を用いて作製されたデバイス1の断面図である。デバイス1が抵抗器として使用される場合には、抵抗体被膜がセラミックス基板11に形成された導電膜に比べて発熱することを考慮して、図5に示すように、セラミックス基板11の裏面にも、上述した成膜方法を用いて、第1金属被膜12及び第3金属被膜14を成膜することができる。これにより、セラミックス基板11の表裏面にかかる熱応力の均衡をとることができる。また、裏面に形成された第3金属被膜14を利用して他の回路基板や部品上に半田実装することができる。 FIG. 4 is a plan view illustrating a device 1 manufactured by using the film forming method according to the present embodiment. FIG. 5 is a cross-sectional view of the device 1 manufactured by using the film forming method according to the embodiment of the present invention. In the case where the device 1 is used as a resistor, considering that the resistor film generates more heat than the conductive film formed on the ceramic substrate 11, as shown in FIG. Also, the first metal film 12 and the third metal film 14 can be formed by using the film forming method described above. Thereby, the thermal stress applied to the front and back surfaces of the ceramic substrate 11 can be balanced. In addition, the third metal film 14 formed on the back surface can be used for solder mounting on another circuit board or component.
 このように形成された抵抗体一体型のデバイス1は、抵抗体として機能する第2金属被膜13がセラミックス基板11に強固に密着して形成されているため、ロウ付けや樹脂接着剤を用いて固定される一般的な抵抗器に比べて、接合部のクラックや樹脂接着剤による放熱阻害等が生じることがなく、放熱性及び耐久性にも優れるものとなる。 In the resistor-integrated device 1 formed in this manner, the second metal film 13 functioning as a resistor is formed in tight contact with the ceramic substrate 11, so that the device 1 is formed by brazing or using a resin adhesive. As compared with a general resistor that is fixed, there is no occurrence of cracks at the joints or inhibition of heat dissipation due to the resin adhesive, and the heat dissipation and durability are excellent.
 本発明の実施形態に係る成膜方法によってセラミックス基板に形成された複数の金属被膜の密着強度を測定した。以下、供試体の作製方法及びその評価について説明する。 (4) The adhesion strength of a plurality of metal films formed on the ceramic substrate by the film forming method according to the embodiment of the present invention was measured. Hereinafter, a method for preparing a specimen and its evaluation will be described.
 [供試体の作製]
 セラミックス基板として酸化アルミニウム(アルミナ)を用いた。抵抗体材料としてマンガニンを用いた。また、金属被膜を形成するための金属材料としてチタン、アルミ、ニクロム、ニッケルのそれぞれを用いた。
[Preparation of specimen]
Aluminum oxide (alumina) was used as a ceramic substrate. Manganin was used as a resistor material. Further, titanium, aluminum, nichrome, and nickel were used as metal materials for forming the metal film.
 縦30mm×横50mm×厚み1mmのアルミナ基板に、チタン又はアルミニウムを用いたスパッタ法を施して、厚み100nmの接合層を形成した。 (4) A 100-nm-thick bonding layer was formed on a 30 mm-long x 50 mm-wide x 1 mm-thick alumina substrate by sputtering using titanium or aluminum.
 スパッタリング条件は下記のとおりである。
・ターゲット:チタン
・放電ガス:アルゴンガス
・ガス流量:50sccm
・ガス圧力:0.7Pa
・DC電力:1000W
The sputtering conditions are as follows.
-Target: titanium-Discharge gas: argon gas-Gas flow rate: 50 sccm
・ Gas pressure: 0.7Pa
・ DC power: 1000W
 続いて、スパッタ法を用いて形成された金属被膜に、コールドスプレー法により抵抗体材料としてのマンガニン合金を溶射して抵抗体被膜(マスクサイズ10mm×40mm)を形成した。 Next, a manganin alloy as a resistor material was sprayed on the metal film formed by the sputtering method by a cold spray method to form a resistor film (mask size: 10 mm × 40 mm).
 コールドスプレー法の条件は下記のとおりである。
・作動ガス:圧縮窒素
・ガス圧:1~6MPa
・ガス温度:400~450℃
・溶射距離:15mm
・トラバース速度:20~80mm/sec
・溶射用粉末溶射速度:マンガニン:10~30g/min
The conditions of the cold spray method are as follows.
・ Working gas: Compressed nitrogen ・ Gas pressure: 1-6MPa
・ Gas temperature: 400-450 ° C
・ Spray distance: 15mm
・ Traverse speed: 20 to 80 mm / sec
・ Powder spray rate for thermal spraying: Manganin: 10 to 30 g / min
 [測定方法]
 <抵抗温度特性>
 上述のようにして得られた供試体について、抵抗温度係数を測定した。
・抵抗温度係数の測定
 第1金属被膜としてチタン、アルミニウムを用いた場合における、供試体の抵抗温度係数(TCR)を測定し、第1金属被膜の膜厚の変更に伴う標準値に対する抵抗温度係数の変化率を算出した。抵抗温度係数(TCR)とは、抵抗器の温度変化による内部抵抗値の変化の割合を表すものであり、下記式により表される。
[Measuring method]
<Resistance temperature characteristics>
With respect to the specimen obtained as described above, the temperature coefficient of resistance was measured.
・ Measurement of temperature coefficient of resistance When titanium and aluminum are used as the first metal film, the temperature coefficient of resistance (TCR) of the specimen is measured, and the temperature coefficient of resistance with respect to the standard value accompanying the change of the film thickness of the first metal film. Was calculated. The temperature coefficient of resistance (TCR) indicates the rate of change in the internal resistance value due to a change in the temperature of the resistor, and is expressed by the following equation.
 抵抗温度係数(ppm/℃)={(R-Ra)/Ra}×{1/(T-Ta)}×1000000
 ここで、Ta:基準温度、T:定常状態になる温度、Ra:基準温度における抵抗体材料の抵抗値、R:定常状態における抵抗体材料の抵抗値である。
Temperature coefficient of resistance (ppm / ° C) = {(R-Ra) / Ra} x {1 / (T-Ta)} x 1,000,000
Here, Ta is a reference temperature, T is a temperature at which a steady state is established, Ra is a resistance value of the resistor material at the reference temperature, and R is a resistance value of the resistor material at the steady state.
 [結果]
 <剥離強度試験結果>
 作製された供試体について、「フォトテクニカ社製 Romulus」を用いて剥離強度測定を行った結果、アルミナ基板上にマンガニンの抵抗体被膜を成膜する際の接合層としての金属被膜の違いにより、下記の結果が得られた。
[result]
<Peeling strength test result>
The peel strength of the fabricated specimen was measured using "Romulus" manufactured by Phototechnica.As a result, due to the difference in the metal coating as a bonding layer when the resistor coating of manganin was formed on the alumina substrate, The following results were obtained.
 金属被膜がチタンの場合 剥離強度:70MPa
 金属被膜がアルミニウムの場合 剥離強度:50MPa
 金属被膜がニクロムの場合 剥離強度:10Mpa以下
 金属被膜がニッケルの場合 剥離強度:10MPa以下
When the metal coating is titanium Peel strength: 70 MPa
When the metal coating is aluminum Peel strength: 50 MPa
When the metal coating is Nichrome Peel strength: 10 MPa or less When the metal coating is nickel Peel strength: 10 MPa or less
 <抵抗温度特性>
 抵抗温度係数の結果を図6に示した。図6に示されるように、第1金属被膜としてアルミニウムを用いた場合には、膜厚が増すと、抵抗温度特性の変化が大きくなることがわかる。また、第1金属被膜としてチタンを用いた場合には、膜厚が増しても、抵抗温度係数の変化が少なく、安定した抵抗温度特性を有することがわかる。
<Resistance temperature characteristics>
FIG. 6 shows the results of the temperature coefficient of resistance. As shown in FIG. 6, when aluminum is used as the first metal film, it can be seen that as the film thickness increases, the change in the resistance temperature characteristic increases. In addition, when titanium is used as the first metal film, even if the film thickness increases, the change in the temperature coefficient of resistance is small, and it can be seen that the film has a stable resistance temperature characteristic.
 以上の結果から、第1金属被膜としてチタンを用いた場合、第2金属被膜としてマンガニン合金を組み合わせると、強固な密着性が得られるとともに、得られたデバイスが良好な抵抗特性を有することが明らかとなった。 From the above results, it is clear that when titanium is used as the first metal coating, when a manganin alloy is combined as the second metal coating, strong adhesion is obtained and the obtained device has good resistance characteristics. It became.
 以上のことから、本実施形態に係る成膜方法は、セラミックス基板に抵抗体が一体的に形成されたデバイスの作製に用いて好適である。 From the above, the film forming method according to the present embodiment is suitable for use in manufacturing a device in which a resistor is integrally formed on a ceramic substrate.
 以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 As described above, the embodiments of the present invention have been described. However, the above embodiments are merely examples of application examples of the present invention, and the technical scope of the present invention is limited to the specific configurations of the above embodiments. is not.
 本願は、2018年7月12日に日本国特許庁に出願された特願2018-132592に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims the priority based on Japanese Patent Application No. 2018-132592 filed with the Japan Patent Office on July 12, 2018, the entire contents of which are incorporated herein by reference.
 1  デバイス
 11  セラミックス基板
 12  第1金属被膜
 13  第2金属被膜
 14  第3金属被膜
Reference Signs List 1 device 11 ceramic substrate 12 first metal coating 13 second metal coating 14 third metal coating

Claims (6)

  1.  セラミックス基板に金属材料からなる複数の金属被膜を形成する成膜方法であって、
     前記セラミックス基板にスパッタ法により第1の金属材料を施して第1金属被膜を形成する第1の被膜形成工程と、
     前記第1金属被膜の所定領域にコールドスプレー法により第2の金属材料の粉体を施して第2金属被膜を形成する第2の被膜形成工程と、
    を有する、成膜方法。
    A film forming method for forming a plurality of metal films made of a metal material on a ceramic substrate,
    A first coating forming step of applying a first metal material to the ceramic substrate by a sputtering method to form a first metal coating;
    A second coating forming step of applying a powder of a second metal material to a predetermined area of the first metal coating by a cold spray method to form a second metal coating;
    A film forming method.
  2.  請求項1に記載の成膜方法であって、
     前記第2の被膜形成工程において施される前記第2の金属材料は、平均粒径が10μm以上50μm以下であり、
     前記第2の被膜形成工程では、前記セラミックス基板へ衝突した後の前記粉体の扁平率が50%から90%になるように前記第2の金属材料の溶射速度が設定される、成膜方法。
    The film forming method according to claim 1, wherein
    The second metal material applied in the second film forming step has an average particle diameter of 10 μm or more and 50 μm or less,
    In the second film forming step, a spraying rate of the second metal material is set such that an oblateness of the powder after colliding with the ceramic substrate becomes 50% to 90%. .
  3.  請求項1または2に記載の成膜方法であって、
     前記第1の金属材料は、チタン、アルミニウム、ニッケル及びクロムからなる群から選択される少なくとも1つの金属材料であり、
     前記第2の金属材料は、抵抗体材料である、成膜方法。
    The film forming method according to claim 1, wherein:
    The first metal material is at least one metal material selected from the group consisting of titanium, aluminum, nickel, and chromium;
    The film formation method, wherein the second metal material is a resistor material.
  4.  請求項3に記載の成膜方法であって、
     前記第1の被膜形成工程において施される前記第1の金属材料は、チタンである、成膜方法。
    The film forming method according to claim 3, wherein
    The film forming method, wherein the first metal material applied in the first film forming step is titanium.
  5.  請求項3または4に記載の成膜方法であって、
     前記第2の金属材料は、マンガニン合金である、成膜方法。
    The film forming method according to claim 3, wherein:
    The film forming method, wherein the second metal material is a manganin alloy.
  6.  請求項1から5のいずれか1項に記載の成膜方法であって、
     コールドスプレー法により第3の金属材料を施して第3金属被膜を前記第1金属被膜及び前記第2金属被膜に跨がって形成する工程を更に有する、成膜方法。
    It is a film-forming method as described in any one of Claim 1 to 5, Comprising:
    A film forming method, further comprising a step of applying a third metal material by a cold spray method to form a third metal film over the first metal film and the second metal film.
PCT/JP2019/024787 2018-07-12 2019-06-21 Film forming method WO2020012924A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018132592A JP7088469B2 (en) 2018-07-12 2018-07-12 Film formation method
JP2018-132592 2018-07-12

Publications (1)

Publication Number Publication Date
WO2020012924A1 true WO2020012924A1 (en) 2020-01-16

Family

ID=69141500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024787 WO2020012924A1 (en) 2018-07-12 2019-06-21 Film forming method

Country Status (2)

Country Link
JP (1) JP7088469B2 (en)
WO (1) WO2020012924A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113880607A (en) * 2021-11-02 2022-01-04 李燕君 Ceramic resistor metal film cold spraying process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197203A (en) * 1997-09-18 1999-04-09 Fuji Electric Co Ltd Shunt resistance element for semiconductor device, and method of mounting it
JP2011129689A (en) * 2009-12-17 2011-06-30 Tdk Corp Terminal electrode and method of manufacturing terminal electrode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6096094B2 (en) 2013-10-28 2017-03-15 日本発條株式会社 Laminated body, insulating cooling plate, power module, and manufacturing method of laminated body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197203A (en) * 1997-09-18 1999-04-09 Fuji Electric Co Ltd Shunt resistance element for semiconductor device, and method of mounting it
JP2011129689A (en) * 2009-12-17 2011-06-30 Tdk Corp Terminal electrode and method of manufacturing terminal electrode

Also Published As

Publication number Publication date
JP2020007631A (en) 2020-01-16
JP7088469B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
US20060063024A1 (en) Metallized substrate
JP6096094B2 (en) Laminated body, insulating cooling plate, power module, and manufacturing method of laminated body
TWI467600B (en) Power resistor with integrated haet spreader
US20140049358A1 (en) Chip resistor and method of manufacturing the same
JP2018502988A (en) Thermal spray type thin film resistor and manufacturing method
WO2017188273A1 (en) Ceramic circuit board and method for manufacturing same
US5276423A (en) Circuit units, substrates therefor and method of making
WO2005020315A1 (en) Substrate for device bonding, device bonded substrate, and method for producing same
WO2020012924A1 (en) Film forming method
CN106601480A (en) High-temperature high-frequency polyimide sheet type film capacitor and manufacturing process thereof
JP2010114167A (en) Low-resistive chip resistor, and method for manufacturing the same
KR20180093877A (en) Ceramic paste bonded with a metal or metal hybrid foil
US11282621B2 (en) Resistor and circuit substrate
JPS63308803A (en) Conductive paste and electronic circuit parts using it and its manufacture
JP2000100916A5 (en)
US20070069174A1 (en) Composite and susceptor for semiconductor manufacturing device and power module with the same
JP3712378B2 (en) Circuit board with terminal and manufacturing method thereof
JP2002075705A (en) Resistor substrate
JPS59134803A (en) Method of producing chip resistor
JP3456225B2 (en) High thermal conductive substrate and method of manufacturing the same
JPH03129894A (en) Flexible printed wiring board and manufacture thereof
JP2000299514A (en) Electronic component and manufacture thereof
JP4731771B2 (en) Circuit board manufacturing method
JPS6330798B2 (en)
JPH03297159A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833564

Country of ref document: EP

Kind code of ref document: A1