WO2020010635A1 - 一种大角度回转机构的液压控制系统及方法 - Google Patents

一种大角度回转机构的液压控制系统及方法 Download PDF

Info

Publication number
WO2020010635A1
WO2020010635A1 PCT/CN2018/095708 CN2018095708W WO2020010635A1 WO 2020010635 A1 WO2020010635 A1 WO 2020010635A1 CN 2018095708 W CN2018095708 W CN 2018095708W WO 2020010635 A1 WO2020010635 A1 WO 2020010635A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
valve
oil
control system
hydraulic cylinder
Prior art date
Application number
PCT/CN2018/095708
Other languages
English (en)
French (fr)
Inventor
杨涛
杨世祥
李桂英
杨帆
赵志辉
王经苗
孙卫娜
Original Assignee
北京亿美博科技有限公司
天津亿美博数字装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京亿美博科技有限公司, 天津亿美博数字装备科技有限公司 filed Critical 北京亿美博科技有限公司
Priority to PCT/CN2018/095708 priority Critical patent/WO2020010635A1/zh
Publication of WO2020010635A1 publication Critical patent/WO2020010635A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/20Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors controlling several interacting or sequentially-operating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass

Definitions

  • the invention relates to the technical field of machinery, and in particular to a hydraulic control system and method for a large-angle swing mechanism.
  • the large-angle turning mechanism is suitable for various fields.
  • a large-angle rotation mechanism composed of two hydraulic cylinders is used to drive the mirror to rotate in the horizontal direction to track the rotation of the sun.
  • This type of swing mechanism usually uses a balancing valve to lock the hydraulic cylinder to achieve the positioning of the swing mechanism.
  • the balancing valve has a setting value for the opening pressure, and the balancing valve can be opened only when the pressure in the pilot control chamber of the balancing valve is higher than the setting value. Therefore, when one of the two hydraulic cylinders runs to the dead point position (the output end extends to the farthest distance or the closest distance), the hydraulic cylinder is often closed because the pilot oil pressure in the balance valve cannot meet the set value. Locking, that is, it cannot be in a floating state, so that an undesired force occurs during the turning process, an overload problem occurs, and the service life of the turning mechanism is seriously affected.
  • the present invention provides a hydraulic control system and method for an angle turning mechanism.
  • the hydraulic cylinder can realize a floating function when it passes near the dead center position, eliminating the turning process. Undesired force to avoid overload problems and ensure the service life of large-angle swivel mechanisms.
  • a hydraulic control system for a high-angle swing mechanism includes a plurality of hydraulic cylinders, and the output ends of the plurality of hydraulic cylinders are pivotally connected to perform a swing motion in the same direction.
  • the hydraulic control system includes an oil inlet pipe. Circuit, oil return line, main hydraulic line, multiple one-way reversing valves corresponding to multiple hydraulic cylinders, multiple balancing valves corresponding to rod cavity and non-rod cavity of multiple hydraulic cylinders, vice Hydraulic lines and two-way directional valves, where:
  • the main hydraulic line connects the rod cavity and rodless cavity of multiple hydraulic cylinders to the oil inlet line and the oil return line through a one-way directional valve and a balance valve;
  • the auxiliary hydraulic line connects the balancing valve to the oil inlet line and the oil return line through a two-way directional valve.
  • the first-stage directional valve includes a working port A, a working port B, an oil inlet P, and an oil return port T.
  • the main hydraulic pipeline includes a rod connected between the working oil port A and the hydraulic cylinder.
  • the high-angle swing mechanism includes two hydraulic cylinders.
  • the primary directional valve and the secondary directional valve are a single valve having a directional function.
  • the two-way directional valve is a two-position three-way electromagnetic directional valve.
  • the primary directional valve and the secondary directional valve are a group of valves cooperating with each other.
  • the balancing valve includes a pilot control cavity, and the auxiliary hydraulic line connects the pilot control cavity to the oil inlet line and the oil return line through a two-way reversing valve.
  • a control method for a large-angle swing mechanism comprising: when one of a plurality of hydraulic cylinders is operated near a dead point position, a first-stage directional valve corresponding to the hydraulic cylinder is in a neutral position, and The secondary reversing valve is driven to communicate the auxiliary hydraulic line to open the balance valve.
  • the one-stage directional valve is arranged to communicate the working oil port A and the working oil port B with the oil return pipeline when in the neutral position.
  • the control method includes: when a plurality of hydraulic cylinders stops operating, driving a two-way directional valve to communicate the balance valve with an oil return pipeline to close the balance valve.
  • the present invention has the following advantages compared with the prior art:
  • the floating function can be realized when the hydraulic cylinder passes near the dead point position, eliminating the undesired force during the swing process, and effectively avoiding the problem of overload.
  • More than 3 hydraulic cylinders work together to achieve 360 ° rotation without dead point.
  • FIG. 1 shows a schematic diagram of an embodiment of a hydraulic control system of a high-angle swing mechanism according to the present invention
  • FIG. 1 are schematic diagrams of the high-angle turning mechanism shown in FIG. 1 in different states during the turning process;
  • FIG. 3 shows a schematic diagram of another embodiment of a hydraulic control system of a high-angle swing mechanism according to the present invention.
  • the hydraulic control system (hereinafter referred to as the hydraulic control system) of the large-angle swing mechanism according to the present invention generally includes an oil inlet line 5, an oil return line 6, a main hydraulic line 7, a first-stage directional valve 21 to 22, and a balance valve 31 to 34.
  • the first hydraulic cylinder 41 is connected to the oil inlet line 5 and the oil return line 6 through the primary hydraulic line 7 through the first-stage reversing valve 21, and the balancing valves 31 and 32 are respectively provided in the rod cavity connected to the first hydraulic cylinder 41 411 and the main hydraulic line 7 of the rodless cavity 412.
  • the second hydraulic cylinder 42 is connected to the oil inlet line 5 and the oil return line 6 through the primary hydraulic line 7 through the primary switching valve 22, and the balancing valves 33 and 34 are respectively provided on the rods connected to the second hydraulic cylinder 42
  • the auxiliary hydraulic line 8 connects the balancing valves 31 to 34 to the oil inlet line 5 and the oil return line 6 through the two-way directional valve 1.
  • the first-stage directional valves 21 to 22 are single valves that include a working oil port A, a working oil port B, an oil inlet P, and an oil return port T and have a switching function.
  • the one-way switching valves 21 to 22 may be a group of valves that cooperate with each other.
  • the hydraulic line 7 may include a first branch 71 connecting the working oil port A to the rod chambers 411 and 421, a second branch 72 connecting the working oil port B to the rodless chambers 412 and 422, and a connecting oil inlet P to The third branch 73 of the oil inlet line 5 and the fourth branch connected to the oil return port T to the oil return line 6.
  • the balancing valves 31 to 32 are respectively provided on the first branch 71 and the second branch 72 connected to the first hydraulic cylinder 14 to adjust the operating speed of the first hydraulic cylinder 41 and lock when the first hydraulic cylinder 41 stops operating.
  • the first hydraulic cylinder 41; the balancing valves 33 to 34 are respectively provided on the first branch 71 and the second branch 72 connected to the second hydraulic cylinder 42 to adjust the operating speed of the second hydraulic cylinder 42 and When the operation is stopped, the second hydraulic cylinder 42 is locked.
  • the two-way directional valve 1 is a two-position three-way electromagnetic directional valve.
  • the two-way reversing valve may also be another single valve or a group of valves capable of selectively connecting the balancing valves 31 to 34 to the oil inlet line 5 or the oil return line 6.
  • the auxiliary hydraulic line 8 connects the pilot control chambers of the balancing valves 31 to 34 to the oil inlet line 5 and the oil return line 6 through the two-stage directional valve 1 to realize the pilot control chamber and Communication between the oil inlet line 5 or the oil return line 6.
  • the operating principle of the hydraulic control system is: when the first hydraulic cylinder 41 is operated near the dead point, a first-stage reversing valve 21 is set to be in a neutral state when power is lost-that is, the working ports A, B and the oil return port T is turned on, and the secondary switching valve 1 communicates with the auxiliary hydraulic line 8. At this time, the hydraulic oil from the oil supply line 5 passes through the secondary reversing valve, and one way is connected to the primary reversing valve 22 along the hydraulic line 7 to supply oil to the second hydraulic cylinder 42 for normal operation.
  • the auxiliary hydraulic line 8 is connected to the pilot control chambers of the balancing valves 31 to 34, and the balancing valves 31 to 34 are opened.
  • the first-stage directional valve 21 is in the neutral position, and the rod chamber 411 and the non-rod chamber 412 of the first hydraulic cylinder 41 are connected to the oil return line 6 through the balancing valves 31 and 32 and the first-stage directional valve 21 to realize Float and follow the second hydraulic cylinder 42 under the action of the large-angle swing mechanism.
  • the second hydraulic cylinder 42 passes near the dead center position, the second hydraulic cylinder 42 also floats, and follows the first hydraulic cylinder 41 under the action of the high-angle swing mechanism, so there is no undesired load on the mechanism. This avoids the problem of overload when passing through the dead zone.
  • the first hydraulic cylinder 41 When the operating position is shown in FIG. 2A, the first hydraulic cylinder 41 is fully extended. When the dead center position is reached, the first-stage directional valve 21 loses power in the neutral position, and the working ports A and B are connected to the oil return port T. At this time, the hydraulic oil from the oil supply line 5 passes through the secondary switching valve 1 and is connected to the primary switching valve 22 along the hydraulic line 7 all the way. The HV03.a solenoid of the primary switching valve 22 is energized.
  • the operating position is shown in FIG. 2B.
  • the HV02.b solenoid of the first-stage directional valve 21 is energized and switched to the right position.
  • the first-stage directional valve 22 remains in the left position.
  • the hydraulic oil from the oil supply line 5 passes through the secondary reversing valve 1 and is connected along the hydraulic line 7 to the primary reversing valves 21 and 22, and the first hydraulic cylinders 41 and 42 are supplied with rods.
  • Cavity, the first hydraulic cylinders 41 and 42 are retracted at the same time, and the other way is connected to the pilot control cavity of the balancing valves 31 to 34 along the auxiliary hydraulic line 8 to open the balancing valves 31 to 34.
  • the first hydraulic cylinders 41 and 42 are rodless.
  • the cavity oil returns to the oil through the balance valves 32 and 33, so that the first hydraulic cylinders 41 and 42 can be retracted simultaneously. Because the rodless cavity returns oil through the balance valve, the retraction speed of the first hydraulic cylinders 41 and 42 can be effectively controlled. To make the movement more stable and prevent stalling.
  • the first hydraulic cylinders 41 and 42 are retracted at the same time until the operating position is shown in FIG. 2C, and the second hydraulic cylinder 42 is fully retracted.
  • the primary switching valve 22 loses power and is in the neutral position and works.
  • the oil ports A and B are connected to the oil return port T.
  • the hydraulic oil from the oil supply line 5 passes through the two-stage directional valve 1 and is connected to the first-stage directional valve 21 along the hydraulic line 7 all the way.
  • the directional valve 21 keeps working in the right position.
  • the first hydraulic cylinder 41 is provided with a rod cavity.
  • the first hydraulic cylinder 41 retracts, the driving mechanism rotates clockwise, and the other way is connected to the balance valve 31 along the auxiliary hydraulic line 8.
  • the pilot control cavity of ⁇ 34 opens the balancing valve 31 ⁇ 34, and at this time, the first-stage directional valve 22 is in the neutral position, and the rod cavity and the non-rod cavity of the second hydraulic cylinder 42 are changed by the balance valves 33 and 34 and the first stage.
  • the directional valve 22 is connected to the oil return line 6 to realize floating, and it follows the first hydraulic cylinder 41 under the drive of the mechanism, and the second hydraulic cylinder 42 extends, and passes through the dead point position without load.
  • the HV03.b solenoid of the first-stage directional valve 22 is energized and switched to the right position.
  • the first-stage directional valve 21 remains in the right position.
  • the hydraulic oil from the oil supply line 5 passes through the secondary reversing valve 1 and is connected to the primary reversing valves 21 and 22 along the hydraulic line 7 all the way.
  • the first hydraulic cylinder 41 has a rod cavity and 4.2 Rodless cavity, the first hydraulic cylinder 41 is retracted and the second hydraulic cylinder 42 is extended.
  • the other path is connected to the pilot control cavity of the balancing valves 31 to 34 along the auxiliary hydraulic line 8 and the balancing valves 31 to 34 are opened.
  • a hydraulic cylinder 41 has a rodless cavity and a second hydraulic cylinder 42 has a rod cavity.
  • the oil returns to the oil through the balancing valves 32 and 34, so that the first hydraulic cylinder 41 retracts and the second hydraulic cylinder 42 extends.
  • the oil can effectively control the retracting speed of the first hydraulic cylinder 41 and the extending speed of the second hydraulic cylinder 42 to make the movement more stable and prevent stalling.
  • the first hydraulic cylinder 41 is retracted and 4.2 is extended until the operating position is shown in FIG. 2E.
  • the first hydraulic cylinder 41 is fully retracted, when the dead center position is reached, the first-stage switching valve 21 loses power in the neutral position and the working oil Ports A and B are connected to the oil return port T.
  • the hydraulic oil from the oil supply line 5 passes through the two-way directional valve 1 and is connected to the first-stage directional valve 22 along the hydraulic line 7 all the way.
  • the direction valve 22 is operated in the right position, and supplies oil to the rodless cavity of the second hydraulic cylinder 42.
  • the second hydraulic cylinder 42 is extended, the driving mechanism rotates clockwise, and the other way is connected to the balance valve 31 along the auxiliary hydraulic line 8 ⁇
  • the pilot control chamber of 34 opens the balancing valves 31 to 34, and at this time, the first-stage switching valve 21 is in the neutral position.
  • the rod chamber and the non-rod chamber of the first hydraulic cylinder 41 are reversed through the balancing valves 31 and 32 and the first stage.
  • the valve 21 is connected to the oil return line 6 to realize floating, and follows the second hydraulic cylinder 42 under the drive of the mechanism.
  • the first hydraulic cylinder 41 extends, and passes through the dead point position without load.
  • the operating position is shown in FIG. 2F.
  • the HV02.a solenoid of the first-stage directional valve 21 is energized and switched to the left position.
  • the first-stage directional valve 22 remains in the right position.
  • the hydraulic oil from the oil supply line 5 passes through the secondary reversing valve 1 and is connected along the hydraulic line 7 to the primary reversing valves 21 and 22 to supply oil to the first hydraulic cylinders 41 and 42 without a rod.
  • Cavity, the first hydraulic cylinders 41 and 42 extend at the same time, and the other way is connected to the pilot control cavity of the balancing valves 31 to 34 along the auxiliary hydraulic line 8 to open the balancing valves 31 to 34.
  • the first hydraulic cylinders 41 and 42 have rods.
  • the cavity oil returns to the oil through the balance valves 31 and 34, so that the first hydraulic cylinders 41 and 42 can extend at the same time. Since the oil is returned through the balance valve, the extension speed of the first hydraulic cylinders 41 and 42 can be effectively controlled to make the movement more Stable to prevent stalling.
  • the first hydraulic cylinders 41 and 42 extend at the same time until the operating position is shown in FIG. 2G.
  • the primary switching valve 22 loses power in the neutral position and the working oil port A and B are connected to the oil return port T.
  • the hydraulic oil from the oil supply line 5 passes through the two-way directional valve 1 and is connected to the first-stage directional valve 21 along the hydraulic line 7 all the way.
  • the valve 21 keeps working in the left position, and supplies oil to the rodless cavity of the first hydraulic cylinder 41.
  • the first hydraulic cylinder 41 extends, the driving mechanism rotates clockwise, and the other way is connected to the balance valve 31 to 34 along the auxiliary hydraulic line 8.
  • the pilot control chamber of the valve opens the balancing valves 31 to 34, and at this time the first-stage directional valve 22 is in the neutral position.
  • the rod and non-rod chambers of the second hydraulic cylinder 42 pass through the balancing valves 33 and 34 and the first-stage directional valve. 22 is connected to the oil return line 6 to realize floating, and it follows the operation of the first hydraulic cylinder 41 under the drive of the mechanism, and the second hydraulic cylinder 42 retracts and passes through the dead point position without load.
  • the HV03.a solenoid of the first-stage directional valve 22 is energized and switched to the left position.
  • the first-stage directional valve 21 remains in the left position.
  • the hydraulic oil from the oil supply line 5 passes through the two-stage directional valve 1 and is connected to the first-stage directional valves 21 and 22 along the hydraulic line 7 to supply oil to the rodless cavity of the first hydraulic cylinder 41 and 4.2
  • the first hydraulic cylinder 41 is extended and the second hydraulic cylinder 42 is retracted.
  • the other path is connected to the pilot control cavity of the balance valves 31 to 34 along the auxiliary hydraulic line 8.
  • the balance valves 31 to 34 are opened.
  • a hydraulic cylinder 41 has a rod cavity and a second hydraulic cylinder 42 has no rod cavity.
  • the oil returns to the oil through the balancing valves 31 and 33, so that the first hydraulic cylinder 41 extends and the second hydraulic cylinder 42 retracts.
  • the oil can effectively control the extension speed of the first hydraulic cylinder 41 and the retraction speed of the second hydraulic cylinder 42 to make the movement more stable and prevent stall.
  • the first hydraulic cylinder 41 is extended and the second hydraulic cylinder 42 is retracted until the operating position is shown in FIG. 3A.
  • the mechanism completes a 360 ° rotation and starts to move down. One cycle.
  • the first-stage directional control valves 21 and 22 are set to be in the middle position without power, and the working ports A and B are connected to the oil return port T.
  • the second stage The spool of the reversing valve 1 is switched to disconnect the hydraulic oil from the oil supply line 5 and connected to the oil return line 6. Therefore, the pilot control chambers of the balancing valves 31 to 34 are connected to the oil return line 6 and the pilot oil pressure When it becomes zero, the balancing valves 31 to 34 are closed, and the first hydraulic cylinders 41 and 42 are locked to realize the precise positioning of the mirror.
  • the first-stage directional valves 21 and 22 are in the neutral position, they also have overload relief protection and Charge function.
  • Fig. 3 shows a further embodiment according to the invention.
  • the high-angle swing mechanism includes a first hydraulic cylinder 41, a second hydraulic cylinder 42, and a third hydraulic cylinder 43.
  • the output ends of the first hydraulic cylinder 41, the second hydraulic cylinder 42 and the third hydraulic cylinder 43 are pivotally connected to perform 360 ° circular motion in the same direction.
  • the primary switching valve that controls this hydraulic cylinder loses power in the neutral position.
  • This hydraulic cylinder floats and follows the other hydraulic cylinders under the action of the mechanism.
  • the high-angle swing mechanism may further include three or more hydraulic cylinders.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

一种大角度回转机构的液压控制系统及方法,大角度回转机构包括多个液压缸,多个液压缸的输出端枢转连接以沿同一方向做回转运动,液压控制系统包含进油管路(5)、回油管路(6)、主液压管路(7)、与多个液压缸相对应的多个一级换向阀、分别与多个液压缸的有杆腔和无杆腔相对应的多个平衡阀、副液压管路(8)以及二级换向阀(1),主液压管路(7)通过一级换向阀和平衡阀将多个液压缸的有杆腔和无杆腔连接至进油管路(5)和回油管路(6);副液压管路(8)通过二级换向阀(1)将平衡阀连接至进油管路(5)和回油管路(6)。

Description

一种大角度回转机构的液压控制系统及方法 技术领域
本发明涉及机械技术领域,特别涉及一种大角度回转机构的液压控制系统及方法。
背景技术
大角度回转机构适用于各个领域。例如,在光热发电领域,采用由两个液压缸构成的大角度回转机构驱动镜子沿水平方向回转,以跟踪太阳转动。此类回转机构通常使用平衡阀来锁止液压缸,以实现回转机构的定位。然而,平衡阀具有开启压力设定值,仅当平衡阀的先导控制腔内的压力高于该设定值时才能开启平衡阀。由此,当两个液压缸中的一个运行至死点位置(输出端伸至最远距离或最近距离处)时,常常由于平衡阀内先导油压无法满足设定值而关闭,导致液压缸锁止,即无法处于浮动状态,从而在回转过程中出现不期望的作用力,出现过载问题,严重影响回转机构的使用寿命。
因此,如何克服大角度回转机构在回转过程中的死点问题成为领域亟待解决的技术问题。
发明内容
为了克服现有技术中所存在的缺陷,本发明提供一种角度回转机构的液压控制系统及方法,使用该系统及方法能够使液压缸在通过死点位置附近时实现浮动功能,消除回转过程中不期望的作用力,避免过载问题,保证大角度回转机构的使用寿命。
依据本发明,提供一种大角度回转机构的液压控制系统,大角度回转机构包括多个液压缸,多个液压缸的输出端枢转连接以沿同一方向做 回转运动,液压控制系统包含进油管路、回油管路、主液压管路、与多个液压缸相对应的多个一级换向阀、分别与多个液压缸的有杆腔和无杆腔相对应的多个平衡阀、副液压管路以及二级换向阀,其中,
主液压管路通过一级换向阀和平衡阀将多个液压缸的有杆腔和无杆腔连接至进油管路和回油管路;
副液压管路通过二级换向阀将平衡阀连接至进油管路和回油管路。
依据本发明的一个实施例,一级换向阀包含工作油口A、工作油口B、进油口P和回油口T,主液压管路包含连接工作油口A和液压缸的有杆腔的第一支路、连接工作油口B和液压缸的无杆腔的第二支路、连接进油口P和进油管路的第三支路以及连接回油口T和回油管路的第四支路。
依据本发明的一个实施例,大角度回转机构包含两个液压缸。
依据本发明的一个实施例,一级换向阀和二级换向阀为具有换向功能的单个阀门。
依据本发明的一个实施例,二级换向阀为两位三通电磁换向阀。
依据本发明的一个实施例,一级换向阀和二级换向阀为彼此协作的一组阀门。
依据本发明的一个实施例,平衡阀包含先导控制腔,副液压管路通过二级换向阀将先导控制腔连接至进油管路和回油管路。
依据本发明,提供一种大角度回转机构的控制方法,控制方法包含:当多个液压缸中的一个运行至死点位置附近时,与液压缸对应的一级换向阀处于中位,并且驱动二级换向阀使副液压管路连通以打开平衡阀。
依据本发明的一个实施例,一级换向阀设置成在处于中位时使工作油口A、工作油口B均与回油管路连通。
依据本发明的一个实施例,其特征在于,控制方法包含:当多个液压缸停止运行时,驱动二级换向阀使平衡阀与回油管路连通以关闭平衡阀。
由于采用于上技术方案,本发明与现有技术相比具有如下优点:
1使用本发明的大角度回转机构的液压控制系统进行控制,液压缸经过死点位置附近时可实现浮动功能,消除回转过程中不期望的作用力, 有效避免过载问题。
2通过平衡阀调速,可有效控制每个液压缸的伸出或缩回速度,使运动更加平稳,防止失速。
3多个液压缸协同动作,可实现360°无死点回转运动。
4当液压缸停止运行时,可通过平衡阀锁止,实现精准定位,同时具备过载卸压保护和补油功能。
附图说明
图1示出了依据本发明的大角度回转机构的液压控制系统一实施例的示意图;
图2A-2H示出了图1所示的大角度回转机构在回转过程中不同状态下的示意图;
图3示出了依据本发明的大角度回转机构的液压控制系统另一实施例的示意图。
附图标记说明:
1二级换向阀,21~22一级换向阀,31~34平衡阀,41第一液压缸,411有杆腔,412无杆腔,42第二液压缸,421有杆腔,422无杆腔,43第三液压缸,5进油管路,6回油管路,7主液压管路,71第一支路,72第二支路,73第三支路,74第四支路,8副液压管路。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
如图1所示,本申请以包含第一液压缸41和第二液压缸42的回转机构为例进行说明。其中,第一液压缸41和第二液压缸42的输出端枢转连接,以沿同一方向做360°圆周运动。依据本发明的大角度回转机构的液压控制系统(以下简称液压控制系统)总体包括进油管路5、回油管 路6、主液压管路7、一级换向阀21~22、平衡阀31~34、副液压管路8以及二级换向阀1。其中,第一液压缸41通过主液压管路7经由一级换向阀21连接至进油管路5和回油管路6,平衡阀31和32分别设置于连接第一液压缸41的有杆腔411和无杆腔412的主液压管路7上。同样地,第二液压缸42通过主液压管路7经由一级换向阀22连接至进油管路5和回油管路6,平衡阀33和34分别设置于连接第二液压缸42的有杆腔421和无杆腔422的主液压管路7上。副液压管路8通过二级换向阀1将平衡阀31~34连接至进油管路5和回油管路6。
具体地,在本实施例中,一级换向阀21~22为包含工作油口A、工作油口B、进油口P和回油口T并且具有换向功能的单个阀门。作为选择地,一级换向阀21~22也可以是彼此协作的一组阀门。液压管路7可以包含连接工作油口A至有杆腔411和421的第一支路71、连接工作油口B至无杆腔412和422的第二支路72、连接进油口P至进油管路5的第三支路73以及连接回油口T至回油管路6的第四支路。平衡阀31~32分别设置于连接第一液压缸14的第一支路71和第二支路72上,以调节第一液压缸41的运行速度并在第一液压缸41停止运行时锁止第一液压缸41;平衡阀33~34分别设置于连接第二液压缸42的第一支路71和第二支路72上,以调节第二液压缸42的运行速度并在第二液压缸42停止运行时锁止第二液压缸42。
在本实施例中,二级换向阀1为两位三通电磁换向阀。作为选择地,二级换向阀也可以是能够将平衡阀31~34选择性地连通至进油管路5或回油管路6的其他单个阀门或彼此协作的一组阀门。副液压管路8通过二级换向阀1将平衡阀31~34的先导控制腔连接至进油管路5和回油管路6,以通过二级换向阀1的换向实现先导控制腔与进油管路5或回油管路6的连通。
依据本发明的液压控制系统的运行原理为:当第一液压缸41运行至死点附近时,设置一级换向阀21失电处于中位——即工作油口A、B与回油口T接通,二级换向阀1使副液压管路8连通。此时来自供油管路5的液压油通过二级换向阀,一路沿液压管路7接通到一级换向阀22,供 油给第二液压缸42以使其正常运行,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34。而此时一级换向阀21处于中位,第一液压缸41的有杆腔411和无杆腔412通过平衡阀31和32和一级换向阀21接通到回油管路6,实现浮动,在大角度回转机构的作用下跟随第二液压缸42运行。同理,第二液压缸42通过死点位置附近时,第二液压缸42亦实现浮动,在大角度回转机构作用下跟随第一液压缸41运行,因此没有不希望的载荷作用在机构上,从而避免通过死区时的过载问题。
以下将结合附图2A-2H详细叙述液压控制系统在大角度回转机构运行至不同状态时的控制过程:
运行位置如图2A所示时,第一液压缸41完全伸出,到达死点位置时,一级换向阀21失电处于中位,工作油口A、B与回油口T接通,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀22,一级换向阀22的HV03.a电磁铁得电,在左位工作,供油给第二液压缸42的有杆腔421,第二液压缸42缩回,驱动机构顺时针转动,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,而此时一级换向阀21处于中位,第一液压缸41的有杆腔411和无杆腔412通过平衡阀31和32和一级换向阀21接通到回油管路6,实现浮动,在机构驱动下跟随第二液压缸42运行,第一液压缸41缩回,无载荷通过死点位置。
第一液压缸41通过死点位置后,运行位置如图2B所示,一级换向阀21的HV02.b电磁铁得电,切换到右位工作,一级换向阀22保持左位工作,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀21和22,供油给第一液压缸41和42有杆腔,第一液压缸41和42同时缩回,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,第一液压缸41和42无杆腔油液通过平衡阀32和33回油,从而实现第一液压缸41和42的同时缩回,由于无杆腔通过平衡阀回油,可有效控制第一液压缸41和42的缩回速度,使运动更加平稳,防止失速。
随后,第一液压缸41和42同时缩回,直到运行位置如图2C所示,第二液压缸42完全缩回,到达死点位置时,一级换向阀22失电处于中位,工作油口A、B与回油口T接通,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀21,一级换向阀21保持在右位工作,供油给第一液压缸41有杆腔,第一液压缸41缩回,驱动机构顺时针转动,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,而此时一级换向阀22处于中位,第二液压缸42的有杆腔和无杆腔通过平衡阀33和34和一级换向阀22接通到回油管路6,实现浮动,在机构驱动下跟随第一液压缸41运行,第二液压缸42伸出,无载荷通过死点位置。
第二液压缸42通过死点位置后,运行位置如图2D所示,一级换向阀22的HV03.b电磁铁得电,切换到右位工作,一级换向阀21保持右位工作,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀21和22,供油给第一液压缸41有杆腔和4.2无杆腔,第一液压缸41缩回和第二液压缸42伸出,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,第一液压缸41无杆腔和第二液压缸42有杆腔油液通过平衡阀32和34回油,从而实现第一液压缸41缩回和第二液压缸42伸出,由于通过平衡阀回油,可有效控制第一液压缸41的缩回速度和第二液压缸42的伸出速度,使运动更加平稳,防止失速。
第一液压缸41缩回和4.2伸出,直到运行位置如图2E所示,第一液压缸41完全缩回,到达死点位置时,一级换向阀21失电处于中位,工作油口A、B与回油口T接通,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀22,一级换向阀22保持在右位工作,供油给第二液压缸42无杆腔,第二液压缸42伸出,驱动机构顺时针转动,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,而此时一级换向阀21处于中位,第一液压缸41的有杆腔和无杆腔通过平衡阀31和32和一级换向阀21接通到回油管路6,实现浮动,在机构驱动下跟随第二液压缸42运行,第一液压缸41 伸出,无载荷通过死点位置。
第一液压缸41通过死点位置后,运行位置如图2F所示,一级换向阀21的HV02.a电磁铁得电,切换到左位工作,一级换向阀22保持右位工作,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀21和22,供油给第一液压缸41和42无杆腔,第一液压缸41和42同时伸出,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,第一液压缸41和42有杆腔油液通过平衡阀31和34回油,从而实现第一液压缸41和42同时伸出,由于通过平衡阀回油,可有效控制第一液压缸41和42的伸出速度,使运动更加平稳,防止失速。
第一液压缸41和42同时伸出,直到运行位置如图2G所示,第二液压缸42完全伸出,到达死点位置时,一级换向阀22失电处于中位,工作油口A、B与回油口T接通,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀21,一级换向阀21保持在左位工作,供油给第一液压缸41无杆腔,第一液压缸41伸出,驱动机构顺时针转动,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,而此时一级换向阀22处于中位,第二液压缸42的有杆腔和无杆腔通过平衡阀33和34和一级换向阀22接通到回油管路6,实现浮动,在机构驱动下跟随第一液压缸41运行,第二液压缸42缩回,无载荷通过死点位置。
第二液压缸42通过死点位置后,运行位置如图2H所示,一级换向阀22的HV03.a电磁铁得电,切换到左位工作,一级换向阀21保持左位工作,此时来自供油管路5的液压油通过二级换向阀1,一路沿液压管路7接通到一级换向阀21和22,供油给第一液压缸41无杆腔和4.2有杆腔,第一液压缸41伸出和第二液压缸42缩回,另一路沿副液压管路8接通到平衡阀31~34的先导控制腔,打开平衡阀31~34,第一液压缸41有杆腔和第二液压缸42无杆腔油液通过平衡阀31和33回油,从而实现第一液压缸41伸出和第二液压缸42缩回,由于通过平衡阀回油,可有效控制第一液压缸41的伸出速度和第二液压缸42的缩回速度,使运动更加 平稳,防止失速。
随后,第一液压缸41伸出和第二液压缸42缩回,直到运行位置如图3A所示,第一液压缸41完全伸出,到达死点位置时,机构完成360°回转,开始下一个循环。
当第一液压缸41和42停止运行,需要锁止时,设置一级换向阀21和22均失电处于中位,工作油口A、B与回油口T接通,此时二级换向阀1阀芯换向,将来自供油管路5的液压油断开,接通到回油管路6,因此平衡阀31~34的先导控制腔与回油管路6接通,先导油压变为零,平衡阀31~34关闭,将第一液压缸41和42锁止,实现镜子的精准定位,但由于一级换向阀21和22处于中位,故同时具备过载卸压保护和补油功能。
图3示出了依据本发明的又一实施例。在该实施例中,大角度回转机构包含第一液压缸41、第二液压缸42和第三液压缸43。其中,第一液压缸41、第二液压缸42和第三液压缸43的输出端枢转连接,以沿同一方向做360°圆周运动。基于同样的原理,当其中任何一个液压缸处于死点位置附近时,控制此液压缸的一级换向阀失电处于中位,此液压缸浮动,在机构作用下跟随其他液压缸运行,从而避免通过死点时的过载问题;当液压缸不在死点位置附近运行时,控制此液压缸的换向阀处于左或右工作位,此液压缸伸出或者缩回,驱动机构运行。作为选择地,大角度回转机构还可以包含三个以上液压缸。
以上实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种大角度回转机构的液压控制系统,所述大角度回转机构包括多个液压缸,所述多个液压缸的输出端枢转连接以沿同一方向做回转运动,其特征在于,所述液压控制系统包含进油管路、回油管路、主液压管路、与所述多个液压缸相对应的多个一级换向阀、分别与所述多个液压缸的有杆腔和无杆腔相对应的多个平衡阀、副液压管路以及二级换向阀,其中,
    所述主液压管路通过所述一级换向阀和所述平衡阀将所述多个液压缸的有杆腔和无杆腔连接至所述进油管路和所述回油管路;
    所述副液压管路通过所述二级换向阀将所述平衡阀连接至所述进油管路和所述回油管路。
  2. 根据权利要求1所述的大角度回转机构的液压控制系统,其特征在于,所述一级换向阀包含工作油口A、工作油口B、进油口P和回油口T,所述主液压管路包含连接所述工作油口A和所述液压缸的有杆腔的第一支路、连接所述工作油口B和所述液压缸的无杆腔的第二支路、连接所述进油口P和所述进油管路的第三支路以及连接所述回油口T和所述回油管路的第四支路。
  3. 根据权利要求1所述的大角度回转机构的液压控制系统,其特征在于,所述大角度回转机构包含两个液压缸。
  4. 根据权利要求1所述的大角度回转机构的液压控制系统,其特征在于,所述一级换向阀和所述二级换向阀为具有换向功能的单个阀门。
  5. 根据权利要求4所述的大角度回转机构的液压控制系统,其特征在于,所述二级换向阀为两位三通电磁换向阀。
  6. 根据权利要求1所述的大角度回转机构的液压控制系统,其特征在于,所述一级换向阀和所述二级换向阀为彼此协作的一组阀门。
  7. 根据权利要求1所述的大角度回转机构的液压控制系统,其特征在于,所述平衡阀包含先导控制腔,所述副液压管路通过所述二级换向阀将所述先导控制腔连接至所述进油管路和所述回油管路。
  8. 一种采用权利要求1-7任一项所述的大角度回转机构的液压控制系统的控制方法,其特征在于,所述控制方法包含:当多个液压缸中的一个运行至死点位置附近时,与所述液压缸对应的一级换向阀处于中位,并且驱动二级换向阀使副液压管路连通以打开平衡阀。
  9. 根据权利要求8所述的控制方法,其特征在于,所述一级换向阀设置成在处于中位时使工作油口A、工作油口B均与回油管路连通。
  10. 根据权利要求9所述的大角度回转机构的液压控制系统,其特征在于,所述控制方法包含:当所述多个液压缸停止运行时,驱动所述二级换向阀使所述平衡阀与回油管路连通以关闭平衡阀。
PCT/CN2018/095708 2018-07-13 2018-07-13 一种大角度回转机构的液压控制系统及方法 WO2020010635A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095708 WO2020010635A1 (zh) 2018-07-13 2018-07-13 一种大角度回转机构的液压控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095708 WO2020010635A1 (zh) 2018-07-13 2018-07-13 一种大角度回转机构的液压控制系统及方法

Publications (1)

Publication Number Publication Date
WO2020010635A1 true WO2020010635A1 (zh) 2020-01-16

Family

ID=69143208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095708 WO2020010635A1 (zh) 2018-07-13 2018-07-13 一种大角度回转机构的液压控制系统及方法

Country Status (1)

Country Link
WO (1) WO2020010635A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225528A (ja) * 1998-02-18 1999-08-24 Kubota Corp コンバインの油圧制御装置
CN207113268U (zh) * 2017-05-26 2018-03-16 天津滨海光热跟踪技术有限公司 一种槽式太阳能集热器液压驱动系统
CN108612689A (zh) * 2018-07-13 2018-10-02 北京亿美博科技有限公司 一种大角度回转机构的液压控制系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11225528A (ja) * 1998-02-18 1999-08-24 Kubota Corp コンバインの油圧制御装置
CN207113268U (zh) * 2017-05-26 2018-03-16 天津滨海光热跟踪技术有限公司 一种槽式太阳能集热器液压驱动系统
CN108612689A (zh) * 2018-07-13 2018-10-02 北京亿美博科技有限公司 一种大角度回转机构的液压控制系统及方法

Similar Documents

Publication Publication Date Title
US20210229962A1 (en) Crane hydraulic system and controlling method of the system
CN110131221B (zh) 机械臂的液压系统
CN102807168B (zh) 起重机单缸伸缩机构的液压控制系统及起重机
CN110700337B (zh) 一种挖掘机动臂节能控制系统及控制方法
CN210623231U (zh) 一种液压回转装置缓冲系统
CN110805579A (zh) 一种辅助维修用作业平台的控制系统
WO2021057727A1 (zh) 一种再生控制液压系统
CN113882459B (zh) 挖掘机能量回收系统及挖掘机
CN108612689A (zh) 一种大角度回转机构的液压控制系统及方法
WO2014005396A1 (zh) 一种液压系统及掘进机
CN104389830A (zh) 智能同步式液压启闭机
CN109250626B (zh) 一种小拐臂绝缘高空作业车臂架及其控制系统
CN112628231B (zh) 一种自动钻进控制阀组、控制系统及其控制方法
CN208749702U (zh) 一种大角度回转机构的液压控制系统
WO2020010635A1 (zh) 一种大角度回转机构的液压控制系统及方法
CN106194866A (zh) 海洋平台连续升降液压控制系统
WO2024021578A1 (zh) 液压系统和工程机械
CN113775603A (zh) 一种电液多执行器流量控制系统及方法
CN108343649B (zh) 基于单侧出口节流控制阀组的负载口/排量独立控制系统
CN110864015A (zh) 双作用执行元件速度切换液压控制系统
CN211550119U (zh) 辅助维修用作业平台的控制系统
CN205591274U (zh) 小型挖掘机合流控制系统
CN114704532A (zh) 一种液压浮动式控制的集成阀及液压控制系统
CN105179356B (zh) 副臂控制阀、副臂液压控制系统及起重机
CN112010162A (zh) 叶片吊装工装及其液压系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926139

Country of ref document: EP

Kind code of ref document: A1