WO2020010701A1 - Procédé et système de surveillance d'une anomalie de polluant, dispositif informatique et support de stockage - Google Patents

Procédé et système de surveillance d'une anomalie de polluant, dispositif informatique et support de stockage Download PDF

Info

Publication number
WO2020010701A1
WO2020010701A1 PCT/CN2018/106682 CN2018106682W WO2020010701A1 WO 2020010701 A1 WO2020010701 A1 WO 2020010701A1 CN 2018106682 W CN2018106682 W CN 2018106682W WO 2020010701 A1 WO2020010701 A1 WO 2020010701A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
real
pollutant
index
forest model
Prior art date
Application number
PCT/CN2018/106682
Other languages
English (en)
Chinese (zh)
Inventor
金戈
徐亮
肖京
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2020010701A1 publication Critical patent/WO2020010701A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services

Definitions

  • the present application relates to the technical field of environmental pollution data processing, and in particular, to a method, a system, a computer device, and a storage medium for monitoring anomalies of pollutants.
  • a pollution source is a source of pollutants that causes environmental pollution. It usually refers to a place, equipment, device, or human body that emits harmful substances to the environment or has a harmful effect on the environment. Any substance or energy that enters the environmental system at an inappropriate concentration, quantity, speed, form, and path and causes pollution or damage to the environment is collectively referred to as a pollutant.
  • a pollutant In some links in industrial production, such as production equipment or production sites used in raw material production, processing, combustion, heating and cooling, and finishing of finished products, they can become sources of industrial pollution.
  • there are generally two methods for monitoring the emissions of pollution sources The first is supervisory monitoring, which periodically checks whether the content of harmful substances in the exhaust gas emitted by pollution sources meets national regulations.
  • the second is research-based monitoring, which monitors the types, emissions, and discharge laws of pollutants emitted by pollution sources, which helps to identify the main sources of air pollution, discuss the development trend of air pollution, formulate pollution control measures, and improve ambient air quality.
  • the threshold of the single pollution source is set, and compared with the detection data of the single pollution source, it is found that the pollutant discharge enterprises exceed the standard.
  • the types of pollution sources are complicated, the setting and checking of single thresholds are cumbersome, and the setting of thresholds cannot prevent the occurrence of excessive standards.
  • a method for monitoring anomalies of pollutants includes the following steps:
  • An index threshold is set for each index item of each of the pollutants, and each of the data sets is filtered according to the index threshold, and data that does not exceed the index threshold is set as a feature item, and the feature is set. Items are stored in non-exceeded data sets;
  • a pollutant abnormality monitoring system includes the following units:
  • the acquiring data unit is configured to acquire historical environmental monitoring data of a pollution source monitoring point of each enterprise from a preset environmental monitoring data system, and set the historical environmental monitoring data to one data of one pollutant per enterprise Set for storage;
  • the screening unit is configured to set an index threshold for each index item of each of the pollutants, filter each of the data sets according to the index threshold value, and filter out data that does not exceed the index threshold value as a feature item , Storing the feature items in a non-exceeding data set;
  • a training unit configured to train an isolated forest model by using the feature terms in the non-exceeded data set, and establish the corresponding isolated forest model for each non-exceeded data set;
  • the abnormal point summary unit is configured to obtain real-time monitoring data of a pollutant in an enterprise in units of hours from the environmental monitoring data system, and input the real-time monitoring data into the isolated forest corresponding to the pollutant In the model, it is determined whether the path length from the root node to the leaf node of the isolated forest model is an abnormal point through the real-time monitoring data, and the abnormal points are summarized.
  • a computer device includes a memory and a processor.
  • the memory stores computer-readable instructions.
  • the processor causes the processor to perform the following steps:
  • An index threshold is set for each index item of each of the pollutants, and each of the data sets is filtered according to the index threshold, and data that does not exceed the index threshold is set as a feature item, and the feature is set. Items are stored in non-exceeded data sets;
  • a storage medium storing computer-readable instructions.
  • the one or more processors execute the following steps:
  • An index threshold is set for each index item of each of the pollutants, and each of the data sets is filtered according to the index threshold, and data that does not exceed the index threshold is set as a feature item, and the feature is set. Items are stored in non-exceeded data sets;
  • the above-mentioned pollutant abnormality monitoring method, device, computer equipment and storage medium include obtaining historical environmental monitoring data of each enterprise's pollution source monitoring point from a preset environmental monitoring data system, and converting historical environmental monitoring data to Each pollutant is set as a data set for storage; each indicator of each pollutant is set with an index threshold, each data set is filtered according to the index threshold, and the data that does not exceed the index threshold is set as a feature.
  • Store the feature items in the non-exceeding data set use the feature items in the non-exceeding data set to train an isolated forest model, and establish a corresponding isolated forest model for each non-exceeding data set; obtain an enterprise-in-one
  • the real-time monitoring data of the pollutants are measured in hours.
  • the real-time monitoring data is input into the isolated forest model corresponding to the pollutants, and the path length of the root node to the leaf node of the isolated forest model is determined by the real-time monitoring data to determine whether it is an abnormal point.
  • the abnormal points are summarized.
  • This application screens historical data and selects non-exceeding pollutant data as feature items, and uses an isolated forest model to monitor abnormal points of the company's sewage.
  • the monitoring of the abnormal point data is simple and fast, and it can predict the pollution source exceeding the standard in advance. And output, to prevent the occurrence of excessive standards.
  • FIG. 1 is a flowchart of a pollutant abnormality monitoring method in an embodiment of the present application
  • FIG. 2 is a flowchart of step S3 in FIG. 1;
  • step S3 is a structural diagram of a tree constructed in step S3;
  • FIG. 4 is a flowchart of step S4 in FIG. 1;
  • FIG. 5 is a structural diagram of a pollutant abnormality monitoring system in an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of the abnormal point summary unit in FIG. 5.
  • FIG. 1 is a flowchart of a method for monitoring abnormal pollutants in an embodiment of the present application. As shown in FIG. 1, the monitoring method includes the following steps:
  • Step S1 Obtaining data: Obtain historical environmental monitoring data of each enterprise's pollution source monitoring point from a preset environmental monitoring data system, and set historical environmental monitoring data with one pollutant of each enterprise as a data set. storage.
  • the abnormality monitoring of pollutants in this step is mainly for the pollutants discharged by enterprises. Therefore, the enterprises in this embodiment are the key pollutant discharge units included in the pollution source monitoring center of the Ministry of Ecology and Environment.
  • the preset environmental monitoring data system is provided by the government environmental protection department.
  • the environmental monitoring data system collected historical environmental monitoring data and real-time monitoring data from all pollution source monitoring points of each key sewage unit.
  • the pollution source monitoring points of the enterprise are generally set at the drainage outlet and the exhaust outlet. Therefore, the pollutants of the enterprise include the drainage pollutants based on the drainage outlet monitoring and the exhaust pollutants based on the exhaust outlet monitoring.
  • the data set is classified and stored according to the drainage pollutant data set and the exhaust pollutant data set.
  • Step S2 screening data: setting index thresholds for each index item of each pollutant, filtering each data set according to the index thresholds, filtering out data that does not exceed the index threshold value, setting them as feature items, and storing the feature items in the Out-of-standard data set.
  • a corresponding index threshold is set for each index item of the pollutant.
  • the index items of drainage pollutants include at least one of suspended solids index, chemical oxygen demand index, pH value or ammonia nitrogen index, and corresponding index thresholds are set for the index items of drainage pollutants.
  • the exhaust pollutant index items include at least one of nitrogen oxide index, sulfur dioxide index, soot index, or carbon monoxide index, and corresponding exhaust thresholds are set for the exhaust pollutant index items.
  • the index items of pollutants and the corresponding index thresholds are shown in Table 1 below:
  • each data set is filtered according to a preset index threshold, and the data that does not exceed the threshold is screened out and stored as a feature item in a non-exceeding data set.
  • the feature items are classified with one pollutant per enterprise and stored in the corresponding non-exceeded data set. That is, the feature items selected by the drainage pollutant data set of each enterprise are stored as the drainage non-standard data set, and the feature items selected by the exhaust pollutant data set of each enterprise are stored as the exhaust non-standard data set.
  • it can be used as a sample of a certain pollutant in the enterprise.
  • Step S3 training the model: using the feature terms in the non-exceeding data set to train an isolated forest model, and establishing a corresponding isolated forest model for each non-exceeding data set.
  • the isolated forest model is a fast anomaly detection method with linear time complexity and high accuracy, and is an algorithm that meets the requirements of big data processing.
  • the isolated forest model is suitable for continuous data anomaly detection.
  • the anomaly is defined as “outliers that are easy to be isolated”, which can be understood as the points that are sparsely distributed and far from the densely populated group. In terms of statistics, that is, in the data space, a sparsely distributed area indicates that the probability of data occurring in this area is very low, so the data falling in these areas can be considered abnormal.
  • the isolated forest model is based on the above principles and builds a binary tree from the samples: the input training data set A, e is the current tree height, and l is the height limit of the tree.
  • First place A in the root node randomly select a dimension q in A, and randomly choose a value p between the maximum and minimum values on q, and flow the sample in A that is larger than p to q to the right.
  • samples smaller than p flow to the left child node. Then repeat the above steps until: each child node has only one sample or multiple identical samples, that is, each sample is isolated, or the height of the tree reaches l.
  • the abnormal point is more easily isolated, so the path length of the leaf node where it is isolated is also shorter, that is, the number of edges experienced by the root node to the leaf node where the abnormal point is located is shorter.
  • the normal point is not easy to be isolated, so its path length is also longer.
  • Step S4 Summarization of abnormal points: Obtain real-time monitoring data of a pollutant in an enterprise in units of hours from the environmental monitoring data system, enter the real-time monitoring data into an isolated forest model corresponding to the pollutants, and achieve The path length from the root node to the leaf node of the isolated forest model determines whether it is an abnormal point, and summarizes the abnormal points.
  • This step is based on the feature that the outliers in the isolated forest model are easier to isolate, and the number of edges experienced by the outlier from the root node to the leaf node where the outlier is located is short.
  • a more accurate isolated forest model is trained by obtaining historical environmental monitoring data from a preset environmental monitoring data system, and the isolated forest model is used to monitor real-time monitoring data, and abnormal points are monitored and summarized.
  • the process monitoring data is simple and fast, and can accurately monitor the excessive situation of various pollution sources in the enterprise and summarize them to prevent the occurrence of excessive standards.
  • step S3 when the isolated forest model is trained using the feature terms in the non-exceeded data set, as shown in FIG. 2, the following method is adopted:
  • a point structure feature is obtained: a feature item in every non-standard data set for every N hours is set as a point structure feature. Since there may be more data in the non-exceeded data set, in order to reduce the use of data, take the feature items in units of the non-exceeded data set for training, that is, you can select the hourly feature items or the feature items every 2 hours to set as Point construction features. These point construction features are put into the root node of the tree of the isolated forest model.
  • a difference threshold is set: a difference between each point structure feature and a previous point structure feature is set to a difference threshold of X.
  • the difference threshold can be randomly generated as the cutting point of the current node.
  • step S303 the left and right child nodes of the tree are constructed: the difference between the structural features of two adjacent points is less than X and is divided into the left child node of the tree, and the difference between X and X is divided into the right child node of the tree.
  • Step S304 recursively construct the tree: recursively, steps S302 and S303, continuously construct left child nodes and right child nodes until the following conditions are met: the training non-exceeded data set has only one record or multiple identical records, or the height of the tree reaches a pre-set Set the height range.
  • the height range of the tree is: in a non-exceeded data set containing n records, the minimum height of the constructed tree is log (n), and the maximum height of the constructed tree is n-1.
  • FIG. 3 for example, four points a, b, c, and d are constructed into an isolated forest model.
  • the four points a, b, c, and d are constructed first.
  • the root node of the tree into the isolated forest model.
  • the difference between the three point structure features a, b, and c and the previous point structure feature is less than X, and is divided into the left child node of the tree.
  • the difference between the point d structure feature and the previous point structure feature is greater than X, and To the right child node of the tree.
  • the above steps are recursively, and the left child node and the right child node are continuously constructed.
  • each leaf node has only one record. It can be seen that the structural feature at point d was isolated at the earliest, so the structural feature at point d is most likely an anomaly.
  • the data in the non-standard data set is first filtered to ensure that the trained isolated forest model is as accurate as possible to reduce the data collection amount.
  • the difference threshold is used to effectively reflect the changes between the structural features of two adjacent points every N hours. The isolated forest model finally obtained can be more reliable as an abnormal point monitoring.
  • step S4 the real-time monitoring data is input into the isolated forest model corresponding to the pollutants, and the path length of the root node to the leaf node of the isolated forest model is determined by the real-time monitoring data to determine whether it is an abnormal point, such as As shown in Figure 4, the following steps are taken:
  • Step S401 generating a path length: real-time data in the real-time monitoring data is input into the corresponding isolated forest model one by one, and the real-time data is divided into M times according to the isolated forest model and is no longer divided, the real-time data is at the root node of the isolated forest model The path length to the leaf node is M.
  • the path length of the structural feature at point a is 2
  • the path length of the structural feature at point b and c is 3
  • the path length of the structural feature at point d is 1.
  • step S402 the normalization process is performed on the path length M of the real-time data to obtain M '.
  • step S403 the abnormal point summary is preset: the abnormal point threshold value Y is preset, and when M 'is greater than Y, the real-time data is set as the abnormal point, and summarized to generate an abnormal point summary table.
  • the range of the abnormal point threshold Y should be greater than 0.5 and close to 1.
  • a normalization method is introduced to normalize the path length of a certain real-time data, and change the path length into a scalar without rigidity, so as to facilitate the summary and sum of the abnormal points. Comparison of abnormal points of each subsequent pollutant.
  • a pollutant abnormality monitoring system is proposed, as shown in FIG. 5, and includes the following units:
  • the acquisition data unit is configured to acquire historical environmental monitoring data of each enterprise's pollution source monitoring point from a preset environmental monitoring data system, and set the historical environmental monitoring data as one pollutant for each enterprise as a data set. storage;
  • the screening unit is set to set an index threshold for each index item of each pollutant, and to filter each data set according to the index threshold, to filter out data that does not exceed the index threshold as a feature item, and to store the feature item in a non-exceeding standard Data set
  • the training unit is set to train the isolated forest model by using the feature items in the non-exceeded data set, and establish a corresponding isolated forest model for each non-exceeded data set;
  • the outlier summary unit is set to obtain real-time monitoring data of a pollutant in an enterprise from the environmental monitoring data system in units of hours, and input the real-time monitoring data into an isolated forest model corresponding to the pollutants.
  • the path length from the root node to the leaf node of the isolated forest model determines whether it is an abnormal point, and summarizes the abnormal points.
  • the pollutants in the data acquisition unit include drainage pollutants based on drainage port monitoring and exhaust pollutants based on exhaust port monitoring.
  • each enterprise stores drainage Pollutant dataset and exhaust pollutant dataset.
  • the index items of drainage pollutants include at least one index item of suspended solids index, chemical oxygen demand index, pH value or ammonia nitrogen index, and corresponding index thresholds are set for the index items of drainage pollutants.
  • the exhaust pollutant index items include at least one of nitrogen oxide index, sulfur dioxide index, soot index or carbon monoxide index, and the exhaust pollutant index items are provided with corresponding index thresholds.
  • the screening unit is further configured to classify and store feature items with one pollutant per enterprise in a corresponding non-exceeding data set.
  • the training unit includes: left and right child node modules of the construction tree, which are set to take the feature items of every N hours in the non-exceeded data set and set as a point construction feature, each point construction feature and the previous point construction feature Set the difference threshold to X, then the difference between the structural features of two adjacent points is less than X is divided into the left child node of the tree, and the difference greater than or equal to X is divided into the right child node of the tree;
  • Recursive module set to recursively construct left and right child nodes until the following conditions are met: the training non-standard data set has only one record or multiple identical records, or the height of the tree reaches a preset height range, and the height range of the tree For: In a non-exceeded data set containing n records, the minimum height of the constructed tree is log (n), and the maximum height of the constructed tree is n-1.
  • the abnormal point summary unit includes:
  • Generate a path length module and set it to input the real-time data in the real-time monitoring data one by one into the corresponding isolated forest model.
  • the real-time data is divided into M times according to the isolated forest model and no longer divided, the real-time data is at the root node of the isolated forest model.
  • the path length to the leaf node is M;
  • the normalization processing module is configured to perform normalization processing on the path length M of the real-time data to obtain M ′;
  • the abnormal point summary table module is set to a preset abnormal point threshold value Y.
  • M ′ is greater than Y
  • the real-time data is set as an abnormal point, and summarized to generate an abnormal point summary table.
  • a computer device which includes a memory and a processor.
  • the memory stores computer-readable instructions.
  • the processor causes the processor to execute the pollutant abnormality in the foregoing embodiments. Steps in a monitoring method.
  • a storage medium storing computer-readable instructions.
  • the one or more processors are caused to execute the pollutant abnormality in each of the foregoing embodiments. Steps in a monitoring method.
  • the storage medium may be a non-volatile storage medium.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: Read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • General Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Game Theory and Decision Science (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

L'invention concerne un procédé et un système de surveillance d'une anomalie de polluant, un dispositif informatique et un support de stockage qui appartiennent au domaine technique du traitement de données de pollution environnementale. Le procédé de surveillance comprend les étapes consistant à : obtenir des données de surveillance d'environnement historiques et les définir sous la forme d'un ensemble de données pour un stockage ; définir des seuils d'indice pour des éléments d'indice d'un polluant, cribler l'ensemble de données selon les seuils d'indice pour obtenir des données ne dépassant pas les seuils d'indice, configurer lesdites données en tant qu'éléments caractéristiques et stocker les éléments caractéristiques dans un ensemble de données ne dépassant pas une norme ; entraîner un modèle forestier d'isolation à l'aide des éléments caractéristiques ; et obtenir des données de surveillance en temps réel, entrer les données de surveillance en temps réel dans le modèle forestier d'isolation et déterminer, en fonction de longueurs de trajet des données de surveillance en temps réel d'un nœud racine à des nœuds feuilles du modèle forestier d'isolation, si lesdites données sont des points anormaux et résumer les points anormaux. Des données de point anormal peuvent être surveillées de manière simple et rapide et la situation dans laquelle une source de pollution dépasse la norme peut être prédite à l'avance et produite, de telle sorte que la situation de dépassement de la norme est empêchée.
PCT/CN2018/106682 2018-07-11 2018-09-20 Procédé et système de surveillance d'une anomalie de polluant, dispositif informatique et support de stockage WO2020010701A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810757268.8A CN108921440B (zh) 2018-07-11 2018-07-11 污染物异常监测方法、系统、计算机设备和存储介质
CN201810757268.8 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020010701A1 true WO2020010701A1 (fr) 2020-01-16

Family

ID=64412682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106682 WO2020010701A1 (fr) 2018-07-11 2018-09-20 Procédé et système de surveillance d'une anomalie de polluant, dispositif informatique et support de stockage

Country Status (2)

Country Link
CN (1) CN108921440B (fr)
WO (1) WO2020010701A1 (fr)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111428886A (zh) * 2020-04-10 2020-07-17 青岛聚好联科技有限公司 一种故障诊断的深度学习模型自适应更新的方法及装置
CN111950853A (zh) * 2020-07-14 2020-11-17 东南大学 一种基于信息物理双侧数据的电力运行状态白名单生成方法
CN112016050A (zh) * 2020-08-07 2020-12-01 汉威科技集团股份有限公司 一种基于流形学习的cems系统异常数据监控方法
CN112085081A (zh) * 2020-09-02 2020-12-15 董萍 一种污水成分检测方法及系统
CN112084382A (zh) * 2020-09-04 2020-12-15 安徽思环科技有限公司 用于工业园区污染源水质三维荧光数据的预处理方法
CN112505278A (zh) * 2020-11-30 2021-03-16 深圳市联正通达科技有限公司 一种抽样式污水监控分析设备
CN112597144A (zh) * 2020-12-29 2021-04-02 农业农村部环境保护科研监测所 一种产地环境监测数据的自动化清洗方法
CN112733897A (zh) * 2020-12-30 2021-04-30 胜斗士(上海)科技技术发展有限公司 确定多维样本数据的异常原因的方法和设备
CN112860671A (zh) * 2021-01-19 2021-05-28 中国石油天然气集团有限公司 一种生产要素数据异常诊断方法及装置
CN113420652A (zh) * 2021-06-22 2021-09-21 中冶赛迪重庆信息技术有限公司 一种时序信号片段异常识别方法、系统、介质及终端
CN113777223A (zh) * 2021-08-12 2021-12-10 北京金水永利科技有限公司 一种大气污染物溯源方法及系统
CN113792988A (zh) * 2021-08-24 2021-12-14 河北先河环保科技股份有限公司 一种企业在线监测数据异常识别方法
CN114062038A (zh) * 2020-07-31 2022-02-18 力合科技(湖南)股份有限公司 一种污染溯源管控方法
CN114236068A (zh) * 2021-11-24 2022-03-25 中冶赛迪重庆信息技术有限公司 一种基于循环水系统的氯离子浓度分析方法及系统
CN114527206A (zh) * 2022-01-25 2022-05-24 长安大学 一种磺胺类抗生素地下水污染的溯源方法及系统
CN114611616A (zh) * 2022-03-16 2022-06-10 吕少岚 一种基于集成孤立森林的无人机智能故障检测方法及系统
CN114931854A (zh) * 2022-05-31 2022-08-23 北京实力伟业环保科技有限公司 一种微生物净化废气的系统及方法
CN115171362A (zh) * 2022-09-07 2022-10-11 江西珉轩智能科技有限公司 一种面向重点区域防控的预警方法及系统
CN115291006A (zh) * 2022-07-21 2022-11-04 福州大学 基于用电数据的污染企业环保工况异常识别方法
CN116069892A (zh) * 2023-03-27 2023-05-05 乳山市海洋经济发展中心 一种基于海洋工程的环境数据处理方法及系统
CN116484153A (zh) * 2023-06-20 2023-07-25 北京泰豪智能工程有限公司 一种基于卫星物联网的环境监测方法
CN116500240A (zh) * 2023-06-21 2023-07-28 江西索立德环保服务有限公司 一种土壤环境质量监测方法、系统及可读存储介质
CN116522270A (zh) * 2023-07-04 2023-08-01 西安启迪能源技术有限公司 用于智慧海绵城市的数据处理系统
CN116576553A (zh) * 2023-07-11 2023-08-11 韦德电子有限公司 一种空气调节机数据优化采集方法及系统
CN116627953A (zh) * 2023-05-24 2023-08-22 首都师范大学 一种地下水位监测数据缺失的修复方法
CN116699072A (zh) * 2023-06-08 2023-09-05 东莞市华复实业有限公司 基于侦测巡航的环境预警方法
CN116718249A (zh) * 2023-08-08 2023-09-08 山东元明晴技术有限公司 一种水利工程液位检测系统
CN116992244A (zh) * 2023-09-26 2023-11-03 山东益来环保科技有限公司 一种cems智能化监测系统
CN116992390A (zh) * 2023-09-26 2023-11-03 北京联创高科信息技术有限公司 一种异常数据的配置及展示方法
CN117151391A (zh) * 2023-08-30 2023-12-01 深圳市水务工程检测有限公司 一种基于物联网的环境污染监测系统及方法
CN117194920A (zh) * 2023-09-06 2023-12-08 万仁企业管理技术(深圳)有限公司 一种基于大数据分析的数据系统处理平台及处理方法
CN117454096A (zh) * 2023-12-25 2024-01-26 西安高商智能科技有限责任公司 一种电机生产质量检测方法及系统
CN117455124A (zh) * 2023-12-25 2024-01-26 杭州烛微智能科技有限责任公司 企业的环保设备监测方法、系统、介质及电子设备
CN117538491A (zh) * 2024-01-09 2024-02-09 武汉怡特环保科技有限公司 一种站房空气质量智能监测方法及系统
CN117194920B (zh) * 2023-09-06 2024-05-28 北京酷炫网络技术股份有限公司 一种基于大数据分析的数据系统处理平台及处理方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828825A (zh) * 2019-01-07 2019-05-31 平安科技(深圳)有限公司 异常数据检测方法、装置、计算机设备及存储介质
CN109902721A (zh) * 2019-01-28 2019-06-18 平安科技(深圳)有限公司 异常点检测模型验证方法、装置、计算机设备及存储介质
CN109785595A (zh) * 2019-02-26 2019-05-21 成都古河云科技有限公司 一种基于机器学习的车辆异常轨迹实时识别方法
CN110243599B (zh) * 2019-07-02 2020-05-05 西南交通大学 多维离群列车动车组轴箱轴承温度异常状态监测方法
CN110398375B (zh) * 2019-07-16 2021-10-19 广州亚美信息科技有限公司 车辆冷却系统工作状态的监测方法、装置、设备和介质
CN110469522A (zh) * 2019-08-13 2019-11-19 浪潮通用软件有限公司 一种排水系统的异常检测方法及装置
CN111160647B (zh) * 2019-12-30 2023-08-22 第四范式(北京)技术有限公司 一种洗钱行为预测方法及装置
CN111275547B (zh) * 2020-03-19 2023-07-18 重庆富民银行股份有限公司 基于孤立森林的风控系统及方法
CN115043446B (zh) * 2020-06-16 2024-01-23 浙江富春紫光环保股份有限公司 基于异常分类模型的污水处理进程的异常监控方法与系统
CN111783904B (zh) * 2020-09-04 2020-12-04 平安国际智慧城市科技股份有限公司 基于环境数据的数据异常分析方法、装置、设备及介质
CN113420816A (zh) * 2021-06-24 2021-09-21 北京市生态环境监测中心 一种针对全光谱水质监测设备的数据异常值确定方法
CN113655111A (zh) * 2021-08-17 2021-11-16 北京雪迪龙科技股份有限公司 基于走航监测的大气挥发性有机物溯源方法
CN114417263B (zh) * 2022-01-27 2022-10-04 中国环境科学研究院 污染物波动系数确定、污染物监控方法及装置、存储介质
CN116773238B (zh) * 2023-06-16 2024-01-19 南方电网调峰调频发电有限公司检修试验分公司 一种基于工业数据的故障监测方法及系统
CN116933186B (zh) * 2023-09-14 2023-11-24 江苏新路德建设有限公司 基于数据驱动的污水管网堵塞实时监测方法
CN116992391B (zh) * 2023-09-27 2023-12-15 青岛冠宝林活性炭有限公司 一种硬碳工艺环保监测数据采集处理方法
CN117436005B (zh) * 2023-12-21 2024-03-15 山东汇力环保科技有限公司 一种环境空气自动监测过程中异常数据处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103020642A (zh) * 2012-10-08 2013-04-03 江苏省环境监测中心 水环境监测质控数据分析方法
CN104063609A (zh) * 2014-07-01 2014-09-24 北京金控自动化技术有限公司 一种利用神经网络辅助判定污染源监测数据有效性的方法
CN106682685A (zh) * 2016-12-06 2017-05-17 重庆大学 基于微波加热温度场分布特征深度学习的局部温度变化异常检测方法
CN106846806A (zh) * 2017-03-07 2017-06-13 北京工业大学 基于Isolation Forest的城市道路交通异常检测方法
CN106872657A (zh) * 2017-01-05 2017-06-20 河海大学 一种多变量水质参数时序数据异常事件检测方法
CN107292350A (zh) * 2017-08-04 2017-10-24 电子科技大学 大规模数据的异常检测方法
CN107657288A (zh) * 2017-10-26 2018-02-02 国网冀北电力有限公司 一种基于孤立森林算法的电力调度流数据异常检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7866204B2 (en) * 2007-01-31 2011-01-11 The United States Of America As Represented By The Administrator Of The United States Environmental Protection Agency Adaptive real-time contaminant detection and early warning for drinking water distribution systems
US8954365B2 (en) * 2012-06-21 2015-02-10 Microsoft Corporation Density estimation and/or manifold learning
CN104091061B (zh) * 2014-07-01 2017-04-26 北京金控数据技术股份有限公司 一种利用正态分布辅助判定污染源监测数据有效性的方法
CN106485353B (zh) * 2016-09-30 2019-11-29 中国科学院遥感与数字地球研究所 空气污染物浓度预报方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103020642A (zh) * 2012-10-08 2013-04-03 江苏省环境监测中心 水环境监测质控数据分析方法
CN104063609A (zh) * 2014-07-01 2014-09-24 北京金控自动化技术有限公司 一种利用神经网络辅助判定污染源监测数据有效性的方法
CN106682685A (zh) * 2016-12-06 2017-05-17 重庆大学 基于微波加热温度场分布特征深度学习的局部温度变化异常检测方法
CN106872657A (zh) * 2017-01-05 2017-06-20 河海大学 一种多变量水质参数时序数据异常事件检测方法
CN106846806A (zh) * 2017-03-07 2017-06-13 北京工业大学 基于Isolation Forest的城市道路交通异常检测方法
CN107292350A (zh) * 2017-08-04 2017-10-24 电子科技大学 大规模数据的异常检测方法
CN107657288A (zh) * 2017-10-26 2018-02-02 国网冀北电力有限公司 一种基于孤立森林算法的电力调度流数据异常检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, FEITONY ET AL., ISOLATION FOREST'' 2008 EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 31 December 2008 (2008-12-31), XP031423720 *

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111428886B (zh) * 2020-04-10 2023-08-04 青岛聚好联科技有限公司 一种故障诊断的深度学习模型自适应更新的方法及装置
CN111428886A (zh) * 2020-04-10 2020-07-17 青岛聚好联科技有限公司 一种故障诊断的深度学习模型自适应更新的方法及装置
CN111950853A (zh) * 2020-07-14 2020-11-17 东南大学 一种基于信息物理双侧数据的电力运行状态白名单生成方法
CN111950853B (zh) * 2020-07-14 2024-05-31 东南大学 一种基于信息物理双侧数据的电力运行状态白名单生成方法
CN114062038A (zh) * 2020-07-31 2022-02-18 力合科技(湖南)股份有限公司 一种污染溯源管控方法
CN112016050B (zh) * 2020-08-07 2023-11-21 汉威科技集团股份有限公司 一种基于流形学习的cems系统异常数据监控方法
CN112016050A (zh) * 2020-08-07 2020-12-01 汉威科技集团股份有限公司 一种基于流形学习的cems系统异常数据监控方法
CN112085081A (zh) * 2020-09-02 2020-12-15 董萍 一种污水成分检测方法及系统
CN112085081B (zh) * 2020-09-02 2024-02-02 西部第三方检测集团(宁夏)有限公司 一种污水成分检测方法及系统
CN112084382A (zh) * 2020-09-04 2020-12-15 安徽思环科技有限公司 用于工业园区污染源水质三维荧光数据的预处理方法
CN112505278A (zh) * 2020-11-30 2021-03-16 深圳市联正通达科技有限公司 一种抽样式污水监控分析设备
CN112505278B (zh) * 2020-11-30 2024-05-17 福建钱江水务有限公司 一种抽样式污水监控分析设备
CN112597144A (zh) * 2020-12-29 2021-04-02 农业农村部环境保护科研监测所 一种产地环境监测数据的自动化清洗方法
CN112733897A (zh) * 2020-12-30 2021-04-30 胜斗士(上海)科技技术发展有限公司 确定多维样本数据的异常原因的方法和设备
CN112860671A (zh) * 2021-01-19 2021-05-28 中国石油天然气集团有限公司 一种生产要素数据异常诊断方法及装置
CN113420652A (zh) * 2021-06-22 2021-09-21 中冶赛迪重庆信息技术有限公司 一种时序信号片段异常识别方法、系统、介质及终端
CN113777223B (zh) * 2021-08-12 2024-04-30 北京金水永利科技有限公司 一种大气污染物溯源方法及系统
CN113777223A (zh) * 2021-08-12 2021-12-10 北京金水永利科技有限公司 一种大气污染物溯源方法及系统
CN113792988A (zh) * 2021-08-24 2021-12-14 河北先河环保科技股份有限公司 一种企业在线监测数据异常识别方法
CN114236068B (zh) * 2021-11-24 2024-03-01 中冶赛迪信息技术(重庆)有限公司 一种基于循环水系统的氯离子浓度分析方法及系统
CN114236068A (zh) * 2021-11-24 2022-03-25 中冶赛迪重庆信息技术有限公司 一种基于循环水系统的氯离子浓度分析方法及系统
CN114527206A (zh) * 2022-01-25 2022-05-24 长安大学 一种磺胺类抗生素地下水污染的溯源方法及系统
CN114611616A (zh) * 2022-03-16 2022-06-10 吕少岚 一种基于集成孤立森林的无人机智能故障检测方法及系统
CN114931854B (zh) * 2022-05-31 2023-05-26 北京实力伟业环保科技有限公司 一种微生物净化废气的系统及方法
CN114931854A (zh) * 2022-05-31 2022-08-23 北京实力伟业环保科技有限公司 一种微生物净化废气的系统及方法
CN115291006A (zh) * 2022-07-21 2022-11-04 福州大学 基于用电数据的污染企业环保工况异常识别方法
CN115171362A (zh) * 2022-09-07 2022-10-11 江西珉轩智能科技有限公司 一种面向重点区域防控的预警方法及系统
CN116069892A (zh) * 2023-03-27 2023-05-05 乳山市海洋经济发展中心 一种基于海洋工程的环境数据处理方法及系统
CN116069892B (zh) * 2023-03-27 2023-08-04 乳山市海洋经济发展中心 一种基于海洋工程的环境数据处理方法及系统
CN116627953A (zh) * 2023-05-24 2023-08-22 首都师范大学 一种地下水位监测数据缺失的修复方法
CN116627953B (zh) * 2023-05-24 2023-10-27 首都师范大学 一种地下水位监测数据缺失的修复方法
CN116699072B (zh) * 2023-06-08 2024-01-26 东莞市华复实业有限公司 基于侦测巡航的环境预警方法
CN116699072A (zh) * 2023-06-08 2023-09-05 东莞市华复实业有限公司 基于侦测巡航的环境预警方法
CN116484153B (zh) * 2023-06-20 2023-09-01 北京泰豪智能工程有限公司 一种基于卫星物联网的环境监测方法
CN116484153A (zh) * 2023-06-20 2023-07-25 北京泰豪智能工程有限公司 一种基于卫星物联网的环境监测方法
CN116500240A (zh) * 2023-06-21 2023-07-28 江西索立德环保服务有限公司 一种土壤环境质量监测方法、系统及可读存储介质
CN116500240B (zh) * 2023-06-21 2023-12-29 江西索立德环保服务有限公司 一种土壤环境质量监测方法、系统及可读存储介质
CN116522270B (zh) * 2023-07-04 2023-09-15 西安启迪能源技术有限公司 用于智慧海绵城市的数据处理系统
CN116522270A (zh) * 2023-07-04 2023-08-01 西安启迪能源技术有限公司 用于智慧海绵城市的数据处理系统
CN116576553B (zh) * 2023-07-11 2023-09-22 韦德电子有限公司 一种空气调节机数据优化采集方法及系统
CN116576553A (zh) * 2023-07-11 2023-08-11 韦德电子有限公司 一种空气调节机数据优化采集方法及系统
CN116718249A (zh) * 2023-08-08 2023-09-08 山东元明晴技术有限公司 一种水利工程液位检测系统
CN117151391A (zh) * 2023-08-30 2023-12-01 深圳市水务工程检测有限公司 一种基于物联网的环境污染监测系统及方法
CN117194920A (zh) * 2023-09-06 2023-12-08 万仁企业管理技术(深圳)有限公司 一种基于大数据分析的数据系统处理平台及处理方法
CN117194920B (zh) * 2023-09-06 2024-05-28 北京酷炫网络技术股份有限公司 一种基于大数据分析的数据系统处理平台及处理方法
CN116992244B (zh) * 2023-09-26 2023-12-22 山东益来环保科技有限公司 一种cems智能化监测系统
CN116992390B (zh) * 2023-09-26 2023-12-05 北京联创高科信息技术有限公司 一种异常数据的配置及展示方法
CN116992390A (zh) * 2023-09-26 2023-11-03 北京联创高科信息技术有限公司 一种异常数据的配置及展示方法
CN116992244A (zh) * 2023-09-26 2023-11-03 山东益来环保科技有限公司 一种cems智能化监测系统
CN117455124A (zh) * 2023-12-25 2024-01-26 杭州烛微智能科技有限责任公司 企业的环保设备监测方法、系统、介质及电子设备
CN117454096A (zh) * 2023-12-25 2024-01-26 西安高商智能科技有限责任公司 一种电机生产质量检测方法及系统
CN117454096B (zh) * 2023-12-25 2024-03-01 西安高商智能科技有限责任公司 一种电机生产质量检测方法及系统
CN117455124B (zh) * 2023-12-25 2024-03-08 杭州烛微智能科技有限责任公司 企业的环保设备监测方法、系统、介质及电子设备
CN117538491A (zh) * 2024-01-09 2024-02-09 武汉怡特环保科技有限公司 一种站房空气质量智能监测方法及系统
CN117538491B (zh) * 2024-01-09 2024-04-05 武汉怡特环保科技有限公司 一种站房空气质量智能监测方法及系统

Also Published As

Publication number Publication date
CN108921440B (zh) 2022-08-05
CN108921440A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2020010701A1 (fr) Procédé et système de surveillance d'une anomalie de polluant, dispositif informatique et support de stockage
US11838308B2 (en) Computer-implemented method and arrangement for classifying anomalies
Рибка et al. Research into dynamics of setting the threshold and a probability of ignition detection by self-adjusting fire detectors
CN107391353A (zh) 基于日志的复杂软件系统异常行为检测方法
CN112183709B (zh) 一种垃圾焚烧废气二噁英超标预测预警方法
CN110990393A (zh) 一种行业企业数据异常行为的大数据识别方法
CN116975378B (zh) 一种基于大数据的设备环境监测方法及系统
CN112763465B (zh) 一种抗干扰的船用柴油硫含量超标嗅探识别方法
KR102549313B1 (ko) 오염물질 배출수준 산정 시스템 및 방법
CN113435471A (zh) 深度特征聚类的高排放移动源污染识别方法及系统
CN116663962A (zh) 一种用于水利工程堤坝材料质量检测分析系统
CN113242213B (zh) 一种电力通信骨干网节点脆弱性诊断方法
Cadena et al. Near-optimal and practical algorithms for graph scan statistics with connectivity constraints
CN116881747B (zh) 基于医疗废水监测的智能处理方法及系统
CN109856321A (zh) 异常高值点位的确定方法
US20160078071A1 (en) Large scale offline retrieval of machine operational information
TW201705035A (zh) 快速篩檢資安風險主機方法與系統
CN116797649A (zh) 一种基于工业大数据的焚烧处理性能分析方法及系统
CN115098740B (zh) 一种基于多源异构数据源的数据质量检测方法及装置
CN105553990A (zh) 一种基于决策树算法的网络安全三元组异常检测方法
CN113628423B (zh) 一种有害气体浓度监测报警系统
CN115171362A (zh) 一种面向重点区域防控的预警方法及系统
CN113590663A (zh) 一种环境检测方法及系统
CN114677052A (zh) 基于tarch模型的天然气负荷波动非对称性分析方法及系统
TWI748486B (zh) 物聯網空氣品質微型感測資料品質檢核方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18926224

Country of ref document: EP

Kind code of ref document: A1