WO2020010722A1 - 一种阴极体组件、磁控溅射阴极及磁控溅射装置 - Google Patents

一种阴极体组件、磁控溅射阴极及磁控溅射装置 Download PDF

Info

Publication number
WO2020010722A1
WO2020010722A1 PCT/CN2018/108367 CN2018108367W WO2020010722A1 WO 2020010722 A1 WO2020010722 A1 WO 2020010722A1 CN 2018108367 W CN2018108367 W CN 2018108367W WO 2020010722 A1 WO2020010722 A1 WO 2020010722A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
assembly
group
outer ring
cathode
Prior art date
Application number
PCT/CN2018/108367
Other languages
English (en)
French (fr)
Inventor
梅艳慧
Original Assignee
君泰创新(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 君泰创新(北京)科技有限公司 filed Critical 君泰创新(北京)科技有限公司
Publication of WO2020010722A1 publication Critical patent/WO2020010722A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of magnetron sputtering, and particularly to, but not limited to, a cathode body assembly, a magnetron sputtering cathode, and a magnetron sputtering device.
  • Magnetron sputtering technology is one of the most important vacuum coating physical vapor deposition (Physical Vapor Deposition, PVD) technologies.
  • planar magnetron sputtering cathodes generally include structures such as a cathode body assembly and a target.
  • the cathode body assembly further includes structures such as an electric introduction structure and a magnetic circuit component.
  • the electric field of the planar magnetron sputtering cathode is introduced by the electric introduction structure, and the magnetic field formed by the electric field and the magnetic circuit component generates an electromagnetic field.
  • the horizontal magnetic field parallel to the surface of the target in the magnetic field can limit the movement trajectory of the charged ions (such as argon ions) used for sputtering to the surface of the target.
  • the interaction of the electromagnetic field causes the charged ions to hit the target to make the target
  • the surface atoms are sputtered and shot towards the substrate to achieve the deposition of the thin film.
  • the magnetic circuit generated by the magnetic circuit assembly has a problem that the horizontal magnetic field strength is relatively low, and it is difficult to meet the sputtering requirements of the target.
  • an embodiment of the present application provides a cathode body assembly including a cathode plate.
  • the cathode body assembly further includes: a magnetic circuit component disposed on a side surface of the cathode plate.
  • the magnetic circuit component includes An intermediate magnet assembly and an outer ring magnet assembly surrounding the intermediate magnet assembly; wherein a magnetic pole of the middle magnet assembly facing away from the cathode plate and a magnetic pole of the outer ring magnet assembly facing away from the cathode plate The polarities are opposite; the middle magnet assembly includes at least one middle magnet group; the outer ring magnet assembly includes at least one outer ring magnet group; and the number of groups of the middle magnet group is the same as that of the outer ring magnet group The sum of the numbers is greater than 2.
  • an embodiment of the present application further provides a magnetron sputtering cathode, which includes the cathode body assembly described above.
  • an embodiment of the present application further provides a magnetron sputtering device, including the magnetron sputtering cathode described above.
  • FIG. 1 is a schematic structural diagram of a cathode body assembly in some cases
  • FIG. 2 is a schematic diagram of magnetic lines of force forming a magnetic field on a target surface by the magnetic circuit assembly in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a cathode body assembly according to an embodiment of the present application.
  • FIG. 4 is a schematic plan view of the arrangement of the magnetic circuit components in FIG. 3;
  • FIG. 5 is a schematic diagram of magnetic lines of force forming a magnetic field on a target surface by the magnetic circuit assembly in FIG. 3;
  • FIG. 6 is a schematic diagram of a comparison of a horizontal magnetic field strength formed by a cathode body assembly and a cathode body assembly in some cases on a target surface according to an embodiment of the present application;
  • FIG. 7 is a first schematic plan view of an arrangement of magnetic circuit components in a cathode body assembly according to an embodiment of the present application.
  • FIG. 8 is a second schematic plan view of an arrangement of magnetic circuit components in a cathode body assembly according to an embodiment of the present application.
  • FIG. 9 is a top plan view of an arrangement of magnetic circuit components in a cathode body assembly according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a magnetron sputtering cathode according to an embodiment of the present application.
  • the cathode body assembly in some cases will be specifically described below.
  • the cathode body assembly 01 ′ includes a magnetic circuit assembly 10 ′ and a cathode plate 20 ′.
  • a target 04 'for sputtering is provided above the magnetic circuit assembly 10'.
  • the magnetic circuit assembly 10 ' is disposed on a plate surface on one side of the cathode plate 20'.
  • the magnetic circuit assembly 10 ′ may be exemplarily composed of 4 magnet groups, which are a first magnet group 101 in a ring shape, a second magnet group 102 in a ring shape, a third magnet group 103 in a ring shape, and a first magnet group in the center.
  • Four magnet group 104 are arranged in such a manner that the magnetic poles on the side facing away from the cathode plate 20 ′ are opposite to each other. That is, referring to FIG.
  • the directions of the magnetic poles of the first magnet group 101, the second magnet group 102, the third magnet group 103, and the fourth magnet group 104 facing away from the cathode plate 20 ′ are S pole, N pole, and S, respectively. Pole and N pole.
  • the magnetic force lines in different directions as shown by the dashed arrows in FIG. 2 are generated between the magnet groups having the above-mentioned arrangement. That is, the direction of the magnetic field lines b3 ′ formed between the second magnet group 102 and the third magnet group 103 is between the first magnet group 101 and the fourth magnet group 104, and between the third magnet group 103 and the fourth magnet group 104. And the directions of the magnetic field lines b1 ', b2', b4 'formed by the three groups between the first magnet group 101 and the second magnet group 102 are opposite. The opposing magnetic lines of force will cancel each other out, thereby weakening the horizontal magnetic field strength on the surface of the target 04 '.
  • an embodiment of the present application provides a cathode body assembly 01.
  • the cathode body assembly 01 includes: a cathode plate 20, and the cathode body assembly 01 further includes: a magnetic circuit disposed on a side surface of the cathode plate 20.
  • the magnetic circuit assembly 10 includes a middle magnet assembly 11 and an outer ring magnet assembly 12 surrounding the middle magnet assembly 11. Among them, the magnetic pole of the middle magnet assembly 11 facing away from the cathode plate 20 and the magnetic pole of the outer ring magnet assembly 12 facing away from the cathode plate 20 have opposite polarities.
  • the middle magnet assembly 11 includes at least one middle magnet group; the outer ring magnet assembly 12 includes at least one outer ring magnet group; and the sum of the number of the middle magnet group and the number of the outer ring magnet group is greater than two.
  • the intermediate magnet assembly 11 may include: an intermediate magnet group 111 and an intermediate magnet group 112;
  • the outer ring magnet assembly 12 may include: an outer ring magnet group 121 and an outer ring magnet group 122.
  • the above-mentioned cathode plate 20 can play a role of magnetic permeability and support for the magnetic circuit assembly 10. That is, the cathode plate 20 is in contact with the magnet group in the magnetic circuit assembly 10 to guide away the magnetic lines of force from the above magnet groups in the magnetic circuit assembly 10 toward the cathode plate 20 side, so as to avoid the The magnetic field lines interfere with the magnetic field lines that are emitted from the side of the magnet group far from the cathode plate 20 and are used for sputtering targets.
  • the above-mentioned schematic diagram of the magnetic circuit assembly 10 of the cathode body assembly 01 in FIG. 3 is a cross-sectional view taken along the A-A direction of the arrangement shown in FIG. 4.
  • the intermediate magnet assembly 11 includes an intermediate magnet group 111 and an intermediate magnet group 112, the intermediate magnet group 111 is a first intermediate magnet group, and the intermediate magnet group 111 may be an integral unit by way of example.
  • a block-shaped magnet, and the middle magnet group 112 may be, for example, a whole ring-shaped magnet and surround the middle magnet group 111.
  • the outer ring magnet assembly 12 includes an outer ring magnet group 121 and an outer ring magnet group 122.
  • the outer ring magnet group 121 and the outer ring magnet group 122 may each be an integral ring-shaped magnet, and surround the middle magnet in order from the inside to the outside.
  • Component 11 includes an intermediate magnet group 111 and an intermediate magnet group 112
  • the intermediate magnet group 111 is a first intermediate magnet group
  • the intermediate magnet group 111 may be an integral unit by way of example.
  • the middle magnet group 112 may be, for example, a whole ring-shaped magnet and surround the middle magnet group 111.
  • the middle magnet assembly 11 specifically includes two sets of middle magnet groups: the middle magnet group 111 and the middle magnet group 112, and the outer ring magnet assembly 12 specifically includes two outer ring magnet groups: the outer ring magnet group 121
  • the outer ring magnet group 122 is used as an example.
  • the middle magnet assembly 11 and the outer ring magnet assembly 12 may also be arranged as follows by way of example.
  • the intermediate magnet assembly 11 includes only one set of intermediate magnet groups (eg, the intermediate magnet group 111), and the outer ring magnet assembly 12 includes two sets of outer ring magnet groups: an outer ring magnet group 121 and an outer ring magnet group. ⁇ ⁇ ⁇ 122 ⁇ The ring magnet group 122.
  • the intermediate magnet assembly 11 includes two sets of intermediate magnet sets: an intermediate magnet set 111 and an intermediate magnet set 112, and the outer ring magnet assembly 12 includes only one set of outer ring magnet sets (for example, the outer ring magnet set 121). ).
  • the embodiment of the present application does not limit the specific number of the above magnet groups, as long as the sum of the number of the middle magnet group 11 and the number of the outer ring magnet group 12 is greater than two.
  • the outer ring magnet assembly 12 includes a plurality of sets of outer ring magnet groups
  • the outer ring magnet assembly 12 includes a plurality of sets of outer ring magnet groups (for example, FIG. 3).
  • the outer ring magnet group 121 and the outer ring magnet group 122 shown in the figure are respectively circled from the inside to the outside, that is, the outer ring magnet group 121 surrounds the middle magnet assembly 11 and the opposite outer ring magnet group 122 surrounds Outer ring magnet group 121.
  • the S pole of the magnetic pole on the side of the middle magnet assembly 11 facing away from the cathode plate 20 may be the N pole of the magnetic pole on the side of the outer magnet assembly 12 facing away from the cathode plate 20. It is only necessary to satisfy the setting requirements that the polarities of the side of the middle magnet assembly 11 facing away from the cathode plate 20 and the poles of the outer ring magnet assembly 12 facing away from the cathode plate 20 are opposite.
  • the target 04 is usually disposed on the magnetic circuit assembly 10 side away from the cathode plate 20, that is, disposed above the magnetic circuit assembly 10.
  • the magnetic lines of force indicated by the dotted lines b1, b2, b3, and b4 in FIG. 5 are generated between the magnet groups in the magnetic circuit assembly 10.
  • the magnetic lines of force are sent back from the N pole to the S pole. Therefore, on the magnetic circuit assembly 10 facing the target 04 side, four sets of magnetic lines of force are generated.
  • the directions of the magnetic lines of force are directed from the N pole of the middle magnet group 111 and the middle magnet group 112 to the outer ring magnet group 121 and the S pole of the outer ring magnet group 122.
  • the horizontal magnetic field strength of the target surface can be effectively enhanced.
  • the magnetic lines of force generated by the magnetic circuit assembly 10 below can pass through the target material 04, forming a strong horizontal magnetic field on the surface of the target material 04, so that the target material 04 can be sputtered.
  • the intermediate magnet assembly 11 includes at least one Group of middle magnet groups
  • the outer ring magnet assembly 12 includes at least one outer ring magnet group
  • the sum of the number of the middle magnet group and the number of the outer ring magnet group is greater than 2, that is, the middle magnet assembly 11 and the outer ring magnet assembly 12
  • At least one of the two includes a plurality of magnet groups. This makes the magnetic lines of the same direction be generated between each group of the middle magnet group and each group of the outer ring magnet groups, and the number of groups forming the magnetic force lines is greater than the two, and multiple sets of magnetic force lines can overlap each other.
  • the above-mentioned setting method provided in the embodiment of the present application can be used to superimpose multiple sets of magnetic lines of force in the same direction. To effectively enhance the horizontal magnetic field strength of the target surface, so that it can meet the sputtering requirements of targets that require higher horizontal magnetic field strength to achieve sputtering.
  • the target is sputtered by using the above-mentioned cathode body assembly 01 provided in the embodiment of the present application, because the horizontal magnetic field strength of the target surface is enhanced, the distance of the electrons in the magnetic field from the centerline increases, and the electrons hit the target vertically. The strength on the substrate is reduced, so the magnetron sputtering voltage can be reduced and the energy consumption can be reduced.
  • the reinforced magnetic field indicates the magnetic field generated by the magnetic circuit component shown in FIG. 4
  • the original magnetic field indicates the magnetic field generated by the magnetic circuit component shown in FIG. 1.
  • the comparison result is shown in FIG. 6.
  • the target material is The horizontal magnetic field on the surface increases significantly in the area of the target width of 25-50mm, which can meet the requirements of sputtering dense ITO (Indium Tin Oxide) film layer.
  • this application implements The sputtering voltage of the planar magnetron cathode after the sputtering of the target provided by the foregoing cathode body assembly is changed to 371V, which is 50V lower.
  • the specific arrangement of the magnetic circuit components 10 in the cathode body component 01 described above may be that the magnetic circuit components 10 include a middle magnet component and an outer ring magnet component surrounding the middle magnet component.
  • the intermediate magnet assembly includes at least two sets of intermediate magnet groups; among them, a group of intermediate magnet groups arranged at the innermost side is a first intermediate magnet group; except for the first intermediate magnet group, the other intermediate magnet groups are ring-shaped, and are formed by The first middle magnet group is sequentially surrounded from the inside to the outside.
  • the remaining intermediate magnet groups are in a ring shape, and the ring shape here may be a circular ring, a rectangular ring, a polygonal ring, or the like.
  • Each magnet group can be set in various ways, as described below.
  • the first intermediate magnet group is a whole magnet or includes a plurality of magnet blocks arranged at intervals.
  • the plurality of magnet blocks arranged at intervals may be arranged in a ring shape or a strip shape.
  • At least one of the remaining intermediate magnet groups in the intermediate magnet assembly is an entire magnet, or includes a plurality of magnet blocks arranged at intervals. That is, among the remaining intermediate magnet groups, all of them may be whole magnets, or they may all include multiple magnet blocks arranged at intervals, or some of the intermediate magnet groups may be entire magnets, and some of the intermediate magnet groups may include multiple magnet blocks arranged at intervals. .
  • the at least one outer ring magnet group may be an entire magnet; or, the at least one outer ring magnet group may include a plurality of magnet blocks disposed at intervals. That is, each outer ring magnet group may be a whole magnet, or may include a plurality of magnet blocks spaced apart, or a part of the outer ring magnet group may be a whole magnet, and some outer ring magnet groups may include a plurality of spaced apart magnets. Magnet blocks.
  • At least one of the above-mentioned middle magnet group and outer ring magnet group may be a magnet or an electromagnetic coil.
  • the whole magnet may be a magnet or an electromagnetic coil.
  • each magnet block may be a magnet or an electromagnetic coil.
  • all of the magnet blocks may be magnets or electromagnetic coils, or some of the magnet blocks may be magnets, and some of the magnet blocks may be electromagnetic coils.
  • the at least two sets of intermediate magnet groups may both be magnets or electromagnetic coils, or some of the intermediate magnet groups may be magnets and some of the intermediate magnet groups may be electromagnetic coils.
  • the at least two sets of outer ring magnet groups may be magnets or electromagnetic coils, or part of the outer ring magnet groups may be magnets, and part of the outer ring magnet groups may be electromagnetic coils.
  • a material constituting the magnet is neodymium iron boron.
  • the above magnetic circuit assembly 10 includes an intermediate magnet assembly 11 and an outer ring magnet assembly 12 surrounding the intermediate magnet assembly 11.
  • the intermediate magnet assembly 11 includes two sets of intermediate magnet groups: an intermediate magnet group 111 and an intermediate magnet group 112; the intermediate magnet group 112 is ring-shaped, and is arranged around the intermediate magnet group 111 on the innermost side.
  • the middle magnet group 111, the middle magnet group 112, the outer ring magnet group 121 and the outer ring magnet group 122 each include a plurality of magnet blocks arranged at intervals.
  • a plurality of spaced-apart magnet blocks 111a constituting the intermediate magnet group 111 are arranged in a stripe shape; a plurality of spaced-apart magnet blocks 112a constituting the intermediate magnet group 112 are arranged in a rectangular ring shape; an outer-ring magnet group 121 and an outer ring The plurality of spaced-apart magnet blocks 121 a and 122 a of the magnet group 122 are also arranged in a rectangular ring shape, and surround the middle magnet assembly 11 in order from the inside to the outside.
  • the number of corresponding magnet blocks constituting each group of magnet groups increases in order, that is, the number of magnet blocks is gradually increased to 111a, 112a, 121a, and 122a. Increase to make the magnetic field formed on the surface of the target 04 more sufficient.
  • the middle magnet group 111, the middle magnet group 112, the outer ring magnet group 121, and the outer ring magnet group 122 are all a single magnet.
  • the magnet block of the middle magnet group 111 has a strip shape
  • the magnet block of the middle magnet group 112 has a rectangular ring shape
  • the outer ring magnet group 121 and the outer ring magnet group 122 also have rectangular ring shapes, which surround the middle in order from the inside to the outside. Magnet assembly 11.
  • the magnetic field formed by the magnetic circuit components of the first arrangement method and the second arrangement method has a rectangular magnetic field, and is suitable for rectangular targets.
  • the middle magnet group 111, the middle magnet group 112, the outer ring magnet group 121 and the outer ring magnet group 122 each include a plurality of magnet blocks arranged at intervals.
  • the magnet blocks 111a constituting the intermediate magnet group 111 are arranged in a ring shape; the magnet blocks 112a constituting the intermediate magnet group 112 are arranged in a ring shape; the magnet blocks 121a and 122a constituting the outer ring magnet group 121 and the outer ring magnet group 122 They are also arranged in a ring shape and surround the middle magnet assembly 11 in order from the inside to the outside.
  • the number of corresponding magnet blocks constituting each group of magnet groups increases in order, that is, the number of magnet blocks is gradually increased to 111a, 112a, 121a, and 122a. Increase to make the magnetic field formed on the surface of the target 04 more sufficient.
  • the middle magnet group 111, the middle magnet group 112, the outer ring magnet group 121, and the outer ring magnet group 122 are all a single magnet.
  • the magnet block of the middle magnet group 111 has a circular shape
  • the magnet block of the middle magnet group 112 has a ring shape
  • the outer ring magnet group 121 and the outer ring magnet group 122 also have a ring shape, and surrounds the middle in order from the inside to the outside Magnet assembly 11.
  • the magnetic field formed by the magnetic circuit components of the third arrangement method and the fourth arrangement method is circular, and is suitable for circular targets.
  • the arrangement methods Compared to the first arrangement method and the third arrangement method described above, during the installation of the magnetic circuit assembly, since multiple spaced-apart magnet blocks are more convenient to install than a whole magnet, the arrangement methods The magnetic circuit assembly of the fourth arrangement method is more convenient for installation.
  • the whole magnet may be a magnet or an electromagnetic coil.
  • each magnet block may be a magnet or an electromagnetic coil.
  • the material constituting the magnet may be neodymium iron boron.
  • the neodymium iron boron has excellent magnetic properties and further increases the surface magnetic field strength of the target.
  • an embodiment of the present application further provides a magnetron sputtering cathode, which includes the cathode body assembly 01 described above.
  • the above magnetron sputtering cathode also includes the following structure:
  • An outer frame assembly 03 provided outside the cathode body assembly 01;
  • An electrical lead-in structure 05 disposed on a side of the cathode plate 20 away from the magnetic circuit assembly 10 and in contact with the cathode plate 20;
  • Cover plate assembly 02 supporting the cathode body assembly 01 and the outer frame assembly 03;
  • the electrical lead-in structure 05 passes through the cover plate assembly 02 and is in contact with the cathode plate 20.
  • the aforementioned outer frame component 03 may be an anode frame component.
  • the anode frame assembly can intercept the electrons emitted by the non-target parts, so that it does not generate a glow discharge, prevent the sputtering of the non-target materials, and ensure the purity of the deposited film.
  • the electrical introduction structure 05 described above may be a copper rod, and an electric field is introduced for the magnetron sputtering cathode by contacting the cathode plate 20.
  • the target 04 may be an ITO (Indium Tin Oxide) target.
  • the composition of the target material 04 can be determined according to the requirements of the actual coating process, for example, it can be a metal target material, an alloy target material, or a ceramic target material.
  • the intermediate magnet assembly in order to improve the utilization rate of the target, includes at least two sets of intermediate magnet groups, wherein the innermost group of intermediate magnet groups is the first intermediate magnet group; the first intermediate magnet group corresponds to At the center of the target.
  • the intermediate magnet assembly 11 includes an intermediate magnet group 111 and an intermediate magnet group 112, the center of the target material corresponding to the center magnet group 111 arranged at the innermost side, that is Located below the center of the target.
  • the outermost set of outer ring magnets in the outer ring magnet assembly corresponds to the edge of the target.
  • the outermost set of outer ring magnet groups 122 in the outer ring magnet assembly 12 corresponds to the edge of the magnetron sputtering cathode target 04, that is, the edge of the target 04 Below.
  • the outermost outer ring magnet group is the outer ring magnet group.
  • the outermost set of outer ring magnet sets is the outermost set relative to the middle magnet assembly.
  • the area of the target surface can be located as much as possible within the range of magnetic field lines formed between the magnet groups, thereby improving the utilization rate of the target.
  • An embodiment of the present application further provides a magnetron sputtering device, which includes the foregoing magnetron sputtering cathode.
  • magnetron sputtering device such as the structure of the anode, the substrate to be deposited with the thin film, and the arrangement manner thereof may follow the related technology, which will not be described in detail in the embodiment of the present application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种阴极体组件,包括:阴极板,还包括:设置在阴极板一侧板面上的磁路组件,磁路组件包括:中间磁体组件和环绕中间磁体组件的外圈磁体组件;其中,中间磁体组件背离阴极板一侧的磁极与外圈磁体组件背离阴极板一侧的磁极的极性相反;中间磁体组件包括至少一组中间磁体组;外圈磁体组件包含至少一组外圈磁体组;且中间磁体组的组数与外圈磁体组的组数之和大于2。

Description

一种阴极体组件、磁控溅射阴极及磁控溅射装置
本申请基于申请号为201810759479.5、申请日为2018.7.11的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于磁控溅射领域,尤其涉及但不限于一种阴极体组件、磁控溅射阴极及磁控溅射装置。
背景技术
磁控溅射技术是目前最重要的几种真空镀膜物理气相沉积(Physical Vapor Deposition,简称PVD)技术之一。
在一些情况中,平面磁控溅射阴极通常包括有阴极体组件和靶材等结构。其中,阴极体组件进一步包括有电引入结构和磁路组件等结构,平面磁控溅射阴极的电场由电引入结构引入,电场与磁路组件形成的磁场产生电磁场。磁场中平行于靶材表面的水平磁场能够将用于溅射的带电离子(例如为氩离子)的运动轨迹限制到靶材表面,通过电磁场的交互作用使带电离子撞击靶材,以使靶材表面原子被溅射出来射向衬底从而实现薄膜的沉积。
然而,磁路组件产生的磁路存在水平磁场强度偏低的问题,难以达到靶材的溅射要求。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本申请实施例提供了一种阴极体组件,包括:阴极板,所述阴极体组件还包括:设置在所述阴极板一侧板面上的磁路组件,所述磁路组件包括:中间磁体组件和环绕所述中间磁体组件的外圈磁体组件;其中,所述 中间磁体组件背离所述阴极板一侧的磁极与所述外圈磁体组件背离所述阴极板一侧的磁极的极性相反;所述中间磁体组件包括至少一组中间磁体组;所述外圈磁体组件包含至少一组外圈磁体组;且所述中间磁体组的组数与所述外圈磁体组的组数之和大于2。
另一方面,本申请实施例还提供了一种磁控溅射阴极,包括上述所述的阴极体组件。
再一方面,本申请实施例还提供了一种磁控溅射装置,包括上述所述磁控溅射阴极。
在阅读并理解了附图概述和本申请的实施方式后,可以明白其他方面。
附图概述
为了更清楚地说明本申请实施例或一些情况中的技术方案,下面将对实施例或一些情况的描述中所需要使用的附图作简单地介绍。下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一些情况中的阴极体组件的结构示意图;
图2为图1中的磁路组件在靶材表面形成磁场的磁力线的示意图;
图3为本申请实施例提供的一种阴极体组件的结构示意图;
图4为图3中的磁路组件的排布的俯视结构示意图;
图5为图3中的磁路组件在靶材表面形成磁场的磁力线的示意图;
图6为本申请实施例提供的一种阴极体组件与一些情况中的阴极体组件在靶材表面形成的水平磁场强度的对比示意图;
图7为本申请实施例提供的一种阴极体组件中磁路组件的排布的俯视示意图一;
图8为本申请实施例提供的一种阴极体组件中磁路组件的排布的俯视示意图二;
图9为本申请实施例提供的一种阴极体组件中磁路组件的排布的俯视示 意图三;
图10为本申请实施例提供的一种磁控溅射阴极的结构示意图。
详述
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本申请保护的范围。
为更好地理解本申请实施例,下面先对一些情况中的阴极体组件做具体说明。
如图1所示,在一些情况中,阴极体组件01'包括磁路组件10'和阴极板20'。磁路组件10'上方设置有用于溅射的靶材04'。其中,磁路组件10'设置于阴极板20'一侧的板面上。
磁路组件10'示例地可以由4组磁体组组成,由外向内依次为环状的第一磁体组101、环状的第二磁体组102、环状的第三磁体组103以及中心的第四磁体组104。在上述的磁路组件10'中,相邻两磁体组的设置方式为背离阴极板20'一侧的磁极方向相反。即参考图1所示的,第一磁体组101、第二磁体组102、第三磁体组103以及第四磁体组104背离阴极板20'一侧的磁极方向分别为S极、N极、S极以及N极。
这样一来,由于磁力线是由N极发出再回到S极,具有上述排列方式的各磁体组之间会产生如图2中虚线箭头所示的不同方向的磁力线。即,第二磁体组102和第三磁体组103之间形成的磁力线b3'的方向与第一磁体组101和第四磁体组104之间、第三磁体组103和第四磁体组104之间以及第一磁体组101和第二磁体组102之间这三组形成的磁力线b1'、b2'、b4'的方向相反。方向相反的磁力线之间会产生相互抵消,从而削弱了靶材04'表面的水平方向的磁场强度。
如图3所示,本申请实施例提供了一种阴极体组件01,该阴极体组件01包括:阴极板20,阴极体组件01还包括:设置在阴极板20一侧板面上的磁 路组件10。磁路组件10包括:中间磁体组件11和环绕中间磁体组件11的外圈磁体组件12。其中,中间磁体组件11的背离阴极板20一侧的磁极与外圈磁体组件12的背离阴极板20一侧的磁极的极性相反。中间磁体组件11包括至少一组中间磁体组;外圈磁体组件12包括至少一组外圈磁体组;且中间磁体组的组数与外圈磁体组的组数之和大于2。
在一示例性实施例中,中间磁体组件11可包括:中间磁体组111和中间磁体组112;外圈磁体组件12可包括:外圈磁体组121和外圈磁体组122。
上述阴极板20可以对磁路组件10起到导磁和支撑的作用。即阴极板20通过与磁路组件10中的磁体组相接触,将磁路组件10中的上述各磁体组朝向阴极板20一侧发出的磁力线导走,以避免朝向阴极板20一侧发出的磁力线对上述磁体组远离阴极板20一侧发出的用于溅射靶材的磁力线产生干扰。
上述图3中的阴极体组件01的磁路组件10的示意图是沿图4中所示的排布方式的A-A方向的剖视图。
在一示例性实施例中,如图4所示:中间磁体组件11包括中间磁体组111和中间磁体组112,中间磁体组111为第一中间磁体组,中间磁体组111示例地可以为一个整块圆形磁体,中间磁体组112示例地可以为一个整块圆环状磁体,且环绕中间磁体组111。外圈磁体组件12包括外圈磁体组121和外圈磁体组122,外圈磁体组121和外圈磁体组122示例地可以均为一个整块圆环状磁体,且由内向外依次环绕中间磁体组件11。
这里,上述图3中仅以中间磁体组件11具体包括两组中间磁体组:中间磁体组111和中间磁体组112,且外圈磁体组件12具体包括两组外圈磁体组:外圈磁体组121和外圈磁体组122为例进行示例,中间磁体组件11与外圈磁体组件12示例地还可以采用如下排布方式。
例如,在一示例性实施例中,中间磁体组件11仅包括一组中间磁体组(例如为中间磁体组111),外圈磁体组件12包括两组外圈磁体组:外圈磁体组121和外圈磁体组122。在一示例性实施例中,中间磁体组件11包括两组中间磁体组:中间磁体组111和中间磁体组112,外圈磁体组件12仅包括一组外圈磁体组(例如为外圈磁体组121)。本申请实施例对上述各磁体组的具体组数不作限定,只要使得中间磁体组11的组数与外圈磁体组12的组数之 和大于2即可。
在外圈磁体组件12包括多组外圈磁体组的情况下,为了使得外圈磁体组件12具有环绕中间磁体组件11的设置方式,外圈磁体组件12包括的多组外圈磁体组(例如图3中所示的外圈磁体组121和外圈磁体组122)相应的是由内向外依次环绕的,即外圈磁体组121环绕中间磁体组件11,相对的位于更外侧的外圈磁体组122环绕外圈磁体组121。
上述图3中仅以中间磁体组件11背离阴极板20一侧的磁极为N极,外圈磁体组件12背离阴极板20一侧的磁极为S极的设置方式为例进行示意,本申请实施例不限于此,也可以是中间磁体组件11背离阴极板20一侧的磁极为S极,外圈磁体组件12背离阴极板20一侧的磁极为N极。只要满足中间磁体组件11背离阴极板20一侧的磁极与外圈磁体组件12背离阴极板20一侧的磁极的极性相反的设置要求即可。
当采用上述图3中的阴极体组件01进行磁控溅射时,靶材04通常是设置在磁路组件10远离阴极板20一侧,即设置在磁路组件10上方。磁路组件10中的各组磁体组之间会产生如图5中虚线b1、b2、b3、b4箭头所指的磁力线。磁力线由N极发出回到S极,因此在磁路组件10朝向靶材04一侧,会产生4组磁力线,磁力线的方向由中间磁体组111和中间磁体组112的N极指向外圈磁体组121和外圈磁体组122的S极。
由于各磁力线的方向均相同,且多组磁力线之间相互叠加,从而可有效增强靶材表面的水平磁场强度。这样一来,下方的磁路组件10产生的磁力线能够穿过靶材04,在靶材04表面形成较强的水平磁场,以便对靶材04进行溅射。
在本申请实施例提供的上述阴极体组件01中,由于中间磁体组件11背离阴极板20一侧的磁极和外圈磁体组件12背离阴极板20一侧的磁极相反,中间磁体组件11包括至少一组中间磁体组,外圈磁体组件12包括至少一组外圈磁体组,且中间磁体组的组数与外圈磁体组的组数之和大于2,即中间磁体组件11和外圈磁体组件12这两者中至少有一者是包括有多组磁体组。这就使得每组中间磁体组和每组外圈磁体组之间均会产生方向相同的磁力线,且形成磁力线的组数大于两组,多组磁力线之间能够产生相互叠加。
这样一来,相比于前述图1所示的一些情况中的存在磁力线相互抵消的设置方式,采用本申请实施例提供的上述设置方式,可利用多组方向相同的磁力线之间产生的相互叠加来有效增强靶材表面的水平磁场强度,从而可满足需要较高的水平磁场强度才能实现溅射的靶材的溅射要求。
通过本申请实施例提供的上述阴极体组件01对靶材进行溅射时,由于靶材表面水平磁场强度增强,电子在磁场中的运动轨迹偏移中心线的距离增加,电子垂直撞击在靶材基板上的力度减小,因此能够减小磁控溅射电压,降低能耗。
以图4所示的磁路组件的排布方式为例,对本申请实施例提供的上述阴极体组件与图1所示的一些情况中的阴极体组件进行了对比实验,对比结果如图6所示(图中纵坐标的单位mT(毫特斯拉)和单位Gs(高斯)之间的换算单位为:1mT=10Gs),以进一步验证本申请实施例提高靶材表面水平磁场强度的效果。图6中,加强磁场表示图4所示的磁路组件产生的磁场,原磁场表示图1所示的磁路组件产生的磁场。
采用图1的磁路组件的排布方式对靶材进行磁控溅射时,通过高斯计测得从靶材中心到边缘的15-55mm的宽度范围内的磁场强度为:Bmax(最大磁场强度)=290-340Gs。
本申请实施例提供的阴极体组件对靶材进行磁控溅射时,用高斯计测得从靶材中心到边缘的25-50mm的宽度范围内的磁场强度为:Bmax=610-770Gs。
对比结果如图6所示,经过对比可得出,相比于图1所示的一些情况中的阴极体组件,采用本申请实施例提供的阴极体组件对靶材进行溅射时,靶材表面的水平磁场在靶材宽度为25-50mm的区域内明显增加,能够满足溅射致密ITO(Indium Tin Oxide,氧化铟锡)膜层的要求。
当溅射腔室内压强为0.95Pa,溅射电源功率为5kW时,由于靶材表面水平磁场强度增强,相比与图1所示的一些情况中磁控阴极溅射电压为421V,本申请实施例提供的上述阴极体组件对靶材进行溅射时的改变后的平面磁控阴极溅射电压为溅射电压为371V,降低了50V。
在本申请的一个实施例中,上述阴极体组件01中的磁路组件10的具体 排布方式可以为,磁路组件10包括:中间磁体组件和环绕中间磁体组件的外圈磁体组件。中间磁体组件包括至少两组中间磁体组;其中排布于最内侧的一组中间磁体组为第一中间磁体组;除第一中间磁体组之外,其余中间磁体组均呈环状,且由内向外依次环绕第一中间磁体组。
其中,第一中间磁体组之外,其余中间磁体组均呈环状,这里的环状可以是圆环、矩形环、多边形环等。
各磁体组可以有多种设置方式,具体如下所述。
在一示例性实施例中,第一中间磁体组为一个整块磁体,或者包括多个间隔设置的磁体块。
在第一中间磁体组包括多个间隔设置的磁体块的情况下,多个间隔设置的磁体块可以呈环状排列或者条状排列。
在一示例性实施例中,除所述第一中间磁体组之外,中间磁体组件中其余的中间磁体组中的至少一组为一个整块磁体,或者包括间隔设置的多个磁体块。即其余的中间磁体组中,可以全部为整块磁体,或者可以全部包括间隔设置的多个磁体块,或者可以部分中间磁体组为整块磁体,部分中间磁体组包括间隔设置的多个磁体块。
在一示例性实施例中,至少一组外圈磁体组可以为一个整块磁体;或者,至少一组外圈磁体组可以包括间隔设置的多个磁体块。即,每组外圈磁体组可以均为一个整块磁体,或者可以均包括间隔设置的多个磁体块,或者可以部分外圈磁体组为整块磁体,部分外圈磁体组包括间隔设置的多个磁体块。
在一示例性实施例中,上述中间磁体组和外圈磁体组中的至少一组可以为磁铁或电磁线圈。
对于一组中间磁体组或一组外圈磁体组为一个整块磁体的情况,该整块磁体可以为磁铁或电磁线圈。
对于一组中间磁体组或一组外圈磁体组包括间隔设置的多个磁体块的情况,每个磁体块可以为磁铁或电磁线圈。同一磁体组中的多个磁体块中,可以全部磁体块均为磁铁或电磁线圈,或者可以部分磁体块为磁铁,部分磁体块为电磁线圈。
在中间磁体组件包括至少两组中间磁体组的情况下,至少两组中间磁体组可以均为磁铁或电磁线圈,或者可以部分中间磁体组为磁铁,部分中间磁体组为电磁线圈。
在外圈磁体组件包括至少两组外圈磁体组的情况下,至少两组外圈磁体组可以均为磁铁或电磁线圈,或者可以部分外圈磁体组为磁铁,部分外圈磁体组为电磁线圈。
在一示例性实施例中,构成上述磁铁的材料为钕铁硼。
下面提供4种磁路组件的具体排布方式,以详细描述本申请实施例提供的上述阴极体组件01。
以下4种磁路组件的排布方式仅仅以中间磁体组件具体包括两组中间磁体组的情况为例进行说明。
如图4、图7-9所示,上述的磁路组件10包括:中间磁体组件11和环绕中间磁体组件11的外圈磁体组件12。中间磁体组件11包括两组中间磁体组:中间磁体组111和中间磁体组112;中间磁体组112呈环状,且环绕排布于最内侧的中间磁体组111。
排布方式一
该排布方式为:参考图7所示,中间磁体组111、中间磁体组112、外圈磁体组121和外圈磁体组122均包括多个间隔设置的磁体块。
其中,组成中间磁体组111的多个间隔设置的磁体块111a呈条状排列;组成中间磁体组112的多个间隔设置的磁体块112a呈矩形环状排列;组成外圈磁体组121和外圈磁体组122的多个间隔设置的磁体块121a和122a也均呈矩形环状排列,且由内向外依次环绕中间磁体组件11。
从中间磁体组111到外圈磁体组122,构成每组磁体组的相应磁体块的个数依次增加,即,磁体块的数量呈111a的数量、112a的数量、121a的数量以及122a的数量逐渐递增,以使得靶材04表面形成的磁场更加充分。
排布方式二
该排布方式为:参考图8所示,中间磁体组111、中间磁体组112、外圈磁体组121和外圈磁体组122均为一个整块磁体。
其中,中间磁体组111的磁体块呈条状,中间磁体组112的磁体块呈矩形环状,外圈磁体组121和外圈磁体组122也均呈矩形环状,且由内向外依次环绕中间磁体组件11。
采用上述排布方式一和排布方式二的磁路组件形成的磁场呈矩形,适用于矩形靶材。
排布方式三
该排布方式为:参考图9所示,中间磁体组111、中间磁体组112、外圈磁体组121和外圈磁体组122均包括多个间隔设置的磁体块。
其中,组成中间磁体组111的磁体块111a呈圆环状排列;组成中间磁体组112的磁体块112a呈圆环状排列;组成外圈磁体组121和外圈磁体组122的磁体块121a和122a也均呈圆环状排列,且由内向外依次环绕中间磁体组件11。
从中间磁体组111到外圈磁体组122,构成每组磁体组的相应磁体块的个数依次增加,即,磁体块的数量呈111a的数量、112a的数量、121a的数量以及122a的数量逐渐递增,以使得靶材04表面形成的磁场更加充分。
排布方式四
该排布方式为:参考图4所示,中间磁体组111、中间磁体组112、外圈磁体组121和外圈磁体组122均为一个整块磁体。
其中,中间磁体组111的磁体块呈圆状,中间磁体组112的磁体块呈圆环状,外圈磁体组121和外圈磁体组122也均呈圆环状,且由内向外依次环绕中间磁体组件11。
采用上述排布方式三和排布方式四的磁路组件形成的磁场呈圆形,适用于圆形靶材。
相比于前述的排布方式一和排布方式三,在磁路组件的安装过程中,由于多个间隔设置的磁体块相比一个整块磁体安装更为方便,因此采用排布方式二和排布方式四的磁路组件更有利于安装。
在上述排布方式一至排布方式四中,对于一组中间磁体组或一组外圈磁体组为一个整块磁体的情况,该整块磁体可以为磁铁或电磁线圈。同样地, 对于一组中间磁体组或一组外圈磁体组包括间隔设置的多个磁体块的情况,每个磁体块可以为磁铁或电磁线圈。采用整块磁体或间隔设置的多个磁体块的排布方式请参见上述排布方式一至排布方式四的详细说明,此处不再赘述。
在一示例性实施例中,构成上述磁铁的材料可以为钕铁硼,钕铁硼磁性能优异,进一步增加靶材表面磁场强度。
如图10所示,本申请实施例还提供了一种磁控溅射阴极,包括有上述的阴极体组件01。
上述的磁控溅射阴极还包括有如下结构:
设置于磁路组件10远离阴极板20的一侧的靶材04;
设置在阴极体组件01外部的外框组件03;
设置于阴极板20远离磁路组件10的一侧的、且与阴极板20相接触的电引入结构05;
支撑阴极体组件01、外框组件03的盖板组件02;
其中,电引入结构05穿过盖板组件02与阴极板20相接触。
在一示例性实施例中,上述的外框组件03可以为阳极框组件。
在对靶材进行溅射的过程中,阳极框组件能够截获由非靶材零件发射的电子,使之不产生辉光放电,阻止非靶材材料的溅射,从而保证沉积薄膜的纯度。
在一示例性实施例中,上述的电引入结构05可以为铜棒,通过与阴极板20相接触为磁控溅射阴极引入电场。
在一示例性实施例中,靶材04可为ITO(Indium Tin Oxide,氧化铟锡)靶材。靶材04的成分可以根据实际镀膜工艺的需求决定,例如可以是金属靶材、合金靶材或陶瓷靶材等。
在一些实施例中,为了提高靶材的利用率,中间磁体组件包括至少两组中间磁体组,其中排布于最内侧的一组中间磁体组为第一中间磁体组;第一中间磁体组对应于靶材的中心。
在一示例性实施例中,参考图3所示,在中间磁体组件11包括中间磁体 组111和中间磁体组112的情况下,排布于最内侧的中间磁体组111对应靶材的中心,即位于靶材中心的下方。
在一些实施例中,为了提高靶材的利用率,外圈磁体组件中的最外侧的一组外圈磁体组对应于靶材的边缘。
在一示例性实施例中,参考图3所示,外圈磁体组件12中的最外侧的一组外圈磁体组122对应于磁控溅射阴极靶材04的边缘,即位于靶材04边缘的下方。
在外圈磁体组件仅包括一组外圈磁体组的情况下,最外侧的一组外圈磁体组即为该组外圈磁体组。在外圈磁体组件包括至少两组外圈磁体组的情况下,最外侧的一组外圈磁体组则是相对于中间磁体组件而言的最外侧的那一组。
通过上述的设置方式可以使得靶材表面的区域尽可能多地位于各磁体组之间形成的磁力线范围内,从而提高靶材的利用率。
本申请实施例还提供了一种磁控溅射装置,包括有上述的磁控溅射阴极。
磁控溅射装置中的其他结构,如阳极、待沉积薄膜的衬底基板等结构及其设置方式可沿用相关技术,本申请实施例对此不再赘述。
在本申请的描述中,术语“多个”指两个或以上。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内,因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 一种阴极体组件,包括:阴极板,所述阴极体组件还包括:
    设置在所述阴极板一侧板面上的磁路组件,所述磁路组件包括:中间磁体组件和环绕所述中间磁体组件的外圈磁体组件;
    其中,所述中间磁体组件背离所述阴极板一侧的磁极与所述外圈磁体组件背离所述阴极板一侧的磁极的极性相反;
    所述中间磁体组件包括至少一组中间磁体组;
    所述外圈磁体组件包括至少一组外圈磁体组;
    且所述中间磁体组的组数与所述外圈磁体组的组数之和大于2。
  2. 根据权利要求1所述的阴极体组件,其中,所述中间磁体组件包括至少两组所述中间磁体组;
    排布于最内侧的一组所述中间磁体组为第一中间磁体组;除所述第一中间磁体组之外,其余所述中间磁体组均呈环状,且由内向外依次环绕所述第一中间磁体组。
  3. 根据权利要求2所述的阴极体组件,其中,所述第一中间磁体组为一个整块磁体;或者,所述第一中间磁体组包括多个间隔设置的磁体块。
  4. 根据权利要求2或3所述的阴极体组件,其中,除所述第一中间磁体组之外,所述中间磁体组件中其余的所述中间磁体组中的至少一组为一个整块磁体;
    或者,除所述第一中间磁体组之外,所述中间磁体组件中其余的所述中间磁体组中的至少一组包括间隔设置的多个磁体块。
  5. 根据权利要求1-4中任一项所述的阴极体组件,其中,至少一组所述外圈磁体组为一个整块磁体;或者,至少一组所述外圈磁体组包括间隔设置的多个磁体块。
  6. 根据权利要求1-5中任一项所述的阴极体组件,其中,所述中间磁体组和所述外圈磁体组中的至少一组为磁铁或电磁线圈。
  7. 根据权利要求3-5中任一项所述的阴极体组件,其中,位于同一磁体 组中的多个磁体块均为磁铁或电磁线圈;或者,位于同一磁体组中的多个磁体块包括磁铁和电磁线圈。
  8. 根据权利要求6或7所述的阴极体组件,其中,构成所述磁铁的材料为钕铁硼。
  9. 一种磁控溅射阴极,包括如权利要求1-8任一项所述的阴极体组件。
  10. 根据权利要求9所述的磁控溅射阴极,还包括:
    设置于所述磁路组件远离所述阴极板的一侧的靶材;
    设置在所述阴极体组件外部的外框组件;
    设置于所述阴极板远离所述磁路组件的一侧的、且与所述阴极板相接触的电引入结构;
    支撑所述阴极体组件和所述外框组件的盖板组件;
    所述电引入结构穿过所述盖板组件后与所述阴极板相接触。
  11. 根据权利要求10所述的磁控溅射阴极,其中,所述中间磁体组件包括至少两组所述中间磁体组,
    排布于最内侧的一组所述中间磁体组为第一中间磁体组,所述第一中间磁体组对应于所述靶材的中心。
  12. 根据权利要求10或11所述的磁控溅射阴极,其中,所述外圈磁体组件中的最外侧的一组所述外圈磁体组对应于所述靶材的边缘。
  13. 一种磁控溅射装置,包括如权利要求9-12任一项所述的磁控溅射阴极。
PCT/CN2018/108367 2018-07-11 2018-09-28 一种阴极体组件、磁控溅射阴极及磁控溅射装置 WO2020010722A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810759479.5A CN110714186A (zh) 2018-07-11 2018-07-11 一种阴极体组件、磁控溅射阴极及磁控溅射装置
CN201810759479.5 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020010722A1 true WO2020010722A1 (zh) 2020-01-16

Family

ID=69142046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108367 WO2020010722A1 (zh) 2018-07-11 2018-09-28 一种阴极体组件、磁控溅射阴极及磁控溅射装置

Country Status (2)

Country Link
CN (1) CN110714186A (zh)
WO (1) WO2020010722A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876739B (zh) * 2020-08-04 2021-12-31 中国科学院兰州化学物理研究所 一种高利用率宽面矩形阴极靶及其提高利用率的方法
CN113151792B (zh) * 2021-03-26 2023-01-03 洛阳理工学院 磁体部件、磁控溅射阴极及柔性线材镀膜用磁控溅射装置
CN117364045B (zh) * 2023-12-05 2024-06-04 无锡尚积半导体科技有限公司 Pvd设备中的磁性模组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050205411A1 (en) * 2004-03-19 2005-09-22 Tai-Yuan Chen [physical vapor deposition process and apparatus therefor]
CN101250687A (zh) * 2008-03-26 2008-08-27 合肥工业大学 一种矩形平面磁控溅射阴极
US20110100799A1 (en) * 2009-10-29 2011-05-05 Applied Materials, Inc. Sputter deposition system and method
US20110233058A1 (en) * 2010-03-26 2011-09-29 Cheng-Tsung Liu Magnetron Plasma Sputtering Apparatus
US20130101749A1 (en) * 2011-10-25 2013-04-25 Intermolecular, Inc. Method and Apparatus for Enhanced Film Uniformity
CN103247511A (zh) * 2012-02-14 2013-08-14 东京毅力科创株式会社 基板处理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295536A (ja) * 1992-04-24 1993-11-09 Fuji Electric Co Ltd マグネトロンスパッタリングカソード
KR100247765B1 (ko) * 1997-10-25 2000-03-15 윤종용 마그네트론의 캐소드 조립체
JP2005008917A (ja) * 2003-06-17 2005-01-13 Nitto Denko Corp マグネトロンスパッタ装置用カソード
JP5300066B2 (ja) * 2009-04-15 2013-09-25 株式会社昭和真空 マグネトロンカソード
JPWO2012035603A1 (ja) * 2010-09-13 2014-01-20 株式会社シンクロン 磁場発生装置、マグネトロンカソード及びスパッタ装置
CN103046009A (zh) * 2011-10-13 2013-04-17 鸿富锦精密工业(深圳)有限公司 平面磁控溅射阴极
CN102420091B (zh) * 2011-11-24 2014-07-30 中国科学院电工研究所 一种复合式磁控溅射阴极
CN102534513B (zh) * 2011-12-19 2014-04-16 东莞市汇成真空科技有限公司 一种组合磁场的矩形平面阴极电弧蒸发源
CN202595260U (zh) * 2012-05-08 2012-12-12 深圳市创益科技发展有限公司 一种用于连续磁控溅射镀膜的阴极装置
KR20170031435A (ko) * 2015-09-11 2017-03-21 에이피시스템 주식회사 스퍼터링 장치
CN105154839B (zh) * 2015-09-22 2018-03-09 上海晓睿真空科技有限公司 一种平面阴极
CN107083537B (zh) * 2017-05-02 2019-10-01 三河市衡岳真空设备有限公司 新型高靶材利用率平面磁控溅射阴极
CN107779836B (zh) * 2017-12-08 2019-12-03 合肥鑫晟光电科技有限公司 一种磁控溅射装置及其磁场分布调节方法
CN108149209B (zh) * 2017-12-26 2019-12-20 中国科学院电工研究所 一种复合式磁控溅射阴极
CN208649457U (zh) * 2018-07-11 2019-03-26 君泰创新(北京)科技有限公司 一种阴极体组件、磁控溅射阴极及磁控溅射装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050205411A1 (en) * 2004-03-19 2005-09-22 Tai-Yuan Chen [physical vapor deposition process and apparatus therefor]
CN101250687A (zh) * 2008-03-26 2008-08-27 合肥工业大学 一种矩形平面磁控溅射阴极
US20110100799A1 (en) * 2009-10-29 2011-05-05 Applied Materials, Inc. Sputter deposition system and method
US20110233058A1 (en) * 2010-03-26 2011-09-29 Cheng-Tsung Liu Magnetron Plasma Sputtering Apparatus
US20130101749A1 (en) * 2011-10-25 2013-04-25 Intermolecular, Inc. Method and Apparatus for Enhanced Film Uniformity
CN103247511A (zh) * 2012-02-14 2013-08-14 东京毅力科创株式会社 基板处理装置

Also Published As

Publication number Publication date
CN110714186A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
US8658003B1 (en) Dual position DC magnetron assembly
US4865708A (en) Magnetron sputtering cathode
WO2020010722A1 (zh) 一种阴极体组件、磁控溅射阴极及磁控溅射装置
CN102719798B (zh) 磁控溅射系统
JP5555848B2 (ja) 薄膜作製用スパッタ装置及び薄膜作製方法
US7531071B2 (en) Magnet arrangement for a planar magnetron
WO1990005793A1 (en) Improved magnetron sputtering cathode
US20120119861A1 (en) Permanent Magnets Array for Planar Magnetron
US20150075981A1 (en) Rotating magnetron sputtering target and corresponding magnetron sputtering device
TWI607106B (zh) 磁控濺鍍用磁場產生裝置
US20140085024A1 (en) Racetrack-shaped magnetic-field-generating apparatus for magnetron sputtering
US20130319855A1 (en) Magnetron sputtering system
JP4717887B2 (ja) スパッタリング装置
CN211112196U (zh) 一种磁控溅射阴极的磁源结构
CN103290378B (zh) 磁控溅射镀膜阴极机构
JP2008115446A (ja) スパッタ装置及びスパッタ方法
WO2018068833A1 (en) Magnet arrangement for a sputter deposition source and magnetron sputter deposition source
KR102636365B1 (ko) 스퍼터링 장치 및 이를 이용한 스퍼터링 방법
CN208649457U (zh) 一种阴极体组件、磁控溅射阴极及磁控溅射装置
JP4614936B2 (ja) 複合型スパッタ装置及び複合型スパッタ方法
CN207047313U (zh) 磁控溅射装置
KR101005203B1 (ko) 대향 타겟식 스퍼터링 장치
US20110108416A1 (en) Magnetron sputter
TWI618809B (zh) 具高靶材利用率之磁性靶材陰極裝置
TWI391514B (zh) 磁控濺鍍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926145

Country of ref document: EP

Kind code of ref document: A1