WO2020011084A1 - 调度参数的确定方法、配置方法、终端和网络侧设备 - Google Patents

调度参数的确定方法、配置方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2020011084A1
WO2020011084A1 PCT/CN2019/094522 CN2019094522W WO2020011084A1 WO 2020011084 A1 WO2020011084 A1 WO 2020011084A1 CN 2019094522 W CN2019094522 W CN 2019094522W WO 2020011084 A1 WO2020011084 A1 WO 2020011084A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
scheduling
offset threshold
numerology
terminal
Prior art date
Application number
PCT/CN2019/094522
Other languages
English (en)
French (fr)
Inventor
杨宇
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP19833599.4A priority Critical patent/EP3823379A4/en
Priority to AU2019302960A priority patent/AU2019302960B2/en
Priority to RU2021101632A priority patent/RU2763946C1/ru
Priority to SG11202100323PA priority patent/SG11202100323PA/en
Priority to KR1020217003367A priority patent/KR20210028237A/ko
Priority to JP2021500944A priority patent/JP7084542B2/ja
Priority to CA3105693A priority patent/CA3105693C/en
Publication of WO2020011084A1 publication Critical patent/WO2020011084A1/zh
Priority to US17/146,915 priority patent/US11937253B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • Some embodiments of the present disclosure relate to the field of wireless communication technologies, and in particular, to a method for determining scheduling parameters, a method for configuring, a terminal, and a network-side device.
  • LTE Long-Term Evolution
  • LTE-Advanced LTE-Advanced
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MIMO technology utilizes the spatial degrees of freedom that can be obtained by a multi-antenna system to improve the peak rate and system spectrum utilization. It is foreseeable that in the future 5G mobile communication system, MIMO technology with larger scale and more antenna ports will be introduced. Massive MIMO technology uses a large-scale antenna array, which can greatly improve the efficiency of system band utilization and support a larger number of access users.
  • MU-MIMO Multi-User MIMO
  • digital-analog hybrid beamforming technology came into being, that is, based on traditional digital domain beamforming, near the front end of the antenna system, a first-level beamforming is added to the RF signal. shape.
  • Analog shaping can make the transmitted signal and channel more roughly matched in a simpler way.
  • the dimensions of the equivalent channels formed after the analog shaping are smaller than the actual number of antennas, so the required AD / DA conversion devices, the number of digital channels, and the corresponding baseband processing complexity can be greatly reduced.
  • the residual interference in the analog forming part can be processed again in the digital domain to ensure the quality of MU-MIMO transmission.
  • digital-analog hybrid beamforming is a compromise between performance and complexity, and has a high practical prospect in high-frequency, large-bandwidth, or large-antenna systems.
  • Analog beamforming is transmitted in full bandwidth, and each polarization direction array element on the panel of each high-frequency antenna array can only transmit analog beams in a time division multiplexed manner.
  • the shaping weight of the analog beam is achieved by adjusting the parameters of the RF front-end phase shifter and other equipment.
  • the training of analog beamforming vectors is usually carried out in a polling manner, that is, the array elements of each polarization direction of each antenna panel sequentially send training signals at an agreed time in a time division multiplexing manner ( (Ie, the candidate forming vector).
  • the terminal feeds back a beam report for the network side to use the training signal to implement the analog beam transmission in the next transmission service.
  • the content of the beam report usually includes the optimal identification of several transmission beams and the measured received power of each transmission beam.
  • the maximum channel bandwidth (Channel Bandwidth) of each carrier is 400 MHz.
  • the maximum bandwidth supported by the UE can be less than 400 MHz, and the UE can work on multiple small BWPs.
  • Each bandwidth part corresponds to a numerical configuration (Numerology), bandwidth (bandwidth), and frequency domain location (frequency location).
  • the network side configures a correspondence between a transmission configuration indication (TCI) status and a reference signal (Reference RS) by using radio resource control (RRC) signaling for the UE.
  • TCI transmission configuration indication
  • RRC radio resource control
  • the UE can know which receiving beam to use to receive the PDCCH according to the TCI status.
  • QCL Quasi-colocation
  • the UE can know which receiving beam to use to receive the PDSCH according to the TCI status.
  • PDSCH Physical Downlink Shared Channel
  • the network side may perform cross-carrier or cross-BWP scheduling for the UE. However, it is not given in related technologies.
  • the network side performs cross-carrier or cross-BWP scheduling for the UE, how does the UE determine the Scheduling offset threshold.
  • Some embodiments of the present disclosure provide a method for determining scheduling parameters, a method for configuring the same, a terminal, and a network-side device to solve the problem that the scheduling offset threshold cannot be accurately determined when the UE performs cross-carrier or cross-BWP scheduling on the network.
  • some embodiments of the present disclosure provide a method for determining a scheduling parameter, which is applied to a terminal, and includes: when a PDCCH and a PDSCH scheduled by the PDCCH are located on a carrier or a BWP whose numerical configuration numerology is different, according to a preset The rule determines the currently used scheduling offset threshold.
  • some embodiments of the present disclosure provide a method for configuring scheduling parameters, which is applied to a network-side device, including: sending a preset rule to a terminal, so that the terminal locates a PDCCH and a PDSCH scheduled by the PDCCH.
  • the currently used scheduling offset threshold is determined according to the preset rule.
  • some embodiments of the present disclosure provide a terminal, including: a first determining module, configured to determine a current according to a preset rule when a PDCCH and a numerology of a PDSCH on which the PDCCH is scheduled are different from each other; Scheduling offset threshold used.
  • some embodiments of the present disclosure provide a network-side device, including: a first sending module, configured to send a preset rule to a terminal, so that the terminal is on a PDCCH and a carrier on which the PDSCH scheduled by the PDCCH is located; Or when the numerology of the BWP is different, the currently used scheduling offset threshold is determined according to the preset rule.
  • some embodiments of the present disclosure provide a terminal including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is used by the processor
  • the steps of the method for determining the scheduling parameters described above are implemented during execution.
  • some embodiments of the present disclosure provide a network-side device including a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is described by the When the processor executes, the steps of the method for configuring the scheduling parameters are implemented.
  • some embodiments of the present disclosure provide a computer-readable storage medium on which a computer program is stored.
  • the steps of the method for determining the scheduling parameters are implemented.
  • the steps of the method for configuring the scheduling parameters are implemented.
  • the PDCCH received by the terminal when the PDCCH received by the terminal is different from the numerology of the carrier on which the PDSCH scheduled by the PDCCH or the BWP is located, that is, when the network side schedules the terminal across carriers or across BWP, it may be determined according to a preset rule.
  • the currently used scheduling offset threshold so that the QCL information of the PDSCH can be determined according to the scheduling offset threshold, and the correct reception of the PDSCH can be guaranteed according to the determined QCL information of the PDSCH.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to some embodiments of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining scheduling parameters according to some embodiments of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for determining a scheduling parameter according to another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for determining a scheduling parameter according to another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for configuring scheduling parameters according to some embodiments of the present disclosure
  • FIG. 6 is a schematic structural diagram of a terminal according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network-side device according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a network-side device according to another embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design described as “exemplary” or “for example” in some embodiments of the present disclosure should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the words “exemplary” or “for example” is intended to present the relevant concept in a concrete manner.
  • a method for determining scheduling parameters, a method for configuring, a terminal, and a network-side device may be applied to a wireless communication system.
  • the wireless communication system may adopt a 5G system, or an evolved long term evolution (evolved long term evolution (eLTE) system), or a subsequent evolved communication system.
  • eLTE evolved long term evolution
  • the wireless communication system may include a network-side device 11 and a terminal 12, and the terminal 12 may be connected to the network-side device 11.
  • the connection between the foregoing devices may be a wireless connection.
  • a solid line is used in FIG. 1 for illustration.
  • the above-mentioned communication system may include multiple terminals 12, a network device, and may communicate with multiple terminals 12 (transmit signaling or transmit data).
  • the network-side device 11 may be a base station.
  • the base station may be a commonly used base station, an evolved base station (eNB), or a network side in a 5G system.
  • Equipment for example, next generation base station (gNB) or transmission and reception point (TRP)
  • gNB next generation base station
  • TRP transmission and reception point
  • gNB next generation base station
  • TRP transmission and reception point
  • gNB next generation base station
  • TRP transmission and reception point
  • a network-side device in a subsequent evolution communication system may be a subsequent evolution communication system.
  • the wording is not enough to restrict.
  • the terminal 12 may be a mobile phone, a tablet computer, a notebook computer, an Ultra-Mobile Personal Computer (UMPC), a netbook, or a Personal Digital Assistant (PDA).
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • FIG. 2 is a schematic flowchart of a method for determining a scheduling parameter according to some embodiments of the present disclosure.
  • the method for determining a scheduling parameter is applied to a terminal and includes:
  • Step 21 When the numerology of the carrier or the BWP where the PDCCH and the PDSCH scheduled by the PDCCH are different, determine a currently used scheduling offset threshold according to a preset rule.
  • the scheduling parameters include a scheduling offset threshold. Of course, other parameters may also be included. In some embodiments of the present disclosure, only the determination of the scheduling offset threshold is involved.
  • the current usage is determined according to a preset rule.
  • the scheduling offset threshold of the PDSCH so that the QCL information of the PDSCH can be determined according to the scheduling offset threshold, and the correct reception of the PDSCH can be guaranteed according to the determined QCL information of the PDSCH.
  • the numerology when the numerology is configured based on a carrier (that is, the numerology configured by the network for at least one BWP on the same carrier is the same, where the parameters of the numerology include: subcarrier spacing (SCS), cycle Prefix (cyclic prefix, CP for short), etc.
  • the numerology information is in the BWP configuration information.
  • the network configures the numerology information for the carrier.
  • the numerology information is in the carrier configuration information. The same applies below, and will not be repeated .
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the PDCCH or the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the numerology is based on BWP configuration (that is, the numerology configured by the network for at least one BWP on the same carrier may be different or the same, where the parameters of the numerology include: subcarrier spacing (SCS), cyclic prefix (cyclic prefix), CP for short), etc.
  • the numerology information is in the BWP configuration information.
  • the preset rules include:
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDCCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the BWP where the PDCCH or the PDSCH is located is used as the currently used scheduling offset threshold.
  • the network-side device configures the terminal with up to four downlink BWPs and up to four uplink BWPs.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the network-side device configures the terminal with up to four downlink / uplink (DL / UL) BWP pairs.
  • the center carrier frequency of DL BWP and UL BWP in each DL / UL BWP pair is the same.
  • each UE will have a default DL / BWP, or a default DL / UL BWP pair.
  • the default DL BWP, or default DL / UL BWP pair is usually a relatively small-bandwidth BWP.
  • the terminal When the terminal has not received data for a long time or detected the PDCCH, it will pass a timer from the current active BWP Switch to default DL / BWP or default DL / UL / BWP pair to achieve the effect of power saving.
  • Active BWP handover is implemented by RRC or downlink control information (DCI) or timer.
  • DCI on the first control-resource set (CORESET) instructs the terminal to switch to the second CORESET.
  • the BWP where the CORESET is located is the active BWP. There are at most 3 CORESETs on each BWP in each cell.
  • CORESET (CORESET # 0) with ID 0 is configured by the Physical Broadcast Channel (PBCH) and is used by the terminal to receive system information (system information).
  • PBCH Physical Broadcast Channel
  • system information system information
  • the terminal determines which synchronization signal block (Synchronization Signal Block, SSB) corresponds to a common search space (common search space).
  • SSB Synchronization Signal Block
  • the preset rule is configured by a network-side device or agreed by a protocol.
  • the method further includes:
  • Step 22 Compare the time offset of receiving the PDCCH and the PDSCH scheduled by the PDCCH with the currently used scheduling offset threshold, and determine the QCL information of the PDSCH according to the comparison result;
  • Step 23 Receive the PDSCH according to the QCL information of the PDSCH.
  • the network-side device configures the correspondence between the TCI state and the RS for the UE through RRC signaling.
  • the network-side device configures K TCI states for each control-resource set (CORESET).
  • K> 1 the media access control layer control unit (Media Access Control (Control Element, MAC CE) indicates a TCI state.
  • the terminal monitors CORESET it uses the same QCL information for all search spaces in CORESET, that is, the same TCI state.
  • the RS resource such as Periodic Channel State Information-Reference Signal (referred to as CSI-RS) in the reference signal set (RS) set corresponding to the TCI state, semi-persistent CSI-RS resource, synchronization signal block (SS, block, etc.) and UE-specific PDCCH, DMRS (Demodulation Reference Signal, demodulation reference signal) ports are spatially QCL.
  • the terminal can know which receiving beam is used to receive the PDCCH according to the TCI state.
  • the network When TCI is used for QCL indication of PDSCH, the network activates 2 N TCI states, and then informs the TCI status through the N-bit TCI field of the downlink control information (DCI).
  • the RS resource in the RS set corresponding to the TCI status is
  • the DMRS port of the scheduled PDSCH is QCL.
  • the terminal can know which receiving beam to use to receive the PDSCH according to the TCI state.
  • the terminal is based on the TCI status of the CORESET (lowest CORESET-ID) with the smallest ID in the serving cell activation BWP. Determine the QCL information of the PDSCH.
  • the terminal assumes
  • the PDSCH demodulation reference signal (Demodulation Reference Signal, DMRS for short) port group and the RS in the RS set indicated by the TCI status in the TCI field are QCL.
  • the terminal assumes that the QCL information of the PDSCH is the QCL information indicated by the TCI state of the CORESET where the PDCCH is located.
  • the method before the step of determining a scheduling offset threshold currently used according to a preset rule, the method further includes:
  • Step 201 Report the capability parameter information of the terminal to the network-side device, where the capability parameter information includes: time offset information of some or all subcarrier intervals supported by the terminal, and the time offset information is the terminal The minimum number of symbols required from receiving the PDCCH to applying the QCL information indicated by the DCI in the PDCCH to the PDSCH scheduled by the PDCCH;
  • Step 202 Receive configuration information from the network-side device, where the configuration information includes a scheduling offset threshold corresponding to a subcarrier interval reported by the terminal, and the scheduling offset threshold is obtained based on the time offset information. ;
  • Step 203 Receive the PDCCH from the network-side device, and the carrier and / or BWP on which the PDCCH is located is configured by the network-side device;
  • the carrier and / or BWP on which the PDCCH is located may be carried in the above configuration information, or may be carried through separate configuration information.
  • Step 204 Determine a carrier and / or a BWP for receiving the PDSCH according to the DCI in the PDCCH.
  • the step of determining a scheduling offset threshold currently used according to a preset rule includes: according to the configuration information, the preset rule, and a carrier and / or for receiving a PDCCH and the PDSCH. BWP, determines the scheduling offset threshold currently used.
  • the scheduling offset threshold is determined by the network-side device according to the capability parameter (UEcapability) information reported by the terminal.
  • the capability parameter timeDurationForQCL time offset information for each subcarrier spacing supported by the terminal
  • TS38.306 defines the terminal from receiving the PDCCH to the QCL information indicated by the DCI in the PDCCH.
  • the terminal shall report the time offset information corresponding to each subcarrier interval (for example, 60 kHz and 120 kHz) to the network-side device.
  • the network-side device sends the configuration information to the terminal through high-level signaling, where the configuration information includes: a scheduling offset threshold corresponding to each subcarrier interval supported by the terminal, and the scheduling offset The threshold is obtained based on the time offset information.
  • the scheduling offset threshold is the number of symbols between the UE receiving the last symbol of the PDCCH and the first symbol of the PDSCH. During this time, the UE needs to complete the QCL parameters required to receive the PDSCH according to the PDSCH QCL information in the DCI. Adjustments, such as beam switching.
  • the UE After the UE learns the scheduling offset threshold, it compares the time offset of receiving the PDCCH and the PDSCH scheduled by the PDCCH with the currently used scheduling offset threshold, and determines the QCL information of the PDSCH according to the comparison result, and According to the determined QCL information of the PDSCH, adjustment of QCL parameters required for receiving the PDSCH, such as beam switching, is completed, and the PDSCH is received correctly.
  • the capability parameter information reported by the terminal may further include at least one of the following:
  • CA carrier aggregation
  • a scheduling offset threshold corresponding to the same numerology is used as the currently used scheduling Offset threshold.
  • some embodiments of the present disclosure further provide a method for configuring scheduling parameters, which is applied to a network-side device, including:
  • Step 51 Send a preset rule to the terminal, so that when the PDCCH and the numerology of the BSCH where the PDSCH scheduled by the PDCCH is different, determine the currently used scheduling offset threshold according to the preset rule.
  • the network-side device sends a preset rule to the terminal, so that when the network side performs cross-carrier or cross-BWP scheduling on the terminal, the terminal can determine a currently used scheduling offset threshold according to the preset rule, thereby
  • the QCL information of the PDSCH may be determined according to the scheduling offset threshold, and the correct reception of the PDSCH may be guaranteed according to the determined QCL information of the PDSCH.
  • the preset rule when the numerology is based on a carrier configuration, the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the PDCCH or the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDCCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the BWP where the PDCCH or the PDSCH is located is used as the currently used scheduling offset threshold.
  • the numerology includes a subcarrier interval.
  • the capability parameter information includes: time offset information of some or all subcarrier intervals supported by the terminal, and the time offset information is from the time when the terminal receives the PDCCH to The minimum number of symbols required for applying the QCL information indicated by the DCI in the PDCCH between PDSCHs scheduled by the PDCCH;
  • the configuration information includes: a scheduling offset threshold corresponding to a subcarrier interval reported by the terminal, and the scheduling offset threshold is obtained based on the time offset information;
  • Sending a PDCCH to the terminal, and the carrier and / or BWP on which the PDCCH is located is configured by the network-side device;
  • a scheduling offset threshold corresponding to the same numerology is used as the currently used scheduling Offset threshold.
  • the following describes the method for determining the scheduling parameters applied to the terminal side and the method for configuring the scheduling parameters applied to the network side in conjunction with the interaction process between the network side and the terminal side.
  • the terminal reports the capability parameter (ie, UE capability) information to the network side, including:
  • the time offset (such as timeDurationForQCL) of each subcarrier interval (such as 60kHz and 120kHz), that is, the minimum number of OFDM symbols corresponding to each numerology.
  • the network-side device sends configuration information to the UE through high-level signaling according to the capability parameter information of the terminal, and the configuration information includes a scheduling offset threshold corresponding to each subcarrier interval.
  • the network-side device sends a PDCCH to the terminal, and schedules PDSCH transmission.
  • the PDCCH carries index information of a carrier and / or a BWP for receiving the PDSCH.
  • the PDCCH carries index information of a carrier and / or BWP for receiving the PDSCH.
  • the terminal determines a scheduling offset threshold according to a preset rule.
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the PDCCH or the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDCCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the BWP where the PDCCH or the PDSCH is located is used as the currently used scheduling offset threshold.
  • the numerology includes a subcarrier interval.
  • the same scheduling offset threshold corresponding to the numerology is used as the currently used scheduling offset threshold.
  • the above rules can be configured by the network-side device or agreed in advance by the protocol.
  • the UE determines a currently used scheduling offset threshold according to the configuration information, the preset rule, and a carrier and / or BWP for receiving a PDCCH and the PDSCH.
  • the terminal compares the time offset of receiving the PDCCH and the PDSCH scheduled by the PDCCH with the currently used scheduling offset threshold, and determines the QCL information of the PDSCH according to the comparison result; according to the PDSCH QCL information to receive the PDSCH.
  • some embodiments of the present disclosure further provide a terminal 60, including:
  • the first determining module 61 is configured to determine a scheduling offset threshold currently used according to a preset rule when a PDCCH and a numerology of a PDSCH scheduled by the PDCCH or a BWP of the PDCCH are different.
  • the current usage is determined according to a preset rule.
  • the scheduling offset threshold of the PDSCH so that the QCL information of the PDSCH can be determined according to the scheduling offset threshold, and the correct reception of the PDSCH can be guaranteed according to the determined QCL information of the PDSCH.
  • the preset rule when the numerology is based on a carrier configuration, the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the PDCCH or the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDCCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the BWP where the PDCCH or the PDSCH is located is used as the currently used scheduling offset threshold.
  • the numerology includes a subcarrier interval.
  • the preset rule is configured by a network-side device or agreed by a protocol.
  • the terminal may further include:
  • a second determining module configured to compare a time offset between receiving the PDCCH and receiving a PDSCH scheduled by the PDCCH with the currently used scheduling offset threshold, and determine QCL information of the PDSCH according to a comparison result
  • a first receiving module is configured to receive the PDSCH according to the QCL information of the PDSCH.
  • the terminal may further include:
  • a reporting module configured to report the capability parameter information of the terminal to the network-side device, where the capability parameter information includes time offset information of part or all of the subcarrier intervals supported by the terminal, and the time offset information is The minimum number of symbols required by the terminal from receiving the PDCCH to applying the QCL information indicated by the DCI in the PDCCH to the PDSCH scheduled by the PDCCH;
  • a second receiving module is configured to receive configuration information from the network-side device, where the configuration information includes a scheduling offset threshold corresponding to a subcarrier interval reported by the terminal, and the scheduling offset threshold is based on the time Get offset information;
  • a third receiving module configured to receive the PDCCH from the network-side device, and a carrier and / or a BWP where the PDCCH is configured by the network-side device;
  • a third determining module configured to determine a carrier and / or a BWP for receiving the PDSCH according to the DCI in the PDCCH;
  • the first determining module is configured to determine a currently used scheduling offset threshold according to the configuration information, the preset rule, and a carrier and / or BWP for receiving a PDCCH and the PDSCH.
  • the capability parameter information further includes at least one of the following:
  • the terminal may further include:
  • a fourth determining module configured to use the same scheduling offset threshold corresponding to the same numerology as the currently used scheduling bias when the PDCCH and the numerology of the PDSCH scheduled by the PDCCH or the BWP are the same. Move the threshold.
  • a network-side device 70 including:
  • a first sending module 71 is configured to send a preset rule to a terminal, so that when the PDCCH and the numerology of the PDSCH on which the PDCCH schedules the PDSCH are different, determine the currently used schedule according to the preset rule. Offset threshold.
  • the network-side device sends a preset rule to the terminal, so that when the network side performs cross-carrier or cross-BWP scheduling on the terminal, the terminal can determine a currently used scheduling offset threshold according to the preset rule, thereby
  • the QCL information of the PDSCH may be determined according to the scheduling offset threshold, and the correct reception of the PDSCH may be guaranteed according to the determined QCL information of the PDSCH.
  • the preset rule when the numerology is based on a carrier configuration, the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the PDCCH or the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDCCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the BWP where the PDCCH or the PDSCH is located is used as the currently used scheduling offset threshold.
  • the numerology includes a subcarrier interval.
  • the network-side device may further include:
  • a receiving module configured to receive capability parameter information of the terminal, where the capability parameter information includes: time offset information of some or all subcarrier intervals supported by the terminal, and the time offset information is received by the terminal from PDCCH, the minimum number of symbols required to apply the QCL information indicated by the DCI in the PDCCH to the PDSCH scheduled by the PDCCH;
  • a second sending module configured to send configuration information to the terminal, where the configuration information includes a scheduling offset threshold corresponding to a subcarrier interval reported by the terminal, and the scheduling offset threshold is based on the time offset Information obtained
  • a third sending module configured to send a PDCCH to the terminal, and the carrier and / or BWP where the PDCCH is located is configured by the network-side device;
  • a fourth sending module configured to send the PDSCH scheduled by the PDCCH to the terminal.
  • the preset rule further includes:
  • the same scheduling offset threshold corresponding to the numerology is used as the currently used scheduling offset threshold.
  • FIG. 8 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the terminal 80 includes, but is not limited to, a radio frequency unit 81, a network module 82, an audio output unit 83, an input unit 84, a sensor 85, and a display unit. 86.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined, or different component arrangements.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the processor 810 is configured to determine a scheduling offset threshold currently used according to a preset rule when a PDCCH and a numerology of a PDSCH scheduled by the PDCCH or a BWP of the PDCCH are different.
  • the current usage is determined according to a preset rule.
  • the scheduling offset threshold of the PDSCH so that the QCL information of the PDSCH can be determined according to the scheduling offset threshold, and the correct reception of the PDSCH can be guaranteed according to the determined QCL information of the PDSCH.
  • the radio frequency unit 81 may be used to receive and send signals during the process of transmitting and receiving information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 810; To send the uplink data to the base station.
  • the radio frequency unit 81 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 81 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 82, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 83 may convert audio data received by the radio frequency unit 81 or the network module 82 or stored in the memory 89 into audio signals and output them as sound. Moreover, the audio output unit 83 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 80.
  • the audio output unit 83 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 84 is used to receive audio or video signals.
  • the input unit 84 may include a graphics processing unit (GPU) 841 and a microphone 842.
  • the graphics processor 841 may pair images of still pictures or videos obtained by an image capturing device (such as a camera) in a video capturing mode or an image capturing mode. Data is processed.
  • the processed image frames may be displayed on a display unit 86.
  • the image frames processed by the graphics processor 841 may be stored in the memory 89 (or other storage medium) or transmitted via the radio frequency unit 81 or the network module 82.
  • the microphone 842 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 81 in the case of a telephone call mode.
  • the terminal 80 further includes at least one sensor 85, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 861 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 861 and / when the terminal 80 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the attitude of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 85 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 86 is used to display information input by the user or information provided to the user.
  • the display unit 86 may include a display panel 861, and the display panel 861 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 87 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 87 includes a touch panel 871 and other input devices 872.
  • the touch panel 871 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on the touch panel 871 or near the touch panel 871 operating).
  • the touch panel 871 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it
  • the processor 810 receives and executes a command sent by the processor 810.
  • the touch panel 871 may be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 87 may further include other input devices 872.
  • other input devices 872 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which are not repeated here.
  • the touch panel 871 may be overlaid on the display panel 861.
  • the touch panel 871 detects a touch operation on or near the touch panel 871, the touch panel 871 is transmitted to the processor 810 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 861.
  • the touch panel 871 and the display panel 861 are implemented as two separate components to implement the input and output functions of the terminal, in some embodiments, the touch panel 871 and the display panel 861 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 88 is an interface through which an external device is connected to the terminal 80.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 88 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 80 or may be used between the terminal 80 and an external device transfer data.
  • the memory 89 can be used to store software programs and various data.
  • the memory 89 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 89 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 810 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal. By running or executing software programs and / or modules stored in the memory 89, and calling data stored in the memory 89, execution is performed. Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 810.
  • the terminal 80 may further include a power source 811 (such as a battery) for supplying power to various components.
  • a power source 811 such as a battery
  • the power source 811 may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system And other functions.
  • the terminal 80 includes some functional modules that are not shown, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the terminal 90 includes a processor 91 and a memory 92.
  • the terminal 90 further includes a computer program stored on the memory 92 and executable on the processor 91.
  • the computer program is executed by the processor 91, the following steps are implemented: when the PDCCH and the PDCCH are scheduled When the numerology of the carrier on which the PDSCH is located or the location of the BWP is different, the currently used scheduling offset threshold is determined according to a preset rule.
  • the processor 91 is responsible for managing the bus architecture and general processing.
  • the memory 92 may store data used by the processor 91 when performing operations.
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the PDCCH or the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDCCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the BWP where the PDCCH or the PDSCH is located is used as the currently used scheduling offset threshold.
  • the numerology includes a subcarrier interval.
  • the preset rule is configured by a network-side device or agreed by a protocol.
  • the capability parameter information includes time offset information of part or all of the subcarrier intervals supported by the terminal, and the time offset information is the terminal receiving the PDCCH from The minimum number of symbols required to apply the QCL information indicated by the DCI in the PDCCH to the PDSCH scheduled by the PDCCH;
  • configuration information includes: a scheduling offset threshold corresponding to a subcarrier interval reported by the terminal, and the scheduling offset threshold is obtained based on the time offset information;
  • Receiving the PDCCH from the network-side device, and the carrier and / or BWP where the PDCCH is located is configured by the network-side device;
  • the step of determining a scheduling offset threshold currently used according to a preset rule includes:
  • the capability parameter information further includes at least one of the following:
  • the same scheduling offset threshold corresponding to the numerology is used as the currently used scheduling offset threshold.
  • FIG. 10 is a schematic structural diagram of a network-side device according to another embodiment of the present disclosure.
  • the network-side device 100 includes a processor 101 and a memory 102.
  • the network-side device 100 further includes a computer program stored on the memory 102 and executable on the processor 101.
  • the computer program is executed by the processor 101, the following steps are implemented: sending a preset to the terminal A rule, so that when the PDCCH and the numerology of the PDSCH on which the PDCCH schedules the PDSCH are located, the terminal determines the currently used scheduling offset threshold according to the preset rule.
  • the processor 101 is responsible for managing the bus architecture and general processing, and the memory 102 can store data used by the processor 101 when performing operations.
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the PDCCH or the carrier on which the PDSCH is located as the currently used scheduling offset threshold
  • the preset rule includes:
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDCCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the numerology of the BWP where the PDSCH is located as the currently used scheduling offset threshold
  • the scheduling offset threshold corresponding to the maximum or minimum subcarrier interval in the numerology of the BWP where the PDCCH or the PDSCH is located is used as the currently used scheduling offset threshold.
  • the capability parameter information includes: time offset information of some or all subcarrier intervals supported by the terminal, and the time offset information is from the time when the terminal receives the PDCCH to The minimum number of symbols required for applying the QCL information indicated by the DCI in the PDCCH between PDSCHs scheduled by the PDCCH;
  • the configuration information includes: a scheduling offset threshold corresponding to a subcarrier interval reported by the terminal, and the scheduling offset threshold is obtained based on the time offset information;
  • Sending a PDCCH to the terminal, and the carrier and / or BWP on which the PDCCH is located is configured by the network-side device;
  • the preset rule further includes:
  • the same scheduling offset threshold corresponding to the numerology is used as the currently used scheduling offset threshold.
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored.
  • the processes of the method embodiment for determining a scheduling parameter are implemented. And can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • Some embodiments of the present disclosure further provide a computer-readable storage medium on which a computer program is stored.
  • the processes of the method for configuring the scheduling parameters described above are implemented. And can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的一些实施例提供一种调度参数的确定方法、配置方法、终端和网络侧设备,该调度参数的确定方法应用于终端,包括:当PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据预设规则确定当前使用的调度偏移门限。

Description

调度参数的确定方法、配置方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2018年07月12日在中国提交的中国专利申请号No.201810762971.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开的一些实施例涉及无线通信技术领域,尤其涉及一种调度参数的确定方法、配置方法、终端和网络侧设备。
背景技术
随着通信技术的发展,通信效率越来越受到关注,下面先介绍几个用于提高通信效率的技术点:
1、关于多天线
长期演进(Long Term Evolution,简称LTE)/LTE的演进版本(LTE-Advanced,简称LTE-A)等无线接入技术标准都是以多输入多输出(Multiple-Input Multiple-Output,简称MIMO)+正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)技术为基础构建起来的。其中,MIMO技术利用多天线系统所能获得的空间自由度,来提高峰值速率与系统频谱利用率。可以预见,在未来的5G移动通信系统中,更大规模、更多天线端口的MIMO技术将被引入。大规模(Massive)MIMO技术使用大规模天线阵列,能够极大地提升系统频带利用效率,支持更大数量的接入用户。
在massive MIMO技术中如果采用全数字阵列,可以实现最大化的空间分辨率以及最优多用户MIMO(Multi-User MIMO,简称MU-MIMO)性能,但是这种结构需要大量的模数/数模(AD/DA)转换器件以及大量完整的射频-基带处理通道,无论是设备成本还是基带处理复杂度都将是巨大的负担。
为了避免上述的实现成本与设备复杂度,数模混合波束赋形技术应运而生,即在传统的数字域波束赋形基础上,在靠近天线系统的前端,在射频信号上增加一级波束赋形。模拟赋形能够通过较为简单的方式,使发送信号与 信道实现较为粗略的匹配。模拟赋形后形成的等效信道的维度小于实际的天线数量,因此其后所需的AD/DA转换器件、数字通道数以及相应的基带处理复杂度都可以大为降低。模拟赋形部分残余的干扰可以在数字域再进行一次处理,从而保证MU-MIMO传输的质量。相对于全数字赋形而言,数模混合波束赋形是性能与复杂度的一种折中方案,在高频段大带宽或天线数量很大的系统中具有较高的实用前景。
2、关于波束测量和报告(beam measurement and beam reporting)
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。
目前在学术界和工业界,通常是使用轮询的方式进行模拟波束赋形向量的训练,即每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间发送训练信号(即候选的赋形向量),终端经过测量后反馈波束报告,供网络侧在下一次传输业务时采用该训练信号来实现模拟波束发射。波束报告的内容通常包括最优的若干个发射波束标识以及测量出的每个发射波束的接收功率。
3、关于带宽部分(BandWidth Part,简称BWP)
在NR Rel-15中,每个载波最大的信道带宽(Channel Bandwidth)是400MHz。但是考虑到终端(User Equipment,简称UE)能力,UE支持的最大带宽可以小于400MHz,且UE可以工作在多个小的BWP上。每个带宽部分对应于一个数值配置(Numerology),带宽(bandwidth),频域位置(frequency location)。
4、关于波束指示(beam indication)机制
在相关技术中,网络侧通过无线资源控制(Radio Resource Control,简称RRC)信令为UE配置传输配置指示(Transmission Configuration Indication,简称TCI)状态和参考信号(Reference Signal,简称RS)的对应关系。
当TCI用于物理下行控制信道(Physical Downlink Control Channel,简称PDCCH)的准共址(Quasi-colocation,简称QCL)指示时,UE根据该TCI状态即可获知使用哪个接收波束来接收PDCCH。
当TCI用于物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)的QCL指示时,UE根据该TCI状态即可获知使用哪个接收波束来接收PDSCH。
在进行PDSCH接收时,需要将接收PDCCH和接收PDSCH的时间偏移(time offset)与预设的调度偏移门限(Threshold-Scheduled-Offset)进行比较,根据比较结果,确定PDSCH的QCL信息,并根据PDSCH的QCL信息,接收所述PDSCH。
在多载波系统中,网络侧有可能会对UE进行跨载波或跨BWP调度,然而,相关技术中没有给出,当网络侧对UE做跨载波或跨BWP调度时,UE怎样确定此时的调度偏移门限。
发明内容
本公开的一些实施例提供一种调度参数的确定方法、配置方法、终端和网络侧设备,以解决在网络侧对UE做跨载波或跨BWP调度时,无法准确确定调度偏移门限的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开的一些实施例提供了一种调度参数的确定方法,应用于终端,包括:当PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的数值配置numerology不同时,根据预设规则确定当前使用的调度偏移门限。
第二方面,本公开的一些实施例提供了一种调度参数的配置方法,应用于网络侧设备,包括:向终端发送预设规则,以使得所述终端在PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据所述预设规则确定当前使用的调度偏移门限。
第三方面,本公开的一些实施例提供了一种终端,包括:第一确定模块,用于当PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据预设规则确定当前使用的调度偏移门限。
第四方面,本公开的一些实施例提供了一种网络侧设备,包括:第一发送模块,用于向终端发送预设规则,以使得所述终端在PDCCH和所述PDCCH 调度的PDSCH所在载波或所在BWP的numerology不同时,根据所述预设规则确定当前使用的调度偏移门限。
第五方面,本公开的一些实施例提供了一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述调度参数的确定方法的步骤。
第六方面,本公开的一些实施例提供了一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述调度参数的配置方法的步骤。
第七方面,本公开的一些实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述调度参数的确定方法的步骤;或者,所述计算机程序被处理器执行时实现上述调度参数的配置方法的步骤。
在本公开的一些实施例中,当终端接收的PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,即网络侧对终端跨载波或跨BWP调度时,可以根据预设规则确定当前使用的调度偏移门限,从而可以根据该调度偏移门限确定PDSCH的QCL信息,并根据确定的PDSCH的QCL信息,保证PDSCH的正确接收。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开的一些实施例提供的一种无线通信系统的架构示意图;
图2为本公开的一些实施例的调度参数的确定方法的流程示意图;
图3为本公开另一实施例的调度参数的确定方法的流程示意图;
图4为本公开又一实施例的调度参数的确定方法的流程示意图;
图5为本公开的一些实施例的调度参数的配置方法的流程示意图;
图6为本公开的一些实施例的终端的结构示意图;
图7为本公开的一些实施例的网络侧设备的结构示意图;
图8为本公开另一实施例的终端的结构示意图;
图9为本公开又一实施例的终端的结构示意图;
图10为本公开又一实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本公开的一些实施例中的附图,对本公开的一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开的一些实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开的一些实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开的一些实施例提供的调度参数的确定方法、配置方法、终端和网络侧设备可以应用于无线通信系统中。该无线通信系统可以采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,简称eLTE)系统,或者后续演进通信系统。
参考图1,为本公开的一些实施例提供的一种无线通信系统的架构示意图。如图1所示,该无线通信系统可以包括:网络侧设备11和终端12,终端12可以与网络侧设备11连接。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系,图1中采用 实线示意。
需要说明的是,上述通信系统可以包括多个终端12,网络设备和可以与多个终端12通信(传输信令或传输数据)。
本公开的一些实施例提供的网络侧设备11可以为基站,该基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,简称eNB),还可以为5G系统中的网络侧设备(例如下一代基站(next generation node base station,简称gNB)或发送和接收点(transmission and reception point,简称TRP))或者小区cell等设备。或者后续演进通信系统中的网络侧设备。然用词不够成限制。
本公开的一些实施例提供的终端12可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,简称PDA)等。所属领域技术人员可以理解,用词并不构成限制。
请参考图2,图2为本公开的一些实施例的调度参数的确定方法的流程示意图,该调度参数的确定方法应用于终端,包括:
步骤21:当PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据预设规则确定当前使用的调度偏移门限。
本公开的一些实施例中,调度参数包括调度偏移门限。当然,也可以包括其他参数,本公开的一些实施例中,仅涉及调度偏移门限的确定。
本公开的一些实施例中,当终端接收的PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,即网络侧对终端跨载波或跨BWP调度时,根据预设规则确定当前使用的调度偏移门限,从而可以根据该调度偏移门限确定PDSCH的QCL信息,并根据确定的PDSCH的QCL信息,保证PDSCH的正确接收。
本公开的一些实施例中,当numerology基于载波配置时(即网络为同一载波上的至少一个BWP所配置的numerology相同,其中numerology包括的参数为:子载波间隔(subcarrier spacing,简称SCS)、循环前缀(cyclic prefix,简称CP)等,此时numerology的信息是在BWP的配置信息中。或者网络为载波配置numerology信息,此时numerology的信息是在载波的配置信息中。 下同,不再赘述。),所述预设规则包括:
将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
当numerology基于BWP配置时(即网络为同一载波上的至少一个BWP所配置的numerology可能不同或者相同,其中numerology包括的参数为:子载波间隔(subcarrier spacing,简称SCS)、循环前缀(cyclic prefix,简称CP)等,此时numerology的信息是在BWP的配置信息中。下同,不再赘述。),所述预设规则包括:
将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
下面对终端工作的BWP进行简单介绍。
对于频分双工(Frequency Division Duplexing,简称FDD)系统或者成对频谱(paired spectrum),网络侧设备给终端配置至多四个下行BWP和至多四个上行BWP。对于时分双工(Time Division Duplexing,简称TDD)系统或者非成对频谱(unpaired spectrum),网络侧设备给终端配置至多四个下行/上行(DL/UL)BWP pair。每个DL/UL BWP pair中的DL BWP和UL BWP的中心载频是一样的。此外,每个UE会有一个默认(default)DL BWP,或者default DL/UL BWP pair。default DL BWP,或者default DL/UL BWP pair通常是一个相对小带宽的BWP,当终端长时间没有收到数据或者检测到PDCCH, 会通过一个计时器(timer),从当前的激活(active)BWP切换到default DL BWP或者default DL/UL BWP pair,从而达到省电的效果。Active BWP切换是通过RRC或下行控制信息(DCI)或timer来实现,例如,在第一个控制资源集(control-resource set,简称CORESET)上的DCI指示终端切换到第二个CORESET,则在终端切换到第二个CORESET上后,该CORESET所在的BWP即为active BWP。每个小区每个BWP上的CORESET最多为3个。
ID为0的CORESET(CORESET#0)是由物理广播信道(Physical Broadcast Channel,PBCH)配置的,用于终端接收系统信息(system information)。对于广播(broadcast)PDCCH,终端确定接收哪个同步信号块(Synchronization Signal Block,SSB)对应的公共搜索空间(common search space)。对于单播(unicast)PDSCH,可以由与CORESET#0关联的DCI来调度。
本公开的一些实施例中,所述预设规则由网络侧设备配置,或者,由协议约定。
请参考图3,所述根据预设规则确定当前使用的调度偏移门限的步骤之后,还包括:
步骤22:将接收所述PDCCH和接收所述PDCCH调度的PDSCH的时间偏移与所述当前使用的调度偏移门限进行比较,根据比较结果,确定所述PDSCH的QCL信息;
步骤23:根据所述PDSCH的QCL信息,接收所述PDSCH。
网络侧设备通过RRC信令为UE配置TCI状态(state)和RS的对应关系。
当TCI用于PDCCH的QCL指示时,网络侧设备为每个控制资源集(control-resource set,简称CORESET)配置K个TCI state,当K>1时,由媒体访问控制层控制单元(Media Access Control Control Element,MAC CE)指示1个TCI state,当K=1时,不需要额外的MAC CE信令。终端在监听CORESET时,对CORESET内全部搜索空间(search space)使用相同QCL信息,即相同的TCI state。该TCI状态对应的参考信号集合(RS set)中的RS resource(例如周期信道状态信息-参考信号 (Channel State Information Reference Signal,简称CSI-RS)resource、半持续CSI-RS resource、同步信号块(SS block)等)与UE-specific PDCCH DMRS(Demodulation Reference Signal,解调参考信号)端口是空间QCL的。终端根据该TCI状态即可获知使用哪个接收波束来接收PDCCH。
当TCI用于PDSCH的QCL指示时,网络激活2 N个TCI state,然后通过下行控制信息(DCI)的N-bit TCI field来通知TCI状态,该TCI状态对应的RS set中的RS resource与要调度的PDSCH的DMRS端口是QCL的。终端根据该TCI状态即可获知使用哪个接收波束来接收PDSCH。
如果接收PDCCH和接收所述PDCCH调度的PDSCH的时间偏移(time offset)小于所述调度偏移门限,则终端基于服务小区激活BWP中具有最小ID的CORESET(lowest CORESET-ID)的TCI状态来确定PDSCH的QCL信息。
如果接收PDCCH和接收所述PDCCH调度的PDSCH的时间偏移等于或大于所述调度偏移门限,当使用DCI format 1_1调度PDSCH,且高层参数tci-PresentInDCI配置为使能(enabled),则终端假设PDSCH的解调参考信号(Demodulation Reference Signal,简称DMRS)端口组与TCI field中的TCI状态指示的RS set中的RS是QCL的。
如果接收PDCCH和接收所述PDCCH调度的PDSCH的时间偏移等于或大于所述调度偏移门限,当使用DCI format 1_0调度PDSCH,或者使用不携带TCI filed的DCI format 1_1调度PDSCH,或者当使用DCI format 1_1调度PDSCH,且高层参数tci-PresentInDCI配置为disabled,则终端假设PDSCH的QCL信息为PDCCH所在CORESET的TCI状态指示的QCL信息。
请参考图4,本公开的一些实施例中,所述根据预设规则确定当前使用的调度偏移门限的步骤之前,还包括:
步骤201:向网络侧设备上报所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收PDCCH,到将所述PDCCH中DCI指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
步骤202:从所述网络侧设备接收配置信息,所述配置信息中包括:所 述终端上报的子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
步骤203:从所述网络侧设备接收所述PDCCH,所述PDCCH所在载波和/或BWP由所述网络侧设备配置;
具体的,PDCCH所在载波和/或BWP可以在上述配置信息中携带,也可以通过单独的配置信息携带。
步骤204:根据所述PDCCH中的DCI,确定用于接收所述PDSCH的载波和/或BWP;
其中,上述步骤21中,所述根据预设规则确定当前使用的调度偏移门限的步骤包括:根据所述配置信息、所述预设规则和用于接收PDCCH和所述PDSCH的载波和/或BWP,确定当前使用的调度偏移门限。
本公开的一些实施例中,所述调度偏移门限是网络侧设备根据终端上报的能力参数(UE capability)信息确定。在TS38.306中定义了能力参数timeDurationForQCL(终端支持的各子载波间隔(subcarrier spacing)的时间偏移信息),其定义了所述终端从接收PDCCH,到将所述PDCCH中DCI指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少OFDM符号数。终端要向网络侧设备上报各子载波间隔(例如60kHz和120kHz)对应的时间偏移信息。
在TS38.331中,网络侧设备通过高层信令向终端发送所述配置信息,其中所述配置信息包括:所述终端支持的各子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到。所述调度偏移门限是UE在接收PDCCH的最后一个符号到PDSCH的第一个符号之间的符号数,在此时间内UE需要根据DCI中的PDSCH QCL信息来完成接收PDSCH所需的QCL参数调整,如波束切换(beam switching)。
UE获知该调度偏移门限之后,将接收PDCCH和接收所述PDCCH调度的PDSCH的时间偏移与所述当前使用的调度偏移门限进行比较,根据比较结果,确定所述PDSCH的QCL信息,并根据确定的PDSCH的QCL信息,完成接收PDSCH所需的QCL参数调整,如波束切换(beam switching),并正确接收PDSCH。
本公开的一些实施例中,所述终端上报的能力参数信息还可以包括以下至少之一:
所述终端是否在载波聚合(Carrier Aggregation,简称CA)中支持相同numerology的跨载波调度;所述终端是否在载波聚合中支持不同numerology的跨载波调度;
所述终端是否支持相同numerology的跨BWP调度;
所述终端是否支持不同numerology的跨BWP调度。
本公开的一些实施例中,当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
请参考图5,本公开的一些实施例还提供一种调度参数的配置方法,应用于网络侧设备,包括:
步骤51:向终端发送预设规则,以使得所述终端在PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据所述预设规则确定当前使用的调度偏移门限。
本公开的一些实施例中,网络侧设备向终端发送预设规则,使得当网络侧对终端跨载波或跨BWP调度时,终端能够根据所述预设规则确定当前使用的调度偏移门限,从而可以根据该调度偏移门限确定PDSCH的QCL信息,并根据确定的PDSCH的QCL信息,保证PDSCH的正确接收。
本公开的一些实施例中,当所述numerology基于载波配置时,所述预设规则包括:
将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
当所述numerology基于BWP配置时,所述预设规则包括:
将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
其中,所述numerology包括子载波间隔。
本公开的一些实施例的调度参数的配置方法,还可以包括:
接收所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收PDCCH,到将所述PDCCH中DCI指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
向所述终端发送配置信息,所述配置信息中包括:所述终端上报的子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
向所述终端发送PDCCH,所述PDCCH所在载波和/或BWP由所述网络侧设备配置;
向所述终端发送所述PDCCH调度的PDSCH。
本公开的一些实施例中,当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
下面结合网络侧和终端侧的交互流程,对上述应用于终端侧的调度参数的确定方法和应用于网络侧的调度参数的配置方法进行说明。
(1)终端向网络侧上报能力参数(即UE capability)信息,其中包括:
a)支持跨载波或跨BWP调度的相关信息,如:
i.是否在载波聚合中支持相同numerology的跨载波调度,如采用crossCarrierSameNumerology指示;
ii.是否在载波聚合中支持不同numerology的跨载波调度,如 采用crossCarrierDiffNumerology指示;
iii.是否支持相同numerology的跨BWP调度;
iv.是否支持不同numerology的跨BWP调度。
b)各子载波间隔(如60kHz和120kHz)的时间偏移(如timeDurationForQCL),即每个numerology对应的最小OFDM符号个数。
(2)网络侧设备根据终端的能力参数信息,通过高层信令向UE发送配置信息,在所述配置信息中,包括各子载波间隔所对应的调度偏移门限。
(3)网络侧设备向终端发送PDCCH,调度PDSCH传输。
a)对于支持跨载波调度的终端,PDCCH携带用于接收所述PDSCH的载波和/或BWP的索引信息。
b)对于不支持跨载波调度的终端,PDCCH携带用于接收所述PDSCH的载波和/或BWP的索引信息。
(4)终端根据预设规则确定调度偏移门限。
a)当接收的PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的数值配置numerology不同时,
当所述numerology基于载波配置时,所述预设规则包括:
将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
当所述numerology基于BWP配置时,所述预设规则包括:
将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或 最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
其中,所述numerology包括子载波间隔。
b)当接收的PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的数值配置numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
上述规则可以由网络侧设备配置,或者协议预先约定。
UE根据所述配置信息、所述预设规则和用于接收PDCCH和所述PDSCH的载波和/或BWP,确定当前使用的调度偏移门限。
(5)终端将接收所述PDCCH和接收所述PDCCH调度的PDSCH的时间偏移与所述当前使用的调度偏移门限进行比较,根据比较结果,确定所述PDSCH的QCL信息;根据所述PDSCH的QCL信息,接收所述PDSCH。
请参考图6,本公开的一些实施例还提供一种终端60,包括:
第一确定模块61,用于当PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据预设规则确定当前使用的调度偏移门限。
本公开的一些实施例中,当终端接收的PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,即网络侧对终端跨载波或跨BWP调度时,根据预设规则确定当前使用的调度偏移门限,从而可以根据该调度偏移门限确定PDSCH的QCL信息,并根据确定的PDSCH的QCL信息,保证PDSCH的正确接收。
本公开的一些实施例中,当所述numerology基于载波配置时,所述预设规则包括:
将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门 限;
当所述numerology基于BWP配置时,所述预设规则包括:
将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
其中,所述numerology包括子载波间隔。
本公开的一些实施例中,所述预设规则由网络侧设备配置,或者,由协议约定。
本公开的一些实施例中,所述终端还可以包括:
第二确定模块,用于将接收所述PDCCH和接收所述PDCCH调度的PDSCH的时间偏移与所述当前使用的调度偏移门限进行比较,根据比较结果,确定所述PDSCH的QCL信息;
第一接收模块,用于根据所述PDSCH的QCL信息,接收所述PDSCH。
本公开的一些实施例中,所述终端还可以包括:
上报模块,用于向网络侧设备上报所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收PDCCH,到将所述PDCCH中DCI指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
第二接收模块,用于从所述网络侧设备接收配置信息,所述配置信息中包括:所述终端上报的子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
第三接收模块,用于从所述网络侧设备接收所述PDCCH,所述PDCCH所在载波和/或BWP由所述网络侧设备配置;
第三确定模块,用于根据所述PDCCH中的DCI,确定用于接收所述PDSCH的载波和/或BWP;
其中,所述第一确定模块,用于根据所述配置信息、所述预设规则和用于接收PDCCH和所述PDSCH的载波和/或BWP,确定当前使用的调度偏移门限。
本公开的一些实施例中,所述能力参数信息还包括以下至少之一:
所述终端是否在载波聚合中支持相同numerology的跨载波调度;
所述终端是否在载波聚合中支持不同numerology的跨载波调度;
所述终端是否支持相同numerology的跨BWP调度;
所述终端是否支持不同numerology的跨BWP调度。
本公开的一些实施例中,所述终端还可以包括:
第四确定模块,用于当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
请参考图7,本公开的一些实施例还提供一种网络侧设备70,包括:
第一发送模块71,用于向终端发送预设规则,以使得所述终端在PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据所述预设规则确定当前使用的调度偏移门限。
本公开的一些实施例中,网络侧设备向终端发送预设规则,使得当网络侧对终端跨载波或跨BWP调度时,终端能够根据所述预设规则确定当前使用的调度偏移门限,从而可以根据该调度偏移门限确定PDSCH的QCL信息,并根据确定的PDSCH的QCL信息,保证PDSCH的正确接收。
本公开的一些实施例中,当所述numerology基于载波配置时,所述预设规则包括:
将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
当所述numerology基于BWP配置时,所述预设规则包括:
将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
其中,所述numerology包括子载波间隔。
本公开的一些实施例中,所述网络侧设备还可以包括:
接收模块,用于接收所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收PDCCH,到将所述PDCCH中DCI指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
第二发送模块,用于向所述终端发送配置信息,所述配置信息中包括:所述终端上报的子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
第三发送模块,用于向所述终端发送PDCCH,所述PDCCH所在载波和/或BWP由所述网络侧设备配置;
第四发送模块,用于向所述终端发送所述PDCCH调度的PDSCH。
可选的,所述预设规则还包括:
当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
请参考图8,图8为本公开另一实施例的终端的结构示意图,该终端80包括但不限于:射频单元81、网络模块82、音频输出单元83、输入单元84、传感器85、显示单元86、用户输入单元87、接口单元88、存储器89、处理器810、以及电源811等部件。本领域技术人员可以理解,图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或 者组合某些部件,或者不同的部件布置。在本公开的一些实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,所述处理器810,用于当PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据预设规则确定当前使用的调度偏移门限。
本公开的一些实施例中,当终端接收的PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,即网络侧对终端跨载波或跨BWP调度时,根据预设规则确定当前使用的调度偏移门限,从而可以根据该调度偏移门限确定PDSCH的QCL信息,并根据确定的PDSCH的QCL信息,保证PDSCH的正确接收。
应理解的是,本公开的一些实施例中,射频单元81可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元81包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元81还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块82为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元83可以将射频单元81或网络模块82接收的或者在存储器89中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元83还可以提供与终端80执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元83包括扬声器、蜂鸣器以及受话器等。
输入单元84用于接收音频或视频信号。输入单元84可以包括图形处理器(Graphics Processing Unit,GPU)841和麦克风842,图形处理器841对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元86上。经图形处理器841处理后的图像帧可以存储在存储器89(或其它存储介质)中或者经由射频单元81或网络模块82进行发送。麦克风842可以接收声音, 并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元81发送到移动通信基站的格式输出。
终端80还包括至少一种传感器85,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板861的亮度,接近传感器可在终端80移动到耳边时,关闭显示面板861和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器85还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元86用于显示由用户输入的信息或提供给用户的信息。显示单元86可包括显示面板861,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板861。
用户输入单元87可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元87包括触控面板871以及其他输入设备872。触控面板871,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板871上或在触控面板871附近的操作)。触控面板871可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板871。除了触控面板871,用户输入单元87还可以包括其他输入设备872。具体地,其他输入设备872可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板871可覆盖在显示面板861上,当触控面板871检 测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板861上提供相应的视觉输出。虽然在图8中,触控面板871与显示面板861是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板871与显示面板861集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元88为外部装置与终端80连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元88可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收的输入传输到终端80内的一个或多个元件或者可以用于在终端80和外部装置之间传输数据。
存储器89可用于存储软件程序以及各种数据。存储器89可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器89可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器89内的软件程序和/或模块,以及调用存储在存储器89内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
终端80还可以包括给各个部件供电的电源811(比如电池),可选的,电源811可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端80包括一些未示出的功能模块,在此不再赘述。
请参考图9,图9为本公开又一实施例的终端的结构示意图,该终端90 包括:处理器91和存储器92。在本公开的一些实施例中,终端90还包括:存储在存储器92上并可在处理器91上运行的计算机程序,计算机程序被处理器91执行时实现如下步骤:当PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据预设规则确定当前使用的调度偏移门限。
处理器91负责管理总线架构和通常的处理,存储器92可以存储处理器91在执行操作时所使用的数据。
可选的,当所述numerology基于载波配置时,所述预设规则包括:
将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
当所述numerology基于BWP配置时,所述预设规则包括:
将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
其中,所述numerology包括子载波间隔。
可选的,所述预设规则由网络侧设备配置,或者,由协议约定。
可选的,计算机程序被处理器91执行时还可实现如下步骤:
将接收所述PDCCH和接收所述PDCCH调度的PDSCH的时间偏移与所述当前使用的调度偏移门限进行比较,根据比较结果,确定所述PDSCH的QCL信息;
根据所述PDSCH的QCL信息,接收所述PDSCH。
可选的,计算机程序被处理器91执行时还可实现如下步骤:
向网络侧设备上报所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收PDCCH,到将所述PDCCH中DCI指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
从所述网络侧设备接收配置信息,所述配置信息中包括:所述终端上报的子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
从所述网络侧设备接收所述PDCCH,所述PDCCH所在载波和/或BWP由所述网络侧设备配置;
根据所述PDCCH中的DCI,确定用于接收所述PDSCH的载波和/或BWP;
其中,所述根据预设规则确定当前使用的调度偏移门限的步骤包括:
根据所述配置信息、所述预设规则和用于接收PDCCH和所述PDSCH的载波和/或BWP,确定当前使用的调度偏移门限。
可选的,所述能力参数信息还包括以下至少之一:
所述终端是否在载波聚合中支持相同numerology的跨载波调度;
所述终端是否在载波聚合中支持不同numerology的跨载波调度;
所述终端是否支持相同numerology的跨BWP调度;
所述终端是否支持不同numerology的跨BWP调度。
可选的,计算机程序被处理器91执行时还可实现如下步骤:
当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
请参考图10,图10为本公开又一实施例的网络侧设备的结构示意图,该网络侧设备100包括:处理器101和存储器102。在本公开的一些实施例中,网络侧设备100还包括:存储在存储器102上并可在处理器101上运行的计算机程序,计算机程序被处理器101执行时实现如下步骤:向终端发送预设规则,以使得所述终端在PDCCH和所述PDCCH调度的PDSCH所在载 波或所在BWP的numerology不同时,根据所述预设规则确定当前使用的调度偏移门限。
处理器101负责管理总线架构和通常的处理,存储器102可以存储处理器101在执行操作时所使用的数据。
可选的,当所述numerology基于载波配置时,所述预设规则包括:
将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
当所述numerology基于BWP配置时,所述预设规则包括:
将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
可选的,计算机程序被处理器101执行时还可实现如下步骤:
接收所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收PDCCH,到将所述PDCCH中DCI指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
向所述终端发送配置信息,所述配置信息中包括:所述终端上报的子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
向所述终端发送PDCCH,所述PDCCH所在载波和/或BWP由所述网络 侧设备配置;
向所述终端发送所述PDCCH调度的PDSCH。
可选的,所述预设规则还包括:
当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
本公开的一些实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述调度参数的确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的一些实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述调度参数的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器, 空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (16)

  1. 一种调度参数的确定方法,应用于终端,包括:
    当物理下行控制信道(PDCCH)和所述PDCCH调度的物理下行共享信道(PDSCH)所在载波或所在带宽部分(BWP)的数值配置(numerology)不同时,根据预设规则确定当前使用的调度偏移门限。
  2. 根据权利要求1所述的调度参数的确定方法,其中,
    当所述numerology基于载波配置时,所述预设规则包括:
    将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
    当所述numerology基于BWP配置时,所述预设规则包括:
    将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
    其中,所述numerology包括子载波间隔。
  3. 根据权利要求1或2所述的调度参数的确定方法,其中,所述预设规则由网络侧设备配置,或者,由协议约定。
  4. 根据权利要求1所述的调度参数的确定方法,其中,所述根据预设规则确定当前使用的调度偏移门限的步骤之后,还包括:
    将接收所述PDCCH和接收所述PDCCH调度的PDSCH的时间偏移,与 所述当前使用的调度偏移门限进行比较,根据比较结果,确定所述PDSCH的准共址(QCL)信息;
    根据所述PDSCH的QCL信息,接收所述PDSCH。
  5. 根据权利要求1所述的调度参数的确定方法,其中,所述根据预设规则确定当前使用的调度偏移门限的步骤之前,还包括:
    向网络侧设备上报所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收所述PDCCH,到将所述PDCCH中下行控制信息(DCI)指示的QCL信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
    从所述网络侧设备接收配置信息,所述配置信息中包括:所述终端上报的子载波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
    从所述网络侧设备接收所述PDCCH,所述PDCCH所在载波和/或BWP由所述网络侧设备配置;
    根据所述PDCCH中的DCI,确定用于接收所述PDSCH的载波和/或BWP;
    其中,所述根据预设规则确定当前使用的调度偏移门限的步骤包括:
    根据所述配置信息、所述预设规则和用于接收所述PDCCH和所述PDSCH的载波和/或BWP,确定所述当前使用的调度偏移门限。
  6. 根据权利要求5所述的调度参数的确定方法,其中,所述能力参数信息还包括以下至少之一:
    所述终端是否在载波聚合中支持相同numerology的跨载波调度;
    所述终端是否在载波聚合中支持不同numerology的跨载波调度;
    所述终端是否支持相同numerology的跨BWP调度;
    所述终端是否支持不同numerology的跨BWP调度。
  7. 根据权利要求1所述的调度参数的确定方法,还包括:
    当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
  8. 一种调度参数的配置方法,应用于网络侧设备,包括:
    向终端发送预设规则,以使得所述终端在物理下行控制信道(PDCCH)和所述PDCCH调度的物理下行共享信道(PDSCH)所在载波或所在带宽部分(BWP)的数值配置(numerology)不同时,根据所述预设规则确定当前使用的调度偏移门限。
  9. 根据权利要求8所述的调度参数的配置方法,其中,
    当所述numerology基于载波配置时,所述预设规则包括:
    将所述PDCCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDSCH所在载波的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDCCH或所述PDSCH所在载波的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
    当所述numerology基于BWP配置时,所述预设规则包括:
    将所述PDCCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDSCH所在BWP的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限;或者
    将所述PDCCH或所述PDSCH所在BWP的所述numerology中,最大或最小的子载波间隔所对应的调度偏移门限,作为所述当前使用的调度偏移门限;
    其中,所述numerology包括子载波间隔。
  10. 根据权利要求8所述的调度参数的配置方法,还包括:
    接收所述终端的能力参数信息,所述能力参数信息包括:所述终端支持的部分或全部子载波间隔的时间偏移信息,所述时间偏移信息为所述终端从接收所述PDCCH,到将所述PDCCH中下行控制信息(DCI)指示的准共址(QCL)信息应用于所述PDCCH调度的PDSCH之间,所需的最少符号数;
    向所述终端发送配置信息,所述配置信息中包括:所述终端上报的子载 波间隔所对应的调度偏移门限,所述调度偏移门限基于所述时间偏移信息得到;
    向所述终端发送所述PDCCH,所述PDCCH所在载波和/或BWP由所述网络侧设备配置;
    向所述终端发送所述PDCCH调度的PDSCH。
  11. 根据权利要求8所述的调度参数的配置方法,其中,所述预设规则还包括:
    当所述PDCCH和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology相同时,将相同的所述numerology所对应的调度偏移门限,作为所述当前使用的调度偏移门限。
  12. 一种终端,包括:
    第一确定模块,用于当物理下行控制信道(PDCCH)和所述PDCCH调度的PDSCH所在载波或所在BWP的numerology不同时,根据预设规则确定当前使用的调度偏移门限。
  13. 一种网络侧设备,包括:
    第一发送模块,用于向终端发送预设规则,以使得所述终端在PDCCH和所述PDCCH调度的物理下行共享信道(PDSCH)所在载波或所在带宽部分(BWP)的数值配置(numerology)不同时,根据所述预设规则确定当前使用的调度偏移门限。
  14. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的调度参数的确定方法的步骤。
  15. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求8至11中任一项所述的调度参数的配置方法的步骤。
  16. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的调度参数的确定方法的步骤;或者,所述计算机程序被处理器执行时实现如权利要求8至11中任一项所述的调度参数的配置方法的步骤。
PCT/CN2019/094522 2018-07-12 2019-07-03 调度参数的确定方法、配置方法、终端和网络侧设备 WO2020011084A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19833599.4A EP3823379A4 (en) 2018-07-12 2019-07-03 PLANNING PARAMETER DETERMINATION PROCESS AND PLANNING PARAMETER CONFIGURATION PROCESS, TERMINAL, AND NETWORK SIDE DEVICE
AU2019302960A AU2019302960B2 (en) 2018-07-12 2019-07-03 Method for Determining Scheduling Parameter, Method for Configuring Scheduling Parameter, Terminal, and Network-Side Device
RU2021101632A RU2763946C1 (ru) 2018-07-12 2019-07-03 Способ определения параметра планирования, способ конфигурирования параметра планирования, абонентское оборудование и устройство с сетевой стороны
SG11202100323PA SG11202100323PA (en) 2018-07-12 2019-07-03 Method for determining scheduling parameter, method for configuring scheduling parameter, terminal, and network-side device
KR1020217003367A KR20210028237A (ko) 2018-07-12 2019-07-03 스케줄링 파라미터의 확정 방법, 스케줄링 파라미터의 구성 방법, 단말 및 네트워크 측 기기
JP2021500944A JP7084542B2 (ja) 2018-07-12 2019-07-03 スケジューリングパラメータの決定方法、設定方法、端末及びネットワーク側装置
CA3105693A CA3105693C (en) 2018-07-12 2019-07-03 Method for determining scheduling parameter, method for configuring scheduling parameter, terminal, and network-side device
US17/146,915 US11937253B2 (en) 2018-07-12 2021-01-12 Method for determining scheduling parameter, method for configuring scheduling parameter, terminal, and network-side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810762971.8A CN110719631B (zh) 2018-07-12 2018-07-12 调度参数的确定方法、配置方法、终端和网络侧设备
CN201810762971.8 2018-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/146,915 Continuation US11937253B2 (en) 2018-07-12 2021-01-12 Method for determining scheduling parameter, method for configuring scheduling parameter, terminal, and network-side device

Publications (1)

Publication Number Publication Date
WO2020011084A1 true WO2020011084A1 (zh) 2020-01-16

Family

ID=69141857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094522 WO2020011084A1 (zh) 2018-07-12 2019-07-03 调度参数的确定方法、配置方法、终端和网络侧设备

Country Status (10)

Country Link
US (1) US11937253B2 (zh)
EP (1) EP3823379A4 (zh)
JP (1) JP7084542B2 (zh)
KR (1) KR20210028237A (zh)
CN (2) CN114142982A (zh)
AU (1) AU2019302960B2 (zh)
CA (1) CA3105693C (zh)
RU (1) RU2763946C1 (zh)
SG (1) SG11202100323PA (zh)
WO (1) WO2020011084A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4145930A4 (en) * 2020-04-30 2023-09-27 Datang Mobile Communications Equipment Co., Ltd. RECEIVING METHOD AND APPARATUS FOR A SHARED PHYSICAL DOWNLINK CHANNEL, TRANSMITTING METHOD AND APPARATUS FOR A SHARED PHYSICAL DOWNLINK CHANNEL, APPARATUS AND MEDIUM
EP4132147A4 (en) * 2020-03-27 2023-11-15 Ntt Docomo, Inc. TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114142982A (zh) * 2018-07-12 2022-03-04 维沃移动通信有限公司 调度参数的确定方法、配置方法、终端和网络侧设备
CN113365329B (zh) * 2018-09-15 2023-04-28 华为技术有限公司 一种通信方法及装置
US11375518B2 (en) * 2019-01-23 2022-06-28 Samsung Electronics Co., Ltd. Method and apparatus for managing PDCCH processing timelines
US11483767B2 (en) * 2019-02-15 2022-10-25 Mediatek Inc. Cross-slot scheduling for power saving in mobile communications
US11405809B2 (en) * 2019-05-08 2022-08-02 Qualcomm Incorporated Radio link monitoring reference signals for UEs that do not support CSI-RS based radio link monitoring
US11431463B2 (en) 2019-08-16 2022-08-30 Qualcomm Incorporated Minimum scheduling offset
CN116633515A (zh) * 2019-09-30 2023-08-22 大唐移动通信设备有限公司 节能信息的传输方法、基站及终端
CN111212437B (zh) * 2020-01-22 2022-07-19 北京紫光展锐通信技术有限公司 Pdsch接收波束的确定方法及装置、存储介质、终端
WO2022000510A1 (zh) * 2020-07-03 2022-01-06 北京小米移动软件有限公司 无线通信的方法、装置、通信设备及存储介质
US20230283438A1 (en) * 2020-08-06 2023-09-07 Lenovo (Beijing) Limited Method and apparatus for frequency hopping for control channels for devices with reduced capabilities
US11968647B2 (en) * 2021-01-12 2024-04-23 Nokia Technologies Oy Facilitating downlink control information (DCI) repetition on linked physical downlink control channel (PDCCH) candidates of different search space sets
CN115175106A (zh) * 2021-04-01 2022-10-11 北京紫光展锐通信技术有限公司 通信参数确定方法及相关产品
CN115474249A (zh) * 2021-06-11 2022-12-13 上海华为技术有限公司 一种小区调整的方法、相关装置以及相关设备
WO2023283191A1 (en) * 2021-07-07 2023-01-12 Intel Corporation Cross-carrier scheduling with different cell numerologies
US20230014728A1 (en) * 2021-07-19 2023-01-19 Qualcomm Incorporated Acknowledgement transmissions associated with physical downlink control channel demodulation reference signal bundling
CN116981073A (zh) * 2022-04-14 2023-10-31 维沃移动通信有限公司 终端能力指示、调度方法、装置、终端及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180070192A1 (en) * 2016-09-08 2018-03-08 Lg Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus therefor
CN108024310A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备
CN108270539A (zh) * 2017-01-03 2018-07-10 北京三星通信技术研究有限公司 数据传输的方法及设备

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2789954C (en) * 2010-02-16 2016-06-07 Nokia Corporation Activation and deactivation of component carrier measurements based on threshold settings
GB2502275B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
CN103874096B (zh) * 2012-12-18 2017-12-26 中兴通讯股份有限公司 一种下行控制信息的发送和检测方法、发送端和接收端
EP2991421B8 (en) * 2013-04-23 2020-08-05 Convida Wireless, LLC Efficient lte commuication using bandwidth extension techniques
EP3254395B1 (en) * 2015-02-06 2019-06-19 Samsung Electronics Co., Ltd. Method and apparatus for controlling uplink control information transmission in wireless communication system providing widebandwidth services via carrier aggregation
CN106658742B (zh) * 2015-11-03 2020-07-03 中兴通讯股份有限公司 数据调度及传输的方法、装置及系统
EP3513611B1 (en) * 2016-11-01 2021-09-15 LG Electronics Inc. Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system
EP3520525B1 (en) * 2016-11-03 2022-03-16 Samsung Electronics Co., Ltd. Apparatus and method to support ultra-wide bandwidth in fifth generation (5g) new radio
CN108243499B (zh) * 2016-12-26 2020-10-30 普天信息技术有限公司 一种通信方法、移动终端和通信基站
EP3826343A1 (en) * 2017-01-20 2021-05-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Separate configuration of numerology-associated resources
CN107872891B (zh) * 2017-11-14 2021-12-21 宇龙计算机通信科技(深圳)有限公司 资源调度方法、装置、网络设备及终端
MX2020005137A (es) * 2017-11-17 2020-08-17 Guangdong Oppo Mobile Telecommunications Corp Ltd Metodo de indicacion de un formato de ranura y producto relacionado.
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication
US10813116B2 (en) * 2018-05-11 2020-10-20 Apple Inc. Support of advanced user equipment (UE) minimum processing times in new radio (NR) systems
CN110636616B (zh) * 2018-06-22 2022-08-26 华为技术有限公司 无线通信方法及装置
CN114142982A (zh) * 2018-07-12 2022-03-04 维沃移动通信有限公司 调度参数的确定方法、配置方法、终端和网络侧设备
EP3858057B1 (en) * 2018-09-28 2024-02-14 Telefonaktiebolaget LM Ericsson (publ.) Transitioning between different scheduling delay assumptions
US11382118B2 (en) * 2018-09-28 2022-07-05 Qualcomm Incorporated Minimum scheduling delay signaling
CN111817831B (zh) * 2019-07-15 2022-01-04 维沃移动通信有限公司 一种传输方法和通信设备
CN111800862B (zh) * 2019-07-17 2023-04-18 维沃移动通信有限公司 一种确定最小跨时隙调度间隔生效时刻的方法和电子设备
US20220353893A1 (en) * 2019-09-26 2022-11-03 Samsung Electronics Co., Ltd. Cross slot scheduling method and device in wireless communication system
EP4055756A1 (en) * 2019-11-08 2022-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods for determining minimum scheduling offset application delay
WO2022032661A1 (en) * 2020-08-14 2022-02-17 Zte Corporation Method for a relaxed ue processing time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180070192A1 (en) * 2016-09-08 2018-03-08 Lg Electronics Inc. Method for transmitting or receiving signal in wireless communication system and apparatus therefor
CN108024310A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 用于传输数据的方法、终端设备和网络设备
CN108270539A (zh) * 2017-01-03 2018-07-10 北京三星通信技术研究有限公司 数据传输的方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "Feature Lead Summary on QCL", 3GPP TSG RAN WGI#92BIS RI-1805660, 20 April 2018 (2018-04-20), pages 14 - 15, XP051427786 *
See also references of EP3823379A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4132147A4 (en) * 2020-03-27 2023-11-15 Ntt Docomo, Inc. TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION
JP7445367B2 (ja) 2020-03-27 2024-03-07 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
EP4145930A4 (en) * 2020-04-30 2023-09-27 Datang Mobile Communications Equipment Co., Ltd. RECEIVING METHOD AND APPARATUS FOR A SHARED PHYSICAL DOWNLINK CHANNEL, TRANSMITTING METHOD AND APPARATUS FOR A SHARED PHYSICAL DOWNLINK CHANNEL, APPARATUS AND MEDIUM

Also Published As

Publication number Publication date
KR20210028237A (ko) 2021-03-11
SG11202100323PA (en) 2021-02-25
AU2019302960B2 (en) 2022-03-17
EP3823379A1 (en) 2021-05-19
CA3105693A1 (en) 2020-01-16
RU2763946C1 (ru) 2022-01-11
CN110719631A (zh) 2020-01-21
US20210136808A1 (en) 2021-05-06
JP2021523656A (ja) 2021-09-02
JP7084542B2 (ja) 2022-06-14
CA3105693C (en) 2023-08-01
CN114142982A (zh) 2022-03-04
EP3823379A4 (en) 2021-09-22
CN110719631B (zh) 2021-12-28
US11937253B2 (en) 2024-03-19
AU2019302960A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2020011084A1 (zh) 调度参数的确定方法、配置方法、终端和网络侧设备
CN110719632B (zh) 一种准共址确定方法、调度方法、终端及网络设备
US11968705B2 (en) Channel and signal transmission method and communication device
WO2021155768A1 (zh) 波束指示方法、装置、设备及介质
CN111615195B (zh) 确定波束信息的方法及装置、通信设备
CN109600831B (zh) 一种寻呼方法、终端及网络侧设备
WO2021013007A1 (zh) 测量方法、资源配置方法、终端和网络侧设备
CN112654084B (zh) 一种搜索空间分配方法、搜索空间配置方法及相关设备
WO2020125399A1 (zh) 信号资源测量方法及终端
WO2020216244A1 (zh) 终端天线面板信息的指示方法、网络侧设备和终端
US20220352969A1 (en) Beam information determining method, terminal, and network device
CN112583544B (zh) 确定源参考信号信息的方法和通信设备
CN111182636B (zh) 下行控制信息检测方法、网络侧设备及终端设备
KR20220129031A (ko) 주파수 도메인 자원 처리 방법, 주파수 도메인 자원 설정 방법 및 관련 장치
WO2019242540A1 (zh) 非授权频段上波束管理的方法、终端设备和网络设备
WO2021109956A1 (zh) 参考信号的发送方法及发射机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3105693

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021500944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019302960

Country of ref document: AU

Date of ref document: 20190703

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217003367

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021101632

Country of ref document: RU