WO2022000510A1 - 无线通信的方法、装置、通信设备及存储介质 - Google Patents

无线通信的方法、装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022000510A1
WO2022000510A1 PCT/CN2020/100271 CN2020100271W WO2022000510A1 WO 2022000510 A1 WO2022000510 A1 WO 2022000510A1 CN 2020100271 W CN2020100271 W CN 2020100271W WO 2022000510 A1 WO2022000510 A1 WO 2022000510A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
scs
pdsch
processing
under different
Prior art date
Application number
PCT/CN2020/100271
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/100271 priority Critical patent/WO2022000510A1/zh
Priority to CN202080001430.9A priority patent/CN114145069A/zh
Priority to US18/014,018 priority patent/US20230353330A1/en
Publication of WO2022000510A1 publication Critical patent/WO2022000510A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties

Definitions

  • the present disclosure relates to the technical field of wireless communication, but is not limited to the technical field of wireless communication, and in particular, relates to a method, an apparatus, a communication device and a storage medium for wireless communication.
  • the downlink data is carried on the Physical Downlink Shared Channel (PDSCH, Physical Downlink Shared channel), and the uplink data is carried on the Physical Uplink Shared Channel (PUSCH, Physical Uplink). Shared channel).
  • the base station may schedule one or more Physical Downlink Shared Channels (PDSCH) or Physical Uplink Shared Channels (PUSCH) in a slot.
  • An embodiment of the present disclosure discloses a wireless communication method, wherein, when applied to a terminal, the method includes:
  • terminal capability information wherein the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the terminal capability information is used to indicate the capability of the terminal to process the Physical Downlink Shared Channel (PDSCH) and/or the Physical Uplink Shared Channel (PUSCH) supported by the terminal under different subcarrier spacings (SCS).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the processing capability information includes one of the following information:
  • PDSCH physical downlink shared channel
  • SCS subcarrier spacings
  • PUSCH physical uplink shared channel
  • SCS subcarrier spacings
  • PDSCH physical downlink shared channels
  • SCS subcarrier spacings
  • PUSCH physical uplink shared channels
  • SCS subcarrier spacings
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the time interval is:
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • the time interval between the physical downlink shared channel (PDSCH) and the physical uplink shared channel (PUSCH) adjacent to the physical downlink shared channel (PDSCH) is processed.
  • the method further includes:
  • the processing capability of the terminal under the subcarrier spacing (SCS) is determined.
  • the method further includes:
  • the scheduling instruction is ignored.
  • a wireless communication method wherein, applied in a base station, the method includes:
  • the terminal capability information reported by the terminal is received, wherein the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the terminal capability information is used to indicate that the terminal supports processing physical downlink shared channel (PDSCH) and/or physical uplink shared channel (PUSCH) under different subcarrier spacings (SCS) ability.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • SCS subcarrier spacings
  • the processing capability information includes one of the following information:
  • PDSCH physical downlink shared channel
  • SCS subcarrier spacings
  • PDSCH physical downlink shared channels
  • SCS subcarrier spacings
  • PUSCH physical uplink shared channels
  • SCS subcarrier spacings
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the time interval is:
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • a time interval between the physical downlink shared channel (PDSCH) and the physical uplink shared channel (PUSCH) adjacent to the physical downlink shared channel (PDSCH) is scheduled.
  • the processing capability of the terminal under the sub-carrier spacing (SCS) is determined according to the bandwidth of the sub-carrier spacing (SCS).
  • the method further includes:
  • a wireless communication apparatus wherein, when applied in a terminal, the apparatus includes a reporting module, wherein,
  • the reporting module is configured to report terminal capability information, wherein the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the apparatus further includes a determining module, wherein the determining module is configured to: determine whether the terminal is in the sub-carrier spacing (SCS) according to the bandwidth of the sub-carrier spacing (SCS) lower processing power.
  • SCS sub-carrier spacing
  • the apparatus further includes a first receiving module and a processing module, wherein,
  • the first receiving module is configured to receive a scheduling instruction sent by the base station
  • the processing module is configured to ignore the scheduling instruction in response to the number of the physical downlink shared channels (PDSCH) and/or physical uplink shared channels (PUSCH) scheduled by the base station exceeding the processing capability of the terminal.
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • a wireless communication apparatus wherein, when applied to a base station, the apparatus includes a second receiving module, wherein,
  • the second receiving module is configured to receive terminal capability information reported by the terminal, where the terminal capability information is at least used to indicate processing capabilities of the terminal under different subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the apparatus further includes a sending module, wherein the sending module is configured to send a scheduling instruction to the terminal based on the terminal capability information.
  • a communication device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the method described in any embodiment of the present disclosure.
  • terminal capability information is reported, wherein the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS).
  • the terminal capability information indicates the processing capability of the terminal under different subcarrier spacings (SCS)
  • the base station can When scheduling resources, compared with the method of using the same scheduling parameters to schedule resources under different subcarrier spacings (SCS), on the one hand, it can reduce the data caused by the sufficient scheduling resources but the insufficient ability of the terminal to process data. Handling exceptions improves the reliability of data transmission; on the other hand, when the base station performs resource scheduling, it can schedule as many resources as possible to the terminal according to the terminal's processing capability, reduce the number of scheduling times, and improve the efficiency of resource scheduling.
  • FIG. 1 is a schematic structural diagram of a wireless communication system.
  • Fig. 2 is a flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 3 is a flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 4 is a flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 5 is a flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 6 is a flowchart of a wireless communication method according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram of a wireless communication apparatus according to an exemplary embodiment.
  • FIG. 8 is a schematic diagram of a wireless communication apparatus according to an exemplary embodiment.
  • Fig. 9 is a block diagram of a base station according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones (or "cellular" phones) ) and a computer with IoT user equipment, for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones (or "cellular" phones)
  • a computer with IoT user equipment for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be the 4th generation mobile communication (4G) system, also known as the Long Term Evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • the terminal will report the processing capability of the physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) of the terminal to the base station.
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the optional subcarrier spacing (SCS, subcarrier spacing) is 15KHz, 30KHz, 60KHz and 120KHz, and one time slot (slot) contains 14 OFDM (OFDM, Orthogonal Frequency Division Multiplexing) symbol (here, if it is an extended cyclic prefix (CP, Cyclic Prefix) CP, there are only 12 Orthogonal Frequency Division Multiple Access (OFDM) symbols), the duration of one slot (slot)
  • OFDM Orthogonal Frequency Division Multiplexing
  • the duration is 1ms
  • the subcarrier spacing (SCS) is 30KHz
  • the duration is 0.5ms
  • the subcarrier spacing (SCS) is 60KHz
  • the duration is 0.25ms. It can be seen that the larger the subcarrier spacing (SCS), the shorter the duration of a slot.
  • a larger subcarrier spacing is usually selected.
  • SCS subcarrier spacing
  • 960KHz the duration of one slot is 0.015625ms, that is, 1/64ms.
  • the duration of one slot is much less than 1 ms. For example, 0.015625ms.
  • the data processing capability of the terminal may not be able to process the Physical Downlink Shared Channel (PDSCH) or the Physical Uplink Shared Channel (PUSCH) in each time slot (slot).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • this embodiment provides a wireless communication method, wherein, when applied to a terminal, the method includes:
  • Step 21 reporting terminal capability information, wherein the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS, subcarrier spacing).
  • SCS subcarrier spacings
  • the processing capability may be the capability of the terminal to process data or support processing channels.
  • the processing capability may be the encoding and/or decoding capability of the terminal, and may also be the modulation/and/or demodulation capability of the terminal.
  • the processing capability may be the capability of how many physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH) the terminal supports to process.
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • the terminal is limited by the software and hardware configuration of the terminal, and different types of terminals may have different processing capabilities.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the terminal may report the terminal capability information to the base station.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • the terminal capability information in response to the terminal establishing a Radio Resource Control (RRC, Radio Resource Control) connection with the base station, the terminal capability information is reported.
  • RRC Radio Resource Control
  • the base station can obtain the terminal capability information in time, and perform resource scheduling based on the terminal capability information.
  • the terminal capability information may be sent to the base station in response to receiving a request for obtaining terminal capability information sent by the base station.
  • the acquisition request may include the content of the information to be acquired. For example, it is necessary to acquire information about the capability of the terminal to process the Physical Downlink Shared Channel (PDSCH) or the Physical Uplink Shared Channel (PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal periodically sends the terminal capability information to the base station until it receives feedback information for the terminal capability information sent by the base station. In this way, the situation that the base station cannot receive the terminal capability information due to network abnormality can be reduced, and the reliability of data transmission is improved.
  • radio resource control (RRC) signaling may be used to carry the terminal capability information, and the terminal capability information may be reported to the base station.
  • RRC Radio Resource Control
  • the terminal stores terminal capability information.
  • the terminal capability information may be configured and stored when the terminal is factory-set.
  • the storage mode and storage location of the terminal capability information may be determined according to preset rules. For example, terminal capability information is stored in the A storage area for easy acquisition.
  • the terminal capability information carries an identity document (ID, Identity document) of the terminal.
  • ID Identity document
  • the identity identifier of the terminal is used to uniquely identify a terminal.
  • the identification information of the terminal may be a Subscriber Identity Module (SIM) number of a Subscriber Identity Module (SIM, Subscriber Identity Module) included in the terminal.
  • SIM Subscriber Identity Module
  • the base station can determine the terminal corresponding to the terminal capability information based on the terminal identification carried by the terminal capability information.
  • the subcarrier spacing (SCS) selectable by the terminal is 240KHz, 480KHz, 960KHz and 1920KHz.
  • the duration of one time slot (slot) is 0.0625ms
  • the terminal in N time slots can process a physical downlink shared channel (PDSCH) or physical downlink shared channel (PDSCH) Uplink Shared Channel (PUSCH);
  • the subcarrier spacing (SCS) is 480KHz
  • the duration of one time slot (slot) is 0.03125ms
  • the terminal in N time slots can process b physical downlink shared channels (PDSCH) or Physical Uplink Shared Channel (PUSCH);
  • the subcarrier spacing (SCS) is 960KHz
  • the duration of one time slot (slot) is 0.015625ms
  • the terminal can handle c physical downlink shared channels (PDSCH) in N time slots Or physical uplink shared channel (PUSCH);
  • the subcarrier spacing (SCS) is 1920K
  • a larger subcarrier spacing is usually selected. For example 960KHz.
  • the duration of one time slot (slot) is 0.015625ms, that is, 1/64ms. Since the duration of one slot (slot) is too short, the terminal may need multiple slots to be able to process one Physical Downlink Shared Channel (PDSCH) or Physical Uplink Shared Channel (PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • each information field is used to carry the terminal capability information of the terminal under the corresponding subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the number information of Physical Downlink Shared Channel (PDSCH) or Physical Uplink Shared Channel (PUSCH) is processed in N time slots.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • each subcarrier spacing (SCS) may be represented by a subcarrier spacing (SCS) identifier.
  • SCS subcarrier spacing
  • 010 means the subcarrier spacing (SCS) is 480KHz
  • 011 means the subcarrier spacing (SCS) is 960KHz
  • 100 means the subcarrier spacing (SCS) is 1920KHz.
  • the base station can, after receiving the terminal capability information, Compared with the method of using the same processing parameters to schedule resources under different subcarrier spacings (SCS), on the one hand, it can reduce the lack of the ability of the terminal to process data due to sufficient scheduling resources.
  • the resulting data processing anomalies improve the reliability of data transmission; on the other hand, when performing resource processing, the base station can schedule as many resources as possible to the terminal according to the terminal's processing capability, reduce the number of scheduling times, and improve the reliability of resource scheduling. efficient.
  • the terminal capability information is used to indicate the capability of the terminal to process the Physical Downlink Shared Channel (PDSCH) and/or the Physical Uplink Shared Channel (PUSCH) supported by the terminal under different subcarrier spacings (SCS).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal capability information also carries a capability indicating that the terminal supports a physical downlink shared channel (PDSCH) and/or a physical uplink shared channel (PUSCH) under different subcarrier spacings (SCS). For example, 1 ms or N time slots (slots) are supported to process 7 physical downlink shared channels (PDSCH) in the first subcarrier spacing (SCS). In the second subcarrier spacing (SCS), 1 ms or N time slots (slots) are supported to process 4 physical downlink shared channels (PDSCH). Then the terminal capability information simultaneously indicates the capability of processing downlink shared channel (PDSCH) and physical downlink shared channel (PUSCH) supported under the first subcarrier spacing (SCS) and the second subcarrier spacing (SCS).
  • N is a positive integer greater than 1.
  • the processing capability information includes one of the following information:
  • PDSCH physical downlink shared channel
  • SCS subcarrier spacings
  • PDSCH physical downlink shared channels
  • SCS subcarrier spacing
  • PUSCH physical uplink shared channels
  • SCS subcarrier spacings
  • SCS carrier spacing
  • the number of time slots may be a range. For example 5 to 6. For another example, more than 3.
  • M is a positive integer greater than or equal to 1.
  • the terminal capability information includes information of the number M.
  • the terminal capability information includes the number of time slots required by the terminal to support processing one physical downlink shared control channel (PDSCH) under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the number of time slots required by the terminal to process one physical downlink shared channel (PDSCH) is N1; when the subcarrier spacing (SCS) is 480KHz, The number of time slots for the terminal to process one physical downlink shared channel (PDSCH) is N2; when the subcarrier spacing (SCS) is 960KHz, the number of time slots for the terminal to process one physical downlink shared channel (PDSCH) is N3; when the subcarrier spacing (SCS) is 1920KHz, the number of time slots for the terminal to process one physical downlink shared channel (PDSCH) is N4.
  • N1, N2, N3 and N4 may be equal or unequal, wherein N1, N2, N3 and N4 are positive integers.
  • the terminal capability information includes number information N1, N2, N3 and
  • the terminal capability information includes the number of time slots required by the terminal to support processing one physical uplink shared control channel (PUSCH) under different SCSs. For example, when the subcarrier spacing (SCS) is 240KHz, the number of time slots required by the terminal to process one physical uplink shared control channel (PUSCH) is T1; when the subcarrier spacing (SCS) is 480KHz , the number of time slots for the terminal to process one physical uplink shared control channel (PUSCH) is T2; when the subcarrier spacing (SCS) is 960KHz, the terminal processes one physical uplink shared control channel (PUSCH) time slots The number is T3; when the subcarrier spacing (SCS) is 1920KHz, the number of time slots for the terminal to process one physical uplink shared control channel (PUSCH) is T4.
  • T1, T2, T3 and T4 may be equal or unequal, wherein T1, T2, T3 and T4 are positive integers.
  • the terminal capability information includes number information T1, T2, T3 and T4.
  • the time interval between two adjacent transmissions may be a time length or a time slot between two adjacent data transmissions.
  • the time interval between two adjacent transmissions is 1ms.
  • the time interval between two adjacent transmissions is 4 time slots.
  • the time interval may be a range.
  • the time interval may include 4 to 5 time slots.
  • the time interval includes more than 4 time slots.
  • the time interval is:
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared control channels
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Control Channel
  • the time interval between two adjacent physical downlink shared channels (PDSCH) is processed 3 time slots (slots), and the two adjacent physical downlink shared channels (PDSCH) are processed.
  • setting the time interval can reserve time for data processing of the terminal and improve the reliability of data transmission.
  • the longer the time interval and the longer the reserved time the longer the terminal has to process the data that needs to be transmitted in the time period, to ensure that the data can be completely transmitted.
  • the number of processed downlink shared channels (PDSCH) or the number of supported physical uplink shared channels (PUSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS) may be a range.
  • the number is 4 to 5.
  • the number is greater than 4.
  • the terminal capability information includes the number of processed physical downlink shared channels (PDSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the terminal supports processing X1 physical downlink shared channels (PDSCH) within 1ms; when the subcarrier spacing (SCS) is 480KHz, the terminal supports processing within 1ms X2 physical downlink shared channels (PDSCH); when the subcarrier spacing (SCS) is 960KHz, the terminal supports processing X3 physical downlink shared channels (PDSCH) within 1ms; when the subcarrier spacing (SCS) is 1920KHz Next, the terminal supports processing X4 physical downlink shared channels (PDSCH) within 1 ms.
  • SCS subcarrier spacing
  • X1, X2, X3 and X4 may be equal or unequal, wherein X1, X2, X3 and X4 are positive integers.
  • the terminal capability information includes number information X1, X2, X3 and X4.
  • the terminal capability information includes the number of processed physical uplink shared channels (PUSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the terminal supports processing Y1 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 480KHz, the terminal supports processing within 1ms Y2 physical uplink shared channels (PUSCH); when the subcarrier spacing (SCS) is 960KHz, the terminal supports processing Y3 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 1920KHz Next, the terminal supports processing Y4 physical uplink shared channels (PUSCH) within 1ms.
  • SCS subcarrier spacing
  • Y1, Y2, Y3 and Y4 may be equal or unequal, wherein Y1, Y2, Y3 and Y4 are positive integers.
  • the terminal capability information includes number information Y1, Y2, Y3 and Y4.
  • the terminal capability information includes the number of physical downlink shared channels (PDSCH) and physical uplink shared channels (PUSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the terminal supports processing X1 physical downlink shared channels (PDSCH) and Y1 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 480KHz In the case of 960KHz, the terminal supports processing X2 physical downlink shared channels (PDSCH) and Y2 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 960KHz, the terminal supports processing X3 within 1ms physical downlink shared channels (PUSCH) and Y3 physical uplink shared channels (PUSCH); when the subcarrier spacing (SCS) is 1920KHz, the terminal supports processing X4 physical downlink shared channels (PDSCH) and Y4 within 1ms Physical Uplink Shared
  • X1, X2, X3, X4, Y1, Y2, Y3, and Y4 are positive integers.
  • the terminal capability information includes number information X1, X2, X3, X4, Y1, Y2, Y3 and Y4.
  • the processing capability information includes one of the following information:
  • PDSCH physical downlink shared channel
  • SCS subcarrier spacing
  • PUSCH physical uplink shared channel
  • SCS subcarrier spacing
  • PDSCH physical downlink shared channels
  • SCS subcarrier spacing
  • PUSCH physical uplink shared channels
  • SCS subcarrier spacing
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • a wireless communication method is provided in this embodiment, wherein the method further includes:
  • Step 31 Determine the processing capability of the terminal under the subcarrier spacing (SCS) according to the bandwidth of the subcarrier spacing (SCS).
  • the subcarrier spacing (SCS) selectable by the terminal is 240KHz, 480KHz, 960KHz and 1920KHz.
  • the terminal in N time slots can process C1 physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH);
  • the (SCS) is 480KHz it is determined that the terminal in the N time slots can process C2 physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH);
  • the subcarrier spacing (SCS) is 960KHz, it is determined that In the N time slots, the terminal can process C3 physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH);
  • the subcarrier spacing (SCS) is 1920KHz, it is determined that the terminal in the N time slots can process C4 Physical Downlink Shared Channel (PDSCH) or Physical Uplink Shared Channel (PUSCH).
  • C1, C2, C3 and C4 may be equal or unequal, wherein N, C1, C2, C3 and C4 are positive integers.
  • N is a positive integer greater than 1.
  • the terminal capability information includes number information N, C1, C2, C3 and C4.
  • the time lengths of the time slots corresponding to different subcarrier spacings are different.
  • the terminal in a time slot (slot) is determined to process the physical downlink shared channel (PDSCH) or the physical uplink shared channel ( The number of PUSCH) can more accurately reflect the ability of the terminal to process the channel.
  • a wireless communication method is provided in this embodiment, wherein the method further includes:
  • Step 41 receiving the scheduling instruction sent by the base station
  • Step 42 in response to the number of physical downlink shared channels (PDSCH) and/or physical uplink shared channels (PUSCH) scheduled by the base station exceeding the processing capability of the terminal, the scheduling instruction is ignored.
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • the terminal receives a Downlink Control Indicator (DCI, Downlink Control Indicator) sent by the base station, and parses out the scheduling instruction.
  • DCI Downlink Control Indicator
  • PDSCH physical downlink shared channels
  • PDSCH physical downlink shared channels
  • this embodiment provides a wireless communication method, wherein, when applied to a base station, the method includes:
  • Step 51 Receive terminal capability information reported by the terminal, where the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the processing capability may be the capability of the terminal to process data or support processing channels.
  • the processing capability may be the encoding and/or decoding capability of the terminal, and may also be the modulation/and/or demodulation capability of the terminal.
  • the processing capability may be the capability of how many physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH) the terminal supports to process.
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • the terminal is limited by the software and hardware configuration of the terminal, and different types of terminals may have different processing capabilities.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • 3G third generation mobile communication
  • 4G fourth generation mobile communication
  • 5G fifth generation mobile communication
  • terminal capability information sent by the terminal and reported in response to establishing a radio resource control (RRC) connection between the terminal and the base station is received.
  • RRC radio resource control
  • the acquisition request may include the content of the information to be acquired. For example, it is necessary to obtain information about the capability of the terminal to process the Physical Downlink Shared Channel (PDSCH) or the Physical Uplink Shared Channel (PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal periodically sends the terminal capability information to the base station until it receives feedback information for the terminal capability information sent by the base station. In this way, the situation that the base station cannot receive the terminal capability information due to network abnormality can be reduced, and the reliability of data transmission is improved.
  • radio resource control (RRC) signaling that carries terminal capability information and is sent by the terminal may be received.
  • RRC Radio Resource Control
  • the terminal capability information can be sent by using the existing Radio Resource Control (RRC) signaling, which improves the compatibility of the Radio Resource Control (RRC) signaling.
  • the terminal capability information carries an identity document (ID, Identity document) of the terminal.
  • ID Identity document
  • the identity identifier of the terminal is used to uniquely identify a terminal.
  • the identification information of the terminal may be a Subscriber Identity Module (SIM) number of a Subscriber Identity Module (SIM, Subscriber Identity Module) included in the terminal.
  • SIM Subscriber Identity Module
  • the base station can determine the terminal corresponding to the terminal capability information based on the terminal identification carried by the terminal capability information.
  • the subcarrier spacing (SCS) selectable by the terminal is 240KHz, 480KHz, 960KHz and 1920KHz.
  • the duration of one time slot (slot) is 0.0625ms
  • the terminal in N time slots can process a physical downlink shared channel (PDSCH) or physical downlink shared channel (PDSCH) Uplink Shared Channel (PUSCH);
  • the subcarrier spacing (SCS) is 480KHz
  • the duration of one time slot (slot) is 0.03125ms
  • the terminal in N time slots can process b physical downlink shared channels (PDSCH) or Physical Uplink Shared Channel (PUSCH);
  • the subcarrier spacing (SCS) is 960KHz
  • the duration of one time slot (slot) is 0.015625ms
  • the terminal can handle c physical downlink shared channels (PDSCH) in N time slots Or physical uplink shared channel (PUSCH);
  • the subcarrier spacing (SCS) is 1920K
  • a larger subcarrier spacing is usually selected. For example 960KHz.
  • the duration of one time slot (slot) is 0.015625ms, that is, 1/64ms. Since the duration of one slot (slot) is too short, the terminal may need multiple slots to be able to process one Physical Downlink Shared Channel (PDSCH) or Physical Uplink Shared Channel (PUSCH).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • each information field is used to carry the terminal capability information of the terminal under the corresponding subcarrier spacing (SCS). For example, information on the number of time slots of the Physical Downlink Shared Channel (PDSCH) or the Physical Uplink Shared Channel (PUSCH) is processed.
  • SCS subcarrier spacing
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • each subcarrier spacing (SCS) may be represented by a subcarrier spacing (SCS) identifier.
  • SCS subcarrier spacing
  • 010 means the subcarrier spacing (SCS) is 480KHz
  • 011 means the subcarrier spacing (SCS) is 960KHz
  • 100 means the subcarrier spacing (SCS) is 1920KHz.
  • the base station can, after receiving the terminal capability information, Compared with the method of using the same scheduling parameters to schedule resources under different subcarrier spacings (SCS), on the one hand, it can reduce the insufficient capacity of the terminal to process data due to sufficient scheduling resources.
  • the abnormal data processing caused by the data processing improves the reliability of data transmission; on the other hand, when performing resource scheduling, the base station can schedule as many resources as possible for the terminal according to the terminal's capability, reduce the number of scheduling times, and improve the efficiency of resource scheduling. .
  • the terminal capability information is used to indicate the capability of the terminal to process the Physical Downlink Shared Channel (PDSCH) and/or the Physical Uplink Shared Channel (PUSCH) supported by the terminal under different subcarrier spacings (SCS).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal capability information also carries the capability of indicating that the terminal supports a physical downlink shared channel (PDSCH) and/or a physical uplink shared channel (PUSCH) under different subcarrier spacings (SCS). For example, 1 ms or N time slots (slots) are supported to process 7 physical downlink shared channels (PDSCH) in the first subcarrier spacing (SCS). In the second subcarrier spacing (SCS), 1 ms or N time slots (slots) are supported to process 4 physical downlink shared channels (PDSCH). Then the terminal capability information simultaneously indicates the capability of processing downlink shared channel (PDSCH) and physical downlink shared channel (PUSCH) supported under the first subcarrier spacing (SCS) and the second subcarrier spacing (SCS).
  • N is a positive integer greater than 1.
  • the processing capability information includes one of the following information:
  • PDSCH physical downlink shared channel
  • SCS subcarrier spacings
  • PDSCH physical downlink shared channels
  • SCS subcarrier spacing
  • PUSCH physical uplink shared channels
  • SCS subcarrier spacing
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • the number of time slots may be a range. For example 5 to 6. For another example, more than 3.
  • M is a positive integer greater than or equal to 1.
  • the terminal capability information includes information of the number M.
  • the terminal capability information includes the number of time slots required by the terminal to support processing one physical downlink shared control channel (PDSCH) under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the number of time slots required by the terminal to process one physical downlink shared channel (PDSCH) is N1; when the subcarrier spacing (SCS) is 480KHz, The number of time slots for the terminal to process one physical downlink shared channel (PDSCH) is N2; when the subcarrier spacing (SCS) is 960KHz, the number of time slots for the terminal to process one physical downlink shared channel (PDSCH) is N3; when the subcarrier spacing (SCS) is 1920KHz, the number of time slots for the terminal to process one physical downlink shared channel (PDSCH) is N4.
  • N1, N2, N3 and N4 may be equal or unequal, wherein N1, N2, N3 and N4 are positive integers.
  • the terminal capability information includes number information N1, N2, N3 and
  • the terminal capability information includes the number of time slots required by the terminal to support processing one physical uplink shared control channel (PUSCH) under different SCSs. For example, when the subcarrier spacing (SCS) is 240KHz, the number of time slots required by the terminal to process one physical uplink shared control channel (PUSCH) is T1; when the subcarrier spacing (SCS) is 480KHz , the number of time slots for the terminal to process one physical uplink shared control channel (PUSCH) is T2; when the subcarrier spacing (SCS) is 960KHz, the terminal processes one physical uplink shared control channel (PUSCH) time slots The number is T3; when the subcarrier spacing (SCS) is 1920KHz, the number of time slots for the terminal to process one physical uplink shared control channel (PUSCH) is T4.
  • T1, T2, T3 and T4 may be equal or unequal, wherein T1, T2, T3 and T4 are positive integers.
  • the terminal capability information includes number information T1, T2, T3 and T4.
  • the time interval between two adjacent transmissions may be a time length or a time slot between two adjacent data transmissions.
  • the time interval between two adjacent transmissions is 1ms.
  • the time interval between two adjacent transmissions is 4 time slots.
  • the time interval may be a range.
  • the time interval may include 4 to 5 time slots.
  • the time interval includes more than 4 time slots.
  • the time interval is:
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • the time interval between the Physical Downlink Shared Channel (PDSCH) and the Physical Uplink Shared Channel (PUSCH) adjacent to the Physical Downlink Shared Channel (PDSCH) is scheduled.
  • the time interval between two adjacent physical downlink shared channels (PDSCH) is processed 3 time slots (slots), and the two adjacent physical downlink shared channels (PDSCH) are processed.
  • Time interval between physical uplink shared channels (PUSCH) 4 time slots (slots)
  • processing between physical downlink shared channels (PDSCH) and physical uplink shared channels (PUSCH) adjacent to physical downlink shared channels (PDSCH) time interval 2 slots.
  • setting the time interval can reserve time for data processing of the terminal and improve the reliability of data transmission.
  • the longer the time interval and the longer the reserved time the longer the terminal has to process the data that needs to be transmitted in the time period, to ensure that the data can be completely transmitted.
  • the number of processed downlink shared channels (PDSCH) or the number of supported physical uplink shared channels (PUSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS) may be a range.
  • the number is 3 to 4.
  • the number is greater than 3.
  • the terminal capability information includes the number of processed physical downlink shared channels (PDSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the terminal supports processing X1 physical downlink shared channels (PDSCH) within 1ms; when the subcarrier spacing (SCS) is 480KHz, the terminal supports processing within 1ms X2 physical downlink shared channels (PDSCH); when the subcarrier spacing (SCS) is 960KHz, the terminal supports processing X3 physical downlink shared channels (PDSCH) within 1ms; when the subcarrier spacing (SCS) is 1920KHz Next, the terminal supports processing X4 physical downlink shared channels (PDSCH) within 1 ms.
  • SCS subcarrier spacing
  • X1, X2, X3 and X4 may be equal or unequal, wherein X1, X2, X3 and X4 are positive integers.
  • the terminal capability information includes number information X1, X2, X3 and X4.
  • the terminal capability information includes the number of processed physical uplink shared channels (PUSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the terminal supports processing Y1 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 480KHz, the terminal supports processing within 1ms Y2 physical uplink shared channels (PUSCH); when the subcarrier spacing (SCS) is 960KHz, the terminal supports processing Y3 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 1920KHz Next, the terminal supports processing Y4 physical uplink shared channels (PUSCH) within 1ms.
  • SCS subcarrier spacing
  • Y1, Y2, Y3 and Y4 may be equal or unequal, wherein Y1, Y2, Y3 and Y4 are positive integers.
  • the terminal capability information includes number information Y1, Y2, Y3 and Y4.
  • the terminal capability information includes the number of physical downlink shared channels (PDSCH) and physical uplink shared channels (PUSCH) supported by the terminal within a unit duration under different subcarrier spacings (SCS). For example, when the subcarrier spacing (SCS) is 240KHz, the terminal supports processing X1 physical downlink shared channels (PDSCH) and Y1 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 480KHz In the case of 960KHz, the terminal supports processing X2 physical downlink shared channels (PDSCH) and Y2 physical uplink shared channels (PUSCH) within 1ms; when the subcarrier spacing (SCS) is 960KHz, the terminal supports processing X3 within 1ms physical downlink shared channels (PUSCH) and Y3 physical uplink shared channels (PUSCH); when the subcarrier spacing (SCS) is 1920KHz, the terminal supports processing X4 physical downlink shared channels (PDSCH) and Y4 within 1ms Physical Uplink Shared
  • X1, X2, X3, X4, Y1, Y2, Y3, and Y4 are positive integers.
  • the terminal capability information includes number information X1, X2, X3, X4, Y1, Y2, Y3 and Y4.
  • the subcarrier spacing (SCS) 960khz
  • PDSCH physical downlink shared channels
  • the processing capability information includes one of the following information:
  • PDSCH physical downlink shared channel
  • SCS subcarrier spacing
  • PUSCH physical uplink shared channel
  • SCS subcarrier spacing
  • PDSCH physical downlink shared channels
  • SCS subcarrier spacing
  • PUSCH physical uplink shared channels
  • SCS subcarrier spacing
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • the processing capability of the terminal under the subcarrier spacing (SCS) is determined according to the bandwidth of the subcarrier spacing (SCS).
  • the subcarrier spacing (SCS) selectable by the terminal is 240KHz, 480KHz, 960KHz and 1920KHz.
  • the terminal in N time slots can process C1 physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH);
  • the (SCS) is 480KHz it is determined that the terminal in the N time slots can process C2 physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH);
  • the subcarrier spacing (SCS) is 960KHz, it is determined that In the N time slots, the terminal can process C3 physical downlink shared channels (PDSCH) or physical uplink shared channels (PUSCH);
  • the subcarrier spacing (SCS) is 1920KHz, it is determined that the terminal in the N time slots can process C4 Physical Downlink Shared Channel (PDSCH) or Physical Uplink Shared Channel (PUSCH).
  • C1, C2, C3 and C4 may be equal or unequal, wherein N, C1, C2, C3 and C4 are positive integers.
  • the terminal capability information includes number information N, C1, C2, C3 and C4.
  • N is a positive integer greater than 1.
  • the time lengths of the time slots corresponding to different subcarrier spacings (SCS) are different, and the terminals in the N time slots (slots) are determined according to the subcarrier spacing (SCS) to process the physical downlink shared channel (PDSCH) or the physical uplink shared channel.
  • SCS subcarrier spacing
  • the number of (PUSCH) can more accurately reflect the ability of the terminal to process the channel.
  • this embodiment provides a wireless communication method, wherein the method further includes:
  • Step 61 Send a scheduling instruction to the terminal based on the terminal capability information.
  • the subcarrier spacing (SCS) selectable by the terminal is 240KHz, 480KHz, 960KHz and 1920KHz.
  • the terminal capability information indicates: when the subcarrier spacing (SCS) is 240KHz, the terminal can process D1 physical downlink shared channels (PDSCH) in N time slots; when the subcarrier spacing (SCS) is In the case of 480KHz, the terminal in N time slots can process D2 physical downlink shared channels (PDSCH); when the subcarrier spacing (SCS) is 960KHz, the terminal in N time slots can process D3 physical downlink shared channels (PDSCH); when the subcarrier spacing (SCS) is 1920KHz, the terminal in N time slots can process D4 physical downlink shared channels (PDSCH).
  • the base station sends at most D1 physical downlink shared channels (PDSCH) scheduling instructions to the terminal; when the subcarrier spacing (SCS) is 240KHz In this case, within N time slots, the base station sends at most D2 physical downlink shared channels (PDSCH) scheduling instructions to the terminal; when the subcarrier spacing (SCS) is 960KHz, within N time slots, the base station Send at most D3 physical downlink shared channels (PDSCH) scheduling instructions to the terminal; when the subcarrier spacing (SCS) is 1920KHz, within N time slots, the base station sends at most D4 physical downlink shared channels to the terminal. (PDSCH) scheduling command.
  • D1, D2, D3 and D4 may be equal or unequal, wherein N, D1, D2, D3 and D4 are positive integers.
  • N is a positive integer greater than 1.
  • a wireless communication apparatus is provided in this embodiment, wherein, when applied to a terminal, the apparatus includes a reporting module 71 , wherein,
  • the reporting module 71 is configured to report terminal capability information, wherein the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the apparatus further includes a determining module 72, wherein the determining module 72 is configured to: determine the processing capability of the terminal under the subcarrier spacing (SCS) according to the bandwidth of the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the apparatus further includes a first receiving module 73 and a processing module 74, wherein,
  • the first receiving module 73 is configured to receive the scheduling instruction sent by the base station
  • the processing module 74 is configured to ignore the scheduling instruction in response to the number of physical downlink shared channels (PDSCH) and/or physical uplink shared channels (PUSCH) scheduled by the base station exceeding the terminal processing capability.
  • PDSCH physical downlink shared channels
  • PUSCH physical uplink shared channels
  • this embodiment provides a wireless communication device, wherein, when applied to a base station, the device includes a second receiving module 81 , wherein,
  • the second receiving module 81 is configured to receive terminal capability information reported by the terminal, where the terminal capability information is at least used to indicate the processing capability of the terminal under different subcarrier spacings (SCS).
  • SCS subcarrier spacings
  • the apparatus further includes a sending module 82, wherein the sending module 82 is configured to send a scheduling instruction to the terminal based on the terminal capability information.
  • Embodiments of the present disclosure provide a communication device, the communication device includes:
  • memory for storing processor-executable instructions
  • the processor is configured to, when executing the executable instructions, implement the method applied to any embodiment of the present disclosure.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize and store information on the communication device after the power is turned off.
  • the processor can be connected to the memory through a bus or the like, and is used to read the executable program stored on the memory.
  • An embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, the method of any embodiment of the present disclosure is implemented.
  • an embodiment of the present disclosure shows a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • base station 900 includes a processing component 922, which further includes one or more processors, and a memory resource, represented by memory 932, for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the aforementioned methods applied to the base station.

Abstract

本公开实施例提供了一种无线通信方法,其中,应用于终端中,所述方法包括:上报终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔SCS下的处理能力。

Description

无线通信的方法、装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线通信的方法、装置、通信设备及存储介质。
背景技术
第五代移动通信(5G)新空口(NR,New Radio)协议中,下行数据承载在物理下行共享信道(PDSCH,Physical Downlink Shared channel)上,上行数据承载在物理上行共享信道(PUSCH,Physical Uplink Shared channel)上。针对不同能力的终端,在一个时隙(slot)中基站可以调度一个或者多个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。
发明内容
本公开实施例公开了一种无线通信方法,其中,应用于终端中,所述方法包括:
上报终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔(SCS)下的处理能力。
在一个实施例中,所述终端能力信息,用于指示所述终端在不同所述子载波间隔(SCS)下支持的处理物理下行共享信道(PDSCH)和/或物理上行共享信道PUSCH的能力。
在一个实施例中,所述处理能力信息,包括以下之一的信息:
在不同子载波间隔(SCS)下所述终端支持的处理一个所述物理下行共享信道(PDSCH)所需的时隙个数;
在不同子载波间隔(SCS)下所述终端支持的处理一个所述物理上行共 享信道(PUSCH)所需的时隙个数;
在不同子载波间隔(SCS)下所述终端支持的相邻两次传输之间的时间间隔;
在不同子载波间隔(SCS)下单位时长内所述终端支持的处理所述物理下行共享信道(PDSCH)的个数;
在不同子载波间隔(SCS)下单位时长内所述终端支持的处理所述物理上行共享信道(PUSCH)的个数;
在不同在载波间隔(SCS)下单位时长内所述终端支持的处理所述物理下行共享信道(PDSCH)和所述物理上行共享信道(PUSCH)的总个数。
在一个实施例中,所述时间间隔为:
处理两个相邻所述物理下行共享信道(PDSCH)之间的时间间隔;
或者,
处理两个相邻所述物理上行共享信道(PUSCH)之间的时间间隔;
或者,
处理所述物理下行共享信道(PDSCH)和与所述物理下行共享信道(PDSCH)相邻的所述物理上行共享信道(PUSCH)之间的时间间隔。
在一个实施例中,所述方法,还包括:
根据所述子载波间隔(SCS)的带宽,确定所述终端在所述子载波间隔(SCS)下的处理能力。
在一个实施例中,所述方法,还包括:
接收所述基站发送的调度指令;
响应于基站调度的所述物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)的个数超过所述终端处理能力,忽略所述调度指令。
根据本公开实施例的第二方面,提供一种无线通信方法,其中,应用于基站中,所述方法包括:
接收终端上报的终端能力信息,其中,所述终端能力信息,至少用于 指示所述终端在不同子载波间隔(SCS)下的处理能力。
在一个实施例中,所述终端能力信息,用于指示所述终端在不同所述子载波间隔(SCS)下支持的处理物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)的能力。
在一个实施例中,所述处理能力信息,包括以下之一的信息:
在不同子载波间隔(SCS)下所述终端支持的处理一个所述物理下行共享信道(PDSCH)所需的时隙个数;
在不同在载波间隔(SCS)下所述终端支持的处理一个所述物理上行共享信道(PUSCH)所需的时隙个数;
在不同子载波间隔(SCS)下所述终端支持的相邻两次传输之间的时间间隔;
在不同子载波间隔(SCS)下单位时长内所述终端支持的处理所述物理下行共享信道(PDSCH)的个数;
在不同子载波间隔(SCS)下单位时长内所述终端支持的处理所述物理上行共享信道(PUSCH)的个数;
在不同子载波间隔(SCS)下单位时长内所述终端支持的处理所述物理下行共享信道(PDSCH)和所述物理上行共享信道(PUSCH)的总个数。
在一个实施例中,所述时间间隔为:
调度两个相邻所述物理下行共享信道(PDSCH)之间的时间间隔;
或者,
调度两个相邻所述物理上行共享信道(PUSCH)之间的时间间隔;
或者,
调度所述物理下行共享信道(PDSCH)和与所述物理下行共享信道(PDSCH)相邻的所述物理上行共享信道(PUSCH)之间的时间间隔。
在一个实施例中,所述终端在所述子载波间隔(SCS)下的处理能力是根据所述子载波间隔(SCS)的带宽确定的。
在一个实施例中,所述方法,还包括:
基于所述终端能力信息向终端发送调度指令。
根据本公开实施例的第三方面,提供一种无线通信装置,其中,应用于终端中,所述装置包括上报模块,其中,
所述上报模块,被配置为上报终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔(SCS)下的处理能力。
在一个实施例中,所述装置还包括确定模块,其中,所述确定模块,被配置为:根据所述子载波间隔(SCS)的带宽,确定所述终端在所述子载波间隔(SCS)下的处理能力。
在一个实施例中,所述装置还包括第一接收模块和处理模块,其中,
所述第一接收模块,被配置为接收所述基站发送的调度指令;
所述处理模块,被配置为响应于基站调度的所述物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)的个数超过所述终端处理能力,忽略所述调度指令。
根据本公开实施例的第四方面,提供一种无线通信装置,其中,应用于基站中,所述装置包括第二接收模块,其中,
所述第二接收模块,被配置为接收终端上报的终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔(SCS)下的处理能力。
在一个实施例中,所述装置还包括发送模块,其中,所述发送模块,被配置为基于所述终端能力信息向终端发送调度指令。
根据本公开实施例的第五方面,提供一种通信设备,所述通信设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公 开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,上报终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔(SCS)下的处理能力。这里,由于终端能力信息指示了所述终端在不同子载波间隔(SCS)下的处理能力,基站在接收到该终端能力信息后,就能够根据终端在不同子载波间隔(SCS)下的处理能力对资源进行调度,相比在不同子载波间隔(SCS)下都采用相同的调度参数对资源进行调度的方式,一方面,可以减少由于调度的资源充足但终端处理数据的能力不足带来的数据处理异常,提升了数据传输的可靠性;另一方面,基站在进行资源调度时,可以根据终端的处理能力尽可能地多给终端调度资源,减少调度的次数,提升资源调度的效率。
附图说明
图1是一种无线通信系统的结构示意图。
图2是根据一示例性实施例示出的一种无线通信方法的流程图。
图3是根据一示例性实施例示出的一种无线通信方法的流程图。
图4是根据一示例性实施例示出的一种无线通信方法的流程图。
图5是根据一示例性实施例示出的一种无线通信方法的流程图。
图6是根据一示例性实施例示出的一种无线通信方法的流程图。
图7是根据一示例性实施例示出的一种无线通信装置的示意图。
图8是根据一示例性实施例示出的一种无线通信装置的示意图。
图9是根据一示例性实施例示出的一种基站的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或 多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实 施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了方便对本公开任一实施例的理解,首先,通过一个实施例对信道进行调度的方法进行说明。
在一个实施例中,终端会向基站上报终端的物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的处理能力。例如,在一个 时隙(slot)中能处理1、2、4或者7个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。
在一个实施例中,在52.6GHZ以下的频率中,可选的子载波间隔(SCS,subcarrier spacing)为15KHz、30KHz、60KHz和120KHz,一个时隙(slot)包含14个正交频分多址(OFDM,Orthogonal Frequency Division Multiplexing)符号(这里,如果是扩展循环前缀(CP,Cyclic Prefix)CP情况下则只有12个正交频分多址(OFDM)符号),一个时隙(slot)的时长在子载波间隔(SCS)为15KHz的情况下,时长为1ms;在子载波间隔(SCS)为30KHz的情况下,时长为0.5ms;在子载波间隔(SCS)为60KHz的情况下,时长为0.25ms。可以看到子载波间隔(SCS)越大,一个时隙(slot)的持续时间越短。
在一个实施例中,在高频段60GHz左右,为了应对相位噪声,通常会选取较大的子载波间隔(SCS)。例如960KHz。在960KHz的情况下,一个时隙(slot)的持续时间长度为0.015625ms,即1/64ms。
在高频通信系统中,一个时隙(slot)的时长远低于1ms。例如,为0.015625ms。终端的数据处理能力可能无法做到能在每个时隙(slot)内都能处理物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。
如图2所示,本实施例中提供一种无线通信方法,其中,应用于终端中,该方法包括:
步骤21,上报终端能力信息,其中,终端能力信息,至少用于指示终端在不同子载波间隔(SCS,subcarrier spacing)下的处理能力。
在一个实施例中,处理能力可以是终端处理数据或者支持处理信道的能力。例如,当处理能力为终端处理数据的能力时,处理能力可以是终端的编码和/或解码能力,也可以是终端的调制/和/或解调能力。当处理能力为终端支持处理信道的能力时,处理能力可以是终端支持处理多少个物理下 行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的能力。这里,终端受限于终端的软件和硬件配置,不同类型的终端可能具有不同的处理能力。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
这里,终端可以是向基站上报终端能力信息。该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,响应于终端与基站建立无线资源控制(RRC,Radio Resource Control)连接,上报终端能力信息。这样,基站能够及时获得该终端能力信息,并基于该终端能力信息进行资源的调度。
在一个实施例中,可以是响应于接收到基站发送的获取终端能力信息的获取请求,向基站发送该终端能力信息。这里,获取请求中可以包括需要获取的信息的内容。例如,需要获取终端处理物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的能力的信息。
在一个实施例中,终端会周期性地向基站发送终端能力信息直至接收到基站发送的针对该终端能力信息的反馈信息。这样,可以减少由于网络异常导致的基站接收不到终端能力信息的情况,提升了数据传输的可靠性。
在一个实施例中,可以利用无线资源控制(RRC)信令携带终端能力信息,将该终端能力信息上报给基站。这样,能够利用已有的无线资源控制(RRC)信令发送终端能力信息,提升了无线资源控制(RRC)信令的兼容性。
在一个实施例中,终端存储有终端能力信息。这里,终端能力信息可以是终端在出厂设置时配置并存储的。这里,终端能力信息的存储方式和 存储位置可以根据预设规则确定。例如,终端能力信息都存储在A存储区域,以方便获取。
在一个实施例中,终端能力信息携带有终端的身份标识(ID,Identity document)。这里,终端的身份标识用于唯一标识一个终端。这里,终端的标识信息可以是终端所包含的用户识别模块(SIM,Subscriber Identity Module)的用户识别模块(SIM)号。这样,基站在接收到终端能力信息后就可以基于终端能力信息携带的终端的身份标识确定终端能力信息对应的终端。
在一个实施例中,终端可选的子载波间隔(SCS)为240KHz、480KHz、960KHz和1920KHz。在一个实施例中,在子载波间隔(SCS)为240KHz的情况下,一个时隙(slot)的时长为0.0625ms,N个时隙内终端能够处理a个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情况下,一个时隙(slot)的时长为0.03125ms,N个时隙内终端能够处理b个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,一个时隙(slot)的时长为0.015625ms,N个时隙内终端能够处理c个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的情况下,一个时隙(slot)的时长为0.0078125ms,N个时隙内终端能够处理d个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。这里,a、b、c和d可以相等或者不相等,其中,N、a、b、c、d为正整数。这里N为大于1的正整数。
在一个实施例中,在高频段60GHz左右,为了减少相位噪声,通常会选取较大的子载波间隔(SCS)。例如960KHz。在960KHz的情况下,一个时隙(slot)的时长为0.015625ms,即1/64ms。由于一个时隙(slot)持续时长太短,终端可能需要多个时隙才能够处理1个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。
在一个实施例中,请参见表一,终端能力信息中,针对不同的子载波间隔(SCS)设置不同的信息域。每个信息域用于承载终端在对应子载波间隔(SCS)下的终端能力信息。例如,在N个时隙内处理物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的数量信息。这里,每个子载波间隔(SCS)可以通过一个子载波间隔(SCS)标识表示。表一中,“001”表示子载波间隔(SCS)为240KHz;“010”表示子载波间隔(SCS)为480KHz;“011”表示子载波间隔(SCS)为960KHz;“100”表示子载波间隔(SCS)为1920KHz。
表一
Figure PCTCN2020100271-appb-000001
在本实施例中,由于终端能力信息指示了所述终端在不同子载波间隔(SCS)下的处理能力,基站在接收到该终端能力信息后,就能够根据终端在不同子载波间隔(SCS)下的处理能力对资源进行调度,相比在不同子载波间隔(SCS)下都采用相同的处理参数对资源进行调度的方式,一方面,可以减少由于调度的资源充足但终端处理数据的能力不足带来的数据处理异常,提升了数据传输的可靠性;另一方面,在进行资源处理时,基站可以根据终端的处理能力尽可能地多给终端调度资源,减少调度的次数,提升资源调度的效率。
在一个实施例中,终端能力信息,用于指示终端在不同子载波间隔(SCS)下支持的处理物理下行共享信道(PDSCH)和/或物理上行共享信 道(PUSCH)的能力。
在一个实施例中,终端能力信息同时携带有指示终端在不同子载波间隔(SCS)下支持的处理物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)的能力。例如,在第一子载波间隔(SCS)下支持1ms或者N个时隙(slot)处理7个物理下行共享信道(PDSCH)。在第二子载波间隔(SCS)下支持1ms或者N个时隙(slot)处理4个物理下行共享信道(PDSCH)。则终端能力信息同时指示第一子载波间隔(SCS)和第二子载波间隔(SCS)下支持的处理下行共享信道(PDSCH)和物理下行共享信道(PUSCH)的能力。这里N为大于1的正整数。
在一个实施例中,处理能力信息,包括以下之一的信息:
在不同子载波间隔(SCS)下终端支持的处理一个物理下行共享信道(PDSCH)所需的时隙个数;
在不同子载波间隔(SCS)下所述终端支持的处理一个物理上行共享信道(PUSCH)所需的时隙个数;
在不同子载波间隔(SCS)下终端支持的相邻两次传输之间的时间间隔;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)的个数;
在不同子载波间隔(SCS)下单位时长内所述终端支持的处理物理上行共享信道(PUSCH)的个数;
在不同在载波间隔(SCS)下单位时长内所述终端支持的处理所述PDSCH和所述PUSCH的总个数。
在一个实施例中,时隙个数可以是一个范围。例如5至6个。再比如,大于3个。
在一个实施例中,每M个时隙(slot)内可以处理一个物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)。例如,在子载波间隔(SCS)=960khz时,M=4;在子载波间隔(SCS)=480khz时,M=2。这里,M为 大于或等于1的正整数。这里,终端能力信息包括个数M的信息。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下终端支持处理一个物理下行共享控制信道(PDSCH)所需的时隙个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端处理1个物理下行共享信道(PDSCH)所需的时隙个数为N1个;在子载波间隔(SCS)为480KHz的情况下,终端处理1个物理下行共享信道(PDSCH)的时隙个数为N2个;在子载波间隔(SCS)为960KHz的情况下,终端处理1个物理下行共享信道(PDSCH)的时隙个数为N3个;在子载波间隔(SCS)为1920KHz的情况下,终端处理1个物理下行共享信道(PDSCH)的时隙个数为N4个。这里,N1、N2、N3和N4可以相等或者不相等,其中,N1、N2、N3和N4为正整数。这里,终端能力信息包括个数信息N1、N2、N3和N4。
在一个实施例中,终端能力信息包括在不同SCS下终端支持处理一个物理上行共享控制信道(PUSCH)所需的时隙个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)所需的时隙个数为T1个;在子载波间隔(SCS)为480KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)的时隙个数为T2个;在子载波间隔(SCS)为960KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)的时隙个数为T3个;在子载波间隔(SCS)为1920KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)的时隙个数为T4个。这里,T1、T2、T3和T4可以相等或者不相等,其中,T1、T2、T3和T4为正整数。这里,终端能力信息包括个数信息T1、T2、T3和T4。
在一个实施例中,相邻两次传输之间的时间间隔可以是进行相邻的两次数据传输之间的时间长度或者时隙。例如。相邻两个传输之间的时间间隔为1ms。再比如,相邻两个传输之间的时间间隔为4个时隙。
在一个实施例中,时间间隔可以是一个范围。例如,时间间隔可以包括4至5个时隙。再比如,时间间隔包括的时隙大于4。
在一个实施例中,时间间隔为:
处理两个相邻物理下行共享信道(PDSCH)之间的时间间隔;
或者,
处理两个相邻物理上行共享控制信道(PUSCH)之间的时间间隔;
或者,
处理物理下行共享信道(PDSCH)和与物理下行共享信道(PDSCH)相邻的物理上行共享控制信道(PUSCH)之间的时间间隔。
在一个实施例中,在子载波间隔=960khz时,时间间隔=4个时隙(slot);在子载波间隔=480khz时,时间间隔=2个时隙(slot)。
在一个实施例中,在子载波间隔(SCS)=960khz时,处理两个相邻的物理下行共享信道(PDSCH)之间的时间间隔=3个时隙(slot),处理两个相邻的物理上行共享控制信道(PUSCH)之间的时间间隔=4个时隙(slot),处理物理下行共享信道(PDSCH)和与物理下行共享信道(PDSCH)相邻的物理上行共享控制信道(PUSCH)之间的时间间隔=2个时隙(slot)。
这里,设置时间间隔可以给终端的数据处理预留时间,提升数据传输的可靠性。在一个实施例中,时间间隔越长,预留时间越长,则终端具有更长的时间对该时间段需要传输的数据进行处理,确保数据能够完整传输。
在一个实施例中,在不同子载波间隔(SCS)下单位时长内终端支持的处理下行共享信道(PDSCH)的个数或者支持的处理物理上行共享信道(PUSCH)的个数可以是一个范围。例如,个数为4至5个。再例如,个数大于4个。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)的个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端支持在1ms内处理X1个物理下行共享信道(PDSCH);在子载波间隔(SCS)为480KHz的情况下,终端支持在1ms内处理X2个物理下行共享信道(PDSCH);在子载波间隔 (SCS)为960KHz的情况下,终端支持在1ms内处理X3个物理下行共享信道(PDSCH);在子载波间隔(SCS)为1920KHz的情况下,终端支持在1ms内处理X4个物理下行共享信道(PDSCH)。这里,X1、X2、X3和X4可以相等或者不相等,其中,X1、X2、X3和X4为正整数。这里,终端能力信息包括个数信息X1、X2、X3和X4。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下单位时长内终端支持的处理物理上行共享信道(PUSCH)的个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端支持在1ms内处理Y1个物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情况下,终端支持在1ms内处理Y2个物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,终端支持在1ms内处理Y3个物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的情况下,终端支持在1ms内处理Y4个物理上行共享信道(PUSCH)。这里,Y1、Y2、Y3和Y4可以相等或者不相等,其中,Y1、Y2、Y3和Y4为正整数。这里,终端能力信息包括个数信息Y1、Y2、Y3和Y4。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)和物理上行共享信道(PUSCH)的个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端支持在1ms内处理X1个物理下行共享信道(PDSCH)和Y1个物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情况下,终端支持在1ms内处理X2个物理下行共享信道(PDSCH)和Y2个物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,终端支持在1ms内处理X3个物理下行共享信道(PUSCH)和Y3个物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的情况下,终端支持在1ms内处理X4个物理下行共享信道(PDSCH)和Y4个物理上行共享信道(PUSCH)。这里,X1、X2、X3、X4、Y1、Y2、Y3和Y4为正整数。这 里,终端能力信息包括个数信息X1、X2、X3、X4、Y1、Y2、Y3和Y4。
在一个实施例中,在子载波间隔(SCS)=960khz时,可以规定在1ms(即64个时隙)内,处理物理下行共享信道(PDSCH)的总个数不超过10个;在子载波间隔(SCS)=480khz时,可以规定在1ms(即32个时隙)内,处理物理下行共享信道(PDSCH)的总数不超过7个。
在一个实施例中,处理能力信息,包括以下之一的信息:
在不同子载波间隔(SCS)下终端支持的处理一个物理下行共享信道(PDSCH)所需的最少时隙个数;
在不同子载波间隔(SCS)下终端支持的处理一个物理上行共享信道(PUSCH)所需的最少时隙个数;
在不同子载波间隔(SCS)下终端支持的相邻两次传输之间的最小时间间隔;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)的最大个数;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理上行共享信道(PUSCH)的最大个数;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)和物理上行共享信道(PUSCH)的最大总个数。
处理处理如图3所示,本实施例中提供一种无线通信方法,其中,该方法,还包括:
步骤31,根据子载波间隔(SCS)的带宽,确定终端在子载波间隔(SCS)下的处理能力。
在一个实施例中,终端可选的子载波间隔(SCS)为240KHz、480KHz、960KHz和1920KHz。在一个实施例中,在子载波间隔(SCS)为240KHz的情况下,确定N个时隙内终端能够处理C1个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情 况下,确定N个时隙内终端能够处理C2个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,确定N个时隙内终端能够处理C3个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的情况下,确定N个时隙内终端能够处理C4个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。这里,C1、C2、C3和C4可以相等或者不相等,其中,N、C1、C2、C3和C4为正整数。这里N为大于1的正整数。这里,终端能力信息包括个数信息N、C1、C2、C3和C4。
这里,不同的子载波间隔(SCS)对应的时隙的时间长度不一样,根据子载波间隔(SCS)确定一个时隙(slot)内终端处理物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的个数能够更加准确地反应终端处理信道的能力。
如图4所示,本实施例中提供一种无线通信方法,其中,该方法,还包括:
步骤41,接收基站发送的调度指令;
步骤42,响应于基站调度的物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)的个数超过终端处理能力,忽略调度指令。
在一个实施例中,终端接收基站发送的下行控制指示(DCI,Downlink Control Indicator),解析出调度指令。当确定基站在1ms内累计调度的物理下行共享信道(PDSCH)的个数超过终端处理能力,忽略调度指令。
在一个实施例中,终端上报给基站的终端能力指示信息指示终端能力为在子载波间隔SCS=960khz下,在64个时隙(slot)内可以最多处理10个物理下行共享信道(PDSCH)。如果基站在第0个时隙至63个时隙内,已经指示终端处理了10个物理下行共享信道(PDSCH),又指示终端处理第11个物理下行共享信道(PDSCH),那么终端在接收到第11个调度指令后,终端将忽略该第11个物理下行共享信道(PDSCH)的调度指令。这 样,可以减少终端对超出终端处理能力之外的信道进行处理,提升处理数据的可靠性。
如图5所示,本实施例中提供一种无线通信方法,其中,应用于基站中,方法包括:
步骤51,接收终端上报的终端能力信息,其中,终端能力信息,至少用于指示终端在不同子载波间隔(SCS)下的处理能力。
在一个实施例中,处理能力可以是终端处理数据或者支持处理信道的能力。例如,当处理能力为终端处理数据的能力时,处理能力可以是终端的编码和/或解码能力,也可以是终端的调制/和/或解调能力。当处理能力为终端支持处理信道的能力时,处理能力可以是终端支持处理多少个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的能力。这里,终端受限于终端的软件和硬件配置,不同类型的终端可能具有不同的处理能力。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。
在一个实施例中,接收终端发送的响应于终端与基站建立无线资源控制(RRC)连接上报的终端能力信息。这样,基站能够及时获得该终端能力信息,并基于该终端能力信息进行资源的调度。
在一个实施例中,可以是接收终端响应于接收到基站发送的获取终端能力信息的获取请求向基站发送的该终端能力信息。这里,获取请求中可以包括需要获取的信息的内容。例如,需要获取终端处理物理下行共享信 道(PDSCH)或者物理上行共享信道(PUSCH)的能力的信息。
在一个实施例中,终端会周期性地向基站发送终端能力信息直至接收到基站发送的针对该终端能力信息的反馈信息。这样,可以减少由于网络异常导致的基站接收不到终端能力信息的情况,提升了数据传输的可靠性。
在一个实施例中,可以接收终端发送的携带有终端能力信息无线资源控制(RRC)信令。这样,能够利用已有的无线资源控制(RRC)信令发送终端能力信息,提升了无线资源控制(RRC)信令的兼容性。
在一个实施例中,终端能力信息携带有终端的身份标识(ID,Identity document)。这里,终端的身份标识用于唯一标识一个终端。这里,终端的标识信息可以是终端所包含的用户识别模块(SIM,Subscriber Identity Module)的用户识别模块(SIM)号。这样,基站在接收到终端能力信息后就可以基于终端能力信息携带的终端的身份标识确定终端能力信息对应的终端。
在一个实施例中,终端可选的子载波间隔(SCS)为240KHz、480KHz、960KHz和1920KHz。在一个实施例中,在子载波间隔(SCS)为240KHz的情况下,一个时隙(slot)的时长为0.0625ms,N个时隙内终端能够处理a个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情况下,一个时隙(slot)的时长为0.03125ms,N个时隙内终端能够处理b个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,一个时隙(slot)的时长为0.015625ms,N个时隙内终端能够处理c个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的情况下,一个时隙(slot)的时长为0.0078125ms,N个时隙内终端能够处理d个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。这里,a、b、c和d可以相等或者不相等,其中,N、a、b、c、d为正整数。这里N为大于1的正整数。
在一个实施例中,在高频段60GHz左右,为了减少相位噪声,通常会选取较大的子载波间隔(SCS)。例如960KHz。在960KHz的情况下,一个时隙(slot)的时长为0.015625ms,即1/64ms。由于一个时隙(slot)持续时长太短,终端可能需要多个时隙才能够处理1个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。
在一个实施例中,请参见表一,终端能力信息中,针对不同的子载波间隔(SCS)设置不同的信息域。每个信息域用于承载终端在对应子载波间隔(SCS)下的终端能力信息。例如,处理物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的时隙数量信息。这里,每个子载波间隔(SCS)可以通过一个子载波间隔(SCS)标识表示。表一中,“001”表示子载波间隔(SCS)为240KHz;“010”表示子载波间隔(SCS)为480KHz;“011”表示子载波间隔(SCS)为960KHz;“100”表示子载波间隔(SCS)为1920KHz。
在本实施例中,由于终端能力信息指示了所述终端在不同子载波间隔(SCS)下的处理能力,基站在接收到该终端能力信息后,就能够根据终端在不同子载波间隔(SCS)下的处理能力对资源进行调度,相比在不同子载波间隔(SCS)下都采用相同的调度参数对资源进行调度的方式,一方面,可以减少由于调度的资源充足但终端处理数据的能力不足带来的数据处理异常,提升了数据传输的可靠性;另一方面,在进行资源调度时,基站可以根据终端的能力尽可能地多给终端调度资源,减少调度的次数,提升资源调度的效率。
在一个实施例中,终端能力信息,用于指示终端在不同子载波间隔(SCS)下支持的处理物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)的能力。
在一个实施例中,终端能力信息同时携带有指示终端在不同子载波间隔(SCS)下支持的处理物理下行共享信道(PDSCH)和/或物理上行共享 信道(PUSCH)的能力。例如,在第一子载波间隔(SCS)下支持1ms或者N个时隙(slot)处理7个物理下行共享信道(PDSCH)。在第二子载波间隔(SCS)下支持1ms或者N个时隙(slot)处理4个物理下行共享信道(PDSCH)。则终端能力信息同时指示第一子载波间隔(SCS)和第二子载波间隔(SCS)下支持的处理下行共享信道(PDSCH)和物理下行共享信道(PUSCH)的能力。这里N为大于1的正整数。
在一个实施例中,处理能力信息,包括以下之一的信息:
在不同子载波间隔(SCS)下终端支持的处理一个物理下行共享信道(PDSCH)所需的时隙个数;
在不同子载波间隔(SCS)下所述终端支持的处理一个物理上行共享信道(PUSCH)所需的时隙个数;
在不同子载波间隔(SCS)下终端支持的相邻两次传输之间的时间间隔;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)的个数;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理上行共享信道(PUSCH)的个数;
在不同在载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)和物理上行共享信道(PUSCH)的总个数。
在一个实施例中,时隙个数可以是一个范围。例如5至6个。再比如,大于3个。
在一个实施例中,每M个时隙(slot)内可以处理一个物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)。例如,在子载波间隔(SCS)=960khz时,M=4;在子载波间隔(SCS)=480khz时,M=2。这里,M为大于或等于1的正整数。这里,终端能力信息包括个数M的信息。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下终端支持处理一个物理下行共享控制信道(PDSCH)所需的时隙个数。例如, 在子载波间隔(SCS)为240KHz的情况下,终端处理1个物理下行共享信道(PDSCH)所需的时隙个数为N1个;在子载波间隔(SCS)为480KHz的情况下,终端处理1个物理下行共享信道(PDSCH)的时隙个数为N2个;在子载波间隔(SCS)为960KHz的情况下,终端处理1个物理下行共享信道(PDSCH)的时隙个数为N3个;在子载波间隔(SCS)为1920KHz的情况下,终端处理1个物理下行共享信道(PDSCH)的时隙个数为N4个。这里,N1、N2、N3和N4可以相等或者不相等,其中,N1、N2、N3和N4为正整数。这里,终端能力信息包括个数信息N1、N2、N3和N4。
在一个实施例中,终端能力信息包括在不同SCS下终端支持处理一个物理上行共享控制信道(PUSCH)所需的时隙个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)所需的时隙个数为T1个;在子载波间隔(SCS)为480KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)的时隙个数为T2个;在子载波间隔(SCS)为960KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)的时隙个数为T3个;在子载波间隔(SCS)为1920KHz的情况下,终端处理1个物理上行共享控制信道(PUSCH)的时隙个数为T4个。这里,T1、T2、T3和T4可以相等或者不相等,其中,T1、T2、T3和T4为正整数。这里,终端能力信息包括个数信息T1、T2、T3和T4。
在一个实施例中,相邻两次传输之间的时间间隔可以是进行相邻的两次数据传输之间的时间长度或者时隙。例如。相邻两个传输之间的时间间隔为1ms。再比如,相邻两个传输之间的时间间隔为4个时隙。
在一个实施例中,时间间隔可以是一个范围。例如,时间间隔可以包括4至5个时隙。再比如,时间间隔包括的时隙大于4。
在一个实施例中,时间间隔为:
调度两个相邻物理下行共享信道(PDSCH)之间的时间间隔;
或者,
调度两个相邻物理上行共享信道(PUSCH)之间的时间间隔;
或者,
调度物理下行共享信道(PDSCH)和与物理下行共享信道(PDSCH)相邻的物理上行共享信道(PUSCH)之间的时间间隔。
在一个实施例中,在子载波间隔=960khz时,时间间隔=4个时隙(slot);在子载波间隔=480khz时,时间间隔=2个时隙(slot)。
在一个实施例中,在子载波间隔(SCS)=960khz时,处理两个相邻的物理下行共享信道(PDSCH)之间的时间间隔=3个时隙(slot),处理两个相邻的物理上行共享信道(PUSCH)之间的时间间隔=4个时隙(slot),处理物理下行共享信道(PDSCH)和与物理下行共享信道(PDSCH)相邻的物理上行共享信道(PUSCH)之间的时间间隔=2个时隙(slot)。
这里,设置时间间隔可以给终端的数据处理预留时间,提升数据传输的可靠性。在一个实施例中,时间间隔越长,预留时间越长,则终端具有更长的时间对该时间段需要传输的数据进行处理,确保数据能够完整传输。
在一个实施例中,在不同子载波间隔(SCS)下单位时长内终端支持的处理下行共享信道(PDSCH)的个数或者支持的处理物理上行共享信道(PUSCH)的个数可以是一个范围。例如,个数为3至4个。再例如,个数大于3个。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)的个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端支持在1ms内处理X1个物理下行共享信道(PDSCH);在子载波间隔(SCS)为480KHz的情况下,终端支持在1ms内处理X2个物理下行共享信道(PDSCH);在子载波间隔(SCS)为960KHz的情况下,终端支持在1ms内处理X3个物理下行共享信道(PDSCH);在子载波间隔(SCS)为1920KHz的情况下,终端支持在1ms内处理X4个物理下行共享信道(PDSCH)。这里,X1、X2、X3 和X4可以相等或者不相等,其中,X1、X2、X3和X4为正整数。这里,终端能力信息包括个数信息X1、X2、X3和X4。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下单位时长内终端支持的处理物理上行共享信道(PUSCH)的个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端支持在1ms内处理Y1个物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情况下,终端支持在1ms内处理Y2个物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,终端支持在1ms内处理Y3个物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的情况下,终端支持在1ms内处理Y4个物理上行共享信道(PUSCH)。这里,Y1、Y2、Y3和Y4可以相等或者不相等,其中,Y1、Y2、Y3和Y4为正整数。这里,终端能力信息包括个数信息Y1、Y2、Y3和Y4。
在一个实施例中,终端能力信息包括在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)和物理上行共享信道(PUSCH)的个数。例如,在子载波间隔(SCS)为240KHz的情况下,终端支持在1ms内处理X1个物理下行共享信道(PDSCH)和Y1个物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情况下,终端支持在1ms内处理X2个物理下行共享信道(PDSCH)和Y2个物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,终端支持在1ms内处理X3个物理下行共享信道(PUSCH)和Y3个物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的情况下,终端支持在1ms内处理X4个物理下行共享信道(PDSCH)和Y4个物理上行共享信道(PUSCH)。这里,X1、X2、X3、X4、Y1、Y2、Y3和Y4为正整数。这里,终端能力信息包括个数信息X1、X2、X3、X4、Y1、Y2、Y3和Y4。
在一个实施例中,在子载波间隔(SCS)=960khz时,可以规定在1ms(即64个时隙)内,处理的物理下行共享信道(PDSCH)的总数不超过 10个;在子载波间隔(SCS)=480khzSCS时,可以规定在1ms(即32个时隙)内,被处理的物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的总数不超过7个。
在一个实施例中,处理能力信息,包括以下之一的信息:
在不同子载波间隔(SCS)下终端支持的处理一个物理下行共享信道(PDSCH)所需的最少时隙个数;
在不同子载波间隔(SCS)下终端支持的处理一个物理上行共享信道(PUSCH)所需的最少时隙个数;
在不同子载波间隔(SCS)下终端支持的相邻两次传输之间的最小时间间隔;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)的最大个数;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理上行共享信道(PUSCH)的最大个数;
在不同子载波间隔(SCS)下单位时长内终端支持的处理物理下行共享信道(PDSCH)和物理上行共享信道(PUSCH)的最大总个数。
在一个实施例中,终端在子载波间隔(SCS)下的处理能力是根据子载波间隔(SCS)的带宽确定的。
在一个实施例中,终端可选的子载波间隔(SCS)为240KHz、480KHz、960KHz和1920KHz。在一个实施例中,在子载波间隔(SCS)为240KHz的情况下,确定N个时隙内终端能够处理C1个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为480KHz的情况下,确定N个时隙内终端能够处理C2个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为960KHz的情况下,确定N个时隙内终端能够处理C3个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH);在子载波间隔(SCS)为1920KHz的 情况下,确定N个时隙内终端能够处理C4个物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)。这里,C1、C2、C3和C4可以相等或者不相等,其中,N、C1、C2、C3和C4为正整数。这里,终端能力信息包括个数信息N、C1、C2、C3和C4。这里N为大于1的正整数。
这里,不同的子载波间隔(SCS)对应的时隙的时间长度不一样,根据子载波间隔(SCS)确定N个时隙(slot)内终端处理物理下行共享信道(PDSCH)或者物理上行共享信道(PUSCH)的个数能够更加准确地反应终端处理信道的能力。
如图6所示,本实施例中提供一种无线通信方法,其中,该方法,还包括:
步骤61,基于终端能力信息向终端发送调度指令。
在一个实施例中,终端可选的子载波间隔(SCS)为240KHz、480KHz、960KHz和1920KHz。在一个实施例中,终端能力信息指示:在子载波间隔(SCS)为240KHz的情况下,N个时隙内终端能够处理D1个物理下行共享信道(PDSCH);在子载波间隔(SCS)为480KHz的情况下,N个时隙内终端能够处理D2个物理下行共享信道(PDSCH);在子载波间隔(SCS)为960KHz的情况下,N个时隙内终端能够处理D3个物理下行共享信道(PDSCH);在子载波间隔(SCS)为1920KHz的情况下,N个时隙内终端能够处理D4个物理下行共享信道(PDSCH)。则在子载波间隔(SCS)为240KHz的情况下,在N个时隙内,基站最多向终端发送处理D1个物理下行共享信道(PDSCH)的调度指令;在子载波间隔(SCS)为240KHz的情况下,在N个时隙内,基站最多向终端发送处理D2个物理下行共享信道(PDSCH)的调度指令;在子载波间隔(SCS)为960KHz的情况下,在N个时隙内,基站最多向终端发送处理D3个物理下行共享信道(PDSCH)的调度指令;在子载波间隔(SCS)为1920KHz的情况下,在N个时隙内,基站最多向终端发送处理D4个物理下行共享信道(PDSCH)的调度指令。 这里,D1、D2、D3和D4可以相等或者不相等,其中,N、D1、D2、D3和D4为正整数。这里N为大于1的正整数。
如图7所示,本实施例中提供一种无线通信装置,其中,应用于终端中,装置包括上报模块71,其中,
上报模块71,被配置为上报终端能力信息,其中,终端能力信息,至少用于指示终端在不同子载波间隔(SCS)下的处理能力。
在一个实施例中,装置还包括确定模块72,其中,确定模块72,被配置为:根据子载波间隔(SCS)的带宽,确定终端在子载波间隔(SCS)下的处理能力。
在一个实施例中,装置还包括第一接收模块73和处理模块74,其中,
第一接收模块73,被配置为接收基站发送的调度指令;
处理模块74,被配置为响应于基站调度的物理下行共享信道(PDSCH)和/或物理上行共享信道(PUSCH)的个数超过终端处理能力,忽略调度指令。
如图8所示,本实施例中提供一种无线通信装置,其中,应用于基站中,装置包括第二接收模块81,其中,
第二接收模块81,被配置为接收终端上报的终端能力信息,其中,终端能力信息,至少用于指示终端在不同子载波间隔(SCS)下的处理能力。
在一个实施例中,装置还包括发送模块82,其中,发送模块82,被配置为基于终端能力信息向终端发送调度指令。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例提供一种通信设备,通信设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为:用于运行可执行指令时,实现应用于本公开任意实施例的方法。
其中,处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序。
本公开实施例还提供一种计算机存储介质,其中,计算机存储介质存储有计算机可执行程序,可执行程序被处理器执行时实现本公开任意实施例的方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
如图9所示,本公开一实施例示出一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图9,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述基站的任意方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实 施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (19)

  1. 一种无线通信方法,其中,应用于终端中,所述方法包括:
    上报终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔SCS下的处理能力。
  2. 根据权利要求1所述的方法,其中,所述终端能力信息,用于指示所述终端在不同所述子载波间隔SCS下支持的处理物理下行共享信道PDSCH和/或物理上行共享信道PUSCH的能力。
  3. 根据权利要求2所述的方法,其中,所述处理能力信息,包括以下之一的信息:
    在不同SCS下所述终端支持的处理一个所述PDSCH所需的时隙个数;
    在不同SCS下所述终端支持的处理一个所述PUSCH所需的时隙个数;
    在不同SCS下所述终端支持的相邻两次传输之间的时间间隔;
    在不同SCS下单位时长内所述终端支持的处理所述PDSCH的个数;
    在不同SCS下单位时长内所述终端支持的处理所述PUSCH的个数;
    在不同SCS下单位时长内所述终端支持的处理所述PDSCH和所述PUSCH的总个数。
  4. 根据权利要求3所述的方法,其中,所述时间间隔为:
    处理两个相邻所述PDSCH之间的时间间隔;
    或者,
    处理两个相邻所述PUSCH之间的时间间隔;
    或者,
    处理所述PDSCH和与所述PDSCH相邻的所述PUSCH之间的时间间隔。
  5. 根据权利要求1所述的方法,其中中,所述方法,还包括:
    根据所述SCS的带宽,确定所述终端在所述子载波间隔SCS下的处理 能力。
  6. 根据权利要求1所述的方法,其中,所述方法,还包括:
    接收所述基站发送的调度指令;
    响应于基站调度的所述PDSCH和/或PUSCH的个数超过所述终端处理能力,忽略所述调度指令。
  7. 一种无线通信方法,其中,应用于基站中,所述方法包括:
    接收终端上报的终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔SCS下的处理能力。
  8. 根据权利要求7所述的方法,其中,所述终端能力信息,用于指示所述终端在不同所述子载波间隔SCS下支持的处理物理下行共享信道PDSCH和/或物理上行共享信道PUSCH的能力。
  9. 根据权利要求8所述的方法,其中,所述处理能力信息,包括以下之一的信息:
    在不同SCS下所述终端支持的处理一个所述PDSCH所需的时隙个数;
    在不同SCS下所述终端支持的处理一个所述PUSCH所需的时隙个数;
    在不同SCS下所述终端支持的相邻两次传输之间的时间间隔;
    在不同SCS下单位时长内所述终端支持的处理所述PDSCH的个数;
    在不同SCS下单位时长内所述终端支持的处理所述PUSCH的个数;
    在不同SCS下单位时长内所述终端支持的处理所述PDSCH和所述PUSCH的总个数。
  10. 根据权利要求9所述的方法,其中,所述时间间隔为:
    调度两个相邻所述PDSCH之间的时间间隔;
    或者,
    调度两个相邻所述PUSCH之间的时间间隔;
    或者,
    调度所述PDSCH和与所述PDSCH相邻的所述PUSCH之间的时间间 隔。
  11. 根据权利要求7所述的方法,其中,所述终端在所述子载波间隔SCS下的处理能力是根据所述SCS的带宽确定的。
  12. 根据权利要求7所述的方法,其中,所述方法,还包括:
    基于所述终端能力信息向终端发送调度指令。
  13. 一种无线通信装置,其中,应用于终端中,所述装置包括上报模块,其中,
    所述上报模块,被配置为上报终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔SCS下的处理能力。
  14. 根据权利要求13所述的装置,其中,所述装置还包括确定模块,其中,所述确定模块,被配置为:根据所述SCS的带宽,确定所述终端在所述子载波间隔SCS下的处理能力。
  15. 根据权利要求14所述的装置,其中,所述装置还包括第一接收模块和处理模块,其中,
    所述第一接收模块,被配置为接收所述基站发送的调度指令;
    所述处理模块,被配置为响应于基站调度的所述PDSCH和/或PUSCH的个数超过所述终端处理能力,忽略所述调度指令。
  16. 一种无线通信装置,其中,应用于基站中,所述装置包括第二接收模块,其中,
    所述第二接收模块,被配置为接收终端上报的终端能力信息,其中,所述终端能力信息,至少用于指示所述终端在不同子载波间隔SCS下的处理能力。
  17. 根据权利要求16所述的方法,其中,所述装置还包括发送模块,其中,所述发送模块,被配置为基于所述终端能力信息向终端发送调度指令。
  18. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至6或权利要求7至权利要求12任一项提供的方法。
  19. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至6或权利要求7至权利要求12任一项提供的方法。
PCT/CN2020/100271 2020-07-03 2020-07-03 无线通信的方法、装置、通信设备及存储介质 WO2022000510A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/100271 WO2022000510A1 (zh) 2020-07-03 2020-07-03 无线通信的方法、装置、通信设备及存储介质
CN202080001430.9A CN114145069A (zh) 2020-07-03 2020-07-03 无线通信的方法、装置、通信设备及存储介质
US18/014,018 US20230353330A1 (en) 2020-07-03 2020-07-03 Wireless communication method, communication device, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100271 WO2022000510A1 (zh) 2020-07-03 2020-07-03 无线通信的方法、装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022000510A1 true WO2022000510A1 (zh) 2022-01-06

Family

ID=79315060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100271 WO2022000510A1 (zh) 2020-07-03 2020-07-03 无线通信的方法、装置、通信设备及存储介质

Country Status (3)

Country Link
US (1) US20230353330A1 (zh)
CN (1) CN114145069A (zh)
WO (1) WO2022000510A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803430A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种无线通信方法及设备
US20190253925A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Size optimized encoding of capability structure for multicarrier systems
CN110324123A (zh) * 2018-03-29 2019-10-11 北京展讯高科通信技术有限公司 Pusch的时域资源分配方法及装置、存储介质、终端
CN110719631A (zh) * 2018-07-12 2020-01-21 维沃移动通信有限公司 调度参数的确定方法、配置方法、终端和网络侧设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115053B (zh) * 2016-12-28 2022-02-15 Oppo广东移动通信有限公司 信息发送方法、信息接收方法、装置及系统
US10812968B2 (en) * 2017-11-09 2020-10-20 Mediatek Inc. Flexible signaling of capability of UE processing time in wireless communications
CN110753341A (zh) * 2018-07-23 2020-02-04 华为技术有限公司 一种资源配置方法及装置
EP3860177A1 (en) * 2018-09-28 2021-08-04 NTT DoCoMo, Inc. User equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803430A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种无线通信方法及设备
US20190253925A1 (en) * 2018-02-15 2019-08-15 Qualcomm Incorporated Size optimized encoding of capability structure for multicarrier systems
CN110324123A (zh) * 2018-03-29 2019-10-11 北京展讯高科通信技术有限公司 Pusch的时域资源分配方法及装置、存储介质、终端
CN110719631A (zh) * 2018-07-12 2020-01-21 维沃移动通信有限公司 调度参数的确定方法、配置方法、终端和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "FL Summary on support of unaligned frame boundary for R16 NR inter- band CA", 3GPP DRAFT; R1-1913510, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 25 November 2019 (2019-11-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051830788 *

Also Published As

Publication number Publication date
CN114145069A (zh) 2022-03-04
US20230353330A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US11664931B2 (en) Duplication transmission method and apparatus
CN108347778B (zh) 通信方法及装置
CN107667559B (zh) 在无线通信系统中使用不同的无线连接技术提供多连接的装置和方法
KR101721031B1 (ko) 3gpp-lte 시스템에서 스몰 데이터 송신을 위한 장치 및 방법
US20230254191A1 (en) Communication apparatuses, methods, system, programs and recording media
CN107852203B (zh) 无线通信系统中用于确定秩相关的信息的方法和设备
KR102342692B1 (ko) 무선 통신을 위한 방법 및 장치
CN107734553B (zh) 用于功耗优化的ue数据传输方法、用户设备及其存储器
US10863578B2 (en) Data transmission method, device and system
EP3420753B1 (en) Method and device for receiving service through different wireless communication systems
US20130148616A1 (en) Base station, method for radio communication, program, radio communication system, and radio terminal
EP3516819A1 (en) Next generation key set identifier
EP3637818B1 (en) Signal sending and receiving method and device
CN111436031A (zh) V2x的通信方法及装置、存储介质和电子装置
EP3826215B1 (en) Communication method and device
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2017113077A1 (zh) 一种上行紧急业务传输方法、基站、用户设备及系统
CN107046734B (zh) Nas承载数据的传输方法及装置
CN107466116B (zh) 处理连结转换的装置及方法
CN110731113B (zh) 数据传输方法、装置及存储介质
CN112469025B (zh) 一种通信方法及装置
CN112740813B (zh) 一种通信方法及装置
CN107534984B (zh) 一种分量载波组的配置方法及设备
EP3661311A1 (en) Resource indication method, communication device and network device
EP3993488A1 (en) Method for scheduling time delay sensitivity service reporting and method for reporting time delay sensitivity service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943582

Country of ref document: EP

Kind code of ref document: A1