WO2014142125A1 - Pellicle film, and pellicle - Google Patents
Pellicle film, and pellicle Download PDFInfo
- Publication number
- WO2014142125A1 WO2014142125A1 PCT/JP2014/056346 JP2014056346W WO2014142125A1 WO 2014142125 A1 WO2014142125 A1 WO 2014142125A1 JP 2014056346 W JP2014056346 W JP 2014056346W WO 2014142125 A1 WO2014142125 A1 WO 2014142125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- pellicle
- carbon
- pore
- membrane
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 189
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 165
- 238000002834 transmittance Methods 0.000 claims abstract description 38
- 239000011148 porous material Substances 0.000 claims description 250
- 239000012528 membrane Substances 0.000 claims description 125
- 239000000853 adhesive Substances 0.000 claims description 30
- 230000001070 adhesive effect Effects 0.000 claims description 30
- 229910002804 graphite Inorganic materials 0.000 claims description 19
- 239000010439 graphite Substances 0.000 claims description 19
- 238000001459 lithography Methods 0.000 claims description 7
- 230000014509 gene expression Effects 0.000 claims description 3
- 239000012634 fragment Substances 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 342
- 238000000034 method Methods 0.000 description 78
- 229920005989 resin Polymers 0.000 description 56
- 239000011347 resin Substances 0.000 description 56
- 238000000576 coating method Methods 0.000 description 49
- 239000011248 coating agent Substances 0.000 description 42
- -1 methane hydrocarbon Chemical class 0.000 description 35
- 238000003763 carbonization Methods 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 32
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 27
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 27
- 238000009826 distribution Methods 0.000 description 27
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 26
- 239000004800 polyvinyl chloride Substances 0.000 description 26
- 239000005033 polyvinylidene chloride Substances 0.000 description 26
- 239000002904 solvent Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 238000001035 drying Methods 0.000 description 19
- 239000007788 liquid Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 230000008569 process Effects 0.000 description 18
- 239000010409 thin film Substances 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 15
- 239000000460 chlorine Substances 0.000 description 14
- 239000000017 hydrogel Substances 0.000 description 14
- 239000010936 titanium Substances 0.000 description 14
- 239000007833 carbon precursor Substances 0.000 description 13
- 230000007423 decrease Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 230000008033 biological extinction Effects 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 12
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 229910010271 silicon carbide Inorganic materials 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 7
- 239000004966 Carbon aerogel Substances 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 239000002585 base Substances 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 238000011109 contamination Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 229920002554 vinyl polymer Polymers 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000000611 regression analysis Methods 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 238000000352 supercritical drying Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical group CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- 239000004964 aerogel Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006704 dehydrohalogenation reaction Methods 0.000 description 4
- 238000007687 exposure technique Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000010948 rhodium Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000004801 Chlorinated PVC Substances 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical group C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000010000 carbonizing Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920006026 co-polymeric resin Polymers 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- 108010025899 gelatin film Proteins 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 238000007602 hot air drying Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000004816 latex Substances 0.000 description 3
- 229920000126 latex Polymers 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000000235 small-angle X-ray scattering Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 2
- 150000008041 alkali metal carbonates Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000002238 carbon nanotube film Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005695 dehalogenation reaction Methods 0.000 description 2
- 238000007607 die coating method Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 150000004291 polyenes Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000002336 sorption--desorption measurement Methods 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229910018137 Al-Zn Inorganic materials 0.000 description 1
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 1
- 229910018573 Al—Zn Inorganic materials 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 101100356682 Caenorhabditis elegans rho-1 gene Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- 230000010748 Photoabsorption Effects 0.000 description 1
- 239000004823 Reactive adhesive Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000000333 X-ray scattering Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- CNYFJCCVJNARLE-UHFFFAOYSA-L calcium;2-sulfanylacetic acid;2-sulfidoacetate Chemical compound [Ca+2].[O-]C(=O)CS.[O-]C(=O)CS CNYFJCCVJNARLE-UHFFFAOYSA-L 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000005307 ferromagnetism Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000007759 kiss coating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- XIKYYQJBTPYKSG-UHFFFAOYSA-N nickel Chemical compound [Ni].[Ni] XIKYYQJBTPYKSG-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 229960001553 phloroglucinol Drugs 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910001428 transition metal ion Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/62—Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/021—Carbon
Definitions
- the present invention relates to a pellicle film for lithography using extreme ultraviolet light and a pellicle provided with the pellicle film.
- a technique that has contributed to the high integration of this semiconductor integrated circuit is an exposure technique called optical lithography.
- optical lithography the minimum line width of the wiring of the semiconductor integrated circuit is determined by the resolution, and the obtained resolution is in accordance with the Rayleigh equation, the aperture of the exposure optical system, the apparatus constant called the K1 factor of the exposure apparatus, and the exposure wavelength ⁇ ( Hereinafter, it is simply described as ⁇ ).
- EUV lithography using ⁇ 6 to 14 nm of extreme ultraviolet light (hereinafter also referred to as EUV (Extreme Ultra Violet) light) called the EUV region is the most promising. It is thought that.
- the EUV lithography uses the reflection reduction projection exposure technique, and all the components of the exposure apparatus including the EUV mask are arranged in a vacuum.
- the first film structure is made of an element having a low extinction coefficient k (hereinafter also simply referred to as k) with respect to EUV light, such as carbon nanotubes (Carbon Nano Tube: CNT), etc. It is grown at intervals of several tens of nm and a height of several ⁇ m (see, for example, Patent Document 1).
- the third film structure is an element having low k with respect to EUV light (silicon (Si), ruthenium (Ru), iridium (Ir), gold (Au), rhenium (Rh), carbon (C), etc.), or Using a compound (aluminum nitride (AlN), silicon nitride (SiN), silicon carbide (SiC), etc.) and a single-layer or multi-layer flat film having a film thickness of 30 to 300 nm, and openings such as rectangular and honeycomb-shaped A composite membrane in which a so-called grid or mesh membrane (hereinafter also referred to as a support membrane) having a wire diameter of several tens of ⁇ m and a cycle of lines of several hundred ⁇ m to several mm is joined (hereinafter also referred to as a support membrane) (for example, see Patent Documents 3 to 5 and Non-Patent Document 2).
- an airgel film made of an element (Si, Ru, C, etc.) having a low k for EUV light is used as a pellicle film for EUV.
- the airgel membrane is a sponge-like porous material containing a large number of micropores, mesopores, and macropores having an apparent density of several tens -3 to several tens -1 g / cm 3 , including air of 90.0 to 99.8%. It is a membrane.
- the film thickness is about 1.0 to 10.0 ⁇ m. It is said that a film having sufficient film strength and high transmittance for EUV light can be obtained without a film (see, for example, Patent Documents 6 and 7).
- This film structure has the following features: (1) Absorption of substances in the EUV region is highly dependent on the type of element and density of the substance, and (2) a foam structure (porous film) that allows Rayleigh scattering. In this way, attention is paid to securing the film thickness and increasing the film strength.
- a pellicle film for EUV light having a high EUV light transmittance is obtained by silicon aerogel (Si airgel) produced by electrochemically dissolving Si using a solution containing hydrogen fluoride HF as a main component.
- a pellicle film for EUV having high oxidation resistance can be obtained by using a metal foam aerogel prepared by irradiating a hydrogel containing a transition metal ion such as a noble metal or Ru with ⁇ rays to deposit metal nanoparticles. It is said that.
- Patent Document 7 shows an attempt to realize this film structure with CNTs.
- the CNT itself is used as a pellicle film for EUV by forming a film having a thickness of 1.0 to 5.0 nm by some method.
- the apparent density of the CNT film is 1.5 ⁇ 10 ⁇ 3 to 0.5 g / cm 3 , a film structure similar to an airgel can be obtained.
- the first film structure uses C as an element having a low k
- the dust-proof protective film is in direct contact with the EUV mask surface, and the focus of the mask surface and a part of the pellicle film is Since they overlap, there is a possibility that the performance as a pellicle cannot be exhibited.
- the structure control of CNTs is extremely difficult, and the production cost may increase. Therefore, the first film structure is not realistic.
- the third film structure is an effective configuration for securing the film strength, and enables the film thickness to be reduced.
- the support film itself acts as an obstacle and a limited visual field for the incident light to the EUV mask and the reflected light from the EUV mask, and the transmittance is reduced by about 30 to 60% compared to the transmittance of the flat film alone. It will be.
- a material other than carbon C is used as the material of the pellicle film, there may be a problem of contamination particles at the time of breakage.
- the fourth film structure has an advantage in that not only the high transmittance to EUV light is ensured, but also the restrictions on the film thickness are greatly improved as compared with the second film structure and the third film structure. is there.
- the EUV pellicle film disclosed in Patent Document 6 has the following problems. That is, as in the third film structure, when an airgel film made of an element other than C is used as an EUV pellicle film, it is difficult to remove contamination if the EUV pellicle film is damaged for some reason such as impact. The problem of becoming particles can arise.
- CNT uses a large amount of a metal catalyst such as iron Fe, cobalt Co, nickel Ni or the like having a high extinction coefficient in the production process. Therefore, the CNT inevitably contains a large amount of impurities. It becomes a large carbon film, and high transmittance cannot be obtained. Further, when the impurities are removed in order to use only a carbon film having a low extinction coefficient, there is a problem that the productivity is lowered and the manufacturing cost is extremely increased.
- a metal catalyst such as iron Fe, cobalt Co, nickel Ni or the like having a high extinction coefficient in the production process. Therefore, the CNT inevitably contains a large amount of impurities. It becomes a large carbon film, and high transmittance cannot be obtained. Further, when the impurities are removed in order to use only a carbon film having a low extinction coefficient, there is a problem that the productivity is lowered and the manufacturing cost is extremely increased.
- the present invention provides a pellicle film and a pellicle that have high transparency to EUV light, have practically sufficient physical strength and durability, can easily remove film fragments, and are excellent in productivity. Objective.
- the present inventor made a general-purpose carbon pellicle film material so that part of the film was damaged and adhered to the EUV mask surface. Even in this case, it is possible to easily remove the porous film having a pore diameter / pore diameter distribution and an apparent density that can be used for a pellicle at a low cost with high productivity. I found out that I can do it.
- the pellicle film according to one aspect of the present invention is composed of a carbon porous film, and the film thickness D is 100 nm to 63 ⁇ m.
- the transmittance T when the extreme ultraviolet light having the wavelength of 13.5 nm passes once is 84% or more, and the fineness of the carbon porous membrane when the extreme ultraviolet light passes once
- the scattering amount ⁇ due to the holes may be 10% or less.
- the apparent density obtained by dividing the mass by the volume in the porous carbon membrane may be 1.0 ⁇ 10 ⁇ 3 to 2.1 g / cm 3 .
- the wavelength ⁇ of extreme ultraviolet light is 13.5 nm
- the density W of graphite is 2.25 g / cm 3
- the apparent density (g / cm 3 ) of the porous carbon film is ⁇
- the film thickness is D ( nm)
- the carbon porous membrane may have structural parameters satisfying the following formulas (1) to (5).
- the wavelength ⁇ of extreme ultraviolet light is 13.5 nm
- the density W of graphite is 2.25 g / cm 3
- the apparent density (g / cm 3 ) of the porous carbon film is ⁇
- the carbon porous membrane may have structural parameters satisfying the following formulas (6) to (9).
- ⁇ ⁇ 30 ( ⁇ : pore size parameter) (6) ⁇ / d ⁇ 81 ( ⁇ : exposure wavelength (nm)) (7) 0.08 g / cm 3 ⁇ ⁇ 0.7 g / cm 3 (8)
- D 100 ⁇ D ⁇ 850 (9)
- a pellicle according to another aspect of the present invention includes the pellicle film described above and a frame to which the pellicle film is attached.
- the frame may be provided with a groove in which a mask adhesive for bonding to the lithography mask is disposed on the surface opposite to the surface to which the pellicle film is attached.
- the frame may be provided with an electromagnet for bonding to the lithography mask on the surface opposite to the surface on which the pellicle film is supported.
- the present invention has high transmittance to EUV light, has practically sufficient physical strength and durability, can easily remove film fragments, and has excellent productivity.
- (A) is a graph which shows the relationship between an extinction coefficient, a transmittance
- (b) is a graph which shows the relationship between a refractive index, a transmittance
- the reference value of the present embodiment indicates three physical property values of transmittance, scattering amount, and film thickness of a pellicle film that is preferable for achieving the object of the present embodiment.
- the transmittance T of the pellicle film (hereinafter also referred to as T, the unit is%) is preferably 70% or more of the reflectance of a single reflector used in EUV lithography, and is used as a reference value for T.
- EUV Extreme Ultra Violet
- T3 transmittance standard
- the amount of scattering (hereinafter also referred to as ⁇ , the unit is%) is not only small when T is small, but also the blur of the circuit image on the EUV mask surface during exposure. Is generated. Therefore, it is desired that the scattering amount is as small as possible, but there is no clear reference value.
- the upper limit of the amount of scattering considered to be a preferable range when passing through the pellicle film once is defined as the “scattering amount reference value”, and the reference values of 10%, 5%, and 1% are respectively used as the first scattering. These are referred to as an amount reference ( ⁇ 1), a second scattering amount reference ( ⁇ 2), and a third scattering amount reference ( ⁇ 3).
- the amount of scattering it is considered that the amount of scattering when the pellicle film covering the EUV mask surface is passed twice in a reciprocating manner is approximately twice the amount of scattering when passing once.
- the film thickness of the pellicle film (hereinafter also referred to as D, the unit is nm) has a great influence on the film strength (bending rigidity of the film) and the ease of handling of the film.
- D is unavoidably set to 50 to 100 nm in order to obtain a T of 70% or more when passing through the pellicle film twice.
- D 100 nm or more is set as the minimum necessary film thickness of the present embodiment.
- the film thickness D is preferably 300 nm or more, more preferably 500 nm or more.
- the reference value for D is hereinafter referred to as “film thickness reference value”, and the standards of 100 nm, 300 nm, and 500 nm are respectively referred to as the first film thickness standard (D1), the second film thickness standard (D2), and the third film thickness standard ( D3).
- the pellicle film of this embodiment is composed of a carbon porous film, and the thickness D of the pellicle film is 100 nm to 63 ⁇ m.
- the pellicle film of this embodiment preferably has a specific structure described later.
- the premise, the structural model of the carbon porous film, and each structural parameter used for defining the structure of the pellicle film will be described.
- An actual carbon porous membrane has a monodisperse pore structure (a structure model in which the pore diameter, wall thickness or column thickness, shape, etc. of the pores are the same and the aggregate state of such pores is uniform. It has a polydispersed structure in which various pores are mixed.
- the carbon porous film actually obtained is approximated to a carbon porous film composed of monodispersed cubic shell-shaped or cubic frame-shaped pores as described later (hereinafter, respectively).
- a cubic wall group pore model and a cubic axis group pore model are sequentially referred to as a cubic wall group pore model and a cubic axis group pore model), and the structure thereof can be defined by structural parameters.
- the carbon constituting the pore wall or column of the actual carbon porous film is not all formed of graphite crystals, but in this embodiment, the graphite microcrystals aggregate in a non-oriented manner. It is assumed that it is formed of a polycrystalline body. If the crystallinity of the carbon is low and the density is less than 2.25 g / cm 3 , the wall thickness or column thickness d, or the substantial wall thickness dN or column thickness dN, as will be described later in [Appendix]. 1/2 can be increased depending on the optical constant (particularly k) of the carbon at that density.
- a structure in which N pieces of cubic frame-shaped pores (pore diameter L) are stacked in the thickness direction is referred to as a cubic wall group pore model and a cubic axis group pore model, respectively. It is assumed that the layers in which the cubes are spread are stacked while being shifted in the thickness direction so that the apexes of the four corners of each cube are located in the center of the surface of the adjacent cube in the thickness direction.
- L0 L + d (10) between L, L0, d, film thickness D, number N of pores, and pore size parameters ⁇ , d.
- D N ⁇ + (N + 1) d (11) The relationship is established.
- the structure of the porous membrane of the present embodiment can be defined using first and second structure parameters described later, and between each structure parameter, an equation ( 12) to (14) are related to the cubic axis pore model, and the relationships of (15) to (17) are established.
- N ⁇ 1 + ⁇ (W ⁇ ) 1/3 / W 1/3 ⁇ + ⁇ D (W ⁇ ) 1/3 / ⁇ W 1/3 ⁇ (12)
- d ⁇ ⁇ 1 + W 1/3 / (W ⁇ ) 1/3 ⁇ (13)
- N 8.32 ⁇ 10 ⁇ 1 ⁇ D / ( ⁇ ) ⁇ -10.64 ⁇ + 3.54 ⁇ 10 ⁇ 2 ⁇ D 1/2 ⁇ + 7.65 ⁇ 10 ⁇ 1
- d 7.90 ⁇ 10 -1 ⁇ ⁇ + 8.43 ⁇
- Equations (11) and (14) use the first structure parameter group to represent the second structure parameter group, and Equations (12) and (13) represent the second structure parameter group. Represents the first structural parameter group.
- Equations (11) and (17) use the first structure parameter group to represent the second structure parameter group, and Equations (15) and (16) represent the second structure parameter group. Represents the first structural parameter group.
- the preferred structure of the carbon porous membrane in the present embodiment is determined according to the following three physical property values, T, ⁇ , and D reference values.
- the structure of the carbon porous membrane includes the pore diameter (L) or the pore size parameter ( ⁇ ), the wall thickness or column thickness (d) forming the pores, and the number of pores stacked in the film thickness direction ( N) is defined as the first structural parameter group, and the apparent density of the carbon porous membrane described as L (or ⁇ ), D, and ⁇ (ap) or ⁇ is defined as the second structural parameter group, and these structural parameters are defined. It shall be possible.
- the first structural parameter group is a microscopic structural parameter, which is convenient for defining the structure of the carbon porous membrane, but it is difficult to measure and observe directly and indirectly, and these are difficult in the manufacturing process. It is difficult to control and define the structure of the film using the value of.
- the second structural parameter group is a macroscopic structural parameter, and it is relatively easy to measure and observe directly and indirectly, and it is easy to control the structure using these values in the manufacturing process. A microscopic structure cannot be uniquely determined without assuming a pore structure model from the value of.
- Equation (12) to Equation (14) are obtained in the cubic wall-assembled pore model
- Equation (15) is obtained in the cubic shaft-assembled pore model.
- the contents are described using both structural parameter groups as appropriate, and when there is a contradiction between the two, the second structure in which the structure of the carbon porous membrane can be easily specified within a range that satisfies the reference value.
- the parameter group is used with priority.
- the pore diameter (L) is the peak peak radius r (peak) of the peak of the pore distribution curve obtained from the adsorption isotherm of the gas adsorption type pore distribution measurement method, and the maximum peak radius r (max) (pore L (peak) and L (max) are values obtained by doubling the values of the distribution radius and the pore distribution base (pointing to the larger pore radius value) (referred to as double values), respectively.
- the unit is [nm]. Note that r (max) and L (max) are used when discussing the upper limit of each criterion of ⁇ , and otherwise L (peak) is L and r (peak) is r unless otherwise specified. Use.
- r (max) is a logarithmic scale of r on the horizontal axis of the pore distribution diagram.
- r (peak) is set as an alternative value for r (max).
- a carbide sample is heated in vacuum at 200-250 ° C for 2-15 hours in advance, then nitrogen adsorption / desorption isothermal measurement at liquid nitrogen temperature is performed, and DH analysis is performed from the adsorption / desorption isotherm.
- the pore distribution curve is obtained by the method or the BJH analysis method. In this embodiment, this method is used to determine the pore diameter.
- the pore diameter can be substantially defined because the individual pores are separated by walls.
- the individual pores are connected, and as shown in FIG. 4B, the values are strictly classified (virtual).
- the pore wall thickness or column thickness (d) in the present embodiment delimits individual pores constituting the carbon porous membrane in the cubic wall set pore model (becomes a pore barrier). It is the average thickness of the carbon wall, and the thickness of the wall of the cubic wall set. In the cubic axis pore model, the average thickness of carbon rods (columns) that formally divide the pores that make up the carbon porous membrane, and the thickness of the cubic frame It is. The unit is [nm].
- D can be obtained by taking a cross-sectional photograph of the porous film using a transmission electron microscope (TEM) or a scanning electron microscope (SEM) and processing the photograph.
- TEM transmission electron microscope
- SEM scanning electron microscope
- the value of d is about 0. 335 nm is the lower limit of d.
- the pore diameter is large (for example, ⁇ > 4) or when a large force is applied to the pellicle film, the wall strength or the column strength (film strength)
- d can be brought close to 0.335 nm.
- N The number of pores (N) is the number of pores having a pore diameter L in the film thickness direction.
- N is a value calculated from ⁇ , ⁇ (ap), and D according to Equation (12) in the cubic wall group pore model and according to Equation (15) in the cubic axis group pore model.
- N should be an integer of N ⁇ 1 in the definition of the word, but a positive real value is allowed.
- the fractional part of the numerical value below the decimal point is considered to reflect the deviation from the pore structure model in which monodispersed cubic shell-like or cubic frame-like pores are neatly stacked.
- the apparent density ⁇ (ap) is a density using the membrane volume when it is assumed that there are no pores inside the porous membrane, and the ratio between the membrane volume V and the membrane mass G obtained from the outer dimensions of the membrane. , G / V.
- the arithmetic apparent density ⁇ is based on the pore structure model, in the present embodiment, according to the equation (14) for the cubic wall assembly pore model and the equation (17) for the cubic axis assembly pore model.
- the unit is [g / cm 3 ].
- the film thickness (D) is the thickness of a sheet, film, or film used in the usual sense.
- the measurement of the thickness of this embodiment can be obtained as a value obtained by averaging 10 or more images of a porous film in a non-contact manner with an interval of 1 mm or more using an electron microscope (SEM).
- SEM electron microscope
- the unit is usually [nm], and [ ⁇ m] is also used as necessary.
- the average pore shape of the porous membrane is described in Reference A, Hideki Matsuoka, Journal of Crystallographic Society, No. 41, 213-226 (1999), Keiko Nishikawa, Carbon, No. 191, 71-76 (2000), it can be obtained from the scattering intensity analysis in the Debye-Porod region of small angle X-ray scattering (SAXS). That is, when the logarithmic plot of the X-ray scattering intensity I as a function of the scattering vector s is a logarithmic slope of ⁇ 4, ⁇ 2, and ⁇ 1, the pore shape is spherical, disk-shaped, cylindrical, respectively.
- SAXS small angle X-ray scattering
- the technical point 1 is that the pellicle membrane is a porous membrane.
- Mie's scattering theory Mie scattering itself is scattering by spherical particles, but qualitatively the shape is not limited
- light scattering by spherical particles spherical pores
- the diameter of the particles pores.
- the particle size parameter ⁇ 2 ⁇ / ⁇
- Rayleigh scattering occurs when ⁇ is sufficiently smaller than 1 ( ⁇ ⁇ 1).
- ⁇ is almost 1 ( ⁇ 1), Mie scattering occurs, and when ⁇ is sufficiently larger than 1 ( ⁇ >> 1), geometric scattering occurs.
- the graph which showed the relationship with the reflectance R is shown.
- the graph shown in FIG. 1 is calculated using a “G-Solver grid analysis software tool (G-Solver)” commercially available from “Grating Solver Development Company”.
- a region surrounded by a dotted line indicates a region k that can secure T ⁇ 84%.
- T ⁇ T1 84% unless at least k is less than the order of 10 ⁇ 3. It can be seen that cannot be obtained.
- the region surrounded by a dotted line indicates an n region where the reflectance R ⁇ 0.2%.
- n 0.94 to 1.4, that is, ⁇ n ⁇ 0.04
- the first advantage of using a porous film as the pellicle film is that the thickness limitation of the 50 to 100 nm film in the conventional Si single crystal flat film is greatly relaxed, and T is T1 or more and ⁇ is ⁇ 1 or less as described later. And D can be 100 nm or more (D1 or more), 300 nm or more (D2 or more), or 500 nm or more (D3 or more).
- a second advantage of using a porous film as a pellicle film is that a corrugated cardboard-like porous wrapping paper material has a higher bending rigidity than a flat film-like paper board having the same weight and the same area.
- the film has higher bending rigidity than a flat film (non-porous film) having the same weight and the same area.
- the porous film of the present embodiment has a three-dimensional porous structure, so that the stress concentration is further increased. It can be said that the bending rigidity of the film is even higher.
- the porous film of the present embodiment is used as a pellicle film, the degree of bending of the film by its own weight is small compared to a flat film of another material having the same area and weight.
- n and k obtained by using the apparent density ⁇ of the porous film which is smaller than the density of the non-porous material (usually simply called the density or the true density), are the crystal / amorphous structure and its ratio. Assuming that does not change, the value can be regarded as the optical constant of the porous film having that ⁇ .
- a flat film (non-porous film) having an apparent density ⁇ and an optical constant at the ⁇ is referred to as a porous film alternative flat film, various ⁇ s ignoring scattering by the pores for convenience.
- the n and k of the porous membrane alternative flat membrane that can be obtained can be obtained from Non-Patent Document 1.
- 3 is a graph showing the dependence of C of 3 on the wavelength ⁇ of n and k.
- a second advantage of using carbon as the porous film is that the pellicle film can be easily removed even if it is damaged and adhered to the mask.
- EUV Ultraviolet
- a third advantage of using carbon as the porous film is that a porous film having a target pore diameter and film thickness can be easily produced by applying an existing carbon porous film manufacturing method. That is, as described in “2.2 Pellicle membrane manufacturing method of this embodiment”, a thin film is formed using a solution of an organic compound that causes a sol-gel transition, and a large amount of solvent is contained by the sol-gel method. By forming a hydrogel state and then drying and removing the solvent so that the structure is not crushed, an airgel film as a porous body containing a large amount of bubbles can be obtained.
- the airgel membrane is carbonized to obtain a carbon porous membrane as a carbon aerogel, or a polymer raw material (organic compound) that immobilizes the structure in the molecular structure during the chemical reaction process or carbonization process and generates bubbles.
- the film thickness can be easily controlled using a wet coating method in a non-vacuum environment such as spin coating, die coating, and gravure coating using a polymer solution, or silicon.
- a rod-shaped material is thinly cut and polished to form a thin film, thereby enabling high-productivity manufacturing.
- a fourth advantage of using carbon as the porous film is that it has excellent thermal characteristics and bending rigidity.
- the melting point and thermal expansion coefficient of amorphous carbon (aC), graphite (gC) and Si are as follows. That is, the melting point under normal pressure is the highest among all elements, and a-C and g-C have no melting point, Si has 1414 ° C., and the heat resistance of carbon is excellent.
- the coefficient of thermal expansion is 3.0 ⁇ 10 ⁇ 6 / K for aC , 3.2 ⁇ 10 ⁇ 6 / K for gC, and 3.9 ⁇ 10 ⁇ 6 / K for Si. Excellent dimensional stability.
- the bending stiffness corresponding to the hardness (physical strength) of the film is proportional to the product of the Young's modulus and the cube of the film thickness D because the Poisson's ratio of carbon and Si is both about 0.2.
- the Young's modulus of aC is 30 to 33 GPa and the Young's modulus of gC is 14 GPa, whereas the Young's modulus of Si is 130 to 190 GPa.
- Si is superior to carbon, but in the present embodiment, it is actually a porous carbon film, and since the film thickness D can be made 2.5 to 5 times thicker than the Si flat film, The carbon porous membrane of this embodiment is considered to be larger.
- the technical point 3 is that a carbon porous film that satisfies the problem can be defined using restricted structural parameters.
- the optical constants n and k ( ⁇ 9.61 ⁇ 10 ⁇ 1 and 7.70 ⁇ 10 ⁇ 3 ) and ⁇ , respectively, of ⁇ 13.5 nm of carbon (2.25 g / cm 3 ) obtained from Non-Patent Document 1.
- T is a value of dN 1/2 which is considered to correspond to a substantial thickness in the film thickness direction corresponding to dN of the cube wall set pore model.
- ⁇ is a connected pore in the cubic axis pore model, and since ⁇ has only a formal meaning, ⁇ is regarded as 1 and has an influence in the form of dN 1/2 . That is, it means that there is no influence of the pore diameter.
- Step 2 From the multiple regression equation shown in Step 1, qualitatively, it was possible to know the influence of each structural parameter group on T and ⁇ .
- the values of the group ( ⁇ , D, ⁇ ) the values of N satisfying the reference values of Ti and ⁇ i at each ⁇ , d, N (Ti), N ( ⁇ i) are estimated, and further the formula (2 ) To obtain D values D (Ti) and D ( ⁇ i) that satisfy the respective reference values of T and ⁇ .
- N (Ti), N ( ⁇ i), D (Ti), and D ( ⁇ i) mean the upper limit number of layers N max and the upper limit film thickness D max that satisfy the reference values of T and ⁇ , respectively. To do.
- the ranges of the structural parameters ⁇ , N, d, ⁇ , and D satisfying the constraint conditions 1 to 4 as a carbon porous membrane that can be actually obtained are set in the present embodiment. A porous carbon membrane satisfying the problems is obtained.
- Restriction 1 0.335 nm ⁇ d (41)
- Restriction condition 2 1 ⁇ N (42)
- Restriction condition 3 0.5 ⁇ ⁇ (43)
- Restriction condition 4 1.0 ⁇ 10 ⁇ 3 g / cm 3 ⁇ ⁇ ⁇ 2.25 g / cm 3 (44)
- Constraint conditions 1 and 2 are related to the microstructure parameters described in the definition of d and N, and are the premise of the calculation.
- d is preferably 1.35 nm or more.
- N is preferably 2 or more, and if the value is large, the cubic shell-like or cubic frame-like pores having different microstructure parameters in each pore structure model are within the range satisfying each reference value.
- a laminated film structure in the film thickness direction can be considered.
- Constraint condition 3 is a structural parameter common to both micro and macro, and the ⁇ value here indicates a value corresponding to L (peak) of the pore distribution. From the significance of this embodiment, the lower limit is set to 0.5.
- the carbon porous membrane actually obtained contains pores having pore diameters smaller than the ⁇ value, and it is difficult to eliminate them. However, pores with small pore diameters are not preferable because they hardly contribute to the improvement of the film thickness of the carbon porous membrane, and only reduce the transmittance due to the lamination of the wall thickness. Therefore, it is preferable that the pore distribution has a sharp shape centered on L (peak).
- the upper limit of ⁇ is obtained from step 2, but empirically L (max) ⁇ 1.5 ⁇ L (peak) to 3 ⁇ L (peak), corresponding to the average pore diameter in the carbon porous membrane If the upper limit [L (peak) / ⁇ ] of ⁇ is set to 1 / 1.5 to 1/3 of the upper limit of ⁇ obtained from step 2, the maximum pore diameter in the carbon porous membrane actually obtained is It is considered that it can be suppressed to the upper limit of ⁇ obtained from Step 2, and is preferable.
- Constraint condition 4 is determined from the lower limit of the apparent density ⁇ actually obtained as carbon aerogel.
- the reciprocals of ⁇ and ⁇ / d are related to the equation (5) in the cubic wall set pore model and the equation (8) in the cube axis set pore model.
- ⁇ / d is an index of the strength of the individual pores by the structure of the term. Specifically, if the value is small ( ⁇ is large), the pores themselves are strong.
- the upper limit value of D is the smallest in each pore structure model It was realized with ⁇ and the maximum ⁇ / d.
- ⁇ 1.2 ⁇ 10 ⁇ 3 to 2.1 g / cm 3 .
- Step 3 an example of a characteristic structure preferable as a pellicle film (provided that d ⁇ 1.35 nm) is shown.
- each pore structure model is represented in the form of ⁇ , d [unit nm], D [unit nm], ⁇ [unit g / cm 3 ], ⁇ / d ⁇ in the ranges of the structural parameter group and the constraint condition values.
- An example of the structure is described for each wavelength of EUV light.
- ⁇ A1, B1, C11-C12, D1, E1 ⁇ - ⁇ A2, B1, C21-C22, D2, E2 ⁇ are the pore size parameters with the wall thickness or the column thickness d being the same B1 value. It means that the reference value of the present embodiment can be taken when ⁇ is in the range of A1 to A2 and the film thickness D is in the range of C11-C22 and C21-C22 corresponding to each ⁇ .
- the characteristic structure 1 is an ideal structure as a pellicle film.
- ⁇ , d, D, ⁇ , ⁇ / d ⁇ ⁇ 2 , 1.35, 500-835, 1.5 ⁇ 10 ⁇ 2 , 20 ⁇ ⁇ ⁇ 8, 1.35, 500-4659, 1.0 ⁇ 10 ⁇ 3 , 80 ⁇ , ⁇ 3 , 2.01, 500-677, 1.5 ⁇ 10 ⁇ 2 , 20 ⁇ - ⁇ 10, 2.01, 500-2635, 1.4 ⁇ 10 ⁇ 3 , 67 ⁇ , ⁇ 4, 2.7, 500-592, 1.5 ⁇ 10 ⁇ 2 , 20 ⁇ - ⁇ 15, 2.70, 500-2188, 1.6 ⁇ 10 ⁇ 3 , 75 ⁇ , ⁇ 6, 3 .35, 500-587, 1.0 ⁇ 10 ⁇ 2 , 24 ⁇ - ⁇ 20, 3.35, 500-1894, 1.0 ⁇ 10 ⁇ 3 , 81 ⁇ , ⁇ 8, 4.02, 500-542
- a carbon porous membrane having the following structural parameters satisfies ⁇ ⁇ 1.0 ⁇ 10 ⁇ 2 g / cm 3 , and is more preferable from the viewpoint of membrane strength.
- ⁇ , d, D, ⁇ , ⁇ / d ⁇ ⁇ 2, 1.35, 100-119, 3.1 ⁇ 10 ⁇ 1 , 20 ⁇ ⁇ ⁇ 8, 1.35, 111-210, 8.2 ⁇ 10 ⁇ 2 , 80 ⁇ , ⁇ 3, 2.01, 100-110, 3.0 ⁇ 10 ⁇ 1 , 20 ⁇ - ⁇ 8, 2.01, 112-143, 1.2 ⁇ 10 ⁇ 1 , 54 ⁇ , ⁇ 6, 2.70, 100-114, 2.1 ⁇ 10 ⁇ 1 , 30 ⁇
- a porous carbon film having the following structural parameters, ⁇ ⁇ 1.0 ⁇ 10 ⁇ 2 g / cm 3, which is preferable from the viewpoint of film strength.
- ⁇ , d, D, ⁇ , ⁇ / d ⁇ ⁇ 0.5, 1.35, 1588-1636, 1.7 ⁇ 10 ⁇ 1 , 5 ⁇ - ⁇ 2, 1.35, 5550-6359, 1 .5 ⁇ 10 ⁇ 2 , 20 ⁇ , ⁇ 0.5, 2.01, 776-799, 3.0 ⁇ 10 ⁇ 1 , 3.4 ⁇ - ⁇ 2, 2.01, 2564-2937, 3.1 ⁇ 10 ⁇ 2 , 13 ⁇ , ⁇ 1 , 2.70, 796-850, 1.7 ⁇ 10 ⁇ 1 , 5 ⁇ - ⁇ 4, 2.70, 2778-3632, 1.9 ⁇ 10 ⁇ 2 , 20 ⁇ , ⁇ 1, 3.35, 540-578, 2.3, 4 ⁇ - ⁇ 6, 3.35, 2687-3976, 1.0 ⁇ 10 ⁇ 2 , 24 ⁇ , ⁇ 2 , 4.02, 690 -789,1.0 ⁇ 10 -1, 67 ⁇ - ⁇ 6,4.02,1881-2784,1.5 ⁇ 10 -3,
- the above shows an example of a characteristic structure preferable as a pellicle film, using each range of the value of the structural parameter group and the constraint condition.
- An EUV pellicle film having a transmittance T of 84% or more, a scattering amount ⁇ of 10% or less, and a film thickness D of 100 nm or more can be shown.
- the wavelength ⁇ of EUV light is 13.5 nm
- the density W of graphite is 2.25 g / cm 3
- the apparent density (g / cm 3 ) of the porous carbon film is
- ⁇ and the film thickness are D (nm)
- the carbon porous body film has the structural parameters of the following equations (1) to (5).
- a pellicle film for EUV that satisfies the range may be preferable.
- the pellicle membrane for EUV satisfies the range of the structural parameters of the following formulas (6) to (9) in the carbon porous membrane can do.
- ⁇ ⁇ 30 ( ⁇ : pore size parameter) (6) ⁇ / d ⁇ 81 ( ⁇ : exposure wavelength (nm)) (7) 0.08 g / cm 3 ⁇ ⁇ ⁇ 0.7 g / cm 3 (8) D: 100 nm ⁇ D ⁇ 850 nm (9)
- a characteristic structure preferable as a pellicle film for EUV can be shown using mathematical formulas corresponding to the exposure wavelength ⁇ and the approximate pore structure model under an appropriate calculation method.
- the present embodiment is a pellicle film, which is composed of a porous carbon film, and from [Technical Point 3], the film thickness D of the pellicle film is A pellicle film having a thickness of 100 nm to 63 ⁇ m.
- the first example is to prevent oxidation / reduction of the porous carbon film by light from a high-power EUV light source on one or both surfaces of the porous carbon film of the present embodiment.
- Si, SiC, SiO 2 , Si 3 N 4 , Yttrium Y, Molybdenum Mo, Ru, Rhodium Rh, etc. within a range satisfying the target value of the subject of the present invention, such as a known sputtering method, vacuum deposition method, etc.
- the method is to coat several nm.
- Si is particularly preferred because it has a low extinction coefficient of EUV light, a refractive index close to 1.0, and reacts with carbon to form a SiC film having a few nm with excellent strength on the carbon film surface.
- the carbon porous film of the present embodiment has a film thickness having high transparency and practically sufficient durability for EUV light, but when further film strength is required.
- the mesh is used as a supporting film as in Patent Document 3, Patent Document 4, Patent Document 5, and Non-Patent Document 2 (materials are Si, Zr, Mo, titanium Ti Nickel nickel, aluminum Al, copper Cu, and their carbides are preferable from the viewpoint of having a small extinction coefficient and ⁇ n, and being easily available as a general-purpose product).
- the transmittance is lowered by 10% or more by the support membrane (mesh having a mesh thickness of several tens of ⁇ m, a wire diameter constituting the mesh of several tens of ⁇ m, and a pore size of several hundred ⁇ m to several mm),
- the transmittance T of the carbon porous membrane alone of the present invention is T2, T3. Note that the support film hardly affects the scattering amount ⁇ .
- the transmittance T and scattering amount ⁇ of the present embodiment represented by the equations (19) to (40), the equations (1) to (5), and the equations (6) to (9) in [Technical Point 3].
- the relational expression between the structural parameter group of the carbon porous membrane and the structural parameter group for obtaining the reference values of T, ⁇ , and D are EUV under (Premise 1) and (Premise 2).
- FIG. 5 is a diagram showing a method for manufacturing a pellicle film.
- the first method is to add a binder to fine carbon precursor particles or carbon particles that are about the same size to several tens of times the target pore size and do not melt or break during sintering and carbonization. This is a method of obtaining a porous carbon film having pores between the particles by sintering and carbonizing after film formation.
- a solvated gel film for example, hydrogel
- a solvated gel film for example, hydrogel
- a sol-gel method A method of obtaining a carbon porous film as a carbon aerogel by obtaining aerogel film containing a large amount of bubbles by drying and removing only the solvent so that the solvation structure does not collapse, and finally carbonizing the aerogel film It is.
- a chemical reaction or a carbonization reaction is performed using a raw material in which a structure is fixed in a molecular structure in a chemical reaction process or a carbonization process and bubbles are generated.
- This is a method for obtaining a carbon porous membrane having pores of air bubbles or gaps. From the first method, it is relatively easy to control the particle size and produce a porous carbon membrane having a pore diameter of about 0.5 to 10 times the wavelength of EUV light, compared to other methods. It is difficult to obtain a low-density carbon porous film having an apparent density of 1.0 g / cm 3 or less.
- the porous carbon membrane of this embodiment can be obtained by the second and third methods.
- the carbon porous membrane of this embodiment applies the existing carbon porous membrane manufacturing technology as mentioned in the second advantage of [Technical Point 2]. However, these manufacturing techniques differ in two points, [Technical Point 4] and [Technical Point 5].
- Technology point 4 is to introduce thin film deposition technology.
- Technical point 4 is that the use of the porous carbon membrane of the present embodiment is a pellicle membrane that was not considered at all as an application of the existing porous carbon membrane, so that a film forming technology for obtaining a thin film is added. It is. That is, in the manufacturing method of the carbon porous membrane of this embodiment described later, a film forming step suitable for thinning (step A2, step B2, step AB2) and a coating liquid preparation step for obtaining a thin film (step) A1, process B1, and process AB1) are important technical points.
- the composition, molecular weight, and temperature of the coating liquid are adjusted, the viscosity of the coating liquid is lowered, and the film thickness after film formation / drying can be applied to a film thickness of several tens to several hundreds of micrometers. Is preferred.
- Film thickness after the carbonization is about 0.5 to 3 times the coating thickness in the fixing / drying process (process A3, process B3, process AB3) and carbonization process (process A4, process B4, process AB4) This is because the thickness becomes 100 nm to 63 ⁇ m.
- the concentration of the solute that finally becomes carbonaceous in the coating solution may be reduced within the range of the manufacturing parameters described in Technical Point 5.
- the coating solution is a polymer solution, it is preferable to lower the molecular weight to such an extent that the coating film does not break when it is peeled off from the base material at the time of coating after drying.
- a coating method for obtaining a thin film it is preferable to use a wet coating method capable of thinly coating a low-viscosity coating solution, not a dry coating method typified by a vapor deposition method.
- coating methods that are low in productivity such as spin coating, nozzle scan coating, and ink jet coating, but thin films such as bar coating, gravure coating, die coating, doctor coating, and kiss coating are advantageous.
- a coating method with high productivity can be used by continuous coating called roll-to-roll.
- it is possible to obtain a uniform thin film by adjusting the coating conditions such as coating speed, coating temperature, and coating time as well as adjusting and selecting the coating solution viscosity, composition and coating method appropriately. be able to.
- the technical point 5 is a manufacturing parameter (the kind and molecular weight of the carbonaceous solute, the solution composition, the solution concentration) according to each manufacturing method.
- the crosslinking catalyst species / dehalogenation species and their concentrations, drying conditions, carbonization conditions, etc.) are adjusted, and the details will be described below.
- step A1 as the carbonaceous raw material, one or more monomers consisting of resorcinol (R), phenol, catechol, phloroglucinol and other polyhydroxy-benzene compounds, and formaldehyde ( F) and one or more monomers of furfural, and also as an alkali catalyst (Ca) for gelation (polymerization), potassium carbonate (K 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium hydrogen carbonate ( Any one or more of alkali metal carbonates such as KHCO 3 ) and sodium hydrogen carbonate (NaHCO 3 ) and alkali metal hydrogen carbonate are dissolved in water (Wa), and these are mixed to form coating solution A (RF viscosity). Liquid).
- step A2 following step A1, the coating liquid A is coated on a release film or release substrate so that the film thickness after carbonization becomes 100 to 850 nm so that it can be easily peeled later (as described above). Bar coating, spin coating, etc.) / Film formation. At this time, the surroundings of the release film and the release substrate are hermetically sealed, the coating film does not flow out of the release film and the release substrate, and the solvent (water) evaporates and the composition of the coating liquid It is preferable to seal so that the region which becomes the membrane pores is not crushed.
- step A3 subsequent to step A2, the temperature is raised stepwise from room temperature (20 ° C.) to 100 ° C. or allowed to stand for several days (1 to 14 days) to sufficiently gel (polymerize), A thin-film hydrogel film is obtained.
- heating 50 to 100 ° C.
- the heating temperature is preferably low.
- the hydrogel film is peeled off from the release film or release substrate, and dried so that the pore diameter and shape can be more maintained, so that the solvent (water) in the hydrogel film is replaced with acetone or cyclohexane.
- substitution in order to suppress changes in pore diameter and pore shape due to contact with the substitution liquid, the substitution concentration from water in the hydrogel membrane to acetone, cyclohexane, t-butanol, etc. is gradually increased or the number of substitutions is increased. Is preferable.
- [Drying method 1] is most preferable in order to suppress capillary contraction due to the interfacial tension of the solvent during drying as much as possible.
- [Drying Method 2] shown in Reference C, Reference D, and [Drying Method 3] shown in Reference E also sacrifice some pore diameter and pore shape.
- the RF airgel film is carbonized at 600 to 3000 ° C. for 10 minutes to 20 hours in an inert atmosphere or nitrogen atmosphere, and carbon as the RF carbon aerogel of this embodiment is obtained.
- a porous membrane is obtained.
- the carbonization treatment can use a carbonization / activation production method such as a fixed bed method, a moving bed method, and a tunnel kiln used for carbonization / activation treatment of solid films and sheets without crushing the carbon precursor.
- the carbonization temperature can be adjusted according to the target pore diameter.
- the carbonization temperature is 700 to 1500 ° C., and when it is necessary to further increase the film strength, conductivity and thermal conductivity, the treatment can be performed at 2000 to 3000 ° C.
- the pore structure can be adjusted by subjecting the obtained carbon porous membrane to an activation treatment as necessary to increase the pore diameter and pore distribution.
- the activation method it is preferable to use a gas activation method in which firing is performed using an activation gas such as water vapor, hydrogen chloride, carbon monoxide, carbon dioxide, oxygen, or the like.
- the airgel film shrinks greatly, and if carbonized in a non-tensioned state, the film tends to wrinkle, so it is fixed with a frame or sandwiched between two graphite plates or graphite sheets, It is preferable to carbonize the airgel membrane under tension, or to thermally stabilize the structure in advance at 150 ° C. to 250 ° C. in air or iodine (I 2 ) vapor.
- FIG. 2 in Kong, Polym., Prep, 30, 221-223 (1989) [hereinafter referred to as Reference Document F] shows a schematic diagram of the formation mechanism of RF airgel, RF airgel and RF as a carbide thereof. Electron micrographs of carbon-based carbon aerogels are described.
- An aggregate of beaded fine particles forms a carbon porous film as an RF carbon aerogel.
- An actual carbon porous membrane is considered to have an intermediate structure between a cubic axial pore structure model and a cubic wall porous structure model. It can be seen that the structure is similar to the assembled pore structure model.
- FIGS. 10 to 13 in Reference Document A contain graphs of the pore distribution of RF-based carbon airgel and graphs of SAXS Debye-Porod analysis.
- the peak pore radius r (peak) and the pore diameter of the alkali metal bicarbonate are larger than those of the alkali metal carbonate.
- L is obtained as the dependency of R / C. As R / C increases, the pore diameter L increases, but the pore distribution becomes broad, and the peak of the peak of the pore distribution curve It can be seen that the height also decreases.
- the pore shape is spherical regardless of the catalyst type because the slope of the Debye-Porod plot is close to ⁇ 4 when the R / C is several hundred (eg, 200) or less. You can see that they are close.
- Step A2 the coating liquid A was prepared as a thin film by spin coating to obtain a hydrogel film, and then in Step A3, the hydrogel film was gelled (polymerized) at room temperature to 100 ° C. , CO 2 supercritical drying or freeze drying or hot air drying to obtain an airgel membrane, and then the airgel membrane is carbonized at 1000 ° C. as step A4, and finally the carbon porous membrane of this embodiment is obtained.
- Equation (36) and Equation (37) were obtained.
- the dependency rate of each factor was 39% for ln (R / Ca), 37% for ln (R / Wa), and 25% for ln (R / F).
- ⁇ corresponding to the pore radius r is obtained by doubling r and dividing by ⁇ according to the equation (18).
- a solvated gel film (for example, hydrogel) containing a large amount of a solvent is formed by using a raw material that first undergoes a sol-gel transition by the sol-gel method. It is possible to obtain an airgel film containing a large amount of bubbles by drying and removing only the solvent so as not to be crushed, and finally carbonizing the airgel film to obtain the carbon porous film of this embodiment as a carbon airgel. it can.
- a carbonaceous raw material is a vinyl halide resin or vinyl halide copolymer resin having a vinyl halide composition of 60 mol% or more (generically referred to as a vinyl halide resin).
- Highly halogenated vinyl resin having a halogen weight ratio of 60 wt% or more, or a vinylidene halide or vinylidene halide copolymer resin having a vinylidene halide composition of 60 mol% or more (collectively referred to as vinylidene halide resin)
- vinylidene halide resin a vinylidene halide or vinylidene halide copolymer resin having a vinylidene halide composition of 60 mol% or more
- vinylidene halide resin A solution in which these resins are dissolved in a good solvent or a latex in which fine particles of a vinylidene halide resin are dispersed in water is prepared. These solutions and latex are collectively referred to as a coating solution B.
- this coating solution B is applied and formed on a release film or release substrate so that the film thickness after carbonization is 100 nm to 63 ⁇ m.
- a solvent or water is scattered by drying with hot air and reduced pressure at the following temperature to obtain a thin film resin film of vinylidene halide resin (vinylidene halide resin film).
- step B3 subsequent to step B2, the vinylidene halide resin film is changed to an aqueous solution of a dehydrohalogenating agent (base) of an alkali metal hydroxide [potassium hydroxide (KOH), sodium hydroxide (NaOH), etc.] and / or Or a solution of a dehydrohalogenating agent (base) in an amine solution [ammonia water (NH 3 water), 1,8-diazabicyclo [5,4,0] -7-undecene (DBU), etc.] and tetrahydrofuran (THF) Using a mixed solution of a good solvent for partially or entirely dissolving vinylidene halide resins such as dimethylformamide (DMF) and a poor solvent for vinylidene halide resins such as water, alcohol and / or ether, and mixing at room temperature to A dehydrohalogenation reaction treatment is performed at a temperature below the boiling point of the solution for 1 second to 2 weeks to obtain a vinyli
- step B2 and step B3 unlike step A2 and step A3, it takes time to gel the release film or the coating film on the release substrate, or it is peeled off after the coating film is dried with hot air. It is also possible to immerse the coating film directly in the mixed solution without any operation. Contact with the mixed solution causes cross-linking (fixation of structure) of the coating film by dehalogenation, and at the same time, the generated dehydrohalogen gas causes the vinylidene halide resin film from the release film or release substrate. It is because it peels naturally. Therefore, a vinylidene halide resin film can be obtained in an extremely short time compared with Method A.
- a crosslinked structure called a polyene structure meaning a molecular skeleton structure having —C ⁇ C— or C ⁇ C—
- Bubbles generated by the hydrogen halide are generated, and a large number of the bubbles remain in the vinylidene halide resin-based carbon precursor film remaining in the film.
- This carbon precursor film has a number of cross-linked structures, so that the dehydrohalogenation reaction and carbonization (non-destructive carbonization, graphitization) can proceed without melting even in the subsequent step B4.
- step B4 following step B3, the vinylidene halide resin-based carbon precursor film is heated under tension at 600 to 3000 ° C. for 10 minutes to 20 hours in an inert atmosphere or nitrogen atmosphere as in step A4.
- carbonization is performed to obtain the vinylidene halide resin-based carbon porous film of the present embodiment.
- Control of pore diameter and pore distribution by Method B is determined in Step B1 by the composition mol% of high vinyl halide and vinylidene halide in the resin, the molecular weight of the resin, and the resin concentration in the coating liquid B. The higher the value, the smaller the pore size.
- Step B2 the pore distribution in the film can be sharpened by reducing the film thickness.
- step B3 the higher the concentration of the base (dehydrohalogenating agent) such as alkali metal hydroxide and amine in the mixed solution, the higher the concentration of the good solvent of the vinylidene halide resin in the mixed solution, the larger the pore size. Becomes larger.
- step B4 as in step A4, the pore diameter tends to decrease as the carbonization temperature increases.
- the pore diameter / pore distribution can be increased at 600 ° C. to 1200 ° C.
- the pore structure can also be adjusted by enlarging the pore diameter and the pore distribution by the activation treatment as in step A4.
- Method B examples of Reference G and Reference H are described below.
- Step B1 a vinylidene chloride resin or vinylidene chloride copolymer resin (collectively PVDC resin) having a vinylidene chloride (VDC) composition of 60 mol% or more is dissolved in a carbonaceous raw material using THF as a good solvent for the PVDC resin.
- PVDC resin vinylidene chloride resin or vinylidene chloride copolymer resin having a vinylidene chloride (VDC) composition of 60 mol% or more
- the coating liquid B is spin-coated on a glass release substrate so that the film thickness after carbonization becomes 100 to 850 nm, and dried with hot air at 80 ° C. to obtain a thin PVDC resin film.
- step B3 the PVDC resin film is subjected to dehydrochlorination reaction treatment (deHCl treatment) using a mixed solution of an alkali metal hydroxide KOH aqueous solution, a good solvent THF, and a poor solvent methanol, and a PVDC carbon precursor film.
- dehydrochlorination reaction treatment deHCl treatment
- step B4 this PVDC-based carbon precursor film is subjected to tension heating carbonization at 600 to 3000 ° C. in a nitrogen atmosphere to obtain the PVDC-based carbon porous film of the present embodiment.
- PVDC resin those described in [0011] to [0012] of Reference G can be used.
- the molar content of the VDC component in the PVDC resin is higher, the polyene structure generated in one molecule is increased by the de-HCl reaction in Step B3, and a cross-linked structure between a plurality of molecules is easily generated. This is preferable because it can be carbonized in a solid state without melting.
- VDC copolymer a vinylidene chloride copolymer
- the molar composition ratio of VDC in the VDC copolymer is 0.6 (60 mol%), preferably 0.8 (80 mol%) or more, more preferably 0.9 (90 mol%) or more. preferable.
- (- CH 2 -CHCl-) n with respect to conventional PVC resin given by the structural formula [Cl content of 57 wt%], the structural formula [(-CH 2 -CHCl-) 4 -CHCl -CHCl -] N , a chlorinated PVC resin having a [Cl content of 61 wt%], a chlorinated rubber having [(—CHCl—C (CH 3 ) Cl—CHCl—CHCl—) n , and a [Cl content of 68 wt%], etc.
- an aqueous dispersion of PVDC resin called latex or THF, 1,4-dioxane, cyclohexane, cyclopentanone, chlorobenzene, dichlorobenzene shown in [0014] of Reference G is used as the PVDC resin.
- PVDC resin solution dissolved in a good solvent of PVDC resin such as DMF, methyl ethyl ketone, and ethyl acetate can be used.
- Preferred good solvents are THF and DMF.
- the PVDC-based carbon precursor film is subjected to deHCl treatment using the composition and processing conditions of the alkaline processing liquid shown in [0014] to [0015] of Reference G as a mixed solution, and the PVDC-based carbon porous film is It can be carried out under the carbonization conditions shown in [0017] of Reference G. Since the PVDC resin film and PVDC-based carbon precursor film of this embodiment are thin films, the alkali (base) concentration, good solvent concentration, deHCl treatment temperature, and deHCl treatment and carbonization treatment time are described in the same patent document. In comparison, it can be kept low and short.
- FIG. 3 in Reference G shows a TEM photograph of the PVDC carbon porous membrane.
- FIG. 2 of the same document is a graph of the pore distribution of the PVDC carbon porous membrane. From FIG. 3 of the same document, a large number of spherical pores surrounded by the pore walls form a PVDC-based carbon porous film. From FIG. 2 of the same document, L ⁇ 13 nm ( ⁇ 1). It can be seen that a large number of .0) pores are formed. Thus, the vinylidene halide-based carbon porous film tends to be a strong carbon porous film with a thicker pore wall thickness than the carbon airgel-based carbon porous film.
- An actual carbon porous membrane is considered to have an intermediate structure between a cubic axial structure pore structure model and a cubic wall structure pore structure model, but speakingly, the pore structure of the vinylidene halide carbon porous film is It can be seen that the structure is similar to the cubic wall-set pore structure model.
- Reference H uses a vinylidene fluoride resin (PVDF resin) film instead of PVDC resin, and a mixed solution of organic strong base DBU, PVDF good solvent DMF, and PVDF poor solvent ethanol.
- PVDF resin vinylidene fluoride resin
- a method for obtaining a PVDF carbon porous film having a large number of mesopores after carbonization treatment after obtaining a PVDF carbon precursor film by hydrogenation treatment has been introduced. Can be used.
- Method AB an eclectic method (Method AB) of Method A and Method B is introduced, and this method can also be applied to this embodiment. That is, like the manufacturing process of the carbon porous membrane shown in FIG. 5, a vinyl chloride resin (PVC resin) having a different number average molecular weight M is used as the carbonaceous raw material as the process AB1, and the PVC resin powder is dissolved in DMF. DBU is dropped into the solution at room temperature, and a part of the PVC resin is deHCled to prepare a viscous coating liquid AB composed of three components of PVC, DMF and DBU.
- PVC resin vinyl chloride resin having a different number average molecular weight M
- step AB2 the coating liquid AB is applied and formed on the release film or release substrate so that the film thickness after carbonization becomes 100 nm to 63 ⁇ m.
- the surroundings of the release film and the release substrate are hermetically sealed, the coating film does not flow out of the release film and the release substrate, and the solvent (water) evaporates and the composition of the coating liquid After sealing so as not to change or the region that becomes the membrane pores is not crushed, it is heated at room temperature to 70 ° C. to be sufficiently gelled to obtain a PVC gel membrane.
- step AB3 after peeling the PVC gel film from the release film or release substrate, the DMF in the gel is directly replaced with liquid CO 2 , and then CO 2 supercritical drying is performed to disperse the solvent and make it porous. A PVC airgel membrane is obtained.
- step AB4 the PVC-based airgel membrane is heat-stabilized by stepwise heating in air (under O 2 ) at 150 to 250 ° C., or the PVC-based gel membrane is heated with iodine (I 2 ) vapor.
- heat stabilization at 150 to 250 ° C. heat to 700 ° C. to 3500 ° C. (here 1000 ° C.) in an inert atmosphere or nitrogen atmosphere in the same manner as PVDC carbon porous membrane and PVDF carbon porous membrane.
- Carbonization can be performed to obtain a porous carbon film made of PVC-based carbon airgel.
- the PVC airgel film melts and its pore structure collapses. Therefore, unlike the case where chlorinated PVC resin or PVDC resin is used as a carbonaceous raw material, the pore structure by thermal stabilization Immobilization is essential.
- FIG. 8 in Reference H shows the pore distribution of the PVC-based carbon airgel.
- FIG. 8 shows the dependency of the molecular weight M on the pore distribution and the dependency of the PVC concentration.
- the dependence rates of the factors were 66% for [PVC], 27% for M, and 7% for DBU / Cl.
- ⁇ corresponding to the pore radius r is obtained by doubling r and dividing by ⁇ according to Equation 2.
- the carbon porous film of this embodiment can be obtained as a halogenated vinyl resin-based or halogenated vinylidene resin-based carbon porous film.
- FIG. 6 is a perspective view showing a pellicle.
- FIG. 7 is a diagram showing a cross-sectional configuration along the line VII-VII in FIG.
- the pellicle 10 of the present embodiment is obtained by bonding the above-described carbon porous film to the frame 3 using the film adhesive 2 as the pellicle film 1.
- a bonding mechanism 4 with a mask adhesive (including its protective film) or a frame is provided on the side of the pellicle that is bonded to the mask.
- the frame material is preferably an Al—Zn-based aluminum alloy frame (7000-based aluminum alloy frame) in which Zn and Mg are added to increase the strength among aluminum alloys. More preferably, in order to suppress stray light when the EUV light is irradiated onto the frame, elements Mg and Si having a refractive index of EUV light close to a vacuum refractive index of 1.0 and a large extinction coefficient k are added to provide strength and corrosion resistance.
- the mask adhesive 4 for example, an adhesive containing a reaction product of a (meth) acrylic acid alkyl ester and a polyfunctional epoxy compound used in an ArF pellicle introduced in JP 2011-107488 A is used. Can be used. When EUV light is applied to the adhesive, decomposition gas may be generated from the components of the adhesive. Therefore, when the frame is bonded to the mask, the frame adhesive should not protrude from the edge of the frame width. It can be applied narrower than the width of 3. Moreover, as an arrangement
- the mask adhesive 4 is applied in the groove 6 slightly thicker than the depth of the groove 6.
- grooves 7 and 8 may be further provided on both sides of the groove 6 where the mask adhesive 4 is disposed so that the mask adhesive does not protrude from the width of the frame.
- the EUV mask usually peels off the pellicle and is often used again. In this case, the adhesive residue of the mask adhesive on the EUV mask sometimes becomes a problem. Therefore, as a bonding mechanism between the pellicle 10 and the EUV mask, instead of the mask adhesive, as shown in FIG. 9, the conductive coil 12 is attached to the wire core 11 of a ferromagnetic material such as iron Fe, cobalt Co, nickel Ni or the like. Electromagnets 13 wound with metal nanowires, carbon nanowires, etc. are embedded in the grooves 6 of the frame 3 or joined with an adhesive or the like, and on the other hand, a ferromagnetic surface is provided on the EUV mask side as well. It is more preferable to join to. Instead of installing the electromagnet 13 on the frame 3, an electromagnet can be installed on the EUV mask side, and a ferromagnetic wire or the like can be provided in the groove of the frame.
- a ferromagnetic wire or the like can be provided in the groove of the frame
- a mask for EUV made of a multilayer film in which Si and molybdenum (Mo) are alternately deposited on 40 layers of zero expansion glass (LTE glass) alternately a mask that adheres to a frame is used.
- a frame or seal made of ferromagnetism such as permalloy thin film or amorphous rare earth iron alloy film in advance is affixed to these areas, or these ferromagnetic thin films are produced by vacuum deposition, sputter deposition, or electrodeposition. You just have to.
- an inorganic adhesive that has adhesive force and generates little decomposition gas even when irradiated with EUV light and does not affect the exposure.
- an epoxy resin adhesive mixed with an inorganic substance for example, A-3 / C-3 (epoxy resin adhesive using carbon black as a filler) manufactured by Fujikura Kasei Co., Ltd.
- a phenolic adhesive mixed with an inorganic substance for example, FC-403R / XC-223 manufactured by Fujikura Kasei Co., Ltd. (phenolic resin adhesive using graphite as a filler) or inorganic reactive adhesives such as silicate, phosphate, and colloidal silica can be used.
- the mask adhesive 4 when the mask adhesive 4 is used after the frame 3 previously coated with the film adhesive 2 and the pellicle film 1 of the present embodiment are bonded, the mask adhesive on the bonding surface side of the frame 3 with the EUV mask is used.
- the pellicle 10 of this embodiment can be obtained by applying 4 and then attaching a protective film.
- the present invention can be suitably used in the field of EUV lithography as a pellicle film and a pellicle for protecting a lithography mask from contamination.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Description
α≦30(α:細孔サイズパラメータ) …(1)
0.335≦Nd≦13(N:膜厚方向への細孔数(個)、d:細孔の壁厚(nm)) …(2)
αλ/d≦81(λ:露光波長(nm)) …(3)
ただし、上記のN、dは、
N=-1+{(W-ρ)1/3/W1/3}+{D(W-ρ)1/3/αλW1/3} …(4)
d=-αλ+{αλW1/3/(W-ρ)1/3} …(5) In one embodiment, the wavelength λ of extreme ultraviolet light is 13.5 nm, the density W of graphite is 2.25 g / cm 3 , the apparent density (g / cm 3 ) of the porous carbon film is ρ, and the film thickness is D ( nm), the carbon porous membrane may have structural parameters satisfying the following formulas (1) to (5).
α ≦ 30 (α: pore size parameter) (1)
0.335 ≦ Nd ≦ 13 (N: number of pores in the film thickness direction (pieces), d: wall thickness of the pores (nm)) (2)
αλ / d ≦ 81 (λ: exposure wavelength (nm)) (3)
However, the above N and d are
N = −1 + {(W−ρ) 1/3 / W 1/3 } + {D (W−ρ) 1/3 / αλW 1/3 } (4)
d = −αλ + {αλW 1/3 / (W−ρ) 1/3 } (5)
α≦30(α:細孔サイズパラメータ) …(6)
αλ/d≦81(λ:露光波長(nm)) …(7)
0.08g/cm3≦ρ≦0.7g/cm3 …(8)
D:100≦D≦850 …(9) In one embodiment, the wavelength λ of extreme ultraviolet light is 13.5 nm, the density W of graphite is 2.25 g / cm 3 , the apparent density (g / cm 3 ) of the porous carbon film is ρ, and the film thickness (nm) Is D, the carbon porous membrane may have structural parameters satisfying the following formulas (6) to (9).
α ≦ 30 (α: pore size parameter) (6)
αλ / d ≦ 81 (λ: exposure wavelength (nm)) (7)
0.08 g / cm 3 ≦ ρ ≦ 0.7 g / cm 3 (8)
D: 100 ≦ D ≦ 850 (9)
[本実施形態の基準値]
本実施形態の基準値とは、本実施形態の課題を達成する上で好ましいペリクル膜の、透過率、散乱量及び膜厚の3つの物性値の値を示す。 1. Definition or explanation of terms used in this embodiment [reference value of this embodiment]
The reference value of the present embodiment indicates three physical property values of transmittance, scattering amount, and film thickness of a pellicle film that is preferable for achieving the object of the present embodiment.
本実施形態のペリクル膜は、炭素多孔膜で構成されており、ペリクル膜の膜厚Dが100nm~63μmである。また、本実施形態のペリクル膜は、後述する特定の構造を有していることが好ましい。以下、ペリクル膜の構造を規定するために用いた、前提、炭素多孔膜の構造モデル、及び、各構造パラメータについて説明する。 [Structural model of pellicle film of this embodiment]
The pellicle film of this embodiment is composed of a carbon porous film, and the thickness D of the pellicle film is 100 nm to 63 μm. The pellicle film of this embodiment preferably has a specific structure described later. Hereinafter, the premise, the structural model of the carbon porous film, and each structural parameter used for defining the structure of the pellicle film will be described.
現実の炭素多孔膜は、細孔が単分散(細孔の細孔径、壁厚又は柱太さ、形状等が同一で且つその様な細孔の集合状態が均一に出来ているとする構造モデル)しているわけではなく、色々な細孔が混在した多分散した構造をとる。しかし、本実施形態では議論を簡単にするため、現実に得られる炭素多孔膜を後述する様な単分散の立方体殻状又は立方体枠状の細孔からなる炭素多孔膜と近似し(以後、それぞれを順に立方体壁組細孔モデル、立方体軸組細孔モデルと称する)、その構造を構造パラメータで規定することができるものとする。 (Assumption 1)
An actual carbon porous membrane has a monodisperse pore structure (a structure model in which the pore diameter, wall thickness or column thickness, shape, etc. of the pores are the same and the aggregate state of such pores is uniform. It has a polydispersed structure in which various pores are mixed. However, in this embodiment, in order to simplify the discussion, the carbon porous film actually obtained is approximated to a carbon porous film composed of monodispersed cubic shell-shaped or cubic frame-shaped pores as described later (hereinafter, respectively). Are sequentially referred to as a cubic wall group pore model and a cubic axis group pore model), and the structure thereof can be defined by structural parameters.
室温における、黒鉛(g-C)の密度W、非晶質炭素(a-C)の密度の値は、それぞれ、Wが2.25~2.26g/cm3(本実施形態ではW=2.25g/cm3とする)、a-Cの密度が1.8~2.1g/cm3である。したがって、実際の炭素の密度はその結晶化度に応じて1.8~2.26g/cm3の範囲内の値を取る。 (Assumption 2)
The values of the density W of graphite (gC) and the density of amorphous carbon (aC) at room temperature are 2.25 to 2.26 g / cm 3 (W = 2 in this embodiment), respectively. and .25g / cm 3), the density of a-C is 1.8 ~ 2.1g / cm 3. Therefore, the actual density of carbon takes a value within the range of 1.8 to 2.26 g / cm 3 depending on the crystallinity.
L0=L+d …(10)
D=Nαλ+(N+1)d …(11)
の関係が成立する。 Based on (Premise 1) and (Premise 2), as a pore structure model of the carbon porous membrane of the present embodiment, a cubic shell shape having a wall thickness or a column thickness d as shown in FIG. Alternatively, a structure in which N pieces of cubic frame-shaped pores (pore diameter L) are stacked in the thickness direction is referred to as a cubic wall group pore model and a cubic axis group pore model, respectively. It is assumed that the layers in which the cubes are spread are stacked while being shifted in the thickness direction so that the apexes of the four corners of each cube are located in the center of the surface of the adjacent cube in the thickness direction. Assuming a pore structure model, L0 = L + d (10) between L, L0, d, film thickness D, number N of pores, and pore size parameters α, d.
D = Nαλ + (N + 1) d (11)
The relationship is established.
N=-1+{(W-ρ)1/3/W1/3}+{D(W-ρ)1/3/αλW1/3} …(12)
d=αλ{-1+W1/3/(W-ρ)1/3} …(13)
ρ=W[(L03-L)/L03]=W[{(1+αλ/d)3-(αλ/d)3}/(1+αλ/d)3] …(14)
N=8.32×10-1{D/(αλ)}-10.64{ρ}+3.54×10-2{D1/2}+7.65×10-1 …(15)
d=7.90×10-1{ραλ}+8.43×10-1{(αλ)1/2}-7.93×10-1{ρ-1/3}-7.60×10-1 …(16)
ρ=W[{8(d/2)2・(L+d/2)+4(d/2)2・L}/L03]=W(1+3αλ/d)/(1+αλ/d)3 …(17) Furthermore, the structure of the porous membrane of the present embodiment can be defined using first and second structure parameters described later, and between each structure parameter, an equation ( 12) to (14) are related to the cubic axis pore model, and the relationships of (15) to (17) are established.
N = −1 + {(W−ρ) 1/3 / W 1/3 } + {D (W−ρ) 1/3 / αλW 1/3 } (12)
d = αλ {−1 + W 1/3 / (W−ρ) 1/3 } (13)
ρ = W [(L0 3 −L) / L0 3 ] = W [{(1 + αλ / d) 3 − (αλ / d) 3 } / (1 + αλ / d) 3 ] (14)
N = 8.32 × 10 −1 {D / (αλ)}-10.64 {ρ} + 3.54 × 10 −2 {D 1/2 } + 7.65 × 10 −1 (15)
d = 7.90 × 10 -1 {ραλ } + 8.43 × 10 -1 {(αλ) 1/2} -7.93 × 10 -1 {ρ -1/3} -7.60 × 10 -1 ... (16)
ρ = W [{8 (d / 2) 2 · (L + d / 2) +4 (d / 2) 2 · L} / L0 3 ] = W (1 + 3αλ / d) / (1 + αλ / d) 3 (17)
本実施形態における炭素多孔体膜の好ましい構造は、次の3つの物性値、T、Δ、Dの各基準値に応じて決まる。そして、その炭素多孔膜の構造は、細孔径(L)又は細孔サイズパラメータ(α)、細孔を形成する壁厚又は柱太さ(d)、膜厚方向への細孔の積層数(N)を第1構造パラメータ群として、更にL(又はα)、D、更にρ(ap)又はρと記載する炭素多孔膜の見かけ密度を第2構造パラメータ群として、これらの構造パラメータで規定することができるものとする。第1構造パラメータ群は、ミクロ的な構造パラメータであり、炭素多孔膜の構造を規定するには都合がよいが、直接・間接的に計測・観測するのは困難であり、製造プロセス上でこれらの値を用いて膜の構造を制御・規定するのは難しい。第2構造パラメータ群は、マクロ的な構造パラメータであり、直接・間接的に計測・観測するのは比較的容易であり、製造プロセス上でこれらの値を用いて構造を制御し易いが、これらの値から細孔構造モデルを仮定せずにミクロ的な構造を一意的に決定することはできない。 [Structural parameters]
The preferred structure of the carbon porous membrane in the present embodiment is determined according to the following three physical property values, T, Δ, and D reference values. And the structure of the carbon porous membrane includes the pore diameter (L) or the pore size parameter (α), the wall thickness or column thickness (d) forming the pores, and the number of pores stacked in the film thickness direction ( N) is defined as the first structural parameter group, and the apparent density of the carbon porous membrane described as L (or α), D, and ρ (ap) or ρ is defined as the second structural parameter group, and these structural parameters are defined. It shall be possible. The first structural parameter group is a microscopic structural parameter, which is convenient for defining the structure of the carbon porous membrane, but it is difficult to measure and observe directly and indirectly, and these are difficult in the manufacturing process. It is difficult to control and define the structure of the film using the value of. The second structural parameter group is a macroscopic structural parameter, and it is relatively easy to measure and observe directly and indirectly, and it is easy to control the structure using these values in the manufacturing process. A microscopic structure cannot be uniquely determined without assuming a pore structure model from the value of.
細孔径(L)とは、ガス吸着式細孔分布測定法の吸着等温線から求められる細孔分布曲線の山のピーク細孔半径r(peak)と、最大ピーク半径r(max)(細孔分布の山と細孔分布のベースの交点において、大きい側の細孔半径値を指す)の値を2倍した値(2倍値と称する)をそれぞれL(peak)、L(max)とし、単位は[nm]とする。なお、r(max)、L(max)は、Δの各基準の上限を議論する場合に用い、それ以外の場合、特に断らなければ、L(peak)をL、r(peak)をrとして用いる。実験的・経験的には、林順一、堀河俊英、炭素、No.236、15-21(2009)[以下、参考文献Aとする]の図6、図8に記載のように、r(max)は、細孔分布図の横軸をrの対数目盛で、縦軸を積分細孔容積のdV/d[Log(r)]とした細孔分布曲線において、概ねr(peak)の1.5~3倍程度になることが多い。また、細孔分布の山が低く、r(max)が分かり難い場合は、r(peak)をr(max)の代替値とする。 [Pore diameter L, pore radius r]
The pore diameter (L) is the peak peak radius r (peak) of the peak of the pore distribution curve obtained from the adsorption isotherm of the gas adsorption type pore distribution measurement method, and the maximum peak radius r (max) (pore L (peak) and L (max) are values obtained by doubling the values of the distribution radius and the pore distribution base (pointing to the larger pore radius value) (referred to as double values), respectively. The unit is [nm]. Note that r (max) and L (max) are used when discussing the upper limit of each criterion of Δ, and otherwise L (peak) is L and r (peak) is r unless otherwise specified. Use. Experimentally and empirically, Junichi Hayashi, Toshihide Horikawa, Carbon, No. 236, 15-21 (2009) [hereinafter referred to as Reference A], as shown in FIG. 6 and FIG. 8, r (max) is a logarithmic scale of r on the horizontal axis of the pore distribution diagram. In the pore distribution curve whose axis is dV / d [Log (r)] of the integral pore volume, it is often about 1.5 to 3 times r (peak). Further, when the peak of the pore distribution is low and r (max) is difficult to understand, r (peak) is set as an alternative value for r (max).
細孔サイズパラメータ(α)とは、細孔径をL、露光に用いるEUV光の波長をλとした時、
α=L/λ …(18)
で定義される値であり、細孔径をλに対する倍数で表わしたものである。なお、本件のαは、通常のMie散乱理論で用いられるサイズパラメータΛ(≡2πγ/λ=πα、ここでγは球状散乱体の半径、πは円周率である)の、約1/3となっている。 [Pore size parameter α]
The pore size parameter (α) means that when the pore diameter is L and the wavelength of EUV light used for exposure is λ,
α = L / λ (18)
The pore diameter is expressed as a multiple of λ. In this case, α is about 1/3 of the size parameter Λ (≡2πγ / λ = πα, where γ is the radius of the spherical scatterer and π is the pi) used in the usual Mie scattering theory. It has become.
本実施形態における細孔の壁厚又は柱太さ(d)とは、立方体壁組細孔モデルでは炭素多孔膜を構成する個々の細孔を区切っている(細孔の障壁となっている)炭素壁の平均的な厚みのことであり、立方体壁組の壁の厚みのことである。立方体軸組細孔モデルでは、炭素多孔膜を構成する細孔と細孔とを形式的に区分する炭素棒(柱)の平均的な太さのことであり、立方体の枠の太さのことである。単位は[nm]とする。 [Wall Thickness or Column Thickness d]
The pore wall thickness or column thickness (d) in the present embodiment delimits individual pores constituting the carbon porous membrane in the cubic wall set pore model (becomes a pore barrier). It is the average thickness of the carbon wall, and the thickness of the wall of the cubic wall set. In the cubic axis pore model, the average thickness of carbon rods (columns) that formally divide the pores that make up the carbon porous membrane, and the thickness of the cubic frame It is. The unit is [nm].
細孔の積層数(N)とは、細孔径Lの細孔の、膜厚方向への積層数のことである。本実施形態では、立方体壁組細孔モデルでは式(12)により、立方体軸組細孔モデルでは式(15)により、α、ρ(ap)、Dから算出された値をNとする。Nは、言葉の定義上、N≧1の整数となるべきだが、正の実数値も許すものとする。少数点以下の数値の端数部分は、単分散した立方体殻状又は立方体枠状の細孔が綺麗に積み重なった細孔構造モデルからのズレを反映しているものと考える。 [Number of pores N]
The number of pores (N) is the number of pores having a pore diameter L in the film thickness direction. In the present embodiment, N is a value calculated from α, ρ (ap), and D according to Equation (12) in the cubic wall group pore model and according to Equation (15) in the cubic axis group pore model. N should be an integer of N ≧ 1 in the definition of the word, but a positive real value is allowed. The fractional part of the numerical value below the decimal point is considered to reflect the deviation from the pore structure model in which monodispersed cubic shell-like or cubic frame-like pores are neatly stacked.
見かけ密度ρ(ap)とは、多孔膜内部に細孔がないものとしたときの膜体積を用いた密度であり、膜の外形寸法から求められる膜の体積Vと膜の質量Gとの比、G/Vとして算出した値である。一方、算術的な見かけ密度ρとは、細孔構造モデルのもと、本実施形態では、立方体壁組細孔モデルでは式(14)により、立方体軸組細孔モデルでは式(17)により、α、ρ(ap)、Dから算出された値をρとする。(前提1)及び(前提2)を仮定しているため、以下、ρ(ap)=ρとして両者を区別せずに扱う。単位は[g/cm3]とする。 [Apparent density ρ (ap), Arithmetic apparent density ρ]
The apparent density ρ (ap) is a density using the membrane volume when it is assumed that there are no pores inside the porous membrane, and the ratio between the membrane volume V and the membrane mass G obtained from the outer dimensions of the membrane. , G / V. On the other hand, the arithmetic apparent density ρ is based on the pore structure model, in the present embodiment, according to the equation (14) for the cubic wall assembly pore model and the equation (17) for the cubic axis assembly pore model. A value calculated from α, ρ (ap), and D is ρ. Since (Assumption 1) and (Assumption 2) are assumed, ρ (ap) = ρ is treated without distinction between the two. The unit is [g / cm 3 ].
膜厚(D)とは、通常の意味で用いられる、シート、フィルム、膜の厚みのことである。本実施形態の厚みの測定は、電子顕微鏡(SEM)を用いて、非接触で多孔膜を1mm以上の間隔をあけて10点以上撮影し、その寸法を平均した値として求めることができる。単位は、通常[nm]を用い、必要に応じて[μm]も用いることとする。 [Film thickness D]
The film thickness (D) is the thickness of a sheet, film, or film used in the usual sense. The measurement of the thickness of this embodiment can be obtained as a value obtained by averaging 10 or more images of a porous film in a non-contact manner with an interval of 1 mm or more using an electron microscope (SEM). The unit is usually [nm], and [μm] is also used as necessary.
多孔膜の平均的な細孔形状は、参考文献A、松岡秀樹、結晶学会誌、No.41、213-226(1999)、西川恵子、炭素、No.191、71-76(2000)に記載されたように、小角X線散乱(SAXS)の、Debye-Porod領域での散乱強度解析から求めることができる。すなわち、X線散乱強度Iを散乱ベクトルsの関数として、両対数プロットした際、その直線の傾きが-4、-2、-1になれば、細孔の形状がそれぞれ球状、円盤状、円筒状であることを意味する。 [Pore shape]
The average pore shape of the porous membrane is described in Reference A, Hideki Matsuoka, Journal of Crystallographic Society, No. 41, 213-226 (1999), Keiko Nishikawa, Carbon, No. 191, 71-76 (2000), it can be obtained from the scattering intensity analysis in the Debye-Porod region of small angle X-ray scattering (SAXS). That is, when the logarithmic plot of the X-ray scattering intensity I as a function of the scattering vector s is a logarithmic slope of −4, −2, and −1, the pore shape is spherical, disk-shaped, cylindrical, respectively. Means that
2-1.本実施形態のペリクル
本実施形態のペリクル膜について、以下に[技術ポイント]毎に詳細な説明を行う。 2. 2. Pellicle membrane of this embodiment and method for manufacturing the pellicle membrane 2-1. Pellicle of this embodiment The pellicle film of this embodiment will be described in detail below for each [technical point].
技術ポイント1は、ペリクル膜が多孔膜であることである。Mieの散乱理論(Mie散乱自体は球形粒子による散乱であるが、定性的には形状は問わないものとする)では、球状粒子(球状細孔)による光散乱は、粒子(細孔)の直径(細孔径)を2γ、入射光の波長をλとし、粒径サイズパラメータΛ(=2πγ/λ)を用いたとき、Λが1より十分に小さい(Λ<<1)場合はレイリー散乱が生じ、Λがほぼ1に近い(Λ≒1)の場合はMie散乱が生じ、Λが1より十分に大きい(Λ>>1)場合は幾何学的散乱が生じるとされている。したがって、細孔径がΛ≧1の多孔体(多孔膜)であると、露光の際に光が入射したとき、光が細孔壁又は柱と細孔部の界面で散乱され、十分な透過率が得られないだけでなく、マスクの回路像を正しくウエハ上に結像することができないと考えられていた(上記特許文献6、特許文献7参照)。 [Technical point 1]
The
技術ポイント2は、多孔膜が炭素からなることである。多孔膜として炭素を用いることの第1の利点は、多孔膜化した炭素の、光学定数としての優位性である。一般に、膜を構成する元素の種類と、膜の結晶・非晶の構造の割合による密度が決まると、EUV領域における光学定数n、kを上記非特許文献1から求めることができる。実際には、具体的な数値の算出には、CXRO(The Center for X-ray Optics)のウェブページ<http://henke.lbl.gov/optical_constants/getdb2.html>を用いた。 [Technical point 2]
技術ポイント3は、課題を満たす炭素多孔膜を制約された構造パラメータを用いて規定できることである。 [Technical point 3]
The
(1)ステップ1
N=1層~5層の立方体壁組細孔モデル及び立方体軸組細孔モデルにおいて、d、αを様々に変化させたモデルを作成した。非特許文献1から求めた炭素(2.25g/cm3)の、λ=13.5nmにおける光学定数n、k(それぞれ、9.61×10-1、7.70×10-3)及びλ=6.75nmにおける光学定数n、k(それぞれ、9.91×10-1、7.70×10-4)と、RSoft社製のRCWA法による回折光学素子設計・解析ソフトウェアDiffractMODを使用して、各モデルの入射角θ=6°におけるT、Δ、Dを計算した。なお、Tは、0次の透過率のことであり、またΔは、全透過率から0次の透過率を差し引いた値のことである。 [Relationship between structural parameter group and reference values (Ti, Δi, Di, i = 1 to 3)]
(1)
In the N = 1 to 5 layer cubic wall group pore model and the cubic axis group pore model, models were prepared in which d and α were changed in various ways. The optical constants n and k (λ 9.61 × 10 −1 and 7.70 × 10 −3 ) and λ, respectively, of λ = 13.5 nm of carbon (2.25 g / cm 3 ) obtained from
立方体壁組細孔モデルにおける、第1構造パラメータ群N、d、αによるT、Δへの影響 <Step 1-1>
Influence of T, Δ by the first structural parameter group N, d, α in the cubic wall set pore model
T=[-7.65×10-3{α}-1.53×10-2{dN}+9.95×10-1]×100 …(19)
自由度修正済決定係数R*2=0.97
となり、標準偏回帰係数の絶対値の大小関係を利用して求めた各因子の依存率(各因子の標準偏回帰係数の絶対値を、全因子の標準偏回帰係数の絶対値の和で割った百分率の値とする)は、αが28%、dNが72%となった。なお、Tに関する重回帰式は、ペリクル膜を2回通過する際の透過率が1回通過する場合の値をほぼ二乗する必要がある等を説明する上では理論的には好ましく、
In(T)=[-1.13×10-2{α}-2.04×10-2{dN}+2.93×10-2] …(20)
R*2=0.95
とも近似できたが、R*2の大きい式(19)を以後の計算では用いた。 As a result of the multiple regression analysis by the first structural parameter group N, d, α in the cubic wall set pore model, the multiple regression equation for T at λ = 13.5 nm is
T = [− 7.65 × 10 −3 {α} −1.53 × 10 −2 {dN} + 9.95 × 10 −1 ] × 100 (19)
Degree-of-freedom corrected coefficient of determination R * 2 = 0.97
The dependence of each factor obtained using the magnitude relationship of the absolute value of the standard partial regression coefficient (the absolute value of the standard partial regression coefficient of each factor is divided by the sum of the absolute values of the standard partial regression coefficients of all factors. As a percentage, α was 28% and dN was 72%. Note that the multiple regression equation for T is theoretically preferable in order to explain that the transmittance when passing through the pellicle membrane twice needs to be almost squared, etc.
In (T) = [− 1.13 × 10 −2 {α} −2.04 × 10 −2 {dN} + 2.93 × 10 −2 ] (20)
R * 2 = 0.95
However, Equation (19) having a large R * 2 was used in the subsequent calculations.
Δ=[5.05×10-4{dNα}+3.66×10-3]×100 …(21)
R*2=0.92
となった。 Also, the multiple regression equation for Δ at λ = 13.5 nm is
Δ = [5.05 × 10 −4 {dNα} + 3.66 × 10 −3 ] × 100 (21)
R * 2 = 0.92
It became.
T=[-1.98×10-3{α}-4.68×10-3{dN}+1.01]×100 …(22)
R*2=0.91
となり、各因子の依存率は、αが34%、dNが66%となった。なお、Tに関する重回帰式は、
In(T)=[-2.16×10-3{α}-5.05×10-3{dN}+1.24×10-2] …(23)
R*2=0.90
とも近似できたが、R*2の大きい式(22)を以後の計算では用いた。 On the other hand, the multiple regression equation for T at λ = 6.75 nm is
T = [− 1.98 × 10 −3 {α} −4.68 × 10 −3 {dN} +1.01] × 100 (22)
R * 2 = 0.91
Thus, the dependency rate of each factor was 34% for α and 66% for dN. The multiple regression equation for T is
In (T) = [- 2.16 × 10 -3 {α} -5.05 × 10 -3 {dN} + 1.24 × 10 -2] ... (23)
R * 2 = 0.90
However, equation (22) having a large R * 2 was used in the subsequent calculations.
Δ=[1.49×10-4{dNα}-1.47×10-4]×100 …(24)
R*2=0.94
となった。 Also, the multiple regression equation for Δ at λ = 6.75 nm is
Δ = [1.49 × 10 −4 {dNα} −1.47 × 10 −4 ] × 100 (24)
R * 2 = 0.94
It became.
立方体軸組細孔モデルにおける、第1構造パラメータ群N、d、αによるT、Δへの影響 <Step 1-2>
Influence of T, Δ by the first structural parameter group N, d, α in the cubic frame pore model
T=[6.02×10-3{α}-8.69×10-3{dN1/2}+1.00]×100 …(25)
R*2=0.86
となり、各因子の依存率は、αが33%、dN1/2が67%となった。なお、Tに関する重回帰式は、
In(T)=[6.86×10-3{α}-5.01×10-3{dN}-1.34×10-2] …(26)
R*2=0.79
とも近似できたが、R*2の大きい式(25)を以後の計算では用いた。 As a result of the multiple regression analysis by the first structural parameter group N, d, α in the cubic axis pore model, the multiple regression equation for T at λ = 13.5 nm is
T = [6.02 × 10 −3 {α} −8.69 × 10 −3 {dN 1/2 } +1.00] × 100 (25)
R * 2 = 0.86
Thus, the dependency rate of each factor was 33% for α and 67% for dN 1/2 . The multiple regression equation for T is
In (T) = [6.86 × 10 −3 {α} −5.01 × 10 −3 {dN} −1.34 × 10 −2 ] (26)
R * 2 = 0.79
However, equation (25) having a large R * 2 was used in the subsequent calculations.
Δ=[1.99×10-3{dN1/2}-1.25×10-2]×100 …(27)
R*2=0.71
となった。なお、Δに関する重回帰式は、ペリクル膜を2回通過する際の散乱率が1回通過する場合の値をほぼ2倍する必要がある等を説明する上では理論的には好ましく、
Δ=[9.14×10-4{dN}-7.55×10-3]×100 …(28)
R*2=0.66
とも近似できたが、R*2の大きい式(27)を以後の計算では用いた。 Also, the multiple regression equation for Δ at λ = 13.5 nm is
Δ = [1.99 × 10 −3 {dN 1/2 } −1.25 × 10 −2 ] × 100 (27)
R * 2 = 0.71
It became. It should be noted that the multiple regression equation for Δ is theoretically preferable in order to explain that it is necessary to almost double the value when the scattering rate when passing through the pellicle film twice passes,
Δ = [9.14 × 10 −4 {dN} −7.55 × 10 −3 ] × 100 (28)
R * 2 = 0.66
However, Equation (27) having a large R * 2 was used in the subsequent calculations.
T=[1.07×10-3{α}-2.95×10-3{dN1/2}+1.00]×100 …(29)
R*2=0.91
となり、各因子の依存率は、αが22%、dN1/2が78%となった。なお、Tに関する重回帰式は、
In(T)=[1.06×10-3{α}-1.51×10-3{dN}+2.84×10-4] …(30)
R*2=0.91
とも近似できたが、式(25)との整合性から式(29)を以後の計算では用いた。 On the other hand, the multiple regression equation for T at λ = 6.75 nm is
T = [1.07 × 10 −3 {α} −2.95 × 10 −3 {dN 1/2 } +1.00] × 100 (29)
R * 2 = 0.91
Thus, the dependency rate of each factor was 22% for α and 78% for dN 1/2 . The multiple regression equation for T is
In (T) = [1.06 × 10 −3 {α} −1.51 × 10 −3 {dN} + 2.84 × 10 −4 ] (30)
R * 2 = 0.91
Although both could be approximated, Equation (29) was used in the subsequent calculations because of its consistency with Equation (25).
Δ=[9.06×10-4{dN1/2}-5.50×10-3]×100 …(31)
R*2=0.63
となった。なお、Δに関する重回帰式は、
Δ=[4.34×10-4{dN}-3.85×10-3]×100 …(32)
R*2=0.62
とも近似できたが、R*2の大きい式(31)を以後の計算では用いた。 Also, the multiple regression equation for Δ at λ = 6.75 nm is
Δ = [9.06 × 10 −4 {dN 1/2 } −5.50 × 10 −3 ] × 100 (31)
R * 2 = 0.63
It became. The multiple regression equation for Δ is
Δ = [4.34 × 10 −4 {dN} −3.85 × 10 −3 ] × 100 (32)
R * 2 = 0.62
However, Equation (31) having a large R * 2 was used in the subsequent calculations.
立方体壁組細孔モデル及び立方体軸組細孔モデルにおける、第2構造パラメータ群ρ、D、αによるT、Δへの影響 <Step 1-3>
Influence on T and Δ by the second structural parameter group ρ, D, α in the cubic wall group pore model and the cubic axis group pore model
T=[-1.26×10-3{Dρ(λα)1/2}-9.52×10-3{ρD}+9.60×10-1]×100 …(33)
R*2=0.98
となり、各因子の依存率は、Dρ(λα)1/2が60%、ρDが40%となった。また、λ=13.5nmでのΔに関する重回帰式は、
Δ=[9.72×10-4{Dρ(λα)1/2}-3.75×10-3(ρD)+3.16×10-3]×100 …(34)
R*2=0.93
となり、各因子の依存率は、Dρ(λα)1/2が74%、ρDが26%となった。 Subsequently, the influence of the second structural parameter group ρ, D, α on T, Δ is examined. As a result of the multiple regression analysis using the second structural parameter group ρ, D, α in the cubic wall set pore model, the multiple regression equation for T at λ = 13.5 nm is
T = [− 1.26 × 10 −3 {Dρ (λα) 1/2 } −9.52 × 10 −3 {ρD} + 9.60 × 10 −1 ] × 100 (33)
R * 2 = 0.98
Thus, the dependency ratio of each factor was 60% for Dρ (λα) 1/2 and 40% for ρD. Also, the multiple regression equation for Δ at λ = 13.5 nm is
Δ = [9.72 × 10 −4 {Dρ (λα) 1/2 } −3.75 × 10 −3 (ρD) + 3.16 × 10 −3 ] × 100 (34)
R * 2 = 0.93
Thus, the dependency rate of each factor was 74% for Dρ (λα) 1/2 and 26% for ρD.
T=[-6.62×10-4{Dρ(λα)1/2}-1.41×10-3(ρD)+9.96×10-1]×100 …(35)
R*2=0.99
となり、各因子の依存率は、Dρ(λα)1/2が81%、ρDが19%となった。 On the other hand, the multiple regression equation for T at λ = 6.75 nm is
T = [− 6.62 × 10 −4 {Dρ (λα) 1/2 } −1.41 × 10 −3 (ρD) + 9.96 × 10 −1 ] × 100 (35)
R * 2 = 0.99
Thus, the dependency ratio of each factor was 81% for Dρ (λα) 1/2 and 19% for ρD.
Δ=[4.49×10-4{Dρ(λα)1/2}-1.11×10-3{ρD}-1.84×10-3]×100 …(36)
R*2=0.95
となり、各因子の依存率は、Dρ(λα)1/2が78%、ρDが22%となった。 Also, the multiple regression equation for Δ at λ = 6.75 nm is
Δ = [4.49 × 10 −4 {Dρ (λα) 1/2 } −1.11 × 10 −3 {ρD} −1.84 × 10 −3 ] × 100 (36)
R * 2 = 0.95
Thus, the dependency rate of each factor was 78% for Dρ (λα) 1/2 and 22% for ρD.
T=[-1.59×10-4{Dρ(λα)1/2}-1.59×10-3{ρD}+9.66×10-1]×100 …(37)
R*2=0.99
となり、各因子の依存率は、Dρ(λα)1/2が35%、ρDが65%となった。 On the other hand, as a result of the multiple regression analysis using the second structural parameter groups ρ, D, and α in the cubic frame pore model, the multiple regression equation for T at λ = 13.5 nm is
T = [− 1.59 × 10 −4 {Dρ (λα) 1/2 } −1.59 × 10 −3 {ρD} + 9.66 × 10 −1 ] × 100 (37)
R * 2 = 0.99
Thus, the dependency ratio of each factor was 35% for Dρ (λα) 1/2 and 65% for ρD.
Δ=[1.59×10-4{Dρ(λα)1/2}-3.57×10-4(ρD)-2.41×10-3]×100 …(38)
R*2=0.91
となり、各因子の依存率は、Dρ(λα)1/2が70%、ρDが30%となった。 Also, the multiple regression equation for Δ at λ = 13.5 nm is
Δ = [1.59 × 10 −4 {Dρ (λα) 1/2 } −3.57 × 10 −4 (ρD) −2.41 × 10 −3 ] × 100 (38)
R * 2 = 0.91
Thus, the dependency ratio of each factor was 70% for Dρ (λα) 1/2 and 30% for ρD.
T=[-8.20×10-5{Dρ(λα)1/2}-3.27×10-4(ρD)+1.00]×100 …(39)
R*2=0.99
となり、各因子の依存率は、Dρ(λα)1/2が54%、ρDが46%となった。 On the other hand, the multiple regression equation for T at λ = 6.75 nm is
T = [− 8.20 × 10 −5 {Dρ (λα) 1/2 } −3.27 × 10 −4 (ρD) +1.00] × 100 (39)
R * 2 = 0.99
Thus, the dependency rate of each factor was 54% for Dρ (λα) 1/2 and 46% for ρD.
Δ=[7.60×10-5{Dρ(λα)1/2}-1.66×10-4{ρD}-1.31×10-3]×100 …(40)
R*2=0.93
となり、各因子の依存率は、Dρ(λα)1/2が68%、ρDが32%となった。 Also, the multiple regression equation for Δ at λ = 6.75 nm is
Δ = [7.60 × 10 −5 {Dρ (λα) 1/2 } −1.66 × 10 −4 {ρD} −1.31 × 10 −3 ] × 100 (40)
R * 2 = 0.93
Thus, the dependency rate of each factor was 68% for Dρ (λα) 1/2 and 32% for ρD.
ステップ1に示した重回帰式より、定性的には、各構造パラメータ群のT、Δへの影響を知ることができた。ステップ1では計算の都合上N≦5としたが、各基準値(Ti、Δi、Di;i=1~3)を満足する第1構造パラメータ群(N、d、α)及び第2構造パラメータ群(ρ、D、α)の値を知るため、各α、dにおけるTi及びΔiの各基準値を満足するNの値、N(Ti)、N(Δi)を推定し、更に式(2)を用いてT及びΔの各基準値を満足するDの値D(Ti)、D(Δi)を求めた。ただし、Δiに関しては、式(27)及び式(31)のR*2が多少小さいため、Tiに比べて誤差が大きくなることが予想された。そこで、Δiに関しては定義による散乱量の値の1/2を各Δiの上限値とした(例えば、定義によれば散乱量10%をΔ1とするべきだが、5%をΔ1の上限とした)。この結果、ペリクル膜を2回通過したときの散乱量がΔ1、Δ2、Δ3に対応して、それぞれ10%、5%、1%となった。なお、N(Ti)、N(Δi)及びD(Ti)、D(Δi)は、それぞれT及びΔの各基準値を満足する、上限の積層数Nmax、上限の膜厚Dmaxを意味する。 (2)
From the multiple regression equation shown in
ステップ2から、各基準値Ti、Δi、Di(i=1~3)を満足するために必要な構造パラメータα、N、d、ρ、Dの範囲を求めることができる。しかし、本実施形態では、上記に加えて、現実的に得られる炭素多孔膜としての制約条件1~制約条件4を満足した構造パラメータα、N、d、ρ、Dの範囲を本実施形態の課題を満足する炭素多孔膜とする。
・制約条件1: 0.335nm≦d …(41)
・制約条件2: 1≦N …(42)
・制約条件3: 0.5≦α …(43)
・制約条件4: 1.0×10-3g/cm3≦ρ≦2.25g/cm3 …(44) (3)
From
Restriction 1: 0.335 nm ≦ d (41)
Restriction condition 2: 1 ≦ N (42)
Restriction condition 3: 0.5 ≦ α (43)
Restriction condition 4: 1.0 × 10 −3 g / cm 3 ≦ ρ ≦ 2.25 g / cm 3 (44)
ペリクル膜として理想的な構造-T3・δ3・D3 <Step 3-1>
Ideal structure for pellicle film-T3 ・ δ3 ・ D3
{α、d、D、ρ、αλ/d}={2、1.35、500-835、1.5×10-2、20}-{8、1.35、500-4659、1.0×10-3、80}、{3、2.01、500-677、1.5×10-2、20}-{10、2.01、500-2635、1.4×10-3、67}、{4、2.7、500-592、1.5×10-2、20}-{15、2.70、500-2188、1.6×10-3、75}、{6、3.35、500-587、1.0×10-2、24}-{20、3.35、500-1894、1.0×10-3、81}、{8、4.02、500-542、8.5×10-3、27}-{20、4.02、500-1320、1.4×10-3、67}、{15、4.69、500-736、3.4×10-3、43}-{25、4.69、500-1212、1.3×10-3、72}、{15、5.40、500-559、4.5×10-3、38}-{30、5.40、500-1098、1.2×10-3、75}
の構造パラメータを有する炭素多孔膜である。 The
{Α, d, D, ρ, αλ / d} = { 2 , 1.35, 500-835, 1.5 × 10 −2 , 20} − {8, 1.35, 500-4659, 1.0 × 10 −3 , 80}, { 3 , 2.01, 500-677, 1.5 × 10 −2 , 20}-{10, 2.01, 500-2635, 1.4 × 10 −3 , 67 }, {4, 2.7, 500-592, 1.5 × 10 −2 , 20}-{15, 2.70, 500-2188, 1.6 × 10 −3 , 75}, {6, 3 .35, 500-587, 1.0 × 10 −2 , 24}-{20, 3.35, 500-1894, 1.0 × 10 −3 , 81}, {8, 4.02, 500-542 , 8.5 × 10 -3, 27} - {20,4.02,500-1320,1.4 × 10 -3, 67}, {15,4.69,500-736,3 4 × 10 -3, 43} - {25,4.69,500-1212,1.3 × 10 -3, 72}, {15,5.40,500-559,4.5 × 10 -3, 38}-{30, 5.40, 500-1098, 1.2 × 10 −3 , 75}
A porous carbon membrane having the following structural parameters.
{2、1.35、500-835、1.5×10-2、20}、{3、2.01、500-677、1.5×10-2、20}、{4、2.7、500-592、1.5×10-2、20}、{6、3.35、500-587、1.0×10-2、24}
の構造パラメータを有する炭素多孔膜は、ρ≧1.0×10-2g/cm3であり、膜強度の観点から更に好ましい。 A carbon porous membrane having these structural parameters is the most suitable structure as a pellicle membrane because it can obtain physical property values of T = T3, Δ = Δ3, and D = D3. In particular,
{ 2 , 1.35, 500-835, 1.5 × 10 −2 , 20}, {3, 2.01, 500-677, 1.5 × 10 −2 , 20}, {4, 2.7 , 500-592, 1.5 × 10 −2 , 20}, {6, 3.35, 500-587, 1.0 × 10 −2 , 24}
A carbon porous membrane having the following structural parameters satisfies ρ ≧ 1.0 × 10 −2 g / cm 3 , and is more preferable from the viewpoint of membrane strength.
立方体壁組細孔モデルでの透過率優先の構造-T2・δ2・D1 <Step 3-2>
Structure with priority on transmittance in the cubic wall-set pore model-T2, δ2, D1
{α、d、D、ρ、αλ/d}={2、1.35、100-119、3.1×10-1、20}-{8、1.35、111-210、8.2×10-2、80}、{3、2.01、100-110、3.0×10-1、20}-{8、2.01、112-143、1.2×10-1、54}、{6、2.70、100-114、2.1×10-1、30}
の構造パラメータを有する炭素多孔膜であり、ρ≧1.0×10-2g/cm3であり、膜強度の観点から好ましい。 As
{Α, d, D, ρ, αλ / d} = {2, 1.35, 100-119, 3.1 × 10 −1 , 20} − {8, 1.35, 111-210, 8.2 × 10 −2 , 80}, {3, 2.01, 100-110, 3.0 × 10 −1 , 20}-{8, 2.01, 112-143, 1.2 × 10 −1 , 54 }, {6, 2.70, 100-114, 2.1 × 10 −1 , 30}
A porous carbon film having the following structural parameters, ρ ≧ 1.0 × 10 −2 g / cm 3, which is preferable from the viewpoint of film strength.
膜厚優先の構造-T1・Δ1・D3 <Step 3-3>
Thickness priority structure-T1, Δ1, D3
{α、d、D、ρ、αλ/d}={0.5、1.35、1588-1636、1.7×10-1、5}-{8、1.35、21402-35650、1.0×10-3、80}、{0.5、2.01、776-799、3.0×10-1、3.4}-{10、2.01、12388-22508、1.4×10-3、67}、{1、2.70、796-850、1.7×10-1、5}-{15、2.70、14350-24047、1.2×10-3、75}、{1、3.35、540-578、2.3、4}-{20、3.35、16523-24140、1.0×10-3、81}、{2、4.02、690-789、1.0×10-1、67}-{20、4.02、11504-16806、1.4×10-3、67}、{2、4.69、520-594、1.3×10-1、5.8}-{25、4.69、13551-15420、1.3×10-3、72}、{3、5.40、568-694、8.6×10-2、7.5}-{25、5.40、10245-11658、1.7×10-3、63}、{6、8.1、500-726、5.2×10-2、10}-{25、8.1、4595-5228、3.7×10-3、42}、{8、10.8、500-618、5.2×10-2、10}-{25、10.8、2612-2970、6.4×10-3、31}、{10、13.5、500-554、5.2×10-2、10}-{25、13.5、1691-1922、9.7×10-3、25}、{15、16.2、500-728、3.5×10-2、13}-{25、16.2、1191-1352、1.4×10-2、21}、{20、21.6、500-641、3.5×10-2、12.5}-{25、21.6、693-784、2.3×10-2、15.6}
の構造パラメータを有する炭素多孔膜である。 As the
{Α, d, D, ρ, αλ / d} = {0.5, 1.35, 1588-1636, 1.7 × 10 −1 , 5}-{8, 1.35, 21402-35650, 1 0.0 × 10 −3 , 80}, {0.5, 2.01, 776-799, 3.0 × 10 −1 , 3.4}-{10, 2.01, 12388-22508, 1.4 × 10 −3 , 67}, { 1 , 2.70, 796-850, 1.7 × 10 −1 , 5}-{15, 2.70, 14350-24047, 1.2 × 10 −3 , 75 }, {1, 3.35, 540-578, 2.3, 4}-{20, 3.35, 16523-24140, 1.0 × 10 −3 , 81}, {2, 4.02, 690 -789,1.0 × 10 -1, 67} - {20,4.02,11504-16806,1.4 × 10 -3, 67}, {2, .69,520-594,1.3 × 10 -1, 5.8} - {25,4.69,13551-15420,1.3 × 10 -3, 72}, {3,5.40,568 -694, 8.6 × 10 −2 , 7.5}-{25, 5.40, 10245-11658, 1.7 × 10 −3 , 63}, {6, 8.1, 500-726, 5 .2 × 10 −2 , 10}-{25, 8.1, 4595-5228, 3.7 × 10 −3 , 42}, {8, 10.8, 500-618, 5.2 × 10 −2 10}-{25, 10.8, 2612-2970, 6.4 × 10 −3 , 31}, {10, 13.5, 500-554, 5.2 × 10 −2 , 10}-{25 , 13.5,1691-1922,9.7 × 10 -3, 25} , {15,16.2,500-728,3.5 × 10 2, 13} - {25,16.2,1191-1352,1.4 × 10 -2, 21}, {20,21.6,500-641,3.5 × 10 -2, 12.5} − {25, 21.6, 693-784, 2.3 × 10 −2 , 15.6}
A porous carbon membrane having the following structural parameters.
{α、d、D、ρ、αλ/d}={0.5、1.35、1588-1636、1.7×10-1、5}-{2、1.35、5550-6359、1.5×10-2、20}、{0.5、2.01、776-799、3.0×10-1、3.4}-{2、2.01、2564-2937、3.1×10-2、13}、{1、2.70、796-850、1.7×10-1、5}-{4、2.70、2778-3632、1.9×10-2、20}、{1、3.35、540-578、2.3、4}-{6、3.35、2685-3976、1.0×10-2、24}、{2、4.02、690-789、1.0×10-1、67}-{6、4.02、1881-2784、1.5×10-3、20}、{2、4.69、520-594、1.3×10-1、5.8}-{8、4.69、1833-3049、1.1×10-2、23}、{3、5.40、568-694、8.6×10-2、7.5}-{8、5.40、1393-2316、1.5×10-2、20}、{6、8.1、500-726、5.2×10-2、10}-{10、8.1、806-1456、2.1×10-2、8.1}、{8、10.8、500-618、5.2×10-2、10}-{15、10.8、944-1573、1.7×10-2、19}、{10、13.5、500-554、5.2×10-2、10}-{20、13.5、1069-1555、1.5×10-2、20}、{15、16.2、500-728、3.5×10-2、13}-{25、16.2、1191-1352、1.4×10-2、21}、{20、21.6、500-641、3.5×10-2、12.5}-{25、21.6、693-784、2.3×10-2、15.6}
の構造パラメータを有する炭素多孔膜は、ρ≧1.0×10-2g/cm3であり、膜強度の観点から更に好ましい。 In particular,
{Α, d, D, ρ, αλ / d} = {0.5, 1.35, 1588-1636, 1.7 × 10 −1 , 5}-{2, 1.35, 5550-6359, 1 .5 × 10 −2 , 20}, {0.5, 2.01, 776-799, 3.0 × 10 −1 , 3.4}-{2, 2.01, 2564-2937, 3.1 × 10 −2 , 13}, { 1 , 2.70, 796-850, 1.7 × 10 −1 , 5}-{4, 2.70, 2778-3632, 1.9 × 10 −2 , 20 }, {1, 3.35, 540-578, 2.3, 4}-{6, 3.35, 2687-3976, 1.0 × 10 −2 , 24}, { 2 , 4.02, 690 -789,1.0 × 10 -1, 67} - {6,4.02,1881-2784,1.5 × 10 -3, 20}, {2,4.69,520-594,1 3 × 10 -1, 5.8} - {8,4.69,1833-3049,1.1 × 10 -2, 23}, {3,5.40,568-694,8.6 × 10 - 2 , 7.5}-{8, 5.40, 1393-2316, 1.5 × 10 −2 , 20}, {6, 8.1, 500-726, 5.2 × 10 −2 , 10} -{10, 8.1, 806-1456, 2.1 × 10 −2 , 8.1}, {8, 10.8, 500-618, 5.2 × 10 −2 , 10}-{15, 10.8, 944-1573, 1.7 × 10 −2 , 19}, {10, 13.5, 500-554, 5.2 × 10 −2 , 10}-{20, 13.5, 1069− 1555,1.5 × 10 -2, 20}, {15,16.2,500-728,3.5 × 10 -2, 13} - {25,16.2,1191- 352,1.4 × 10 -2, 21}, {20,21.6,500-641,3.5 × 10 -2, 12.5} - {25,21.6,693-784,2. 3 × 10 −2 , 15.6}
A carbon porous membrane having the following structural parameters satisfies ρ ≧ 1.0 × 10 −2 g / cm 3 , and is more preferable from the viewpoint of membrane strength.
{α、d、D、ρ、αλ/d}={8、1.35、500-517、8.2×10-2、80}
の構造パラメータを有する炭素多孔膜である。 At λ = 13.5 nm of the cubic wall set pore model,
{Α, d, D, ρ, αλ / d} = {8, 1.35, 500-517, 8.2 × 10 −2 , 80}
A porous carbon membrane having the following structural parameters.
α≦30(α:細孔サイズパラメータ) …(1)
0.335≦Nd≦13(N:膜厚方向への細孔数(個)、d:細孔の壁厚(nm)) …(2)
αλ/d≦81(λ:露光波長(nm)) …(3)
ただし、上記N、dは、
N=-1+{(W-ρ)1/3/W1/3}+{D(W-ρ)1/3/αλW1/3} …(4)
d=-αλ+{αλW1/3/(W-ρ)1/3} …(5) The above shows an example of a characteristic structure preferable as a pellicle film, using each range of the value of the structural parameter group and the constraint condition. However, when EUV light passes through the carbon porous film once even using mathematical formulas. An EUV pellicle film having a transmittance T of 84% or more, a scattering amount Δ of 10% or less, and a film thickness D of 100 nm or more can be shown. For example, when calculating using the above G-Solver, the wavelength λ of EUV light is 13.5 nm, the density W of graphite is 2.25 g / cm 3 , and the apparent density (g / cm 3 ) of the porous carbon film is When ρ and the film thickness are D (nm), using the first structural parameter, in the cubic wall set pore model, the carbon porous body film has the structural parameters of the following equations (1) to (5). A pellicle film for EUV that satisfies the range may be preferable.
α ≦ 30 (α: pore size parameter) (1)
0.335 ≦ Nd ≦ 13 (N: number of pores in the film thickness direction (pieces), d: wall thickness of the pores (nm)) (2)
αλ / d ≦ 81 (λ: exposure wavelength (nm)) (3)
However, the above N and d are
N = −1 + {(W−ρ) 1/3 / W 1/3 } + {D (W−ρ) 1/3 / αλW 1/3 } (4)
d = −αλ + {αλW 1/3 / (W−ρ) 1/3 } (5)
α≦30(α:細孔サイズパラメータ) …(6)
αλ/d≦81(λ:露光波長(nm)) …(7)
0.08g/cm3≦ρ≦0.7g/cm3 …(8)
D:100nm≦D≦850nm …(9) Similarly, in the cubic wall set pore model using the second structural parameter, it is preferable that the pellicle membrane for EUV satisfies the range of the structural parameters of the following formulas (6) to (9) in the carbon porous membrane can do.
α ≦ 30 (α: pore size parameter) (6)
αλ / d ≦ 81 (λ: exposure wavelength (nm)) (7)
0.08 g / cm 3 ≦ ρ ≦ 0.7 g / cm 3 (8)
D: 100 nm ≦ D ≦ 850 nm (9)
本実施形態のペリクル膜の製造方法を以下に紹介するが、本実施形態のペリクル膜としての炭素多孔膜は、この製造方法及びその実施例に限定されるものではない。図5は、ペリクル膜の製造方法を示す図である。 2-2. Method for Producing Pellicle Membrane According to this Embodiment A method for producing a pellicle membrane according to this embodiment will be introduced below. The porous carbon film as the pellicle membrane according to this embodiment is limited to this production method and its examples. is not. FIG. 5 is a diagram showing a method for manufacturing a pellicle film.
技術ポイント4は、薄膜の成膜技術を導入することである。技術ポイント4は、本実施形態の炭素多孔膜の用途が、既存の炭素多孔膜の用途として全く考えられていなかったペリクル膜であるため、薄膜を得るための成膜技術が追加されていることである。すなわち、後述する本実施形態の炭素多孔膜の製造方法の中の、薄膜化に適した成膜工程(工程A2、工程B2、工程AB2)及び薄膜を得るための塗工液の調合工程(工程A1、工程B1、工程AB1)が重要な技術ポイントとなる。 [Technical point 4]
技術ポイント5は、[技術ポイント3]で述べた構造パラメータを有する炭素多孔膜を得るために、各製造方法に応じて製造パラメータ(炭素質となる溶質の種類とその分子量、溶液組成、溶液濃度、架橋触媒種・脱ハロゲン種とその濃度、乾燥条件、炭化条件等)を調整することであり、以下にその詳細を述べる。 [Technical point 5]
In order to obtain a carbon porous membrane having the structural parameters described in [Technical Point 3], the
本実施形態の炭素多孔膜を得る方法A(上述の第2の方法)は、参考文献A、米国特許US4873218号公報[以下、参考文献Bとする]、田門肇、表面、38(1)、1-9(2000)[以下、参考文献Cとする]、特表平8-508535公報[以下、参考文献Dとする]、及び、R.Saliger等、J.Non-Crystalline Solids、221、144-150(1997)[以下、参考文献Eとする]に紹介されている方法を応用する。これらの文献では、断熱材、電池やキャパシタ等に用いるメソ孔を有する炭素材料として紹介され、本実施形態の用途は全く考慮されていない。しかし、薄膜の成膜技術を追加し、膜厚の薄いヒドロゲル膜が得られるように製造パラメータを調整することで、本実施形態の用途に応用することができる。 2-2-1. Method for Producing Carbon Airgel-Based Carbon Porous Membrane Method A (the second method described above) for obtaining the carbon porous membrane of this embodiment includes Reference A, US Pat. No. 4,873,218 [hereinafter referred to as Reference B], Monden, Surface, 38 (1), 1-9 (2000) [hereinafter referred to as Reference C], JP-T 8-508535 [hereinafter referred to as Reference D]; Saliger et al. The method introduced in Non-Crystalline Solids, 221, 144-150 (1997) [hereinafter referred to as Reference E] is applied. In these documents, a carbon material having mesopores used for a heat insulating material, a battery, a capacitor, or the like is introduced, and the application of this embodiment is not considered at all. However, it can be applied to the application of the present embodiment by adding a thin film forming technique and adjusting manufacturing parameters so as to obtain a thin hydrogel film.
ρ=-1.27×10-1・ln(R/Ca)+7.07・(R/Wa)+7.24×10-1 …(45)
R*2=0.92
となり、各因子の依存率は、ln(R/Ca)が36%、R/Waが64%となった。 In the following, from typical experimental values described in Reference A, Reference B, and Reference C, R and F are used as raw materials that become carbonaceous as Step A1, and Na 2 CO 3 is used as various composition ratios as Ca. In Step A2, the coating liquid A was prepared as a thin film by spin coating to obtain a hydrogel film, and then in Step A3, the hydrogel film was gelled (polymerized) at room temperature to 100 ° C. , CO 2 supercritical drying or freeze drying or hot air drying to obtain an airgel membrane, and then the airgel membrane is carbonized at 1000 ° C. as step A4, and finally the carbon porous membrane of this embodiment is obtained The multiple regression equations of the composition ratio and the obtained structural parameters, Equation (36) and Equation (37) were obtained. Apparent density is
ρ = −1.27 × 10 −1 · ln (R / Ca) + 7.07 · (R / Wa) + 7.24 × 10 −1 (45)
R * 2 = 0.92
Thus, the dependency rate of each factor was 36% for ln (R / Ca) and 64% for R / Wa.
ln(r)=2.41×10-1・ln(R/Ca)-5.23×10-1・ln(R/Wa)+5.36×10-1・ln(R/F)-9.69×10-1 …(46)
R*2=0.79
となり、各因子の依存率は、ln(R/Ca)が39%、ln(R/Wa)が37%、ln(R/F)が25%となった。なお、細孔半径rに対応するαは、式(18)に従い、rを2倍し、λで割ることで得られる。 The pore radius r is
ln (r) = 2.41 × 10 −1 · ln (R / Ca) −5.23 × 10 −1 · ln (R / Wa) + 5.36 × 10 −1 · ln (R / F) −9 .69 × 10 −1 (46)
R * 2 = 0.79
Thus, the dependency rate of each factor was 39% for ln (R / Ca), 37% for ln (R / Wa), and 25% for ln (R / F). Note that α corresponding to the pore radius r is obtained by doubling r and dividing by λ according to the equation (18).
本実施形態の炭素多孔膜を得る方法B(上述の第3の方法)は、本発明者による特許4871319号公報[以下、参考文献Gとする]、山下順也、塩谷正俊、炭素、No204、182-191(2002)[参考文献Hとする]に紹介されている方法を応用する。これらの参考文献Gや参考文献Hは、触媒担持材料、ガス吸蔵材料、ガス分離材料、電極材料等に用いるメソ孔を有する炭素材料の製造法に関するものとして紹介され、本実施形態への応用は全く考慮されていない。しかし、薄膜の成膜技術を追加し、膜厚の薄いハロゲン化ビニル樹脂膜又はハロゲン化ビニリデン樹脂膜が得られるように製造パラメータを調整することで、本実施形態の用途へ応用することができる。 2-2-2. Method for Producing Carbon Halogen Vinyl Resin-Based or Vinylidene Halide Resin Carbon Porous Membrane Method B (the third method described above) for obtaining the carbon porous membrane of the present embodiment is disclosed in Japanese Patent No. 4871319 [hereinafter referred to as reference]. Reference G], Junya Yamashita, Masatoshi Shiotani, Carbon, No. 204, 182-191 (2002) [referred to as Reference H] is applied. These references G and H are introduced as relating to a method for producing a carbon material having mesopores used for a catalyst support material, a gas storage material, a gas separation material, an electrode material, etc. It is not considered at all. However, it can be applied to the use of this embodiment by adding a thin film forming technique and adjusting the manufacturing parameters so that a thin vinyl halide resin film or vinylidene halide resin film can be obtained. .
ρ=2.15×10-1・([PVC])+4.64×10-2・(M×104)+5.52×10-2・(DBU/Cl)-2.87×10-1 …(47)
R*2=0.86
となり、各因子の依存率は、[PVC]が66%、Mが27%、DBU/Clが7%となった。 Below, from typical experimental values described in Reference H, it is assumed that the porous carbon membrane of the present embodiment is obtained according to the method AB, and the PVC in the solution consisting of three components of PVC, DMF, and DBU Weight percent concentration (wt% concentration, [PVC]), number average molecular weight of PVC (M), weight ratio of DBU molecule to chlorine atom (Cl) in PVC molecule (DBU / Cl) The regression equation, equation (47), and equation (48) were obtained. The apparent density ρ is
ρ = 2.15 × 10 −1 · ([PVC]) + 4.64 × 10 −2 · (M × 10 4 ) + 5.52 × 10 −2 · (DBU / Cl) −2.87 × 10 −1 ... (47)
R * 2 = 0.86
Thus, the dependence rates of the factors were 66% for [PVC], 27% for M, and 7% for DBU / Cl.
r=-4.31・([PVC])-1.12・(M×104)+1.83・(DBU/Cl)+2.74×101 …(48)
R*2=0.74
となり、各因子の依存率は、[PVC]が58%、Mが32%、DBU/Clが10%となった。なお、細孔半径rに対応するαは、式2に従い、rを2倍し、λで割ることで得られる。 The pore radius r is
r = −4.31 · ([PVC]) − 1.12 · (M × 10 4 ) + 1.83 · (DBU / Cl) + 2.74 × 10 1 (48)
R * 2 = 0.74
Thus, the dependence rate of each factor was 58% for [PVC], 32% for M, and 10% for DBU / Cl. Α corresponding to the pore radius r is obtained by doubling r and dividing by λ according to
図5に示す補足処理として、本実施形態の炭素多孔膜を得た後、炭素多孔膜の表面の片面又は両面に、EUVの高出力光源からの光による炭素多孔膜の酸化・還元を防止するために、Si、SiC、SiO2、Si3N4、Y、Mo、Ru、Rh等を本実施形態の課題の目標値を満足する範囲内で、公知のスパッタ法、真空蒸着法等の方法で、数nm被覆することができる。Siは、EUV光の消光係数が低く、屈折率が1.0に近く、更に炭素と反応し炭素膜表面に強度的に優れた数nmのSiC膜を形成することから特に好ましい。 2-2-3. Supplementary Processing As a supplementary processing shown in FIG. 5, after obtaining the carbon porous membrane of the present embodiment, oxidation or reduction of the carbon porous membrane by light from a high-power EUV light source is applied to one or both surfaces of the surface of the carbon porous membrane. In order to prevent Si, SiC, SiO 2 , Si 3 N 4 , Y, Mo, Ru, Rh, etc. within the range satisfying the target values of the problems of this embodiment, a known sputtering method, vacuum deposition method, etc. By this method, it is possible to coat several nm. Si is particularly preferable because it has a low extinction coefficient of EUV light, a refractive index close to 1.0, and further reacts with carbon to form a SiC film having a few nm with excellent strength on the carbon film surface.
図6は、ペリクルを示す斜視図である。図7は、図6におけるVII-VII線に沿った断面構成を示す図である。本実施形態のペリクル10は、図6に示されるように、上述した炭素多孔膜をペリクル膜1として、フレーム3に膜接着剤2を用いて接着したものである。また、ペリクルのマスクとの接着面側には、マスク粘着剤(その保護フィルムも含む)又はフレームとの接合機構4が施されている。 3. Pellicle of this Embodiment FIG. 6 is a perspective view showing a pellicle. FIG. 7 is a diagram showing a cross-sectional configuration along the line VII-VII in FIG. As shown in FIG. 6, the
Claims (9)
- 炭素多孔体膜で構成されており、膜厚Dが100nm~63μmである、ペリクル膜。 A pellicle membrane made of a porous carbon membrane and having a thickness D of 100 nm to 63 μm
- 13.5nmの波長の極端紫外光が1回通過する際の透過率Tが84%以上であり、且つ、前記極端紫外光が1回通過する際の前記炭素多孔体膜の細孔による散乱量Δが10%以下である、請求項1に記載のペリクル膜。 The transmittance T when the extreme ultraviolet light having a wavelength of 13.5 nm passes once is 84% or more, and the amount of scattering by the pores of the carbon porous membrane when the extreme ultraviolet light passes once The pellicle film according to claim 1, wherein Δ is 10% or less.
- 前記炭素多孔体膜の細孔径が、6.75nm以上2430nm以下である、請求項1又は2に記載のペリクル膜。 The pellicle membrane according to claim 1 or 2, wherein a pore diameter of the carbon porous membrane is 6.75 nm or more and 2430 nm or less.
- 前記炭素多孔体膜において、質量を体積で割って得られる見かけ密度が1.0×10-3~2.1g/cm3である、請求項1~3のいずれか一項に記載のペリクル膜。 The pellicle membrane according to any one of claims 1 to 3, wherein an apparent density obtained by dividing mass by volume in the carbon porous membrane is 1.0 × 10 -3 to 2.1 g / cm 3. .
- 極端紫外光の波長λを13.5nm、黒鉛の密度Wを2.25g/cm3、前記炭素多孔体膜の見かけ密度(g/cm3)をρ、膜厚(nm)をDとしたとき、前記炭素多孔体膜が、以下の各式を満たす構造パラメータを有する、請求項1~4のいずれか一項に記載のペリクル膜。
α≦30(α:細孔サイズパラメータ)
0.335≦Nd≦13(N:膜厚方向への細孔数(個)、d:細孔の壁厚(nm))
αλ/d≦81(λ:露光波長(nm))
ただし、N、dは、
N=-1+{(W-ρ)1/3/W1/3}+{D(W-ρ)1/3/αλW1/3}
d=-αλ+{αλW1/3/(W-ρ)1/3} When the wavelength λ of extreme ultraviolet light is 13.5 nm, the density W of graphite is 2.25 g / cm 3 , the apparent density (g / cm 3 ) of the carbon porous film is ρ, and the film thickness (nm) is D The pellicle membrane according to any one of claims 1 to 4, wherein the carbon porous membrane has structural parameters satisfying the following expressions:
α ≦ 30 (α: pore size parameter)
0.335 ≦ Nd ≦ 13 (N: number of pores in the film thickness direction (pieces), d: wall thickness of the pores (nm))
αλ / d ≦ 81 (λ: exposure wavelength (nm))
However, N and d are
N = −1 + {(W−ρ) 1/3 / W 1/3 } + {D (W−ρ) 1/3 / αλW 1/3 }
d = −αλ + {αλW 1/3 / (W−ρ) 1/3 } - 極端紫外光の波長λを13.5nm、黒鉛の密度Wを2.25g/cm3、前記炭素多孔体膜の見かけ密度(g/cm3)をρ、膜厚(nm)をDとしたとき、前記炭素多孔体膜が、以下の各式を満たす構造パラメータを有する、請求項1~4のいずれか一項記載のペリクル膜。
α≦30(α:細孔サイズパラメータ)
αλ/d≦81(λ:露光波長(nm))
0.08g/cm3≦ρ≦0.7g/cm3
D:100≦D≦850 When the wavelength λ of extreme ultraviolet light is 13.5 nm, the density W of graphite is 2.25 g / cm 3 , the apparent density (g / cm 3 ) of the carbon porous film is ρ, and the film thickness (nm) is D The pellicle membrane according to any one of claims 1 to 4, wherein the carbon porous membrane has structural parameters satisfying the following expressions:
α ≦ 30 (α: pore size parameter)
αλ / d ≦ 81 (λ: exposure wavelength (nm))
0.08 g / cm 3 ≦ ρ ≦ 0.7 g / cm 3
D: 100 ≦ D ≦ 850 - 請求項1~請求項6のいずれか一項に記載のペリクル膜と、
前記ペリクル膜が貼付されるフレームと、を備えるペリクル。 A pellicle film according to any one of claims 1 to 6,
A pellicle comprising a frame to which the pellicle film is attached. - 前記フレームには、前記ペリクル膜が貼付される面とは反対の面に、リソグラフィマスクと接合するためのマスク粘着剤が配設される溝が設けられている、請求項7に記載のペリクル。 The pellicle according to claim 7, wherein the frame is provided with a groove on a surface opposite to a surface to which the pellicle film is attached, in which a mask adhesive for bonding to a lithography mask is disposed.
- 前記フレームには、前記ペリクル膜が支持される面とは反対の面に、リソグラフィマスクと接合するための電磁石が設けられている、請求項7に記載のペリクル。 The pellicle according to claim 7, wherein the frame is provided with an electromagnet for bonding to a lithography mask on a surface opposite to a surface on which the pellicle film is supported.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480015635.7A CN105051604B (en) | 2013-03-15 | 2014-03-11 | Pellicle film and pellicle |
KR1020157024765A KR101699655B1 (en) | 2013-03-15 | 2014-03-11 | Pellicle film, and pellicle |
JP2015505491A JP6084681B2 (en) | 2013-03-15 | 2014-03-11 | Pellicle membrane and pellicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-053121 | 2013-03-15 | ||
JP2013053121 | 2013-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014142125A1 true WO2014142125A1 (en) | 2014-09-18 |
Family
ID=51536778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056346 WO2014142125A1 (en) | 2013-03-15 | 2014-03-11 | Pellicle film, and pellicle |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6084681B2 (en) |
KR (1) | KR101699655B1 (en) |
CN (1) | CN105051604B (en) |
TW (1) | TWI576655B (en) |
WO (1) | WO2014142125A1 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015018228A (en) * | 2013-06-10 | 2015-01-29 | 旭化成イーマテリアルズ株式会社 | Pellicle film and pellicle |
JP2016080967A (en) * | 2014-10-21 | 2016-05-16 | 凸版印刷株式会社 | Pellicle |
GB2534404A (en) * | 2015-01-23 | 2016-07-27 | Cnm Tech Gmbh | Pellicle |
WO2016121798A1 (en) * | 2015-01-27 | 2016-08-04 | 日立化成株式会社 | Production method for aerogel laminate, and aerogel laminate roll |
JPWO2014188710A1 (en) * | 2013-05-24 | 2017-02-23 | 三井化学株式会社 | Pellicle and EUV exposure apparatus including the same |
EP3165964A1 (en) * | 2015-10-29 | 2017-05-10 | Shin-Etsu Chemical Co., Ltd. | An adhesive suitable for a pellicle for euv lithography and a pellicle using the same adhesive |
CN106647161A (en) * | 2015-10-29 | 2017-05-10 | 信越化学工业株式会社 | Adhesive suitable for dustproof film assembly for EUV lithography and dustproof film assembly using same |
JP2017187774A (en) * | 2016-04-05 | 2017-10-12 | 旭化成株式会社 | Pellicle |
WO2018008594A1 (en) | 2016-07-05 | 2018-01-11 | 三井化学株式会社 | Pellicle film, pellicle frame, pellicle, method for producing same, original plate for light exposure, light exposure apparatus and method for manufacturing semiconductor device |
JP2018049256A (en) * | 2016-04-05 | 2018-03-29 | 旭化成株式会社 | Pellicle |
JP2018146668A (en) * | 2017-03-02 | 2018-09-20 | 旭化成株式会社 | Pellicle film and manufacturing method of pellicle film |
JP2019070742A (en) * | 2017-10-10 | 2019-05-09 | 信越化学工業株式会社 | Pellicle frame, pellicle and method for removing pellicle |
JP2019091001A (en) * | 2017-11-10 | 2019-06-13 | エスアンドエス テック カンパニー リミテッド | Pellicle for extreme ultraviolet lithography and method for manufacturing same |
WO2020008977A1 (en) * | 2018-07-06 | 2020-01-09 | 株式会社カネカ | Pellicle complex and production method therefor |
WO2021172104A1 (en) | 2020-02-26 | 2021-09-02 | 三井化学株式会社 | Pellicle film, pellicle, original plate for exposure, exposure device, method for producing pellicle, and method for producing semiconductor device |
JP2022517511A (en) * | 2018-12-10 | 2022-03-09 | アプライド マテリアルズ インコーポレイテッド | Removing fixtures from photomasks for extreme UV lithography applications |
US20220365420A1 (en) * | 2021-05-12 | 2022-11-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer pellicle membrane |
TWI797898B (en) * | 2021-01-29 | 2023-04-01 | 台灣積體電路製造股份有限公司 | Pellicle, method for forming mask pellicle system, and method for lithography process |
WO2024204102A1 (en) * | 2023-03-28 | 2024-10-03 | リンテック株式会社 | Pellicle film and pellicle |
JP7576814B1 (en) | 2023-12-07 | 2024-11-01 | 浙江大学 | Freeze-transfer method for porous carbon electrodes based on subzero temperatures |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6293041B2 (en) * | 2014-12-01 | 2018-03-14 | 信越化学工業株式会社 | Pellicle frame and pellicle using the same |
EP3764163B1 (en) * | 2019-07-11 | 2023-04-12 | IMEC vzw | An extreme ultraviolet lithography device |
US11822230B2 (en) | 2020-07-24 | 2023-11-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | EUV pellicle and mounting method thereof on photo mask |
KR102694331B1 (en) * | 2021-04-12 | 2024-08-13 | 한국전자기술연구원 | Pellicle for extreme ultraviolet lithography based on yttrium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08508535A (en) * | 1993-04-01 | 1996-09-10 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Low pressure and / or evaporative drying method for airgel |
JPH11295880A (en) * | 1998-04-07 | 1999-10-29 | Seiko Epson Corp | Pellicle frame |
JP2001201846A (en) * | 2000-01-21 | 2001-07-27 | Nikon Corp | Frame member, mask, and aligner |
JP2005283977A (en) * | 2004-03-30 | 2005-10-13 | Toppan Printing Co Ltd | Pellicle and photomask mounting the pellicle |
JP2009221050A (en) * | 2008-03-17 | 2009-10-01 | National Institute Of Advanced Industrial & Technology | Self-standing mesoporous carbon thin film |
JP2010509774A (en) * | 2006-11-10 | 2010-03-25 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | EUV pellicle with improved EUV light transmittance |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0519452A (en) * | 1991-07-10 | 1993-01-29 | Fujitsu Ltd | Pellicle and method for mounting this pellicle |
US5793836A (en) * | 1996-09-06 | 1998-08-11 | International Business Machines Corporation | X-ray mask pellicle |
JP2000147750A (en) * | 1998-11-18 | 2000-05-26 | Mitsui Chemicals Inc | Pellicle |
US7456932B2 (en) | 2003-07-25 | 2008-11-25 | Asml Netherlands B.V. | Filter window, lithographic projection apparatus, filter window manufacturing method, device manufacturing method and device manufactured thereby |
US7153615B2 (en) | 2003-08-20 | 2006-12-26 | Intel Corporation | Extreme ultraviolet pellicle using a thin film and supportive mesh |
FR2865813B1 (en) | 2004-01-30 | 2006-06-23 | Production Et De Rech S Appliq | PROTECTIVE PATTERNED MASK FOR REFLECTION LITHOGRAPHY IN THE FIELD OF EXTREME UV AND X-RAY MOUSES |
JP2006120954A (en) * | 2004-10-22 | 2006-05-11 | Osaka Univ | Mesoporous thin film and its manufacturing method |
WO2007094197A1 (en) * | 2006-02-16 | 2007-08-23 | Nikon Corporation | Protection device, mask, and exposure device |
US7767985B2 (en) * | 2006-12-26 | 2010-08-03 | Globalfoundries Inc. | EUV pellicle and method for fabricating semiconductor dies using same |
US7663127B2 (en) * | 2007-03-13 | 2010-02-16 | Globalfoundries Inc. | EUV debris mitigation filter and method for fabricating semiconductor dies using same |
DE102008005005A1 (en) * | 2008-01-17 | 2009-07-23 | Evonik Degussa Gmbh | Carbon aerogels, process for their preparation and their use |
JP4928494B2 (en) | 2008-05-02 | 2012-05-09 | 信越化学工業株式会社 | Pellicle and method for manufacturing pellicle |
JP5394808B2 (en) * | 2009-04-22 | 2014-01-22 | 信越化学工業株式会社 | Pellicle for lithography and method for manufacturing the same |
CN202024028U (en) * | 2009-06-09 | 2011-11-02 | 深圳市金士康实业有限公司 | Heat insulating film |
KR20130024878A (en) * | 2010-04-02 | 2013-03-08 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Photomask unit and method of manufacturing same |
KR101969476B1 (en) * | 2010-06-25 | 2019-04-16 | 에이에스엠엘 네델란즈 비.브이. | Lithographic apparatus and method |
JP2012151158A (en) * | 2011-01-17 | 2012-08-09 | Shin Etsu Chem Co Ltd | Pellicle film for euv and pellicle, and method of producing pellicle film |
-
2014
- 2014-03-11 CN CN201480015635.7A patent/CN105051604B/en active Active
- 2014-03-11 KR KR1020157024765A patent/KR101699655B1/en active IP Right Grant
- 2014-03-11 WO PCT/JP2014/056346 patent/WO2014142125A1/en active Application Filing
- 2014-03-11 JP JP2015505491A patent/JP6084681B2/en active Active
- 2014-03-14 TW TW103109471A patent/TWI576655B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08508535A (en) * | 1993-04-01 | 1996-09-10 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Low pressure and / or evaporative drying method for airgel |
JPH11295880A (en) * | 1998-04-07 | 1999-10-29 | Seiko Epson Corp | Pellicle frame |
JP2001201846A (en) * | 2000-01-21 | 2001-07-27 | Nikon Corp | Frame member, mask, and aligner |
JP2005283977A (en) * | 2004-03-30 | 2005-10-13 | Toppan Printing Co Ltd | Pellicle and photomask mounting the pellicle |
JP2010509774A (en) * | 2006-11-10 | 2010-03-25 | アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド | EUV pellicle with improved EUV light transmittance |
JP2009221050A (en) * | 2008-03-17 | 2009-10-01 | National Institute Of Advanced Industrial & Technology | Self-standing mesoporous carbon thin film |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2014188710A1 (en) * | 2013-05-24 | 2017-02-23 | 三井化学株式会社 | Pellicle and EUV exposure apparatus including the same |
JP2015018228A (en) * | 2013-06-10 | 2015-01-29 | 旭化成イーマテリアルズ株式会社 | Pellicle film and pellicle |
JP2016080967A (en) * | 2014-10-21 | 2016-05-16 | 凸版印刷株式会社 | Pellicle |
GB2534404A (en) * | 2015-01-23 | 2016-07-27 | Cnm Tech Gmbh | Pellicle |
US11009802B2 (en) | 2015-01-23 | 2021-05-18 | Cnm Technologies Gmbh | Pellicle |
WO2016121798A1 (en) * | 2015-01-27 | 2016-08-04 | 日立化成株式会社 | Production method for aerogel laminate, and aerogel laminate roll |
US10556405B2 (en) | 2015-01-27 | 2020-02-11 | Hitachi Chemical Company, Ltd. | Production method for aerogel laminate, and aerogel laminate roll |
US11117353B2 (en) | 2015-01-27 | 2021-09-14 | Showa Denko Materials Co., Ltd. | Production method for aerogel laminate, and aerogel laminate roll |
CN106647161A (en) * | 2015-10-29 | 2017-05-10 | 信越化学工业株式会社 | Adhesive suitable for dustproof film assembly for EUV lithography and dustproof film assembly using same |
US10126645B2 (en) | 2015-10-29 | 2018-11-13 | Shin-Etsu Chemical Co., Ltd. | Adhesive suitable for a pellicle for EUV lithography and a pellicle using the same adhesive |
EP3165964A1 (en) * | 2015-10-29 | 2017-05-10 | Shin-Etsu Chemical Co., Ltd. | An adhesive suitable for a pellicle for euv lithography and a pellicle using the same adhesive |
CN106647161B (en) * | 2015-10-29 | 2020-08-18 | 信越化学工业株式会社 | Adhesive suitable for pellicle for EUV lithography and pellicle using the same |
JP2018049256A (en) * | 2016-04-05 | 2018-03-29 | 旭化成株式会社 | Pellicle |
JP2022010209A (en) * | 2016-04-05 | 2022-01-14 | 旭化成株式会社 | Pellicle |
JP2017187774A (en) * | 2016-04-05 | 2017-10-12 | 旭化成株式会社 | Pellicle |
WO2018008594A1 (en) | 2016-07-05 | 2018-01-11 | 三井化学株式会社 | Pellicle film, pellicle frame, pellicle, method for producing same, original plate for light exposure, light exposure apparatus and method for manufacturing semiconductor device |
US11042085B2 (en) | 2016-07-05 | 2021-06-22 | Mitsui Chemicals, Inc. | Pellicle film, pellicle frame, pellicle, method for producing same, original plate for light exposure, light exposure apparatus and method for manufacturing semiconductor device |
KR20220165812A (en) | 2016-07-05 | 2022-12-15 | 미쯔이가가꾸가부시끼가이샤 | The pellicle film, pellicle frame, pellicle, manufacturing method thereof, photomask, exposure apparatus, the method for manufacturing semiconductor device |
KR20220162888A (en) | 2016-07-05 | 2022-12-08 | 미쯔이가가꾸가부시끼가이샤 | The pellicle film, pellicle frame, pellicle, manufacturing method thereof, photomask, exposure apparatus, the method for manufacturing semiconductor device |
JP2018146668A (en) * | 2017-03-02 | 2018-09-20 | 旭化成株式会社 | Pellicle film and manufacturing method of pellicle film |
JP2019070742A (en) * | 2017-10-10 | 2019-05-09 | 信越化学工業株式会社 | Pellicle frame, pellicle and method for removing pellicle |
US10859901B2 (en) | 2017-11-10 | 2020-12-08 | S&S Tech Co., Ltd. | Pellicle for EUV lithography and method of fabricating the same |
JP2019091001A (en) * | 2017-11-10 | 2019-06-13 | エスアンドエス テック カンパニー リミテッド | Pellicle for extreme ultraviolet lithography and method for manufacturing same |
JPWO2020008977A1 (en) * | 2018-07-06 | 2021-07-15 | 株式会社カネカ | Pellicle complex and its manufacturing method |
WO2020008977A1 (en) * | 2018-07-06 | 2020-01-09 | 株式会社カネカ | Pellicle complex and production method therefor |
JP7213249B2 (en) | 2018-07-06 | 2023-01-26 | 株式会社カネカ | Pellicle complex and manufacturing method thereof |
JP2022517511A (en) * | 2018-12-10 | 2022-03-09 | アプライド マテリアルズ インコーポレイテッド | Removing fixtures from photomasks for extreme UV lithography applications |
JP7104856B2 (en) | 2018-12-10 | 2022-07-21 | アプライド マテリアルズ インコーポレイテッド | Removing fixtures from photomasks in extreme UV lithography applications |
KR20220116021A (en) | 2020-02-26 | 2022-08-19 | 미쯔이가가꾸가부시끼가이샤 | A pellicle film, a pellicle, an exposure master plate, an exposure apparatus, a method for manufacturing a pellicle, and a method for manufacturing a semiconductor device |
WO2021172104A1 (en) | 2020-02-26 | 2021-09-02 | 三井化学株式会社 | Pellicle film, pellicle, original plate for exposure, exposure device, method for producing pellicle, and method for producing semiconductor device |
TWI797898B (en) * | 2021-01-29 | 2023-04-01 | 台灣積體電路製造股份有限公司 | Pellicle, method for forming mask pellicle system, and method for lithography process |
US20220365420A1 (en) * | 2021-05-12 | 2022-11-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-layer pellicle membrane |
WO2024204102A1 (en) * | 2023-03-28 | 2024-10-03 | リンテック株式会社 | Pellicle film and pellicle |
JP7576814B1 (en) | 2023-12-07 | 2024-11-01 | 浙江大学 | Freeze-transfer method for porous carbon electrodes based on subzero temperatures |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014142125A1 (en) | 2017-02-16 |
KR20150119148A (en) | 2015-10-23 |
CN105051604A (en) | 2015-11-11 |
JP6084681B2 (en) | 2017-02-22 |
TWI576655B (en) | 2017-04-01 |
KR101699655B1 (en) | 2017-01-24 |
CN105051604B (en) | 2019-07-23 |
TW201441757A (en) | 2014-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6084681B2 (en) | Pellicle membrane and pellicle | |
US10394117B2 (en) | Pellicle film including graphite-containing thin film for extreme ultraviolet lithography | |
KR102047588B1 (en) | Pellicle film, pellicle, exposure master, exposure device, and method for manufacturing semiconductor device | |
JP6364404B2 (en) | Pellicle and EUV exposure apparatus including the same | |
JP6253641B2 (en) | Reflector, pellicle, lithography mask, film, spectral purity filter, and apparatus | |
TWI687756B (en) | Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications | |
US10838124B2 (en) | Materials, components, and methods for use with extreme ultraviolet radiation in lithography and other applications | |
WO2021172354A1 (en) | Pellicle film, pellicle, film, graphene sheet and method for producing same | |
TWI776625B (en) | Pellicle assembly and method for forming reticle assembly and increasing lifetime of pellicle membrane | |
CN111373328B (en) | Porous graphite surface film | |
KR20220059170A (en) | Compound for adhesive, method for fabricating the same, reticle assembly including the same, and method for fabricating reticle assembly including the same | |
Boyer et al. | Microfabrication with smooth thin carbon nanotube composite sheets | |
US20240004284A1 (en) | Pellicle membrane with improved properties | |
TWI751353B (en) | Silicon carbide filter membrane and methods of use | |
Feng et al. | Synthesis and control of size and structure of porous carbon films | |
Feng et al. | Synthesis and control of micro to noanscale porous structures of diamond like carbon films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480015635.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14763673 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015505491 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157024765 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14763673 Country of ref document: EP Kind code of ref document: A1 |