EP3764163B1 - An extreme ultraviolet lithography device - Google Patents

An extreme ultraviolet lithography device Download PDF

Info

Publication number
EP3764163B1
EP3764163B1 EP19185767.1A EP19185767A EP3764163B1 EP 3764163 B1 EP3764163 B1 EP 3764163B1 EP 19185767 A EP19185767 A EP 19185767A EP 3764163 B1 EP3764163 B1 EP 3764163B1
Authority
EP
European Patent Office
Prior art keywords
light
reticle
pellicle membrane
source
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19185767.1A
Other languages
German (de)
French (fr)
Other versions
EP3764163A1 (en
Inventor
Joern-Holger FRANKE
Emily Gallagher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interuniversitair Microelektronica Centrum vzw IMEC
Original Assignee
Interuniversitair Microelektronica Centrum vzw IMEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interuniversitair Microelektronica Centrum vzw IMEC filed Critical Interuniversitair Microelektronica Centrum vzw IMEC
Priority to EP19185767.1A priority Critical patent/EP3764163B1/en
Priority to JP2020105426A priority patent/JP2021036311A/en
Priority to TW109121395A priority patent/TWI787624B/en
Priority to CN202010655788.5A priority patent/CN112213924B/en
Priority to US16/926,460 priority patent/US11360380B2/en
Priority to KR1020200085935A priority patent/KR102464600B1/en
Publication of EP3764163A1 publication Critical patent/EP3764163A1/en
Application granted granted Critical
Publication of EP3764163B1 publication Critical patent/EP3764163B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70941Stray fields and charges, e.g. stray light, scattered light, flare, transmission loss
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask

Definitions

  • the present invention relates to an extreme-ultraviolet lithography, EUVL, device and a method for determining an orientation of a preferential scattering axis of a light-transmissive pellicle membrane relative to an illumination distribution to be provided by an EUV illumination system of an EUVL device.
  • a photolithographic process In semiconductor fabrication, various photolithographic processes are extensively used in the course of defining devices and circuit patterns. Depending on the size of the features to be defined, different optical lithographic processes may be used.
  • a pattern present on a photomask or reticle may be transferred to a light-sensitive photoresist coating by illuminating the reticle.
  • light is modulated by the reticle pattern and imaged onto a wafer coated with the light-sensitive photoresist.
  • a pellicle is commonly placed on the reticle in order to protect the reticle from contamination during handling and exposure.
  • the pellicle will among others protect the reticle from unwanted particles which otherwise could negatively impact the fidelity of the pattern on the reticle, and therefore the transfer of the pattern to the wafer.
  • EUVL extreme ultraviolet lithography
  • a wavelength of about 13.5 nm is frequently used.
  • the shift to shorter wavelengths has triggered a search for new pellicle designs which provide a high transmissivity to EUV radiation and can withstand the typically harsh conditions in EUVL devices.
  • CNT EUV pellicle moving towards a full-size solution
  • Proc. SPIE 10451, Photomask Technology 2017, 104510P (16 October 2017 ) relates to using free-standing carbon nanotube (CNT) film as an alternative next generation core pellicle material.
  • CNTs in the context of EUV pellicle history Proc. SPIE 10583, Extreme Ultraviolet (EUV) Lithography IX, 105831E (23 April 2018 ) relates to historical trends in EUV pellicle membrane development and describes carbon nanotube (CNT) membranes in that context.
  • EUV Extreme Ultraviolet
  • EP 3 483 655 A1 relates to a pellicle film, a pellicle frame and a pellicle having a higher EUV transmittance.
  • the disclosed film includes a carbon nanotube sheet and that the carbon nanotube sheet includes bundles each including a plurality of carbon nanotubes.
  • the disclosed bundles each have a diameter of 100 nm or shorter, and the bundles are aligned in a planar direction in the carbon nanotube sheet.
  • the present inventive concept is based on a realization that typical pellicle designs intended for use in extreme ultraviolet, EUVL, devices may cause a non-negligible, directionally-preferential scattering of light transmitted through the pellicle. If light scattered by the pellicle is collected by an imaging system of the EUVL device, this may cause decreased fidelity of the pattern transferred to a target wafer. For example, the light scattered by the pellicle can cause optical issues, such as imaging errors, in the EUVL device.
  • an extreme ultraviolet lithography, EUVL, device comprises: a reticle comprising a lithographic pattern to be imaged on a target wafer; a light-transmissive pellicle membrane mounted in front of, and parallel to, the reticle, wherein the pellicle membrane scatters transmitted light along a preferential scattering axis; and an extreme ultraviolet, EUV, illumination system configured to illuminate the reticle through the pellicle membrane, wherein an illumination distribution provided by the EUV illumination system is asymmetric as seen in a source-pupil plane of the EUV illumination system; wherein (in use of the EUVL device) light reflected by the reticle and then transmitted through the pellicle membrane comprises a non-scattered fraction and a scattered fraction formed by light scattered by the pellicle membrane; the EUVL device further comprising: an imaging system having an acceptance cone configured to capture a portion of said light reflected by the reticle and then transmitted through the EUVL
  • the non-scattered fraction of light transmitted through the pellicle membrane is greater, or much greater, than the scattered fraction.
  • the non-scattered fraction may be 90 % - 95 % of the light transmitted through the pellicle membrane, and the scattered fraction may be 5 % - 10 % of the light transmitted through the pellicle membrane.
  • the scattered fraction of light is typically of no use, or even detrimental, for the purpose of pattern transfer from the reticle to the target wafer.
  • the use of a pellicle membrane having a preferential scattering axis allows for the total amount of scattered light actually captured by the acceptance cone of the imaging system to be reduced by a deliberate orientation of the pellicle membrane (and as a consequence a deliberate orientation of the preferential scattering axis thereof).
  • a ratio of captured scattered light to captured non-scattered light may be reduced.
  • the orientation of the preferential scattering axis with respect to the illumination distribution is such that the ratio is minimized.
  • a cross section of the acceptance cone of the imaging system may be circular.
  • the above discussed merits of the inventive EUVL device may thus be enjoyed with an imaging system having an acceptance cone with a circular/symmetric cross section, as is commonly used in various state of the art lithography applications. Put differently, the amount of scattered light imaged onto the target wafer is minimized without any complex re-design of the imaging system.
  • the pellicle membrane may comprise at least one sheet of carbon nanotube bundles.
  • the at least one sheet of carbon nanotube bundles may in particular comprise a plurality of substantially parallel carbon nanotube bundles.
  • a pellicle membrane based on sheets of carbon nanotube, CNT, bundles offer low degrees of absorption of EUV light.
  • the elongated shape, and the parallel arrangement, of the CNT bundles may however cause light transmitted through the pellicle membrane to scatter predominantly in a direction perpendicular to a longitudinal extension of the CNT bundles.
  • the increased structural regularity offered by a CNT-based pellicle membrane may translate to a pellicle membrane having a distinct preferential scattering axis perpendicular, at least substantially perpendicular, to the longitudinal extension of the CNT bundles. This may facilitate deflecting a large proportion of the scattered fraction, formed by light scattered by the pellicle membrane, outside of the acceptance cone of the imaging system. A fidelity of the transferred pattern on the target wafer may thereby be improved.
  • the illumination distribution may comprise a distribution of source pixels.
  • a source pixel may be a direction, or a narrow range of directions, from which light illuminates the reticle.
  • the illumination distribution may be optimized with respect to the lithographic pattern of the reticle such that the source pixels predominantly fall within two opposite quadrants in the source-pupil plane, wherein the preferential scattering axis may be oriented at an angle of 45° or less relative to a geometrical source-pupil axis (preferably 0°).
  • the geometrical source-pupil axis is defined to extend to divide each of said two opposite quadrants into two equally sized octants.
  • An advantage associated with optimizing the illumination distribution with respect to the lithographic pattern of the reticle is that a fidelity of the pattern transferred to the target wafer may be improved.
  • a fidelity of the pattern transferred to the target wafer may be improved.
  • An orientation of the preferential scattering axis at an angle of 45° or less relative to the geometrical source-pupil axis allows scattered light / scattered source-pixels to be directed outside of the acceptance cone of the imaging system to an increasing extent, becoming maximum at 0°.
  • the asymmetric illumination distribution provided by the EUV illumination system may be a predominantly dipole-shaped or quadrupole-shaped illumination distribution.
  • FIG 1A illustrates a schematic view of an extreme ultraviolet lithography, EUVL, device 20, such as an EUVL scanner.
  • the EUVL device 20 comprises a reticle 220, a light-transmissive pellicle membrane 232, an extreme ultraviolet, EUV, illumination system 210, and an imaging system 240.
  • the EUVL device 20 may have an optical axis 200 as exemplified in Fig. 1A .
  • the EUVL device 20 may be an EUVL scanner.
  • the reticle 220 comprises a lithographic pattern to be imaged on a target wafer 250.
  • the reticle 220 may be configured to reflect light impinging on the reticle 220.
  • the lithographic pattern of the reticle 220 may diffract light impinging on the reticle 220 in a plurality of diffraction orders.
  • the reticle 220 may define a reticle plane.
  • the lithographic pattern may be of any type conventionally used in manufacture of semiconductor devices, e.g. for the purpose of "printing" patterns to be used for line and via formation in back-end-of-line interconnect structures, for patterning of semiconductor structures such as semiconductor fins or pillars, etc.
  • a reticle may comprise a line-based reticle pattern, e.g. comprising a plurality of parallel spaced-apart lines.
  • the light-transmissive pellicle membrane 232 is mounted in front of, and parallel to, the reticle 220.
  • the pellicle membrane 232 may as shown in Figure 1 be mounted in front of the reticle 220, as seen from the EUV illumination system 210.
  • the pellicle membrane 232 may be comprised in a pellicle 230 comprising a frame to which the pellicle membrane 232 is attached.
  • the pellicle membrane 232 is transmissive to EUV radiation.
  • EUV radiation may be electromagnetic radiation (i.e. light) having a wavelength shorter than 15 nm, preferably in a range from 13.3 to 13.7 nm.
  • the pellicle membrane 232 may by way of example present an EUV single-pass transmission of at least 80 %, preferably greater than 90 %.
  • a fraction is scattered by the pellicle membrane 232.
  • the light transmitted by the pellicle membrane 232 comprises a non-scattered fraction and a scattered fraction.
  • the structure of the pellicle membrane 232 is such that the pellicle membrane 232 scatters transmitted light along a preferential scattering axis 214.
  • a pellicle membrane 232 providing scattering of transmitted light along a preferential scattering axis may, if illuminated with light of an isotropic illumination distribution, scatter the isotropic illumination distribution into an elliptical scattering pattern having a major axis parallel to the preferential scattering axis 214.
  • the pellicle membrane 232 may comprise at least one sheet of carbon nanotube bundles.
  • a carbon nanotube bundle may have a width of at least 10 nm.
  • At least one sheet of carbon nanotube bundles may comprise a plurality of substantially parallel carbon nanotube bundles.
  • the plurality of substantially parallel carbon nanotube bundles may be substantially parallel to the pellicle membrane 232.
  • Each carbon nanotube bundle in the plurality of substantially parallel carbon nanotube bundles may be separated by a distance from at least 10 nm to 500 nm from a neighboring carbon nanotube bundle.
  • the plurality of substantially parallel carbon nanotube bundles may be arranged in a quasi-periodic pattern.
  • the quasi-periodic pattern may have an average pitch of at least 50 nm.
  • the EUVL device 20 may be used with any type of EUV transmissive membrane providing scattering of transmitted light along a preferential scattering axis.
  • the EUV illumination system 210 is configured to illuminate the reticle 220 through the pellicle membrane 232. To enable high-fidelity pattern transfer from the reticle 220 to the target wafer 250, the EUV illumination system 210 is configured to emit light in an illumination distribution 212 which is asymmetric as seen in a source-pupil plane of the EUV illumination system 210.
  • the source-pupil plane may coincide with a plane of an exit pupil 211 of the EUV illumination system 210.
  • the source-pupil plane may be a plane between the EUV illumination system 210 and the pellicle membrane 232.
  • the source-pupil plane may be a plane between a last beamforming optic of the EUV illumination system 210 and the pellicle membrane 232.
  • the source-pupil plane may be orthogonal to the optical axis 200 of the EUVL device 20.
  • the light emitted by the EUV illumination system 210 may be generated by an EUV light source of the illumination system 210.
  • the EUV light source may be of a conventional type, such as a laser induced plasma light source.
  • the EUV light source may emit light of a broad range of wavelengths.
  • the EUV illumination system 210 may comprise optics configured to filter light emitted by the EUV light source, such that light of a narrower wavelength range reaches the pellicle membrane 232. For instance, light that reaches the pellicle membrane 232 may have wavelengths shorter than 15 nm, preferably within a range from 13.3 to 13.7 nm.
  • the EUV illumination system 210 may comprise optics configured to shape light generated by the EUV light source. More specifically, the optics may be configured to shape the illumination distribution 212 of the illumination system 210 and direct the light to illuminate the reticle 220.
  • the optics may be reflective optics, such as EUV reflective mirrors.
  • the optics may comprise collimating optics and/or optics arranged for illuminating the reticle 220.
  • light from the EUV illumination system 210 which is reflected by the reticle 220 and then transmitted through the pellicle membrane 232 will comprise a non-scattered fraction and a scattered fraction formed by light scattered by the pellicle membrane 232.
  • non-scattered fraction of light represents the fraction which is useful for the pattern transfer.
  • the non-scattered fraction may accordingly comprise light reflected by the reticle 220, at least portions of which being diffracted by the reticle 220.
  • the non-scattered fraction of light is formed by light which first has been transmitted through the pellicle membrane 232 (without being scattered), then reflected by the reticle 220, and then again transmitted through the pellicle membrane 232 (without being scattered).
  • the scattered fraction of light meanwhile represents a fraction of light which is not useful, or even detrimental, for the pattern transfer.
  • reference in the following is made to the scattered fraction, reference is made to light which first has been transmitted through the pellicle membrane 232 (first passage), then reflected by the reticle 220, and then again transmitted through the pellicle membrane 232 (second passage), the light undergoing scattering during at least one of the first and the second passage.
  • the imaging system 240 has an acceptance cone 260 configured to capture a portion of said light reflected by the reticle 220 and then transmitted through the pellicle membrane 232.
  • the imaging system 240 is configured to project the captured portion onto the target wafer 250.
  • the imaging system 240 may comprise optics.
  • the optics may be reflective optics.
  • a cross section 262 of the acceptance cone 260 of the imaging system 240 may be circular.
  • the acceptance cone 260 of the imaging system 240 may for instance correspond to a (reticle side) numerical aperture in a range from 0.05 to 0.125.
  • the preferential scattering axis 214 is oriented with respect to the illumination distribution 212 such that a scattered fraction of the captured portion is minimized. In other words, a ratio of the scattered fraction captured by the acceptance cone 260 to the non-scattered fraction captured by the acceptance cone 260 is minimized.
  • the illumination distribution 212 may be characterized as comprising a distribution of source pixels 213. Accordingly, light associated with each source pixel may be transmitted through the pellicle membrane 232, then reflected by the reticle 220, and then transmitted through the pellicle membrane 232.
  • the asymmetric illumination distribution 212 provided by the EUV illumination system 210 may be optimized with respect to the transfer of the lithographic pattern of the reticle 220 to the target wafer 250.
  • the illumination distribution 212 may be optimized with respect to the lithographic pattern of the reticle 220 such that the source pixels 213 predominantly fall within two mutually opposite quadrants 2622, 2624 in the source-pupil plane.
  • a geometrical source-pupil axis 263 may extend to divide each of said two opposite quadrants 2622, 2624 into two equally sized octants, and the preferential scattering axis 214 may be oriented at an angle of 45° or less relative to the source-pupil axis 263.
  • the asymmetric illumination distribution 212 provided by the EUV illumination system 210 may be a predominantly dipole-shaped or quadrupole-shaped illumination distribution. Light associated with the predominantly dipole-shaped or quadrupole-shaped illumination distribution may to a greater extent be separated along a main direction compared to a different direction perpendicular to the main direction.
  • the main direction may be parallel to the geometrical source-pupil axis 263, and light associated with the dipole-shaped or quadrupole-shaped illumination distribution may predominantly fall within the two mutually opposite quadrants 2622, 2624.
  • the predominantly dipole-shaped illumination distribution may be specifically optimized to transfer, from the reticle 220 to the target wafer 250, lithographic patterns comprising lines and spaces oriented along a direction perpendicular to the main direction.
  • a quadrupole-shaped illumination distribution may be optimal for pattern transfer from the reticle 220 to the target wafer 250.
  • a standard approach within the art to determine the optimal illumination distribution for pattern transfer is numerical methods, typically called source and mask optimization (SMO).
  • SMO source and mask optimization
  • the source and the mask i.e. lithographic pattern on the reticle 220
  • the source and the mask are co-designed to improve the projection of the pattern on the target wafer 250.
  • Figure 1B illustrates, in the source-pupil plane of the EUVL device 20, an asymmetric illumination distribution 212 with the cross section 262 of the acceptance cone 260 superimposed.
  • the asymmetric illumination distribution 212 may be seen as a distribution of different angles/directions with which light illuminates the reticle 220.
  • light scattering introduced by the pellicle membrane 232 is not shown.
  • the asymmetric illumination distribution 212 is depicted as a distribution of source pixels 213.
  • the source pixels 213 predominantly fall within a first quadrant 2622 and a second quadrant 2624 in the source-pupil plane.
  • the source pixels 213 predominantly fall within two opposite quadrants 2622, 2624 in the source-pupil plane.
  • a geometrical source-pupil axis 263 extends to divide the first quadrant 2622 and the second quadrant 2624 in equally sized octants, as shown in Fig. 1B .
  • the pellicle membrane 232 As light associated with each source pixel is transmitted through the pellicle membrane 232, a part of that light is preferentially scattered in a direction parallel to the preferential scattering axis 214. Thus, at least a part of light associated with each source pixel in Fig. 1B is scattered (not shown in Fig. 1B ) along the preferential scattering axis 214. Therefore, by orienting the preferential scattering axis 214 of the pellicle membrane 232 such that it is parallel to the geometrical source-pupil axis 263, the scattered fraction of light within the cross section 262 of the acceptance cone 260 of the imaging system 240 may be minimized.
  • a single source pixel 213A close to a boundary of the cross section 262 is shown in Fig. 1C .
  • light associated with the single source pixel 213A is shown with an example scattering pattern 215a resulting from the scattering along a preferential scattering axis 214 by the pellicle membrane 232.
  • the scattering pattern 215a is an example only, and that it may have other shapes, e.g. be more/less elongated than as depicted in Fig. 1C .
  • the preferential scattering axis 214 is oriented along the geometrical source-pupil axis 263.
  • the direction of the scattering pattern 215a of light associated with the single source pixel 213A is oriented in the same direction as the preferential scattering axis 214, it is also oriented along the geometrical source-pupil axis 263. As is seen in Fig. 1C , a part of the scattering pattern 215a of light associated with the single source pixel 213A falls outside the cross section 262 of the acceptance cone 260 and is therefore not captured by the imaging system 240. Since light associated with each source pixel (e.g., the source pixels 213 shown in Fig. 1B ) is scattered in a similar manner as light associated with the single source pixel 213A in Fig.
  • the fraction of light scattered in by the pellicle membrane 232 inside the cross section 262 may be reduced by orienting the preferential scattering axis 214 parallel to the geometrical source-pupil axis 263. From the above description, it is understood that the scattered fraction of light may be reduced by orienting preferential scattering axis 214 at an angle smaller than 45° relative to the geometrical source-pupil axis 263, compared to an orientation greater than 45°.
  • the orientation of the preferential scattering axis 214 with respect to the illumination distribution 212 such that the scattered fraction of the captured portion is minimized may be determined by finding an orientation of the preferential scattering axis 214, with respect to the illumination distribution 212, such that a weighted sum of distances from each source pixel to a boundary of the cross section 262 of the acceptance cone 260 along a direction of the preferential scattering axis 214 is minimized.
  • Each weight in the weighted sum may be based on a position of each source pixel in the weighted average within the cross section 262 of the acceptance cone 260. Each weight in the weighted sum may account for the exponential decay of scattering intensity.
  • an orientation ⁇ min of the preferential scattering axis 214 that minimizes the averaged distance along the preferential scattering axis 214 from the source pixels 213 to the boundary of the cross section 262 of the acceptance cone 260 may be found.
  • the illumination distribution 212 comprises a first source pixel 213-1, a second source pixel 213-2, and a third source pixel 213-3. It is to be understood that illumination distributions typically comprise a large number of source pixels 213, e.g. as illustrated in Fig. 1B .
  • the preferential scattering axis 214 in Fig. 2A is oriented in an orientation ⁇ relative to the illumination distribution 212.
  • Each source pixel 213-1, 213-2, 213-3 is at a distance r 1 , r 2 , r 3 (labelled R1, R2, R3 in Fig. 1D and Fig.
  • the orientation of the preferential scattering axis 214 in the example shown in Fig. 2A that is determined by solving the above-mentioned optimization is shown in Fig. 2B .
  • orienting the preferential scattering axis 214 in the direction found by solving the optimization problem may result in that the source pixels 213 fall predominantly within two opposite quadrants, where the quadrants are defined such that the preferential scattering axis 214 divides the opposite quadrants into equally sized octants.
  • the orientation of the preferential scattering axis 214 found by solving the above-mentioned optimization problem may be parallel to the geometrical source-pupil axis 263.
  • the orientation of the preferential scattering axis 214 may be determined in other manners as described above.
  • other numerical methods may be used to determine the orientation of the preferential scattering axis relative to the illumination distribution such that the scattered fraction of the captured portion is reduced.
  • the orientation of the preferential scattering axis may be determined through a trial and error approach, where different orientations of the preferential axis are tested in order to determine which orientation minimizes the scattered fraction of the captured portion.

Description

    Technical field
  • The present invention relates to an extreme-ultraviolet lithography, EUVL, device and a method for determining an orientation of a preferential scattering axis of a light-transmissive pellicle membrane relative to an illumination distribution to be provided by an EUV illumination system of an EUVL device.
  • Background of the invention
  • In semiconductor fabrication, various photolithographic processes are extensively used in the course of defining devices and circuit patterns. Depending on the size of the features to be defined, different optical lithographic processes may be used. In a photolithographic process, a pattern present on a photomask or reticle may be transferred to a light-sensitive photoresist coating by illuminating the reticle. Typically, light is modulated by the reticle pattern and imaged onto a wafer coated with the light-sensitive photoresist.
  • In conventional photolithography, a pellicle is commonly placed on the reticle in order to protect the reticle from contamination during handling and exposure. The pellicle will among others protect the reticle from unwanted particles which otherwise could negatively impact the fidelity of the pattern on the reticle, and therefore the transfer of the pattern to the wafer.
  • As the patterns become smaller, there is an interest in utilizing shorter wavelengths. In extreme ultraviolet lithography, EUVL, a wavelength of about 13.5 nm is frequently used. The shift to shorter wavelengths has triggered a search for new pellicle designs which provide a high transmissivity to EUV radiation and can withstand the typically harsh conditions in EUVL devices.
  • The disclosure of Mochi I. et al. "Experimental evaluation of the impact of EUV pellicles on reticle imaging", Proc. SPIE 10810, Photomask Technology 2018, 1081 00Y (3 October 2018) relates to the impact of a few selected EUV pellicle prototypes on the quality and the contrast of the reticle image obtained with an actinic lensless microscope.
  • The disclosure of Timmermans, M. Y. et al. "CNT EUV pellicle: moving towards a full-size solution", Proc. SPIE 10451, Photomask Technology 2017, 104510P (16 October 2017) relates to using free-standing carbon nanotube (CNT) film as an alternative next generation core pellicle material.
  • The disclosure of Gallagher, E. et al. "CNTs in the context of EUV pellicle history", Proc. SPIE 10583, Extreme Ultraviolet (EUV) Lithography IX, 105831E (23 April 2018) relates to historical trends in EUV pellicle membrane development and describes carbon nanotube (CNT) membranes in that context.
  • The disclosure of Timmermans M. Y. et al "Free-standing carbon nanotube films for extreme ultraviolet pellicle application," Journal of Micro/Nanolithography, MEMS, and MOEMS 17(4), 043504 (27 November 2018) relates to free-standing carbon nanotube (CNT) film as an alternative next-generation EUV pellicle solution.
  • EP 3 483 655 A1 relates to a pellicle film, a pellicle frame and a pellicle having a higher EUV transmittance. The disclosed film includes a carbon nanotube sheet and that the carbon nanotube sheet includes bundles each including a plurality of carbon nanotubes. The disclosed bundles each have a diameter of 100 nm or shorter, and the bundles are aligned in a planar direction in the carbon nanotube sheet.
  • Summary of the invention
  • The invention is defined by the independent claims.
  • The present inventive concept is based on a realization that typical pellicle designs intended for use in extreme ultraviolet, EUVL, devices may cause a non-negligible, directionally-preferential scattering of light transmitted through the pellicle. If light scattered by the pellicle is collected by an imaging system of the EUVL device, this may cause decreased fidelity of the pattern transferred to a target wafer. For example, the light scattered by the pellicle can cause optical issues, such as imaging errors, in the EUVL device.
  • It is an object to provide an EUVL device which addresses the issue of pellicle light scattering. Further or alternative objects may be understood from the following.
  • According to a first aspect, an extreme ultraviolet lithography, EUVL, device is provided. The EUVL device comprises: a reticle comprising a lithographic pattern to be imaged on a target wafer; a light-transmissive pellicle membrane mounted in front of, and parallel to, the reticle, wherein the pellicle membrane scatters transmitted light along a preferential scattering axis; and an extreme ultraviolet, EUV, illumination system configured to illuminate the reticle through the pellicle membrane, wherein an illumination distribution provided by the EUV illumination system is asymmetric as seen in a source-pupil plane of the EUV illumination system; wherein (in use of the EUVL device) light reflected by the reticle and then transmitted through the pellicle membrane comprises a non-scattered fraction and a scattered fraction formed by light scattered by the pellicle membrane; the EUVL device further comprising: an imaging system having an acceptance cone configured to capture a portion of said light reflected by the reticle and then transmitted through the pellicle membrane, wherein the imaging system is configured to project the captured portion onto the target wafer; wherein the preferential scattering axis is oriented with respect to the illumination distribution such that a ratio of captured scattered light to captured non-scattered light is minimized.
  • In state of the art EUVL, asymmetric illumination distributions are typically used for improved pattern transfer from a reticle to a target wafer, since some parts of the source-pupil plane are more important to illuminate than others. Typically, the non-scattered fraction of light transmitted through the pellicle membrane is greater, or much greater, than the scattered fraction. For example, the non-scattered fraction may be 90 % - 95 % of the light transmitted through the pellicle membrane, and the scattered fraction may be 5 % - 10 % of the light transmitted through the pellicle membrane. The scattered fraction of light is typically of no use, or even detrimental, for the purpose of pattern transfer from the reticle to the target wafer. However, the use of a pellicle membrane having a preferential scattering axis, allows for the total amount of scattered light actually captured by the acceptance cone of the imaging system to be reduced by a deliberate orientation of the pellicle membrane (and as a consequence a deliberate orientation of the preferential scattering axis thereof). In other words, a ratio of captured scattered light to captured non-scattered light may be reduced. According to the present invention, the orientation of the preferential scattering axis with respect to the illumination distribution is such that the ratio is minimized.
  • A cross section of the acceptance cone of the imaging system may be circular.
  • The above discussed merits of the inventive EUVL device may thus be enjoyed with an imaging system having an acceptance cone with a circular/symmetric cross section, as is commonly used in various state of the art lithography applications. Put differently, the amount of scattered light imaged onto the target wafer is minimized without any complex re-design of the imaging system.
  • The pellicle membrane may comprise at least one sheet of carbon nanotube bundles. The at least one sheet of carbon nanotube bundles may in particular comprise a plurality of substantially parallel carbon nanotube bundles.
  • A pellicle membrane based on sheets of carbon nanotube, CNT, bundles offer low degrees of absorption of EUV light. The elongated shape, and the parallel arrangement, of the CNT bundles may however cause light transmitted through the pellicle membrane to scatter predominantly in a direction perpendicular to a longitudinal extension of the CNT bundles.
  • Thus, the increased structural regularity offered by a CNT-based pellicle membrane may translate to a pellicle membrane having a distinct preferential scattering axis perpendicular, at least substantially perpendicular, to the longitudinal extension of the CNT bundles. This may facilitate deflecting a large proportion of the scattered fraction, formed by light scattered by the pellicle membrane, outside of the acceptance cone of the imaging system. A fidelity of the transferred pattern on the target wafer may thereby be improved.
  • The illumination distribution may comprise a distribution of source pixels.
  • A source pixel may be a direction, or a narrow range of directions, from which light illuminates the reticle.
  • The illumination distribution may be optimized with respect to the lithographic pattern of the reticle such that the source pixels predominantly fall within two opposite quadrants in the source-pupil plane, wherein the preferential scattering axis may be oriented at an angle of 45° or less relative to a geometrical source-pupil axis (preferably 0°). The geometrical source-pupil axis is defined to extend to divide each of said two opposite quadrants into two equally sized octants.
  • An advantage associated with optimizing the illumination distribution with respect to the lithographic pattern of the reticle is that a fidelity of the pattern transferred to the target wafer may be improved. For such a source pixel distribution, it may in view of the above discussion be understood that most of the scattered light also will fall in said quadrants. An orientation of the preferential scattering axis at an angle of 45° or less relative to the geometrical source-pupil axis allows scattered light / scattered source-pixels to be directed outside of the acceptance cone of the imaging system to an increasing extent, becoming maximum at 0°.
  • The asymmetric illumination distribution provided by the EUV illumination system may be a predominantly dipole-shaped or quadrupole-shaped illumination distribution.
  • A further scope of applicability of the present disclosure will become apparent from the detailed description given below. However, it should be understood that the detailed description and specific examples, while indicating preferred variants of the present inventive concept, are given by way of illustration only, since various changes and modifications within the scope of the inventive concept will become apparent to those skilled in the art from this detailed description.
  • Brief description of the drawings
  • The above and other aspects of the present invention will now be described in more detail, with reference to appended drawings showing embodiments of the invention. The figures should not be considered limiting the invention to the specific embodiment; instead they are used for explaining and understanding the invention.
    • Figure 1A illustrates a schematic view of an extreme ultraviolet lithography, EUVL, device.
    • Figure 1B illustrates, in the source-pupil plane of the EUVL device, an asymmetric illumination distribution with the cross section of the acceptance cone superimposed.
    • Figure 1C illustrates, in the source-pupil plane of the EUVL device, a single source pixel with a scattering pattern, and with the cross section of the acceptance cone superimposed.
    • Figure 2A illustrates, in the source-pupil plane of the EUVL device, an illumination distribution comprising source pixels, where the preferential scattering axis is oriented along a first direction.
    • Figure 2B illustrates, in the source-pupil plane of the EUVL device, an illumination distribution comprising source pixels, where the preferential scattering axis is oriented along a direction that is found by minimizing the averaged distance from each source pixel to the boundary of the cross section.
  • As illustrated in the figures, the sizes of layers and regions are exaggerated for illustrative purposes and, thus, are provided to illustrate the general structures of embodiments. Like reference numerals refer to like elements throughout.
  • Detailed description
  • The present inventive concept will now be described more fully hereinafter with reference to the accompanying drawings, in which currently preferred variants of the inventive concept are shown. This inventive concept may, however, be implemented in many different forms and should not be construed as limited to the variants set forth herein; rather, these variants are provided for thoroughness and completeness, and fully convey the scope of the present inventive concept to the skilled person.
  • Figure 1A illustrates a schematic view of an extreme ultraviolet lithography, EUVL, device 20, such as an EUVL scanner. The EUVL device 20 comprises a reticle 220, a light-transmissive pellicle membrane 232, an extreme ultraviolet, EUV, illumination system 210, and an imaging system 240. The EUVL device 20 may have an optical axis 200 as exemplified in Fig. 1A. The EUVL device 20 may be an EUVL scanner.
  • The reticle 220 comprises a lithographic pattern to be imaged on a target wafer 250. The reticle 220 may be configured to reflect light impinging on the reticle 220. The lithographic pattern of the reticle 220 may diffract light impinging on the reticle 220 in a plurality of diffraction orders. The reticle 220 may define a reticle plane. It is envisaged that the lithographic pattern may be of any type conventionally used in manufacture of semiconductor devices, e.g. for the purpose of "printing" patterns to be used for line and via formation in back-end-of-line interconnect structures, for patterning of semiconductor structures such as semiconductor fins or pillars, etc. By way of example, a reticle may comprise a line-based reticle pattern, e.g. comprising a plurality of parallel spaced-apart lines.
  • The light-transmissive pellicle membrane 232 is mounted in front of, and parallel to, the reticle 220. The pellicle membrane 232 may as shown in Figure 1 be mounted in front of the reticle 220, as seen from the EUV illumination system 210. The pellicle membrane 232 may be comprised in a pellicle 230 comprising a frame to which the pellicle membrane 232 is attached. The pellicle membrane 232 is transmissive to EUV radiation. EUV radiation may be electromagnetic radiation (i.e. light) having a wavelength shorter than 15 nm, preferably in a range from 13.3 to 13.7 nm. The pellicle membrane 232 may by way of example present an EUV single-pass transmission of at least 80 %, preferably greater than 90 %. Of the light transmitted by the pellicle membrane 232, a fraction is scattered by the pellicle membrane 232. Hence, the light transmitted by the pellicle membrane 232 comprises a non-scattered fraction and a scattered fraction. The structure of the pellicle membrane 232 is such that the pellicle membrane 232 scatters transmitted light along a preferential scattering axis 214. As may be appreciated, a pellicle membrane 232 providing scattering of transmitted light along a preferential scattering axis may, if illuminated with light of an isotropic illumination distribution, scatter the isotropic illumination distribution into an elliptical scattering pattern having a major axis parallel to the preferential scattering axis 214.
  • The pellicle membrane 232 may comprise at least one sheet of carbon nanotube bundles. A carbon nanotube bundle may have a width of at least 10 nm. At least one sheet of carbon nanotube bundles may comprise a plurality of substantially parallel carbon nanotube bundles. The plurality of substantially parallel carbon nanotube bundles may be substantially parallel to the pellicle membrane 232. Each carbon nanotube bundle in the plurality of substantially parallel carbon nanotube bundles may be separated by a distance from at least 10 nm to 500 nm from a neighboring carbon nanotube bundle. The plurality of substantially parallel carbon nanotube bundles may be arranged in a quasi-periodic pattern. The quasi-periodic pattern may have an average pitch of at least 50 nm. Although a carbon nanotube-based structure of the pellicle membrane 232 may be advantageous, it is contemplated that the EUVL device 20 may be used with any type of EUV transmissive membrane providing scattering of transmitted light along a preferential scattering axis.
  • The EUV illumination system 210 is configured to illuminate the reticle 220 through the pellicle membrane 232. To enable high-fidelity pattern transfer from the reticle 220 to the target wafer 250, the EUV illumination system 210 is configured to emit light in an illumination distribution 212 which is asymmetric as seen in a source-pupil plane of the EUV illumination system 210. The source-pupil plane may coincide with a plane of an exit pupil 211 of the EUV illumination system 210. The source-pupil plane may be a plane between the EUV illumination system 210 and the pellicle membrane 232. The source-pupil plane may be a plane between a last beamforming optic of the EUV illumination system 210 and the pellicle membrane 232. The source-pupil plane may be orthogonal to the optical axis 200 of the EUVL device 20. The light emitted by the EUV illumination system 210 may be generated by an EUV light source of the illumination system 210. The EUV light source may be of a conventional type, such as a laser induced plasma light source. The EUV light source may emit light of a broad range of wavelengths. The EUV illumination system 210 may comprise optics configured to filter light emitted by the EUV light source, such that light of a narrower wavelength range reaches the pellicle membrane 232. For instance, light that reaches the pellicle membrane 232 may have wavelengths shorter than 15 nm, preferably within a range from 13.3 to 13.7 nm. The EUV illumination system 210 may comprise optics configured to shape light generated by the EUV light source. More specifically, the optics may be configured to shape the illumination distribution 212 of the illumination system 210 and direct the light to illuminate the reticle 220. The optics may be reflective optics, such as EUV reflective mirrors. The optics may comprise collimating optics and/or optics arranged for illuminating the reticle 220.
  • As may be understood from the above discussion, light from the EUV illumination system 210 which is reflected by the reticle 220 and then transmitted through the pellicle membrane 232 will comprise a non-scattered fraction and a scattered fraction formed by light scattered by the pellicle membrane 232. It is to be understood that non-scattered fraction of light represents the fraction which is useful for the pattern transfer. The non-scattered fraction may accordingly comprise light reflected by the reticle 220, at least portions of which being diffracted by the reticle 220. It is to be understood that the non-scattered fraction of light is formed by light which first has been transmitted through the pellicle membrane 232 (without being scattered), then reflected by the reticle 220, and then again transmitted through the pellicle membrane 232 (without being scattered). The scattered fraction of light meanwhile represents a fraction of light which is not useful, or even detrimental, for the pattern transfer. When reference in the following is made to the scattered fraction, reference is made to light which first has been transmitted through the pellicle membrane 232 (first passage), then reflected by the reticle 220, and then again transmitted through the pellicle membrane 232 (second passage), the light undergoing scattering during at least one of the first and the second passage.
  • The imaging system 240 has an acceptance cone 260 configured to capture a portion of said light reflected by the reticle 220 and then transmitted through the pellicle membrane 232. The imaging system 240 is configured to project the captured portion onto the target wafer 250. The imaging system 240 may comprise optics. The optics may be reflective optics.
  • A cross section 262 of the acceptance cone 260 of the imaging system 240 may be circular. The acceptance cone 260 of the imaging system 240 may for instance correspond to a (reticle side) numerical aperture in a range from 0.05 to 0.125.
  • According to the invention, the preferential scattering axis 214 is oriented with respect to the illumination distribution 212 such that a scattered fraction of the captured portion is minimized. In other words, a ratio of the scattered fraction captured by the acceptance cone 260 to the non-scattered fraction captured by the acceptance cone 260 is minimized.
  • As is known in the art, the illumination distribution 212 may be characterized as comprising a distribution of source pixels 213. Accordingly, light associated with each source pixel may be transmitted through the pellicle membrane 232, then reflected by the reticle 220, and then transmitted through the pellicle membrane 232.
  • The asymmetric illumination distribution 212 provided by the EUV illumination system 210 may be optimized with respect to the transfer of the lithographic pattern of the reticle 220 to the target wafer 250. The illumination distribution 212 may be optimized with respect to the lithographic pattern of the reticle 220 such that the source pixels 213 predominantly fall within two mutually opposite quadrants 2622, 2624 in the source-pupil plane. A geometrical source-pupil axis 263 may extend to divide each of said two opposite quadrants 2622, 2624 into two equally sized octants, and the preferential scattering axis 214 may be oriented at an angle of 45° or less relative to the source-pupil axis 263.
  • The asymmetric illumination distribution 212 provided by the EUV illumination system 210 may be a predominantly dipole-shaped or quadrupole-shaped illumination distribution. Light associated with the predominantly dipole-shaped or quadrupole-shaped illumination distribution may to a greater extent be separated along a main direction compared to a different direction perpendicular to the main direction. The main direction may be parallel to the geometrical source-pupil axis 263, and light associated with the dipole-shaped or quadrupole-shaped illumination distribution may predominantly fall within the two mutually opposite quadrants 2622, 2624. The predominantly dipole-shaped illumination distribution may be specifically optimized to transfer, from the reticle 220 to the target wafer 250, lithographic patterns comprising lines and spaces oriented along a direction perpendicular to the main direction. In case the lines and/or spaces are occasionally broken, a quadrupole-shaped illumination distribution may be optimal for pattern transfer from the reticle 220 to the target wafer 250. A standard approach within the art to determine the optimal illumination distribution for pattern transfer is numerical methods, typically called source and mask optimization (SMO). Typically, the source (i.e. illumination distribution 212) and the mask (i.e. lithographic pattern on the reticle 220) are co-designed to improve the projection of the pattern on the target wafer 250.
  • Figure 1B illustrates, in the source-pupil plane of the EUVL device 20, an asymmetric illumination distribution 212 with the cross section 262 of the acceptance cone 260 superimposed. The asymmetric illumination distribution 212 may be seen as a distribution of different angles/directions with which light illuminates the reticle 220. In the example shown in Fig. 1B, light scattering introduced by the pellicle membrane 232 is not shown. The asymmetric illumination distribution 212 is depicted as a distribution of source pixels 213. In the example shown in Fig. 1B, the source pixels 213 predominantly fall within a first quadrant 2622 and a second quadrant 2624 in the source-pupil plane. In other words, the source pixels 213 predominantly fall within two opposite quadrants 2622, 2624 in the source-pupil plane. A geometrical source-pupil axis 263 extends to divide the first quadrant 2622 and the second quadrant 2624 in equally sized octants, as shown in Fig. 1B.
  • As light associated with each source pixel is transmitted through the pellicle membrane 232, a part of that light is preferentially scattered in a direction parallel to the preferential scattering axis 214. Thus, at least a part of light associated with each source pixel in Fig. 1B is scattered (not shown in Fig. 1B) along the preferential scattering axis 214. Therefore, by orienting the preferential scattering axis 214 of the pellicle membrane 232 such that it is parallel to the geometrical source-pupil axis 263, the scattered fraction of light within the cross section 262 of the acceptance cone 260 of the imaging system 240 may be minimized. This may be understood by considering a single source pixel 213A close to a boundary of the cross section 262, as is shown in Fig. 1C. In Fig. 1C, light associated with the single source pixel 213A is shown with an example scattering pattern 215a resulting from the scattering along a preferential scattering axis 214 by the pellicle membrane 232. It is to be understood that the scattering pattern 215a is an example only, and that it may have other shapes, e.g. be more/less elongated than as depicted in Fig. 1C. In the example shown in Fig. 1C, the preferential scattering axis 214 is oriented along the geometrical source-pupil axis 263. Since the direction of the scattering pattern 215a of light associated with the single source pixel 213A is oriented in the same direction as the preferential scattering axis 214, it is also oriented along the geometrical source-pupil axis 263. As is seen in Fig. 1C, a part of the scattering pattern 215a of light associated with the single source pixel 213A falls outside the cross section 262 of the acceptance cone 260 and is therefore not captured by the imaging system 240. Since light associated with each source pixel (e.g., the source pixels 213 shown in Fig. 1B) is scattered in a similar manner as light associated with the single source pixel 213A in Fig. 1C, the fraction of light scattered in by the pellicle membrane 232 inside the cross section 262 (and therefore captured by the imaging system 240) may be reduced by orienting the preferential scattering axis 214 parallel to the geometrical source-pupil axis 263. From the above description, it is understood that the scattered fraction of light may be reduced by orienting preferential scattering axis 214 at an angle smaller than 45° relative to the geometrical source-pupil axis 263, compared to an orientation greater than 45°.
  • Now, an example algorithm to find the orientation of the preferential scattering axis 214 with respect to the illumination distribution 212 such that the scattered fraction of the captured portion is minimized will be described with reference to Fig. 2. The orientation of the preferential scattering axis 214 with respect to the illumination distribution 212 such that the scattered fraction of the captured portion is minimized may be determined by finding an orientation of the preferential scattering axis 214, with respect to the illumination distribution 212, such that a weighted sum of distances from each source pixel to a boundary of the cross section 262 of the acceptance cone 260 along a direction of the preferential scattering axis 214 is minimized. Each weight in the weighted sum may be based on a position of each source pixel in the weighted average within the cross section 262 of the acceptance cone 260. Each weight in the weighted sum may account for the exponential decay of scattering intensity. Thus, the orientation of the preferential scattering axis 214 may be found by the following optimization problem for N source pixels 213: min α i = 1 N w i r i α ,
    Figure imgb0001
    where α is the orientation of the preferential scattering axis 214, wi is the weight for the i:th source pixel, and ri (α) is the distance from the i:th source pixel to the boundary of the cross section 262 along the orientation α of the preferential scattering axis 214. By solving the above optimization problem, an orientation α min of the preferential scattering axis 214 that minimizes the averaged distance along the preferential scattering axis 214 from the source pixels 213 to the boundary of the cross section 262 of the acceptance cone 260 may be found.
  • For the simplified example shown in Fig. 2A, the illumination distribution 212 comprises a first source pixel 213-1, a second source pixel 213-2, and a third source pixel 213-3. It is to be understood that illumination distributions typically comprise a large number of source pixels 213, e.g. as illustrated in Fig. 1B. The preferential scattering axis 214 in Fig. 2A is oriented in an orientation α relative to the illumination distribution 212. Each source pixel 213-1, 213-2, 213-3 is at a distance r 1, r 2, r 3 (labelled R1, R2, R3 in Fig. 1D and Fig. 1E) from the boundary of the cross section 262 of the acceptance cone 260 in a direction parallel to the preferential scattering axis 214. Thus, by varying the orientation of the preferential scattering axis 214, the distances ri from each source pixel to the boundary of the cross section 262 is varied correspondingly. By solving the above-mentioned optimization problem, the orientation α min of the preferential scattering axis 214 that minimizes the averaged distance from the source pixels 213 to the boundary of the cross section 262 may be found. Then, since light associated with each source pixel 213-1, 213-2, 213-3 is preferentially scattered along the preferential scattering axis 214, orienting the preferential scattering axis 214 according to the orientation α min (i.e. minimizing the averaged distance along the preferential scattering axis 214 from each source pixel 213-1, 213-2, 213-3 to the boundary of the cross section 262), the scattered fraction of the captured portion (i.e. light within the cross section 262 of the acceptance cone 260) of light may be minimized.
  • The orientation of the preferential scattering axis 214 in the example shown in Fig. 2A that is determined by solving the above-mentioned optimization is shown in Fig. 2B. Also, as is seen in Fig. 2B, orienting the preferential scattering axis 214 in the direction found by solving the optimization problem may result in that the source pixels 213 fall predominantly within two opposite quadrants, where the quadrants are defined such that the preferential scattering axis 214 divides the opposite quadrants into equally sized octants. In other words, the orientation of the preferential scattering axis 214 found by solving the above-mentioned optimization problem may be parallel to the geometrical source-pupil axis 263.
  • It is to be understood that the orientation of the preferential scattering axis 214 may be determined in other manners as described above. For example, other numerical methods may be used to determine the orientation of the preferential scattering axis relative to the illumination distribution such that the scattered fraction of the captured portion is reduced. As another example, the orientation of the preferential scattering axis may be determined through a trial and error approach, where different orientations of the preferential axis are tested in order to determine which orientation minimizes the scattered fraction of the captured portion.
  • The person skilled in the art realizes that the present inventive concept by no means is limited to the preferred variants described above. On the contrary, many modifications and variations are possible within the scope of the appended claims.
  • Additionally, variations to the disclosed variants can be understood and effected by the skilled person in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.

Claims (12)

  1. An extreme ultraviolet lithography, EUVL, device (20) comprising:
    a reticle (220) comprising a lithographic pattern to be imaged on a target wafer (250);
    a light-transmissive pellicle membrane (232) mounted in front of, and parallel to, the reticle (220), wherein the pellicle membrane (232) scatters transmitted light along a preferential scattering axis (214); and
    an extreme ultraviolet, EUV, illumination system (210) configured to illuminate the reticle (220) through the pellicle membrane (232), wherein an illumination distribution (212) provided by the EUV illumination system (210) is asymmetric as seen in a source-pupil plane of the EUV illumination system (210);
    wherein light reflected by the reticle (220) and then transmitted through the pellicle membrane (232) comprises a non-scattered fraction and a scattered fraction formed by light scattered by the pellicle membrane (232);
    the EUVL device (20) further comprising:
    an imaging system (240) having an acceptance cone (260) configured to capture a portion of said light reflected by the reticle (220) and then transmitted through the pellicle membrane (232), wherein the imaging system (240) is configured to project the captured portion onto the target wafer (250);
    characterized in that the preferential scattering axis (214) is oriented with respect to the illumination distribution (212) such that a ratio of captured scattered light to captured non-scattered light is minimized.
  2. The EUVL device (20) according to claim 1, wherein a cross section (262) of the acceptance cone (260) of the imaging system (240) is circular.
  3. The EUVL device (20) according to claim 1 or 2, wherein the pellicle membrane (232) comprises at least one sheet of carbon nanotube bundles.
  4. The EUVL device (20) according to claim 3, wherein at least one sheet of carbon nanotube bundles comprises a plurality of substantially parallel carbon nanotube bundles.
  5. The EUVL device (20) according to any preceding claim, wherein the illumination distribution (212) comprises a distribution of source pixels (213).
  6. The EUVL device (20) according to claim 5, wherein the illumination distribution (212) is optimized with respect to the lithographic pattern of the reticle (220) such that the source pixels (213) predominantly fall within two opposite quadrants in the source-pupil plane, wherein the preferential scattering axis (214) is oriented at an angle of 45° or less relative to a geometrical source-pupil axis (263), the geometrical source-pupil axis (263) extending to divide each of said two opposite quadrants into two equally sized octants.
  7. The EUVL device (20) according to any preceding claim, wherein the asymmetric illumination distribution (212) provided by the EUV illumination system (210) is a predominantly dipole-shaped or quadrupole-shaped illumination distribution.
  8. A method for determining an orientation of a preferential scattering axis (214) of a light-transmissive pellicle membrane (232) relative to an illumination distribution (212) to be provided by an EUV illumination system (210) of an EUVL device (20);
    the light-transmissive pellicle membrane (232) to be mounted in front of, and parallel to, a reticle (220) of the EUVL device (20), wherein the pellicle membrane (232) scatters transmitted light along a preferential scattering axis (214);
    the reticle (220) comprising a lithographic pattern to be imaged on a target wafer (250);
    the EUV illumination system (210) configured to illuminate the reticle (220) through the light-transmissive pellicle membrane (232), the illumination distribution (212) to be provided by the EUV illumination system (210) being asymmetric as seen in a source-pupil plane of the EUV illumination system (210);
    and the EUVL device (20) further comprising an imaging system (240) having an acceptance cone (260) configured to capture a portion of light reflected by the reticle (220) and then transmitted through the pellicle membrane (232), said light reflected by the reticle (220) and then transmitted through the pellicle membrane (232) comprising a non-scattered fraction and a scattered fraction formed by light scattered by the pellicle membrane (232), and wherein the imaging system (240) is configured to project the captured portion onto the target wafer (250);
    the method comprising:
    determining the orientation of the preferential scattering axis (214) with respect to the illumination distribution (212) such that a ratio of captured scattered light to captured non-scattered light is minimized.
  9. The method according to claim 8, wherein the illumination distribution (212) comprises a distribution of source pixels (213).
  10. The method according to claim 9, wherein the orientation of the preferential scattering axis (214) with respect to the illumination distribution (212) is determined by finding an orientation of the preferential scattering axis (214) such that a weighted sum of distances (R1, R2, R3) from each source pixel (213-1, 213-2, 213-3) to a boundary of a cross section (262) of the acceptance cone (260) of the imaging system (240) along a direction of the preferential scattering axis (214) is minimized.
  11. The method according to claim 9 or 10 further comprising:
    wherein the illumination distribution (212) is optimized with respect to the lithographic pattern of the reticle (220) such that the source pixels (213) predominantly fall within two mutually opposite quadrants (2622, 2624) in the source-pupil plane of the EUV illumination system (210).
  12. The method according to claim 11, wherein the orientation of the preferential scattering axis (214) with respect to the illumination distribution (212) is determined such that the preferential scattering axis (214) of the pellicle membrane (232) is parallel to a geometrical source-pupil axis (263) extending to divide each of said two opposite quadrants (2622, 2624) in two equally sized octants.
EP19185767.1A 2019-07-11 2019-07-11 An extreme ultraviolet lithography device Active EP3764163B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19185767.1A EP3764163B1 (en) 2019-07-11 2019-07-11 An extreme ultraviolet lithography device
JP2020105426A JP2021036311A (en) 2019-07-11 2020-06-18 Extreme ultraviolet lithography device
TW109121395A TWI787624B (en) 2019-07-11 2020-06-23 An extreme ultraviolet lithography device and a determining method thereof
CN202010655788.5A CN112213924B (en) 2019-07-11 2020-07-09 Extreme ultraviolet lithography apparatus
US16/926,460 US11360380B2 (en) 2019-07-11 2020-07-10 Extreme ultraviolet lithography device
KR1020200085935A KR102464600B1 (en) 2019-07-11 2020-07-13 An extreme ultraviolet lithography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19185767.1A EP3764163B1 (en) 2019-07-11 2019-07-11 An extreme ultraviolet lithography device

Publications (2)

Publication Number Publication Date
EP3764163A1 EP3764163A1 (en) 2021-01-13
EP3764163B1 true EP3764163B1 (en) 2023-04-12

Family

ID=67253768

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19185767.1A Active EP3764163B1 (en) 2019-07-11 2019-07-11 An extreme ultraviolet lithography device

Country Status (6)

Country Link
US (1) US11360380B2 (en)
EP (1) EP3764163B1 (en)
JP (1) JP2021036311A (en)
KR (1) KR102464600B1 (en)
CN (1) CN112213924B (en)
TW (1) TWI787624B (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE41667E1 (en) * 1998-05-05 2010-09-14 Carl Zeiss Smt Ag Illumination system particularly for microlithography
JP2004510344A (en) * 2000-09-29 2004-04-02 カール ツァイス シュティフトゥング トレイディング アズ カール ツァイス Illumination optics especially for microlithography
US7198872B2 (en) * 2004-05-25 2007-04-03 International Business Machines Corporation Light scattering EUVL mask
KR101753212B1 (en) * 2008-08-06 2017-07-04 에이에스엠엘 네델란즈 비.브이. Optical element for a lithographic apparatus, lithographic apparatus comprising such optical element and method for making the optical element
CN102460302B (en) * 2009-06-09 2015-06-17 Asml荷兰有限公司 Lithographic apparatus and method for reducing stray radiation
US8871409B2 (en) * 2010-07-26 2014-10-28 Carl Zeiss Sms Ltd. Lithographic targets for uniformity control
KR101699655B1 (en) * 2013-03-15 2017-01-24 아사히 가세이 이-매터리얼즈 가부시키가이샤 Pellicle film, and pellicle
CN105574293B (en) * 2016-02-01 2019-12-03 中国科学院微电子研究所 EUV design rule, the combined optimization of light source and mask and imaging modeling method
NL2018691B1 (en) * 2016-04-25 2018-03-13 Asml Netherlands Bv A membrane for euv lithography
CN116594257A (en) * 2016-07-05 2023-08-15 三井化学株式会社 Protective film, and module, module frame, module manufacturing method, exposure master, exposure apparatus, and semiconductor device manufacturing method
KR101900720B1 (en) * 2017-11-10 2018-09-20 주식회사 에스앤에스텍 Pellicle for Extreme Ultraviolet(EUV) Lithography and Method for fabricating the same

Also Published As

Publication number Publication date
TW202105041A (en) 2021-02-01
KR102464600B1 (en) 2022-11-09
US11360380B2 (en) 2022-06-14
TWI787624B (en) 2022-12-21
KR20210008320A (en) 2021-01-21
US20210011370A1 (en) 2021-01-14
CN112213924A (en) 2021-01-12
CN112213924B (en) 2023-02-17
EP3764163A1 (en) 2021-01-13
JP2021036311A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6025369B2 (en) Optical apparatus, lithographic apparatus, and method of manufacturing a device for conditioning a radiation beam for use by an object
JP2007158328A (en) Lithographic apparatus and device manufacturing method
TWI802572B (en) Method of correction
JP5686901B2 (en) Projection exposure system and projection exposure method
US8358402B2 (en) Method of structuring a photosensitive material
CN101305319A (en) Photomask and method for forming a non-orthogonal feature on the same
US9870612B2 (en) Method for repairing a mask
US20020001760A1 (en) Low thermal distortion Extreme-UV lithography reticle
JP2019015967A (en) Metrology system having euv optical unit
TW508456B (en) Projection optical system with diffractive optical element
JP4496782B2 (en) Reflective optical system and exposure apparatus
EP3764163B1 (en) An extreme ultraviolet lithography device
JP2006191046A (en) Method and exposure equipment for performing inclined focusing, and device manufactured according to the same
EP3674797B1 (en) An euvl scanner
US7271950B1 (en) Apparatus and method for optimizing a pellicle for off-axis transmission of light
JP2006215400A (en) Pattern forming method, method for manufacturing optical element, method for manufacturing microlens array, illuminator for projection aligner, projection aligner and aberration measuring instrument
KR20000062836A (en) Extrusion enhanced mask for improving process window
JPH11184070A (en) Aberration measurement method and photomask for aberration measurement
JP6053737B2 (en) Illumination optical apparatus, exposure apparatus, and article manufacturing method
US7189481B2 (en) Characterizing flare of a projection lens
JP2005079470A (en) Adjustment method of illumination optical system, method and device for exposure, device manufacturing method
TWI825014B (en) Optical objective for operation in euv spectral region
Michaloski Requirements and designs of illuminators for microlithography
JP2001085326A (en) Semiconductor device and its manufacture
JP2001093832A (en) Semiconductor device and manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210623

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220617

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019027395

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1560125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1560125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230812

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230713

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019027395

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20240115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230711

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230711