WO2020010714A1 - 客户识别装置、方法及计算机可读存储介质 - Google Patents

客户识别装置、方法及计算机可读存储介质 Download PDF

Info

Publication number
WO2020010714A1
WO2020010714A1 PCT/CN2018/107720 CN2018107720W WO2020010714A1 WO 2020010714 A1 WO2020010714 A1 WO 2020010714A1 CN 2018107720 W CN2018107720 W CN 2018107720W WO 2020010714 A1 WO2020010714 A1 WO 2020010714A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormal
customer
transaction
data table
business system
Prior art date
Application number
PCT/CN2018/107720
Other languages
English (en)
French (fr)
Inventor
陈龙
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2020010714A1 publication Critical patent/WO2020010714A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0609Buyer or seller confidence or verification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/02Banking, e.g. interest calculation or account maintenance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the field of computer technology, and in particular, to a client identification device, method, and computer-readable storage medium.
  • Authoritative institutions such as the judiciary and the People's Bank of China will regularly issue some blacklist information.
  • Financial institutions need to monitor the transactions of their institutions. Detect if suspicious customers may be on these blacklists.
  • Each business system needs to maintain its own blacklist system. There is no uniform abnormal customer identification standard between the systems, and the blacklist management is confusing, which leads to the identification of suspicious customers. Inefficiency results in lower risk management capabilities.
  • the present application provides a customer identification device, method and computer-readable storage medium, the main purpose of which is to improve the identification efficiency of suspicious customers and enhance the risk management and control capabilities.
  • the present application provides a client identification device, which includes a memory and a processor.
  • the memory stores a client identification program that can be run on the processor, and the client identification program is processed by the processor. Implement the following steps when the processor executes:
  • An abnormal customer case is generated according to the matching situation of the abnormal customer, an abnormal transaction case is generated according to the abnormal transaction record, and the abnormal customer case and the abnormal transaction case are sent to a preset institution node.
  • the present application also provides a method for identifying a customer, which includes:
  • An abnormal customer case is generated according to the matching situation of the abnormal customer, an abnormal transaction case is generated according to the abnormal transaction record, and the abnormal customer case and the abnormal transaction case are sent to a preset institution node.
  • the present application further provides a computer-readable storage medium, where the computer-readable storage medium stores a client identification program, and the client identification program can be executed by one or more processors to implement Steps of the customer identification method as described above.
  • the customer identification device, method, and computer-readable storage medium provided in this application determine a target business system that needs to be scanned when the time interval of the customer identification operation reaches a preset time interval, and then obtain the customer data table of the target business system and / Or transaction object data table, and determine the blacklist list to be matched. Match the customer data table and / or transaction object data table with the blacklist list according to preset matching rules to find abnormal customers, and query the transaction records of abnormal customers from the database of the corresponding target business system, which will meet the preset conditions Of transaction records as abnormal transaction records.
  • abnormal customer cases are generated based on abnormal customers
  • abnormal transaction cases are generated based on abnormal transaction records
  • abnormal customer cases and abnormal transaction cases are sent to preset institutional nodes.
  • This application identifies matching customers for multiple business systems through matching rules. Generate unified abnormal customer cases and abnormal transaction cases, which improves the identification efficiency of abnormal customers and enhances risk management and control capabilities.
  • FIG. 1 is a schematic diagram of an embodiment of a customer identification device of the present application
  • FIG. 2 is a schematic diagram of a program module of a customer identification program in an embodiment of a customer identification device of the present application
  • FIG. 3 is a flowchart of an embodiment of a customer identification method of the present application.
  • FIG. 1 is a schematic diagram of an embodiment of a customer identification device of the present application.
  • the customer identification device 1 may be a PC (Personal Computer) or a terminal device such as a smart phone, a tablet computer, or a portable computer.
  • PC Personal Computer
  • a terminal device such as a smart phone, a tablet computer, or a portable computer.
  • the client identification device 1 includes at least a memory 11, a processor 12, a communication bus 13, and a network interface 14.
  • the memory 11 includes at least one type of readable storage medium.
  • the readable storage medium includes a flash memory, a hard disk, a multimedia card, a card-type memory (for example, SD or DX memory, etc.), a magnetic memory, a magnetic disk, an optical disk, and the like.
  • the memory 11 may be an internal storage unit of the customer identification device 1 in some embodiments, such as a hard disk of the customer identification device 1.
  • the memory 11 may also be an external storage device of the customer identification device 1 in other embodiments, such as a plug-in hard disk, a smart memory card (SMC), and a secure digital (Secure Digital, SD) card, Flash card, etc.
  • the memory 11 may include both an internal storage unit of the customer identification device 1 and an external storage device.
  • the memory 11 can be used not only to store application software installed in the customer identification device 1 and various types of data, such as a code of the customer identification program 01, but also to temporarily store data that has been or will be output.
  • the processor 12 may be a central processing unit (CPU), a controller, a microcontroller, a microprocessor, or other data processing chip in some embodiments, and is configured to run program codes or processes stored in the memory 11 Data, such as execution of the customer identification program 01 and the like.
  • CPU central processing unit
  • controller controller
  • microcontroller microcontroller
  • microprocessor or other data processing chip in some embodiments, and is configured to run program codes or processes stored in the memory 11 Data, such as execution of the customer identification program 01 and the like.
  • the communication bus 13 is used to implement connection and communication between these components.
  • the network interface 14 may optionally include a standard wired interface, a wireless interface (such as a WI-FI interface), and is generally used to establish a communication connection between the device 1 and other electronic devices.
  • a standard wired interface such as a WI-FI interface
  • FIG. 1 only shows the customer identification device 1 having the components 11-14 and the customer identification program 01, but it should be understood that it is not required to implement all the illustrated components, and more or fewer components may be implemented instead.
  • the client identification program 01 is stored in the memory 11; when the processor 12 executes the client identification program 01 stored in the memory 11, the following steps are implemented:
  • the target business system to be scanned is determined.
  • the user can preset a time interval for performing abnormal customer identification operations, for example, 24 hours, and the customer identification device monitors the time interval of abnormal customer identification operations in real time, and starts when a preset time interval is reached.
  • Abnormal customer identification operation can simultaneously manage and control multiple business systems.
  • the business system refers to each independently operated business system within a company, such as an insurance business system, a securities business system, a banking business system, and so on.
  • the user can set the business system to be scanned as the target business system in advance, and obtain the latest customer data table and / or transaction object data table of the target business system. In some embodiments, only the customer data table may be scanned.
  • both the customer data table and the transaction object data table composed of the transaction objects of the customers in these data tables may be scanned.
  • customers refer to single and group policy insurers, insureds, and beneficiaries of death
  • the transaction object refers to the public third party involved in the transaction in the group statement.
  • the customer data table mainly includes information such as the customer's name, certificate type, and certificate number
  • the transaction object data table mainly includes information such as the name of the transaction object, certificate type, and certificate number.
  • blacklist lists issued from different institutional nodes may be set in advance.
  • the user can preset the corresponding relationship between the business system and the blacklist lists of various sources.
  • the customer data table and / or the transaction object data table are matched with the blacklist list to find abnormal customers.
  • customer identification In this case, it is necessary to consider the update of the customer data table and / or the transaction object data table.
  • the blacklist list issued by an authoritative organization may also be updated within a preset time interval, such as deleting or adding some personnel information to the blacklist list, or modifying the personnel information on the blacklist list. Therefore, in order to achieve accurate identification of abnormal customers, it is necessary to re-perform customer identification operations according to the update of the above data at intervals.
  • matching the customer data table and / or the transaction object data table with the blacklist list, and the step of finding abnormal customers may include The detailed steps are as follows: detecting whether the customer data table and / or the transaction object data table are updated within a preset time interval; if so, obtaining the incremental customer data and / or the incremental transaction object data, and increasing the customers according to the matching rules Match the data and / or incremental transaction object data with the full blacklist to find abnormal customers; if not, check whether the blacklist has been updated within a preset time interval; if yes, obtain the incremental blacklist According to the matching rules, the incremental blacklist list is matched with the full customer data table and / or transaction object data table to find abnormal customers.
  • the incremental customer data and / or the incremental transaction object data can be combined with the full amount of black data. Lists are matched.
  • the full amount of customer data table and / or transaction object data table is matched with the incremental blacklist data to find out Unusual customer. It can be understood that if the customer data table and / or transaction object data are not updated and the blacklist list is not updated within the preset time interval, the recognition result of this time may be the same as the last time, so you can Scan to get the last recognition result.
  • the full amount of customer data table and / or transaction object data table may be matched with the full amount of blacklist data again to find abnormal customers. Specifically, when matching is performed, if the customer information is consistent with the person information on the blacklist, it is determined that the customer is an abnormal customer, and the information of the customer is recorded as an abnormal customer.
  • matching the incremental blacklist list with a full amount of customer data tables and / or transaction object data tables according to a matching rule, and the step of finding abnormal customers includes: according to a plurality of preset information items, The user information in the customer data table and / or the transaction object data table is matched with the personnel information in the incremental blacklist one by one; if the contents of multiple preset information items are inconsistent, the customer is determined to be a normal customer; if there is If the contents of the preset information items are consistent, the client is determined to be an abnormal client.
  • the preset information items mainly include three information items of a certificate type, a certificate number, and a customer name.
  • the credential type, credential number, and customer name in the customer information match the obtained information items with the data in the blacklist one by one in a preset order, and issue a corresponding level of early warning information based on the matching of the three information items .
  • the user can set the warning level corresponding to different matching situations in advance.
  • the document numbers are the same and the exact name is successfully matched, it is a first-level alert; if the document numbers are the same, the fuzzy name is successfully matched, it is a second-level alert; if there is no document number and / or document type information and the name is successfully matched accurately, Three-level warning; if there is no information on the document number and / or the type of the certificate, and the name is ambiguously matched, it is a four-level warning.
  • the first preset business system may be a business system such as securities, credit insurance, etc., and may obtain the latest transaction record of the customer as an abnormal transaction record.
  • the second preset business system as an insurance business system as an example, if the abnormal customer does not have a transaction record within a preset time interval, the transaction record within the current policy validity period of the customer information is obtained as the abnormal transaction record. Further, if there is no transaction record during the validity period of the policy, the transaction record closest to the current time point in the historical transaction record is obtained as the abnormal transaction record.
  • the generated abnormal customer case contains fields in the customer information that match the blacklist, as well as information such as the alert level. These information reflect the abnormality of the customer.
  • the abnormal transaction case contains the obtained abnormal transaction records, which reflects the abnormal transactions of abnormal customers. Send the above case to the preset institution node. It can be understood that the blacklist list from different sources corresponds to different institution nodes. Therefore, when generating the case, you can generate multiple A case table and send it to the corresponding institution node.
  • the customer identification device proposed in the above embodiment determines the target business system to be scanned when the time interval of the customer identification operation reaches a preset time interval, and then obtains the customer data table and / or transaction object data table of the target business system, and Determine the list of blacklists to match. Match the customer data table and / or transaction object data table with the blacklist list according to preset matching rules to find abnormal customers, and query the transaction records of abnormal customers from the database of the corresponding target business system, which will meet the preset conditions Of transaction records as abnormal transaction records.
  • abnormal customer cases are generated based on abnormal customers
  • abnormal transaction cases are generated based on abnormal transaction records
  • abnormal customer cases and abnormal transaction cases are sent to preset institutional nodes.
  • This application identifies matching customers for multiple business systems through matching rules. Generate unified abnormal customer cases and abnormal transaction cases, which improves the identification efficiency of abnormal customers and enhances risk management and control capabilities.
  • the client identification program may also be divided into one or more modules, and the one or more modules are stored in the memory 11 and implemented by one or more processors (this embodiment is The processor 12) executes to complete this application.
  • the modules referred to in this application refer to a series of computer program instruction segments capable of performing specific functions, and are used to describe the execution process of the client identification program in the client identification device.
  • FIG. 2 it is a schematic diagram of a program module of a customer identification program in an embodiment of a customer identification device of the present application.
  • the customer identification program may be divided into a first determination module 10 and a second determination module 20.
  • Customer matching module 30, transaction query module 40, and case generation module 50 for example:
  • the first determining module 10 is configured to: when a time interval of a customer identification operation reaches a preset time interval, determine a target service system to be scanned;
  • the second determining module 20 is configured to obtain the current customer data table and / or transaction object data table of the target business system, and determine a blacklist list corresponding to the target business system;
  • the customer matching module 30 is configured to: according to the update of the customer data table and / or transaction object data table within the preset time interval, associate the customer data table and / or transaction object data table with the blacklist Match the list to find out abnormal customers;
  • the transaction query module 40 is configured to: query the transaction records of the abnormal customers from the database of the corresponding target business system, and use the transaction records that meet the preset conditions as abnormal transaction records;
  • the case generation module 50 is configured to generate an abnormal customer case according to the matching situation of the abnormal customer, generate an abnormal transaction case according to the abnormal transaction record, and send the abnormal customer case and the abnormal transaction case to a preset institution node.
  • this application also provides a customer identification method.
  • a customer identification method Referring to FIG. 3, a flowchart of an embodiment of a customer identification method of the present application is shown. The method may be performed by a device, which may be implemented by software and / or hardware.
  • the customer identification method includes:
  • step S10 when the time interval of the customer identification operation reaches a preset time interval, a target business system that needs to be scanned is determined.
  • Step S20 Acquire the current customer data table and / or transaction object data table of the target business system, and determine a blacklist list corresponding to the target business system.
  • a user may preset a time interval for performing an abnormal client identification operation, for example, 24 hours. Then, when the time interval of the abnormal customer identification operation reaches a preset time interval, the abnormal customer identification operation is started.
  • multiple service systems can be managed and controlled simultaneously.
  • the business system refers to each independently operated business system within a company, such as an insurance business system, a securities business system, a banking business system, and so on.
  • the user can set the business system to be scanned as the target business system in advance, and obtain the latest customer data table and / or transaction object data table of the target business system. In some embodiments, only the customer data table may be scanned.
  • both the customer data table and the transaction object data table composed of the transaction objects of the customers in these data tables may be scanned.
  • customers refer to single and group policy insurers, insureds, and beneficiaries of death
  • the transaction object refers to the public third party involved in the transaction in the group statement.
  • the customer data table mainly includes information such as the customer's name, certificate type, and certificate number
  • the transaction object data table mainly includes information such as the name of the transaction object, certificate type, and certificate number.
  • blacklist lists issued from different institutional nodes may be set in advance.
  • the user can preset the corresponding relationship between the business system and the blacklist lists of various sources.
  • Step S30 Match the customer data table and / or the transaction object data table with the black list according to the update of the customer data table and / or the transaction object data table within a preset time interval to find abnormal customers.
  • customer identification In this case, it is necessary to consider the update of the customer data table and / or the transaction object data table.
  • the blacklist list issued by an authoritative organization may also be updated within a preset time interval, such as deleting or adding some personnel information to the blacklist list, or modifying the personnel information on the blacklist list. Therefore, in order to achieve accurate identification of abnormal customers, it is necessary to re-perform customer identification operations according to the update of the above data at intervals.
  • matching the customer data table and / or the transaction object data table with the blacklist list, and the step of finding abnormal customers may include The detailed steps are as follows: detecting whether the customer data table and / or the transaction object data table are updated within a preset time interval; if so, obtaining the incremental customer data and / or the incremental transaction object data, and increasing the customers according to the matching rules Match the data and / or incremental transaction object data with the full blacklist to find abnormal customers; if not, check whether the blacklist has been updated within a preset time interval; if yes, obtain the incremental blacklist According to the matching rules, the incremental blacklist list is matched with the full customer data table and / or transaction object data table to find abnormal customers.
  • the incremental customer data and / or the incremental transaction object data can be combined with the full amount of black data. Lists are matched.
  • the full amount of customer data table and / or transaction object data table is matched with the incremental blacklist data to find out Unusual customer. It can be understood that if the customer data table and / or transaction object data are not updated and the blacklist list is not updated within the preset time interval, the recognition result of this time may be the same as the last time, so you can Scan to get the last recognition result.
  • the full amount of customer data table and / or transaction object data table may be matched with the full amount of blacklist data again to find abnormal customers. Specifically, when matching is performed, if the customer information is consistent with the person information on the blacklist, it is determined that the customer is an abnormal customer, and the information of the customer is recorded as an abnormal customer.
  • matching the incremental blacklist list with a full amount of customer data tables and / or transaction object data tables according to a matching rule, and the step of finding abnormal customers includes: according to a plurality of preset information items, The user information in the customer data table and / or the transaction object data table is matched with the personnel information in the incremental blacklist one by one; if the contents of multiple preset information items are inconsistent, the customer is determined to be a normal customer; if there is If the contents of the preset information items are consistent, the client is determined to be an abnormal client.
  • the preset information items mainly include three information items of a certificate type, a certificate number, and a customer name.
  • the credential type, credential number, and customer name in the customer information match the obtained information items with the data in the blacklist one by one in a preset order, and issue a corresponding level of early warning information based on the matching of the three information items .
  • the user can set the warning level corresponding to different matching situations in advance. For example, if the document numbers are the same and the exact name is successfully matched, it is a first-level alert; if the document numbers are the same, the fuzzy name is successfully matched, it is a second-level alert. Three-level warning; if there is no information on the document number and / or the type of the certificate, and the name is ambiguously matched, it is a four-level warning.
  • Step S40 Query the transaction records of abnormal customers from the database of the corresponding target business system, and use the transaction records that meet the preset conditions as abnormal transaction records.
  • step S50 an abnormal customer case is generated according to the abnormal customer, an abnormal transaction case is generated according to the abnormal transaction record, and the abnormal customer case and the abnormal transaction case are sent to a preset institution node.
  • the first preset business system may be a business system such as securities, credit insurance, etc., and may obtain the latest transaction record of the customer as an abnormal transaction record.
  • the second preset business system as an insurance business system as an example, if the abnormal customer does not have a transaction record within a preset time interval, the transaction record within the current policy validity period of the customer information is obtained as the abnormal transaction record. Further, if there is no transaction record during the validity period of the policy, the transaction record closest to the current time point in the historical transaction record is obtained as the abnormal transaction record.
  • the generated abnormal customer case contains fields in the customer information that match the blacklist, as well as information such as the alert level. These information reflect the abnormality of the customer.
  • the abnormal transaction case contains the obtained abnormal transaction records, which reflects the abnormal transactions of abnormal customers. Send the above case to the preset institution node. It can be understood that the blacklist list from different sources corresponds to different institution nodes. Therefore, when generating the case, you can generate multiple A case table and send it to the corresponding institution node.
  • the customer identification method proposed in the above embodiment determines the target business system to be scanned when the time interval of the customer identification operation reaches a preset time interval, and then obtains the customer data table and / or transaction object data table of the target business system, and Determine the list of blacklists to match. Match the customer data table and / or transaction object data table with the blacklist list according to preset matching rules to find abnormal customers, and query the transaction records of abnormal customers from the database of the corresponding target business system, which will meet the preset conditions Of transaction records as abnormal transaction records.
  • abnormal customer cases are generated based on abnormal customers
  • abnormal transaction cases are generated based on abnormal transaction records
  • abnormal customer cases and abnormal transaction cases are sent to preset institutional nodes.
  • This application identifies matching customers for multiple business systems through matching rules. Generate unified abnormal customer cases and abnormal transaction cases, which improves the identification efficiency of abnormal customers and enhances risk management and control capabilities.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a client identification program, and the client identification program may be executed by one or more processors to implement the following operations:
  • An abnormal customer case is generated according to the matching situation of the abnormal customer, an abnormal transaction case is generated according to the abnormal transaction record, and the abnormal customer case and the abnormal transaction case are sent to a preset institution node.
  • the specific implementation of the computer-readable storage medium of the present application is basically the same as each embodiment of the above-mentioned client identification device and method, and will not be repeated here.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Technology Law (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

一种客户识别方法、装置、计算机可读存储介质。所述方法包括:确定需要扫描的目标业务系统;获取目标业务系统的客户数据表和/或交易对象数据表,以及黑名单列表;根据数据在预设时间间隔内的更新情况,将客户数据表和/或交易对象数据表与黑名单列表匹配,查找出异常客户;从对应的数据库中查询异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;生成异常客户案例和异常交易案例发送至预设机构节点。所述方法和装置提高了机构对可疑客户的识别效率,继而增强了风险管控能力。

Description

客户识别装置、方法及计算机可读存储介质
本申请要求于2018年7月13日提交中国专利局,申请号为201810768273.9、发明名称为“客户识别装置、方法及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,尤其涉及一种客户识别装置、方法及计算机可读存储介质。
背景技术
金融行业的一些企业或者机构,如银行等,需要对交易的安全性进行管控,司法机关、中国人民银行等权威机构会定期下发一些黑名单信息,金融机构需要对本机构的交易业务进行监控,检测是否有可疑客户可能在这些黑名单列表上。但是,现有的银行系统中没有集中的系统来对可疑客户和交易进行识别,主要是各个业务系统针对自己的业务需求采用各自的方法进行黑名单管控,甚至有些业务系统的可疑客户和交易的识别方式还停留在柜台业务员的人工鉴别层面,每个业务系统都需要对各自的黑名单系统进行维护,,系统间缺乏统一的异常客户识别标准,黑名单管理混乱,导致对可疑客户的识别效率低下,进而造成风险管控能力也比较低。
发明内容
本申请提供一种客户识别装置、方法及计算机可读存储介质,其主要目的在于提高对可疑客户的识别效率,增强风险管控能力。
为实现上述目的,本申请提供一种客户识别装置,该装置包括存储器和处理器,所述存储器中存储有可在所述处理器上运行的客户识别程序,所述客户识别程序被所述处理器执行时实现如下步骤:
在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统;
获取所述目标业务系统当前的客户数据表和/或交易对象数据表,并确定 与所述目标业务系统对应的黑名单列表;
根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户;
从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;
根据异常客户的匹配情况生成异常客户案例,根据所述异常交易记录生成异常交易案例,并将所述异常客户案例和所述异常交易案例发送至预设机构节点。
此外,为实现上述目的,本申请还提供一种客户识别方法,该方法包括:
在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统;
获取所述目标业务系统当前的客户数据表和/或交易对象数据表,并确定与所述目标业务系统对应的黑名单列表;
根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户;
从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;
根据异常客户的匹配情况生成异常客户案例,根据所述异常交易记录生成异常交易案例,并将所述异常客户案例和所述异常交易案例发送至预设机构节点。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有客户识别程序,所述客户识别程序可被一个或者多个处理器执行,以实现如上所述的客户识别方法的步骤。
本申请提出的客户识别装置、方法及计算机可读存储介质,在客户识别操作的时间间隔到达预设时间间隔时,确定需要扫描的目标业务系统,进而获取该目标业务系统的客户数据表和/或交易对象数据表,并确定待匹配的黑名单列表。按照预设的匹配规则将客户数据表和/或交易对象数据表与黑名单列表进行匹配,查找出异常客户,从对应的目标业务系统的数据库中查询异 常客户的交易记录,将符合预设条件的交易记录作为异常交易记录。从而根据异常客户生成异常客户案例,根据异常交易记录生成异常交易案例,并将异常客户案例和异常交易案例发送至预设机构节点,本申请通过匹配规则对多个业务系统的异常客户进行识别,生成统一的异常客户案例和异常交易案例,提高了异常客户的识别效率,增强了风险管控能力。
附图说明
图1为本申请客户识别装置一实施例的示意图;
图2为本申请客户识别装置一实施例中客户识别程序的程序模块示意图;
图3为本申请客户识别方法一实施例的流程图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请提供一种客户识别装置。参照图1所示,为本申请客户识别装置一实施例的示意图。
在本实施例中,客户识别装置1可以是PC(Personal Computer,个人电脑),也可以是智能手机、平板电脑、便携计算机等终端设备。
该客户识别装置1至少包括存储器11、处理器12,通信总线13,以及网络接口14。
其中,存储器11至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、磁性存储器、磁盘、光盘等。存储器11在一些实施例中可以是客户识别装置1的内部存储单元,例如该客户识别装置1的硬盘。存储器11在另一些实施例中也可以是客户识别装置1的外部存储设备,例如客户识别装置1上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器11还可以既包括客户识别装置1的内部存储单元也包括外部存储设备。存储器11不仅可以用于存 储安装于客户识别装置1的应用软件及各类数据,例如客户识别程序01的代码等,还可以用于暂时地存储已经输出或者将要输出的数据。
处理器12在一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器11中存储的程序代码或处理数据,例如执行客户识别程序01等。
通信总线13用于实现这些组件之间的连接通信。
网络接口14可选的可以包括标准的有线接口、无线接口(如WI-FI接口),通常用于在该装置1与其他电子设备之间建立通信连接。
图1仅示出了具有组件11-14以及客户识别程序01的客户识别装置1,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
在图1所示的装置1实施例中,存储器11中存储有客户识别程序01;处理器12执行存储器11中存储的客户识别程序01时实现如下步骤:
在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统。
获取目标业务系统当前的客户数据表和/或交易对象数据表,并确定与目标业务系统对应的黑名单列表。
在本申请实施例中,用户可以预先设定进行异常客户识别操作的时间间隔,例如24小时,则客户识别装置对异常客户识别操作的时间间隔进行实时监控,当达到预设时间间隔时,启动异常客户识别操作。此外,本实施例的客户识别装置可以同时对多个业务系统进行管控。其中,业务系统是指一个公司内部各个独立运营的业务系统,例如保险业务系统、证券业务系统、银行业务系统等等。用户可以预先设置好需要扫描的业务系统作为目标业务系统,获取目标业务系统当前最新的客户数据表和/交易对象数据表。在一些实施例中,可以只对客户数据表进行扫描,在另外一些实施例中可以对客户数据表和这些数据表中的客户的交易对象构成的交易对象数据表均进行扫描。以健康险业务系统为例,客户是指个单及团单投保人、被保人和身故受益人,交易对象则是指团单中涉及交易的对公第三方。其中,客户数据表中主要包括客户的姓名、证件类型、证件号码等信息,而交易对象数据表中主要包括交易对象的姓名、证件类型和证件号码等信息。
关于本实施例中的黑名单列表,可以预先设置多个来自于不同的机构节点下发的黑名单列表。如司法机关、中国人民银行等权威机构下发的可疑客户名单。对于一个业务系统来说,可以与预设的黑名单列表中的一个或者多个匹配,用户可以预先设置业务系统与各个来源的黑名单列表之间的对应的关系。
根据客户数据表和/或交易对象数据表在预设时间间隔内的更新情况,将客户数据表和/或交易对象数据表与黑名单列表进行匹配,查找出异常客户。
对于业务系统来说,可能每天都会有新的客户进行交易,例如存取款、购买保险、购买投资类产品等等,或者一些老客户也会有一些新的交易对象,因此,在进行客户识别时,需要考虑客户数据表和/或交易对象数据表的更新。而且,权威机构下发的黑名单列表也存在预设时间间隔内发生更新的可能性,例如删除、增加了一些人员信息到黑名单列表上,或者修改了黑名单列表上的人员信息等。故,为了实现对异常客户的准确识别,需要每间隔一段时间,根据上述数据的更新情况,重新执行客户识别操作。
具体地,根据客户数据表和/或交易对象数据表在预设时间间隔内的更新情况,将客户数据表和/或交易对象数据表与黑名单列表进行匹配,查找出异常客户的步骤可以包括如下细化步骤:检测客户数据表和/或交易对象数据表在预设时间间隔内是否发生更新;若是,则获取增量客户数据和/或增量交易对象数据,按照匹配规则将增量客户数据和/或增量交易对象数据与全量的黑名单列表进行匹配,查找出异常客户;若否,则检测黑名单列表在预设时间间隔内是否发生更新;若是,则获取增量黑名单列表,按照匹配规则将增量黑名单列表与全量的客户数据表和/或交易对象数据表进行匹配,查找出异常客户。
上述步骤中,在客户数据表和/或交易对象数据表发生了更新的情况下,无论黑名单列表是否更新,都可以将增量的客户数据和/或增量的交易对象数据与全量的黑名单列表进行匹配。在客户数据表和/或交易对象数据表未发生更新,而黑名单列表发生了更新的情况下,将全量的客户数据表和/或交易对象数据表与增量黑名单数据进行匹配,查找出异常客户。可以理解的是,若在预设时间间隔内,若客户数据表和/或交易对象数据未发生更新、黑名单列表也未发生更新,则本次的识别结果可能会与上次相同,因此可以进行扫描, 获取上次的识别结果。或者在其他的实施例中,可以将全量的客户数据表和/或交易对象数据表与全量黑名单数据再次进行匹配,以查找出异常客户。具体地,在进行匹配时,若客户信息与黑名单列表上的人员信息一致,则判定该客户为异常客户,将该客户的信息记录为异常客户。
进一步地,按照匹配规则将所述增量黑名单列表与全量的客户数据表和/或交易对象数据表进行匹配,查找出异常客户的步骤包括:按照预设的多个信息项,将全量的客户数据表和/或交易对象数据表中的用户信息与增量黑名单列表中的人员信息进行逐一匹配;若多个预设信息项的内容均不一致,则判定该客户为正常客户;若有预设信息项的内容一致,则判定该客户为异常客户。具体地,预设信息项主要包括证件类型、证件号码和客户姓名三个信息项。获取客户信息中的证件类型、证件号码和客户姓名,将获取到的上述信息项按照预设顺序与黑名单中的数据逐一匹配,并根据上述三个信息项的匹配情况发出对应级别的预警信息。其中,用户可以预先设置不同的匹配情况对应的预警级别。例如,若证件号码相同且姓名精确匹配成功,为一级预警;若证件号码相同,姓名模糊匹配成功,为二级预警,若无证件号码和/或证件类型信息、且姓名精确匹配成功,为三级预警;若无证件号码和/或证件类型信息、且姓名模糊匹配成功,为四级预警。
在判定客户为异常客户之后,获取内容一致的预设信息项的数量,并根据获取的数量确定预警级别;确定内容一致的预设信息项的匹配字段;根据异常客户的信息、预警级别和匹配字段生成异常客户案例。
从对应的目标业务系统的数据库中查询异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录。
根据异常客户生成异常客户案例,根据异常交易记录生成异常交易案例,并将异常客户案例和异常交易案例发送至预设机构节点。
若目标业务系统有多个,则在查找到异常客户后,确定这些客户信息对应的目标业务系统。从目标业务系统的数据库中查询该客户信息的交易记录。筛选出符合条件的交易记录作为异常交易记录。具体地,从对应的目标业务系统的数据库中查询异常客户的交易记录;若目标业务系统为第一预设业务系统,则将异常客户最新的一条交易记录作为异常交易记录;若目标业务系统为第二预设业务系统,则检测异常客户是否在预设时间间隔内产生新的交 易记录;若是,则将检测到的交易记录作为异常交易记录;若否,则将异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
作为一种实施方式,上述第一预设业务系统可以是证券、信保等业务系统,可以获取客户最新一条交易记录作为异常交易记录。以第二预设业务系统是保险业务系统为例,若在预设时间间隔内该异常客户没有交易记录,则获取该客户信息当前的保单有效期内的交易记录作为异常交易记录。进一步地,若保单有效期内无交易记录,则获取历史交易记录中距离当前时间点最近的交易记录作为异常交易记录。
生成的异常客户案例中包含有客户信息中与黑名单中匹配的字段,以及预警级别等信息,这些信息反映出客户的异常程度。而异常交易案例中则包含有获取到的异常交易记录,反映出异常客户的异常交易情况。将上述案例发送到预设的机构节点处,可以理解的是,不同来源的黑名单列表对应于不同的机构节点,因此,在生成案例时,可以根据匹配到的异常客户对应的黑名单生成多个案例表,并发送到对应的机构节点。
以上实施例提出的客户识别装置,在客户识别操作的时间间隔到达预设时间间隔时,确定需要扫描的目标业务系统,进而获取该目标业务系统的客户数据表和/或交易对象数据表,并确定待匹配的黑名单列表。按照预设的匹配规则将客户数据表和/或交易对象数据表与黑名单列表进行匹配,查找出异常客户,从对应的目标业务系统的数据库中查询异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录。从而根据异常客户生成异常客户案例,根据异常交易记录生成异常交易案例,并将异常客户案例和异常交易案例发送至预设机构节点,本申请通过匹配规则对多个业务系统的异常客户进行识别,生成统一的异常客户案例和异常交易案例,提高了异常客户的识别效率,增强了风险管控能力。
可选地,在其他的实施例中,客户识别程序还可以被分割为一个或者多个模块,一个或者多个模块被存储于存储器11中,并由一个或多个处理器(本实施例为处理器12)所执行以完成本申请,本申请所称的模块是指能够完成特定功能的一系列计算机程序指令段,用于描述客户识别程序在客户识别装置中的执行过程。
例如,参照图2所示,为本申请客户识别装置一实施例中的客户识别程序的程序模块示意图,该实施例中,客户识别程序可以被分割为第一确定模块10、第二确定模块20、客户匹配模块30、交易查询模块40和案例生成模块50,示例性地:
第一确定模块10用于:在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统;
第二确定模块20用于:获取所述目标业务系统当前的客户数据表和/或交易对象数据表,并确定与所述目标业务系统对应的黑名单列表;
客户匹配模块30用于:根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户;
交易查询模块40用于:从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;
案例生成模块50用于:根据异常客户的匹配情况生成异常客户案例,根据所述异常交易记录生成异常交易案例,并将所述异常客户案例和所述异常交易案例发送至预设机构节点。
上述第一确定模块10、第二确定模块20、客户匹配模块30、交易查询模块40和案例生成模块50等程序模块被执行时所实现的功能或操作步骤与上述实施例大体相同,在此不再赘述。
此外,本申请还提供一种客户识别方法。参照图3所示,为本申请客户识别方法一实施例的流程图。该方法可以由一个装置执行,该装置可以由软件和/或硬件实现。
在本实施例中,客户识别方法包括:
步骤S10,在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统。
步骤S20,获取目标业务系统当前的客户数据表和/或交易对象数据表,并确定与目标业务系统对应的黑名单列表。
在本申请实施例中,用户可以预先设定进行异常客户识别操作的时间间隔,例如24小时。则当客异常客户识别操作的时间间隔达到预设时间间隔时, 启动异常客户识别操作。此外,本实施例可以同时对多个业务系统进行管控。其中,业务系统是指一个公司内部各个独立运营的业务系统,例如保险业务系统、证券业务系统、银行业务系统等等。用户可以预先设置好需要扫描的业务系统作为目标业务系统,获取目标业务系统当前最新的客户数据表和/交易对象数据表。在一些实施例中,可以只对客户数据表进行扫描,在另外一些实施例中可以对客户数据表和这些数据表中的客户的交易对象构成的交易对象数据表均进行扫描。以健康险业务系统为例,客户是指个单及团单投保人、被保人和身故受益人,交易对象则是指团单中涉及交易的对公第三方。其中,客户数据表中主要包括客户的姓名、证件类型、证件号码等信息,而交易对象数据表中主要包括交易对象的姓名、证件类型和证件号码等信息。
关于本实施例中的黑名单列表,可以预先设置多个来自于不同的机构节点下发的黑名单列表。如司法机关、中国人民银行等权威机构下发的可疑客户名单。对于一个业务系统来说,可以与预设的黑名单列表中的一个或者多个匹配,用户可以预先设置业务系统与各个来源的黑名单列表之间的对应的关系。
步骤S30,根据客户数据表和/或交易对象数据表在预设时间间隔内的更新情况,将客户数据表和/或交易对象数据表与黑名单列表进行匹配,查找出异常客户。
对于业务系统来说,可能每天都会有新的客户进行交易,例如存取款、购买保险、购买投资类产品等等,或者一些老客户也会有一些新的交易对象,因此,在进行客户识别时,需要考虑客户数据表和/或交易对象数据表的更新。而且,权威机构下发的黑名单列表也存在预设时间间隔内发生更新的可能性,例如删除、增加了一些人员信息到黑名单列表上,或者修改了黑名单列表上的人员信息等。故,为了实现对异常客户的准确识别,需要每间隔一段时间,根据上述数据的更新情况,重新执行客户识别操作。
具体地,根据客户数据表和/或交易对象数据表在预设时间间隔内的更新情况,将客户数据表和/或交易对象数据表与黑名单列表进行匹配,查找出异常客户的步骤可以包括如下细化步骤:检测客户数据表和/或交易对象数据表在预设时间间隔内是否发生更新;若是,则获取增量客户数据和/或增量交易对象数据,按照匹配规则将增量客户数据和/或增量交易对象数据与全量的黑 名单列表进行匹配,查找出异常客户;若否,则检测黑名单列表在预设时间间隔内是否发生更新;若是,则获取增量黑名单列表,按照匹配规则将增量黑名单列表与全量的客户数据表和/或交易对象数据表进行匹配,查找出异常客户。
上述步骤中,在客户数据表和/或交易对象数据表发生了更新的情况下,无论黑名单列表是否更新,都可以将增量的客户数据和/或增量的交易对象数据与全量的黑名单列表进行匹配。在客户数据表和/或交易对象数据表未发生更新,而黑名单列表发生了更新的情况下,将全量的客户数据表和/或交易对象数据表与增量黑名单数据进行匹配,查找出异常客户。可以理解的是,若在预设时间间隔内,若客户数据表和/或交易对象数据未发生更新、黑名单列表也未发生更新,则本次的识别结果可能会与上次相同,因此可以进行扫描,获取上次的识别结果。或者在其他的实施例中,可以将全量的客户数据表和/或交易对象数据表与全量黑名单数据再次进行匹配,以查找出异常客户。具体地,在进行匹配时,若客户信息与黑名单列表上的人员信息一致,则判定该客户为异常客户,将该客户的信息记录为异常客户。
进一步地,按照匹配规则将所述增量黑名单列表与全量的客户数据表和/或交易对象数据表进行匹配,查找出异常客户的步骤包括:按照预设的多个信息项,将全量的客户数据表和/或交易对象数据表中的用户信息与增量黑名单列表中的人员信息进行逐一匹配;若多个预设信息项的内容均不一致,则判定该客户为正常客户;若有预设信息项的内容一致,则判定该客户为异常客户。具体地,预设信息项主要包括证件类型、证件号码和客户姓名三个信息项。获取客户信息中的证件类型、证件号码和客户姓名,将获取到的上述信息项按照预设顺序与黑名单中的数据逐一匹配,并根据上述三个信息项的匹配情况发出对应级别的预警信息。其中,用户可以预先设置不同的匹配情况对应的预警级别。例如,若证件号码相同且姓名精确匹配成功,为一级预警;若证件号码相同,姓名模糊匹配成功,为二级预警,若无证件号码和/或证件类型信息、且姓名精确匹配成功,为三级预警;若无证件号码和/或证件类型信息、且姓名模糊匹配成功,为四级预警。
在判定客户为异常客户之后,获取内容一致的预设信息项的数量,并根据获取的数量确定预警级别;确定内容一致的预设信息项的匹配字段;根据 异常客户的信息、预警级别和匹配字段生成异常客户案例。
步骤S40,从对应的目标业务系统的数据库中查询异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录。
步骤S50,根据异常客户生成异常客户案例,根据异常交易记录生成异常交易案例,并将异常客户案例和异常交易案例发送至预设机构节点。
若目标业务系统有多个,则在查找到异常客户后,确定这些客户信息对应的目标业务系统。从目标业务系统的数据库中查询该客户信息的交易记录。筛选出符合条件的交易记录作为异常交易记录。具体地,从对应的目标业务系统的数据库中查询异常客户的交易记录;若目标业务系统为第一预设业务系统,则将异常客户最新的一条交易记录作为异常交易记录;若目标业务系统为第二预设业务系统,则检测异常客户是否在预设时间间隔内产生新的交易记录;若是,则将检测到的交易记录作为异常交易记录;若否,则将异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
作为一种实施方式,上述第一预设业务系统可以是证券、信保等业务系统,可以获取客户最新一条交易记录作为异常交易记录。以第二预设业务系统是保险业务系统为例,若在预设时间间隔内该异常客户没有交易记录,则获取该客户信息当前的保单有效期内的交易记录作为异常交易记录。进一步地,若保单有效期内无交易记录,则获取历史交易记录中距离当前时间点最近的交易记录作为异常交易记录。
生成的异常客户案例中包含有客户信息中与黑名单中匹配的字段,以及预警级别等信息,这些信息反映出客户的异常程度。而异常交易案例中则包含有获取到的异常交易记录,反映出异常客户的异常交易情况。将上述案例发送到预设的机构节点处,可以理解的是,不同来源的黑名单列表对应于不同的机构节点,因此,在生成案例时,可以根据匹配到的异常客户对应的黑名单生成多个案例表,并发送到对应的机构节点。
以上实施例提出的客户识别方法,在客户识别操作的时间间隔到达预设时间间隔时,确定需要扫描的目标业务系统,进而获取该目标业务系统的客户数据表和/或交易对象数据表,并确定待匹配的黑名单列表。按照预设的匹配规则将客户数据表和/或交易对象数据表与黑名单列表进行匹配,查找出异常客户,从对应的目标业务系统的数据库中查询异常客户的交易记录,将符 合预设条件的交易记录作为异常交易记录。从而根据异常客户生成异常客户案例,根据异常交易记录生成异常交易案例,并将异常客户案例和异常交易案例发送至预设机构节点,本申请通过匹配规则对多个业务系统的异常客户进行识别,生成统一的异常客户案例和异常交易案例,提高了异常客户的识别效率,增强了风险管控能力。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有客户识别程序,所述客户识别程序可被一个或多个处理器执行,以实现如下操作:
在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统;
获取所述目标业务系统当前的客户数据表和/或交易对象数据表,并确定与所述目标业务系统对应的黑名单列表;
根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户;
从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;
根据异常客户的匹配情况生成异常客户案例,根据所述异常交易记录生成异常交易案例,并将所述异常客户案例和所述异常交易案例发送至预设机构节点。本申请计算机可读存储介质具体实施方式与上述客户识别装置和方法各实施例基本相同,在此不作累述。
需要说明的是,上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。并且本文中的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、装置、物品或者方法不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、装置、物品或者方法所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、装置、物品或者方法中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种客户识别装置,其特征在于,所述装置包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的客户识别程序,所述客户识别程序被所述处理器执行时实现如下步骤:
    在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统;
    获取所述目标业务系统当前的客户数据表和/或交易对象数据表,并确定与所述目标业务系统对应的黑名单列表;
    根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户;
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;
    根据异常客户的匹配情况生成异常客户案例,根据所述异常交易记录生成异常交易案例,并将所述异常客户案例和所述异常交易案例发送至预设机构节点。
  2. 如权利要求1所述的客户识别装置,其特征在于,所述根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户的步骤包括:
    检测所述客户数据表和/或交易对象数据表在所述预设时间间隔内是否发生更新;
    若是,则获取增量客户数据和/或增量交易对象数据,按照所述匹配规则将所述增量客户数据和/或增量交易对象数据与全量的所述黑名单列表进行匹配,查找出异常客户;
    若否,则检测所述黑名单列表在所述预设时间间隔内是否发生更新;
    若是,则获取增量黑名单列表,按照所述匹配规则将所述增量黑名单列表与全量的所述客户数据表和/或交易对象数据表进行匹配,查找出异常客户。
  3. 如权利要求2所述的客户识别装置,其特征在于,按照所述匹配规则将所述增量黑名单列表与全量的所述客户数据表和/或交易对象数据表进行匹 配,查找出异常客户的步骤包括:
    按照预设的多个信息项,将全量的客户数据表和/或交易对象数据表中的用户信息与增量黑名单列表中的人员信息进行逐一匹配;
    若多个预设信息项的内容均不一致,则判定该客户为正常客户;
    若有预设信息项的内容一致,则判定该客户为异常客户。
  4. 如权利要求3所述的客户识别装置,其特征在于,所述根据异常客户的匹配情况生成异常客户案例的步骤包括:
    获取内容一致的预设信息项的数量,并根据获取的数量确定预警级别;
    确定内容一致的预设信息项的匹配字段;
    根据所述异常客户的信息、所述预警级别和所述匹配字段生成异常客户案例。
  5. 如权利要求1所述的客户识别装置,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
  6. 如权利要求2所述的客户识别装置,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
  7. 如权利要求3或4所述的客户识别装置,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
  8. 一种客户识别方法,其特征在于,所述方法包括:
    在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统;
    获取所述目标业务系统当前的客户数据表和/或交易对象数据表,并确定与所述目标业务系统对应的黑名单列表;
    根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户;
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;
    根据异常客户的匹配情况生成异常客户案例,根据所述异常交易记录生成异常交易案例,并将所述异常客户案例和所述异常交易案例发送至预设机构节点。
  9. 如权利要求8所述的客户识别方法,其特征在于,所述根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户的 步骤包括:
    检测所述客户数据表和/或交易对象数据表在所述预设时间间隔内是否发生更新;
    若是,则获取增量客户数据和/或增量交易对象数据,按照所述匹配规则将所述增量客户数据和/或增量交易对象数据与全量的所述黑名单列表进行匹配,查找出异常客户;
    若否,则检测所述黑名单列表在所述预设时间间隔内是否发生更新;
    若是,则获取增量黑名单列表,按照所述匹配规则将所述增量黑名单列表与全量的所述客户数据表和/或交易对象数据表进行匹配,查找出异常客户。
  10. 如权利要求9所述的客户识别方法,其特征在于,按照所述匹配规则将所述增量黑名单列表与全量的所述客户数据表和/或交易对象数据表进行匹配,查找出异常客户的步骤包括:
    按照预设的多个信息项,将全量的客户数据表和/或交易对象数据表中的用户信息与增量黑名单列表中的人员信息进行逐一匹配;
    若多个预设信息项的内容均不一致,则判定该客户为正常客户;
    若有预设信息项的内容一致,则判定该客户为异常客户。
  11. 如权利要求10所述的客户识别方法,其特征在于,所述根据异常客户的匹配情况生成异常客户案例的步骤包括:
    获取内容一致的预设信息项的数量,并根据获取的数量确定预警级别;
    确定内容一致的预设信息项的匹配字段;
    根据所述异常客户的信息、所述预警级别和所述匹配字段生成异常客户案例。
  12. 如权利要求8所述的客户识别方法,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
  13. 如权利要求9所述的客户识别方法,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
  14. 如权利要求10或11所述的客户识别方法,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有客户识别程序,所述客户识别程序可被一个或者多个处理器执行,以实现如下步骤:
    在客户识别操作的时间间隔达到预设时间间隔时,确定需要扫描的目标业务系统;
    获取所述目标业务系统当前的客户数据表和/或交易对象数据表,并确定与所述目标业务系统对应的黑名单列表;
    根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户;
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为异常交易记录;
    根据异常客户的匹配情况生成异常客户案例,根据所述异常交易记录生成异常交易案例,并将所述异常客户案例和所述异常交易案例发送至预设机构节点。
  16. 如权利要求15所述的计算机可读存储介质,其特征在于,所述根据所述客户数据表和/或交易对象数据表在所述预设时间间隔内的更新情况,将所述客户数据表和/或交易对象数据表与所述黑名单列表进行匹配,查找出异常客户的步骤包括:
    检测所述客户数据表和/或交易对象数据表在所述预设时间间隔内是否发生更新;
    若是,则获取增量客户数据和/或增量交易对象数据,按照所述匹配规则将所述增量客户数据和/或增量交易对象数据与全量的所述黑名单列表进行匹配,查找出异常客户;
    若否,则检测所述黑名单列表在所述预设时间间隔内是否发生更新;
    若是,则获取增量黑名单列表,按照所述匹配规则将所述增量黑名单列表与全量的所述客户数据表和/或交易对象数据表进行匹配,查找出异常客户。
  17. 如权利要求16所述的计算机可读存储介质,其特征在于,按照所述匹配规则将所述增量黑名单列表与全量的所述客户数据表和/或交易对象数据表进行匹配,查找出异常客户的步骤包括:
    按照预设的多个信息项,将全量的客户数据表和/或交易对象数据表中的用户信息与增量黑名单列表中的人员信息进行逐一匹配;
    若多个预设信息项的内容均不一致,则判定该客户为正常客户;
    若有预设信息项的内容一致,则判定该客户为异常客户。
  18. 如权利要求17所述的计算机可读存储介质,其特征在于,所述根据 异常客户的匹配情况生成异常客户案例的步骤包括:
    获取内容一致的预设信息项的数量,并根据获取的数量确定预警级别;
    确定内容一致的预设信息项的匹配字段;
    根据所述异常客户的信息、所述预警级别和所述匹配字段生成异常客户案例。
  19. 如权利要求15所述的计算机可读存储介质,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
  20. 如权利要求16或17或18所述的计算机可读存储介质,其特征在于,所述从对应的目标业务系统的数据库中查询所述异常客户的交易记录,将符合预设条件的交易记录作为该客户的异常交易记录的步骤包括:
    从对应的目标业务系统的数据库中查询所述异常客户的交易记录;
    若所述目标业务系统为第一预设业务系统,则将所述异常客户最新的一条交易记录作为异常交易记录;
    若所述目标业务系统为第二预设业务系统,则检测所述异常客户是否在预设时间间隔内产生新的交易记录;
    若是,则将检测到的交易记录作为异常交易记录;
    若否,则将所述异常客户的当前业务有效期内距离当前时间点最近的交易记录作为异常交易记录。
PCT/CN2018/107720 2018-07-13 2018-09-26 客户识别装置、方法及计算机可读存储介质 WO2020010714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810768273.9 2018-07-13
CN201810768273.9A CN108694657B (zh) 2018-07-13 2018-07-13 客户识别装置、方法及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020010714A1 true WO2020010714A1 (zh) 2020-01-16

Family

ID=63850558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107720 WO2020010714A1 (zh) 2018-07-13 2018-09-26 客户识别装置、方法及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN108694657B (zh)
WO (1) WO2020010714A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113344584A (zh) * 2021-06-02 2021-09-03 中国工商银行股份有限公司 基于黑名单的数据反哺方法、装置、系统及存储介质
CN117557211A (zh) * 2023-10-23 2024-02-13 广东电网有限责任公司 基于流程自动化的财务业务智能处理方法、平台及介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109840316A (zh) * 2018-12-21 2019-06-04 上海诺悦智能科技有限公司 一种客户信息制裁名单匹配系统
CN109902747B (zh) * 2019-03-01 2023-08-29 成都农村商业银行股份有限公司 一种身份识别方法、装置、设备及计算机可读存储介质
CN109918408A (zh) * 2019-03-01 2019-06-21 成都农村商业银行股份有限公司 一种黑名单更新方法、装置、设备及计算机可读存储介质
CN110070445B (zh) * 2019-04-28 2024-03-01 深圳前海微众银行股份有限公司 一种基于区块链系统的交易处理方法及装置
CN110363644A (zh) * 2019-06-17 2019-10-22 深圳壹账通智能科技有限公司 异常信息识别方法、装置、计算机设备及存储介质
CN110335069B (zh) * 2019-06-19 2024-07-02 中国平安财产保险股份有限公司 一种统计首拨进度的方法、装置、计算机设备及存储介质
CN111212073B (zh) * 2020-01-02 2022-07-05 中国银行股份有限公司 基于公有云的黑名单账户共享方法及装置
CN114066378A (zh) * 2020-08-05 2022-02-18 中国联合网络通信集团有限公司 满意度调查的方法和装置
CN112184410A (zh) * 2020-09-15 2021-01-05 中信银行股份有限公司 一种高风险客户识别的方法、系统及存储介质
CN112486964B (zh) * 2020-11-26 2024-04-26 中国人寿保险股份有限公司 一种目标识别方法及设备
CN113487431A (zh) * 2021-07-05 2021-10-08 中国工商银行股份有限公司 集中式触发身份甄别的方法及装置
CN113962817B (zh) * 2021-11-11 2024-07-19 泰康保险集团股份有限公司 异常人员识别方法及装置、电子设备和存储介质
CN114549193A (zh) * 2021-12-21 2022-05-27 上海金仕达软件科技有限公司 名单筛查方法、装置、设备、存储介质和程序产品
CN116809652B (zh) * 2023-03-28 2024-04-26 材谷金带(佛山)金属复合材料有限公司 一种热轧机控制系统的异常分析方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270334A (zh) * 2011-09-08 2011-12-07 成都讯业科技有限公司 金融业务的安全管理方法及系统
CN106649845A (zh) * 2016-12-30 2017-05-10 上海富聪金融信息服务有限公司 一种交易信息服务平台及其信息处理方法
CN106920170A (zh) * 2017-03-02 2017-07-04 北京小米移动软件有限公司 交易提醒方法和装置
CN107437179A (zh) * 2017-08-09 2017-12-05 中国银行股份有限公司 一种提供风险监控与特色服务的银行渠道系统
CN107767021A (zh) * 2017-09-12 2018-03-06 阿里巴巴集团控股有限公司 一种风险控制方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130212680A1 (en) * 2012-01-12 2013-08-15 Arxceo Corporation Methods and systems for protecting network devices from intrusion
CN107181664B (zh) * 2016-03-10 2021-04-09 创新先进技术有限公司 一种自动熔断的消息发送方法、装置及系统
CN107993006A (zh) * 2017-11-30 2018-05-04 平安科技(深圳)有限公司 预警等级确定方法、装置、设备及可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270334A (zh) * 2011-09-08 2011-12-07 成都讯业科技有限公司 金融业务的安全管理方法及系统
CN106649845A (zh) * 2016-12-30 2017-05-10 上海富聪金融信息服务有限公司 一种交易信息服务平台及其信息处理方法
CN106920170A (zh) * 2017-03-02 2017-07-04 北京小米移动软件有限公司 交易提醒方法和装置
CN107437179A (zh) * 2017-08-09 2017-12-05 中国银行股份有限公司 一种提供风险监控与特色服务的银行渠道系统
CN107767021A (zh) * 2017-09-12 2018-03-06 阿里巴巴集团控股有限公司 一种风险控制方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113344584A (zh) * 2021-06-02 2021-09-03 中国工商银行股份有限公司 基于黑名单的数据反哺方法、装置、系统及存储介质
CN117557211A (zh) * 2023-10-23 2024-02-13 广东电网有限责任公司 基于流程自动化的财务业务智能处理方法、平台及介质

Also Published As

Publication number Publication date
CN108694657B (zh) 2023-04-18
CN108694657A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2020010714A1 (zh) 客户识别装置、方法及计算机可读存储介质
US7346927B2 (en) System and method for storing and accessing secure data
US8452787B2 (en) Real time data warehousing
US8620937B2 (en) Real time data warehousing
US20120259753A1 (en) System and method for managing collaborative financial fraud detection logic
US11386224B2 (en) Method and system for managing personal digital identifiers of a user in a plurality of data elements
US10956916B1 (en) Self learning machine learning pipeline for enabling identity verification
US20120116984A1 (en) Automated evaluation of compliance data from heterogeneous it systems
WO2019153598A1 (zh) 客户风险等级管理方法、服务器及计算机可读存储介质
CN111178005B (zh) 数据处理系统、方法及存储介质
CN110851298B (zh) 异常分析及处理方法、电子装置及存储介质
US20180268135A1 (en) Detecting data breaches
CN110310020B (zh) 基于数据分析的项目方案管理方法、相关装置及存储介质
US20150199784A1 (en) Systems and Methods For Estimating Probability Of Identity-Based Fraud
US11782954B2 (en) User identifier match and merge process
WO2019136812A1 (zh) 电子装置、数据调用日志生成及查询方法及存储介质
US20180165686A1 (en) Systems and methods for identity verification
CN108897729B (zh) 一种交易模板共享方法、装置、电子设备及存储介质
US8768803B2 (en) System and method for identifying suspicious financial related activity
CN104704521A (zh) 多因素简档和安全指纹分析
US20150154606A1 (en) System, method, and software for enterprise-wide complaint aggregation
CN110489434B (zh) 一种信息处理方法及相关设备
US20130046560A1 (en) System and method for deterministic and probabilistic match with delayed confirmation
US20100161542A1 (en) Detecting entity relevance due to a multiplicity of distinct values for an attribute type
US8832110B2 (en) Management of class of service

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926179

Country of ref document: EP

Kind code of ref document: A1