WO2020008978A1 - Reinforced pellicle film and method for manufacturing same - Google Patents

Reinforced pellicle film and method for manufacturing same Download PDF

Info

Publication number
WO2020008978A1
WO2020008978A1 PCT/JP2019/025424 JP2019025424W WO2020008978A1 WO 2020008978 A1 WO2020008978 A1 WO 2020008978A1 JP 2019025424 W JP2019025424 W JP 2019025424W WO 2020008978 A1 WO2020008978 A1 WO 2020008978A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating layer
support material
pellicle
carbon film
Prior art date
Application number
PCT/JP2019/025424
Other languages
French (fr)
Japanese (ja)
Inventor
雄樹 川島
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2020008978A1 publication Critical patent/WO2020008978A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Definitions

  • the present invention relates to a reinforced pellicle film and a method for producing the reinforced pellicle film.
  • a pellicle film is used as a dust-proof protective film to be attached to a photomask. It is useful as a member for preventing This pellicle film is required to have not only the transmittance of extreme ultraviolet light but also the diffusion and strength of heat derived from extreme ultraviolet light.
  • a pellicle film having improved film strength also referred to as a reinforced pellicle film
  • a composite film in which the pellicle film is supported by a mesh-like substrate made of silicon, metal, or the like, or a supporting material such as a metal wire is known.
  • Patent Document 1 Patent Document 2
  • the reinforced pellicle films of Patent Documents 1 and 2 are composed of a pellicle film 1b and a support material layer 4 having a plurality of openings formed on one surface of the pellicle film.
  • the membrane 1b and the support material layer 4 are joined with an adhesive.
  • the reinforced pellicle film Although a high film strength is required for the reinforced pellicle film, there is a trade-off between the film strength and the EUV transmittance, and there is a problem that the film strength is low even if the EUV transmittance is sufficient. Further, when bonding the pellicle film and the support material layer, there is also a problem that the adhesive volatilizes at a high temperature and outgas is generated. Furthermore, the heat resistance of the conventional support material layer is insufficient, and the width (line width) of the linear portion constituting the opening tends to be large in terms of maintaining strength, and the EUV transmittance is also low. affect. On the other hand, depending on the material of the support material layer, there is a concern that the material may be damaged due to a difference in coefficient of thermal expansion when heated by EUV irradiation.
  • an object of the present invention is to provide a reinforced pellicle film and a method for manufacturing the reinforced pellicle film, which suppress outgassing, have high heat resistance and durability, and have excellent EUV transmittance.
  • another object of the present invention is to provide a reinforced pellicle film that does not break or peel even when heated, and a method for manufacturing the pellicle film.
  • a reinforced pellicle membrane characterized in that: [2] The reinforced pellicle film according to [1], wherein the carbon film and the support material layer are a carbonaceous film or a graphite film. [3] The reinforced pellicle film according to [1] or [2], wherein the carbon film and the support material layer are integrally formed.
  • the second coating layer is made of aluminum.
  • ADVANTAGE OF THE INVENTION According to this invention, generation
  • FIG. 1 is a schematic flow chart showing an example of the method for producing a reinforced pellicle film of the present invention.
  • FIG. 2 is a diagram showing each parameter when calculating the aperture ratio of the support material layer in the reinforced pellicle film.
  • FIG. 3 is a perspective view showing an example of the reinforcing pellicle film of the present invention.
  • FIG. 4 is a perspective view showing another example of the reinforcing pellicle film of the present invention.
  • FIG. 5 is a perspective view showing another example of the reinforcing pellicle film of the present invention.
  • EUV Extreme UV
  • EUV Extreme Ultra Violet
  • EUV means light having a wavelength of 5 nm to 30 nm, preferably 5 nm to 13.5 nm.
  • the pellicle composite of the present invention is preferably used for the EUV lithography method.
  • the pellicle complex is used to protect a pattern surface of a photomask reflecting an exposure pattern, and includes a pellicle film and a frame portion (pellicle frame) provided on an outer edge of the pellicle film. Be composed.
  • the shape of the pellicle film is not particularly limited, and can be appropriately selected from a circle, an ellipse, a polygon, and the like.
  • the preferred shape of the pellicle film is a square such as a square or a rectangle. It is preferable to use a reinforced pellicle film described later as the pellicle film of the present invention.
  • the pellicle frame means a frame formed on the pellicle film, and is used to cover the photomask with the pellicle complex.
  • the pellicle frame may have a vent to keep the pressure inside the exposure apparatus and inside the pellicle complex constant.
  • the reinforcing pellicle film includes a pellicle film made of a carbon film (A) and a support material layer (B) having a plurality of openings formed on one or both sides of the pellicle film.
  • the support material layer (B) will be described later.
  • the carbon film (A) means a film substantially composed of carbon atoms, and is used as a constituent member of the pellicle film in the present invention.
  • the thickness of the carbon film is, for example, 1,000 nm or less, preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm, and particularly preferably 1 nm to 30 nm. In the present invention, the thickness of the carbon film is synonymous with the thickness of the reinforcing pellicle film and the pellicle film.
  • the area of the carbon film is, for example, 100 cm 2 or more, preferably 120 cm 2 or more, and more preferably 150 cm 2 or more and 3000 cm 2 or less.
  • the shape of the carbon film is not particularly limited, it is preferably a rectangle or a square, and the length of one side is, for example, 10 cm or more, preferably 15 cm or more, and more preferably 20 cm or more.
  • the transmittance of the EUV carbon film having a wavelength of 13.5 nm is, for example, 55% or more and 99% or less, preferably 74% or more and 99% or less, and more preferably 84% or more and 99% or less.
  • the surface roughness (Sa) of the carbon film is, for example, 0.1 nm or more and 500 nm or less.
  • the surface roughness is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more, preferably 350 nm or less, more preferably 200 nm or less, even more preferably 100 nm or less.
  • the surface roughness Sa means an arithmetic average thickness obtained based on ISO 25178.
  • the EUV transmittance improves as the surface roughness decreases.
  • the carbon film includes a carbonaceous film, a diamond-like carbon film (DLC), a graphene film, a graphite film, and the like, and the carbonaceous film includes an amorphous carbon film, an amorphous carbon film, and the like.
  • Preferred carbon films are a carbonaceous film, a graphene film, a graphite film and the like, and more preferably a carbonaceous film and a graphite film.
  • the carbonaceous film can be distinguished from the graphene film or the graphite film based on the results of the laser Raman measurement.
  • a G band due to the graphite structure appears around 1575 to 1600 cm -1
  • a D band due to the amorphous carbon structure appears around 1350 to 1360 cm -1 .
  • the ratio (I (D) / I (G); D / G band intensity ratio) between the G band intensity (I (G)) and the intensity of the D band (I (D)) in the Raman spectrum is 0.5.
  • Those exceeding the above are classified as carbonaceous films, and those having a D / G band intensity ratio of 0.5 or less are classified as graphene films or graphite films.
  • the D / G band intensity ratio of the carbonaceous film is preferably 2.5 or less, more preferably 0.7 or more and 1.5 or less, and particularly preferably 0.9 or more and 1.3 or less.
  • the D / G band intensity ratio of Glassy @ carbon which is a typical amorphous carbon produced by a method such as vapor deposition or sputtering, is about 1.8 to 2.0.
  • a carbonaceous film having a D / G band intensity ratio of 1.5 or less can be obtained or manufactured by an appropriate method, and for example, is preferably manufactured by carbonizing an aromatic polyimide film.
  • the aromatic polyimide film is made of, for example, a polyamic acid prepared by combining pyromellitic dianhydride, 4,4-diaminodiphenyl ether (ODA), and p-phenylenediamine (PDA) with an acid anhydride such as acetic anhydride.
  • ODA 4,4-diaminodiphenyl ether
  • PDA p-phenylenediamine
  • a film obtained by a chemical cure method in which imidization is performed using a dehydrating agent typified by a substance or a tertiary amine such as picoline, quinoline, isoquinoline, or pyridine as an imidization accelerator is preferable.
  • the carbonization treatment (heat treatment) of the aromatic polyimide film may be performed at about 900 to 2000 ° C.
  • the heating rate up to the carbonization temperature is not particularly limited, but is, for example, 5 ° C./min or more and 15 ° C./min or less.
  • the material may be cooled to room temperature by natural cooling or the like.
  • the thickness of the carbonaceous film can be selected from the same range as the thickness of the carbon film described above.
  • the surface roughness (Sa) of the carbonaceous film is the same as the surface roughness (Sa) of the carbon film.
  • the D / G band intensity ratio of the graphene film or the graphite film is 0 or more and 0.5 or less, preferably 0 or more and 0.1 or less, more preferably 0 or more and 0.05 or less.
  • Examples of the graphene film include a graphene single-layer film and a graphene multilayer film having a thickness of less than 5 nm.
  • the graphite film is a film having a thickness of 5 nm or more, and the preferable range of the thickness is the same as the preferable range of the carbon film.
  • the surface roughness (Sa) of the graphite film is the same as the surface roughness (Sa) of the carbon film described above.
  • the graphene film or the graphite film is formed by heating a carbonaceous film obtained from the aromatic polyimide film at a temperature higher than the carbonization temperature, for example, higher than 2000 ° C. and 3300 ° C. or lower, preferably 2200 ° C. or higher and 3200 ° C. or lower, more preferably 2400 ° C. or higher and 3000 or higher. It can be obtained by performing heat treatment at a temperature of not more than °C.
  • the support material layer (B) is a layer that plays the role of reinforcing the strength of the pellicle film while maintaining the EUV transmittance at a high level.
  • the support material layer may be referred to as a support material portion, or may be composed of only the support material.
  • the support material layer (B) has a plurality of openings formed on one or both sides of a pellicle film composed of a carbon film (A).
  • the opening may have any shape, and is preferably a quadrangle such as a circle, an ellipse, a triangle, a rectangle, a square, and a rhombus, a polygon such as a pentagon, a hexagon, or a combination thereof.
  • the opening may be a portion formed by a convex portion and a concave portion, the convex portion may directly constitute a support material layer, and the concave portion may be a portion where the carbon film (A) is exposed (the carbon film). (A) surface portion).
  • the support material layer may have a stripe-shaped opening, or may have an opening formed by two or more stripes intersecting each other. It is preferable that the entire support material layer forms a mesh-like film having the opening.
  • the thickness of the support material layer is preferably 1 nm to 500 nm, more preferably 5 nm to 300 nm, and further preferably 10 nm to 150 nm.
  • the thickness of the support material layer can be measured by, for example, a laser microscope.
  • the thickness of the opening may be the same as or different from the thickness of the support material layer.
  • the opening of the support material layer is preferably formed of a pair of adjacent convex portions (also referred to as linear portions).
  • the convex portion of the opening is a convex portion shown in a plane perpendicular to the surface of the reinforcing pellicle film in this specification
  • the wire diameter w of the opening of the support material layer is , Side length Q, period P, aperture L, and aperture ratio O (see FIG. 2).
  • the thickness of the convex portion forming the opening of the support material layer is expressed as a wire diameter w of the opening of the support material layer.
  • the line width is w1 and the line thickness is w2.
  • the line width w1 is, for example, 1 nm to 5000 nm, preferably 5 nm to 4000 nm, and more preferably 10 nm to 3000 nm.
  • the line thickness w2 is, for example, 1 nm to 400 nm, preferably 5 nm to 200 nm, and more preferably 10 nm to 100 nm.
  • the cross-sectional shape of the convex portion is assumed to be a square for convenience.
  • the dimension of the side of the opening (the length between the center lines of the line width w1 of the adjacent protrusions) is expressed as the side length Q (see FIG. 2). Not shown).
  • the side length Q is, for example, 1 ⁇ m to 5000 ⁇ m, preferably 5 ⁇ m to 4000 ⁇ m, and more preferably 10 ⁇ m to 3000 ⁇ m.
  • the period P of the openings of the support material layer is the dimension of the smallest periodic repeating unit of the rectangular shape when the two-dimensional plane is completely filled with the regular polygon (adjacent rectangular shape). Of the same side in the above).
  • the convex portions forming the openings of the support material layer are square, the dimensions of the same side in adjacent rectangles are the same, and the period P has one value and the same value as the side length Q.
  • the opening of the material layer is a regular triangle and a regular hexagon, the period may be different depending on the direction.
  • the cycle may be the same as the side length.
  • the aperture L of the support material layer is expressed as a value obtained by subtracting the wire diameter w from the side length Q. That is, the aperture L of the support material layer is the dimension of the opposite sides of the regular polygon of the minimum unit formed by the openings of the projections.
  • the mesh ratio D is determined according to the shape of the opening of the support material layer. When the support material layer has an opening of a regular triangle, the mesh ratio is D (A), and when the support material layer has a square opening. When the support material layer has a regular hexagonal opening, the mesh ratio may be indicated as D (C).
  • the mesh ratio D is, for example, from 0.95 to 1.00, and preferably from 0.98 to 1.00.
  • the aperture ratio O of the support material layer is expressed as a ratio (usually expressed in%) of a regular polygonal opening when the two-dimensional plane is completely filled (with respect to the surface area of the entire support material layer). However, when a value is substituted into a mathematical expression described later, a ratio value of 0 to 1 is used.
  • the aperture ratio O is determined according to the shape of the opening of the support material layer. When the support material layer has an opening of a regular triangle, the opening ratio is O (A). When the support material layer has a square opening, the opening is O. When the ratio is O (B) and the support material layer has a regular hexagonal opening, the opening ratio may be indicated as O (C).
  • the aperture ratio O is expressed as follows using the side length Q and the wire diameter w or using the mesh ratio D, respectively.
  • the aperture ratio of the support material layer is preferably 80% or more, more preferably 90% or more, further preferably 98% or more, and preferably 99.9% or less.
  • the carbon film and the support material layer are preferably a carbonaceous film or a graphite film, more preferably a graphite film, and still more preferably a single graphite film.
  • the carbon film and the support material layer are preferably formed integrally, without interposing an adhesive layer (for example, a layer formed of an adhesive) or a bonding layer (for example, a layer formed of a metal (eg, nickel)) ( More preferably, they are formed (seamless).
  • the step of forming an adhesive layer or a bonding layer can be omitted, the thickness of the pellicle film can be reduced, outgassing can be suppressed, and the pellicle
  • the strength of the film can be increased.
  • the ratio of the thickness of the carbon film to the thickness of the support material layer is, for example, 0.001 to 1, preferably 0.01 to 0.7, and more preferably 0.1 to 0.7 from the viewpoint of the strength of the pellicle film and the EUV transmittance. 05 to 0.5, more preferably 0.1 to 0.3.
  • FIG. 1 is a schematic flow chart of a method for manufacturing a reinforced pellicle film according to the present invention.
  • a pellicle film 10 includes a pellicle film 1a ′ or 1b composed of a carbon film (A) and one or both surfaces of the pellicle film. And a support material layer (B) 4 having a plurality of openings 5 formed therein.
  • a carbon film (pellicle film) 1a ' indicates a carbon film etched on one side
  • a carbon film (pellicle film) 1b indicates a carbon film etched on both sides, as described later.
  • the carbon film 1a 'or 1b and the support material layer 4 are made of the same carbon material. That is, the carbon film 1a 'or 1b and the support material layer 4 are preferably a carbonaceous film or a graphite film, and more preferably a graphite film. The carbonaceous film or graphite film is manufactured as described above.
  • the support material layer 4 exists on one or both sides of the carbon film (pellicle film) 1a 'or 1b, and has a plurality of predetermined openings 5.
  • the adhesive layer may not be included between the carbon film 1a 'or 1b and the support material layer 4, and the carbon film 1a' or 1b and the support material layer 4 are integrally formed. Is preferred.
  • the carbon film 1a 'or 1b and the support material layer 4 are integrated, the peel strength between them can be maintained at a predetermined level or more without using a commonly used adhesive. Further, it is possible to prevent a decrease in durability and outgas generation due to the adhesive.
  • the thickness t of the 'carbon film 1a' or 1b and the thickness of the support material layer 4 are as described above in the term column.
  • the thickness of the pellicle film may be the same as the thickness of the carbon film 1a 'or 1b. Further, the thickness of the carbon film 1a 'may be larger than the thickness of the carbon film 1b.
  • the shape and thickness of the opening 5 are as described above.
  • the surface roughness of the carbon film 4 is as described above in the term column.
  • the surface roughness means the roughness on the outer surface side (the side opposite to the contact surface with the support material layer 4) of the carbon film 1a 'or 1b.
  • the bonding strength between the carbon film 1a 'or 1b and the support material layer 4 only needs to be strong enough not to peel off when the reinforcing pellicle film 10 is manufactured or used.
  • the strength is preferably such that material destruction (for example, material destruction of the carbon film 1a 'or 1b) occurs earlier than interface destruction when a peeling test is performed.
  • the reinforcing pellicle membrane of the present invention includes, for example, one having a plurality of square (preferably square) openings in the support material layer (FIG. 3), one having a plurality of hexagonal openings in the support material layer (FIG. 4),
  • the support material layer has a plurality of circular openings (FIG. 5), but is not limited thereto.
  • FIG. 2 shows the carbon film 1b, the support material layer 4, and the opening 5 in the reinforcing pellicle film, the opening, the opening (size) L of the opening, the period P of the opening, and the projections forming the opening.
  • the line width w1 and the line thickness w2 when the portion is rectangular are shown.
  • the aperture (size) L of the opening, the period P of the opening, and the line width w1 and the line thickness w2 when the convex portion forming the opening is rectangular are as described above.
  • the line thickness w2 can be set to 400 nm or less, both the strength of the pellicle film and the EUV transmittance can be improved.
  • the EUV transmittance of the reinforced pellicle film is, for example, 39 to 94%, preferably 67 to 94%, and more preferably 80 to 94% when the exposure wavelength is 13.5 nm.
  • a mask portion for forming a support material layer is formed in a carbon film thicker than the pellicle film, and the carbon film is etched from at least the mask portion forming surface.
  • the mask portion is a portion formed on the carbon film in order to form the support material layer by etching, and may be a portion that is removed by etching (also referred to as a first coating layer), and may be removed after etching. (Also referred to as a second coating layer).
  • the method for manufacturing the reinforcing pellicle film of the present invention may be divided into the following two methods according to the material of the mask portion, the forming method, and the like.
  • a first coating layer is laminated on a carbon film in a portion except for a portion corresponding to a line width and a shape of a support material layer, and a second coating layer is further laminated on both the first coating layer and the carbon film.
  • the first coating layer and the second coating layer laminated on the first coating layer are both removed, and the second coating layer corresponding to the line width and shape of the support material layer and laminated on the carbon film is used as a mask portion.
  • Method (2) A method in which a first coating layer corresponding to the line width and shape of the support material layer is laminated on the carbon film, and the first coating layer is used as a mask portion as it is.
  • the pattern shape of the support material layer is formed with higher precision. From the viewpoint of the above, the method (1) is preferable.
  • a pellicle comprising a carbon film comprising: a step of starting etching for removing the film in the thickness direction, a step of terminating the etching after the support material layer is exposed from the carbon film, and a step of removing the second coating layer.
  • the method includes forming a second coating layer on the carbon film, etching the carbon film from the uneven surface of the second coating layer, exposing the support material layer from the carbon film while leaving the second coating layer,
  • the pellicle film and the support material layer are integrally formed from the carbon film by removing the coating layer.
  • the first coating layer is preferably made of a resist from the viewpoint of being easily removed after the formation of the second coating layer, and is more preferably made of a positive photoresist or a negative photoresist.
  • the shape pattern of the first coating layer may be such that the second coating layer is laminated on the opening, and the second coating layer has the line width and shape of the support material layer.
  • the second coating layer is preferably made of a metal, and more preferably made of aluminum, from the viewpoint of adjusting the etching strength.
  • the second coating layer may be formed by vapor deposition, sputtering, or the like. When the second coating layer is formed, a portion where the second coating layer is stacked and a portion where the first coating layer and the second coating layer are stacked exist on the carbon film.
  • Both the first coating layer and the second coating layer laminated on the first coating layer can be removed by using ordinary means for removing a resist (for example, an alkaline solution or an ozone solution).
  • the etching is preferably performed on one surface (for example, the surface on which the second coating layer is formed) or both surfaces (for example, the surface on which the second coating layer is formed and the surface on which the second coating layer is not formed) of the carbon film. From the viewpoint of adjustment, it is more preferable that the adjustment is performed on both surfaces of the carbon film.
  • the second coating layer is preferably removed with an acid (preferably, an inorganic acid such as hydrochloric acid, sulfuric acid, and nitric acid) from the viewpoint of preventing damage to the reinforcing pellicle film during heating.
  • an acid preferably, an inorganic acid such as hydrochloric acid, sulfuric acid, and nitric acid
  • the projections forming the second coating layer preferably correspond to the projections forming the opening of the support material layer after etching, and the recesses forming the second coating layer preferably correspond to the opening of the support material layer after etching. It is preferable to correspond to the concave portion constituting the portion.
  • the bottom surface of the concave portion may be a surface portion of a carbon film (pellicle film).
  • a step of forming a coating layer having a predetermined opening pattern on a carbon film thicker than a pellicle film, removing both the coating layer and the carbon film in the thickness direction from the coating layer forming surface side A step of initiating the etching, and a step of terminating the etching after at least the carbon film under the coating layer is exposed, and a pellicle film composed of a carbon film and a plurality of openings formed on one or both surfaces of the pellicle film.
  • an uneven shape is formed by a coating layer on a carbon film, and etching is performed from the formed uneven surface, until the coating layer is removed, or a part of the coating layer and the carbon film are removed. Until the carbon film is exposed, and the pellicle film and the support material layer are simultaneously formed from the carbon film.
  • the protrusions forming the covering layer preferably correspond to the protrusions forming the opening of the support material layer after etching, and the recesses forming the coating layer form the openings of the support material layer after etching. Preferably, it corresponds to the recess.
  • the bottom surface of the concave portion may be a surface portion of a carbon film (pellicle film).
  • the reinforcing pellicle film including the pellicle film composed of the carbon film (A) and the support material layer (B) having a plurality of openings formed on one or both surfaces of the pellicle film is obtained.
  • the pellicle film and the support material layer can be integrally formed without the interposition of an adhesive layer or a bonding layer.
  • FIGS. 1 (a), (b), (c1), (d), (e1), (e2), (f1), and (2) are schematic flow charts for explaining a method for producing a reinforced pellicle membrane of the present invention. (F2)).
  • This flowchart corresponds to the method of manufacturing the reinforced pellicle film in the case of the above (1).
  • a step of forming a first coating layer having a predetermined opening pattern on a carbon film thicker than a pellicle film will be described with reference to FIGS. 1 (a) to (c1).
  • a predetermined carbon film 1a serving as a material of a reinforcing pellicle film is manufactured.
  • the carbon film raw material a known carbonized raw material can be used, and the above-described aromatic polyimide is preferably used.
  • the carbonaceous film is obtained by heating the carbon film material at a carbonization temperature (for example, about 900 to 2000 ° C. in the case of an aromatic polyimide). Next, the obtained carbonaceous film is treated at a graphitization temperature (for example, higher than 2000 ° C. and 3300 ° C. or lower) to obtain a graphite film.
  • This graphite film can also be directly produced by treating a carbon film raw material at a graphitization temperature.
  • the thickness of the carbon film 1a may be larger than the thickness of the etched carbon film 1a 'or 1b, and is, for example, 500 nm to 5 ⁇ m, preferably 700 nm to 3 ⁇ m, and more preferably 900 nm to 1.5 ⁇ m.
  • a first coating layer 2a is laminated on one side surface of the obtained carbon film 1a to produce a laminate A.
  • the first coating layer 2a may be a layer formed by applying a resist, or may be a resin layer or the like suitable for imprint.
  • the first coating layer 2a is preferably a photoresist layer from the viewpoint of forming an uneven shape by a simple operation.
  • the photoresist may be either a positive photoresist or a negative photoresist.
  • the thickness of the first coating layer 2a is, for example, 1 to 12 ⁇ m, preferably 2 to 9 ⁇ m, and more preferably 3 to 6 ⁇ m.
  • a first coating layer 2b having a predetermined pattern is formed from the first coating layer 2a to obtain a laminate B of the carbon film 1a and the first coating layer 2b.
  • the opening of the first coating layer 2b is composed of a convex portion and a concave portion, and the concave portion may be a portion for forming the second coating layer 3.
  • conventionally known methods can be employed.
  • the pattern shape of the first coating layer 2b may be reverse to the pattern shape of the support material layer having a plurality of openings after etching, as described later.
  • the thickness of the first coating layer 2b may be the same as the thickness of the first coating layer 2a.
  • the line width of the protrusions is, for example, 0.5 to 10 ⁇ m, preferably 1 to 7 ⁇ m, and more preferably 2 to 5 ⁇ m.
  • the period of the protrusions (the length between the start of the protrusion and the start of the adjacent protrusion) is, for example, 10 to 5000 ⁇ m, and more preferably 50 to 5000 ⁇ m. ⁇ 4000 ⁇ m, more preferably 100-3000 ⁇ m.
  • the second coating layer 3 is laminated on each of the carbon film 1a and the first coating layer 2b to produce a laminate C (FIG. 1 (d)).
  • the second coating layer 3 may be any layer that can function as a layer that controls etching, and is preferably made of a metal, and more preferably made of aluminum.
  • the second coating layer 3 may be laminated by vapor deposition (preferably, vacuum vapor deposition).
  • the second coating layer 3 is preferably stacked over the entire irregularities of the carbon film and the first coating layer 2b stacked on the carbon film.
  • the thickness of the second coating layer 3 is, for example, 0.5 to 50 nm. Preferably it is 1 to 30 nm, more preferably 1 to 10 nm.
  • the line width of the second coating layer 3 is, for example, 0.5 to 10 ⁇ m, preferably 1 to 7 ⁇ m, and more preferably 2 to 5 ⁇ m.
  • means for removing the resist of the first coating layer may be performed, and it is preferable to apply a solution for removing the resist (for example, an alkaline solution or an ozone solution) to the laminate C.
  • a portion where the first coating layer 2b exists corresponds to a concave portion forming the opening 5 of the support material layer 4 after the etching (the concave portion).
  • the portion where the second coating layer 3 exists (the convex portion forming the second coating layer 3) and the portion where the second coating layer 3 does not exist (the concave portion forming the second coating layer 3) are formed of carbon before etching. Preferably, it is present over the entire film 1a.
  • etching for removing the carbon film 1a in the thickness direction from the second coating layer forming surface side of the laminate D is started (FIG. 1 (e2)).
  • the support material layer 4 made of the same material as the carbon film 1a is formed while leaving the second coating layer 3, and the carbon film 1a 'having the support material layer 4 and the opening 5 is formed.
  • Body E etching for removing the carbon film 1a in the thickness direction from the second coating layer forming surface side of the laminate D is started.
  • a part of the carbon film 1a (preferably at least 20%, more preferably at least 40%, still more preferably at least 60%, even more preferably at least part of the carbon film thickness from the second coating layer forming surface side) (80% or more) in the thickness direction to remove the support material layer 4.
  • the etching may be wet etching or dry etching, and is preferably dry etching from the viewpoint of controlling a more precise pattern.
  • dry etching conventionally known conditions can be adopted.
  • the temperature is, for example, 0 ° C to 40 ° C, preferably 10 ° C to 30 ° C.
  • the gas pressure is, for example, 1 to 100 Pa, preferably 10 to 50 Pa.
  • the etching gas is, for example, O 2 , H 2 , N 2 , Ar, CF 4 , Cl 2 , H 2 O, or the like. Further, it may be a mixed gas.
  • the flow rate of the etching gas is, for example, 5 to 1000 sccm, preferably 10 to 700 sccm.
  • the etching time is, for example, 0.1 to 10 hours, preferably 0.2 to 5 hours.
  • RIE-10NR reactive ion etching apparatus
  • the etching is preferably performed on one surface (for example, the surface on which the second coating layer is formed) or both surfaces (the surface on which the second coating layer is formed and the surface on which the second coating layer is not formed) of the carbon film 1a.
  • the surface on which the second coating layer 3 is formed may be etched.
  • the etching from the surface on which the second coating layer 3 is not formed may be performed before or after removing the second coating layer 3 described later. It is preferable that the carbon film 1a 'having one surface etched is etched from the surface on which the second coating layer 3 is not formed to form a carbon film 1b (FIG. 1 (f2)).
  • the second coating layer 3 is removed from the support material layer 4 (FIG. 1 (f1)).
  • the second coating layer 3 is preferably removed with an acid from the viewpoint of preventing damage to the reinforcing pellicle film during heating, and the acid is preferably an inorganic acid such as hydrochloric acid, sulfuric acid, and nitric acid.
  • the concentration of the acid is, for example, 0.1 to 30% by mass, preferably 1 to 20% by mass in 100% by mass of the acid solution.
  • FIG. 1 (a), (b), (c2), (f1), and (f2)) are schematic flow charts for explaining a method for producing a reinforced pellicle film of the present invention.
  • the flowchart corresponds to the method for manufacturing a reinforced pellicle film in the case of the above (2).
  • a step of forming a coating layer having a predetermined opening pattern on a carbon film thicker than a pellicle film will be described with reference to FIGS. 1 (a) to (c2).
  • the first coating layer 2b is formed by laminating a first coating layer 2b having a predetermined pattern on the carbon film 1a so that the support material layer after etching has a predetermined opening.
  • a laminate F is obtained.
  • the material of the first coating layer 2a is the same as described above.
  • the pattern shape may be formed by appropriately exposing, dissolving, and washing the photoresist.
  • the pattern shape of the first coating layer 2b only needs to correspond to the pattern shape of the carbon material and the support material layer having a plurality of openings after etching, which will be described later.
  • the thickness of the first coating layer 2b may be the same as the thickness of the first coating layer 2a.
  • the line width of the protrusions is, for example, 0.5 to 10 ⁇ m, preferably 1 to 7 ⁇ m, and more preferably 2 to 5 ⁇ m.
  • the period of the protrusions (the length between the start of the protrusion and the start of the adjacent protrusion) is, for example, 10 to 5000 ⁇ m, and more preferably 50 to 5000 ⁇ m. ⁇ 4000 ⁇ m, more preferably 100-3000 ⁇ m.
  • the positional relationship between the first coating layer 2b before the etching and the support material layer 4 or the carbon film 1a 'or 1b after the etching is as follows.
  • a portion where the first coating layer 2b exists also referred to as a convex portion forming the first coating layer 2b
  • the portion where the layer 2b does not exist may correspond to the concave portion forming the opening 5 of the support material layer 4 after the etching (the concave portion is a portion after the etching).
  • the portion where the first coating layer 2b exists (the convex portion forming the first coating layer 2b) and the portion where the first coating layer 2b does not exist (the concave portion forming the first coating layer 2b) are formed of carbon before etching. Preferably, it is present over the entire film 1a.
  • the etching is preferably performed so as to remove both the first coating layer 2b and the carbon film 1a in the thickness direction from the first coating layer forming surface side, and the first coating layer 2b from the first coating layer forming surface side. More preferably, the first coating layer 2b is completely removed in the thickness direction from the first coating layer forming surface side, and a part of the carbon film 1a is removed in the thickness direction. Is more preferred. Etching conditions may be the same as described above.
  • the etching is terminated.
  • the etching is preferably performed at least until the carbon film 1a under the first coating layer 2b is exposed.
  • the projections forming the first coating layer 2b are formed in the openings 5 of the support material layer 4.
  • the concave portion forming the first covering layer 2b may be a concave portion forming the opening 5 of the support material layer 4 (the concave portion may be a surface portion (exposed portion) of the carbon film 1a 'or 1b. )).
  • the etching is preferably performed on one side or both sides of the carbon film 1a.
  • the surface on which the first coating layer 2b is formed may be etched.
  • the thickness of the carbon film 1b can be appropriately adjusted from the viewpoint of EUV transmittance.
  • the laminate G may be produced by laminating the second coating layer 3 on the first coating layer 2b (not shown). That is, the manufacturing method preferably further includes a step of laminating the second coating layer 3 before etching. Such a step is preferably performed so that etching can be appropriately adjusted and a desired pattern shape is formed.
  • the second coating layer 3 may be any layer that can function as a layer that controls etching, and is preferably made of a metal, and more preferably made of aluminum.
  • the second coating layer 3 may be laminated by vapor deposition (preferably, vacuum vapor deposition).
  • the second coating layer 3 is preferably laminated on the entire uneven shape of the carbon film 1a and the first coating layer 2b, and the thickness of the second coating layer 3 is, for example, 0.5 to 50 nm, preferably 1 to 30 nm. , More preferably 1 to 10 nm.
  • the molded body obtained by etching the laminate F obtained in FIG. 1 (c2) becomes the reinforcing pellicle film of the present invention.
  • the reinforced pellicle film of the present invention can be formed by removing the second coating layer (preferably a metal layer) from the laminate H obtained by etching the laminate G. That is, the manufacturing method preferably further includes a step of removing the second coating layer (preferably a metal layer) with an acid after the etching.
  • the acid and the concentration of the acid are as described above.
  • the reinforced pellicle film of the present invention can be produced.
  • the thickness of the carbon film 1a 'or 1b (for example, the thickness of the carbon film 1a' or 1b after etching) is preferably smaller than the thickness of the carbon film 1a (for example, the thickness of the carbon film 1a before etching).
  • the thickness is more preferably 10 times smaller than the thickness of the carbon film 1a, and further preferably 50 times smaller than the thickness of the carbon film 1a.
  • the thickness of the support material layer 4 is preferably as described above.
  • the thickness of the opening 5 is preferably the same as the thickness of the support material layer 4.
  • the combined thickness of the carbon film 1a 'or 1b and the thickness of the support material layer 4 is preferably the same as or smaller than the thickness of the carbon film 1a. It is preferable that all the support material layers 4 are made of the carbon film 1a.
  • a pellicle film composed of a carbon film made of the same carbon material and a support material layer can be integrally formed, and a pattern having a desired opening is formed on the support material layer. Since the thickness of the support material layer and the opening can be reduced, it is possible to achieve both the strength of the pellicle film and the EUV transmittance. Furthermore, since the carbon film and the support material layer are made of the same carbon material and can be a reinforced pellicle film having almost no difference in linear expansion coefficient, breakage or peeling does not occur even during heating.
  • the thickness (t in FIG. 2) of the carbon film (pellicle film) was determined by a cross-sectional TEM using a cross section perpendicular to the film direction of the carbon film (pellicle film).
  • the line width w1, the line thickness w2, and the side length Q (period P) of the support material layer were determined by surface measurement using a laser microscope.
  • the surface roughness (Sa) of the surface side of the pellicle film was measured with a laser microscope and calculated based on ISO 25178.
  • the magnification of the laser microscope was 50 times, and the cutoff value ( ⁇ c) was 80 ⁇ m.
  • the measurement position of the surface roughness (Sa) is not particularly limited, but a plurality of positions including one central portion and four end portions were measured, and the average was defined as the surface roughness (Sa).
  • the reinforced pellicle film was held at 500 ° C., 1000 ° C., and 1500 ° C. for 10 minutes under vacuum conditions, and it was confirmed by a laser microscope and appearance inspection whether or not the support material layer had changed.
  • FIG. 1 (c) After performing, rinsing with development / pure water and drying were performed, and the first coating layer of the portion exposed to the pattern was removed to obtain a graphite film in which the first coating layer of the unexposed portion remained.
  • FIG. 1 (c) An aluminum layer having a line width of 3 ⁇ m and a film thickness of 5 nm was formed as a second coating layer by vacuum evaporation from the surface on which the first coating layer was formed on the entire graphite film on which the first coating layer in the unexposed portion remained (FIG. 1 ( d)).
  • the aluminum layer in direct contact with the graphite film (carbon film 1a) serves as a mask in the next dry etching step. Thereafter, using a resist removing solution, the photoresist and the aluminum layer covering the photoresist were removed, leaving only the aluminum layer directly formed on the graphite film (carbon film 1a) (FIG. 1 (e1)). ).
  • etching was performed from the surface on which the second coating layer was formed using a reactive ion etching apparatus (RIE-10NR manufactured by Samco).
  • RIE-10NR reactive ion etching apparatus
  • a line thickness w2 of 50 nm was formed, and the support material layer 4 and the opening 5 were formed on the carbon film 1a '(FIG. 1 (e2)).
  • the thickness of the carbon film (pellicle film) was measured by a cross-sectional TEM, and the period P, line width w1, and line thickness w2 of the support material layer were measured by a laser microscope.
  • the aperture ratio of this reinforced pellicle film was 99.8%. Sa was 90 nm.
  • the EUV transmittance was determined to be 55% from the thickness of the carbon film 1b. Further, even after the heat resistance test at 500 ° C., 1000 ° C., and 1500 ° C., no change was observed in the structure of the reinforcing pellicle film, and no damage was observed.
  • An aluminum layer having a thickness of 5 nm was formed as a second coating layer on the laminate of the graphite film and the first coating layer by vacuum deposition from the surface on which the first coating layer was formed. Thereafter, the photoresist and the aluminum layer coated with the photoresist were removed using a resist removing solution, leaving only the aluminum layer directly formed on the graphite film (carbon film 1a) (FIG. 1 (e1)).
  • the laminate was turned over and dry-etched using a reactive ion etching apparatus (RIE-10NR manufactured by Samco).
  • RIE-10NR reactive ion etching apparatus
  • a dry etching process is performed from the side where the second coating layer is not formed under the conditions of an RF output of 100 W, a flow rate of a process gas (oxygen gas) of 100 sccm, a gas pressure of 20 Pa, and a processing time of 28.5 minutes, and a carbon film (pellicle film) which is a graphite film )
  • RIE-10NR reactive ion etching apparatus
  • the thickness of the carbon film was measured by a cross-sectional TEM, and the period P, line width w1, and line thickness w2 of the support material layer were measured by a laser microscope.
  • the aperture ratio of this reinforced pellicle film was 99.8%.
  • Sa was 90 nm. From the thickness of the carbon film 1b, the EUV transmittance was determined to be 94%.
  • the reinforcing pellicle film of the present invention is useful for protecting a photomask used in various lithography methods such as an EUV lithography method.
  • pellicle film 1a carbon film (carbon film before etching)
  • 1a ′ carbon film (carbon film, pellicle film on which support material layer (made of the same material as carbon film) is formed after one-sided etching)
  • 1b carbon film (carbon film, pellicle film on which support material layer (made of the same material as carbon film) is formed after both-side etching) 2a
  • 2b first coating layer 3: second coating layer (metal layer) 4: Support material layer 5: Opening t: Carbon film thickness L: Aperture w1: Line width P: Period w2: Line thickness

Abstract

The objective of the present invention is to provide a reinforced pellicle film that suppresses the generation of outgas, has high heat resistance and durability, and has excellent EUV transmissivity. A reinforced pellicle film characterized by comprising a pellicle film constituted from a carbon film, and a support material layer formed on one or both surfaces of the pellicle film and having a plurality of openings, the pellicle film and the support material layer comprising the same carbon material.

Description

補強ペリクル膜及び補強ペリクル膜の製造方法Reinforced pellicle film and method for manufacturing reinforced pellicle film
 本発明は、補強ペリクル膜及び補強ペリクル膜の製造方法に関する。 The present invention relates to a reinforced pellicle film and a method for producing the reinforced pellicle film.
 近年、より微細な半導体加工において、極端紫外線リソグラフィーの技術が開発されている。極端紫外線によるフォトリソグラフィー装置には、フォトマスクに貼り付ける防塵用の保護膜として、ペリクル膜が使用されており、このペリクル膜は、極端紫外線を吸収したり散乱させたりする細かい異物の混入や付着を防止する部材として有用である。
 このペリクル膜は、極端紫外線の透過性のみならず、極端紫外線由来の熱の拡散、強度等が必要とされる。
In recent years, extreme ultraviolet lithography technology has been developed for finer semiconductor processing. In a photolithography apparatus using extreme ultraviolet light, a pellicle film is used as a dust-proof protective film to be attached to a photomask. It is useful as a member for preventing
This pellicle film is required to have not only the transmittance of extreme ultraviolet light but also the diffusion and strength of heat derived from extreme ultraviolet light.
 例えば、膜強度を向上させたペリクル膜(補強ペリクル膜ともいう)として、ペリクル膜がシリコン、金属等からなるメッシュ状の基板、金属ワイヤ等の支持材によって支持された複合膜が知られている(特許文献1、特許文献2)。
 これら特許文献1及び2の補強ペリクル膜は、例えば図2に示すように、ペリクル膜1bと、このペリクル膜の片面に形成された複数の開口部を有する支持材層4とから構成され、ペリクル膜1bと支持材層4は接着剤で接合されている。
For example, as a pellicle film having improved film strength (also referred to as a reinforced pellicle film), a composite film in which the pellicle film is supported by a mesh-like substrate made of silicon, metal, or the like, or a supporting material such as a metal wire is known. (Patent Document 1, Patent Document 2).
As shown in FIG. 2, for example, the reinforced pellicle films of Patent Documents 1 and 2 are composed of a pellicle film 1b and a support material layer 4 having a plurality of openings formed on one surface of the pellicle film. The membrane 1b and the support material layer 4 are joined with an adhesive.
国際公開第2014/188710号パンフレットWO 2014/188710 pamphlet 特開2015-18228号公報JP 2015-18228 A
 補強ペリクル膜は、高い膜強度が要求されるところ、膜強度とEUV透過率は、トレードオフの関係にあり、EUV透過率が十分であっても、膜強度は低くなるという問題があった。
 また、ペリクル膜と支持材層を接着する場合、接着剤が高温下で揮発して、アウトガスが発生するという問題もある。
 さらには、従来の支持材層では、耐熱性が不十分であり、開口部を構成する線状部の幅(線幅)は強度を保持する点で厚くなる傾向があり、EUV透過率にも影響を及ぼす。他方で、支持材層の材料によっては、EUV照射により加熱時の熱膨張率の差による破損も懸念される。
Although a high film strength is required for the reinforced pellicle film, there is a trade-off between the film strength and the EUV transmittance, and there is a problem that the film strength is low even if the EUV transmittance is sufficient.
Further, when bonding the pellicle film and the support material layer, there is also a problem that the adhesive volatilizes at a high temperature and outgas is generated.
Furthermore, the heat resistance of the conventional support material layer is insufficient, and the width (line width) of the linear portion constituting the opening tends to be large in terms of maintaining strength, and the EUV transmittance is also low. affect. On the other hand, depending on the material of the support material layer, there is a concern that the material may be damaged due to a difference in coefficient of thermal expansion when heated by EUV irradiation.
 上記問題に鑑み、本発明は、アウトガスの発生を抑制し、耐熱性及び耐久性が高く、EUV透過率に優れる補強ペリクル膜及び補強ペリクル膜の製造方法を提供することを目的とする。
 他方、本発明は、加熱時でも破損や剥離が生じない補強ペリクル膜やその製造方法を提供することも課題として掲げる。
In view of the above problems, an object of the present invention is to provide a reinforced pellicle film and a method for manufacturing the reinforced pellicle film, which suppress outgassing, have high heat resistance and durability, and have excellent EUV transmittance.
On the other hand, another object of the present invention is to provide a reinforced pellicle film that does not break or peel even when heated, and a method for manufacturing the pellicle film.
 上記課題を解決した本発明の要旨は、以下の通りである。
[1] 炭素膜から構成されるペリクル膜と、このペリクル膜の片面又は両面に形成された複数の開口部を有する支持材層とを備え、該ペリクル膜と該支持材層が同一炭素材料からなることを特徴とする補強ペリクル膜。
[2] 前記炭素膜及び前記支持材層が、炭素質膜又はグラファイト膜である[1]に記載の補強ペリクル膜。
[3] 前記炭素膜と前記支持材層が、一体形成されている[1]又は[2]に記載の補強ペリクル膜。
[4] 前記炭素膜と前記支持材層が、接着層又は接合層を介することなく同一炭素材料から形成されている、[1]~[3]のいずれかに記載の補強ペリクル膜。
[5] 前記支持材層の開口率が、80%以上である[1]~[4]のいずれかに記載の補強ペリクル膜。
[6] 前記ペリクル膜の厚さが1~100nmであり、前記支持材層の厚さが1~500nmである[1]~[5]のいずれかに記載の補強ペリクル膜。
[7] [1]~[6]のいずれかに記載の補強ペリクル膜の製造方法であり、
 ペリクル膜より厚い炭素膜上に、所定の開口パターンを有する第一被覆層を形成する工程、
 前記炭素膜及び前記第一被覆層のそれぞれに第二被覆層を積層する工程、
 前記炭素膜に積層された前記第二被覆層を残しつつ、前記第一被覆層及び前記第一被覆層に積層した前記第二被覆層の両方を前記炭素膜から除去する工程、
 前記第二被覆層形成面側から前記炭素膜を厚さ方向に削除するエッチングを開始する工程、
 前記炭素膜から支持材層が露出した後、前記エッチングを終了する工程、及び
 前記第二被覆層を除去する工程を含み、炭素膜から構成されるペリクル膜とこのペリクル膜の片面又は両面に形成された複数の開口部を有する支持材層が同一炭素材料からなることを特徴とする補強ペリクル膜の製造方法。
[8] 前記エッチングが、前記炭素膜の片面又は両面に対して行われる[7]に記載の製造方法。
[9] 前記第一被覆層がレジストから構成され、前記第二被覆層が金属から構成される[7]又は[8]に記載の製造方法。
[10] 前記エッチング後に、前記第二被覆層が酸で除去される[7]~[9]のいずれかに記載の製造方法。
[11] 前記第二被覆層が、アルミニウムから構成される[7]~[10]のいずれかに記載の製造方法。
The gist of the present invention that has solved the above problems is as follows.
[1] A pellicle film composed of a carbon film, and a support material layer having a plurality of openings formed on one or both surfaces of the pellicle film, wherein the pellicle film and the support material layer are made of the same carbon material. A reinforced pellicle membrane characterized in that:
[2] The reinforced pellicle film according to [1], wherein the carbon film and the support material layer are a carbonaceous film or a graphite film.
[3] The reinforced pellicle film according to [1] or [2], wherein the carbon film and the support material layer are integrally formed.
[4] The reinforced pellicle film according to any one of [1] to [3], wherein the carbon film and the support material layer are formed of the same carbon material without interposing an adhesive layer or a bonding layer.
[5] The reinforced pellicle membrane according to any one of [1] to [4], wherein the opening ratio of the support material layer is 80% or more.
[6] The reinforced pellicle film according to any one of [1] to [5], wherein the pellicle film has a thickness of 1 to 100 nm and the support material layer has a thickness of 1 to 500 nm.
[7] A method for producing a reinforced pellicle membrane according to any one of [1] to [6],
Forming a first coating layer having a predetermined opening pattern on a carbon film thicker than the pellicle film,
A step of laminating a second coating layer on each of the carbon film and the first coating layer,
Removing both the first coating layer and the second coating layer stacked on the first coating layer from the carbon film while leaving the second coating layer stacked on the carbon film;
A step of starting etching for removing the carbon film in the thickness direction from the second coating layer forming surface side;
After the support material layer is exposed from the carbon film, the method includes a step of terminating the etching, and a step of removing the second coating layer, and is formed on one or both surfaces of the pellicle film composed of the carbon film and the pellicle film. A method for manufacturing a reinforced pellicle membrane, wherein the support material layer having a plurality of openings is made of the same carbon material.
[8] The manufacturing method according to [7], wherein the etching is performed on one side or both sides of the carbon film.
[9] The method according to [7] or [8], wherein the first coating layer is formed of a resist, and the second coating layer is formed of a metal.
[10] The production method according to any one of [7] to [9], wherein after the etching, the second coating layer is removed with an acid.
[11] The method according to any one of [7] to [10], wherein the second coating layer is made of aluminum.
 本発明によれば、アウトガスの発生を抑制し、耐熱性及び耐久性が高く、EUV透過率に優れる補強ペリクル膜及び補強ペリクル膜の製造方法を提供することができる。
 また、本発明によれば、炭素膜と支持材層との間で線膨張率の差が無い補強ペリクル膜が得られる為、加熱時でも破損や剥離が生じない。
ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of an outgas is suppressed, heat resistance and durability are high, and the manufacturing method of a reinforced pellicle film excellent in EUV transmittance can be provided.
Further, according to the present invention, a reinforced pellicle film having no difference in linear expansion coefficient between the carbon film and the support material layer is obtained, so that breakage or peeling does not occur even during heating.
図1は、本発明の補強ペリクル膜の製造方法の一例を示す概略フロー図である。FIG. 1 is a schematic flow chart showing an example of the method for producing a reinforced pellicle film of the present invention. 図2は、補強ペリクル膜における支持材層の開口率を算出する場合の各パラメータを示す図である。FIG. 2 is a diagram showing each parameter when calculating the aperture ratio of the support material layer in the reinforced pellicle film. 図3は、本発明の補強ペリクル膜の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the reinforcing pellicle film of the present invention. 図4は、本発明の補強ペリクル膜の別例を示す斜視図である。FIG. 4 is a perspective view showing another example of the reinforcing pellicle film of the present invention. 図5は、本発明の補強ペリクル膜の他の例を示す斜視図である。FIG. 5 is a perspective view showing another example of the reinforcing pellicle film of the present invention.
 本明細書で使用する用語の意味を説明する。
 (1)極端紫外線(EUV、Extreme Ultra Violet)
 本明細書でEUVは、波長が5nm~30nm、好ましくは5nm~13.5nmの光のことを意味する。本発明のペリクル複合体は該EUVによるリソグラフィー法に使用することが好ましい。
The meaning of the terms used in the present specification will be explained.
(1) Extreme UV (EUV, Extreme Ultra Violet)
EUV as used herein means light having a wavelength of 5 nm to 30 nm, preferably 5 nm to 13.5 nm. The pellicle composite of the present invention is preferably used for the EUV lithography method.
 (2)ペリクル複合体
 ペリクル複合体は、露光パターンを反映したフォトマスクのパターン面を保護するために使用され、ペリクル膜と、該ペリクル膜の外縁に設けられた枠部(ペリクル枠)とで構成される。ペリクル膜の形状は特に限定されず、円形、楕円形、多角形などから適宜選択できる。ペリクル膜の好ましい形状は、正方形、長方形などの四角形である。本発明のペリクル膜として、後述する補強ペリクル膜を使用することが好ましい。
(2) Pellicle Complex The pellicle complex is used to protect a pattern surface of a photomask reflecting an exposure pattern, and includes a pellicle film and a frame portion (pellicle frame) provided on an outer edge of the pellicle film. Be composed. The shape of the pellicle film is not particularly limited, and can be appropriately selected from a circle, an ellipse, a polygon, and the like. The preferred shape of the pellicle film is a square such as a square or a rectangle. It is preferable to use a reinforced pellicle film described later as the pellicle film of the present invention.
 (3)ペリクル枠
 ペリクル枠はペリクル膜に形成される枠部を意味し、ペリクル複合体でフォトマスクを覆う為に使用される。ペリクル枠は、露光装置内とペリクル複合体内の気圧を一定にするため、通気孔を有していてもよい。
(3) Pellicle frame The pellicle frame means a frame formed on the pellicle film, and is used to cover the photomask with the pellicle complex. The pellicle frame may have a vent to keep the pressure inside the exposure apparatus and inside the pellicle complex constant.
 (4)補強ペリクル膜
 ペリクル複合体の膜部を指す。本発明において、補強ペリクル膜は、炭素膜(A)から構成されるペリクル膜と、このペリクル膜の片面又は両面に形成された複数の開口部を有する支持材層(B)とを備える。支持材層(B)については、後述する。
(4) Reinforced pellicle membrane Refers to the membrane part of the pellicle complex. In the present invention, the reinforcing pellicle film includes a pellicle film made of a carbon film (A) and a support material layer (B) having a plurality of openings formed on one or both sides of the pellicle film. The support material layer (B) will be described later.
 (5)炭素膜(A)
 炭素膜(A)とは、実質的に炭素原子から構成される膜を意味し、本発明では前記ペリクル膜の構成部材として使用される。炭素膜の厚さは、例えば、1000nm以下であり、1nm以上100nm以下であることが好ましく、1nm以上50nm以下であることがより好ましく、1nm以上30nm以下であることが特に好ましい。
 本発明において、炭素膜の厚さは、補強ペリクル膜、ペリクル膜の厚さと同義である。
 炭素膜の面積は、例えば、100cm2以上、好ましくは120cm2以上、より好ましくは150cm2以上3000cm2以下である。炭素膜の形状は特に限定されないが、長方形又は正方形であることが好ましく、一辺の長さは例えば10cm以上であり、15cm以上が好ましく、20cm以上であることがより好ましい。波長13.5nmのEUVの炭素膜透過率は、例えば、55%以上99%以下、好ましくは74%以上99%以下、より好ましくは84%以上99%以下である。
 炭素膜の表面粗さ(Sa)は、例えば、0.1nm以上、500nm以下である。表面粗さは、1nm以上が好ましく、より好ましくは3nm以上であり、更に好ましくは5nm以上であり、また350nm以下が好ましく、200nm以下がより好ましく、100nm以下が更に好ましい。なお表面粗さSaは、ISO 25178に基づいて求められる算術平均厚さを意味する。表面粗さが小さいほどEUV透過率は向上する。
(5) Carbon film (A)
The carbon film (A) means a film substantially composed of carbon atoms, and is used as a constituent member of the pellicle film in the present invention. The thickness of the carbon film is, for example, 1,000 nm or less, preferably 1 nm to 100 nm, more preferably 1 nm to 50 nm, and particularly preferably 1 nm to 30 nm.
In the present invention, the thickness of the carbon film is synonymous with the thickness of the reinforcing pellicle film and the pellicle film.
The area of the carbon film is, for example, 100 cm 2 or more, preferably 120 cm 2 or more, and more preferably 150 cm 2 or more and 3000 cm 2 or less. Although the shape of the carbon film is not particularly limited, it is preferably a rectangle or a square, and the length of one side is, for example, 10 cm or more, preferably 15 cm or more, and more preferably 20 cm or more. The transmittance of the EUV carbon film having a wavelength of 13.5 nm is, for example, 55% or more and 99% or less, preferably 74% or more and 99% or less, and more preferably 84% or more and 99% or less.
The surface roughness (Sa) of the carbon film is, for example, 0.1 nm or more and 500 nm or less. The surface roughness is preferably 1 nm or more, more preferably 3 nm or more, still more preferably 5 nm or more, preferably 350 nm or less, more preferably 200 nm or less, even more preferably 100 nm or less. The surface roughness Sa means an arithmetic average thickness obtained based on ISO 25178. The EUV transmittance improves as the surface roughness decreases.
 炭素膜には、炭素質膜、ダイヤモンド様炭素膜(DLC)、グラフェン膜、グラファイト膜などが含まれ、前記炭素質膜には無定形炭素膜、アモルファスカーボン膜などが含まれる。好ましい炭素膜は、炭素質膜、グラフェン膜、グラファイト膜などであり、より好ましくは炭素質膜、グラファイト膜である。 The carbon film includes a carbonaceous film, a diamond-like carbon film (DLC), a graphene film, a graphite film, and the like, and the carbonaceous film includes an amorphous carbon film, an amorphous carbon film, and the like. Preferred carbon films are a carbonaceous film, a graphene film, a graphite film and the like, and more preferably a carbonaceous film and a graphite film.
 炭素質膜と、グラフェン膜又はグラファイト膜とはレーザーラマン測定結果に基づいて区別できる。レーザーラマン分光の場合、1575~1600cm-1付近にグラファイト構造に起因するGバンドが現れ、1350~1360cm-1付近にアモルファスカーボン構造に起因するDバンドが現れる。ラマンスペクトルにおけるGバンド強度(I(G))と、Dバンド(I(D))の強度との比(I(D)/I(G);D/Gバンド強度比)が0.5を超えるものが炭素質膜に分類され、D/Gバンド強度比が0.5以下のものがグラフェン膜又はグラファイト膜に分類される。 The carbonaceous film can be distinguished from the graphene film or the graphite film based on the results of the laser Raman measurement. In the case of laser Raman spectroscopy, a G band due to the graphite structure appears around 1575 to 1600 cm -1 , and a D band due to the amorphous carbon structure appears around 1350 to 1360 cm -1 . The ratio (I (D) / I (G); D / G band intensity ratio) between the G band intensity (I (G)) and the intensity of the D band (I (D)) in the Raman spectrum is 0.5. Those exceeding the above are classified as carbonaceous films, and those having a D / G band intensity ratio of 0.5 or less are classified as graphene films or graphite films.
 炭素質膜のD/Gバンド強度比は、好ましくは2.5以下、より好ましくは0.7以上1.5以下、特に好ましくは0.9以上1.3以下である。蒸着やスパッタリングなどの方法で作製される典型的なアモルファス炭素であるGlassy carbonのD/Gバンド強度比は1.8~2.0程度である。D/Gバンド強度比が1.5以下の炭素質膜は適当な方法で入手乃至製造でき、例えば、芳香族ポリイミド膜を炭素化することによって製造することが好ましい。前記芳香族ポリイミド膜は、例えば、ピロメリット酸二無水物と、4,4-ジアミノジフェニルエーテル(ODA)、p-フェニレンジアミン(PDA)とを組み合わせて作製されるポリアミド酸に無水酢酸等の酸無水物に代表される脱水剤や、ピコリン、キノリン、イソキノリン、ピリジン等の第3級アミン類をイミド化促進剤として用い、イミド転化するケミカルキュア法による膜が好ましい。芳香族ポリイミド膜の炭素化処理(熱処理)は、窒素、アルゴンあるいはアルゴンと窒素の混合ガスなどの不活性ガス雰囲気下、900~2000℃程度で15~30分行えばよい。炭素化処理温度までの昇温速度は特に限定されないが、例えば5℃/分以上、15℃/分以下である。炭素化熱処理の後は、自然冷却などにより室温まで冷却すればよい。 D The D / G band intensity ratio of the carbonaceous film is preferably 2.5 or less, more preferably 0.7 or more and 1.5 or less, and particularly preferably 0.9 or more and 1.3 or less. The D / G band intensity ratio of Glassy @ carbon, which is a typical amorphous carbon produced by a method such as vapor deposition or sputtering, is about 1.8 to 2.0. A carbonaceous film having a D / G band intensity ratio of 1.5 or less can be obtained or manufactured by an appropriate method, and for example, is preferably manufactured by carbonizing an aromatic polyimide film. The aromatic polyimide film is made of, for example, a polyamic acid prepared by combining pyromellitic dianhydride, 4,4-diaminodiphenyl ether (ODA), and p-phenylenediamine (PDA) with an acid anhydride such as acetic anhydride. A film obtained by a chemical cure method in which imidization is performed using a dehydrating agent typified by a substance or a tertiary amine such as picoline, quinoline, isoquinoline, or pyridine as an imidization accelerator is preferable. The carbonization treatment (heat treatment) of the aromatic polyimide film may be performed at about 900 to 2000 ° C. for 15 to 30 minutes in an atmosphere of an inert gas such as nitrogen, argon, or a mixed gas of argon and nitrogen. The heating rate up to the carbonization temperature is not particularly limited, but is, for example, 5 ° C./min or more and 15 ° C./min or less. After the carbonization heat treatment, the material may be cooled to room temperature by natural cooling or the like.
 炭素質膜の厚さは、上述の炭素膜の厚さと同様の範囲から選択できる。炭素質膜の表面粗さ(Sa)も、上述の炭素膜の表面粗さ(Sa)と同様である。 厚 The thickness of the carbonaceous film can be selected from the same range as the thickness of the carbon film described above. The surface roughness (Sa) of the carbonaceous film is the same as the surface roughness (Sa) of the carbon film.
 グラフェン膜又はグラファイト膜のD/Gバンド強度比は、0以上0.5以下、好ましくは0以上0.1以下、より好ましくは0以上0.05以下である。 D The D / G band intensity ratio of the graphene film or the graphite film is 0 or more and 0.5 or less, preferably 0 or more and 0.1 or less, more preferably 0 or more and 0.05 or less.
 前記グラフェン膜は、グラフェン単層膜又は厚さ5nm未満のグラフェン多層膜などが挙げられる。グラファイト膜は、厚さ5nm以上の膜であり、その厚さの好ましい範囲は炭素膜の好ましい範囲と同様である。
 グラファイト膜の表面粗さ(Sa)は、上述の炭素膜の表面粗さ(Sa)と同様である。
Examples of the graphene film include a graphene single-layer film and a graphene multilayer film having a thickness of less than 5 nm. The graphite film is a film having a thickness of 5 nm or more, and the preferable range of the thickness is the same as the preferable range of the carbon film.
The surface roughness (Sa) of the graphite film is the same as the surface roughness (Sa) of the carbon film described above.
 グラフェン膜又はグラファイト膜は、前記芳香族ポリイミド膜から得られる炭素質膜を炭化温度より高い温度、例えば、2000℃超3300℃以下、好ましくは2200℃以上3200℃以下、より好ましくは2400℃以上3000℃以下で熱処理することで得ることができる。 The graphene film or the graphite film is formed by heating a carbonaceous film obtained from the aromatic polyimide film at a temperature higher than the carbonization temperature, for example, higher than 2000 ° C. and 3300 ° C. or lower, preferably 2200 ° C. or higher and 3200 ° C. or lower, more preferably 2400 ° C. or higher and 3000 or higher. It can be obtained by performing heat treatment at a temperature of not more than ℃.
(6)支持材層(B)
 支持材層(B)は、EUV透過率を高いレベルで維持したまま、ペリクル膜の強度を補強する役割を担う層である。支持材層は、支持材部と言い換えてもよく、支持材のみで構成されていてもよい。
 支持材層(B)は、炭素膜(A)から構成されるペリクル膜の片面又は両面に形成された複数の開口部を有する。開口部は、任意の形状であればよく、円形、楕円形、三角形、長方形、正方形、及び菱形等の四角形、五角形、六角形等の多角形、又はこれらの組み合わせ等であることが好ましい。
 開口部は、凸部と凹部から形成される部分であってもよく、凸部は、そのまま支持材層を構成してもよく、凹部は、そのまま炭素膜(A)が露出した部分(炭素膜(A)表面部)となってもよい。
 開口部が例えば四角形である場合、支持材層は、ストライプ状の開口部を有していてもよく、2以上のストライプ状が互いに交差して形成される開口部を有していてもよい。
 支持材層全体は、上記開口部を有するメッシュ状膜を形成していることが好ましい。
(6) Support material layer (B)
The support material layer (B) is a layer that plays the role of reinforcing the strength of the pellicle film while maintaining the EUV transmittance at a high level. The support material layer may be referred to as a support material portion, or may be composed of only the support material.
The support material layer (B) has a plurality of openings formed on one or both sides of a pellicle film composed of a carbon film (A). The opening may have any shape, and is preferably a quadrangle such as a circle, an ellipse, a triangle, a rectangle, a square, and a rhombus, a polygon such as a pentagon, a hexagon, or a combination thereof.
The opening may be a portion formed by a convex portion and a concave portion, the convex portion may directly constitute a support material layer, and the concave portion may be a portion where the carbon film (A) is exposed (the carbon film). (A) surface portion).
When the opening is, for example, a square, the support material layer may have a stripe-shaped opening, or may have an opening formed by two or more stripes intersecting each other.
It is preferable that the entire support material layer forms a mesh-like film having the opening.
 支持材層の厚さは、1nm~500nmであることが好ましく、より好ましくは5nm~300nm、さらに好ましくは10nm~150nmである。支持材層の厚さは、例えばレーザー顕微鏡で測定することができる。開口部の厚さは支持材層の厚さと同じであってもよく異なっていてもよい。 The thickness of the support material layer is preferably 1 nm to 500 nm, more preferably 5 nm to 300 nm, and further preferably 10 nm to 150 nm. The thickness of the support material layer can be measured by, for example, a laser microscope. The thickness of the opening may be the same as or different from the thickness of the support material layer.
 補強ペリクル膜の横断面において、支持材層の開口部は、隣り合う1対の凸部(線状部ともいう)から構成されていることが好ましい。開口部の凸部(凸部は、本明細書において補強ペリクル膜面に対して垂直な面に示される凸部である)が正多角形である場合、支持材層の開口部の線径w、辺長Q、周期P、目開きL、開口率Oを説明する(図2を参照する)。これらのパラメータは、特開2015-18228号公報に記載の通りである。 (4) In the cross section of the reinforcing pellicle film, the opening of the support material layer is preferably formed of a pair of adjacent convex portions (also referred to as linear portions). When the convex portion of the opening (the convex portion is a convex portion shown in a plane perpendicular to the surface of the reinforcing pellicle film in this specification) is a regular polygon, the wire diameter w of the opening of the support material layer is , Side length Q, period P, aperture L, and aperture ratio O (see FIG. 2). These parameters are as described in JP-A-2015-18228.
 支持材層の開口部を構成する凸部の太さは、支持材層の開口部の線径wとして表される。凸部の断面形状が方形の場合、線幅をw1、線厚をw2とし、断面形状が正方形又は円形の場合、w1=w2=wとなる。
 線幅w1は、例えば1nm~5000nm、好ましくは5nm~4000nm、より好ましくは10nm~3000nmである。
 線厚w2は、例えば1nm~400nm、好ましくは5nm~200nm、より好ましくは10nm~100nmである。以下、特に断らない限り、凸部の断面形状は便宜上、正方形であるとする。
The thickness of the convex portion forming the opening of the support material layer is expressed as a wire diameter w of the opening of the support material layer. When the cross-sectional shape of the convex portion is square, the line width is w1 and the line thickness is w2. When the cross-sectional shape is square or circular, w1 = w2 = w.
The line width w1 is, for example, 1 nm to 5000 nm, preferably 5 nm to 4000 nm, and more preferably 10 nm to 3000 nm.
The line thickness w2 is, for example, 1 nm to 400 nm, preferably 5 nm to 200 nm, and more preferably 10 nm to 100 nm. Hereinafter, unless otherwise specified, the cross-sectional shape of the convex portion is assumed to be a square for convenience.
 支持材層の開口部が正多角形である場合、開口部の辺の寸法(隣り合う凸部の線幅w1の中央線間の長さ)は、辺長Qとして表される(図2に図示せず)。
 辺長Qは、例えば1μm~5000μm、好ましくは5μm~4000μm、より好ましくは10μm~3000μmである。
When the opening of the support material layer is a regular polygon, the dimension of the side of the opening (the length between the center lines of the line width w1 of the adjacent protrusions) is expressed as the side length Q (see FIG. 2). Not shown).
The side length Q is, for example, 1 μm to 5000 μm, preferably 5 μm to 4000 μm, and more preferably 10 μm to 3000 μm.
 支持材層の開口部の周期Pは、図2に示すように、2次元平面を当該正多角形で埋め尽くすとしたときの、方形状の周期的な最小の繰り返し単位の寸法(隣り合う方形における同一辺間の長さ)を表す。支持材層の開口部を構成する凸部が正方形である場合、方形の隣り合う方形における同一辺の寸法が同じであり、周期Pは1つの値、辺長Qと同じ値となるが、支持材層の開口部が正三角形及び正六角形では、方向により周期は異なってもよい。
 周期は、上記辺長と同様であってもよい。
As shown in FIG. 2, the period P of the openings of the support material layer is the dimension of the smallest periodic repeating unit of the rectangular shape when the two-dimensional plane is completely filled with the regular polygon (adjacent rectangular shape). Of the same side in the above). When the convex portions forming the openings of the support material layer are square, the dimensions of the same side in adjacent rectangles are the same, and the period P has one value and the same value as the side length Q. When the opening of the material layer is a regular triangle and a regular hexagon, the period may be different depending on the direction.
The cycle may be the same as the side length.
 支持材層の目開きLは、辺長Qから線径wを差し引いた値として表される。すなわち、支持材層の目開きLは、凸部同志の開口部が作る最小単位の正多角形の向かい合う辺と辺の寸法である。支持材層のメッシュ比Dは、目開きLを辺長Qで割った値(L/Q)として表される。
 メッシュ比D=L/Q=1-w1/Q …(A)
 なお、メッシュ比Dを支持材層の開口部の形状に応じて、支持材層が正三角形の開口部を有する場合、メッシュ比をD(A)、支持材層が正方形の開口部を有する場合、メッシュ比をD(B)、支持材層が正六角形の開口部を有する場合、メッシュ比をD(C)と示されてもよい。
 メッシュ比Dは、例えば0.95~1.00であり、好ましくは0.98~1.00である。
The aperture L of the support material layer is expressed as a value obtained by subtracting the wire diameter w from the side length Q. That is, the aperture L of the support material layer is the dimension of the opposite sides of the regular polygon of the minimum unit formed by the openings of the projections. The mesh ratio D of the support material layer is expressed as a value (L / Q) obtained by dividing the opening L by the side length Q.
Mesh ratio D = L / Q = 1−w1 / Q (A)
The mesh ratio D is determined according to the shape of the opening of the support material layer. When the support material layer has an opening of a regular triangle, the mesh ratio is D (A), and when the support material layer has a square opening. When the support material layer has a regular hexagonal opening, the mesh ratio may be indicated as D (C).
The mesh ratio D is, for example, from 0.95 to 1.00, and preferably from 0.98 to 1.00.
 支持材層の開口率Oは、二次元平面を埋め尽くしたときの(支持材層全体の表面積に対する)、正多角形の開口部の割合(通常%表記する)として表される。ただし、後述する数式に値を代入する際には0~1の割合値を用いることとする。開口率Oを支持材層の開口部の形状に応じて、支持材層が正三角形の開口部を有する場合、開口率をO(A)、支持材層が正方形の開口部を有する場合、開口率をO(B)、支持材層が正六角形の開口部を有する場合、開口率をO(C)と示されてもよい。開口率Oは、それぞれ、辺長Qと線径wを用いて、あるいはメッシュ比Dを用いて下記のように表わされる。 (4) The aperture ratio O of the support material layer is expressed as a ratio (usually expressed in%) of a regular polygonal opening when the two-dimensional plane is completely filled (with respect to the surface area of the entire support material layer). However, when a value is substituted into a mathematical expression described later, a ratio value of 0 to 1 is used. The aperture ratio O is determined according to the shape of the opening of the support material layer. When the support material layer has an opening of a regular triangle, the opening ratio is O (A). When the support material layer has a square opening, the opening is O. When the ratio is O (B) and the support material layer has a regular hexagonal opening, the opening ratio may be indicated as O (C). The aperture ratio O is expressed as follows using the side length Q and the wire diameter w or using the mesh ratio D, respectively.
 O(A)=(Q-31/2w)(31/2Q-3w)/(31/22)=(4-2・31/2)+(2・31/2-6)D(A)+3D(A)2…(B)
 O(B)=(Q-w)2/Q2=D(B)2…(C)
 O(C)=(31/2Q-w)2/(3Q2)=(1/3){(4-2・31/2)+(2・31/2-2)D(C)+D(C)2} …(D)
O (A) = (Q- 3 1/2 w) (3 1/2 Q-3w) / (3 1/2 Q 2) = (4-2 · 3 1/2) + (2 · 3 1 / 2 -6) D (A) + 3D (A) 2 ... (B)
O (B) = (Q−w) 2 / Q 2 = D (B) 2 (C)
O (C) = (3 1/2 Q-w) 2 / (3Q 2) = (1/3) {(4-2 · 3 1/2) + (2 · 3 1/2 -2) D ( C) + D (C) 2 … (D)
 支持材層の開口率は、EUV透過率の観点から、80%以上であることが好ましく、より好ましくは90%以上、さらに好ましくは98%以上であり、好ましくは99.9%以下である。 開口 From the viewpoint of EUV transmittance, the aperture ratio of the support material layer is preferably 80% or more, more preferably 90% or more, further preferably 98% or more, and preferably 99.9% or less.
 炭素膜と支持材層は、炭素質膜又はグラファイト膜であることが好ましく、グラファイト膜であることがより好ましく、一枚のグラファイト膜に由来することがさらに好ましい。
 炭素膜と支持材層は、一体形成されていることが好ましく、接着層(例えば接着剤で形成される層)又は接合層(例えば金属(例えばニッケル)で形成される層)を介することなく(継ぎ目なく)形成されていることがより好ましい。この様な炭素膜及び支持材層によれば、接着層又は接合層を形成する工程を省略することができ、ペリクル膜の膜厚を薄くすることができ、アウトガス発生も抑制でき、また、ペリクル膜の強度を高めることができる。
 炭素膜の厚さ/支持材層の厚さの比は、ペリクル膜の強度やEUV透過率の観点から、例えば0.001~1、好ましくは0.01~0.7、より好ましくは0.05~0.5、さらに好ましくは0.1~0.3である。
The carbon film and the support material layer are preferably a carbonaceous film or a graphite film, more preferably a graphite film, and still more preferably a single graphite film.
The carbon film and the support material layer are preferably formed integrally, without interposing an adhesive layer (for example, a layer formed of an adhesive) or a bonding layer (for example, a layer formed of a metal (eg, nickel)) ( More preferably, they are formed (seamless). According to such a carbon film and a support material layer, the step of forming an adhesive layer or a bonding layer can be omitted, the thickness of the pellicle film can be reduced, outgassing can be suppressed, and the pellicle The strength of the film can be increased.
The ratio of the thickness of the carbon film to the thickness of the support material layer is, for example, 0.001 to 1, preferably 0.01 to 0.7, and more preferably 0.1 to 0.7 from the viewpoint of the strength of the pellicle film and the EUV transmittance. 05 to 0.5, more preferably 0.1 to 0.3.
 以下、図示例を参照しつつ、本発明の補強ペリクル膜と補強ペリクル膜の製造方法を説明する。
 図1は、本発明の補強ペリクル膜の製造方法のフロー概略図であり、補強ペリクル膜10は、炭素膜(A)から構成されるペリクル膜1a’又は1bと、このペリクル膜の片面又は両面に形成された複数の開口部5を有する支持材層(B)4とを備える。
 本明細書において、炭素膜(ペリクル膜)1a’は、後述するように、片面エッチングした炭素膜のことを指し、炭素膜(ペリクル膜)1bは、両面エッチングした炭素膜のことを指す。
Hereinafter, a reinforced pellicle film and a method for manufacturing the reinforced pellicle film of the present invention will be described with reference to the illustrated examples.
FIG. 1 is a schematic flow chart of a method for manufacturing a reinforced pellicle film according to the present invention. A pellicle film 10 includes a pellicle film 1a ′ or 1b composed of a carbon film (A) and one or both surfaces of the pellicle film. And a support material layer (B) 4 having a plurality of openings 5 formed therein.
In this specification, a carbon film (pellicle film) 1a 'indicates a carbon film etched on one side, and a carbon film (pellicle film) 1b indicates a carbon film etched on both sides, as described later.
 図示例の補強ペリクル膜10では、炭素膜1a’又は1bと支持材層4が同一炭素材料からなる。
 すなわち、炭素膜1a’又は1b及び支持材層4は、炭素質膜又はグラファイト膜であることが好ましく、グラファイト膜であることがより好ましい。炭素質膜又はグラファイト膜は上記の通りに製造される。
 支持材層4は、炭素膜(ペリクル膜)1a’又は1bの片面又は両面に存在し、所定の開口部5を複数有する。
 本発明の補強ペリクル膜10では、炭素膜1a’又は1bと支持材層4の間に接着剤層は含まれていなくともよく、炭素膜1a’又は1bと支持材層4は、一体形成されていることが好ましい。
 炭素膜1a’又は1bと支持材層4とを一体化させると、通常使用される接着剤を使用しなくても両者間の剥離強度を所定以上に維持できる。さらに、接着剤による耐久性低下、アウトガス発生などを防止することもできる。
In the reinforced pellicle film 10 of the illustrated example, the carbon film 1a 'or 1b and the support material layer 4 are made of the same carbon material.
That is, the carbon film 1a 'or 1b and the support material layer 4 are preferably a carbonaceous film or a graphite film, and more preferably a graphite film. The carbonaceous film or graphite film is manufactured as described above.
The support material layer 4 exists on one or both sides of the carbon film (pellicle film) 1a 'or 1b, and has a plurality of predetermined openings 5.
In the reinforcing pellicle film 10 of the present invention, the adhesive layer may not be included between the carbon film 1a 'or 1b and the support material layer 4, and the carbon film 1a' or 1b and the support material layer 4 are integrally formed. Is preferred.
When the carbon film 1a 'or 1b and the support material layer 4 are integrated, the peel strength between them can be maintained at a predetermined level or more without using a commonly used adhesive. Further, it is possible to prevent a decrease in durability and outgas generation due to the adhesive.
 炭素膜1a’又は1bの厚さt及び支持材層4の厚さは、用語の欄で上述した通りである。ペリクル膜の厚さは炭素膜1a’又は1bの厚さと同じであってもよい。更に、炭素膜1a’の厚さは、炭素膜1bの厚さよりも厚くてもよい。開口部5の形状、厚さは上記の通りである。 The thickness t of the 'carbon film 1a' or 1b and the thickness of the support material layer 4 are as described above in the term column. The thickness of the pellicle film may be the same as the thickness of the carbon film 1a 'or 1b. Further, the thickness of the carbon film 1a 'may be larger than the thickness of the carbon film 1b. The shape and thickness of the opening 5 are as described above.
 炭素膜4の表面粗さは用語の欄で上述した通りである。ここでいう表面粗さとは、炭素膜1a’又は1bの外面側(支持材層4との接触面に反対する側)の粗さを意味する。
 炭素膜1a’又は1bと支持材層4との接合強度は、補強ペリクル膜10の製造乃至使用時に両者が剥離しない程度の強度であれば足りる。剥離試験を行った時に界面破壊よりも材料破壊(例えば、炭素膜1a’又は1bの材料破壊)が先に生じる程度の強度であることが好ましい。
The surface roughness of the carbon film 4 is as described above in the term column. Here, the surface roughness means the roughness on the outer surface side (the side opposite to the contact surface with the support material layer 4) of the carbon film 1a 'or 1b.
The bonding strength between the carbon film 1a 'or 1b and the support material layer 4 only needs to be strong enough not to peel off when the reinforcing pellicle film 10 is manufactured or used. The strength is preferably such that material destruction (for example, material destruction of the carbon film 1a 'or 1b) occurs earlier than interface destruction when a peeling test is performed.
 本発明の補強ペリクル膜は、例えば、支持材層に四角形(好ましくは正方形)の開口部を複数有するもの(図3)、支持材層に六角形の開口部を複数有するもの(図4)、支持材層に円形の開口部を複数有するもの(図5)等が例示されるが、これらに限定されない。 The reinforcing pellicle membrane of the present invention includes, for example, one having a plurality of square (preferably square) openings in the support material layer (FIG. 3), one having a plurality of hexagonal openings in the support material layer (FIG. 4), The support material layer has a plurality of circular openings (FIG. 5), but is not limited thereto.
 図2は、補強ペリクル膜における炭素膜1b、支持材層4、開口部5を示すと共に、開口部、開口部の目開き(大きさ)L、開口部の周期P、開口部を構成する凸部が方形である場合の線幅w1、線厚w2を示す。 FIG. 2 shows the carbon film 1b, the support material layer 4, and the opening 5 in the reinforcing pellicle film, the opening, the opening (size) L of the opening, the period P of the opening, and the projections forming the opening. The line width w1 and the line thickness w2 when the portion is rectangular are shown.
 開口部の目開き(大きさ)L、開口部の周期P、開口部を構成する凸部が方形である場合の線幅w1、線厚w2は、上記の通りである。
 特に、線厚w2は、400nm以下とすることができる為、ペリクル膜の強度とEUV透過率の両方を向上させることができる。
The aperture (size) L of the opening, the period P of the opening, and the line width w1 and the line thickness w2 when the convex portion forming the opening is rectangular are as described above.
In particular, since the line thickness w2 can be set to 400 nm or less, both the strength of the pellicle film and the EUV transmittance can be improved.
 補強ペリクル膜のEUV透過率は、露光波長を13.5nmとする場合、例えば39~94%、好ましくは67~94%、より好ましくは80~94%である。 E The EUV transmittance of the reinforced pellicle film is, for example, 39 to 94%, preferably 67 to 94%, and more preferably 80 to 94% when the exposure wavelength is 13.5 nm.
 (7)補強ペリクル膜の製造方法
 本発明の補強ペリクル膜は、支持材層を形成するためのマスク部をペリクル膜より厚い炭素膜に形成し、少なくともマスク部形成面から炭素膜をエッチングして、炭素膜と、この炭素膜と同じ材料からなる支持材層とを形成することにより作製されてもよい。
 当該マスク部は、支持材層をエッチングで形成するために炭素膜上に形成される部分であり、エッチングで除去されるもの(第一被覆層ともいう)であってもよく、エッチング後に除去されるもの(第二被覆層ともいう)であってもよい。
(7) Method of Manufacturing Reinforced Pellicle Film In the reinforced pellicle film of the present invention, a mask portion for forming a support material layer is formed in a carbon film thicker than the pellicle film, and the carbon film is etched from at least the mask portion forming surface. , A carbon film and a support material layer made of the same material as the carbon film.
The mask portion is a portion formed on the carbon film in order to form the support material layer by etching, and may be a portion that is removed by etching (also referred to as a first coating layer), and may be removed after etching. (Also referred to as a second coating layer).
 本発明の補強ペリクル膜の製造方法は、マスク部の材料や形成方法等に応じて、以下の2つの方法に分けられてもよい。
(1)支持材層の線幅や形状に対応する部分を除く部分に、第一被覆層を炭素膜上に積層し、さらに第一被覆層及び炭素膜の両方に第二被覆層を積層し、第一被覆層及び第一被覆層に積層した第二被覆層の両方を除去し、支持材層の線幅や形状に対応し、かつ炭素膜に積層した第二被覆層をマスク部とする方法
(2)支持材層の線幅や形状に対応する第一被覆層を炭素膜上に積層し、この第一被覆層をそのままマスク部とする方法
 支持材層のパターン形状をより精度高く形成する観点から、前記(1)の方法が好ましい。
The method for manufacturing the reinforcing pellicle film of the present invention may be divided into the following two methods according to the material of the mask portion, the forming method, and the like.
(1) A first coating layer is laminated on a carbon film in a portion except for a portion corresponding to a line width and a shape of a support material layer, and a second coating layer is further laminated on both the first coating layer and the carbon film. The first coating layer and the second coating layer laminated on the first coating layer are both removed, and the second coating layer corresponding to the line width and shape of the support material layer and laminated on the carbon film is used as a mask portion. Method (2) A method in which a first coating layer corresponding to the line width and shape of the support material layer is laminated on the carbon film, and the first coating layer is used as a mask portion as it is. The pattern shape of the support material layer is formed with higher precision. From the viewpoint of the above, the method (1) is preferable.
 以下、前記(1)である場合の補強ペリクル膜の製造方法について説明する。
 本発明の一態様には、ペリクル膜より厚い炭素膜上に、所定の開口パターンを有する第一被覆層を形成する工程、炭素膜及び第一被覆層のそれぞれに第二被覆層を積層する工程、炭素膜に積層された第二被覆層を残しつつ、第一被覆層及び第一被覆層に積層した第二被覆層の両方を炭素膜から除去する工程、第二被覆層形成面側から炭素膜を厚さ方向に削除するエッチングを開始する工程、炭素膜から支持材層が露出した後、エッチングを終了する工程、及び第二被覆層を除去する工程を含み、炭素膜から構成されるペリクル膜とこのペリクル膜の片面又は両面に形成される複数の開口部を有する支持材層が同一炭素材料からなることを特徴とする補強ペリクル膜の製造方法が包含される。
Hereinafter, a method of manufacturing the reinforced pellicle film in the case of the above (1) will be described.
In one embodiment of the present invention, a step of forming a first coating layer having a predetermined opening pattern on a carbon film thicker than a pellicle film, and a step of laminating a second coating layer on each of the carbon film and the first coating layer Removing both the first coating layer and the second coating layer laminated on the first coating layer from the carbon film while leaving the second coating layer laminated on the carbon film, carbon from the second coating layer forming surface side A pellicle comprising a carbon film, comprising: a step of starting etching for removing the film in the thickness direction, a step of terminating the etching after the support material layer is exposed from the carbon film, and a step of removing the second coating layer. A method for producing a reinforced pellicle membrane, wherein the membrane and a support material layer having a plurality of openings formed on one or both sides of the pellicle membrane are made of the same carbon material is included.
 当該方法は、第二被覆層を炭素膜上に形成し、第二被覆層の凹凸形状面から炭素膜をエッチングし、第二被覆層を残しつつ炭素膜から支持材層を露出させ、第二被覆層を除去して炭素膜からペリクル膜と支持材層を一体として形成する方法である。 The method includes forming a second coating layer on the carbon film, etching the carbon film from the uneven surface of the second coating layer, exposing the support material layer from the carbon film while leaving the second coating layer, In this method, the pellicle film and the support material layer are integrally formed from the carbon film by removing the coating layer.
 第一被覆層は、第二被覆層形成後に容易に除去される観点から、レジストから構成されることが好ましく、より好ましくはポジ型フォトレジストまたはネガ型フォトレジストから構成される。
 第一被覆層の形状パターンは、開口部に第二被覆層が積層され、この第二被覆層が支持材層の線幅、形状となるようにすればよい。
The first coating layer is preferably made of a resist from the viewpoint of being easily removed after the formation of the second coating layer, and is more preferably made of a positive photoresist or a negative photoresist.
The shape pattern of the first coating layer may be such that the second coating layer is laminated on the opening, and the second coating layer has the line width and shape of the support material layer.
 第二被覆層は、エッチングの強度を調節する観点から、金属から構成されることが好ましく、より好ましくはアルミニウムから構成される。第二被覆層は、蒸着、スパッタリング等により形成されてもよい。
 第二被覆層を形成した場合、炭素膜上に、第二被覆層が積層された部分と、第一被覆層と第二被覆層が積層された部分が存在することになる。
The second coating layer is preferably made of a metal, and more preferably made of aluminum, from the viewpoint of adjusting the etching strength. The second coating layer may be formed by vapor deposition, sputtering, or the like.
When the second coating layer is formed, a portion where the second coating layer is stacked and a portion where the first coating layer and the second coating layer are stacked exist on the carbon film.
 第一被覆層及び第一被覆層に積層した第二被覆層の両方は、通常のレジストを除去する手段(例えばアルカリ溶液、オゾン溶液)を用いることにより、除去することが可能である。
 エッチングは、炭素膜の片面(例えば第二被覆層形成面)又は両面(例えば第二被覆層形成面及び第二被覆層非形成面)に対して行われることが好ましく、炭素膜の厚さを調節する観点から、炭素膜の両面に対して行なわれることがより好ましい。
 エッチング後に、第二被覆層は、加熱時の補強ペリクル膜の破損を防止する観点から、酸(好ましくは塩酸、硫酸、硝酸等の無機酸)で除去されることが好ましい。
Both the first coating layer and the second coating layer laminated on the first coating layer can be removed by using ordinary means for removing a resist (for example, an alkaline solution or an ozone solution).
The etching is preferably performed on one surface (for example, the surface on which the second coating layer is formed) or both surfaces (for example, the surface on which the second coating layer is formed and the surface on which the second coating layer is not formed) of the carbon film. From the viewpoint of adjustment, it is more preferable that the adjustment is performed on both surfaces of the carbon film.
After the etching, the second coating layer is preferably removed with an acid (preferably, an inorganic acid such as hydrochloric acid, sulfuric acid, and nitric acid) from the viewpoint of preventing damage to the reinforcing pellicle film during heating.
 第二被覆層を構成する凸部は、エッチング後の支持材層の開口部を構成する凸部に対応することが好ましく、第二被覆層を構成する凹部は、エッチング後の支持材層の開口部を構成する凹部に対応することが好ましい。当該凹部の底面は、炭素膜(ペリクル膜)の表面部であってもよい。
 この様にすることで、炭素膜(A)から構成されるペリクル膜と、このペリクル膜の片面又は両面に形成された複数の開口部を有する支持材層(B)とを備える補強ペリクル膜を形成することができる。また、ペリクル膜と支持材層を一体として形成することができる。
The projections forming the second coating layer preferably correspond to the projections forming the opening of the support material layer after etching, and the recesses forming the second coating layer preferably correspond to the opening of the support material layer after etching. It is preferable to correspond to the concave portion constituting the portion. The bottom surface of the concave portion may be a surface portion of a carbon film (pellicle film).
By doing so, the reinforcing pellicle film including the pellicle film composed of the carbon film (A) and the support material layer (B) having a plurality of openings formed on one or both surfaces of the pellicle film is obtained. Can be formed. Further, the pellicle film and the support material layer can be integrally formed.
 次に前記(2)である場合の補強ペリクル膜の製造方法について説明する。
 本発明の別態様には、ペリクル膜より厚い炭素膜上に、所定の開口パターンを有する被覆層を形成する工程、被覆層形成面側から被覆層と炭素膜の両方を厚さ方向に削除するエッチングを開始する工程、及び少なくとも被覆層下の炭素膜が露出した後、エッチングを終了する工程を含み、炭素膜から構成されるペリクル膜とこのペリクル膜の片面又は両面に形成される複数の開口部を有する支持材層が同一炭素材料からなることを特徴とする補強ペリクル膜の製造方法が包含される。
Next, a method of manufacturing the reinforced pellicle film in the case of the above (2) will be described.
In another aspect of the present invention, a step of forming a coating layer having a predetermined opening pattern on a carbon film thicker than a pellicle film, removing both the coating layer and the carbon film in the thickness direction from the coating layer forming surface side A step of initiating the etching, and a step of terminating the etching after at least the carbon film under the coating layer is exposed, and a pellicle film composed of a carbon film and a plurality of openings formed on one or both surfaces of the pellicle film The method for producing a reinforced pellicle membrane, wherein the support material layer having the portion is made of the same carbon material, is included.
 本発明の製造方法は、炭素膜上に被覆層により凹凸形状を形成し、形成された凹凸形状面からエッチングし、被覆層が除去されるまで、或いは被覆層及び炭素膜の一部が除去されるまで、炭素膜を露出させ、炭素膜からペリクル膜と支持材層を同時に形成する方法であることが好ましい。被覆層を構成する凸部は、エッチング後の支持材層の開口部を構成する凸部に対応することが好ましく、被覆層を構成する凹部は、エッチング後の支持材層の開口部を構成する凹部に対応することが好ましい。当該凹部の底面は、炭素膜(ペリクル膜)の表面部であってもよい。
 この様にすることで、炭素膜(A)から構成されるペリクル膜と、このペリクル膜の片面又は両面に形成された複数の開口部を有する支持材層(B)とを備える補強ペリクル膜を形成することができる。また、接着層又は接合層を介することなくペリクル膜と支持材層を一体として形成することができる。
In the production method of the present invention, an uneven shape is formed by a coating layer on a carbon film, and etching is performed from the formed uneven surface, until the coating layer is removed, or a part of the coating layer and the carbon film are removed. Until the carbon film is exposed, and the pellicle film and the support material layer are simultaneously formed from the carbon film. The protrusions forming the covering layer preferably correspond to the protrusions forming the opening of the support material layer after etching, and the recesses forming the coating layer form the openings of the support material layer after etching. Preferably, it corresponds to the recess. The bottom surface of the concave portion may be a surface portion of a carbon film (pellicle film).
By doing so, the reinforcing pellicle film including the pellicle film composed of the carbon film (A) and the support material layer (B) having a plurality of openings formed on one or both surfaces of the pellicle film is obtained. Can be formed. Further, the pellicle film and the support material layer can be integrally formed without the interposition of an adhesive layer or a bonding layer.
 本発明の補強ペリクル膜の製造方法を説明するための概略フロー図を、図1((a)、(b)、(c1)、(d)、(e1)、(e2)、(f1)、(f2))に示す。このフロー図は、前記(1)である場合の補強ペリクル膜の製造方法に相当する。
 最初に、ペリクル膜より厚い炭素膜上に、所定の開口パターンを有する第一被覆層を形成する工程を図1(a)~(c1)により説明する。
FIGS. 1 (a), (b), (c1), (d), (e1), (e2), (f1), and (2) are schematic flow charts for explaining a method for producing a reinforced pellicle membrane of the present invention. (F2)). This flowchart corresponds to the method of manufacturing the reinforced pellicle film in the case of the above (1).
First, a step of forming a first coating layer having a predetermined opening pattern on a carbon film thicker than a pellicle film will be described with reference to FIGS. 1 (a) to (c1).
 図1(a)では、補強ペリクル膜の材料となる所定の炭素膜1aを製造する。炭素膜原料としては、公知の炭化原料が使用でき、好ましくは上述した芳香族ポリイミドを使用する。
 炭素膜原料は炭素化温度(芳香族ポリイミドの場合は、例えば、900~2000℃程度)で加熱することで炭素質膜を得る。
 次に、得られた炭素質膜をグラファイト化温度(例えば、2000℃超3300℃以下)で処理し、グラファイト膜を得る。
 このグラファイト膜は、炭素膜原料をグラファイト化温度で処理することで直接製造することも可能である。
 なお炭素膜の種類によっては、蒸着法やスパッタリング法によって直接形成することも可能である。炭素膜1aの厚さは、エッチング後の炭素膜1a’又は1bの厚さより厚ければよく、例えば500nm~5μm、好ましくは700nm~3μm、より好ましくは900nm~1.5μmである。
In FIG. 1A, a predetermined carbon film 1a serving as a material of a reinforcing pellicle film is manufactured. As the carbon film raw material, a known carbonized raw material can be used, and the above-described aromatic polyimide is preferably used.
The carbonaceous film is obtained by heating the carbon film material at a carbonization temperature (for example, about 900 to 2000 ° C. in the case of an aromatic polyimide).
Next, the obtained carbonaceous film is treated at a graphitization temperature (for example, higher than 2000 ° C. and 3300 ° C. or lower) to obtain a graphite film.
This graphite film can also be directly produced by treating a carbon film raw material at a graphitization temperature.
Note that, depending on the type of the carbon film, it can be directly formed by a vapor deposition method or a sputtering method. The thickness of the carbon film 1a may be larger than the thickness of the etched carbon film 1a 'or 1b, and is, for example, 500 nm to 5 μm, preferably 700 nm to 3 μm, and more preferably 900 nm to 1.5 μm.
 図1(b)では、得られた炭素膜1aの片側面に第一被覆層2aを積層して積層体Aを作製する。
 第一被覆層2aは、レジストを塗布して形成される層でもよく、インプリントに適した樹脂層等であってもよい。
 第一被覆層2aは、簡便な操作で凹凸形状を形成する観点から、フォトレジスト層であることが好ましい。
 フォトレジストは、ポジ型フォトレジスト又はネガ型フォトレジストのいずれであってもよい。
 第一被覆層2aの厚さは、例えば1~12μm、好ましくは2~9μm、より好ましくは3~6μmである。
In FIG. 1B, a first coating layer 2a is laminated on one side surface of the obtained carbon film 1a to produce a laminate A.
The first coating layer 2a may be a layer formed by applying a resist, or may be a resin layer or the like suitable for imprint.
The first coating layer 2a is preferably a photoresist layer from the viewpoint of forming an uneven shape by a simple operation.
The photoresist may be either a positive photoresist or a negative photoresist.
The thickness of the first coating layer 2a is, for example, 1 to 12 μm, preferably 2 to 9 μm, and more preferably 3 to 6 μm.
 図1(c1)では、この第一被覆層2aから所定のパターンを有する第一被覆層2bを形成して、炭素膜1aと第一被覆層2bの積層体Bを得る。第一被覆層2bの開口部は、凸部と凹部から構成され、凹部は、第二被覆層3を形成するための部分となってもよい。
 フォトレジストの露光、溶解、洗浄は、従来公知の方法を採用することができる。
In FIG. 1 (c1), a first coating layer 2b having a predetermined pattern is formed from the first coating layer 2a to obtain a laminate B of the carbon film 1a and the first coating layer 2b. The opening of the first coating layer 2b is composed of a convex portion and a concave portion, and the concave portion may be a portion for forming the second coating layer 3.
For the exposure, dissolution, and washing of the photoresist, conventionally known methods can be employed.
 第一被覆層2bのパターン形状は、後述する様に、エッチング後の複数の開口部を有する支持材層が備えるパターン形状と逆であればよい。
 第一被覆層2bの厚さは、第一被覆層2aの厚さと同様であってもよい。
 第一被覆層2bを構成する個々の凸部が四角形である場合、凸部の線幅は、例えば0.5~10μm、好ましくは1~7μm、より好ましくは2~5μmである。
 第一被覆層2bを構成する個々の凸部が四角形である場合、凸部の周期(凸部開始点と隣の凸部開始点間の長さ)は、例えば10~5000μm、より好ましくは50~4000μm、さらに好ましくは100~3000μmである。
The pattern shape of the first coating layer 2b may be reverse to the pattern shape of the support material layer having a plurality of openings after etching, as described later.
The thickness of the first coating layer 2b may be the same as the thickness of the first coating layer 2a.
When the individual protrusions forming the first coating layer 2b are square, the line width of the protrusions is, for example, 0.5 to 10 μm, preferably 1 to 7 μm, and more preferably 2 to 5 μm.
When the individual protrusions forming the first coating layer 2b are quadrangular, the period of the protrusions (the length between the start of the protrusion and the start of the adjacent protrusion) is, for example, 10 to 5000 μm, and more preferably 50 to 5000 μm. ~ 4000 μm, more preferably 100-3000 μm.
 図1(c1)で得られた積層体Bについて、炭素膜1a及び第一被覆層2bのそれぞれに第二被覆層3を積層して積層体Cを作製する(図1(d))。
 第二被覆層3は、エッチングを調節する層として機能することができる層であればよく、金属から構成されることが好ましく、アルミニウムから構成されることがより好ましい。
 第二被覆層3は、蒸着(好ましくは真空蒸着)により積層してもよい。第二被覆層3は、炭素膜及び炭素膜に積層される第一被覆層2bの凹凸形状全体に積層されることが好ましく、第二被覆層3の厚さは、例えば0.5~50nm、好ましくは1~30nm、より好ましくは1~10nmである。第二被覆層3の線幅は、例えば0.5~10μm、好ましくは1~7μm、より好ましくは2~5μmである。
With respect to the laminate B obtained in FIG. 1 (c1), the second coating layer 3 is laminated on each of the carbon film 1a and the first coating layer 2b to produce a laminate C (FIG. 1 (d)).
The second coating layer 3 may be any layer that can function as a layer that controls etching, and is preferably made of a metal, and more preferably made of aluminum.
The second coating layer 3 may be laminated by vapor deposition (preferably, vacuum vapor deposition). The second coating layer 3 is preferably stacked over the entire irregularities of the carbon film and the first coating layer 2b stacked on the carbon film. The thickness of the second coating layer 3 is, for example, 0.5 to 50 nm. Preferably it is 1 to 30 nm, more preferably 1 to 10 nm. The line width of the second coating layer 3 is, for example, 0.5 to 10 μm, preferably 1 to 7 μm, and more preferably 2 to 5 μm.
 図1(d)で得られた積層体Cについて、炭素膜1aに積層された第二被覆層3を残しつつ、第一被覆層2b及び第一被覆層2bに積層した第二被覆層3の両方を炭素膜1aから除去して積層体Dを得る(図1(e1))。
 当該工程は、第一被覆層のレジストを除去する手段を行えばよく、レジストを除去する溶液(例えばアルカリ溶液、オゾン溶液)を積層体Cに塗布することが好ましい。
With respect to the laminate C obtained in FIG. 1D, the second coating layer 3 laminated on the first coating layer 2b and the first coating layer 2b while leaving the second coating layer 3 laminated on the carbon film 1a. Both are removed from the carbon film 1a to obtain a laminate D (FIG. 1 (e1)).
In this step, means for removing the resist of the first coating layer may be performed, and it is preferable to apply a solution for removing the resist (for example, an alkaline solution or an ozone solution) to the laminate C.
 当該方法において、第一被覆層2bが存在する部分(第一被覆層2bを構成する凸部ともいう)は、エッチング後の支持材層4の開口部5を構成する凹部に対応し(当該凹部は、エッチング後の炭素膜(ペリクル膜)1a’又は1bの表面部(露出部)でもあってもよい)、第一被覆層2bが存在しない部分(第一被覆層2bを構成する凹部ともいう)は、第二被覆層3を炭素膜1a上に積層する部分であってもよく、エッチング後の支持材層4の開口部5を構成する凸部に対応してもよい。また、第二被覆層3が存在する部分(第二被覆層3を構成する凸部)、第二被覆層3が存在しない部分(第二被覆層3を構成する凹部)は、エッチング前の炭素膜1a全体に亘って存在することが好ましい。 In the method, a portion where the first coating layer 2b exists (also referred to as a convex portion forming the first coating layer 2b) corresponds to a concave portion forming the opening 5 of the support material layer 4 after the etching (the concave portion). May be the surface portion (exposed portion) of the etched carbon film (pellicle film) 1a 'or 1b) or a portion where the first coating layer 2b does not exist (also referred to as a concave portion forming the first coating layer 2b). ) May be a portion where the second coating layer 3 is laminated on the carbon film 1a, and may correspond to a convex portion forming the opening 5 of the support material layer 4 after etching. In addition, the portion where the second coating layer 3 exists (the convex portion forming the second coating layer 3) and the portion where the second coating layer 3 does not exist (the concave portion forming the second coating layer 3) are formed of carbon before etching. Preferably, it is present over the entire film 1a.
 次に、積層体Dについて、第二被覆層形成面側から炭素膜1aを厚さ方向に削除するエッチングを開始する(図1(e2))。
 このエッチングにより、第二被覆層3を残したまま、炭素膜1aと同一材料からなる支持材層4を形成し、支持材層4、開口部5を有する炭素膜1a’が作製される(積層体E)。
Next, etching for removing the carbon film 1a in the thickness direction from the second coating layer forming surface side of the laminate D is started (FIG. 1 (e2)).
By this etching, the support material layer 4 made of the same material as the carbon film 1a is formed while leaving the second coating layer 3, and the carbon film 1a 'having the support material layer 4 and the opening 5 is formed. Body E).
 エッチングは、第二被覆層形成面側から炭素膜1aの一部(好適には炭素膜厚さ全体の好ましくは20%以上、より好ましくは40%以上、さらに好ましくは60%以上、さらにより好ましくは80%以上)を厚さ方向に削除して支持材層4を露出するように行うことがより好ましい。 In the etching, a part of the carbon film 1a (preferably at least 20%, more preferably at least 40%, still more preferably at least 60%, even more preferably at least part of the carbon film thickness from the second coating layer forming surface side) (80% or more) in the thickness direction to remove the support material layer 4.
 エッチングは、ウエットエッチング又はドライエッチングであってもよく、より精密なパターンを制御する観点から、ドライエッチングであることが好ましい。ドライエッチングは従来公知の条件を採用することができる。
 温度は、例えば0℃~40℃、好ましくは10℃~30℃である。
 ガス圧力は、例えば1~100Pa、好ましくは10~50Paである。
 エッチングガスは、例えばO2、H2、N2、Ar、CF4、Cl2、H2O等である。また混合ガスであってもよい。
 エッチングガスの流量は、例えば5~1000sccm、好ましくは10~700sccmである。
 エッチング時間は、例えば0.1~10時間、好ましくは0.2~5時間である。
 エッチング装置は、例えば反応性イオンエッチング装置(サムコ社製RIE-10NR)を使用することができる。
The etching may be wet etching or dry etching, and is preferably dry etching from the viewpoint of controlling a more precise pattern. For dry etching, conventionally known conditions can be adopted.
The temperature is, for example, 0 ° C to 40 ° C, preferably 10 ° C to 30 ° C.
The gas pressure is, for example, 1 to 100 Pa, preferably 10 to 50 Pa.
The etching gas is, for example, O 2 , H 2 , N 2 , Ar, CF 4 , Cl 2 , H 2 O, or the like. Further, it may be a mixed gas.
The flow rate of the etching gas is, for example, 5 to 1000 sccm, preferably 10 to 700 sccm.
The etching time is, for example, 0.1 to 10 hours, preferably 0.2 to 5 hours.
As the etching apparatus, for example, a reactive ion etching apparatus (RIE-10NR manufactured by Samco) can be used.
 エッチングは、炭素膜1aの片面(例えば第二被覆層形成面)又は両面(第二被覆層形成面及び第二被覆層非形成面)に対して行われることが好ましい。炭素膜1aの片面をエッチングする場合、第二被覆層3形成面に対してエッチングすればよい。
 炭素膜1aの両面をエッチングする場合、第二被覆層3非形成面からのエッチングは、後述する第二被覆層3を除去する前または除去した後に行ってもよい。片面をエッチングした炭素膜1a’は、第二被覆層3非形成面からエッチングして、炭素膜1bとすることが好ましい(図1(f2))。炭素膜両面をエッチングすると、EUV透過率の観点から、炭素膜1bの厚さを適切に調節することが可能となる。
The etching is preferably performed on one surface (for example, the surface on which the second coating layer is formed) or both surfaces (the surface on which the second coating layer is formed and the surface on which the second coating layer is not formed) of the carbon film 1a. When one surface of the carbon film 1a is etched, the surface on which the second coating layer 3 is formed may be etched.
When etching both surfaces of the carbon film 1a, the etching from the surface on which the second coating layer 3 is not formed may be performed before or after removing the second coating layer 3 described later. It is preferable that the carbon film 1a 'having one surface etched is etched from the surface on which the second coating layer 3 is not formed to form a carbon film 1b (FIG. 1 (f2)). By etching both surfaces of the carbon film, it is possible to appropriately adjust the thickness of the carbon film 1b from the viewpoint of EUV transmittance.
 積層体Eについて、支持材層4から第二被覆層3を除去する(図1(f1))。
 第二被覆層3は、加熱時の補強ペリクル膜の破損を防止する観点から、酸で除去されることが好ましく、酸は、塩酸、硫酸、硝酸等の無機酸であることが好ましい。
 酸の濃度は、酸溶液100質量%中、例えば0.1~30質量%、好ましくは1~20質量%である。
For the laminate E, the second coating layer 3 is removed from the support material layer 4 (FIG. 1 (f1)).
The second coating layer 3 is preferably removed with an acid from the viewpoint of preventing damage to the reinforcing pellicle film during heating, and the acid is preferably an inorganic acid such as hydrochloric acid, sulfuric acid, and nitric acid.
The concentration of the acid is, for example, 0.1 to 30% by mass, preferably 1 to 20% by mass in 100% by mass of the acid solution.
 本発明の補強ペリクル膜の製造方法を説明するための概略フロー図を図1((a)、(b)、(c2)、(f1)、(f2))に示す。当該フロー図は、前記(2)である場合の補強ペリクル膜の製造方法に相当する。まず、ペリクル膜より厚い炭素膜上に、所定の開口パターンを有する被覆層を形成する工程を図1(a)~(c2)により説明する。 FIG. 1 (a), (b), (c2), (f1), and (f2)) are schematic flow charts for explaining a method for producing a reinforced pellicle film of the present invention. The flowchart corresponds to the method for manufacturing a reinforced pellicle film in the case of the above (2). First, a step of forming a coating layer having a predetermined opening pattern on a carbon film thicker than a pellicle film will be described with reference to FIGS. 1 (a) to (c2).
 図1(a)、(b)は上述した通りである。図1(c2)では、第一被覆層2aは、エッチング後の支持材層が所定の開口部を有するように、所定のパターンが形成された第一被覆層2bを炭素膜1a上に積層した積層体Fを得る。
 第一被覆層2aの材料等は上記と同様である。パターン形状は、上述した通り、フォトレジストの露光、溶解、洗浄を適切に行って形成すればよい。
1A and 1B are as described above. In FIG. 1 (c2), the first coating layer 2b is formed by laminating a first coating layer 2b having a predetermined pattern on the carbon film 1a so that the support material layer after etching has a predetermined opening. A laminate F is obtained.
The material of the first coating layer 2a is the same as described above. As described above, the pattern shape may be formed by appropriately exposing, dissolving, and washing the photoresist.
 第一被覆層2bのパターン形状は、後述するエッチング後の複数の開口部を有する支持材層と炭素膜が備えるパターン形状に対応していればよい。
 第一被覆層2bの厚さは、第一被覆層2aの厚さと同様であってもよい。
 第一被覆層2bを構成する個々の凸部が四角形である場合、凸部の線幅は、例えば0.5~10μm、好ましくは1~7μm、より好ましくは2~5μmである。
 第一被覆層2bを構成する個々の凸部が四角形である場合、凸部の周期(凸部開始点と隣の凸部開始点間の長さ)は、例えば10~5000μm、より好ましくは50~4000μm、さらに好ましくは100~3000μmである。
The pattern shape of the first coating layer 2b only needs to correspond to the pattern shape of the carbon material and the support material layer having a plurality of openings after etching, which will be described later.
The thickness of the first coating layer 2b may be the same as the thickness of the first coating layer 2a.
When the individual protrusions forming the first coating layer 2b are square, the line width of the protrusions is, for example, 0.5 to 10 μm, preferably 1 to 7 μm, and more preferably 2 to 5 μm.
When the individual protrusions forming the first coating layer 2b are quadrangular, the period of the protrusions (the length between the start of the protrusion and the start of the adjacent protrusion) is, for example, 10 to 5000 μm, and more preferably 50 to 5000 μm. ~ 4000 μm, more preferably 100-3000 μm.
 当該方法において、エッチング前の第一被覆層2bとエッチング後の支持材層4や炭素膜1a’又は1bとの位置関係は以下の通りとなる。
 例えば、第一被覆層2bが存在する部分(第一被覆層2bを構成する凸部ともいう)は、エッチング後の支持材層4の開口部5を構成する凸部に対応し、第一被覆層2bが存在しない部分(第一被覆層2bを構成する凹部ともいう)は、エッチング後の支持材層4の開口部5を構成する凹部に対応してもよい(当該凹部は、エッチング後の炭素膜(ペリクル膜)1a’又は1bの表面部(露出部)でもあってもよい)。また、第一被覆層2bが存在する部分(第一被覆層2bを構成する凸部)、第一被覆層2bが存在しない部分(第一被覆層2bを構成する凹部)は、エッチング前の炭素膜1a全体に亘って存在することが好ましい。
In this method, the positional relationship between the first coating layer 2b before the etching and the support material layer 4 or the carbon film 1a 'or 1b after the etching is as follows.
For example, a portion where the first coating layer 2b exists (also referred to as a convex portion forming the first coating layer 2b) corresponds to a convex portion forming the opening 5 of the support material layer 4 after the etching, and The portion where the layer 2b does not exist (also referred to as the concave portion forming the first coating layer 2b) may correspond to the concave portion forming the opening 5 of the support material layer 4 after the etching (the concave portion is a portion after the etching). It may be a surface portion (exposed portion) of the carbon film (pellicle film) 1a 'or 1b). In addition, the portion where the first coating layer 2b exists (the convex portion forming the first coating layer 2b) and the portion where the first coating layer 2b does not exist (the concave portion forming the first coating layer 2b) are formed of carbon before etching. Preferably, it is present over the entire film 1a.
 次に、第一被覆層形成面側から第一被覆層と炭素膜の両方を厚さ方向に削除するエッチングを開始する(図1(f1))。 (4) Next, etching is started to remove both the first coating layer and the carbon film in the thickness direction from the first coating layer forming surface side (FIG. 1 (f1)).
 エッチングは、第一被覆層形成面側から第一被覆層2bと炭素膜1aの両方を厚さ方向に削除するように行うことが好ましく、第一被覆層形成面側から第一被覆層2bを完全に削除するように行うことがより好ましく、第一被覆層形成面側から第一被覆層2bを厚さ方向に完全に削除し、かつ炭素膜1aの一部を厚さ方向に削除することがさらに好ましい。エッチングの条件等は上記と同様であればよい。 The etching is preferably performed so as to remove both the first coating layer 2b and the carbon film 1a in the thickness direction from the first coating layer forming surface side, and the first coating layer 2b from the first coating layer forming surface side. More preferably, the first coating layer 2b is completely removed in the thickness direction from the first coating layer forming surface side, and a part of the carbon film 1a is removed in the thickness direction. Is more preferred. Etching conditions may be the same as described above.
 更に、少なくとも第一被覆層下の炭素膜が露出した後、エッチングを終了する。
 エッチングは、少なくとも第一被覆層2b下の炭素膜1aを露出するまで行うことが好ましく、この様にすれば、第一被覆層2bを構成する凸部は、支持材層4の開口部5を構成する凸部となり、第一被覆層2bを構成する凹部は、支持材層4の開口部5を構成する凹部とすることができる(当該凹部は炭素膜1a’又は1bの表面部(露出部)とすることができる)。
Further, after at least the carbon film under the first coating layer is exposed, the etching is terminated.
The etching is preferably performed at least until the carbon film 1a under the first coating layer 2b is exposed. In this case, the projections forming the first coating layer 2b are formed in the openings 5 of the support material layer 4. The concave portion forming the first covering layer 2b may be a concave portion forming the opening 5 of the support material layer 4 (the concave portion may be a surface portion (exposed portion) of the carbon film 1a 'or 1b. )).
 エッチングは、炭素膜1aの片面又は両面に対して行われることが好ましい。炭素膜1aの片面をエッチングする場合、第一被覆層2b形成面に対してエッチングすればよい。
 炭素膜1aの両面をエッチングする場合、EUV透過率の観点から、炭素膜1bの厚さを適切に調節することが可能となる。
The etching is preferably performed on one side or both sides of the carbon film 1a. When one side of the carbon film 1a is etched, the surface on which the first coating layer 2b is formed may be etched.
When etching both surfaces of the carbon film 1a, the thickness of the carbon film 1b can be appropriately adjusted from the viewpoint of EUV transmittance.
 図1(c2)で得られた積層体Fについて、第一被覆層2b上に第二被覆層3を積層して積層体Gを作製してもよい(図示せず)。
 すなわち、当該製造方法は、エッチング前に、第二被覆層3を積層する工程をさらに含むことが好ましい。かかる工程は、エッチングを適度に調節でき、所望のパターン形状を形成する為に行うことが好ましい。
 第二被覆層3は、エッチングを調節する層として機能することができる層であればよく、金属から構成されることが好ましく、アルミニウムから構成されることがより好ましい。
 第二被覆層3は、蒸着(好ましくは真空蒸着)により積層してもよい。第二被覆層3は、炭素膜1aと第一被覆層2bの凹凸形状全体に積層されることが好ましく、第二被覆層3の厚さは、例えば0.5~50nm、好ましくは1~30nm、より好ましくは1~10nmである。
Regarding the laminate F obtained in FIG. 1 (c2), the laminate G may be produced by laminating the second coating layer 3 on the first coating layer 2b (not shown).
That is, the manufacturing method preferably further includes a step of laminating the second coating layer 3 before etching. Such a step is preferably performed so that etching can be appropriately adjusted and a desired pattern shape is formed.
The second coating layer 3 may be any layer that can function as a layer that controls etching, and is preferably made of a metal, and more preferably made of aluminum.
The second coating layer 3 may be laminated by vapor deposition (preferably, vacuum vapor deposition). The second coating layer 3 is preferably laminated on the entire uneven shape of the carbon film 1a and the first coating layer 2b, and the thickness of the second coating layer 3 is, for example, 0.5 to 50 nm, preferably 1 to 30 nm. , More preferably 1 to 10 nm.
 図1(c2)で得られる積層体Fをエッチングした成形体は、本発明の補強ペリクル膜となる。他方、積層体Gをエッチングした積層体Hから第二被覆層(好ましくは金属層)を除去して本発明の補強ペリクル膜を形成することもできる。
 すなわち、当該製造方法は、エッチング後に、第二被覆層(好ましくは金属層)が酸で除去される工程をさらに含むことが好ましい。酸及び酸の濃度は、上記の通りである。
The molded body obtained by etching the laminate F obtained in FIG. 1 (c2) becomes the reinforcing pellicle film of the present invention. On the other hand, the reinforced pellicle film of the present invention can be formed by removing the second coating layer (preferably a metal layer) from the laminate H obtained by etching the laminate G.
That is, the manufacturing method preferably further includes a step of removing the second coating layer (preferably a metal layer) with an acid after the etching. The acid and the concentration of the acid are as described above.
 上記の様にして本発明の補強ペリクル膜を作製することができる。
 炭素膜1a’又は1bの厚さ(例えばエッチング後の炭素膜1a’又は1bの厚さ)は、炭素膜1aの厚さ(例えばエッチング前の炭素膜1aの厚さ)よりも薄いことが好ましく、炭素膜1aの厚さよりも10倍薄いことがより好ましく、炭素膜1aの厚さよりも50倍薄いことがさらに好ましい。
As described above, the reinforced pellicle film of the present invention can be produced.
The thickness of the carbon film 1a 'or 1b (for example, the thickness of the carbon film 1a' or 1b after etching) is preferably smaller than the thickness of the carbon film 1a (for example, the thickness of the carbon film 1a before etching). The thickness is more preferably 10 times smaller than the thickness of the carbon film 1a, and further preferably 50 times smaller than the thickness of the carbon film 1a.
 支持材層4の厚さは、上記の通りであることが好ましい。開口部5の厚さも支持材層4の厚さと同様であることが好ましい。
 炭素膜1a’又は1bの厚さ及び支持材層4の厚さを合わせた厚さは、炭素膜1aの厚さと同じ又は炭素膜1aの厚さより小さいことが好ましく、炭素膜1a’又は1bと支持材層4はいずれも炭素膜1aから作製されることが好ましい。
The thickness of the support material layer 4 is preferably as described above. The thickness of the opening 5 is preferably the same as the thickness of the support material layer 4.
The combined thickness of the carbon film 1a 'or 1b and the thickness of the support material layer 4 is preferably the same as or smaller than the thickness of the carbon film 1a. It is preferable that all the support material layers 4 are made of the carbon film 1a.
 本発明の製造方法によれば、同一炭素材料からなる炭素膜から構成されるペリクル膜と支持材層を一体として形成することができ、また、所望の開口部を有するパターンを支持材層に形成することができ、しかも支持材層及び開口部の厚さを薄くすることができることから、ペリクル膜の強度とEUV透過率を両立することが可能となる。さらに、炭素膜と支持材層が同じ炭素材料から構成され、線膨張係数の差が殆ど無い補強ペリクル膜とすることができることから、加熱時でも破損や剥離が生じない。 According to the manufacturing method of the present invention, a pellicle film composed of a carbon film made of the same carbon material and a support material layer can be integrally formed, and a pattern having a desired opening is formed on the support material layer. Since the thickness of the support material layer and the opening can be reduced, it is possible to achieve both the strength of the pellicle film and the EUV transmittance. Furthermore, since the carbon film and the support material layer are made of the same carbon material and can be a reinforced pellicle film having almost no difference in linear expansion coefficient, breakage or peeling does not occur even during heating.
 本願は、2018年7月6日に出願された日本国特許出願第2018-129345号に基づく優先権の利益を主張するものである。2018年7月6日に出願された日本国特許出願第2018-129345号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2018-129345 filed on July 6, 2018. The entire content of the specification of Japanese Patent Application No. 2018-129345 filed on July 6, 2018 is incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and it is a matter of course that the present invention can be carried out with appropriate modifications within a range that can be adapted to the spirit of the present invention described below. Included in the scope.
 下記実施例で得られた補強ペリクル膜は、以下の方法によって測定した。 補強 The reinforced pellicle film obtained in the following examples was measured by the following method.
<炭素膜(ペリクル膜)の膜厚測定方法>
 炭素膜(ペリクル膜)の膜厚(図2のt)は、炭素膜(ペリクル膜)の膜方向に対する垂直断面を用い、断面TEMによって求めた。
<Method for measuring thickness of carbon film (pellicle film)>
The thickness (t in FIG. 2) of the carbon film (pellicle film) was determined by a cross-sectional TEM using a cross section perpendicular to the film direction of the carbon film (pellicle film).
<支持材層の測定方法>
 図2に示す様に、支持材層の線幅w1、線厚w2、辺長Q(周期P)はレーザー顕微鏡による表面測定で求めた。
<Measurement method of support material layer>
As shown in FIG. 2, the line width w1, the line thickness w2, and the side length Q (period P) of the support material layer were determined by surface measurement using a laser microscope.
<表面粗さ(Sa)>
 本発明において、ペリクル膜の表面側(支持材層の無い面)の表面粗さ(Sa)は、レーザー顕微鏡で測定し、ISO 25178に基づいて算出した。レーザー顕微鏡の拡大倍率:50倍、カットオフ値(λc):80μmとした。表面粗さ(Sa)の測定位置は特に制限されないが、中心部1箇所と端部4箇所を含む複数箇所を測定し、その平均を、表面粗さ(Sa)とした。
<Surface roughness (Sa)>
In the present invention, the surface roughness (Sa) of the surface side of the pellicle film (the surface without the support material layer) was measured with a laser microscope and calculated based on ISO 25178. The magnification of the laser microscope was 50 times, and the cutoff value (λc) was 80 μm. The measurement position of the surface roughness (Sa) is not particularly limited, but a plurality of positions including one central portion and four end portions were measured, and the average was defined as the surface roughness (Sa).
<EUV透過率>
 EUV透過率(T)とグラファイト薄膜の膜厚の関係は、単層グラフェンの13.5nmの透過率(0.998)と単層グラフェンの膜厚(0.3354nm)を用いて次の式で示される。
 膜厚(nm)=Log0.998(T[%]/100)×0.3354
<EUV transmittance>
The relationship between the EUV transmittance (T) and the thickness of the graphite thin film is expressed by the following formula using the transmittance of single-layer graphene of 13.5 nm (0.998) and the thickness of single-layer graphene (0.3354 nm). Is shown.
Film thickness (nm) = Log 0.998 (T [%] / 100) × 0.3354
<耐熱性試験>
 補強ペリクル膜を真空条件下でそれぞれ500℃、1000℃、1500℃の状態で10分間保持し、その支持材層などに変化が無いかをレーザー顕微鏡や外観検査で確認した。
<Heat resistance test>
The reinforced pellicle film was held at 500 ° C., 1000 ° C., and 1500 ° C. for 10 minutes under vacuum conditions, and it was confirmed by a laser microscope and appearance inspection whether or not the support material layer had changed.
(製造例1-1:ポリイミド膜の作製)
 ピロメリット酸二無水物、4,4’-ジアミノジフェニルエーテル、p-フェニレンジアミンをモル比で2:1:1の割合で混合したポリアミド酸の17.5質量%のジメチルホルムアミド溶液を合成し、スピンコーターを用いて直径30cmのガラス基板上に流延塗布し、120℃で30分間、250℃、450℃で各10分間加熱し冷却した後に、基板から剥離し、ポリイミド膜を作製した。得られたポリイミド膜の厚さは3μmであった。
(Production Example 1-1: Preparation of polyimide film)
A 17.5% by mass dimethylformamide solution of polyamic acid prepared by mixing pyromellitic dianhydride, 4,4′-diaminodiphenyl ether and p-phenylenediamine at a molar ratio of 2: 1: 1 was synthesized. Using a coater, the solution was cast-coated on a glass substrate having a diameter of 30 cm, heated at 120 ° C. for 30 minutes, heated at 250 ° C. and 450 ° C. for 10 minutes each, cooled, and then separated from the substrate to form a polyimide film. The thickness of the obtained polyimide film was 3 μm.
(製造例2-1:グラファイト膜の作製)
 製造例1-1で得られた厚さ3μmのポリイミド膜を、黒鉛板で挟み込み、電気炉を用いて、窒素ガス雰囲気中、5℃/分の速度で950℃まで昇温し、950℃で20分間保ったのち自然冷却させ、炭素質膜を得た。得られた炭素質膜を、膜の端部に重石を設置し、張力をかけながら、アルゴンガス雰囲気中で5℃/分の速度で2800℃まで昇温し、2800℃で20分間保ったのち自然冷却させ、グラファイト膜(炭素膜1a)を得た。グラファイト膜の厚さは1μmであり、膜の表面は鏡面のようであった。
(Production Example 2-1: Production of Graphite Film)
The polyimide film having a thickness of 3 μm obtained in Production Example 1-1 was sandwiched between graphite plates, and heated to 950 ° C. at a rate of 5 ° C./min in a nitrogen gas atmosphere using an electric furnace. After holding for 20 minutes, the mixture was naturally cooled to obtain a carbonaceous film. The obtained carbonaceous film was heated at a rate of 5 ° C./min to 2800 ° C. in an argon gas atmosphere at a rate of 5 ° C./min, and kept at 2800 ° C. for 20 minutes while placing a weight on the end of the film. Natural cooling was performed to obtain a graphite film (carbon film 1a). The thickness of the graphite film was 1 μm, and the surface of the film was mirror-like.
(製造例3-1:炭素膜と支持材層が同じ炭素材料から構成される補強ペリクル膜の作製)
 10cm角に切り出したグラファイト膜(炭素膜1a)に、第一被覆層としてg線ポジ型フォトレジスト(東京応化社製OFPR-800LB)を塗布し(図1(b))、マスクアライナ(ミカサ社製MA-60F)を用いて、周期P=3000μm、線幅w1=3μm、線厚w2=5μmのパターン(格子状パターン、開口部5は正四角形)の部分を露光し、溶媒除去の熱処理を行った後に、現像・純水でのリンスを行い乾燥し、前記パターンに露光された部分の第一被覆層が除去され、露光されなかった部分の第一被覆層が残ったグラファイト膜を得た(図1(c))。露光されなかった部分の第一被覆層が残ったグラファイト膜全体に、第一被覆層形成面から真空蒸着によって第二被覆層として線幅3μm、膜厚5nmのアルミニウム層を形成した(図1(d))。なお、グラファイト膜(炭素膜1a)と直接接触しているアルミニウム層は、次のドライエッチング工程のマスクとなる。その後レジスト除去液を用いて、フォトレジストとフォトレジストを被覆しているアルミニウム層を除去し、グラファイト膜(炭素膜1a)上に直接形成しているアルミニウム層のみを残した(図1(e1))。
(Production Example 3-1: Preparation of Reinforced Pellicle Membrane in Which Carbon Film and Supporting Material Layer are Made of Same Carbon Material)
A g-line positive type photoresist (OFPR-800LB manufactured by Tokyo Ohka Co., Ltd.) is applied as a first coating layer to a graphite film (carbon film 1a) cut into a 10 cm square (FIG. 1B), and a mask aligner (Mikasa Corporation) (MA-60F), a pattern (lattice pattern, opening 5 is a square) with a period P = 3000 μm, a line width w1 = 3 μm, and a line thickness w2 = 5 μm is exposed, and a heat treatment for solvent removal is performed. After performing, rinsing with development / pure water and drying were performed, and the first coating layer of the portion exposed to the pattern was removed to obtain a graphite film in which the first coating layer of the unexposed portion remained. (FIG. 1 (c)). An aluminum layer having a line width of 3 μm and a film thickness of 5 nm was formed as a second coating layer by vacuum evaporation from the surface on which the first coating layer was formed on the entire graphite film on which the first coating layer in the unexposed portion remained (FIG. 1 ( d)). The aluminum layer in direct contact with the graphite film (carbon film 1a) serves as a mask in the next dry etching step. Thereafter, using a resist removing solution, the photoresist and the aluminum layer covering the photoresist were removed, leaving only the aluminum layer directly formed on the graphite film (carbon film 1a) (FIG. 1 (e1)). ).
 その後、反応性イオンエッチング装置(サムコ社製RIE-10NR)を用いて第二被覆層形成面からドライエッチングした。RF出力50W、プロセスガス(酸素ガス)流量100sccm、ガス圧力10Pa、処理時間9分の条件で、周期P=3000μm、線幅w1=3μmのパターン(格子状パターン、開口部5は正四角形)とし、かつ50nmの線厚w2を形成し、支持材層4及び開口部5を炭素膜1a’上に形成した(図1(e2))。その後、10%塩酸を用いてアルミニウム層を除去した(図1(f1))。この積層体を裏返し、RF出力100W、プロセスガス(酸素ガス)流量100sccm、ガス圧力20Pa、処理時間28.5分の条件で支持材層非形成面側からドライエッチング処理を行い(図1(f2))、グラファイト膜である炭素膜1b(ペリクル膜)が厚さ10nmであり、支持材層4がグラファイト膜からなり、格子状パターンとして開口部5が正四角形であり、周期P=3000μm、線幅w1=3μm、線厚w2=50nm、目開きL=2997μm、メッシュ比D(B)0.999である補強ペリクル膜を作製した。炭素膜(ペリクル膜)の厚さは断面TEMで、支持材層の周期P、線幅w1、線厚w2はレーザー顕微鏡によって測定した。この補強ペリクル膜の開口率は99.8%であった。またSaは90nmであった。炭素膜1bの厚さから、EUV透過率は55%と求められた。また500℃、1000℃、1500℃での耐熱性試験後も、補強ペリクル膜の構造に変化は見られず、また破損等も見られなかった。 Thereafter, dry etching was performed from the surface on which the second coating layer was formed using a reactive ion etching apparatus (RIE-10NR manufactured by Samco). Under the conditions of an RF output of 50 W, a process gas (oxygen gas) flow rate of 100 sccm, a gas pressure of 10 Pa, and a processing time of 9 minutes, a pattern with a period P = 3000 μm and a line width w1 = 3 μm (a lattice pattern, the opening 5 is a square). Then, a line thickness w2 of 50 nm was formed, and the support material layer 4 and the opening 5 were formed on the carbon film 1a '(FIG. 1 (e2)). Thereafter, the aluminum layer was removed using 10% hydrochloric acid (FIG. 1 (f1)). This laminate was turned upside down and dry-etched from the side where the support material layer was not formed under the conditions of an RF output of 100 W, a process gas (oxygen gas) flow rate of 100 sccm, a gas pressure of 20 Pa, and a processing time of 28.5 minutes (FIG. )), The carbon film 1b (pellicle film), which is a graphite film, has a thickness of 10 nm, the support material layer 4 is made of a graphite film, the openings 5 are formed in a grid pattern, the openings 5 are square, the period P = 3000 μm, and the line is A reinforced pellicle membrane having a width w1 = 3 μm, a line thickness w2 = 50 nm, an aperture L = 2997 μm, and a mesh ratio D (B) of 0.999 was produced. The thickness of the carbon film (pellicle film) was measured by a cross-sectional TEM, and the period P, line width w1, and line thickness w2 of the support material layer were measured by a laser microscope. The aperture ratio of this reinforced pellicle film was 99.8%. Sa was 90 nm. The EUV transmittance was determined to be 55% from the thickness of the carbon film 1b. Further, even after the heat resistance test at 500 ° C., 1000 ° C., and 1500 ° C., no change was observed in the structure of the reinforcing pellicle film, and no damage was observed.
(製造例3-2:炭素膜と支持材層が異なる材料から構成される補強ペリクル膜の作製)
 10cm角に切り出したグラファイト膜に、第一被覆層としてg線ポジ型フォトレジスト(東京応化社製OFPR-800LB)を塗布し、マスクアライナ(ミカサ社製MA-60F)を用いて、周期P=3000μm、線幅w1=3μm、線厚w2=5μmのパターン(格子状パターン、開口部は正四角形)を露光し、溶媒除去の熱処理を行った後に、現像・純水でのリンスを行い乾燥した。このグラファイト膜と第一被覆層の積層体に対して、第一被覆層形成面から真空蒸着によって第二被覆層として膜厚5nmのアルミニウム層を形成した。その後レジスト除去液を用いて、フォトレジストとフォトレジストを被覆したアルミニウム層を除去し、グラファイト膜(炭素膜1a)上に直接形成したアルミニウム層のみを残した(図1(e1))。
(Production Example 3-2: Production of Reinforced Pellicle Film in Which Carbon Film and Supporting Material Layer are Made of Different Materials)
A g-line positive type photoresist (OFPR-800LB manufactured by Tokyo Ohka Co., Ltd.) is applied as a first coating layer to a graphite film cut into a square of 10 cm, and a period P = is applied using a mask aligner (MA-60F manufactured by Mikasa). After exposing a pattern (lattice pattern, opening is a regular square) of 3000 μm, line width w1 = 3 μm, and line thickness w2 = 5 μm, and performing a heat treatment for solvent removal, development, rinsing with pure water and drying. . An aluminum layer having a thickness of 5 nm was formed as a second coating layer on the laminate of the graphite film and the first coating layer by vacuum deposition from the surface on which the first coating layer was formed. Thereafter, the photoresist and the aluminum layer coated with the photoresist were removed using a resist removing solution, leaving only the aluminum layer directly formed on the graphite film (carbon film 1a) (FIG. 1 (e1)).
 その後、積層体を裏返し、反応性イオンエッチング装置(サムコ社製RIE-10NR)を用いてドライエッチングした。RF出力100W、プロセスガス(酸素ガス)流量100sccm、ガス圧力20Pa、処理時間28.5分の条件で第二被覆層非形成面側からドライエッチング処理を行い、グラファイト膜である炭素膜(ペリクル膜)が厚さ10nmであり、支持材層がアルミニウムからなり、格子状パターンとして開口部が正四角形であり、周期P=3000μm、線幅w1=3μm、線厚w2=50nmである補強ペリクル膜を作製した。炭素膜(ペリクル膜)の厚さは断面TEMで、支持材層の周期P、線幅w1、線厚w2はレーザー顕微鏡によって測定した。この補強ペリクル膜の開口率は99.8%であった。またSaは90nmであった。炭素膜1bの厚さから、EUV透過率は94%と求められた。 (5) Thereafter, the laminate was turned over and dry-etched using a reactive ion etching apparatus (RIE-10NR manufactured by Samco). A dry etching process is performed from the side where the second coating layer is not formed under the conditions of an RF output of 100 W, a flow rate of a process gas (oxygen gas) of 100 sccm, a gas pressure of 20 Pa, and a processing time of 28.5 minutes, and a carbon film (pellicle film) which is a graphite film ) Has a thickness of 10 nm, the support material layer is made of aluminum, the opening is a square in a lattice pattern, the period P = 3000 μm, the line width w1 = 3 μm, and the line thickness w2 = 50 nm. Produced. The thickness of the carbon film (pellicle film) was measured by a cross-sectional TEM, and the period P, line width w1, and line thickness w2 of the support material layer were measured by a laser microscope. The aperture ratio of this reinforced pellicle film was 99.8%. Sa was 90 nm. From the thickness of the carbon film 1b, the EUV transmittance was determined to be 94%.
 この補強ペリクル膜について500℃での耐熱性試験では、支持材層の一部溶融や剥離が見られ、グラファイト膜と支持材層に含まれるアルミニウムとの熱膨張率の差が問題であると考えられた。さらに、1000℃、1500℃での耐熱性試験では、支持材層に含まれるアルミニウム層が完全に消失し、グラファイトの一部が破損していた。 In the heat resistance test at 500 ° C. of the reinforced pellicle film, the support material layer was partially melted or peeled off, and the difference in the coefficient of thermal expansion between the graphite film and the aluminum contained in the support material layer was considered to be a problem. Was done. Furthermore, in the heat resistance test at 1000 ° C. and 1500 ° C., the aluminum layer contained in the support material layer was completely lost, and a part of the graphite was broken.
 本発明の補強ペリクル膜は、EUVリソグラフィー法などの各種リソグラフィー法で使用するフォトマスクを保護するのに有用である。 The reinforcing pellicle film of the present invention is useful for protecting a photomask used in various lithography methods such as an EUV lithography method.
 10、20、30、40、50:補強ペリクル膜
 1a:炭素膜(エッチング前の炭素膜)
 1a’:炭素膜(片面エッチング後の、支持材層(炭素膜と同一の材料からなる)が形成された炭素膜、ペリクル膜)
 1b:炭素膜(両面エッチング後の、支持材層(炭素膜と同一の材料からなる)が形成された炭素膜、ペリクル膜)
 2a、2b:第一被覆層
 3:第二被覆層(金属層)
 4:支持材層
 5:開口部
 t:炭素膜厚さ
 L:目開き
 w1:線幅
 P:周期
 w2:線厚
10, 20, 30, 40, 50: reinforcing pellicle film 1a: carbon film (carbon film before etching)
1a ′: carbon film (carbon film, pellicle film on which support material layer (made of the same material as carbon film) is formed after one-sided etching)
1b: carbon film (carbon film, pellicle film on which support material layer (made of the same material as carbon film) is formed after both-side etching)
2a, 2b: first coating layer 3: second coating layer (metal layer)
4: Support material layer 5: Opening t: Carbon film thickness L: Aperture w1: Line width P: Period w2: Line thickness

Claims (11)

  1.  炭素膜から構成されるペリクル膜と、このペリクル膜の片面又は両面に形成された複数の開口部を有する支持材層とを備え、該ペリクル膜と該支持材層が同一炭素材料からなることを特徴とする補強ペリクル膜。 A pellicle film composed of a carbon film, and a support material layer having a plurality of openings formed on one or both surfaces of the pellicle film, wherein the pellicle film and the support material layer are made of the same carbon material. Characterized reinforced pellicle membrane.
  2.  前記炭素膜及び前記支持材層が、炭素質膜又はグラファイト膜である請求項1に記載の補強ペリクル膜。 The reinforcing pellicle film according to claim 1, wherein the carbon film and the support material layer are carbonaceous films or graphite films.
  3.  前記炭素膜と前記支持材層が、一体形成されている請求項1又は2に記載の補強ペリクル膜。 The reinforcing pellicle film according to claim 1 or 2, wherein the carbon film and the support material layer are integrally formed.
  4.  前記炭素膜と前記支持材層が、接着層又は接合層を介することなく同一炭素材料から形成されている請求項1~3のいずれかに記載の補強ペリクル膜。 (4) The reinforced pellicle film according to any one of (1) to (3), wherein the carbon film and the support material layer are formed of the same carbon material without interposing an adhesive layer or a bonding layer.
  5.  前記支持材層の開口率が、80%以上である請求項1~4のいずれかに記載の補強ペリクル膜。 (5) The reinforced pellicle membrane according to any one of (1) to (4), wherein an aperture ratio of the support material layer is 80% or more.
  6.  前記ペリクル膜の厚さが1~100nmであり、前記支持材層の厚さが1~500nmである請求項1~5のいずれかに記載の補強ペリクル膜。 (6) The reinforced pellicle film according to any one of (1) to (5), wherein the thickness of the pellicle film is 1 to 100 nm, and the thickness of the support material layer is 1 to 500 nm.
  7.  請求項1~6のいずれかに記載の補強ペリクル膜の製造方法であり、
     ペリクル膜より厚い炭素膜上に、所定の開口パターンを有する第一被覆層を形成する工程、
     前記炭素膜及び前記第一被覆層のそれぞれに第二被覆層を積層する工程、
     前記炭素膜に積層された前記第二被覆層を残しつつ、前記第一被覆層及び前記第一被覆層に積層した前記第二被覆層の両方を前記炭素膜から除去する工程、
     前記第二被覆層形成面側から前記炭素膜を厚さ方向に削除するエッチングを開始する工程、
     前記炭素膜から支持材層が露出した後、前記エッチングを終了する工程、及び
     前記第二被覆層を除去する工程を含み、炭素膜から構成されるペリクル膜とこのペリクル膜の片面又は両面に形成された複数の開口部を有する支持材層が同一炭素材料からなることを特徴とする補強ペリクル膜の製造方法。
    A method for producing a reinforced pellicle membrane according to any one of claims 1 to 6, wherein
    Forming a first coating layer having a predetermined opening pattern on a carbon film thicker than the pellicle film,
    A step of laminating a second coating layer on each of the carbon film and the first coating layer,
    Removing both the first coating layer and the second coating layer stacked on the first coating layer from the carbon film while leaving the second coating layer stacked on the carbon film;
    A step of starting etching for removing the carbon film in the thickness direction from the second coating layer forming surface side;
    After the support material layer is exposed from the carbon film, the method includes a step of terminating the etching, and a step of removing the second coating layer, and is formed on one or both surfaces of the pellicle film composed of the carbon film and the pellicle film. A method for manufacturing a reinforced pellicle membrane, wherein the support material layer having a plurality of openings is made of the same carbon material.
  8.  前記エッチングが、前記炭素膜の片面又は両面に対して行われる請求項7に記載の製造方法。 8. The method according to claim 7, wherein the etching is performed on one side or both sides of the carbon film.
  9.  前記第一被覆層がレジストから構成され、前記第二被覆層が金属から構成される請求項7又は8に記載の製造方法。 9. The method according to claim 7, wherein the first coating layer is made of a resist, and the second coating layer is made of a metal.
  10.  前記エッチング後に、前記第二被覆層が酸で除去される請求項7~9のいずれかに記載の製造方法。 (10) The method according to any one of (7) to (9), wherein the second coating layer is removed with an acid after the etching.
  11.  前記第二被覆層が、アルミニウムから構成される請求項7~10のいずれかに記載の製造方法。
     
    The method according to any one of claims 7 to 10, wherein the second coating layer is made of aluminum.
PCT/JP2019/025424 2018-07-06 2019-06-26 Reinforced pellicle film and method for manufacturing same WO2020008978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129345A JP2021156908A (en) 2018-07-06 2018-07-06 Reinforcement pellicle film, and method for producing reinforcement pellicle film
JP2018-129345 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020008978A1 true WO2020008978A1 (en) 2020-01-09

Family

ID=69059630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025424 WO2020008978A1 (en) 2018-07-06 2019-06-26 Reinforced pellicle film and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2021156908A (en)
TW (1) TW202006463A (en)
WO (1) WO2020008978A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172354A1 (en) * 2020-02-27 2021-09-02 凸版印刷株式会社 Pellicle film, pellicle, film, graphene sheet and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018228A (en) * 2013-06-10 2015-01-29 旭化成イーマテリアルズ株式会社 Pellicle film and pellicle
US20170038675A1 (en) * 2014-04-17 2017-02-09 Industry-University Cooperation Foundation Hanyang University Pellicle for euv lithography
JP2018092155A (en) * 2016-11-30 2018-06-14 三星電子株式会社Samsung Electronics Co.,Ltd. Pellicle for photomask, reticle including the same, and exposure apparatus for lithography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015018228A (en) * 2013-06-10 2015-01-29 旭化成イーマテリアルズ株式会社 Pellicle film and pellicle
US20170038675A1 (en) * 2014-04-17 2017-02-09 Industry-University Cooperation Foundation Hanyang University Pellicle for euv lithography
JP2018092155A (en) * 2016-11-30 2018-06-14 三星電子株式会社Samsung Electronics Co.,Ltd. Pellicle for photomask, reticle including the same, and exposure apparatus for lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172354A1 (en) * 2020-02-27 2021-09-02 凸版印刷株式会社 Pellicle film, pellicle, film, graphene sheet and method for producing same

Also Published As

Publication number Publication date
TW202006463A (en) 2020-02-01
JP2021156908A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
KR101940791B1 (en) Manufacturing method of EUV pellicle using organic sacrifice substrate
JP5394808B2 (en) Pellicle for lithography and method for manufacturing the same
JP6279722B2 (en) Pellicle film, pellicle, exposure original plate, exposure apparatus, and semiconductor device manufacturing method
US8927179B2 (en) Optical member for EUV lithography, and process for production of reflective layer-equipped substrate
WO2011162331A1 (en) Method for producing wavelength plate
WO2014142125A1 (en) Pellicle film, and pellicle
WO2015037564A1 (en) Substrate with multilayer reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
KR20120083208A (en) A pellicle film and a pellicle for euv application, and a method for manufacturing the film
US11262648B2 (en) Pellicle for photomask and method of fabricating the same
JP2010192503A (en) Photomask and method of manufacturing the same
JP2015109366A (en) Reflective mask blank for euv lithography or substrate with reflective layer for euv lithography, and manufacturing method therefor
US20160178997A1 (en) Reflective photomask and production method therefor
WO2020008978A1 (en) Reinforced pellicle film and method for manufacturing same
JP7213248B2 (en) Pellicle complex and manufacturing method thereof
US11548208B2 (en) Template, method for manufacturing template, and pattern formation method
JP2020160345A (en) Producing method of pellicle self-supporting film, producing method of pellicle, and producing method of semiconductor device
KR102008057B1 (en) Method for manufacturing pellicle
KR102301568B1 (en) Manufacturing method of EUV pellicle with silicon carbide layer
JP2012005939A (en) Pattern forming method
JP2008268295A (en) Manufacturing method of wire grid polarizing plate
US20220365420A1 (en) Multi-layer pellicle membrane
KR20230090601A (en) Blank mask, apparatus for forming a layer and manufacturing method for the blank mask
KR101597864B1 (en) Absorption type wire grid polarizer having a excellent durability and manufacturing method thereof
JP2015092282A (en) Manufacturing method for wavelength plate
JP5069035B2 (en) Wire grid polarizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP