WO2020012632A1 - Uav制御装置およびuav制御方法 - Google Patents
Uav制御装置およびuav制御方法 Download PDFInfo
- Publication number
- WO2020012632A1 WO2020012632A1 PCT/JP2018/026468 JP2018026468W WO2020012632A1 WO 2020012632 A1 WO2020012632 A1 WO 2020012632A1 JP 2018026468 W JP2018026468 W JP 2018026468W WO 2020012632 A1 WO2020012632 A1 WO 2020012632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- uav
- image
- destination
- flight
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims abstract description 116
- 238000006243 chemical reaction Methods 0.000 claims description 56
- 238000012545 processing Methods 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 34
- 230000009466 transformation Effects 0.000 claims description 3
- 230000000873 masking effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 23
- 230000006854 communication Effects 0.000 description 17
- 238000004891 communication Methods 0.000 description 16
- 230000015654 memory Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 230000006870 function Effects 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C13/00—Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
- B64C13/02—Initiating means
- B64C13/16—Initiating means actuated automatically, e.g. responsive to gust detectors
- B64C13/18—Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/10—Simultaneous control of position or course in three dimensions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/40—Landing characterised by flight manoeuvres, e.g. deep stall
Definitions
- the present invention relates to flight control of UAV (Unmanned Aerial Vehicle).
- UAV Unmanned Aerial Vehicle
- Patent Literature 1 a flight route along a road map is planned with a road as an observation target, and a road condition is observed using a UAV.
- the positioning accuracy of the positioning information by the GNSS installed in the UAV is about several meters, when the UAV reaches the destination specified on the planar road map or the three-dimensional map for flight, it takes several tens cm. It was difficult to reach the destination with positional accuracy.
- the present invention has been made in view of this problem, and has as its object to make a UAV reach a destination with high accuracy.
- a UAV control device includes a destination image acquisition unit that acquires a destination image that is an image of a destination photographed from the sky, and a captured image acquisition that acquires a captured image below the UAV by a camera mounted on the UAV.
- a positioning unit for measuring the position of the UAV using the GNSS signal, a point setting unit for setting a landing preparation point above the vicinity of the destination, and a UAV flying as the first flight from the departure point to the landing preparation point
- a flight control unit that controls the UAV so that the UAV flies from the landing preparation point to the destination as a second flight.
- the flight control unit determines the position of the UAV measured by the positioning unit in the first flight. In the second flight, the UAV is controlled and the destination image is compared with the captured image to specify the destination on the captured image, and the relative position between the UAV and the destination is determined. Grip to, to determine the flight path of UAV.
- a destination image which is an image of a destination photographed from the sky is acquired, an image photographed below the UAV by a camera mounted on the UAV is acquired, and the position of the UAV is acquired using a GNSS signal.
- a landing preparation point is set above the vicinity of the destination, and the UAV flies from the departure point to the landing preparation point as the first flight, and then flies from the landing preparation point to the destination as the second flight.
- the UAV is controlled by utilizing the position of the UAV measured using the GNSS signal, and in the second flight, the destination image and the photographed image are controlled.
- the flight path of the UAV is determined.
- FIG. 2 is a block diagram illustrating a configuration of a UAV according to the first embodiment.
- FIG. 2 is a diagram illustrating a flight path of a UAV according to the first embodiment.
- 4 is a flowchart illustrating an overall operation of the UAV control device according to the first embodiment.
- 4 is a flowchart illustrating a second flight control of the UAV control device according to the first embodiment.
- FIG. 9 is a block diagram illustrating a configuration of a UAV according to a second embodiment. It is a figure showing an aerial photograph group. It is a figure showing a destination picture. It is a figure showing the coordinates of the destination in a destination image. It is a figure showing a UAV photography picture.
- FIG. 1 is a block diagram illustrating a configuration of a UAV according to the first embodiment.
- FIG. 2 is a diagram illustrating a flight path of a UAV according to the first embodiment.
- 4 is a flowchart illustrating an overall operation of the UAV
- FIG. 4 is a diagram illustrating a relationship between a destination image and a landing preparation point.
- FIG. 4 is a diagram illustrating a UAV photographed image after the photographing direction is adjusted.
- FIG. 14 is a block diagram showing a configuration of a UAV according to a modification of the second embodiment.
- FIG. 14 is a block diagram showing a configuration of a UAV according to a modification of the second embodiment. It is a figure showing a destination picture when a destination is located in a boundary of two aerial photographs. It is a figure showing the destination image generated from four aerial photographs. It is a figure which shows the landing preparation point on the line segment which connects the shooting position of the destination image and the destination. It is a flowchart which shows the update process of the flight route in 2nd flight control.
- FIG. 14 is a block diagram showing a configuration of a UAV according to a modification of the second embodiment.
- It is a figure showing a destination picture when a destination is located in a boundary of two aerial photographs.
- FIG. 14 is a block diagram illustrating a configuration of a UAV according to a third embodiment. It is a figure showing the destination picture which is an ortho picture.
- FIG. 14 is a block diagram illustrating a configuration of a UAV according to a fourth embodiment. It is a figure showing the destination image to which the mask processing was performed.
- FIG. 15 is a block diagram illustrating a configuration of a UAV according to a fifth embodiment.
- FIG. 15 is a diagram illustrating a flight path of a UAV according to the fifth embodiment.
- 15 is a flowchart illustrating an overall operation of the UAV control device according to the fifth embodiment.
- 15 is a flowchart illustrating a second flight control of the UAV control device according to the fifth embodiment. It is a figure showing a target mobile object picture.
- FIG. 25 is a block diagram showing a configuration of a UAV according to a modification of the fifth embodiment.
- 15 is a flowchart illustrating a second flight control of a UAV control device according to a modification of the fifth embodiment.
- It is a figure which shows the image which superimposed the target moving body image on the aerial photograph around the landing preparation point.
- FIG. 2 is a diagram illustrating a hardware configuration of a UAV control device.
- FIG. 2 is a diagram illustrating a hardware configuration of a UAV control device.
- FIG. 3 is a diagram illustrating a configuration example of a UAV control device including a server.
- FIG. 1 is a block diagram showing a configuration of the UAV 1 according to the first embodiment.
- the UAV 1 includes a UAV control device 101, a camera 21, a GNSS (Global Navigation Satellite system) receiver 22, a driving unit 23, and a battery 24.
- the camera 21 is mounted on the UAV 1 and can mainly shoot a portion below the UAV 1.
- the driving unit 23 operates by receiving power supply from the battery 24, and is a motor and a propeller that generate thrust for the UAV 1 to fly.
- the GNSS receiver 22 is mounted on the UAV 1 and receives radio waves from GNSS satellites.
- the UAV control device 101 includes a destination image acquisition unit 11, a positioning unit 12, a captured image acquisition unit 13, a point setting unit 14, and a flight control unit 15.
- the destination image acquisition unit 11 acquires a destination image which is an image of the destination taken from the sky.
- the positioning unit 12 acquires a GNSS signal from the GNSS receiver 22 and measures the current position of the UAV 1 based on the signal.
- the positioning unit 12 may measure the current position using sensor information such as an acceleration sensor or an altitude sensor (not shown) in addition to the GNSS signal.
- the captured image acquisition unit 13 acquires the captured image from the camera 21 and outputs the captured image to the flight control unit 15.
- the point setting unit 14 sets a landing preparation point above the vicinity of the destination.
- the captured image include the destination. Therefore, in this specification, when the camera 21 captures an image immediately below the UAV1, the range in which the captured image includes the destination is defined as "over the vicinity of the destination". Therefore, the landing preparation point may be right above the destination.
- FIG. 2 shows the flight path of UAV 1 from departure point A to destination D.
- the landing preparation point C is set slightly above the starting point A in the sky above the destination D.
- a section from the departure point A to the landing preparation point C is referred to as a first section S1, and a flight in the first section S1 is referred to as a first flight.
- a section from the landing preparation point C to the destination D is defined as a second section S2, and a flight in the second section is defined as a second flight.
- the flight control unit 15 causes the UAV 1 to fly to the landing preparation point C using the UAV 1 position information measured by the positioning unit 12 for the first section S 1.
- the position information measured by the positioning unit 12 includes an error of the GNSS signal, and its accuracy is about several meters.
- the flight control unit 15 determines the relative positional relationship between the UAV 1 and the destination D with high accuracy by comparing the destination image and the captured image, and reaches the destination D. Controls flight of UAV1. As a result, the UAV 1 can accurately reach the destination D with an accuracy of several tens of cm.
- FIG. 3 is a flowchart showing a flight control process of the UAV 1 by the flight control unit 15.
- FIG. 4 is a flowchart showing the detailed processing of step S104 in FIG. 3, and is a flowchart relating to flight control in the second section.
- the operation of the flight control unit 15 will be described with reference to FIGS.
- the flow of FIG. 3 starts at the timing when destination information is input to the UAV control device 101, for example.
- the destination image acquisition unit 11 acquires destination information (step S101).
- the destination information includes a destination image and coordinates in the image of the destination D in the destination image.
- the point setting unit 14 sets a landing preparation point C above the vicinity of the destination D based on the position information of the destination D (step S102).
- the flight control part 15 performs flight control of the 1st area S1 (step S103).
- the flight control unit 15 controls the drive unit 23 to fly the UAV 1 from the departure point A to the landing preparation point C based on the position information of the UAV 1 obtained from the positioning unit 12 and the position information of the destination D.
- the flight control unit 15 performs flight control of the second section S2 (step S104).
- the camera 21 photographs below the UAV 1 and the photographed image acquiring unit 13 acquires a photographed image (step S1041).
- the flight control unit 15 acquires the captured image from the captured image acquisition unit 13 and specifies the position of the destination D in the captured image by comparing the captured image with the destination image (step S1042).
- the flight control unit 15 determines the relative positional relationship between the UAV 1 and the destination D from the position of the destination D in the captured image, and controls the flight of the UAV 1 in a direction approaching the destination D based on the relative positional relationship (step). S1043).
- the flight control unit 15 determines whether the UAV 1 has reached the destination based on the position information acquired from the positioning unit 12 or the captured image acquired from the captured image acquisition unit 13 (Step S1044). If the UAV1 has not reached the destination in step S1044, the process of the flight control unit 15 returns to step S1043, and continues the flight control of step S1043 until the UAV1 reaches the destination.
- the UAV control device 101 includes a destination image acquisition unit 11 that acquires a destination image that is an image of a destination D taken from the sky, and an image captured below the UAV1 by a camera 21 mounted on the UAV1. , A positioning unit 12 that measures the position of the UAV 1 using the GNSS signal, a point setting unit 14 that sets a landing preparation point C in the sky near the destination, and a UAV 1 And a flight control unit 15 that controls the UAV 1 to fly from the landing preparation point C to the destination as a second flight after flying from the landing preparation point as a first flight.
- the flight control unit 15 controls the UAV 1 using the position of the UAV 1 measured by the positioning unit 12 in the first flight, and compares the destination image with the captured image in the second flight to capture the image.
- the destination D on the image is specified, the relative position between the UAV1 and the destination D is grasped, and the flight route of the UAV1 is determined.
- the UAV controller 101 controls the UAV 1 to the destination D with high accuracy after the landing preparation point C because the flight route is determined by comparing the destination image and the captured image without using the GNSS signal. Can be.
- FIG. 5 is a block diagram showing a configuration of the UAV 2 according to the second embodiment.
- the UAV 2 includes a UAV control device 102 instead of the UAV control device 101 as compared with the UAV 1 of the first embodiment.
- the UAV control device 102 includes an aerial photograph storage unit 16 in addition to the configuration of the UAV control device 101.
- the aerial photograph storage unit 16 stores an aerial photograph group photographing a geographic area from the sky and coordinates in an image indicating where an arbitrary point in the geographic area covered by the aerial photograph group is located on the aerial photograph. Have been.
- the aerial photograph group covers at least the destination of UAV1.
- FIG. 6 shows an aerial photograph group of N rows and M columns stored in the aerial photograph storage unit 16.
- each aerial photograph Q11-QNM is shown as a rectangle, but may be another shape such as a triangle, a circle, or a honeycomb shape, and the same applies to a captured image.
- Each aerial photograph Q11-QNM is an image taken in a direction directly below from a specific altitude. That is, for example, the horizontal coordinates of a point appearing at the center of the aerial photograph Q11 are the horizontal coordinates of the shooting position of the aerial photograph Q11.
- an aerial photograph will be described, but a satellite photograph may be used instead of an aerial photograph as long as the resolution is such that the destination D can be determined.
- each of the aerial photographs Q11-QNM may be obtained by subjecting aerial photographs taken at different photographing altitudes to a process of converting the aerial photograph to a specific photographing altitude.
- the aerial photograph storage unit 16 may store aerial photographs at a plurality of photographing altitudes in the same geographical range.
- the destination image acquiring unit 11 acquires aerial photographs at a plurality of photographing altitudes as the destination image. Then, the flight control unit 15 checks one destination image close to the shooting altitude of the shot image with the shot image.
- the aerial photograph storage unit 16 stores coordinates in an image of an arbitrary point in a geographical area covered by the aerial photograph group. Therefore, the destination image acquiring unit 11 can be acquired as the destination image Q des aerial photograph destination D has been taken, for example, aerial photographs QNM from aerial group.
- Figure 7 shows the destination image Q des.
- the roof of the building which is somewhat reflected in the upper left corner from the center position Pnm is the destination D.
- the geographic coordinates covered by the destination image Q des are the geographic coordinates P UL (x, y) of the upper left point P UL of the destination image Q des and the geographic coordinates P DR of the lower right point P DR ( x, y).
- the position P des of the destination D in the destination image Q des is represented by an xy coordinate system having either the point P UL or the point P UL as an origin.
- FIG. 8 shows the coordinates P des (x, y) in the image of the position P des of the destination D with the point P UL as the origin.
- x-direction is the lateral direction
- y direction of the rectangular of the destination image Q des is the longitudinal direction.
- the altitude of the destination D may be added as the z coordinate
- the coordinates of the destination D in the image may be represented as D (x, y, z).
- FIG. 9 shows a captured image R1 immediately below the UAV1 captured by the camera 21 when the UAV1 reaches the landing preparation point C.
- the flight control unit 15 specifies the position P des of the destination D on the captured image R1 by comparing the destination image Q des of FIG. 7 with the captured image R1 of FIG. Thereby, the flight control unit 15 can grasp the positional relationship between the UAV 1 and the destination D.
- the horizontal coordinates and the altitude of the landing preparation point C and each identical to the center position Pnm and photographing altitude destination image Q des. That is, the landing preparation point C is located directly above Pnm.
- the positional relationship between the landing preparation point C and the destination D is as shown in FIG. 10, and the direction of the destination D viewed from the landing preparation point C is represented by an angle ( ⁇ , ⁇ ).
- the angle ⁇ is an angle formed by a line segment connecting P des and P nm and the y direction of the destination image Q des .
- the angle ⁇ is an angle formed by a line segment connecting the landing preparation point C and the center position Pnm and a line segment connecting the landing preparation point C and Pdes.
- the angle ( ⁇ , ⁇ ) is calculated from the coordinates in the image of P des and the altitude of the landing preparation point C. Therefore, the UAV 1 that has reached the landing preparation point C can reach the destination D by descending in the direction of ( ⁇ , ⁇ ).
- the flight control unit 15 may calculate the flight route of the second section S2 by another method. For example, after the flight control unit 15 specifies the position P des of the destination D on the photographed image R1 shown in FIG. 9, the UAV control device 102 captures the image of the camera 21 so that P des is located at the center of the photographed image. Adjust the direction. FIG. 11 shows a captured image R2 of the camera 21 obtained in this manner. In the captured image R2, P des is located at the center. At this time, the change direction of the shooting direction of the camera 21 is a direction in which the destination D is viewed from the UAV 1, and therefore, the flight control unit 15 may control the driving unit 23 so as to lower the UAV 1 in the direction.
- FIG. 12 is a block diagram showing a configuration of a UAV 2A according to a first modification of the second embodiment.
- the UAV 2A includes a UAV control device 102A instead of the UAV control device 102 as compared with the UAV 2.
- the UAV control device 102A includes an image conversion unit 151 in the flight control unit 15.
- the image conversion unit 151 performs an image conversion process as necessary, and unifies the shooting altitude or viewpoint of both images. That is, the image conversion process performed by the image conversion unit 151 includes a viewpoint conversion process and a shooting height conversion process. The image conversion unit 151 performs a viewpoint conversion process on the destination image, and performs a shooting height conversion process on one or both of the destination image and the captured image.
- the destination image acquisition unit 11 acquires a plurality of aerial photographs having different photographing directions in a geographic range including the destination as destination images, and outputs the acquired aerial photographs to the flight control unit 15.
- the image conversion unit 151 uses a plurality of destination images to perform a viewpoint conversion process of matching the viewpoint of the destination image with the viewpoint of the captured image, that is, the horizontal coordinate of the shooting position of the destination image to the captured image. A process for matching the horizontal coordinates of the shooting position is performed.
- the flight control unit 15 can easily perform the collation by collating the destination image after the viewpoint conversion with the captured image.
- FIG. 10 illustrates the case where the altitude of the landing preparation point C is the same as the shooting altitude of the destination image Qdes , but these may be different. However, in this case, the appearance of the building or the like is different between the destination image Q des and the captured image at the landing preparation point C. Therefore, before the flight control unit 15 performs image matching, the processing for unifying the imaging altitudes of both images is performed. It is desirable to carry out. At this time, the image conversion unit 151 may perform an altitude conversion process on one of the destination image Q des and the captured image to match the other imaging altitude, or perform an imaging process on both of the destination image Q des and the captured image that is different from any of the images. An altitude conversion process that matches the altitude may be performed. The flight control unit 15 can easily perform the collation by collating the captured image on which the processing for unifying the photography altitude has been performed with the destination image.
- the flight control unit 15 may divide the two images into a plurality of regions and collate each region instead of collating the entire region at once.
- the destination image Q des and the captured image are each divided into nine rectangular areas of three rows and three columns, and an area including the position P des of the destination D in the destination image Q des and one of the captured images To two regions.
- the image conversion unit 151 performs the viewpoint conversion processing and the shooting height conversion processing as necessary. If the landing preparation point C is set right above the destination D, it is highly possible that the destination D is in the center of the captured image, and therefore, the first time, the center area of the captured image can be compared. desirable. If the destination D is not shown in the center area of the captured image in the first verification, the flight control unit 15 uses another area of the captured image for verification.
- Flight control unit 15 in turn each of the divided regions of the captured image to the identifiable destination D in the captured image, matching the region including the position P des destination D of the destination image Q des. According to the above method, although the number of times of matching increases, the load of the image conversion process is reduced because the image conversion unit 151 does not necessarily need to perform the image conversion process on all the regions of the captured image.
- the image conversion unit 151 may perform the image conversion processing on the destination image Q des after the UAV 1 arrives at the landing preparation point C, or after the landing preparation point C is set, the UAV 1 moves to the landing preparation point C. It may be performed at an arbitrary timing until the arrival. In the latter case, the amount of processing performed by the UAV controller 102 in real time after the UAV 1 arrives at the landing preparation point C can be reduced, so that the processing load on the CPU or GPU can be reduced.
- the landing is ready point C is set just above the center position P nm of the destination image Q des, may be set directly above the destination D. Then, since the destination D is easily captured in the captured image R1, the image comparison is facilitated.
- FIG. 13 is a block diagram showing a configuration of a UAV 2B according to a second modification of the second embodiment.
- the UAV 2B includes a camera 21, a GNSS receiver 22, a driving unit 23, a battery 24, a communication unit 25, and a UAV control device 102B, and is connected to the server 31 by the communication unit 25.
- the UAV control device 102B is obtained by removing the aerial photograph storage unit 16 and the image conversion unit 151 from the UAV control device 102A of the first modification.
- the server 31 includes an aerial photograph storage unit 311 and an image conversion unit 312.
- the captured image is transmitted from the captured image acquisition unit 13 to the server 31 via the communication unit 25.
- the aerial photograph storage unit 311 stores the aerial photograph group described in FIG. 6 and the like
- the image conversion unit 312 selects the aerial photograph including the destination D from the aerial photograph storage unit 311 as the destination image.
- the image conversion unit 312 performs an image conversion process on the selected destination image so as to match the shooting altitude and viewpoint with the shot image at the landing preparation point C.
- the destination image subjected to the image conversion processing by the image conversion unit 312 is acquired by the destination image acquisition unit 11 via the communication unit 25.
- the UAV controller 102A may transmit the altitude and horizontal coordinates of the landing preparation point to the server 31 at the time when the landing preparation point is determined, instead of the captured image at the landing preparation point C. If the altitude and the horizontal coordinate of the landing preparation point C are known, the server 31 can perform the image conversion processing on the destination image in accordance with the altitude and the horizontal coordinate.
- the UAV control device 102B since the server 31 performs the image conversion process for unifying the shooting altitude and the viewpoint between the destination image and the shot image, the UAV control device 102B needs to perform the image conversion process. Absent. Further, since the aerial photograph group is stored in the server 31, the UAV control device 102B does not need to store the aerial photograph group. Therefore, although the communication process with the server 31 occurs, the configuration of the UAV control device 102B can be simplified. Further, it is possible to cope with a case where the UAV 2B cannot accurately reach the landing preparation point C, or a case where the landing preparation point C is changed during the flight of the UAV 2B.
- the destination image may be created from a plurality of aerial photographs.
- FIG. 14 shows a case where the destination D is located at the boundary between two adjacent aerial photographs.
- Destination image acquiring unit 11, the two aerial photographs were synthesized, the composite photograph may be the destination image Q des those cut on one aerial size.
- FIG. 15 shows a case where the destination D is located in one aerial photograph. Even in this case, the destination image acquisition unit 11 combines the aerial photograph including the destination D and one or more adjacent aerial photographs, and cuts out the composite photograph to the size of one aerial photograph.
- the ground image Q des may be used.
- the destination image acquiring unit 11 creates a destination image from a composite photograph of a plurality of aerial photographs, thereby making the destination D the center of the destination image Q des as shown in FIG. It is possible.
- the destination D is included at the center of both the destination image Q des and the captured image, and the matching processing of both images is easy. become.
- the photographing range of the destination image Q des is smaller than the imaging range of the captured image R1, R2.
- the shooting range of the destination image Q des may be larger than the shooting ranges of the shot images R1 and R2. Even if the shooting range is small, the destination image Q des includes the destination, so that the position of the destination on the shot image can be specified by comparing the destination image Q des with the shot image. is there. Then, as the shooting range of the destination image Q des is smaller, the processing load required for image comparison is reduced.
- the flight in the first section S1 from the departure point A to the landing preparation point C includes an initial flight rising from the departure point A to a specific cruising altitude, and a cruising flight flying to the landing preparation point C while maintaining the cruising altitude. May be configured. By maintaining a cruising altitude in a cruising flight, wasteful energy consumption can be suppressed.
- the cruising altitude may be the same as the landing preparation altitude which is the altitude of the landing preparation point C.
- the cruising altitude information may be stored in the aerial photograph storage unit 16.
- FIG. 6 illustrates the aerial photograph group
- three-dimensional data of a ground object may be used instead of the aerial photograph.
- the three-dimensional data is obtained by photographing the same geographic area from a plurality of directions.
- the viewpoint conversion processing can be easily performed.
- the landing preparation point C is positioned directly above the center position Pnm of the destination image Q des.
- the point setting unit 14 may set the landing preparation point C at another place.
- point setting unit 14 may set the landing preparation point C to a point on a line connecting the imaging position E and the destination D of the destination image Q des.
- the direction in which the destination D is photographed from the photographing position E is the same as the direction in which the destination D is photographed from the landing preparation point C. Therefore, the difference in the appearance of the destination D between the destination image Q des and the captured image at the landing preparation point C is reduced.
- the flight control unit 15 performs the image comparison, the viewpoint conversion process or the altitude conversion process becomes unnecessary, or the load on the conversion process can be reduced.
- FIG. 17 shows a flowchart in the case of updating the flight route.
- the flowchart of FIG. 17 is different from the flowchart of FIG. 4 in that the return destination in the case of NO in step S1044 is changed from step S1043 to step S1041. In the flow of FIG.
- step S1044 is a step in which the flight control unit 15 determines whether or not the UAV has reached the destination.
- the timing at which this step is performed may be the timing when the UAV has reached the predetermined altitude. Alternatively, it may be performed at predetermined time intervals.
- the destination image obtaining unit 11 may obtain the destination image for each predetermined altitude from the aerial photograph storage unit 16 in advance in the UAV control devices 102 and 102A, or the UAV In the control device 102B, a destination image for each predetermined altitude may be acquired from the server 31 via the communication unit 25.
- the captured image acquisition unit 13 transmits the captured image at the landing preparation point C to the server 31 via the communication unit 25.
- the photographed image acquiring unit 13 transmits a photographed image photographed not only at the landing preparation point C but also at any timing from the landing preparation point C to the destination D via the communication unit 25 to the server 31. May be.
- These captured images are images of the vicinity of the destination D taken from the sky, and may be stored in the aerial photograph storage unit 311 of the server 31 as an aerial photograph group.
- the photographed image acquiring unit 13 may add information of photographing conditions, such as time of photographing, weather, illuminance, and direction of the sun, to the photographed image transmitted to the server 31.
- the aerial photograph storage unit 311 may store the aerial photograph for each photographing condition.
- the destination image acquiring unit 11 can acquire, as the destination image, an aerial photograph under the photographing conditions close to the photographing conditions when the camera 21 photographs below the UAV at the landing preparation point C. For example, if the direction of the sun is different, the direction of the shadow of the building is different, etc. However, by preparing a destination image whose shooting conditions are close to those of the shot image, image matching can be easily performed. Further, in the case of an image captured at night, a difference occurs between an image due to fixed illumination such as a window light of a building and moving illumination such as a neon sign or a search light. A correction may be made to exclude the existing area, and then stored as an aerial photograph in the aerial photograph storage unit 311. Alternatively, the server 31 may add a moving pattern or a changing pattern of the moving illumination as metadata to the aerial photograph.
- FIG. 18 is a block diagram illustrating a configuration of the UAV 3 according to the third embodiment.
- the UAV 3 includes a UAV control device 103 instead of the UAV control device 102 as compared with the UAV 2 of the second embodiment.
- the UAV control device 103 differs from the UAV control device 102 in that the flight control unit 15 includes an orthographic conversion unit 152.
- the destination image is an aerial photograph taken by an aerial camera, and thus is an image in which a target object is centrally projected as shown in FIG. Therefore, as the object shown in the image is higher from the ground, and as the object moves from the center to the peripheral portion, the image is misaligned.
- the aerial photograph stored in the aerial photograph storage unit 16 is defined as an ortho image
- the ortho image is defined as a destination image.
- Ortho-images are obtained by orthographic transformation of ordinary aerial photographs, which eliminates image misalignment on the image and has the same size as the map, without tilt as seen from directly above. It is an image displayed at a position.
- FIG. 19 shows an orthorectified image obtained by orthogonally transforming the destination image shown in FIG.
- the destination image acquisition unit 11 acquires such an ortho image from the aerial photograph storage unit 16 as a destination image.
- the flight control unit 15 acquires a destination image that is an orthorectified image from the destination image acquisition unit 11 and acquires a captured image of the camera 21 at the landing preparation point C from the captured image acquisition unit 13.
- the orthographic conversion unit 152 orthographically converts the captured image into an orthorectified image.
- the flight control unit 15 checks the captured image converted into the ortho image with the destination image, and specifies the position of the destination on the captured image.
- the flight control unit 15 since the captured image to be image-collated and the destination image are both ortho-images, it is possible to accurately perform image collation even when the photographing directions of both images are different. Therefore, the flight control unit 15 does not need to perform an image conversion process for unifying the viewpoints of both images.
- the imaging direction of the camera 21 be directly below the UAV3.
- the orthographic conversion unit 152 does not have to perform the orthographic conversion of the photographed image.
- the flight control unit 15 can reduce the processing load by comparing the captured image with the destination image as it is.
- FIG. 20 is a block diagram showing a configuration of UAV 4 according to Embodiment 4.
- the UAV 4 includes a UAV control device 104 instead of the UAV control device 103 as compared with the configuration of the UAV 3 of the third embodiment.
- the UAV control device 104 differs from the UAV control device 103 in that the flight control unit 15 includes a mask processing unit 153 in addition to the orthographic conversion unit 152.
- the flight control unit 15 compares the destination image with the captured image.
- a moving body is traveling on a road, a track, and a waterway in the shooting range of the destination image. Since the position of the moving body changes with time, the range in which the moving body travels, such as a road, becomes a noise component in the collation between the destination image and the captured image.
- the mask processing unit 153 performs a mask process on the destination image so as to mask the range in which the moving object travels in a fixed pattern.
- the mask processing unit 153 may determine an area to be masked based on the road map.
- the flight control unit 15 checks the destination image on which the mask processing has been performed by the mask processing unit 153 with the captured image, and specifies the position of the destination on the captured image.
- Other operations of the UAV control device 104 are the same as those of the UAV control device 103 of the third embodiment.
- FIG. 21 shows a destination image Q des after the mask processing has been performed.
- a region where the moving body is traveling such as a road, is masked as the mask region Rm.
- the mask processing unit 153 may perform a mask process on the captured image as well as the destination image.
- the area masked by the mask processing unit 153 may include an area where illumination is performed, an area where a captured image changes due to moving illumination, and the like, in addition to a road and the like on which the moving object travels.
- FIG. 22 is a block diagram showing a configuration of the UAV 5 according to the fifth embodiment.
- the UAV 5 includes a camera 21, a GNSS receiver 22, a driving unit 23, a battery 24, a communication unit 26, and a UAV control device 105.
- UAV control device 105 has the same configuration as UAV control device 101 of the first embodiment.
- the destination is a feature such as the roof of a building, and the destination image is an image obtained by photographing a geographical area including the destination from the sky as shown in FIG.
- the destination is a moving body that stops or runs, and the UAV control device 105 performs flight control until the UAV 5 lands on the moving body.
- a moving object serving as a destination of the UAV 5 is referred to as a destination moving object.
- This embodiment can be used for applications such as delivery of a package to a moving object by the UAV 5 or charging of the UAV 5 at the moving object.
- FIG. 23 shows a target moving object image DVP which is an image of the target moving object taken from above.
- the destination image acquisition unit 11 acquires the destination moving object image DVP in FIG. 23 as a destination image.
- the positioning unit 12 measures the current position of the UAV 5 based on the GNSS signal, as in the other embodiments.
- the communication unit 26 communicates with the target mobile unit, acquires the current position of the target mobile unit and the future travel route, and outputs the obtained position to the point setting unit 14.
- the point setting unit 14 acquires the current position and the travel route of the target moving object from the communication unit 26, and estimates the future position of the target moving object based on these. Further, the point setting unit 14 acquires the current position of the UAV 5 from the positioning unit 12, and sets a point at which the UAV 5 can reach the sky in the vicinity of the target moving object as the landing preparation point C.
- the camera 21 captures the image immediately below the UAV 5 at the landing preparation point C, it is desirable that the captured image includes the target moving object. Therefore, in the present embodiment, when the camera 21 captures an image immediately below the UAV 5, a range in which the captured image includes the target mobile object is defined as “over the vicinity of the destination mobile object”.
- FIG. 24 shows the relationship between the departure point A, the destination moving object DV, and the landing preparation point C.
- the flight section from the departure point A to the landing preparation point C is the first section S1
- the flight section from the landing preparation point C to the landing at the destination mobile DV is the second section S2 (see FIG. 24). (Not shown).
- the flight control unit 15 controls the flight of the UAV 5 to the landing preparation point C based on the UAV 5 position information measured by the positioning unit 12, as in the other embodiments. Further, in the second section S2, the flight control unit 15 determines the relative positional relationship between the UAV 5 and the destination by comparing the destination image with the captured image as in the other embodiments, Determine the flight path.
- FIG. 25 is a flowchart showing a flight control process of the UAV 5 by the flight control unit 15.
- FIG. 26 is a flowchart showing the detailed processing of step S509 in FIG. 25, and is a flowchart relating to flight control in the second section.
- the operation of the flight control unit 15 will be described with reference to FIGS.
- the flow of FIG. 25 is started, for example, at the timing when the information of the target moving object is input to the UAV control device 105.
- the communication unit 26 acquires a traveling state including the current position of the target moving object and a future traveling route (step S501), and outputs this to the point setting unit 14.
- the point setting unit 14 sets a landing preparation point C based on the traveling state of the target mobile unit and the current position of the UAV 5 acquired from the positioning unit 12 (Step S502).
- the flight control unit 15 sets the current position of the UAV 5 as the departure point A, and determines a flight path in the first section S1 from the departure point A to the landing preparation point C (step S503).
- the process of determining the flight route of the first section S1 is the same as that of the embodiment 1-4.
- the destination image acquiring unit 11 acquires a destination moving body image (Step S504).
- the flight control unit 15 controls the drive unit 23 to fly the UAV 5 from the departure point A to the landing preparation point C along the flight path determined in step S503 (step S505).
- This is the flight control of the first section S1.
- the communication unit 26 communicates with the target mobile at any time, such as at a fixed cycle, acquires the latest traveling state of the target mobile, and outputs it to the point setting unit 14 (step S506).
- the point setting unit 14 determines whether there is a change in the traveling state of the target moving body (step S507), and if there is a change, resets the landing preparation point C based on the latest traveling state (step S502). For example, the point setting unit 14 updates the landing preparation point C when, for example, traffic congestion occurs and the target mobile changes its planned traveling route, or when the traveling speed of the target mobile is faster than originally planned.
- step S508 If there is no change in the traveling state of the target moving body, the processing of UAV control apparatus 105 proceeds to step S508.
- the flight control unit 15 has obtained the current position of the UAV 5 from the positioning unit 12, and determines whether or not the UAV 5 has reached the landing preparation point C based on this (step S508). Then, the flight control unit 15 continues the flight control of the first section S1 until the UAV 5 reaches the landing preparation point C (step S505). When the UAV 5 reaches the landing preparation point C, the flight control unit 15 subsequently performs flight control in the second section (step S509).
- the camera 21 captures an image of the area below the UAV 5, and the captured image acquisition unit 13 acquires a captured image (step S5091).
- the flight control unit 15 acquires the photographed image from the photographed image acquiring unit 13 and identifies the position of the target moving object in the photographed image by comparing the photographed image with the target moving object image (step S5092). . If the target moving object is not shown in the captured image as shown in FIG. 27, the flight control unit 15 adjusts the shooting direction of the camera 21 until the target moving object is picked up, as shown in FIG. 28 or FIG. Shoot another area. At this time, since the travel route of the target moving body is known, the flight control unit 15 may change the shooting direction of the camera 21 along the route.
- the flight control unit 15 determines the position of the target moving object in the captured image by considering peripheral information of the target moving object. Can be identified.
- the peripheral information of the target moving object includes, for example, an image of the periphery of the target moving object by a camera mounted on the target moving object.
- the flight control unit 15 acquires, for example, an image of a moving object traveling in front of the target moving object or an image of a building around the target moving object as peripheral information of the target moving object via the communication unit 26. . Then, the flight control unit 15 specifies the position of the target moving object in the captured image by comparing the captured image with the target moving object image in consideration of the peripheral information.
- the flight control unit 15 adjusts the shooting direction of the camera 21 so that the target moving object is located at the center of the captured image (Step S5093). Since the shooting direction of the camera 21 at this time is the direction in which the target moving object is viewed from the UAV 5, the flight control unit 15 controls the flight of the UAV 5 in the direction (step S5094). However, even if the UAV 5 flies toward the position of the target moving object at the time of step S5093, it cannot reach the target moving object if the target moving object is moving. Therefore, the flight control unit 15 may determine the flight route of the UAV 5 by adding the correction based on the moving direction of the target moving body to the shooting direction of the camera 21 at the time of step S5093.
- the flight control unit 15 determines whether the UAV 5 has landed on the target moving object based on the position information acquired from the positioning unit 12 or the captured image acquired from the captured image acquisition unit 13 (step S5095). If the UAV 5 has not reached the destination in step S5095, the process of the flight control unit 15 returns to step S5091, and continues the flight control until the UAV 5 reaches the destination.
- the flight control unit 15 may control the flight of the UAV 5 so that the UAV 5 moves at the same speed as the destination mobile unit. This facilitates collation between the captured image and the target moving object image. At this time, since the area other than the target moving body in the captured image changes with time, the flight control unit 15 may perform the mask processing on the area as in the fourth embodiment.
- FIG. 30 is a block diagram showing a configuration of a UAV 5A according to a modification of the fifth embodiment.
- the UAV 5A includes a UAV control device 105A instead of the UAV control device 105 as compared with the configuration of the UAV 5.
- the UAV control device 105A includes an aerial photograph storage unit 16 in addition to the configuration of the UAV control device 105.
- the aerial photograph storage unit 16 stores, in the aerial photograph, a group of aerial photographs in which a specific geographic region is photographed from the sky and an arbitrary point in the geographic region covered by the aerial photograph group. And the coordinates in the image indicating whether or not to execute. It is desirable that the aerial photograph group covers at least the travel route of the target mobile object.
- FIG. 31 is a flowchart showing the flight control of the second section by the UAV control device 105A.
- the flow of FIG. 31 shows a detailed flow of step S509 of FIG. 25, and is provided with step S5093A instead of step S5093 of FIG.
- the flight control unit 15 specifies the position of the target moving object in the captured image by comparing the captured image with the target moving object image (step S5092).
- the destination image acquisition unit 11 acquires from the aerial photograph storage unit 16 an aerial photograph that includes the same horizontal coordinate point as the landing preparation point C in the photographing range, and outputs the acquired aerial photograph to the flight control unit 15.
- the flight control unit 15 determines the positional relationship between the UAV 5 and the target moving object by comparing the captured image with the aerial photograph (step S5093A). For example, when the captured image is a captured image immediately below UAV5, the center position of the captured image matches the horizontal coordinates of UAV5. Therefore, the flight control unit 15 specifies the position corresponding to the center position of the captured image and the position corresponding to the position of the target moving object on the aerial photograph, so that the UAV 5 and the target moving object in the horizontal direction are specified. The position can be grasped.
- the flight control unit 15 grasps the three-dimensional relative positions of the UAV 5 and the target moving object, and flies in the second section so that the UAV 5 approaches the target moving object. The route can be determined.
- the flight control unit 15 may superimpose the target moving object image on the aerial photograph when matching the captured image with the aerial photograph. Since the flight control unit 15 can acquire the position information of the target moving object from the communication unit 26, as shown in FIG. 32, the position of the target moving object corresponding to the current position of the target moving object DVP can be superimposed. Then, the flight control unit 15 checks the aerial photograph on which the target moving object image DVP is superimposed with the captured image. In this case, the flight control unit 15 can easily perform image matching by matching not only the target moving object but also the surrounding features.
- the destination image acquisition unit 11 is realized by the processing circuit 61 shown in FIG. That is, the processing circuit 61 includes the destination image acquisition unit 11, the positioning unit 12, the captured image acquisition unit 13, the point setting unit 14, the flight control unit 15, and the aerial photograph storage unit 16 (hereinafter, referred to as the "destination image acquisition unit 11 and the like"). ”).
- the processing circuit 61 dedicated hardware may be applied, or a processor that executes a program stored in a memory may be applied.
- the processor is, for example, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
- the processing circuit 61 When the processing circuit 61 is dedicated hardware, the processing circuit 61 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable). Gate Array) or a combination of these.
- Each function of each unit such as the destination image acquisition unit 11 may be realized by a plurality of processing circuits 61, or the functions of each unit may be realized by one processing circuit.
- the processing circuit 61 When the processing circuit 61 is a processor, the functions of the destination image acquisition unit 11 and the like are realized by a combination of software and the like (software, firmware or software and firmware). Software and the like are described as programs and stored in a memory. As shown in FIG. 34, a processor 62 applied to the processing circuit 61 reads out and executes a program stored in a memory 63 to realize the function of each unit. That is, the UAV control device 101 obtains a destination image which is an image of the destination taken from the sky, obtains a captured image below the UAV by a camera mounted on the UAV, and uses the GNSS signal.
- software and the like are described as programs and stored in a memory.
- a processor 62 applied to the processing circuit 61 reads out and executes a program stored in a memory 63 to realize the function of each unit. That is, the UAV control device 101 obtains a destination image which is an image of the destination taken from the sky, obtains a captured image below the UAV by
- the memory 63 includes, for example, a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), and an EEPROM (Electrically Erasable Programmable Read Only Memory).
- a non-volatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), and an EEPROM (Electrically Erasable Programmable Read Only Memory).
- volatile semiconductor memory HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disk) and its drive device, or any storage medium used in the future There may be.
- each function of the destination image acquisition unit 11 and the like is realized by one of hardware and software has been described above.
- the present invention is not limited to this, and a configuration in which a part of the destination image acquisition unit 11 and the like is realized by dedicated hardware and another part is realized by software and the like may be used.
- the function of the destination image acquisition unit 11 is realized by a processing circuit as dedicated hardware, and the processing circuit 61 as the processor 62 otherwise reads and executes a program stored in the memory 63. It is possible to realize that function.
- the processing circuit can realize each function described above by hardware, software, or the like, or a combination thereof.
- the aerial photograph storage unit 16 is configured by the memory 63, they may be configured by a single memory 63 or may be configured by individual memories.
- the UAV control device is not only a device mounted on the UAV, but also a PND (Portable Navigation Device), a communication terminal (for example, a mobile terminal such as a mobile phone, a smartphone, and a tablet), and functions of an application installed therein, and
- the present invention can also be applied to a system constructed as a system by appropriately combining servers and the like.
- each function or each component of the UAV control device described above may be dispersedly arranged in each device constituting the system, or may be arranged intensively in any device.
- FIG. 35 shows a configuration example of a UAV control device 101 including the UAV 1 and the server 40.
- a destination image acquisition unit 11, a captured image acquisition unit 13, a point setting unit 14, and a flight control unit 15 are arranged in the server 40, and the positioning unit 12 is arranged in the UAV1.
- each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted within the scope of the invention.
- the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that innumerable modifications that are not illustrated can be assumed without departing from the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Traffic Control Systems (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Navigation (AREA)
Abstract
本発明は、UAVを目的地まで高精度に到達させることを目的とする。UAV制御装置(101)は、目的地画像を取得する目的地画像取得部(11)と、UAV(1)の下方の撮影画像を取得する撮影画像取得部(13)と、GNSS信号を用いてUAV(1)の位置を測定する測位部(12)と、着陸準備ポイント(C)を設定するポイント設定部(14)と、UAV(1)の飛行を制御する飛行制御部(15)を備える。飛行制御部(15)は、出発地(A)から着陸準備ポイント(C)までの第1飛行においては、測位部(12)が測定したUAV(1)の位置を利用してUAV(1)を制御し、着陸準備ポイント(C)から目的地(D)までの第2飛行においては、目的地画像と撮影画像とを照合することにより、撮影画像上の目的地(D)を特定し、UAV(1)と目的地(D)との相対位置を把握し、UAV(1)の飛行経路を決定する。
Description
この発明は、UAV(Unmanned aerial vehicle)の飛行制御に関する。
近年、ドローンなどのUAVを輸送または情報収集に活用する取り組みが行われている。例えば特許文献1では、道路を観測対象として道路地図に沿った飛行経路を計画し、UAVを用いた道路状況の観測を行っている。
ところが、UAVに設置されたGNSSによる測位情報の位置精度は数m程度であるため、平面道路地図または飛行用の3次元地図上で指定した目的地にUAVを到達させる場合、数十cm単位の位置精度で目的地に到達させることは困難であった。本発明はこの問題点に鑑み、UAVを目的地まで高精度に到達させることを目的とする。
本発明のUAV制御装置は、目的地を上空から撮影した画像である目的地画像を取得する目的地画像取得部と、UAVに搭載されたカメラによるUAVの下方の撮影画像を取得する撮影画像取得部と、GNSS信号を用いてUAVの位置を測定する測位部と、目的地の近傍の上空に着陸準備ポイントを設定するポイント設定部と、UAVが出発地から着陸準備ポイントまで第1飛行として飛行した後、着陸準備ポイントから目的地まで第2飛行として飛行するようにUAVを制御する飛行制御部と、を備え、飛行制御部は、第1飛行においては、測位部が測定したUAVの位置を利用してUAVを制御し、第2飛行においては、目的地画像と撮影画像とを照合することにより、撮影画像上の目的地を特定し、UAVと目的地との相対位置を把握し、UAVの飛行経路を決定する。
本発明のUAV制御方法は、目的地を上空から撮影した画像である目的地画像を取得し、UAVに搭載されたカメラによるUAVの下方の撮影画像を取得し、GNSS信号を用いてUAVの位置を測定し、目的地の近傍の上空に着陸準備ポイントを設定し、UAVが出発地から着陸準備ポイントまで第1飛行として飛行した後、着陸準備ポイントから目的地まで第2飛行として飛行するようにUAVを飛行制御し、飛行制御は、第1飛行においては、GNSS信号を用いて測定されたUAVの位置を利用してUAVを制御し、第2飛行においては、目的地画像と撮影画像とを照合して、撮影画像上の目的地を特定することにより、UAVの飛行経路を決定する。
本発明によれば、目的地画像と撮影画像とを照合することによりUAVと目的地との相対位置を把握するため、GNSS信号の誤差を排除し高精度にUAVを目的地に到達させることが可能である。本発明の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
<A.実施の形態1>
<A-1.構成>
図1は、実施の形態1のUAV1の構成を示すブロック図である。UAV1は、UAV制御装置101、カメラ21、GNSS(Global Navigation Satellite system)受信機22、駆動部23およびバッテリー24を備えている。カメラ21は、UAV1に搭載されており、主にUAV1の下方を撮影することが可能である。駆動部23はバッテリー24から電力供給を受けて動作し、UAV1に飛行のための推力を発生させるモータとプロペラである。GNSS受信機22は、UAV1に搭載されており、GNSS衛星からの電波を受信する。
<A-1.構成>
図1は、実施の形態1のUAV1の構成を示すブロック図である。UAV1は、UAV制御装置101、カメラ21、GNSS(Global Navigation Satellite system)受信機22、駆動部23およびバッテリー24を備えている。カメラ21は、UAV1に搭載されており、主にUAV1の下方を撮影することが可能である。駆動部23はバッテリー24から電力供給を受けて動作し、UAV1に飛行のための推力を発生させるモータとプロペラである。GNSS受信機22は、UAV1に搭載されており、GNSS衛星からの電波を受信する。
UAV制御装置101は、目的地画像取得部11、測位部12、撮影画像取得部13、ポイント設定部14および飛行制御部15を備える。目的地画像取得部11は、目的地を上空から撮影した画像である目的地画像を取得する。測位部12は、GNSS受信機22からGNSS信号を取得し、これに基づきUAV1の現在位置を測定する。なお、測位部12はGNSS信号に加えて、図示しない加速度センサまたは高度センサ等のセンサ情報を用いて現在位置の測定を行っても良い。撮影画像取得部13は、カメラ21からその撮影画像を取得し、飛行制御部15に出力する。ポイント設定部14は、目的地の近傍の上空に着陸準備ポイントを設定する。着陸準備ポイントでカメラ21がUAV1の真下を撮影した際、撮影画像に目的地が含まれることが望ましい。従って、本明細書では、カメラ21がUAV1の真下を撮影した際、撮影画像に目的地が含まれる範囲を、「目的地の近傍の上空」と定義する。従って、着陸準備ポイントは、目的地の真上であっても良い。
図2は、出発地Aから目的地DまでのUAV1の飛行経路を示している。図2において、着陸準備ポイントCは、目的地Dの上空のやや出発地Aよりに設定されている。出発地Aから着陸準備ポイントCまでの区間を第1区間S1とし、第1区間S1の飛行を第1飛行とする。また、着陸準備ポイントCから目的地Dまでの区間を第2区間S2とし、第2区間の飛行を第2飛行とする。飛行制御部15は、第1区間S1については、測位部12が測定したUAV1の位置情報を用いてUAV1を着陸準備ポイントCまで飛行させる。測位部12の測定した位置情報は、GNSS信号の誤差を含んでおり、その精度はおよそ数mである。
従って、飛行制御部15は、第2区間S2については、目的地画像と撮影画像を照合することにより、高精度にUAV1と目的地Dとの相対的な位置関係を把握し、目的地DまでUAV1を飛行制御する。これにより、UAV1は数十cm単位の精度で正確に目的地Dに到達することが可能となる。
<A-2.動作>
図3は、飛行制御部15によるUAV1の飛行制御処理を示すフローチャートである。図4は、図3のステップS104の詳細な処理を示すフローチャートであり、第2区間の飛行制御に関するフローチャートである。以下、図3および図4に沿って飛行制御部15の動作を説明する。
図3は、飛行制御部15によるUAV1の飛行制御処理を示すフローチャートである。図4は、図3のステップS104の詳細な処理を示すフローチャートであり、第2区間の飛行制御に関するフローチャートである。以下、図3および図4に沿って飛行制御部15の動作を説明する。
図3のフローは、例えばUAV制御装置101に目的地の情報が入力されたタイミングで開始する。まず、目的地画像取得部11は、目的地情報を取得する(ステップS101)。ここで、目的地情報とは、目的地画像と、目的地画像における目的地Dの画像内座標とを含む。次に、ポイント設定部14は、目的地Dの位置情報に基づき、目的地Dの近傍の上空に着陸準備ポイントCを設定する(ステップS102)。そして、飛行制御部15は、第1区間S1の飛行制御を行う(ステップS103)。ここで飛行制御部15は、測位部12から取得したUAV1の位置情報と、目的地Dの位置情報とに基づき、UAV1を出発地Aから着陸準備ポイントCまで飛行するよう駆動部23を制御する。UAV1が着陸準備ポイントCに到達すると、続いて飛行制御部15は、第2区間S2の飛行制御を行う(ステップS104)。
本ステップでは、カメラ21がUAV1の下方を撮影し、撮影画像取得部13が撮影画像を取得する(ステップS1041)。次に、飛行制御部15は、撮影画像取得部13から撮影画像を取得し、撮影画像を目的地画像と照合することにより、撮影画像中の目的地Dの位置を特定する(ステップS1042)。飛行制御部15は、撮影画像中の目的地Dの位置から、UAV1と目的地Dの相対的な位置関係を把握し、これに基づき、UAV1を目的地Dに近づく方向に飛行制御する(ステップS1043)。その後、飛行制御部15は測位部12から取得する位置情報または撮影画像取得部13から取得する撮影画像により、UAV1が目的地に到達したか否かを判断する(ステップS1044)。ステップS1044において、UAV1が目的地に到達していなければ、飛行制御部15の処理はステップS1043に戻り、UAV1が目的地に到達するまでステップS1043の飛行制御を続ける。
実施の形態1のUAV制御装置101は、目的地Dを上空から撮影した画像である目的地画像を取得する目的地画像取得部11と、UAV1に搭載されたカメラ21によるUAV1の下方の撮影画像を取得する撮影画像取得部13と、GNSS信号を用いてUAV1の位置を測定する測位部12と、目的地の近傍の上空に着陸準備ポイントCを設定するポイント設定部14と、UAV1が出発地から着陸準備ポイントまで第1飛行として飛行した後、着陸準備ポイントCから目的地まで第2飛行として飛行するようにUAV1を制御する飛行制御部15と、を備える。飛行制御部15は、第1飛行においては、測位部12が測定したUAV1の位置を利用してUAV1を制御し、第2飛行においては、目的地画像と撮影画像とを照合することにより、撮影画像上の目的地Dを特定し、UAV1と目的地Dとの相対位置を把握し、UAV1の飛行経路を決定する。このようにUAV制御装置101は、着陸準備ポイントC以降は、GNSS信号を用いず目的地画像と撮影画像の照合により飛行経路を決定するため、高精度にUAV1を目的地Dまで飛行制御することができる。
<B.実施の形態2>
<B-1.構成>
図5は、実施の形態2のUAV2の構成を示すブロック図である。UAV2は、実施の形態1のUAV1と比較すると、UAV制御装置101に代えてUAV制御装置102を備えている。UAV制御装置102は、UAV制御装置101の構成に加えて、航空写真記憶部16を備えている。
<B-1.構成>
図5は、実施の形態2のUAV2の構成を示すブロック図である。UAV2は、実施の形態1のUAV1と比較すると、UAV制御装置101に代えてUAV制御装置102を備えている。UAV制御装置102は、UAV制御装置101の構成に加えて、航空写真記憶部16を備えている。
航空写真記憶部16は、地理的領域を上空から撮影した航空写真群と、航空写真群がカバーする地理的領域の任意の地点が航空写真上のどこに位置するかを示す画像内座標とが格納されている。航空写真群は、少なくともUAV1の目的地をカバーしている。
図6は、航空写真記憶部16に格納されたN行M列の航空写真群を示している。図6では各航空写真Q11-QNMが矩形で示されているが、三角形、円形、ハニカム形状など他の形状であっても良く、撮影画像についても同様である。各航空写真Q11-QNMは、ある特定の高度から真下の方向に撮影された画像である。つまり、例えば航空写真Q11の中心に写っている地点の水平座標が、航空写真Q11の撮影位置の水平座標である。なお、本実施の形態では航空写真について説明するが、目的地Dを判別することが可能な解像度である限り、航空写真に代えて衛星写真が用いられても良い。また、各航空写真Q11-QNMは、異なる撮影高度で撮影された航空写真に対して、特定の撮影高度に変換する処理が施されたものでも良い。また、航空写真記憶部16には同一の地理的範囲について、複数の撮影高度の航空写真が格納されていても良い。この場合、目的地画像取得部11は、複数の撮影高度の航空写真を目的地画像として取得する。そして、飛行制御部15は、撮影画像の撮影高度に近い一つの目的地画像を撮影画像と照合する。
航空写真記憶部16には、航空写真群がカバーする地理的領域の任意の地点の画像内座標が格納されている。従って、目的地画像取得部11は、航空写真群の中から目的地Dが撮影されている航空写真、例えば航空写真QNMを目的地画像Qdesとして取得することが可能である。図7は、目的地画像Qdesを示している。目的地画像Qdesにおいて、中心位置Pnmからやや左上に写っている建物の屋上が目的地Dである。目的地画像Qdesがカバーする地理的座標は、目的地画像Qdesの左上の地点PULの地理的座標PUL(x、y)と、右下の地点PDRの地理的座標PDR(x、y)により表される。また、目的地画像Qdesにおける目的地Dの位置Pdesは、地点PULまたは地点PULのいずれかを原点とするxy座標系により表される。図8は、地点PULを原点とした目的地Dの位置Pdesの画像内座標Pdes(x、y)を表している。ここで、x方向は矩形の目的地画像Qdesの横方向、y方向は縦方向である。これに、目的地Dの高度がz座標として加えられ、目的地Dの画像内座標はD(x,y,z)と表されても良い。
<B-2.動作>
以下、第2区間S2の飛行経路の算出方法を説明する。図9は、UAV1が着陸準備ポイントCに到達したときにカメラ21が撮影したUAV1の真下の撮影画像R1を示している。飛行制御部15は、図7の目的地画像Qdesと図9の撮影画像R1を照合して、撮影画像R1上の目的地Dの位置Pdesを特定する。これにより、飛行制御部15はUAV1と目的地Dの位置関係を把握することが可能である。ここで、説明の簡単化のため、着陸準備ポイントCの水平座標および高度を、目的地画像Qdesの中心位置Pnmおよび撮影高度とそれぞれ同一とする。すなわち、着陸準備ポイントCはPnmの真上に位置する。これにより、目的地画像と撮影画像に対して、後述する撮影高度変換処理と視点変換処理を行わなくても、両画像を照合することが可能になる。このとき、着陸準備ポイントCと目的地Dの位置関係は、図10に示されるものとなり、着陸準備ポイントCから見た目的地Dの方向は、角度(θ,γ)で表される。ここで、角度θは、PdesとPnmを結ぶ線分と、目的地画像Qdesのy方向がなす角である。そして、角度γは、着陸準備ポイントCと中心位置Pnmとを結ぶ線分と、着陸準備ポイントCとPdesが結ぶ線分とがなす角である。角度(θ,γ)は、Pdesおよびの画像内座標と、着陸準備ポイントCの高度から算出される。従って、着陸準備ポイントCに到達したUAV1は、(θ,γ)の方向に降下することによって目的地Dに到達することができる。
以下、第2区間S2の飛行経路の算出方法を説明する。図9は、UAV1が着陸準備ポイントCに到達したときにカメラ21が撮影したUAV1の真下の撮影画像R1を示している。飛行制御部15は、図7の目的地画像Qdesと図9の撮影画像R1を照合して、撮影画像R1上の目的地Dの位置Pdesを特定する。これにより、飛行制御部15はUAV1と目的地Dの位置関係を把握することが可能である。ここで、説明の簡単化のため、着陸準備ポイントCの水平座標および高度を、目的地画像Qdesの中心位置Pnmおよび撮影高度とそれぞれ同一とする。すなわち、着陸準備ポイントCはPnmの真上に位置する。これにより、目的地画像と撮影画像に対して、後述する撮影高度変換処理と視点変換処理を行わなくても、両画像を照合することが可能になる。このとき、着陸準備ポイントCと目的地Dの位置関係は、図10に示されるものとなり、着陸準備ポイントCから見た目的地Dの方向は、角度(θ,γ)で表される。ここで、角度θは、PdesとPnmを結ぶ線分と、目的地画像Qdesのy方向がなす角である。そして、角度γは、着陸準備ポイントCと中心位置Pnmとを結ぶ線分と、着陸準備ポイントCとPdesが結ぶ線分とがなす角である。角度(θ,γ)は、Pdesおよびの画像内座標と、着陸準備ポイントCの高度から算出される。従って、着陸準備ポイントCに到達したUAV1は、(θ,γ)の方向に降下することによって目的地Dに到達することができる。
以上は、目的地Dの画像内座標を用いた第2区間S2の飛行経路の算出方法である。飛行制御部15は、別の方法で第2区間S2の飛行経路を算出しても良い。例えば、飛行制御部15が図9に示す撮影画像R1上の目的地Dの位置Pdesを特定した後、UAV制御装置102は、Pdesが撮影画像の中心に位置するようにカメラ21の撮影方向を調整する。こうして得られたカメラ21の撮影画像R2を図11に示す。撮影画像R2では、Pdesが中心に位置している。このときのカメラ21の撮影方向の変化方向が、UAV1から目的地Dを見る方向であるため、当該方向にUAV1を降下させるように、飛行制御部15は駆動部23を制御すれば良い。
<B-3.変形例>
図12は、実施の形態2の第1の変形例のUAV2Aの構成を示すブロック図である。UAV2Aは、UAV2と比較すると、UAV制御装置102に代えてUAV制御装置102Aを備えている。UAV制御装置102Aは、飛行制御部15に画像変換部151を備えている。
図12は、実施の形態2の第1の変形例のUAV2Aの構成を示すブロック図である。UAV2Aは、UAV2と比較すると、UAV制御装置102に代えてUAV制御装置102Aを備えている。UAV制御装置102Aは、飛行制御部15に画像変換部151を備えている。
画像変換部151は、必要に応じ画像変換処理を行い、両画像の撮影高度または視点を統一する。すなわち、画像変換部151の行う画像変換処理は、視点変換処理と撮影高度変換処理を含む。画像変換部151は、目的地画像に対して視点変換処理を行い、目的地画像と撮影画像の一方または両方に対して撮影高度変換処理を行う。
まず、視点変換処理について説明する。図10では、着陸準備ポイントCと目的地画像Qdesの中心位置Pnmとの間で水平位置座標(XY座標)が同一の場合について説明したが、これらは異なっていても良い。しかし、その場合には目的地画像Qdesと着陸準備ポイントCにおける撮影画像とで建物等の見え方が異なるため、飛行制御部15で画像照合をする前に両画像の視点を統一することが望ましい。この視点変換処理は、同一の地理的範囲について撮影方向の異なる複数の航空写真が航空写真記憶部16に格納されていることが前提となる。目的地画像取得部11は、目的地を含む地理的範囲について撮影方向の異なる複数の航空写真を目的地画像として取得し、飛行制御部15に出力する。飛行制御部15では、画像変換部151が複数の目的地画像を用いて、目的地画像の視点を撮影画像の視点に合わせる視点変換処理、すなわち目的地画像の撮影位置の水平座標を撮影画像の撮影位置の水平座標に一致させる処理を行う。飛行制御部15は、視点変換後の目的地画像を撮影画像と照合することで、容易に照合を行うことができる。
次に、撮影高度変換処理について説明する。図10では、着陸準備ポイントCの高度が目的地画像Qdesの撮影高度と同一の場合について説明したが、これらは異なっていても良い。しかし、その場合には目的地画像Qdesと着陸準備ポイントCにおける撮影画像とで建物等の見え方が異なるため、飛行制御部15で画像照合をする前に両画像の撮影高度を統一する処理を行うことが望ましい。このとき、画像変換部151は、目的地画像Qdesと撮影画像の一方に対して、他方の撮影高度に合わせる高度変換処理を行っても良いし、両方に対して、いずれの画像とも異なる撮影高度に合わせる高度変換処理を行っても良い。飛行制御部15は、撮影高度を統一する処理が行われた撮影画像と目的地画像を照合することにより、容易に照合を行うことができる。
また、飛行制御部15は、目的地画像Qdesと撮影画像を照合する際、全領域を一度に照合するのではなく、両画像を複数の領域に分割し、領域ごとに照合しても良い。例えば、目的地画像Qdesと撮影画像をそれぞれ3行3列の9個の矩形の領域に分割し、目的地画像Qdesのうち目的地Dの位置Pdesを含む領域と、撮影画像の1つの領域とを照合する。なお、この照合の前に画像変換部151は、必要に応じて上記の視点変換処理および撮影高度変換処理を行う。着陸準備ポイントCが目的地Dの真上に設定されている場合、撮影画像の中心に目的地Dが写っている可能性が高いため、1回目は撮影画像の中心の領域を照合することが望ましい。1回目の照合で、撮影画像の中心の領域に目的地Dが写っていない場合、飛行制御部15は、撮影画像の別の領域を照合に用いる。
飛行制御部15は、撮影画像中に目的地Dを特定できるまで撮影画像の各分割領域を順番に、目的地画像Qdesのうち目的地Dの位置Pdesを含む領域と照合する。以上の方法によれば、照合回数が増えるが、画像変換部151が必ずしも撮影画像の全ての領域について画像変換処理を行わなくても良いため、画像変換処理の負荷が削減される。
画像変換部151は、目的地画像Qdesに対する画像変換処理を、UAV1が着陸準備ポイントCに着いてから行っても良いし、着陸準備ポイントCが設定された後、UAV1が着陸準備ポイントCに到達するまでの間の任意のタイミングで行っても良い。後者の場合、UAV1が着陸準備ポイントCに到着してからリアルタイムでUAV制御装置102が行う処理量を削減できるため、CPUまたはGPUの処理負荷を低減できる。
図10では、着陸準備ポイントCが目的地画像Qdesの中心位置Pnmの真上に設定されているが、目的地Dの真上に設定されても良い。そうすれば、撮影画像R1に目的地Dが写りやすいため、画像照合が容易となる。
図13は、実施の形態2の第2の変形例のUAV2Bの構成を示すブロック図である。UAV2Bは、カメラ21、GNSS受信機22、駆動部23、バッテリー24、通信部25およびUAV制御装置102Bを備え、通信部25によりサーバ31と接続されている。UAV制御装置102Bは、第1の変形例のUAV制御装置102Aから、航空写真記憶部16と画像変換部151を除外したものである。その代わりに、サーバ31が航空写真記憶部311と画像変換部312を備えている。
第2の変形例では、UAV2Bが着陸準備ポイントCに到達すると、撮影画像取得部13から撮影画像が通信部25を介してサーバ31に送信される。サーバ31では、航空写真記憶部311に図6等で説明した航空写真群が格納されており、画像変換部312が航空写真記憶部311から目的地Dを含む航空写真を目的地画像として選択する。さらに画像変換部312は、選択した目的地画像に、その撮影高度と視点を着陸準備ポイントCにおける撮影画像に合わせる画像変換処理を行う。画像変換部312で画像変換処理が行われた目的地画像は、通信部25を介して目的地画像取得部11に取得される。
UAV制御装置102Aは、着陸準備ポイントCにおける撮影画像に代えて、着陸準備ポイントが定まった時点で、着陸準備ポイントの高度と水平座標をサーバ31に送信しても良い。サーバ31は、着陸準備ポイントCの高度と水平座標が分かれば、それに合せて目的地画像に画像変換処理を行うことができる。
第2の変形例によれば、目的地画像と撮影画像の間で撮影高度と視点を統一するための画像変換処理がサーバ31で行われるため、UAV制御装置102Bでは画像変換処理を行う必要がない。さらに、サーバ31に航空写真群が記憶されているため、UAV制御装置102Bでは航空写真群を記憶しておく必要がない。従って、サーバ31との通信処理が発生するものの、UAV制御装置102Bの構成を簡素化することが可能である。また、UAV2Bが着陸準備ポイントCに正確に到達できなかった場合、またはUAV2Bの飛行中に着陸準備ポイントCが変更された場合にも対応することが可能である。
図6,7では、航空写真群から1枚の航空写真を選択して目的地画像とすることについて説明した。しかし、目的地画像は複数枚の航空写真から作成されても良い。図14は、隣り合う2枚の航空写真の境界に目的地Dが位置する場合を示している。目的地画像取得部11は、当該2枚の航空写真を合成し、合成写真を1枚の航空写真のサイズに切り取ったものを目的地画像Qdesとしても良い。図15は、1枚の航空写真内に目的地Dが位置する場合を示している。この場合でも目的地画像取得部11は、目的地Dを含む航空写真とそれに隣接する1枚又は複数枚の航空写真を合成し、合成写真を1枚の航空写真のサイズに切り取ったものを目的地画像Qdesとしても良い。このように目的地画像取得部11は、複数枚の航空写真の合成写真から目的地画像を作成することにより、図15に示すように目的地Dを目的地画像Qdesの中心にすることが可能である。この場合、目的地Dの真上に着陸準備ポイントCが設定されれば、目的地画像Qdesと撮影画像の両方において、それらの中心に目的地Dが含まれ、両画像の照合処理が容易になる。
図7,9,11において、目的地画像Qdesの撮影範囲は撮影画像R1,R2の撮影範囲より小さい。しかし、目的地画像Qdesの撮影範囲は撮影画像R1,R2の撮影範囲より大きくても良い。撮影範囲が小さくても、目的地画像Qdesには目的地が含まれているため、目的地画像Qdesと撮影画像の画像照合により撮影画像上の目的地の位置を特定することが可能である。そして、目的地画像Qdesの撮影範囲が小さい程、画像照合に要する処理負荷が軽減される。
出発地Aから着陸準備ポイントCまでの第1区間S1の飛行は、出発地Aから特定の巡航高度まで上昇する初期飛行と、その後、巡航高度を保ちながら着陸準備ポイントCまで飛行する巡航飛行とで構成されても良い。巡航飛行において巡航高度を保つことにより、無駄なエネルギーの消費が抑えられる。なお、巡航高度は着陸準備ポイントCの高度である着陸準備高度と同一であっても良い。巡航高度を着陸準備ポイントCの高度以外の特定の高度とする場合、巡航高度の情報は航空写真記憶部16に格納されていても良い。
図6では航空写真群について説明したが、航空写真に代えて地上物の3次元データが用いられても良い。3次元データは、同一の地理的範囲を複数の方向から撮影することにより得られる。3次元データを目的地画像とすることにより、視点変換処理を容易に行うことが可能である。
図10では、着陸準備ポイントCが目的地画像Qdesの中心位置Pnmの真上に位置している。しかし、ポイント設定部14は他の場所に着陸準備ポイントCを設定しても良い。例えば図16に示すように、ポイント設定部14は、目的地画像Qdesの撮影位置Eと目的地Dとを結ぶ線分上の一点に着陸準備ポイントCを設定しても良い。このとき、撮影位置Eから目的地Dを撮影する方向と、着陸準備ポイントCから目的地Dを撮影する方向が等しい。そのため、目的地画像Qdesと着陸準備ポイントCにおける撮影画像との間で目的地Dの写り方に差異が少なくなる。そして、飛行制御部15が画像照合を行う際に、視点変換処理または高度変換処理が不要になるか、あるいは変換処理にかかる負荷を軽減することができる。
図4のフローで飛行制御部15は、UAV1が着陸準備ポイントCに到達したときに画像照合を1回きり行い、第2区間S2の飛行経路を決定した。しかし、飛行制御部15は、第2区間S2の飛行経路を決定した後、UAVが第2区間S2を飛行中に画像照合を複数回行い、画像照合結果に基づき飛行経路を更新しても良い。飛行経路の更新を行う場合のフローチャートを図17に示す。図17のフローチャートは、図4のフローチャートにおいて、ステップS1044でNOの場合の戻り先をステップS1043からステップS1041に変更したものである。図17のフローにおいて、ステップS1044は、飛行制御部15がUAVが目的地に到達したか否かを判断するステップであるが、本ステップを行うタイミングは、UAVが所定高度に達したタイミングでも良いし、所定時間毎でも良い。所定高度毎にステップS1044を行う場合、目的地画像取得部11は、UAV制御装置102,102Aにおいては、所定高度毎の目的地画像を予め航空写真記憶部16から取得しても良いし、UAV制御装置102Bにおいては、所定高度毎の目的地画像を通信部25を介してサーバ31から取得しても良い。
第2の変形例では、撮影画像取得部13が、通信部25を介してサーバ31に着陸準備ポイントCにおける撮影画像を送信する。撮影画像取得部13は、着陸準備ポイントCに限らず、着陸準備ポイントCから目的地Dに到達するまでの任意のタイミングで撮影された撮影画像を、通信部25を介してサーバ31に送信しても良い。これらの撮影画像は、目的地Dの近傍を上空から撮影した画像であるため、航空写真群としてサーバ31の航空写真記憶部311に格納しても良い。また、撮影画像取得部13は、サーバ31に送信する撮影画像に、撮影時の時刻、天候、照度、太陽の方向などの撮影条件の情報を付加しても良い。そして、航空写真記憶部311は、撮影条件別に航空写真を格納しても良い。これにより、目的地画像取得部11は、着陸準備ポイントCにおいてカメラ21がUAVの下方を撮影する際の撮影条件に近い撮影条件の航空写真を目的地画像として取得することが可能となる。例えば太陽の方向が異なれば建物の影の方向等も異なるが、撮影画像と撮影条件の近い目的地画像を用意することにより、画像照合を容易に行うことができる。また、夜間に撮影された画像の場合は、建物の窓明かり等の固定照明と、ネオンサインまたはサーチライト等の移動照明による画像の差異が生じるため、サーバ31は、撮影画像から照明が写っている領域を除外する修正を加えた上で、航空写真記憶部311に航空写真として格納しても良い。あるいは、サーバ31は、移動照明の移動パターンまたは変化パターンをメタデータとして航空写真に付加しても良い。
<C.実施の形態3>
<C-1.構成>
図18は、実施の形態3のUAV3の構成を示すブロック図である。UAV3は、実施の形態2のUAV2と比較すると、UAV制御装置102に代えてUAV制御装置103を備えている。UAV制御装置103は、飛行制御部15に正射変換部152を備える点がUAV制御装置102と異なる。
<C-1.構成>
図18は、実施の形態3のUAV3の構成を示すブロック図である。UAV3は、実施の形態2のUAV2と比較すると、UAV制御装置102に代えてUAV制御装置103を備えている。UAV制御装置103は、飛行制御部15に正射変換部152を備える点がUAV制御装置102と異なる。
実施の形態1,2において、目的地画像は航空カメラで撮影された航空写真であるため、図7に示すように対象物が中心投影された画像である。従って、画像に写る対象物が地面から高いほど、また、画像の中心から周縁部に向かうほど、画像上の像に位置ずれが生じてしまう。
そこで、実施の形態3では、航空写真記憶部16に格納される航空写真をオルソ画像とし、オルソ画像を目的地画像とする。オルソ画像とは、通常の航空写真を正射変換することにより得られるもので、画像上の像の位置ずれを解消し、地図と同じく真上から見たような傾きの無い、像が正しい大きさと位置に表示される画像である。
図19に、図7に示す目的地画像が正射変換して得られたオルソ画像を示す。目的地画像取得部11は、このようなオルソ画像を目的地画像として航空写真記憶部16から取得する。飛行制御部15は、目的地画像取得部11からオルソ画像である目的地画像を取得し、撮影画像取得部13から着陸準備ポイントCにおけるカメラ21の撮影画像を取得する。正射変換部152は、撮影画像を正射変換してオルソ画像にする。飛行制御部15は、オルソ画像に変換された撮影画像を目的地画像と照合し、撮影画像上の目的地の位置を特定する。
実施の形態3では、画像照合される撮影画像と目的地画像がいずれもオルソ画像であるため、両画像の撮影方向が異なっている場合でも正確に画像照合を行うことが可能である。従って、飛行制御部15において、両画像の視点を統一する画像変換処理を行う必要はない。
なお、撮影画像はオルソ画像に変換されることから、カメラ21の撮影方向はUAV3の真下であることが望ましい。
上記では、撮影画像を正射変換することについて説明した。しかし、撮影画像の周縁部において位置ずれが気にならない程度に撮影画像の撮影範囲が小さい場合には、正射変換部152は撮影画像の正射変換を行わなくても良い。この場合、飛行制御部15は撮影画像をそのまま目的地画像と照合することにより、処理負荷を軽減することができる。
<D.実施の形態4>
<D-1.構成>
図20は、実施の形態4に係るUAV4の構成を示すブロック図である。UAV4は、実施の形態3のUAV3の構成と比較すると、UAV制御装置103に代えてUAV制御装置104を備えている。UAV制御装置104は、飛行制御部15が正射変換部152の他にマスク処理部153を備える点がUAV制御装置103と異なる。
<D-1.構成>
図20は、実施の形態4に係るUAV4の構成を示すブロック図である。UAV4は、実施の形態3のUAV3の構成と比較すると、UAV制御装置103に代えてUAV制御装置104を備えている。UAV制御装置104は、飛行制御部15が正射変換部152の他にマスク処理部153を備える点がUAV制御装置103と異なる。
<D-2.動作>
飛行制御部15は、目的地画像と撮影画像を照合する。目的地画像の撮影範囲のうち、道路、線路、水路には移動体が走行している。移動体の位置は時間と共に変化するため、目的地画像と撮影画像の照合において、道路等、移動体が走行する範囲はノイズ成分となる。
飛行制御部15は、目的地画像と撮影画像を照合する。目的地画像の撮影範囲のうち、道路、線路、水路には移動体が走行している。移動体の位置は時間と共に変化するため、目的地画像と撮影画像の照合において、道路等、移動体が走行する範囲はノイズ成分となる。
そこで、実施の形態4では、マスク処理部153により、目的地画像に対して、移動体が走行する範囲を一定のパターンでマスクするマスク処理を施す。このときマスク処理部153は、道路地図を基にマスクする領域を決定しても良い。そして、飛行制御部15は、マスク処理部153でマスク処理が施された目的地画像を撮影画像と照合し、撮影画像上の目的地の位置を特定する。これ以外のUAV制御装置104の動作は、実施の形態3のUAV制御装置103と同様である。
図21は、マスク処理が行われた目的地画像Qdesを示している。目的地画像Qdesにおいて、道路等、移動体が走行している領域がマスク領域Rmとしてマスクされている。なお、マスク処理部153は、目的地画像と同様に撮影画像にもマスク処理を施しても良い。
マスク処理部153がマスクする領域は、移動体が走行する道路等の他、イルミネーションが行われている領域、移動照明などで撮影画像が変化する領域等を含んでも良い。
<E.実施の形態5>
<E-1.構成>
図22は、実施の形態5のUAV5の構成を示すブロック図である。UAV5は、カメラ21、GNSS受信機22、駆動部23、バッテリー24、通信部26およびUAV制御装置105を備えている。UAV制御装置105は、実施の形態1のUAV制御装置101と同様の構成である。実施の形態1-4において、目的地は建物の屋上などの地物であり、目的地画像は、図7に示したように目的地を含む地理的範囲を上空から撮影した画像であった。これに対して実施の形態5では、目的地は停止または走行する移動体であり、UAV制御装置105は、UAV5を移動体に着陸させるまでの飛行制御を行う。以下、UAV5の目的地となる移動体を目的移動体と称する。本実施の形態は、例えばUAV5による移動体への荷物の配送、またはUAV5の移動体での充電などの用途に利用することが可能である。
<E-1.構成>
図22は、実施の形態5のUAV5の構成を示すブロック図である。UAV5は、カメラ21、GNSS受信機22、駆動部23、バッテリー24、通信部26およびUAV制御装置105を備えている。UAV制御装置105は、実施の形態1のUAV制御装置101と同様の構成である。実施の形態1-4において、目的地は建物の屋上などの地物であり、目的地画像は、図7に示したように目的地を含む地理的範囲を上空から撮影した画像であった。これに対して実施の形態5では、目的地は停止または走行する移動体であり、UAV制御装置105は、UAV5を移動体に着陸させるまでの飛行制御を行う。以下、UAV5の目的地となる移動体を目的移動体と称する。本実施の形態は、例えばUAV5による移動体への荷物の配送、またはUAV5の移動体での充電などの用途に利用することが可能である。
図23は、目的移動体を上方から撮影した画像である目的移動体画像DVPを示している。実施の形態5において目的地画像取得部11は、図23の目的移動体画像DVPを、目的地画像として取得する。
測位部12は、他の実施の形態と同様、GNSS信号に基づきUAV5の現在位置を測定する。
通信部26は、目的移動体と通信を行い、目的移動体の現在位置と今後の走行予定経路を取得してポイント設定部14に出力する。ポイント設定部14は、通信部26から目的移動体の現在位置と走行経路を取得し、これらに基づき、目的移動体の将来の位置を推定する。また、ポイント設定部14は測位部12からUAV5の現在位置を取得し、UAV5が目的移動体の近傍の上空に到達可能なポイントを着陸準備ポイントCに設定する。着陸準備ポイントCでカメラ21がUAV5の真下を撮影した際、撮影画像に目的移動体が含まれることが望ましい。従って、本実施の形態では、カメラ21がUAV5の真下を撮影した際、撮影画像に目的移動体が含まれる範囲を、「目的地移動体の近傍の上空」と定義する。
図24は、出発地Aと目的移動体DVと着陸準備ポイントCの関係を示している。図24において、出発地Aから着陸準備ポイントCまでの飛行区間が第1区間S1であり、着陸準備ポイントCから目的移動体DVに着陸するまでの飛行区間が第2区間S2(図24に図示せず)である。
飛行制御部15は、第1区間S1においては、他の実施の形態と同様、測位部12が測定したUAV5の位置情報に基づきUAV5を着陸準備ポイントCまで飛行制御する。また、飛行制御部15は、第2区間S2においては、他の実施の形態と同様、目的地画像と撮影画像とを照合することによりUAV5と目的地との相対的な位置関係を把握し、飛行経路を決定する。
<E-2.動作>
図25は、飛行制御部15によるUAV5の飛行制御処理を示すフローチャートである。図26は、図25のステップS509の詳細な処理を示すフローチャートであり、第2区間の飛行制御に関するフローチャートである。以下、図25および図26に沿って飛行制御部15の動作を説明する。
図25は、飛行制御部15によるUAV5の飛行制御処理を示すフローチャートである。図26は、図25のステップS509の詳細な処理を示すフローチャートであり、第2区間の飛行制御に関するフローチャートである。以下、図25および図26に沿って飛行制御部15の動作を説明する。
図25のフローは、例えばUAV制御装置105に目的移動体の情報が入力されたタイミングで開始する。まず、通信部26は、目的移動体の現在位置と今後の走行予定経路を含む走行状況を取得し(ステップS501)、これをポイント設定部14に出力する。ポイント設定部14は、目的移動体の走行状況と、測位部12から取得したUAV5の現在位置に基づき、着陸準備ポイントCを設定する(ステップS502)。
次に、飛行制御部15がUAV5の現在位置を出発地Aとし、出発地Aから着陸準備ポイントCまでの第1区間S1の飛行経路を決定する(ステップS503)。第1区間S1の飛行経路の決定処理は実施の形態1-4と同様である。そして、目的地画像取得部11が目的移動体画像を取得する(ステップS504)。
次に、飛行制御部15は、UAV5を出発地Aから着陸準備ポイントCまでステップS503で決定した飛行経路に沿って飛行するよう駆動部23を制御する(ステップS505)。これが、第1区間S1の飛行制御である。UAV5が第1区間S1を飛行中、通信部26は一定周期など随時に目的移動体と通信を行い、目的移動体の最新の走行状況を取得し、ポイント設定部14に出力する(ステップS506)。ポイント設定部14は、目的移動体の走行状況に変化があるか否かを判断し(ステップS507)、変化があれば最新の走行状況に基づき着陸準備ポイントCの設定をやり直す(ステップS502)。例えば、渋滞が発生したため、目的移動体が走行予定経路を変更した場合、または目的移動体の走行速度が当初の予定よりも早い場合などに、ポイント設定部14は着陸準備ポイントCを更新する。
目的移動体の走行状況に変化がなければ、UAV制御装置105の処理はステップS508に移行する。飛行制御部15は、測位部12からUAV5の現在位置を取得しており、これに基づきUAV5が着陸準備ポイントCに到達したか否かを判断する(ステップS508)。そして、飛行制御部15はUAV5が着陸準備ポイントCに到達するまで第1区間S1の飛行制御を継続する(ステップS505)。UAV5が着陸準備ポイントCに到達すれば、続いて飛行制御部15は第2区間の飛行制御を行う(ステップS509)。
第2区間の飛行制御では、まずカメラ21がUAV5の下方を撮影し、撮影画像取得部13が撮影画像を取得する(ステップS5091)。次に、飛行制御部15は、撮影画像取得部13から撮影画像を取得し、撮影画像を目的移動体画像と照合することにより、撮影画像中の目的移動体の位置を特定する(ステップS5092)。なお、図27に示すように撮影画像中に目的移動体が写っていない場合、飛行制御部15は目的移動体が写るまでカメラ21の撮影方向を調整し、図28または図29に示すように別の範囲を撮影させる。このとき、目的移動体の走行経路が既知であるため、飛行制御部15は当該経路に沿ってカメラ21の撮影方向を変化させると良い。
なお、撮影画像中に目的移動体画像と一致する目的移動体が複数写っている場合、飛行制御部15は目的移動体の周辺情報を考慮することにより、目的移動体の撮影画像中の位置を特定することができる。目的移動体の周辺情報とは、例えば目的移動体に搭載されたカメラによる目的移動体の周辺の画像を含む。飛行制御部15は、通信部26を介して目的移動体の周辺情報として、例えば目的移動体の前方を走行している移動体の画像、または目的移動体の周辺にある建物の画像を取得する。そして、飛行制御部15はこれらの周辺情報を考慮して撮影画像中と目的移動体画像を照合することにより、目的移動体の撮影画像中の位置を特定する。
飛行制御部15は、撮影画像中に目的移動体の位置を特定すると、目的移動体が撮影画像の中心に位置するようにカメラ21の撮影方向を調整させる(ステップS5093)。このときのカメラ21の撮影方向がUAV5から目的移動体を見た方向となるため、飛行制御部15は当該方向に向かってUAV5を飛行制御する(ステップS5094)。但し、UAV5がステップS5093時点の目的移動体の位置に向かって飛行しても、目的移動体が移動している場合には目的移動体に到達できない。そのため、飛行制御部15は、ステップS5093時点のカメラ21の撮影方向に、目的移動体の移動方向による補正を加えて、UAV5の飛行経路を決定しても良い。
飛行制御部15は、測位部12から取得する位置情報または撮影画像取得部13から取得する撮影画像により、UAV5が目的移動体に着陸したか否かを判断する(ステップS5095)。ステップS5095において、UAV5が目的地に到達していなければ、飛行制御部15の処理はステップS5091に戻り、UAV5が目的地に到達するまで飛行制御を続ける。
なお、UAV5が目的地移動体の付近まで降下した場合、飛行制御部15はUAV5が目的移動体と同一速度で移動するようにUAV5を飛行制御しても良い。これにより、撮影画像と目的移動体画像との照合が容易になる。この際、撮影画像において目的移動体以外の領域は時間と共に変化するため、飛行制御部15は実施の形態4のように当該領域にマスク処理を行っても良い。
<E-3.変形例>
図30は、実施の形態5の変形例のUAV5Aの構成を示すブロック図である。UAV5Aは、UAV5の構成と比較すると、UAV制御装置105に代えてUAV制御装置105Aを備えている。UAV制御装置105Aは、UAV制御装置105の構成に加えて航空写真記憶部16を備えている。航空写真記憶部16には、実施の形態2と同様、特定の地理的領域を上空から撮影した航空写真群と、航空写真群がカバーする地理的領域の任意の地点が航空写真上のどこに位置するかを示す画像内座標とが格納されている。航空写真群は、少なくとも目的移動体の走行予定経路をカバーすることが望ましい。
図30は、実施の形態5の変形例のUAV5Aの構成を示すブロック図である。UAV5Aは、UAV5の構成と比較すると、UAV制御装置105に代えてUAV制御装置105Aを備えている。UAV制御装置105Aは、UAV制御装置105の構成に加えて航空写真記憶部16を備えている。航空写真記憶部16には、実施の形態2と同様、特定の地理的領域を上空から撮影した航空写真群と、航空写真群がカバーする地理的領域の任意の地点が航空写真上のどこに位置するかを示す画像内座標とが格納されている。航空写真群は、少なくとも目的移動体の走行予定経路をカバーすることが望ましい。
図31は、UAV制御装置105Aによる第2区間の飛行制御を示すフローチャートである。図31のフローは、図25のステップS509の詳細なフローを示すものであり、図26のステップS5093に代えてステップS5093Aを設けたものである。UAV制御装置105Aにおいて、飛行制御部15は、撮影画像を目的移動体画像と照合して撮影画像中の目的移動体の位置を特定する(ステップS5092)。その後、目的地画像取得部11は、航空写真記憶部16から着陸準備ポイントCと同一の水平座標の地点を撮影範囲に含む航空写真を取得し、飛行制御部15に出力する。飛行制御部15は、撮影画像を航空写真と照合することにより、UAV5と目的移動体の位置関係を把握する(ステップS5093A)。例えば、撮影画像がUAV5の真下の撮影画像である場合、撮影画像の中心位置がUAV5の水平座標に一致する。従って、飛行制御部15は、航空写真上で、撮影画像の中心位置に対応する位置と、目的移動体の位置に対応する位置を特定することにより、UAV5と目的移動体の水平方向の相対的位置を把握することができる。これに、着陸準備ポイントCの高度を加味することによって、飛行制御部15はUAV5と目的移動体の3次元の相対的位置を把握し、UAV5を目的移動体へ近づけるように第2区間の飛行経路を決定することができる。
なお、飛行制御部15は撮影画像を航空写真と照合する際、航空写真に目的移動体画像を重畳させておいても良い。飛行制御部15は、通信部26から目的移動体の位置情報を取得することが出来るため、図32に示すように、目的移動体の現在位置に対応する航空写真の位置に、目的移動体画像DVPを重畳することが可能である。そして、飛行制御部15は、目的移動体画像DVPが重畳された航空写真と撮影画像とを照合する。この場合、飛行制御部15は、目的移動体だけでなくその周辺の地物を合せて照合することにより、容易に画像照合を行うことができる。
<F.ハードウェア構成>
上述したUAV制御装置101,102,102A,102B,103,104,105,105Aにおける、目的地画像取得部11、測位部12、撮影画像取得部13、ポイント設定部14、飛行制御部15および航空写真記憶部16は、図33に示す処理回路61により実現される。すなわち、処理回路61は、目的地画像取得部11、測位部12、撮影画像取得部13、ポイント設定部14、飛行制御部15および航空写真記憶部16(以下、「目的地画像取得部11等」と称する)を備える。処理回路61には、専用のハードウェアが適用されても良いし、メモリに格納されるプログラムを実行するプロセッサが適用されても良い。プロセッサは、例えば中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。
上述したUAV制御装置101,102,102A,102B,103,104,105,105Aにおける、目的地画像取得部11、測位部12、撮影画像取得部13、ポイント設定部14、飛行制御部15および航空写真記憶部16は、図33に示す処理回路61により実現される。すなわち、処理回路61は、目的地画像取得部11、測位部12、撮影画像取得部13、ポイント設定部14、飛行制御部15および航空写真記憶部16(以下、「目的地画像取得部11等」と称する)を備える。処理回路61には、専用のハードウェアが適用されても良いし、メモリに格納されるプログラムを実行するプロセッサが適用されても良い。プロセッサは、例えば中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)等である。
処理回路61が専用のハードウェアである場合、処理回路61は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。目的地画像取得部11等の各部の機能それぞれは、複数の処理回路61で実現されてもよいし、各部の機能をまとめて一つの処理回路で実現されてもよい。
処理回路61がプロセッサである場合、目的地画像取得部11等の機能は、ソフトウェア等(ソフトウェア、ファームウェアまたはソフトウェアとファームウェア)との組み合わせにより実現される。ソフトウェア等はプログラムとして記述され、メモリに格納される。図34に示すように、処理回路61に適用されるプロセッサ62は、メモリ63に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、UAV制御装置101は、目的地を上空から撮影した画像である目的地画像を取得するステップと、UAVに搭載されたカメラによるUAVの下方の撮影画像を取得するステップと、GNSS信号を用いてUAVの位置を測定するステップと、目的地の近傍の上空に着陸準備ポイントを設定するステップと、UAVを出発地から着陸準備ポイントまで飛行させた後、着陸準備ポイントから目的地まで第2飛行として飛行するようにUAVを飛行制御するステップと、が結果的に実行されることになるプログラムを格納するためのメモリ63を備える。
換言すれば、このプログラムは、目的地画像取得部11等の手順や方法をコンピュータに実行させるものであるともいえる。ここで、メモリ63には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)及びそのドライブ装置等、または、今後使用されるあらゆる記憶媒体であってもよい。
以上、目的地画像取得部11等の各機能が、ハードウェア及びソフトウェア等のいずれか一方で実現される構成について説明した。しかしこれに限ったものではなく、目的地画像取得部11等の一部を専用のハードウェアで実現し、別の一部をソフトウェア等で実現する構成であってもよい。例えば、目的地画像取得部11については専用のハードウェアとしての処理回路でその機能を実現し、それ以外についてはプロセッサ62としての処理回路61がメモリ63に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
以上のように、処理回路は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。なお、航空写真記憶部16は、メモリ63から構成されるが、それらは単一のメモリ63から構成されてもよいし、それぞれが個別のメモリから構成されてもよい。
UAV制御装置は、UAVに搭載される装置だけでなく、PND(Portable Navigation Device)、通信端末(例えば携帯電話、スマートフォン、およびタブレットなどの携帯端末)、およびこれらにインストールされるアプリケーションの機能、並びにサーバなどを適宜に組み合わせてシステムとして構築されるシステムにも適用することができる。この場合、以上で説明したUAV制御装置の各機能または各構成要素は、システムを構築する各機器に分散して配置されてもよいし、いずれかの機器に集中して配置されてもよい。その一例として図35には、UAV1とサーバ40によるUAV制御装置101の構成例を示している。この例では、目的地画像取得部11、撮影画像取得部13、ポイント設定部14および飛行制御部15がサーバ40に配置され、測位部12がUAV1に配置されている。
なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。この発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
1,2,2A,2B,3,4,5,5A UAV、11 目的地画像取得部、12 測位部、13 撮影画像取得部、14 ポイント設定部、15 飛行制御部、16 航空写真記憶部、21 カメラ、22 GNSS受信機、23 駆動部、24 バッテリー、25,26 通信部、31,40 サーバ、61 処理回路、62 プロセッサ、63 メモリ、101,102,102A,102B,103,104,105,105A UAV制御装置、151 画像変換部、152 正射変換部、153 マスク処理部、311 航空写真記憶部、312 画像変換部。
Claims (16)
- 目的地を上空から撮影した画像である目的地画像を取得する目的地画像取得部と、
UAVに搭載されたカメラによる前記UAVの下方の撮影画像を取得する撮影画像取得部と、
GNSS信号を用いて前記UAVの位置を測定する測位部と、
前記目的地の近傍の上空に着陸準備ポイントを設定するポイント設定部と、
前記UAVが出発地から前記着陸準備ポイントまで第1飛行として飛行した後、前記着陸準備ポイントから前記目的地まで第2飛行として飛行するように前記UAVを制御する飛行制御部と、を備え、
前記飛行制御部は、
前記第1飛行においては、前記測位部が測定した前記UAVの位置を利用して前記UAVを制御し、
前記第2飛行においては、前記目的地画像と前記撮影画像とを照合することにより、前記撮影画像上の前記目的地を特定し、前記UAVと前記目的地との相対位置を把握し、前記UAVの飛行経路を決定する、
UAV制御装置。 - 前記飛行制御部は、前記目的地画像と前記撮影画像で撮影高度が異なる場合、前記目的地画像と前記撮影画像の一方または両方に撮影高度を変換する画像変換処理を行って、前記目的地画像と前記撮影画像で撮影高度を一致させたうえで両者を照合する、
請求項1に記載のUAV制御装置。 - 前記飛行制御部は、前記目的地画像の撮影高度を前記着陸準備ポイントの高度とする、
請求項1に記載のUAV制御装置。 - 前記飛行制御部は、前記目的地画像の中心位置の真上に前記着陸準備ポイントを設定する、
請求項1に記載のUAV制御装置。 - 前記飛行制御部は、前記目的地画像と前記撮影画像で撮影位置の水平座標が異なる場合、前記目的地画像に撮影位置の水平座標を変換する画像変換処理を行って、前記目的地画像と前記撮影画像で撮影位置の水平座標を一致させたうえで、両者を照合する、
請求項1に記載のUAV制御装置。 - 前記UAV制御装置の外部のサーバに前記着陸準備ポイントの高度を送信し、
前記目的地画像取得部は、前記着陸準備ポイントの高度にあわせて撮影高度を変換する画像変換処理が行われた前記目的地画像を前記サーバから取得する、
請求項1に記載のUAV制御装置。 - 前記飛行制御部は、前記UAV制御装置の外部のサーバに前記着陸準備ポイントの水平座標を送信し、
前記目的地画像取得部は、前記着陸準備ポイントの水平座標にあわせて撮影位置の水平座標を変換する画像変換処理が行われた前記目的地画像を前記サーバから取得する、
請求項1に記載のUAV制御装置。 - 前記第1飛行は、前記出発地から前記着陸準備ポイントの高度である着陸準備高度まで上昇する初期飛行と、前記初期飛行の後、前記着陸準備高度を保って前記着陸準備ポイントまで飛行する巡航飛行とを含む、
請求項1に記載のUAV制御装置。 - 前記飛行制御部は、前記目的地と前記目的地画像の撮影位置とを結ぶ線分上に前記着陸準備ポイントを設定する、
請求項1に記載のUAV制御装置。 - 前記飛行制御部は、前記第2飛行における複数の地点で、前記目的地画像と前記撮影画像とを照合して、前記撮影画像上の前記目的地を特定することにより、前記UAVの飛行経路を更新する、
請求項1に記載のUAV制御装置。 - 前記目的地画像取得部は、撮影高度が異なる複数の目的地画像と、複数の前記目的地画像における前記目的地の座標とを取得し、
前記飛行制御部は、前記撮影画像の撮影高度に応じて選択した一つの前記目的地画像を前記撮影画像と照合する、
請求項1に記載のUAV制御装置。 - 前記目的地画像はオルソ画像である、
請求項1に記載のUAV制御装置。 - 前記飛行制御部は、前記撮影画像を正射変換した上で前記目的地画像と照合する、
請求項12に記載のUAV制御装置。 - 前記飛行制御部は、前記目的地画像と前記撮影画像に対して、道路、線路または水路の少なくともいずれか一つをマスクした上で、前記目的地画像と前記撮影画像とを照合する、
請求項1に記載のUAV制御装置。 - 前記目的地は、停止または走行する移動体であり、
前記飛行制御部は、移動体の現在位置と走行経路から前記移動体の将来の位置を推定し、推定結果と前記UAVの位置に基づき前記UAVが前記移動体の上方に到達可能なポイントを前記着陸準備ポイントとする、
請求項1に記載のUAV制御装置。 - 目的地を上空から撮影した画像である目的地画像を取得し、
UAVに搭載されたカメラによる前記UAVの下方の撮影画像を取得し、
GNSS信号を用いて前記UAVの位置を測定し、
前記目的地の近傍の上空に着陸準備ポイントを設定し、
前記UAVが出発地から前記着陸準備ポイントまで第1飛行として飛行した後、前記着陸準備ポイントから前記目的地まで第2飛行として飛行するように前記UAVを飛行制御し、
前記飛行制御は、
前記第1飛行においては、前記GNSS信号を用いて測定された前記UAVの位置を利用して前記UAVを制御し、
前記第2飛行においては、前記目的地画像と前記撮影画像とを照合して、前記撮影画像上の前記目的地を特定することにより、前記UAVの飛行経路を決定する、
UAV制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020529942A JP7042911B2 (ja) | 2018-07-13 | 2018-07-13 | Uav制御装置およびuav制御方法 |
PCT/JP2018/026468 WO2020012632A1 (ja) | 2018-07-13 | 2018-07-13 | Uav制御装置およびuav制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/026468 WO2020012632A1 (ja) | 2018-07-13 | 2018-07-13 | Uav制御装置およびuav制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020012632A1 true WO2020012632A1 (ja) | 2020-01-16 |
Family
ID=69141343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/026468 WO2020012632A1 (ja) | 2018-07-13 | 2018-07-13 | Uav制御装置およびuav制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7042911B2 (ja) |
WO (1) | WO2020012632A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114253284A (zh) * | 2021-12-22 | 2022-03-29 | 湖北襄开电力设备有限公司 | 无人机自动控制方法、装置、设备及存储介质 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114415736B (zh) * | 2022-04-01 | 2022-07-12 | 之江实验室 | 一种无人机多阶段视觉精准降落方法和装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012071645A (ja) * | 2010-09-28 | 2012-04-12 | Topcon Corp | 自動離着陸システム |
US20130329061A1 (en) * | 2012-06-06 | 2013-12-12 | Samsung Electronics Co. Ltd. | Method and apparatus for storing image data |
JP2017056903A (ja) * | 2015-09-18 | 2017-03-23 | アイシン・エィ・ダブリュ株式会社 | 無人飛行体の制御システム、制御方法及び制御プログラム |
JP2018084955A (ja) * | 2016-11-24 | 2018-05-31 | 株式会社小糸製作所 | 無人航空機 |
-
2018
- 2018-07-13 WO PCT/JP2018/026468 patent/WO2020012632A1/ja active Application Filing
- 2018-07-13 JP JP2020529942A patent/JP7042911B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012071645A (ja) * | 2010-09-28 | 2012-04-12 | Topcon Corp | 自動離着陸システム |
US20130329061A1 (en) * | 2012-06-06 | 2013-12-12 | Samsung Electronics Co. Ltd. | Method and apparatus for storing image data |
JP2017056903A (ja) * | 2015-09-18 | 2017-03-23 | アイシン・エィ・ダブリュ株式会社 | 無人飛行体の制御システム、制御方法及び制御プログラム |
JP2018084955A (ja) * | 2016-11-24 | 2018-05-31 | 株式会社小糸製作所 | 無人航空機 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114253284A (zh) * | 2021-12-22 | 2022-03-29 | 湖北襄开电力设备有限公司 | 无人机自动控制方法、装置、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP7042911B2 (ja) | 2022-03-28 |
JPWO2020012632A1 (ja) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7556383B2 (ja) | 情報処理装置、情報処理方法、情報処理プログラム、画像処理装置および画像処理システム | |
US9641810B2 (en) | Method for acquiring images from arbitrary perspectives with UAVs equipped with fixed imagers | |
US11644839B2 (en) | Systems and methods for generating a real-time map using a movable object | |
KR101329583B1 (ko) | 회전익 구조체를 이용한 공중관측 지형자료 구축 방법 및 그 시스템 | |
CN107251055B (zh) | 走廊捕获 | |
WO2018120350A1 (zh) | 对无人机进行定位的方法及装置 | |
JP5748561B2 (ja) | 航空写真撮像方法及び航空写真撮像装置 | |
KR101160454B1 (ko) | 무인항공기의 자세 제어를 이용한 3d 공간정보구축 방법 | |
CN112470092A (zh) | 一种测绘系统、测绘方法、装置、设备及介质 | |
CN109655065A (zh) | 一种无人机五航线规划方法及装置 | |
CN106094876A (zh) | 一种无人机目标锁定系统及其方法 | |
US20220234753A1 (en) | An Aerial Imaging System and Method | |
CN113875222A (zh) | 拍摄控制方法和装置、无人机及计算机可读存储介质 | |
WO2020012632A1 (ja) | Uav制御装置およびuav制御方法 | |
WO2017203646A1 (ja) | 撮像制御装置、影位置特定装置、撮像システム、移動体、撮像制御方法、影位置特定方法、及びプログラム | |
RU2798604C1 (ru) | Бпла и способ выполнения аэрофотосъемки | |
RU2796697C1 (ru) | Устройство и способ для формирования ортофотоплана | |
WO2024144434A1 (ru) | Бпла и способ выполнения аэрофотосъемки | |
CN116745722A (zh) | 无人机的控制方法、装置、无人机及存储介质 | |
KR20150006752A (ko) | 회전익 구조체를 이용한 공중관측 지형자료 구축 방법 및 그 시스템 | |
WO2023097494A1 (zh) | 全景图像拍摄方法、装置、无人机、系统及存储介质 | |
KR102599649B1 (ko) | 다수의 무인 비행체를 이용한 공간분할 방식의 위치정보제공 시스템 및 방법 | |
CN117146782A (zh) | 通过无人机地理坐标及其状态计算机载影像坐标系的方法 | |
CN109782805A (zh) | 激光雷达无人机规划航线的方法、装置、设备和存储介质 | |
TH2101002912A (th) | วิธีการและอุปกรณ์สำหรับการวางแผนจุดตัวอย่างสำหรับการสำรวจและการทำแผนที่,เครื่องปลายทางควบคุม |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18925800 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020529942 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18925800 Country of ref document: EP Kind code of ref document: A1 |