WO2020010627A1 - 一种工件跟踪方法、系统及机器人 - Google Patents

一种工件跟踪方法、系统及机器人 Download PDF

Info

Publication number
WO2020010627A1
WO2020010627A1 PCT/CN2018/095678 CN2018095678W WO2020010627A1 WO 2020010627 A1 WO2020010627 A1 WO 2020010627A1 CN 2018095678 W CN2018095678 W CN 2018095678W WO 2020010627 A1 WO2020010627 A1 WO 2020010627A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
workpiece
robot
conveyor
basic
Prior art date
Application number
PCT/CN2018/095678
Other languages
English (en)
French (fr)
Inventor
张松鹏
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2018/095678 priority Critical patent/WO2020010627A1/zh
Priority to CN201880087135.2A priority patent/CN111989540B/zh
Publication of WO2020010627A1 publication Critical patent/WO2020010627A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant

Definitions

  • the present application relates to the field of robotics, and in particular, to a method, a system, and a robot for tracking workpieces.
  • Vision calibration involves the complex process of calibrating the pixel coordinate system, imaging coordinate system, and camera coordinate system of the vision system. There is a complex coordinate system conversion between the image plane and the basic coordinate system of the robot. Complexity and cost.
  • the technical problem mainly solved by this application is to provide a workpiece tracking method, system and robot, which can solve the problem of tedious and high cost of the visual calibration process of the existing workpiece tracking method.
  • a technical solution adopted in the present application is to provide a workpiece tracking method including: calibrating a conveyor belt basic coordinate system to obtain a first homogeneity of the conveyor belt basic coordinate system relative to the world coordinate system at an initial time. Matrix; calibrate the workpiece coordinate system to obtain the second homogeneous matrix of the workpiece coordinate system relative to the basic coordinate system of the conveyor belt at the initial time; obtain the traveling speed of the conveyor belt; use the first homogeneous matrix, the second homogeneous matrix and the The traveling speed is a parameter at the initial time, and a real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system is calculated.
  • a robot which at least includes: a communication circuit and a processor connected to each other; the communication circuit is configured to communicate with an external device to acquire the Travel speed of the conveyor; the processor is used to execute instructions to implement the workpiece tracking method as described above.
  • a workpiece tracking system including: a robot and a conveyor belt connected to each other; the conveyor belt is used to transport the workpiece; the robot is used to track the workpiece; wherein the robot is Robot as described above.
  • the beneficial effect of the present application is: Different from the situation of the prior art, in some embodiments of the present application, by calibrating the basic coordinate system of the conveyor belt, the first coordinate of the basic coordinate system of the conveyor belt with respect to the world coordinate system at the initial time is obtained. Sub-matrix, calibrate the workpiece coordinate system, obtain the second homogeneous matrix of the workpiece coordinate system relative to the basic coordinate system of the conveyor belt at the initial time, and obtain the traveling speed of the conveyor belt using the first homogeneous matrix and the second homogeneous The matrix and the traveling speed are parameters of the initial moment, and the real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system is calculated.
  • a real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system can be obtained, and then the movement trajectory of the tool can be controlled.
  • the real-time tracking of the workpiece does not require the use of a visual inspection system for complex visual calibration, nor does it require a complex transformation of the image plane and the basic coordinate system of the robot, thereby reducing the complexity and cost of the workpiece tracking method.
  • FIG. 1 is a schematic flowchart of a first embodiment of a workpiece tracking method according to the present application
  • FIG. 2 is a detailed flowchart of steps S11 and S12 in FIG. 1;
  • FIG. 3 is a schematic flowchart of a second embodiment of a workpiece tracking method according to the present application.
  • FIG. 4 is a schematic diagram of an application scenario of the workpiece tracking method of the present application.
  • FIG. 5 is a schematic flowchart of a third embodiment of a workpiece tracking method according to the present application.
  • FIG. 6 is a schematic flowchart of a fourth embodiment of a workpiece tracking method according to the present application.
  • FIG. 7 is a schematic flowchart of a fifth embodiment of a workpiece tracking method according to the present application.
  • FIG. 8 is a schematic flowchart of a sixth embodiment of a workpiece tracking method according to the present application.
  • FIG. 9 is a schematic flowchart of a seventh embodiment of a workpiece tracking method according to the present application.
  • FIG. 10 is a detailed flowchart of step S142 in FIG. 9;
  • FIG. 11 is a schematic flowchart of an eighth embodiment of a workpiece tracking method according to the present application.
  • FIG. 12 is a schematic diagram of an application scenario of an eighth embodiment of a workpiece tracking method according to the present application.
  • FIG. 13 is a schematic flowchart of a ninth embodiment of a workpiece tracking method according to the present application.
  • FIG. 14 is a schematic structural diagram of an embodiment of a robot according to the present application.
  • FIG. 15 is a schematic structural diagram of an embodiment of a workpiece tracking system of the present application.
  • the first embodiment of the workpiece tracking method of the present application includes:
  • S11 Calibrate the basic coordinate system of the conveyor belt to obtain the first homogeneous matrix of the basic coordinate system of the conveyor belt relative to the world coordinate system at the initial time;
  • S12 Calibrate the workpiece coordinate system to obtain a second homogeneous matrix of the workpiece coordinate system relative to the basic coordinate system of the conveyor belt at the initial time;
  • the basic coordinate system of the conveyor belt is a coordinate system attached to the conveyor belt and moved along the conveyor belt conveying direction.
  • the workpiece coordinate system is a coordinate system attached to the workpiece conveyed by the conveyor belt and moves with the conveyor belt conveyance direction.
  • the three-point method or four-point method can be used. Method to calibrate the basic coordinate system of the conveyor belt and the workpiece coordinate system.
  • step S11 includes:
  • S111 Touch at least three first position points on the basic coordinate system of the conveyor belt with the tool center point of the robot to obtain position coordinates of the at least three first position points in the basic coordinate system of the robot;
  • S112 Use the position coordinates of the at least three first position points to calculate a unit vector and an origin coordinate of the conveyor basic coordinate system relative to the robot basic coordinate system at the initial time to obtain the conveyor basic coordinate system relative to the world coordinates at the initial time The first homogeneous matrix of the system.
  • the robot uses the world coordinate system as the basic coordinate system of the robot.
  • the TCP point (Tool Center Point) of the robot touches at least three of the basic coordinate system of the conveyor belt.
  • First position points to obtain the first position coordinates of the TCP point in the robot basic coordinate system when the at least three first position points are used, and using the at least three first position coordinates, the basic coordinate system of the conveyor can be calculated
  • the unit vector and the origin coordinate relative to the robot basic coordinate system at the initial time so that the conveyor base coordinate system can be constituted at the initial time with respect to the robot basic coordinate system homogeneous matrix 0 A c , that is, the first homogeneous matrix w A c .
  • step S12 includes:
  • S121 Touch at least three second position points on the workpiece coordinate system with the center point of the tool of the robot to obtain position coordinates of the at least three second position points in the basic coordinate system of the robot;
  • S122 Use the position coordinates of the at least three second position points to calculate the unit vector and the origin coordinate of the workpiece coordinate system relative to the robot's basic coordinate system at the initial time to obtain the workpiece coordinate system relative to the world coordinate system at the initial time. Homogeneous matrix.
  • c A obj is the second homogeneous matrix
  • ( w A c ) -1 is the inverse of the first homogeneous matrix
  • w A obj is the homogeneity of the workpiece coordinate system relative to the world coordinate system at the initial moment. Secondary matrix.
  • a TCP point is used to touch at least three second position points in the workpiece coordinate system to obtain the second position coordinates of the at least three second position points in the robot basic coordinate system, and using the At least three second position coordinates, the unit vector and origin coordinates of the workpiece coordinate system relative to the robot's basic coordinate system at the initial time can be calculated, so that a homogeneous matrix of the workpiece coordinate system relative to the robot's basic coordinate system at the initial time can be formed 0 A obj , since the robot is based on the world coordinate system, the homogeneous matrix 0 A obj can also be expressed as w A obj , and then multiplied by the inverse matrix of the first homogeneous matrix w A c above. The second homogeneous matrix c A obj .
  • the basic coordinate system of the robot may not be the world coordinate system, and then the homogeneous matrix w A 0 of the robot's basic coordinate system relative to the world coordinate system is multiplied by the homogeneous matrix 0 A c .
  • the traveling speed of the conveyor belt can be represented by the traveling distance of the conveyor belt corresponding to the unit pulse of the encoder of the conveyor belt.
  • the robot can directly connect to the conveyor encoder, and obtain the travel distance of the unit pulse of the conveyor from the conveyor encoder.
  • other types of controllers can also be used to control the movement of the conveyor belt.
  • the traveling speed of the conveyor belt can be expressed as the distance traveled per second.
  • S14 Calculate the real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system by using the first homogeneous matrix, the second homogeneous matrix, and the traveling speed as parameters at the initial time.
  • the first homogeneous matrix w A c and the second homogeneous matrix c A obj can be multiplied to obtain the homogeneous matrix w A obj of the workpiece coordinate system relative to the world coordinate system at the initial time. If the x-axis direction of the system is linear, the position coordinates of the origin of the workpiece coordinate system in the world coordinate system can be obtained from the homogeneous matrix w A obj . Since the workpiece coordinate system moves with the conveyor basic coordinate system, the moving distance of the conveyor basic coordinate system relative to the world coordinate system is the moving distance of the workpiece coordinate system relative to the world coordinate system.
  • the robot can know the real-time position and attitude of the workpiece relative to the world coordinate system in order to track the workpiece, and it can also plan the processing trajectory to perform real-time workpiece processing Machining, and tracking and manipulation in three dimensions.
  • a real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system can be obtained, and then the movement trajectory of the tool can be controlled. Realize real-time tracking of the workpiece, without the need for complex visual calibration using a visual inspection system, and without the need to perform complex transformations of the image plane and the basic coordinate system of the robot, thereby reducing the complexity and cost of the workpiece tracking method.
  • the origin of the conveyor basic coordinate system, a point in the positive direction of the x-axis, and a point on the y> 0 side of the xOy plane can be directly touched by the TCP point to obtain the initial
  • the process of calculating the position coordinates of the origin of the conveyor base coordinate system in the robot's base coordinate system at the same time, and calculating the unit vector of the conveyor base coordinate system at the same time is relatively simple.
  • the second embodiment of the workpiece tracking method of the present application is based on the first embodiment of the workpiece coordinate system of the present application, and further restricts the calibration of the conveyor basic coordinate system.
  • the first position includes the conveyor basic coordinates.
  • Step S112 includes:
  • the unit vectors of the conveyor basic coordinate system x, y, and z axes are relative to the robot basic coordinate system at the initial moment, respectively.
  • 0 p 1 , 0 p 2 and 0 p 3 are the origin of the conveyor basic coordinate system and conveyor basic coordinates at the initial moment.
  • S1122 Use the unit vector and origin coordinates of the conveyor basic coordinate system relative to the robot basic coordinate system at the initial time as elements to form a third homogeneous matrix of the conveyor basic coordinate system relative to the robot basic coordinate system at the initial time;
  • w A c is a first homogeneous matrix
  • w A 0 is a fourth homogeneous matrix
  • 0 A c is a third homogeneous matrix
  • coordinate system 1 represents the conveyor basic coordinate system at the initial time, and the conveyor basic coordinate system is calibrated.
  • the first position point includes a point in the positive direction of the origin O 1 and x 1 axis of coordinate system 1.
  • the robot can obtain point O 1 , point B, and point respectively.
  • the position coordinates of C in the robot base coordinate system are 0 p 1 , 0 p 2, and 0 p 3 , and then the above formula (2) can be used to calculate the conveyor base coordinate system x, y, and z axes relative to the robot base at the initial moment.
  • Unit vector of the coordinate system You can construct a third homogeneous matrix as shown below:
  • the fourth homogeneous matrix w A 0 is the identity matrix I, and then the third homogeneous matrix is the first homogeneous matrix.
  • the robot's basic coordinate system is not the world coordinate system, the robot obtains the fourth homogeneous matrix w A 0 of the robot's basic coordinate system relative to the world coordinate system, and the above formula (3) can be calculated to obtain the first homogeneous matrix w A c .
  • the fourth homogeneous matrix may be stored in the robot itself, or may be obtained through the control center, which is not specifically limited herein.
  • the robot obtains the position coordinates 0 p 1 , 0 p 2 and 0 p 3 of the point O 1 , point B and point C in the basic coordinate system of the robot, the coordinates of the tool center point in the robot flange coordinate system, and The homogeneous matrix of the flange coordinate system relative to the basic coordinate system of the robot is used to calculate the position coordinates 0 p 1 , 0 p 2 and 0 p 3 .
  • Step S111 includes:
  • 0 p 1 , 0 p 2 and 0 p 3 are the origin of the conveyor basic coordinate system, a point in the positive direction of the conveyor basic coordinate system x-axis, and a point on the conveyor basic coordinate system xOy plane on the y> 0 side is the robot basic coordinates.
  • Position coordinates under the system, 0 A f1 , 0 A f2, and 0 A f3 are the origin of the robot touching the conveyor base coordinate system, a point in the positive direction of the conveyor base coordinate system x-axis, and the conveyor base coordinate system on the xOy plane.
  • the fifth homogeneous matrix of the flange coordinate system with respect to the base coordinate system of the robot at a position on the 0 side, f p t is the position coordinate of the tool center point in the robot flange coordinate system.
  • the robot acquires from the control center 4 is stored in advance or the end of the robot tool coordinate system the origin of coordinates TCP f p t in the lower flange coordinate system does not change the point TCP
  • the TCP point touches the origin O 1 of the coordinate system 1, a point B in the positive direction of the x 1 axis, and a point C on the y 1 > 0 side of the x 1 Oy 1 plane, respectively, the TCP points are obtained.
  • the fifth homogeneous matrix of the flange coordinate system relative to the robot's basic coordinate system 0 A f1 , 0 A f2 and 0 A f3 when touching the poses of points O 1 , B and C, and then using the above formula (4 ) Can calculate the position coordinates 0 p 1 , 0 p 2 and 0 p 3 of the points O 1 , B and C in the basic coordinate system of the robot.
  • the robot may touch the same position point with the TCP point multiple times, and then use the average value of the multiple position coordinates as the final position coordinates.
  • the robot can also obtain the position coordinates of four or more position points to calculate the unit vector and origin coordinates of the basic coordinate system of the conveyor belt relative to the basic coordinate system of the robot.
  • the robot can also calibrate the workpiece coordinate system in a process similar to the above-mentioned conveyor basic coordinate system.
  • step S122 includes:
  • 0 p ′ 1 , 0 p ′ 2 and 0 p ′ 3 are the origin of the workpiece coordinate system and workpiece coordinates at the initial moment.
  • S1222 The unit vector and the origin coordinate of the workpiece coordinate system relative to the robot basic coordinate system at the initial time are used as elements to form a sixth homogeneous matrix of the workpiece coordinate system relative to the robot basic coordinate system at the initial time.
  • the coordinate system 3 represents the workpiece coordinate system at the initial time
  • the coordinate system 4 represents the workpiece coordinate system at time t
  • the workpiece coordinate system is calibrated
  • the second position point includes the origin O of the coordinate system 3 3 , a point D in the positive direction of the x 3 axis, and a point E on the side of y 3 > 0 on the x 3 Oy 3 plane.
  • the robot can respectively Obtain the position coordinates 0 p ′ 1 , 0 p ′ 2 and 0 p ′ 3 of points O 3 , D and E in the basic coordinate system of the robot, and then use the above formula (5) to calculate the workpiece coordinate system x, y And z-axis relative to the unit vector of the robot's base coordinate system at the initial moment with Then a sixth homogeneous matrix can be constructed as follows:
  • the sixth homogeneous matrix is the homogeneous matrix of the workpiece coordinate system relative to the world coordinate system at the initial time.
  • step S1222 when the basic coordinate system of the robot is not the world coordinate system, after step S1222, the method further includes:
  • w A obj is a homogeneous matrix of the workpiece coordinate system relative to the world coordinate system at the initial time
  • w A 0 is the fourth homogeneous matrix
  • 0 A obj is the sixth homogeneous matrix.
  • the fourth homogeneous matrix may be stored in the robot itself, or may be obtained through the control center, which is not specifically limited herein.
  • the tool center point can be used in the robot flange coordinate system. Coordinates, and the homogeneous matrix of the flange coordinate system relative to the robot's basic coordinate system, calculate the position coordinates 0 p ′ 1 , 0 p ′ 2 and 0 p ′ 3.
  • the specific calculation process and the third embodiment of the workpiece tracking method of the present application Similarly, it will not be repeated here.
  • This embodiment can also be combined with the second or third embodiment or a combination thereof.
  • the TCP point can be used to touch the same position point on the basic coordinate system of the conveyor belt at different times to calculate the position of the conveyor belt based on the position coordinates of the position point in the basic coordinate system of the robot at different times. Travel speed.
  • Step S13 includes:
  • S131 Touch the preset point on the conveyor with the center point of the tool of the robot to obtain the first position coordinate of the preset point in the basic coordinate system of the robot;
  • the preset point may be any point on the xOy plane of the conveyor base coordinate system, such as the origin.
  • the distance / time traveled by the conveyor can be set randomly, or a certain time can be set in advance, which is not specifically limited here.
  • d is the travel distance of the conveyor corresponding to the unit pulse of the encoder of the conveyor
  • 0 p 4 is the first position coordinate
  • 0 p 5 is the second position coordinate
  • f 4 and f 5 are the before and Number of encoder pulses after travel.
  • coordinate system 1 represents the conveyor basic coordinate system at the initial time
  • coordinate system 2 represents the conveyor basic coordinate system at time t
  • the preset point may be the conveyor basic coordinate system.
  • the number of pulses of the encoder of the conveyor at the initial time f 4 at this time, the first position coordinate 0 p 4 is used to calibrate the conveyor basic coordinate system
  • the origin of the conveyor basic coordinate system at the initial time is the same as the coordinates of the robot basic coordinate system. .
  • This embodiment may also be combined with any one of the second to fourth embodiments of the present application or a non-conflicting combination thereof.
  • the robot can use the coordinates of the tool center point in the robot's flange coordinate system and the homogeneous matrix of the flange coordinate system relative to the robot's basic coordinate system to calculate the The first position coordinate and / or the second position coordinate.
  • Step S131 includes:
  • 0 p 4 is the first position coordinate
  • 0 A f4 is the seventh homogeneous matrix
  • f p t is the position coordinate of the tool center point in the robot flange coordinate system.
  • Step S132 includes:
  • 0 p 5 is the second position coordinate
  • 0 A f5 is the eighth homogeneous matrix
  • f p t is the position coordinate of the tool center point in the robot flange coordinate system.
  • the robot obtains or saves in advance a coordinate f p t of the origin TCP point of the tool coordinate system of the robot end from the control center under the flange coordinate system, and touches with the TCP.
  • the position coordinate 0 p 4 of the point O 1 in the basic coordinate system of the robot can be calculated.
  • the origin of the conveyor belt basic coordinate system is the origin O 2 of the coordinate system 2 to obtain the TCP point.
  • the eighth homogeneous matrix 0 A f5 of the flange coordinate system relative to the robot's basic coordinate system and then the above formula (9) can be used to calculate the point O 2 in the robot's basic coordinate system.
  • Position coordinates 0 p 5 can be used to calculate the point O 2 in the robot's basic coordinate system.
  • This embodiment may also be combined with any one of the first to fourth embodiments of the present application or a non-conflicting combination thereof.
  • the robot After the robot obtains the traveling speed of the conveyor belt, when the workpiece on the conveyor belt moves linearly in the positive direction of the x-axis of the basic coordinate system of the conveyor belt, the rotation matrix of the workpiece coordinate system relative to the world coordinate system is unchanged, and the workpiece coordinates The system is stationary relative to the basic coordinate system of the conveyor belt, so the workpiece coordinate system only performs translational movements relative to the world coordinate system.
  • the travel speed of the conveyor belt can be used to obtain the real-time coordinates of the origin of the workpiece coordinate system in the world coordinate system. Finally, a real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system is obtained.
  • Step S14 includes:
  • w A obj (0) is a homogeneous matrix of the workpiece coordinate system relative to the world coordinate system at the initial time
  • w A c is the first homogeneous matrix
  • c A obj is the second homogeneous matrix.
  • S142 Calculate the real-time coordinates of the origin of the workpiece coordinate system in the world coordinate system according to the traveling speed;
  • step S142 further includes:
  • w p c (t) is the coordinate of the origin of the conveyor basic coordinate system at time t in the world coordinate system
  • f (t) is the pulse number of the conveyor encoder at time t
  • f (0) is the initial time of the conveyor encoder.
  • the number of pulses d is the travel distance of the conveyor corresponding to the unit pulse of the encoder of the conveyor
  • w x c is the coordinate representation of the x-axis unit vector of the conveyor basic coordinate system in the world coordinate system.
  • w p obj (t) is the coordinate of the origin of the workpiece coordinate system at the time t in the world coordinate system
  • w p obj (0) is the coordinate of the origin of the workpiece coordinate system at the initial time in the world coordinate system
  • w p c ( t) is the coordinate of the origin of the basic coordinate system of the conveyor belt at the time t in the world coordinate system.
  • the workpiece coordinate system since the workpiece coordinate system is stationary relative to the basic coordinate system of the conveyor belt, the workpiece on the conveyor belt moves linearly along the positive direction of the x-axis of the basic coordinate system of the conveyor belt, so the workpiece coordinate system moves in translation relative to the world coordinate system.
  • real-time coordinates w p c (t) of the origin of the conveyor base coordinate system in the world coordinate system are calculated by using formula (11)
  • the coordinates of the origin of the workpiece coordinate system in the world coordinate system at the initial time are superimposed on the real-time coordinates.
  • w p c (t) then the real-time coordinates w p obj (t) of the origin of the workpiece coordinate system in the world coordinate system can be obtained.
  • step S1421 the method further includes:
  • the synchronization switch is set on the conveyor belt.
  • the synchronization switch is triggered, and the robot can start recording the real-time pulse number of the conveyor encoder.
  • the synchronization switch may not be triggered at the initial time, and may be triggered in advance to give the robot a certain preparation time.
  • This embodiment may also be combined with any one of the second to sixth embodiments of the present application or a non-conflicting combination thereof.
  • At least two workpieces can be transmitted on the conveyor belt.
  • the workpiece coordinate system posture of each workpiece is the same, but the origin position is different.
  • the number of pulses recorded by the synchronous switch and the travel distance of the conveyor belt corresponding to the unit pulse can be used.
  • the eighth embodiment of the workpiece tracking method of the present application is based on the seventh embodiment of the workpiece coordinate system of the present application. At least a first workpiece and a second workpiece are transmitted on a conveyor belt.
  • the workpiece coordinate system includes at least the first The first workpiece coordinate system corresponding to the workpiece and the second workpiece coordinate system corresponding to the second workpiece.
  • the workpiece tracking method of this embodiment further includes:
  • a first workpiece 501 and a second workpiece 501 are transported on a conveyor belt 40, a first workpiece coordinate system is attached to the first workpiece 501, and a second workpiece 502 is attached to the first workpiece 501.
  • the synchronization switch 401 is triggered, and the robot can obtain the pulse number of the conveyor encoder at the trigger time.
  • the first workpiece 501 and the second workpiece 502 are placed on the conveyor 40 with the same posture, but the positions are different. Therefore, the posture of the first workpiece coordinate system and the second workpiece coordinate system are the same, but the positions of the origins are different.
  • the robot can obtain the first pulse number of the conveyor encoder at the first initial time when the first workpiece 501 triggers the synchronous switch 401, and the second workpiece 502 triggers the first pulse of the synchronous switch 402.
  • the second pulse number of the conveyor encoder at the initial moment, and then the difference between the second pulse number and the first pulse number can be calculated, and the difference is multiplied by the travel distance of the conveyor corresponding to the unit pulse of the encoder of the conveyor.
  • the distance between the origin coordinate of the first workpiece coordinate system and the origin coordinate of the second workpiece coordinate system can be obtained.
  • the first real-time homogeneous matrix of the first workpiece coordinate system relative to the world coordinate system is translated and transformed into the following:
  • w A obj2 (t) is the second real-time homogeneous matrix
  • w R obj (t) is the rotation matrix in the first real-time homogeneous matrix
  • w p obj (t) is the first real-time homogeneous matrix
  • w p 12 is the distance between the origin coordinate of the first workpiece coordinate system and the second workpiece coordinate system.
  • the robot can only calibrate the workpiece coordinate system of the first workpiece transmitted on the conveyor belt, and then use the above method to perform a simple translation transformation, and then obtain the workpiece coordinate system of the subsequent workpiece relative to the world coordinate system.
  • Real-time Homogeneous Matrix Real-time Homogeneous Matrix.
  • This embodiment may also be combined with any one of the first to sixth embodiments of the present application or a non-conflicting combination thereof.
  • the robot can plan the machining trajectory of the workpiece according to the real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system, so as to process the workpiece in real time.
  • the ninth embodiment of the workpiece tracking method of the present application is based on the first embodiment of the workpiece coordinate system of the present application.
  • the method further includes:
  • w A t (t) is a homogeneous matrix of the tool coordinate system relative to the world coordinate system at time t
  • w A obj (t) is a homogeneous matrix of the workpiece coordinate system relative to the world coordinate system at time t
  • obj A t ( t) is a homogeneous matrix of the tool coordinate system relative to the workpiece coordinate system at time t;
  • the robot may plan the machining trajectory of the workpiece in advance according to the processing requirements of the workpiece, which is the real-time homogeneous matrix of the robot's tool coordinate system relative to the workpiece coordinate system, and then uses the above Formula (13) can obtain the real-time homogeneous matrix of the tool coordinate system relative to the world coordinate system, that is, the movement trajectory of the tool coordinate system in the world coordinate system. Therefore, the robot can use the inverse kinematic solution to relative the tool coordinate system.
  • the real-time homogeneous matrix based on the world coordinate system is converted into the real-time motion trajectory of the robot joint to track and process the workpiece.
  • the machining trajectory of each workpiece may be the same or different, and may be specifically determined according to actual needs, which is not specifically limited herein.
  • This embodiment may also be combined with any one of the second to eighth embodiments of the present application or a non-conflicting combination thereof.
  • an embodiment of the robot 80 of the present application includes: a communication circuit 801 and a processor 802 connected to each other.
  • the communication circuit 801 is configured to communicate with an external device, for example, to communicate with a conveyor belt to obtain a traveling speed of the conveyor belt
  • the processor 802 is configured to execute instructions to implement any one of the first to ninth embodiments of the workpiece tracking method of the present application or Its non-conflicting combination provides the method.
  • the robot may further include other components such as a memory and a display according to actual needs, which are not specifically limited herein.
  • the robot uses a simple coordinate transformation between the conveyor base coordinate system, the workpiece coordinate system, and the world coordinate system to obtain a real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system, and then controls the tool's motion trajectory.
  • Real-time tracking of the workpiece can be achieved without the need for complicated visual calibration using a visual inspection system or the complicated transformation of the image plane and the basic coordinate system of the robot, thereby reducing the complexity and cost of the workpiece tracking method.
  • an embodiment of the workpiece tracking system 90 of the present application includes: a robot 901 and a conveyor belt 902 connected to each other.
  • the conveyor 902 is used to transfer the workpiece
  • the robot 901 is used to track the workpiece.
  • the robot 901 may be a robot provided by an embodiment of the robot of the present application, and will not be repeated here.
  • the conveyor belt 902 further includes a controller 9021 for controlling travel / stop of the conveyor belt 902.
  • the controller 9021 may be an encoder for generating a pulse to control the travel / stop of the conveyor 902.
  • the conveyor belt 902 may also use other types of equipment to control the travel / stop of the conveyor belt 902.
  • the workpiece tracking system 90 of this embodiment further includes a synchronization switch 903 provided on the conveyor belt, connected between the encoder 9021 and the robot 901, and used to trigger the synchronization switch when the workpiece passes the position of the synchronization switch 903. 903, so that the robot 901 obtains the pulse number of the encoder 9021.
  • a synchronization switch 903 provided on the conveyor belt, connected between the encoder 9021 and the robot 901, and used to trigger the synchronization switch when the workpiece passes the position of the synchronization switch 903. 903, so that the robot 901 obtains the pulse number of the encoder 9021.
  • the synchronization switch 903 can be set at the position of the basic coordinate system of the conveyor belt at the initial time, or it can be set at other positions according to actual needs, which is not specifically limited here.
  • the workpiece tracking system may further include other equipment such as a control center, which is not specifically limited herein.
  • the robot uses a simple coordinate transformation between the conveyor base coordinate system, the workpiece coordinate system, and the world coordinate system to obtain a real-time homogeneous matrix of the workpiece coordinate system relative to the world coordinate system, and then controls the tool's motion trajectory. It can realize real-time tracking of workpieces transported on the conveyor belt, without the need for complex visual calibration using a visual inspection system, and without the need to perform complex transformations of the image plane and the basic coordinate system of the robot, thereby reducing the complexity of the workpiece tracking method and cost.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

一种工件跟踪方法,包括:对传送带基础坐标系进行标定,获得传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵;对工件坐标系进行标定,获得工件坐标系在初始时刻时相对于传送带基础坐标系的第二齐次矩阵;获取传送带的行进速度;以第一齐次矩阵、第二齐次矩阵和该行进速度为初始时刻的参数,计算工件坐标系相对于世界坐标系的实时齐次矩阵。该方法可以降低工件跟踪方法的复杂度和成本。还公开了一种工件跟踪系统及机器人。

Description

一种工件跟踪方法、系统及机器人 【技术领域】
本申请涉及机器人技术领域,尤其是涉及一种工件跟踪方法、系统及机器人。
【背景技术】
目前机器人对运动在传送带上的工件的动态跟踪方案,大都通过视觉检测系统定位工件的位姿,再结合传送带编码器反馈的位置数据,计算出工件在机器人基础坐标系下的实时位姿。因此,需要进行传送带标定和视觉标定,视觉标定包括标定视觉系统的像素坐标系、成像坐标系、摄像机坐标系等复杂过程,图像平面与机器人基础坐标系之间存在复杂的坐标系转换,整个方案的复杂性和成本较高。
【发明内容】
本申请主要解决的技术问题是提供一种工件跟踪方法、系统及机器人,能够解决现有工件跟踪方法采用视觉标定过程繁琐且成本高的问题。
为了解决上述问题,本申请采用的一个技术方案是:提供一种工件跟踪方法,包括:对传送带基础坐标系进行标定,获得传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵;对工件坐标系进行标定,获得工件坐标系在初始时刻时相对于传送带基础坐标系的第二齐次矩阵;获取传送带的行进速度;以第一齐次矩阵、第二齐次矩阵和该行进速度为初始时刻的参数,计算工件坐标系相对于世界坐标系的实时齐次矩阵。
为了解决上述问题,本申请采用的另一个技术方案是:提供一种机器人,该机器人至少包括:相互连接的通信电路和处理器;所述通信电路用于与外部设备进行通信,以获取所述传送带的行进速度;所述处理器用于执行指令以实现如上所述的工件跟踪方法。
为了解决上述问题,本申请采用的又一个技术方案是:提供一种工件跟踪系统,包括:相互连接的机器人和传送带;传送带用于传送工件;机器人用于对工件进行跟踪;其中,该机器人是如上所述的机器人。
本申请的有益效果是:区别于现有技术的情况,本申请的部分实施例中,通过对传送带基础坐标系进行标定,获得传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵,对工件坐标系进行标定,获得工件坐标系在初始时刻时相对于传送带基础坐标系的第二齐次矩阵,并获取传送带的行进速度后,以第一齐次矩阵、第二齐次矩阵和该行进速度为初始时刻的参数,计算工件坐标系相对于世界坐标系的实时齐次矩阵。通过上述方式,利用传送带基础坐标系、工件坐标系和世界坐标系之间的简单坐标变换,就可以得到工件坐标系相对于世界坐标系的实时齐次矩阵,进而控制工具的运动轨迹即可以实现对工件的实时跟踪,而不需要采用视觉检测系统进行复杂的视觉标定,也不需要进行图像平面与机器人基础坐标系的复杂变换,从而可以降低工件跟踪方法的 复杂度和成本。
【附图说明】
图1是本申请工件跟踪方法第一实施例的流程示意图;
图2是图1中步骤S11和S12的具体流程示意图;
图3是本申请工件跟踪方法第二实施例的流程示意图;
图4是本申请工件跟踪方法的应用场景示意图;
图5是本申请工件跟踪方法第三实施例的流程示意图;
图6是本申请工件跟踪方法第四实施例的流程示意图;
图7是本申请工件跟踪方法第五实施例的流程示意图;
图8是本申请工件跟踪方法第六实施例的流程示意图;
图9是本申请工件跟踪方法第七实施例的流程示意图;
图10是图9中步骤S142的具体流程示意图;
图11是本申请工件跟踪方法第八实施例的流程示意图;
图12是本申请工件跟踪方法第八实施例的应用场景示意图;
图13是本申请工件跟踪方法第九实施例的流程示意图;
图14是本申请机器人一实施例的结构示意图;
图15是本申请工件跟踪系统一实施例的结构示意图。
【具体实施方式】
下面结合附图和实施例对本申请进行详细说明。
如图1所示,本申请工件跟踪方法第一实施例包括:
S11:对传送带基础坐标系进行标定,获得传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵;
S12:对工件坐标系进行标定,获得工件坐标系在初始时刻时相对于传送带基础坐标系的第二齐次矩阵;
其中,传送带基础坐标系是附着于传送带上,沿传送带传输方向移动的坐标系,工件坐标系是附着于传送带传输的工件上,随传送带传输方向移动的坐标系,可以采用三点法或四点法等方法对传送带基础坐标系和工件坐标系进行标定。
可选地,如图2所示,步骤S11包括:
S111:以机器人的工具中心点触碰传送带基础坐标系上至少三个第一位置点,获取该至少三个第一位置点在机器人基础坐标系下的位置坐标;
S112:利用该至少三个第一位置点的位置坐标计算传送带基础坐标系在初始时刻时相对于机器人基础坐标系的单位向量和原点坐标,以获得传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵。
具体地,在一个应用例中,机器人以世界坐标系作为机器人的基础坐标系,在初始时刻,由机器人的TCP点(Tool Center Point,工具中心点)分别触碰传送带基础坐标系上的至少三个第一位置点,获取在该至少三个第一位置点时,TCP点在机器人基础坐标系下的第一位置坐标,利用该至少三个第一位置坐标, 可以计算得到该传送带基础坐标系在该初始时刻相对于机器人基础坐标系的单位向量和原点坐标,从而可以构成传送带基础坐标系在初始时刻相对于机器人基础坐标系齐次矩阵 0A c,即该第一齐次矩阵 wA c
可选地,继续参阅图2,步骤S12包括:
S121:以机器人的工具中心点触碰工件坐标系上至少三个第二位置点,获取该至少三个第二位置点在机器人基础坐标系下的位置坐标;
S122:利用该至少三个第二位置点的位置坐标计算工件坐标系在初始时刻时相对于机器人基础坐标系的单位向量、原点坐标,以获得工件坐标系在初始时刻时相对于世界坐标系的齐次矩阵。
S123:利用该工件坐标系在初始时刻时相对于世界坐标系的齐次矩阵和该第一齐次矩阵以如下公式(1)计算该第二齐次矩阵:
cA obj=( wA c) -1wA obj    (1)
其中, cA obj是该第二齐次矩阵,( wA c) -1是该第一齐次矩阵的逆矩阵, wA obj是该工件坐标系在初始时刻时相对于世界坐标系的齐次矩阵。
具体地,在一个应用例中,利用TCP点触碰该工件坐标系下至少三个第二位置点,获取该至少三个第二位置点在机器人基础坐标系下的第二位置坐标,利用该至少三个第二位置坐标,可以计算得到该工件坐标系在该初始时刻相对于机器人基础坐标系的单位向量和原点坐标,从而可以构成工件坐标系在初始时刻相对于机器人基础坐标系齐次矩阵 0A obj,由于机器人以世界坐标系为基础坐标系,则齐次矩阵 0A obj也可以表示为 wA obj,然后与上述第一齐次矩阵 wA c的逆矩阵相乘,即可以得到该第二齐次矩阵 cA obj
当然,在其他应用例中,机器人的基础坐标系也可以不是世界坐标系,则再将机器人的基础坐标系相对于世界坐标系的齐次矩阵 wA 0与齐次矩阵 0A c相乘,可以得到该第一齐次矩阵 wA cwA 0 0A c,而将齐次矩阵 wA 0与齐次矩阵 0A obj相乘,则可以得到该齐次矩阵 wA objwA 0 0A obj
S13:获取传送带的行进速度;
其中,当采用数字编码器控制传送带运动时,则传送带的行进速度可以由传送带的编码器的单位脉冲所对应的传送带的行进距离表示。机器人可以直接连接该传送带编码器,从该传送带编码器中获取传送带单位脉冲的行进距离。当然,也可以采用其他类型的控制器控制传送带的运动,此时传送带的行进速度则可以表示为每秒行进距离等。
S14:以第一齐次矩阵、第二齐次矩阵和该行进速度为初始时刻的参数,计算工件坐标系相对于世界坐标系的实时齐次矩阵。
具体地,由该第一齐次矩阵 wA c和第二齐次矩阵 cA obj相乘可以得到工件坐标系在初始时刻相对于世界坐标系的齐次矩阵 wA obj,传送带沿传送带基础坐标系的x轴方向作直线运动,则由该齐次矩阵 wA obj可以得到初始时刻工件坐标系原点在世界坐标系下的位置坐标。由于该工件坐标系是随传送带基础坐标系运动的, 则传送带基础坐标系相对于世界坐标系的移动距离即是该工件坐标系相对于世界坐标系的移动距离,因此由初始时刻工件坐标系原点在世界坐标系下的位置坐标和该行进速度可以得到传送带基础坐标系原点的实时坐标 wp obj(t)。由于该传送带沿直线运动,则随该传送带运动的工件坐标系的旋转矩阵不变,而由该齐次矩阵 wA obj可以得到该工件坐标系相对于世界坐标系的旋转矩阵 wR obj(t)= wR obj(0),然后以旋转矩阵 wR obj(t)和实时坐标 wp obj(t)构成如下所示的该工件坐标系相对于世界坐标系的实时齐次矩阵:
Figure PCTCN2018095678-appb-000001
机器人根据上述齐次矩阵 wA obj(t),结合工件尺寸等,可以得知工件相对于世界坐标系的实时位置和姿态,以便对工件进行跟踪,还可以规划加工轨迹,以对工件进行实时加工,并且是三维空间内的跟踪和操作。
本实施例中,利用传送带基础坐标系、工件坐标系和世界坐标系之间的简单坐标变换,就可以得到工件坐标系相对于世界坐标系的实时齐次矩阵,进而控制工具的运动轨迹即可以实现对工件的实时跟踪,而不需要采用视觉检测系统进行复杂的视觉标定,也不需要进行图像平面与机器人基础坐标系的复杂变换,从而可以降低工件跟踪方法的复杂度和成本。
在其他实施例中,对传送带基础坐标系进行标定时,可以由TCP点触碰传送带基础坐标系原点、x轴正方向上的一点以及xOy平面上y>0一侧的一点,则可以直接得到初始时刻传送带基础坐标系原点在机器人基础坐标系下的位置坐标,同时计算传送带基础坐标系的单位向量的过程较为简单。
具体如图3所示,本申请工件跟踪方法第二实施例是在本申请工件坐标系第一实施例的基础上,进一步限定对传送带基础坐标系进行标定时,第一位置点包括传送带基础坐标系原点、x轴正方向上的一点以及xOy平面上y>0一侧的一点,步骤S112包括:
S1121:利用如下公式(2)计算传送带基础坐标系在初始时刻时相对于机器人基础坐标系的单位向量:
Figure PCTCN2018095678-appb-000002
Figure PCTCN2018095678-appb-000003
Figure PCTCN2018095678-appb-000004
其中,
Figure PCTCN2018095678-appb-000005
Figure PCTCN2018095678-appb-000006
分别是传送带基础坐标系x、y和z轴在初始时刻时相对于机器人基础坐标系的单位向量, 0p 10p 20p 3分别是初始时刻传送带基础坐标系原点、传送带基础坐标系x轴正方向上的一点以及传送带基础坐标系xOy平面上y>0一侧的一点在机器人基础坐标系下的位置坐标;
S1122:以传送带基础坐标系在初始时刻时相对于机器人基础坐标系的单位向量和原点坐标为元素构成传送带基础坐标系在初始时刻时相对于机器人基础坐标系的第三齐次矩阵;
S1123:获取机器人基础坐标系相对于世界坐标系的第四齐次矩阵;
S1124:利用如下公式(3)计算该第一齐次矩阵:
wA cwA 0 0A c      (3)
其中, wA c是第一齐次矩阵, wA 0是第四齐次矩阵, 0A c是第三齐次矩阵。
具体地,结合图4所示,坐标系1表示初始时刻的传送带基础坐标系,对传送带基础坐标系进行标定时,第一位置点包括坐标系1的原点O 1、x 1轴正方向上的一点B以及x 1Oy 1平面上y 1>0一侧的一点C,TCP点触碰坐标系1上的点O 1、点B和点C时,机器人可以分别获得点O 1、点B和点C在机器人基础坐标系的位置坐标 0p 10p 20p 3,然后利用上述公式(2)即可以计算出传送带基础坐标系x、y和z轴在初始时刻时相对于机器人基础坐标系的单位向量
Figure PCTCN2018095678-appb-000007
Figure PCTCN2018095678-appb-000008
则可以构成如下所示的第三齐次矩阵:
Figure PCTCN2018095678-appb-000009
当机器人以世界坐标系作为基础坐标系时,该第四齐次矩阵 wA 0是单位矩阵I,则该第三齐次矩阵即是该第一齐次矩阵。当机器人的基础坐标系不是世界坐标系时,机器人获取机器人基础坐标系相对于世界坐标系的第四齐次矩阵 wA 0,上述公式(3)即可以计算得到该第一齐次矩阵 wA c。其中,机器人自身可以保存有该第四齐次矩阵,或者可以通过控制中心获取该第四齐次矩阵,此处不做具体限定。
机器人在获取该点O 1、点B和点C在机器人基础坐标系的位置坐标 0p 10p 20p 3时,可以利用工具中心点在机器人法兰坐标系下的坐标,以及法兰坐标系相对于机器人基础坐标系的齐次矩阵,计算该位置坐标 0p 10p 20p 3
具体如图5所示,本申请工件跟踪方法第三实施例是在本申请工件坐标系第二实施例的基础上,步骤S111包括:
S1111:获取工具中心点在机器人法兰坐标系下的位置坐标;
S1112:以机器人的工具中心点分别触碰传送带基础坐标系原点、传送带基础坐标系x轴正方向上的一点以及传送带基础坐标系xOy平面上y>0一侧的一点,以获取法兰坐标系相对于机器人基础坐标系的第五齐次矩阵;
S1113:利用如下公式(4)计算该传送带基础坐标系原点、传送带基础坐标系x轴正方向上的一点以及传送带基础坐标系xOy平面上y>0一侧的一点在机器人基础坐标系下的位置坐标:
0p 10A f1 fp t
0p 20A f2 fp t       (4)
0p 30A f3 fp t
其中, 0p 10p 20p 3分别是传送带基础坐标系原点、传送带基础坐标系x轴正方向上的一点以及传送带基础坐标系xOy平面上y>0一侧的一点在机器人基础坐标系下的位置坐标, 0A f10A f20A f3分别是机器人触碰传送带基础坐标系原点、传送带基础坐标系x轴正方向上的一点以及所述传送带基础坐标系xOy平面上y>0一侧的一点的位姿下,法兰坐标系相对于机器人基础坐标系的第五齐次矩阵, fp t是工具中心点在机器人法兰坐标系下的位置坐标。
具体地,结合图4所示,在一个应用例中,机器人从控制中心获取或者事先保存有机器人末端工具坐标系的原点TCP点在法兰坐标系下的坐标 fp t,不改变该TCP点的姿态,以该TCP点分别触碰该坐标系1的原点O 1、x 1轴正方向上的一点B以及x 1Oy 1平面上y 1>0一侧的一点C时,分别获取该TCP点触碰点O 1、点B和点C的位姿下,法兰坐标系相对于机器人基础坐标系的第五齐次矩阵 0A f10A f20A f3,然后利用上述公式(4)可以计算得到点O 1、点B和点C在机器人基础坐标系下的位置坐标 0p 10p 20p 3
在其他实施例中,由于机器人获取位置坐标时存在误差,机器人可以用TCP点多次触碰同一个位置点,然后以多次位置坐标的平均值作为最终的位置坐标。此外,机器人还可以获取四个或者更多个位置点的位置坐标,以计算该传送带基础坐标系相对于机器人基础坐标系的单位向量和原点坐标。
机器人在对工件坐标系进行标定的过程也可以采用与上述传送带基础坐标系类似的过程。
具体如图6所示,本申请工件跟踪方法第四实施例是在本申请工件坐标系第一实施例的基础上,进一步限定该第二位置点包括工件坐标系原点、工件坐标系x轴正方向上的一点以及工件坐标系xOy平面上y>0一侧的一点,步骤S122包括:
S1221:利用如下公式(5)计算工件坐标系在初始时刻时相对于机器人基础坐标系的单位向量:
Figure PCTCN2018095678-appb-000010
Figure PCTCN2018095678-appb-000011
Figure PCTCN2018095678-appb-000012
其中,
Figure PCTCN2018095678-appb-000013
Figure PCTCN2018095678-appb-000014
分别是工件坐标系x、y和z轴在初始时刻时相对于机 器人基础坐标系的单位向量, 0p′ 10p' 20p' 3分别是初始时刻工件坐标系原点、工件坐标系x轴正方向上的一点以及工件坐标系xOy平面上y>0一侧的一点在机器人基础坐标系下的位置坐标;
S1222:以该工件坐标系在初始时刻时相对于机器人基础坐标系的单位向量和原点坐标为元素,构成该工件坐标系在初始时刻时相对于机器人基础坐标系的第六齐次矩阵。
具体地,结合图4所示,坐标系3表示初始时刻的工件坐标系,坐标系4表示t时刻的工件坐标系,对工件坐标系进行标定时,第二位置点包括坐标系3的原点O 3、x 3轴正方向上的一点D以及x 3Oy 3平面上y 3>0一侧的一点E,TCP点触碰坐标系3上的点O 3、点D和点E时,机器人可以分别获得点O 3、点D和点E在机器人基础坐标系的位置坐标 0p′ 10p' 20p' 3,然后利用上述公式(5)即可以计算出工件坐标系x、y和z轴在初始时刻时相对于机器人基础坐标系的单位向量
Figure PCTCN2018095678-appb-000015
Figure PCTCN2018095678-appb-000016
则可以构成如下所示的第六齐次矩阵:
Figure PCTCN2018095678-appb-000017
当机器人以世界坐标系作为基础坐标系时,该第六齐次矩阵即是该工件坐标系在初始时刻时相对于世界坐标系的齐次矩阵。
可选地,当机器人的基础坐标系不是世界坐标系时,步骤S1222之后,还包括:
S1223:获取机器人基础坐标系相对于世界坐标系的第四齐次矩阵;
S1224:利用如下公式(6)计算该工件坐标系在初始时刻时相对于世界坐标系的齐次矩阵:
wA objwA 0 0A obj      (6)
其中, wA obj是该工件坐标系在初始时刻时相对于世界坐标系的齐次矩阵, wA 0是该第四齐次矩阵, 0A obj是该第六齐次矩阵。其中,机器人自身可以保存有该第四齐次矩阵,或者可以通过控制中心获取该第四齐次矩阵,此处不做具体限定。
机器人在获取该点O 3、点D和点E在机器人基础坐标系的位置坐标 0p′ 10p' 20p' 3时,可以利用工具中心点在机器人法兰坐标系下的坐标,以及法兰坐标系相对于机器人基础坐标系的齐次矩阵,计算该位置坐标 0p′ 10p' 20p' 3,具体计算过程与本申请工件跟踪方法第三实施例类似,此处不再重复。
本实施例还可以与本申请第二或第三实施例或其组合相结合。
机器人在获取传送带的行进速度时,可以采用TCP点在不同时刻触碰传送带基础坐标系上的同一个位置点,以根据不同时刻该位置点在机器人基础坐标系下的位置坐标,计算该传送带的行进速度。
具体如图7所示,本申请工件跟踪方法第五实施例是在本申请工件坐标系第一实施例的基础上,采用数字编码器控制该传送带的运动,步骤S13包括:
S131:以机器人的工具中心点触碰传送带上的预设点,获取该预设点在机器人基础坐标系下的第一位置坐标;
其中,该预设点可以是该传送带基础坐标系xOy平面上的任一点,例如原点。
S132:控制传送带行进一段距离/时间后,以工具中心点触碰该预设点,获取该预设点在机器人基础坐标系下的第二位置坐标;
其中,该传送带行进的距离/时间可以随机设置,也可以预先设定某个时间,此处不做具体限定。
S133:获取传送带行进前后编码器的脉冲数;
S134:利用如下公式(7)计算传送带的编码器的单位脉冲所对应的传送带的行进距离:
Figure PCTCN2018095678-appb-000018
其中,d是传送带的编码器的单位脉冲所对应的传送带的行进距离, 0p 4是该第一位置坐标, 0p 5是该第二位置坐标,f 4和f 5分别是传送带行进前和行进后编码器的脉冲数。
具体地,在一个应用例中,结合图4所示,坐标系1表示初始时刻的传送带基础坐标系,坐标系2表示t时刻的传送带基础坐标系,该预设点可以是该传送带基础坐标系的原点,此处可以在初始时刻采用机器人的TCP点触碰该传送带基础坐标系的原点O 1,可以获取该点O 1在机器人基础坐标系下的第一位置坐标 0p 4,同时获取该初始时刻传送带的编码器的脉冲数f 4,此时该第一位置坐标 0p 4与对传送带基础坐标系进行标定时,该初始时刻的传送带基础坐标系原点相对于机器人基础坐标系的坐标相同。然后控制传送带行进t时间,则进行后传送带基础坐标系是坐标系2,在该t时刻采用机器人的TCP点触碰该传送带基础坐标系的原点O 2,可以获取该点O 2在机器人基础坐标系下的第二位置坐标 0p 5,同时获取该t时刻传送带的编码器的脉冲数f 5。最后,利用上述公式(7)则可以计算出传送带的编码器的单位脉冲所对应的传送带的行进距离d。
本实施例还可以与本申请第二至第四任一实施例或其不冲突的组合相结合。
机器人在获取该第一位置坐标和/或第二位置坐标时,可以利用工具中心点在机器人法兰坐标系下的坐标,以及法兰坐标系相对于机器人基础坐标系的齐次矩阵,计算该第一位置坐标和/或第二位置坐标。
具体如图8所示,本申请工件跟踪方法第六实施例是在本申请工件坐标系第五实施例的基础上,步骤S131包括:
S1311:获取工具中心点在机器人法兰坐标系下的位置坐标;
S1312:以工具中心点触碰传送带上的预设点,获得机器人法兰坐标系相对于机器人基础坐标系的第七齐次矩阵;
S1313:利用如下公式(8)计算该第一位置坐标:
0p 40A f4 fp t     (8)
其中, 0p 4是该第一位置坐标, 0A f4是该第七齐次矩阵, fp t是工具中心点在机器人法兰坐标系下的位置坐标。
可选地,同样可以采用上述方式计算该第二位置坐标,步骤S132包括:
S1321:控制传送带行进一段距离/时间后,以工具中心点触碰该预设点,获得机器人法兰坐标系相对于机器人基础坐标系的第八齐次矩阵;
S1322:利用如下公式(9)计算该第二位置坐标:
0p 50A f5 fp t     (9)
其中, 0p 5是该第二位置坐标, 0A f5是该第八齐次矩阵, fp t是工具中心点在机器人法兰坐标系下的位置坐标。
具体地,在一个应用例中,结合图4所示,机器人从控制中心获取或者事先保存有机器人末端工具坐标系的原点TCP点在法兰坐标系下的坐标 fp t,以该TCP点触碰该传送带基础坐标系原点,如坐标系1的原点O 1,获取该TCP点触碰点O 1的位姿下,法兰坐标系相对于机器人基础坐标系的第七齐次矩阵 0A f4,利用上述公式(8)可以计算得到点O 1在机器人基础坐标系下的位置坐标 0p 4。控制传送带行进t时间后,不改变该TCP点的姿态,以该TCP点再次触碰该传送带基础坐标系原点,此时该传送带基础坐标系原点是坐标系2的原点O 2,获取该TCP点触碰点O 2的位姿下,法兰坐标系相对于机器人基础坐标系的第八齐次矩阵 0A f5,然后利用上述公式(9)可以计算得到点O 2在机器人基础坐标系下的位置坐标 0p 5
本实施例还可以与本申请第一至第四任一实施例或其不冲突的组合相结合。
机器人获取传送带的行进速度后,当传送带上的工件沿所述传送带基础坐标系的x轴正方向做直线运动时,工件坐标系相对于世界坐标系的旋转矩阵是不变的,而该工件坐标系相对于传送带基础坐标系是静止的,由此该工件坐标系相对于世界坐标系只做平移运动,可以利用该传送带的行进速度,获取该工件坐标系原点在世界坐标系下的实时坐标,最终得到工件坐标系相对于世界坐标系的实时齐次矩阵。
具体如图9所示,本申请工件跟踪方法第七实施例是在本申请工件坐标系第一实施例的基础上,步骤S14包括:
S141:以第一齐次矩阵和第二齐次矩阵为初始时刻的参数,利用如下公式(10)计算初始时刻工件坐标系相对于世界坐标系的齐次矩阵:
wA obj(0)= wA c cA obj     (10)
其中, wA obj(0)是初始时刻工件坐标系相对于世界坐标系的齐次矩阵, wA c是该第一齐次矩阵, cA obj是该第二齐次矩阵。
S142:根据该行进速度计算工件坐标系的原点在世界坐标系下的实时坐标;
可选地,采用数字编码器控制该传送带的运动时,传送带的行进速度由传 送带的编码器的单位脉冲所对应的传送带的行进距离表示,如图10所示,步骤S142进一步包括:
S1421:利用如下公式(11)计算传送带基础坐标系的原点在世界坐标系下的实时坐标:
wp c(t)=(f(t)-f(0))·d wx c     (11)
其中, wp c(t)是t时刻传送带基础坐标系的原点在世界坐标系下的坐标,f(t)是t时刻传送带编码器的脉冲数,f(0)是初始时刻传送带编码器的脉冲数,d是传送带的编码器的单位脉冲所对应的传送带的行进距离, wx c是传送带基础坐标系的x轴单位向量在世界坐标系下的坐标表示。
S1422:利用如下公式(12)计算工件坐标系的原点在世界坐标系下的实时坐标:
wp obj(t)= wp obj(0)+ wp c(t)    (12)
其中, wp obj(t)是t时刻工件坐标系的原点在世界坐标系下的坐标, wp obj(0)是初始时刻工件坐标系的原点在世界坐标系下的坐标, wp c(t)是t时刻传送带基础坐标系的原点在世界坐标系下的坐标。
具体地,由于该工件坐标系相对于传送带基础坐标系是静止的,传送带上的工件沿所述传送带基础坐标系的x轴正方向做直线运动,因此工件坐标系相对于世界坐标系做平移运动,利用公式(11)计算得到该传送带基础坐标系的原点在世界坐标系下的实时坐标 wp c(t)后,初始时刻工件坐标系的原点在世界坐标系下的坐标叠加上该实时坐标 wp c(t),则可以得到该工件坐标系的原点在世界坐标系下的实时坐标 wp obj(t)。
可选地,步骤S1421之前,还包括:
S1420:在初始时刻触发同步开关,开始记录传送带编码器的实时脉冲数。
其中,该同步开关设置于传送带上,工件经过该同步开关所处的位置时,该同步开关被触发,机器人可以开始记录传送带编码器的实时脉冲数。
当然,在其他实施例中,该同步开关也可以不是在初始时刻触发,可以提前触发,以给机器人一定准备时间。
S143:以初始时刻工件坐标系相对于世界坐标系的旋转矩阵和工件坐标系的原点在世界坐标系下的实时坐标为元素,构成工件坐标系相对于世界坐标系的实时齐次矩阵。
具体地,由于传送带沿传送带基础坐标系的x轴方向作直线运动,则随该传送带运动的工件坐标系的旋转矩阵不变,而由该初始时刻工件坐标系相对于世界坐标系的齐次矩阵 wA obj可以得到该工件坐标系相对于世界坐标系的旋转矩阵 wR obj(t)= wR obj(0),然后以旋转矩阵 wR obj(t)和实时坐标 wp obj(t)构成如下所示的该工件坐标系相对于世界坐标系的实时齐次矩阵:
Figure PCTCN2018095678-appb-000019
本实施例还可以与本申请第二至第六任一实施例或其不冲突的组合相结合。
在其他实施例中,该传送带上可以传输至少两个工件,每个工件的工件坐标系姿态相同,但原点所处位置不同,可以利用同步开关记录的脉冲数和单位脉冲对应的传送带的行进距离,做简单的坐标变换,即可以得到每个工件对应的工件坐标系相对于世界坐标系的齐次矩阵。
具体如图11所示,本申请工件跟踪方法第八实施例是在本申请工件坐标系第七实施例的基础上,传送带上传输至少第一工件和第二工件,工件坐标系至少包括第一工件对应的第一工件坐标系和第二工件对应的第二工件坐标系。本实施例的工件跟踪方法进一步包括:
S20:记录第一工件触发同步开关的第一初始时刻传送带编码器的第一脉冲数;
S21:记录第二工件触发同步开关的第二初始时刻传送带编码器的第二脉冲数;
S22:计算第二脉冲数和第一脉冲数的差值;
S23:将该差值与传送带的编码器的单位脉冲所对应的所述传送带的行进距离相乘,得到第一工件坐标系和第二工件坐标系的原点坐标之间的距离;
S24:基于第一工件坐标系和第二工件坐标系的原点坐标之间的距离,将第一工件坐标系相对于世界坐标系的第一实时齐次矩阵做平移变换,得到第二工件坐标系相对于世界坐标系的第二实时齐次矩阵。
具体地,结合图12所示,在一个应用例中,传送带40上传输第一工件501和第二工件501,该第一工件501上附着有第一工件坐标系,该第二工件502上附着有第二工件坐标系,该传送带40上设置有同步开关401,每个工件经过该同步开关所在位置(如图12中的线条AA’或以该线条AA’为中心的一个区域内)时,该同步开关401被触发,机器人可以获取触发时刻该传送带编码器的脉冲数。第一工件501和第二工件502在传送带40上放置的姿态相同,但位置不同,因此第一工件坐标系和第二工件坐标系的姿态相同,但原点所处位置不同,当第一工件501和第二工件502先后经过该同步开关401时,机器人可以分别获得该第一工件501触发同步开关401的第一初始时刻传送带编码器的第一脉冲数,第二工件502触发同步开关402的第二初始时刻传送带编码器的第二脉冲数,然后可以计算第二脉冲数和第一脉冲数的差值,将该差值与传送带的编码器的单位脉冲所对应的传送带的行进距离相乘,就可以得到第一工件坐标系和第二工件坐标系的原点坐标之间的距离,最后将该第一工件坐标系相对于世界坐标系的第一实时齐次矩阵进行平移变换,则可以得到如下所示的第二实时齐次矩阵:
Figure PCTCN2018095678-appb-000020
其中, wA obj2(t)是该第二实时齐次矩阵, wR obj(t)是该第一实时齐次矩阵中的旋转矩阵, wp obj(t)是该第一实时齐次矩阵中该第一工件坐标系的实时坐标, wp 12是该第一工件坐标系和第二工件坐标系的原点坐标之间的距离。
由此,本实施例中,机器人可以只标定传送带上传输的第一个工件的工件坐标系,然后利用上述方法进行简单的平移变换,则可以得到后续工件的工件坐标系相对于世界坐标系的实时齐次矩阵。
本实施例还可以与本申请第一至第六任一实施例或其不冲突的组合相结合。
机器人可以根据工件坐标系相对于世界坐标系的实时齐次矩阵齐次矩阵对规划工件的加工轨迹,以对工件进行实时加工。
具体如图13所示,本申请工件跟踪方法第九实施例是在本申请工件坐标系第一实施例的基础上,步骤S14之后,进一步包括:
S15:获取机器人工具加工传送带上工件时工具坐标系相对于工件坐标系的实时齐次矩阵;
S16:利用如下公式(13)计算工具坐标系相对于世界坐标系的实时齐次矩阵:
wA t(t)= wA obj(t) objA t(t)      (13)
其中, wA t(t)是t时刻工具坐标系相对于世界坐标系的齐次矩阵, wA obj(t)是t时刻工件坐标系相对于世界坐标系的齐次矩阵, objA t(t)是t时刻工具坐标系相对于工件坐标系的齐次矩阵;
S17:利用运动学逆解将工具坐标系相对于世界坐标系的实时齐次矩阵转换为机器人关节的实时运动轨迹,以对工件进行跟踪加工。
具体地,在一个应用例中,机器人可以根据对工件的加工需求,预先规划对工件的加工轨迹,该加工轨迹即是机器人的工具坐标系相对于工件坐标系的实时齐次矩阵,然后利用上述公式(13)则可以得到工具坐标系相对于世界坐标系的实时齐次矩阵,也就是工具坐标系在世界坐标系下的运动轨迹,由此,机器人可以利用运动学逆解将工具坐标系相对于世界坐标系的实时齐次矩阵转换为机器人关节的实时运动轨迹,以对工件进行跟踪加工。本实施例中,每个工件的加工轨迹可以相同,也可以不同,具体可以根据实际需求而定,此处不做具体限定。
本实施例还可以与本申请第二至第八任一实施例或其不冲突的组合相结合。
如图14所示,本申请机器人80一实施例包括:相互连接的通信电路801和处理器802。其中,该通信电路801用于与外部设备进行通信,例如与传送带通信以获取传送带行进速度等,处理器802用于执行指令以实现如本申请工件跟踪方法第一至第九任一实施例或其不冲突的组合所提供的方法。
在其他实施例中,该机器人还可以视实际需求包括存储器、显示器等其他部件,此处不做具体限定。
本实施例中,机器人利用传送带基础坐标系、工件坐标系和世界坐标系之间的简单坐标变换,就可以得到工件坐标系相对于世界坐标系的实时齐次矩阵,进而控制工具的运动轨迹即可以实现对工件的实时跟踪,而不需要采用视觉检测系统进行复杂的视觉标定,也不需要进行图像平面与机器人基础坐标系的复杂变换,从而可以降低工件跟踪方法的复杂度和成本。
如图15所示,本申请工件跟踪系统90一实施例包括:相互连接的机器人 901和传送带902。其中,传送带902用于传送工件,机器人901用于对工件进行跟踪,该机器人901可以采用本申请机器人一实施例所提供的机器人,此处不再重复。
可选地,传送带902进一步包括:控制器9021,用于控制传送带902行进/停止。
其中,该控制器9021可以是编码器,用于产生脉冲以控制传送带902行进/停止。当然,在其他实施例中,该传送带902也可以采用其他类型的设备控制传送带902行进/停止。
可选地,本实施例的工件跟踪系统90进一步包括:同步开关903,设置于传送带上,连接于编码器9021和机器人901之间,用于在工件经过同步开关903所在位置时触发该同步开关903,以使得机器人901获取该编码器9021的脉冲数。
其中,该同步开关903可以设置于初始时刻传送带基础坐标系的位置,也可以根据实际需求设置于其他位置,此处不做具体限定。
当然,在其他实施例中,该工件跟踪系统还可以包括控制中心等其他设备,此处不做具体限定。
本实施例中,机器人利用传送带基础坐标系、工件坐标系和世界坐标系之间的简单坐标变换,就可以得到工件坐标系相对于世界坐标系的实时齐次矩阵,进而控制工具的运动轨迹即可以实现对传送带上传输的工件的实时跟踪,而不需要采用视觉检测系统进行复杂的视觉标定,也不需要进行图像平面与机器人基础坐标系的复杂变换,从而可以降低工件跟踪方法的复杂度和成本。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种工件跟踪方法,其特征在于,包括:
    对传送带基础坐标系进行标定,获得所述传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵;
    对工件坐标系进行标定,获得所述工件坐标系在初始时刻时相对于所述传送带基础坐标系的第二齐次矩阵;
    获取传送带的行进速度;
    以所述第一齐次矩阵、所述第二齐次矩阵和所述行进速度为初始时刻的参数,计算所述工件坐标系相对于所述世界坐标系的实时齐次矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述行进速度由所述传送带的编码器的单位脉冲所对应的所述传送带的行进距离表示。
  3. 根据权利要求1所述的方法,其特征在于,所述对传送带基础坐标系进行标定,获得所述传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵包括:
    以机器人的工具中心点触碰传送带基础坐标系上至少三个第一位置点,获取所述至少三个第一位置点在机器人基础坐标系下的位置坐标;
    利用所述至少三个第一位置点的位置坐标计算所述传送带基础坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量和原点坐标,以获得所述传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵。
  4. 根据权利要求3所述的方法,其特征在于,所述传送带上至少三个第一位置点包括所述传送带基础坐标系原点、所述传送带基础坐标系x轴正方向上的一点以及所述传送带基础坐标系xOy平面上y>0一侧的一点;
    所述利用所述至少三个第一位置点的位置坐标计算所述传送带基础坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量和原点坐标,以获得所述传送带基础坐标系在初始时刻时相对于世界坐标系的第一齐次矩阵包括:
    利用如下公式计算所述传送带基础坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量:
    Figure PCTCN2018095678-appb-100001
    Figure PCTCN2018095678-appb-100002
    Figure PCTCN2018095678-appb-100003
    其中,
    Figure PCTCN2018095678-appb-100004
    Figure PCTCN2018095678-appb-100005
    分别是所述传送带基础坐标系x、y和z轴在初始时刻时相对于所述机器人基础坐标系的单位向量, 0p 10p 20p 3分别是初始时刻所述传送带基础坐标系原点、所述传送带基础坐标系x轴正方向上的一点以及所述传送带基础坐标系xOy平面上y>0一侧的一点在所述机器人基础坐标系下的位置坐标;
    以所述传送带基础坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量和原点坐标为元素构成所述传送带基础坐标系在初始时刻时相对于机器人基础坐标系的第三齐次矩阵;
    获取所述机器人基础坐标系相对于所述世界坐标系的第四齐次矩阵;
    利用如下公式计算所述第一齐次矩阵:
    wA cwA 0  0A c
    其中, wA c是所述第一齐次矩阵, wA 0是所述第四齐次矩阵, 0A c是所述第三齐次矩阵。
  5. 根据权利要求4所述的方法,其特征在于,所述以机器人的工具中心点触碰传送带上至少三个第一位置点,获取所述至少三个第一位置点在机器人基础坐标系下的位置坐标包括:
    获取所述工具中心点在机器人法兰坐标系下的位置坐标;
    以机器人的工具中心点分别触碰所述传送带基础坐标系原点、所述传送带基础坐标系x轴正方向上的一点以及所述传送带基础坐标系xOy平面上y>0一侧的一点,以获取所述法兰坐标系相对于机器人基础坐标系的第五齐次矩阵;
    利用如下公式计算所述传送带基础坐标系原点、所述传送带基础坐标系x轴正方向上的一点以及所述传送带基础坐标系xOy平面上y>0一侧的一点在机器人基础坐标系下的位置坐标:
    0p 10A f1  fp t
    0p 20A f2  fp t
    0p 30A f3  fp t
    其中, 0p 10p 20p 3分别是所述传送带基础坐标系原点、所述传送带基础坐标系x轴正方向上的一点以及所述传送带基础坐标系xOy平面上y>0一侧的一点在所述机器人基础坐标系下的位置坐标, 0A f10A f20A f3分别是机器人触碰所述传送带基础坐标系原点、所述传送带基础坐标系x轴正方向上的一点以及所述传送带基础坐标系xOy平面上y>0一侧的一点时,所述法兰坐标系相对于机器人基础坐标系的第五齐次矩阵, fp t是所述工具中心点在机器人法兰坐标 系下的位置坐标。
  6. 根据权利要求1所述的方法,其特征在于,所述对工件坐标系进行标定,获得所述工件坐标系在初始时刻时相对于所述传送带基础坐标系的第二齐次矩阵包括:
    以机器人的工具中心点触碰工件坐标系上至少三个第二位置点,获取所述至少三个第二位置点在机器人基础坐标系下的位置坐标;
    利用所述至少三个第二位置点的位置坐标计算所述工件坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量和原点坐标,以获得所述工件坐标系在初始时刻时相对于所述机器人基础坐标系的第六齐次矩阵;
    获取所述机器人基础坐标系相对于世界坐标系的第四齐次矩阵;
    利用如下公式计算所述第二齐次矩阵:
    cA obj=( wA c) -1  wA 0  0A obj
    其中, cA obj是所述第二齐次矩阵,( wA c) -1是所述第一齐次矩阵的逆矩阵, wA 0是所述第四齐次矩阵, 0A obj是所述第六齐次矩阵。
  7. 根据权利要求6所述的方法,其特征在于,所述工件坐标系上至少三个第二位置点包括所述工件坐标系原点、所述工件坐标系x轴正方向上的一点以及所述工件坐标系xOy平面上y>0一侧的一点;
    所述利用所述至少三个第二位置点的位置坐标计算所述工件坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量和原点坐标,以获得所述工件坐标系在初始时刻时相对于所述机器人基础坐标系的第六齐次矩阵包括:
    利用如下公式计算所述工件坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量:
    Figure PCTCN2018095678-appb-100006
    Figure PCTCN2018095678-appb-100007
    Figure PCTCN2018095678-appb-100008
    其中,
    Figure PCTCN2018095678-appb-100009
    Figure PCTCN2018095678-appb-100010
    分别是所述工件坐标系x、y和z轴在初始时刻时相对于所述机器人基础坐标系的单位向量, 0p′ 10p' 20p' 3分别是初始时刻所述工件坐标系原点、所述工件坐标系x轴正方向上的一点以及所述工件坐标系xOy 平面上y>0一侧的一点在所述机器人基础坐标系下的位置坐标;
    以所述工件坐标系在初始时刻时相对于所述机器人基础坐标系的单位向量和原点坐标为元素构成所述工件坐标系在初始时刻时相对于机器人基础坐标系的第六齐次矩阵。
  8. 根据权利要求2所述的方法,其特征在于,所述获取传送带的行进速度包括:
    以机器人的工具中心点触碰传送带上的预设点,获取所述预设点在机器人基础坐标系下的第一位置坐标;
    控制传送带行进一段距离/时间后,以所述工具中心点触碰所述预设点,获取所述预设点在机器人基础坐标系下的第二位置坐标;
    获取所述传送带行进前后编码器的脉冲数;
    利用如下公式计算所述传送带的编码器的单位脉冲所对应的所述传送带的行进距离:
    Figure PCTCN2018095678-appb-100011
    其中,d是所述传送带的编码器的单位脉冲所对应的所述传送带的行进距离, 0p 4是所述第一位置坐标, 0p 5是所述第二位置坐标,f 4和f 5分别是所述传送带行进前和行进后编码器的脉冲数。
  9. 根据权利要求8所述的方法,其特征在于,所述以机器人的工具中心点触碰传送带上的预设点,获取所述预设点在机器人基础坐标系下的第一位置坐标包括:
    获取所述工具中心点在机器人法兰坐标系下的位置坐标;
    以所述工具中心点触碰传送带上的预设点,获得机器人法兰坐标系相对于所述机器人基础坐标系的第七齐次矩阵;
    利用如下公式计算所述第一位置坐标:
    0p 40A f4  fp t
    其中, 0p 4是所述第一位置坐标, 0A f4是所述第七齐次矩阵, fp t是所述工具中心点在机器人法兰坐标系下的位置坐标。
  10. 根据权利要求8所述的方法,其特征在于,所述控制传送带行进一段距离/时间后,以所述工具中心点触碰所述预设点,获取所述预设点在机器人基础坐标系下的第二位置坐标包括:
    获取所述工具中心点在机器人法兰坐标系下的位置坐标;
    控制传送带行进一段距离/时间后,以所述工具中心点触碰所述预设点,获得机器人法兰坐标系相对于所述机器人基础坐标系的第八齐次矩阵;
    利用如下公式计算所述第二位置坐标:
    0p 50A f5  fp t
    其中, 0p 5是所述第二位置坐标, 0A f5是所述第八齐次矩阵, fp t是所述工具中心点在机器人法兰坐标系下的位置坐标。
  11. 根据权利要求1所述的方法,其特征在于,所述传送带上的工件沿所述传送带基础坐标系的x轴正方向做直线运动;
    所述以所述第一齐次矩阵、所述第二齐次矩阵和所述行进速度为初始时刻的参数,计算工件坐标系相对于所述世界坐标系的实时齐次矩阵包括:
    以所述第一齐次矩阵和所述第二齐次矩阵为初始时刻的参数,利用如下公式计算初始时刻所述工件坐标系相对于所述世界坐标系的齐次矩阵:
    wA obj(0)= wA c  cA obj
    其中, wA obj(0)是初始时刻所述工件坐标系相对于所述世界坐标系的齐次矩阵, wA c是所述第一齐次矩阵, cA obj是所述第二齐次矩阵;
    根据所述行进速度计算所述工件坐标系的原点在世界坐标系下的实时坐标;
    以初始时刻所述工件坐标系相对于所述世界坐标系的旋转矩阵和所述工件坐标系的原点在世界坐标系下的实时坐标为元素,构成所述工件坐标系相对于所述世界坐标系的实时齐次矩阵。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述行进速度计算所述工件坐标系的原点在世界坐标系下的实时坐标包括:
    利用如下公式计算所述传送带基础坐标系的原点在世界坐标系下的实时坐标:
    wp c(t)=(f(t)-f(0))·d wx c
    其中, wp c(t)是t时刻所述传送带基础坐标系的原点在世界坐标系下的坐标,f(t)是t时刻所述传送带编码器的脉冲数,f(0)是初始时刻所述传送带编码器的脉冲数,d是所述传送带的编码器的单位脉冲所对应的所述传送带的行进距离, wx c是传送带基础坐标系的x轴单位向量在所述世界坐标系下的坐标表示;
    利用如下公式计算所述工件坐标系的原点在世界坐标系下的实时坐标:
    wp obj(t)= wp obj(0)+ wp c(t);
    其中, wp obj(t)是t时刻所述工件坐标系的原点在世界坐标系下的坐标, wp obj(0)是初始时刻所述工件坐标系的原点在世界坐标系下的坐标, wp c(t)是t时刻所述传送带基础坐标系的原点在世界坐标系下的坐标。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述行进速度计 算所述工件坐标系的原点在世界坐标系下的实时坐标还包括:
    在所述初始时刻触发同步开关,开始记录所述传送带编码器的实时脉冲数。
  14. 根据权利要求13所述的方法,其特征在于,所述传送带上传输至少第一工件和第二工件,所述工件坐标系至少包括所述第一工件对应的第一工件坐标系和所述第二工件对应的第二工件坐标系;所述工件跟踪方法进一步包括:
    记录所述第一工件触发所述同步开关的第一初始时刻所述传送带编码器的第一脉冲数;
    记录所述第二工件触发所述同步开关的第二初始时刻所述传送带编码器的第二脉冲数;
    计算所述第二脉冲数和所述第一脉冲数的差值;
    将所述差值与所述传送带的编码器的单位脉冲所对应的所述传送带的行进距离相乘,得到所述第一工件坐标系和所述第二工件坐标系的原点坐标之间的距离;
    基于所述第一工件坐标系和所述第二工件坐标系的原点坐标之间的距离,将所述第一工件坐标系相对于所述世界坐标系的第一实时齐次矩阵做平移变换,得到所述第二工件坐标系相对于所述世界坐标系的第二实时齐次矩阵。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,进一步包括:
    获取机器人工具加工传送带上工件时工具坐标系相对于工件坐标系的实时齐次矩阵;
    利用如下公式计算所述工具坐标系相对于世界坐标系的实时齐次矩阵:
    wA t(t)= wA obj(t) objA t(t);
    其中, wA t(t)是t时刻所述工具坐标系相对于世界坐标系的齐次矩阵, wA obj(t)是t时刻所述工件坐标系相对于世界坐标系的齐次矩阵, objA t(t)是t时刻所述工具坐标系相对于所述工件坐标系的齐次矩阵;
    利用运动学逆解将所述工具坐标系相对于世界坐标系的实时齐次矩阵转换为机器人关节的实时运动轨迹,以对工件进行跟踪加工。
  16. 一种机器人,其特征在于,所述机器人至少包括:相互连接的通信电路和处理器;
    所述通信电路用于与外部设备进行通信,以获取所述传送带的行进速度;
    所述处理器用于执行指令以实现如权利要求1-15任一项所述的工件跟踪方法。
  17. 一种工件跟踪系统,其特征在于,包括:相互连接的机器人和传送带;
    所述传送带用于传送工件;
    所述机器人用于对所述工件进行跟踪;
    其中,所述机器人是如权利要求16所述的机器人。
  18. 根据权利要求17所述的系统,其特征在于,所述传送带进一步包括:控制器,用于控制所述传送带行进/停止。
  19. 根据权利要求18所述的系统,其特征在于,所述控制器是编码器,用于产生脉冲以控制所述传送带行进/停止。
  20. 根据权利要求19所述的系统,其特征在于,所述系统进一步包括:同步开关,设置于所述传送带上,连接所述编码器和所述机器人,用于在所述工件经过所述同步开关所在位置时触发所述同步开关,以使得所述机器人获取所述编码器的脉冲数。
PCT/CN2018/095678 2018-07-13 2018-07-13 一种工件跟踪方法、系统及机器人 WO2020010627A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/095678 WO2020010627A1 (zh) 2018-07-13 2018-07-13 一种工件跟踪方法、系统及机器人
CN201880087135.2A CN111989540B (zh) 2018-07-13 2018-07-13 一种工件跟踪方法、系统及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095678 WO2020010627A1 (zh) 2018-07-13 2018-07-13 一种工件跟踪方法、系统及机器人

Publications (1)

Publication Number Publication Date
WO2020010627A1 true WO2020010627A1 (zh) 2020-01-16

Family

ID=69142286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095678 WO2020010627A1 (zh) 2018-07-13 2018-07-13 一种工件跟踪方法、系统及机器人

Country Status (2)

Country Link
CN (1) CN111989540B (zh)
WO (1) WO2020010627A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113269085A (zh) * 2021-05-22 2021-08-17 深圳市华成工业控制股份有限公司 一种直线传送带跟踪控制方法、系统、装置及存储介质
US20220097234A1 (en) * 2020-09-29 2022-03-31 Delta Electronics, Inc. Calibration apparatus and calibration method for coordinate system of robotic arm

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101097131A (zh) * 2006-06-30 2008-01-02 廊坊智通机器人系统有限公司 一种工件坐标系统的标定方法
WO2009097687A1 (en) * 2008-02-05 2009-08-13 CENTRE DE RECHERCHE INDUSTRIELLE DU QUéBEC Method and apparatus for measuring size distribution of granular matter
CN104217441A (zh) * 2013-08-28 2014-12-17 北京嘉恒中自图像技术有限公司 一种基于机器视觉的机械臂定位抓取方法
CN104760812A (zh) * 2015-02-26 2015-07-08 三峡大学 基于单目视觉的传送带上产品实时定位系统和方法
CN107553475A (zh) * 2017-09-11 2018-01-09 重庆华数机器人有限公司 一种用于工件加工的工件坐标标定方法
CN107862716A (zh) * 2017-11-29 2018-03-30 合肥泰禾光电科技股份有限公司 机械臂定位方法及定位机械臂
CN108080289A (zh) * 2018-01-22 2018-05-29 广东省智能制造研究所 机器人分拣系统、机器人分拣控制方法及装置
CN108163525A (zh) * 2016-12-07 2018-06-15 广州映博智能科技有限公司 一种高效率锯条自动化抓取系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017128029A1 (zh) * 2016-01-26 2017-08-03 深圳配天智能技术研究院有限公司 一种机器人控制方法、控制设备及系统
CN105700530B (zh) * 2016-04-11 2018-04-03 南京埃斯顿自动化股份有限公司 一种机器人关节空间传送带跟随运动的轨迹规划方法
WO2018090323A1 (zh) * 2016-11-18 2018-05-24 深圳配天智能技术研究院有限公司 一种坐标系标定方法、系统及装置
CN108161931A (zh) * 2016-12-07 2018-06-15 广州映博智能科技有限公司 基于视觉的工件自动识别及智能抓取系统
CN107044837B (zh) * 2016-12-26 2019-12-03 天津京东深拓机器人科技有限公司 用于标定检测工具坐标系的方法、装置以及控制设备
CN108064197B (zh) * 2016-12-30 2021-04-06 深圳配天智能技术研究院有限公司 确定码垛点位置信息的方法、装置及机器人
CN107690377B (zh) * 2017-04-27 2021-07-09 深圳配天智能技术研究院有限公司 基于机器人系统的零件抓取方法及机器人系统、夹具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101097131A (zh) * 2006-06-30 2008-01-02 廊坊智通机器人系统有限公司 一种工件坐标系统的标定方法
WO2009097687A1 (en) * 2008-02-05 2009-08-13 CENTRE DE RECHERCHE INDUSTRIELLE DU QUéBEC Method and apparatus for measuring size distribution of granular matter
CN104217441A (zh) * 2013-08-28 2014-12-17 北京嘉恒中自图像技术有限公司 一种基于机器视觉的机械臂定位抓取方法
CN104760812A (zh) * 2015-02-26 2015-07-08 三峡大学 基于单目视觉的传送带上产品实时定位系统和方法
CN108163525A (zh) * 2016-12-07 2018-06-15 广州映博智能科技有限公司 一种高效率锯条自动化抓取系统
CN107553475A (zh) * 2017-09-11 2018-01-09 重庆华数机器人有限公司 一种用于工件加工的工件坐标标定方法
CN107862716A (zh) * 2017-11-29 2018-03-30 合肥泰禾光电科技股份有限公司 机械臂定位方法及定位机械臂
CN108080289A (zh) * 2018-01-22 2018-05-29 广东省智能制造研究所 机器人分拣系统、机器人分拣控制方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220097234A1 (en) * 2020-09-29 2022-03-31 Delta Electronics, Inc. Calibration apparatus and calibration method for coordinate system of robotic arm
US11951637B2 (en) * 2020-09-29 2024-04-09 Delta Electronics, Inc. Calibration apparatus and calibration method for coordinate system of robotic arm
CN113269085A (zh) * 2021-05-22 2021-08-17 深圳市华成工业控制股份有限公司 一种直线传送带跟踪控制方法、系统、装置及存储介质
CN113269085B (zh) * 2021-05-22 2023-05-30 深圳市华成工业控制股份有限公司 一种直线传送带跟踪控制方法、系统、装置及存储介质

Also Published As

Publication number Publication date
CN111989540B (zh) 2022-04-15
CN111989540A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
US11197730B2 (en) Manipulator system
CN107618030B (zh) 基于视觉的机器人动态跟踪抓取方法及系统
JP7027299B2 (ja) ビジョンベース操作システムのキャリブレーション及びオペレーション
CN109664317B (zh) 机器人的物体抓取系统及方法
WO2020010627A1 (zh) 一种工件跟踪方法、系统及机器人
CN104976950A (zh) 物件空间信息量测装置与方法及取像路径的计算方法
Wang 3D object pose estimation using stereo vision for object manipulation system
Wan et al. High-precision six-degree-of-freedom pose measurement and grasping system for large-size object based on binocular vision
US20220395981A1 (en) System and method for improving accuracy of 3d eye-to-hand coordination of a robotic system
Hvilshøj et al. Calibration techniques for industrial mobile manipulators: Theoretical configurations and best practices
Hu et al. A ball-throwing robot with visual feedback
Hesar et al. Ball tracking with a 2-DOF spherical parallel robot based on visual servoing controllers
JP2006224291A (ja) ロボットシステム
Han et al. Grasping control method of manipulator based on binocular vision combining target detection and trajectory planning
Navarro-Alarcon et al. A dynamic and uncalibrated method to visually servo-control elastic deformations by fully-constrained robotic grippers
Ranjan et al. Identification and control of NAO humanoid robot to grasp an object using monocular vision
Nakhaeinia et al. Adaptive robotic contour following from low accuracy RGB-D surface profiling and visual servoing
Cheng Robot manipulation of 3D cylindrical objects with a robot-mounted 2D vision camera
Beyhan et al. Real-time vision-based grasping randomly placed object by low-cost robotic arm using surf algorithm
CN112123329A (zh) 一种机器人3d视觉手眼标定方法
Zhang et al. Teaching-playback of robot manipulator based on human gesture recognition and motion tracking
Kojima et al. Human-robot interaction system for micromanipulation assistance
Wang et al. Vision based robotic grasping with a hybrid camera configuration
Qingda et al. Workpiece posture measurement and intelligent robot grasping based on monocular vision
Chang et al. Hand-eye coordination for robotic assembly tasks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925831

Country of ref document: EP

Kind code of ref document: A1