US20020001760A1 - Low thermal distortion Extreme-UV lithography reticle - Google Patents

Low thermal distortion Extreme-UV lithography reticle Download PDF

Info

Publication number
US20020001760A1
US20020001760A1 US09/903,195 US90319501A US2002001760A1 US 20020001760 A1 US20020001760 A1 US 20020001760A1 US 90319501 A US90319501 A US 90319501A US 2002001760 A1 US2002001760 A1 US 2002001760A1
Authority
US
United States
Prior art keywords
active region
radiation
reflective
reticle
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/903,195
Other versions
US6395455B2 (en
Inventor
Steven Gianoulakis
Avijit Ray-Chaudhuri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Technology and Engineering Solutions of Sandia LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/903,195 priority Critical patent/US6395455B2/en
Publication of US20020001760A1 publication Critical patent/US20020001760A1/en
Application granted granted Critical
Publication of US6395455B2 publication Critical patent/US6395455B2/en
Assigned to NATIONAL TECHNOLOGY & ENGINEERING SOLUTIONS OF SANDIA, LLC reassignment NATIONAL TECHNOLOGY & ENGINEERING SOLUTIONS OF SANDIA, LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SANDIA CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light

Definitions

  • the invention relates to projection lithography employing soft x-rays and in particularly to reticles that exhibit minimum thermal distortion during scanning.
  • the invention is particularly suited for systems that use a camera that images with acuity along a narrow arc or ringfield.
  • the camera employs the ringfield to scan the reflective reticle and translate a pattern onto the surface of a wafer.
  • lithography refers to processes for pattern transfer between various media.
  • a lithographic coating is generally a radiation-sensitized coating suitable for receiving a projected image of the subject pattern. Once the image is projected, it is indelibly formed in the coating.
  • the projected image may be either a negative or a positive of the subject pattern.
  • a “tRansparency” of the subject pattern is made having areas which are selectively transparent, opaque, reflective, or non-reflective to the “projecting” radiation. Exposure of the coating through the transparency causes the image area to become selectively crosslinked and consequently either more or less soluble (depending on the coating) in a particular solvent developer. The more soluble (i.e., uncrosslinked) areas are removed in the developing process to leave the pattern image in the coating as less soluble crosslinked polymer.
  • VLSI Very Large Scale Integration
  • Effort directed to further miniaturization takes the initial form of more fully utilizing the resolution capability of presently-used ultraviolet (“UV”) delineating radiation.
  • UV ultraviolet
  • phase masking, off-axis illumination, and step-and-repeat may permit design rules (minimum feature or space dimension) of 0.18 ⁇ m or slightly smaller.
  • proximity printing object:image size ratio is necessarily limited to a 1:1 ratio and is produced much in the manner of photographic contact printing.
  • a fine-membrane mask is maintained at one or a few microns spacing from the wafer (i.e., out of contact with the wafer, thus, the term “proximity”), which lessens the likelihood of mask damage but does not eliminate it.
  • Making perfect masks on a fragile membrane continues to be a major problem. Necessary absence of optics in-between the mask and the wafer necessitates a high level of parallelism (or collimation) in the incident radiation.
  • X-ray radiation of wavelength ⁇ 16 A is required for 0.25 ⁇ m or smaller patterning to limit diffraction at feature edges on the mask.
  • Projection lithography has natural advantages over proximity printing.
  • One advantage is that the likelihood of mask damage is reduced, which reduces the cost of the now larger-feature mask.
  • Imaging or camera optics in-between the mask and the wafer compensate for edge scattering and, so, permit use of longer wavelength radiation.
  • Use of extreme ultra-violet radiation a.k.a., soft x-rays
  • the resulting system is known as extreme UV (“EUVL”) lithography (a.k.a., soft x-ray projection lithography (“SXPL”)).
  • EUVL extreme UV
  • SXPL soft x-ray projection lithography
  • a favored form of EUVL is ringfield scanning. All ringfield optical forms are based on radial dependence of aberration and use the technique of balancing low order aberrations, i.e., third order aberrations, with higher order aberrations to create long, narrow illumination fields or annular regions of correction away from the optical axis of the system (regions of constant radius, rotationally symmetric with respect to the axis). Consequently, the shape of the corrected region is an arcuate or curved strip rather than a straight strip. The arcuate strip is a segment of the circular ring with its center of revolution at the optic axis of the camera. See FIG. 4 of U.S. Pat. No.
  • 5,315,629 for an exemplary schematic representation of an arcuate slit defined by width, W, and length, L, and depicted as a portion of a ringfield defined by radial dimension, R, spanning the distance from an optic axis and the center of the arcuate slit.
  • the strip width is a function of the smallest feature to be printed with increasing residual astigmatism, distortion, and Petzval curvature at distances greater or smaller than the design radius being of greater consequence for greater resolution.
  • Use of such an arcuate field allows minimization of radially-dependent image aberrations in the image.
  • Use of object:image size reduction of, for example, 5:1 reduction results in significant cost reduction of the, now, enlarged-feature mask.
  • Masks or reticles for EUV projection lithography typically comprise a silicon substrate coated with an x-ray reflective material and an optical pattern fabricated from an x-ray absorbing material that is formed on the reflective material.
  • EUV radiation from the condenser is projected toward the surface of the reticle and radiation is reflected from those areas of the reticle reflective surface which are exposed, i.e., not covered by the x-ray absorbing material.
  • the reflected radiation effectively transcribes the pattern from the reticle to the wafer positioned downstream from the reticle.
  • problems encountered in EUV projection lithography are point-to-point reflectivity variations. The art is in search of techniques to reduce reticle distortions.
  • the present invention is based in part on the recognition that thermal distortion in reticles can be significantly reduced by fabricating reticles exhibiting improved radiative cooling in vacuum systems. For example, this can be achieved by designing the nonactive regions of reflective reticles not to be coated with the high reflective material that is found on the surface of the active region where the pattern is formed. Alternatively, the nonactive regions can be coated with a high emissivity material. By employing emissivity engineering which involves the selective placement or omission of coatings on the reticle, the inventive reflective reticle fabricated will exhibit enhanced heat transfer thereby reducing the level of thermal distortion. Ultimately, the quality of the transcription of the reticle pattern onto the wafer is improved.
  • the invention is directed to a reflective reticle that includes:
  • substrate having an active region on a first surface of the substrate
  • each non-active region is characterized by having a surface that is formed of material that has an emissivity that is higher than that of the materials forming the active region surface.
  • the invention is directed to photolithography system that includes:
  • [0019] means for collecting the radiation emitted from the source of extreme ultraviolet radiation and forming a light beam therefrom that is directed to an active region of a reflective reticle, wherein the reflective reticle includes:
  • each non-active region is characterized by having a surface that is formed of material that has an emissivity that is higher than that of the materials forming the active region surface;
  • the invention is directed to a process for fabrication of a device comprising at least one element having a dimension ⁇ 0.25 ⁇ m, such process comprising construction of a plurality of successive levels, construction of each level comprising lithographic delineation, in accordance with which a subject active region of a reflective reticle is illuminated to produce a corresponding pattern image on the device being fabricated, ultimately to result in removal of or addition of material in the pattern image regions, in which illumination used in fabrication of at least one level is extreme ultra-violet radiation, characterized in that the process employs the inventive reflective reticle.
  • FIG. 1 is a schematic of an EUV lithography device
  • FIGS. 2A and 2B are plan and cross-sectional views, respectively, of a reflective reticle
  • FIG. 3 is a schematic of a dark field reticle
  • FIG. 4 is a schematic of a half dark/half bright field reticle.
  • FIG. 1 schematically depicts an apparatus for EUV lithography that comprises a radiation source 11 , such as a synchrontron or a laser plasma source, that emits x-rays 12 into condenser 13 which in turn emits beam 14 that illuminates a portion of reticle or mask 15 .
  • the emerging patterned beam is introduced into the imaging optics 16 which projects an image of reticle or mask 15 , shown mounted on mask stage 17 , onto wafer 18 which is mounted on stage 19 .
  • Element 20 an x-y scanner, scans reticle 15 and wafer 18 in such direction and at such relative speed as to accommodate the desired mask-to-image reduction.
  • the wafer is preferably housed in a wafer chamber that is separated from the other elements of the photolithography system located upstream as illustrated in FIG. 1. These other elements can be housed in one or more chambers which are preferably maintained in vacuum to minimize attenuation of the x-rays. EUV radiation projected from the reticle and translated by the camera travels through an aperture in the wafer chamber.
  • the EUV lithography device of the present invention is particularly suited for fabricating integrated devices that comprise at least one element having a dimension of ⁇ 0.25 ⁇ m.
  • the process comprises construction of a plurality of successive levels by lithographic delineation using a mask pattern that is illuminated to produce a corresponding pattern image on the device being fabricated, ultimately to result in removal of or addition of material in the pattern image regions.
  • the collected radiation is processed to accommodate imaging optics of a projection camera and image quality that is substantially equal in the scan and cross-scan directions, and smoothly varying as the space between adjacent lines varies.
  • projection comprises ringfield scanning comprising illumination of a straight or arcuate region of a projection reticle.
  • projection comprises reduction ringfield scanning in which an imaged arcuate region on the image plane is of reduced size relative to that of the subject arcuate region so that the imaged pattern is reduced in size relative to the reticle region.
  • the individual elements that form the EUV lithography device as shown in FIG. 1 can comprise conventional optical devices, e.g., condensers, cameras, and lens, for projection EUV lithography.
  • the EUVL device employs a condenser that collects soft x-rays for illuminating a ringfield camera.
  • a particularly preferred EUVL device that employs a condenser having a diffraction grating on the surface of a mirror upstream from the reflective mask that enhances critical dimension control is described in Sweatt et al., U.S. patent application Ser. No. ______ entitled “Diffractive Element in Extreme-UV Lithography Condenser” filed on Aug. 6, 1998 (Docket No.
  • the condenser illustrated therein has the ability to separate the light from a line or quasi point source at the entrance pupil into several separated lines or transform point foci that are still superimposed on each other at the ringfield radius, thus maximizing the collection efficiency of the condenser and smoothing out any inhomogeneties in the source optics.
  • FIG. 2A shows a reflective reticle 30 having a generally circular perimeter; it is understood that the perimeter of reflective reticle for the present invention can have any figure including, for example, polygons.
  • the surface of the reflective reticle includes an active region 39 where the mask pattern is formed. During projection printing, EUV radiation is reflected from the active region and onto the wafer.
  • the surface of the reflective reticle also includes non-active regions 32 , 34 , 36 , and 38 .
  • EUVL preferably employs an x-ray radiation source at about 13 nm, but the absorption at this wavelength is very strong in essentially all materials; therefore, EUVL employs reflective optics such as Mo/Si multilayer mirrors.
  • the multilayer mirror which typically ranges from about 280 nm to 320 nm in thickness, can also be made from, for example, Mo/Be.
  • the strong x-ray absorption also necessitates the use of reflective mask or reticle patterns which are typically made by depositing absorber patterns on top of the Mo/Si multilayer mirror as described, for instance, in U.S. Pat. No. 5,052,033, and D. M. Tennant et. al., Appl. Opt. 32, 7007 (1993), which are incorporated herein by reference.
  • FIG. 2B shows the cross-section of inventive reflective reticle that comprises a silicon substrate 40 having a mask pattern that comprises a multilayer mirror structure 42 onto which absorber patterns 48 and 50 are deposited.
  • Absorber materials typically comprises tungsten, titanium, titanium nitride, or aluminum.
  • non-active regions 44 and 46 do not include the multilayer reflective structure, rather, in this embodiment, the surface of the non-active regions is bare or exposed silicon.
  • the reflective reticle as illustrated in FIG. 2B can be made by conventional methods. During the fabrication process, the surface of the silicon substrate corresponding to non-active regions 44 and 46 is covered with photoresist so that subsequent sputtering of the Mo/Si multilayer coating will not deposit any of the reflective substances onto these regions.
  • the non-active regions can comprise regions of the substrate that are covered with a suitable high emissivity material.
  • a suitable high emissivity material which has an emissitivity that is higher than that of the materials forming the active region should enhance heat dissipation.
  • the substrate covering material must have an emissivity of greater than 0.12.
  • this substrate covering material has an emissivity of greater than 0.25, and more preferably greater than 0.40.
  • Suitable high emissivity materials include, for example, metal oxides, e.g., aluminum oxide, copper oxide and molybdenum oxide. From a practical standpoint, given that silicon has an emissivity of 0.72, thermal dissipation will not be significantly enhanced unless the substrate covering material has a very high emissivity value.
  • Placement error is defined as the error in position of a point on the reticle just prior to the arrival of the illumination.
  • Blur is defined as the motion of a point during the time that it is illuminated.
  • FIGS. 3 and 4 show schematics of a 200 mm diameter by 0.75 mm thick silicon wafer and the active reticle region used for the simulation.
  • the dimensions of the reticle were 130 mm in the direction of the scan and 104 mm normal to the scan.
  • the width of the illumination field was 6 mm and the height was 104 mm.
  • the scan velocity was 38.7 mm/sec.
  • the heat flux in the illumination field was 0.76 mW/mm. This flux corresponds to the power required to expose 10 wafers/hour with a resist sensitivity of 10 mJ/cm 2 .
  • the simulation was started with the leading edge of the illumination field aligned with the edge of the reticle.
  • the effect of framing blades was taken into account in this analysis so that the simulated illumination exposed only the active reticle region of the wafer and not the surrounding areas.
  • Dark field and half dark/half bright field reticles were simulated.
  • a schematic of the half dark/half bright reticle configuration is shown in FIG. 4.
  • the dark field reticle conservatively assumes that all incident energy was absorbed.
  • the half dark/half bright field mask assumes all incident energy is absorbed on the dark region and approximately 42 percent is absorbed in the bright region.
  • the integrated average reflectivity for Mo/Si is approximately 58%.
  • the emissivities of the bright and dark fields were based on actual measurements.
  • the emissivity of the Mo/Si coating was 0.122, and that of a tungsten absorber material was 0.037. Outside the active region of the reticle, the Mo/Si coating was not deposited. This region was assumed to be bare silicon with an emissivity of 0.72. The reticle was also allowed to expand freely. This assumption in effect neglected the frictional and electrostatic forces on the reticle from the chuck.
  • the technique used in the finite element analysis to simulate the moving illumination source included the step of tagging all element faces in the active reticle region, and at each time step determining which of the faces were within the bounding area of the moving source.
  • Simple linear equations of motion with constant velocity were used to describe the location of the leading and trailing edges of the source.
  • Finite element faces which lied fully or partially within the boundary of the moving source had an appropriate heat flux boundary condition applied corresponding to the flux within the source and the fraction of the face that lied within the location the source.
  • the silicon material properties used for the simulations are given as follows: Density (Kg/m 3 ) 2330.0 Thermal Conductivity (W/m K) 148.0 Specific Heat (J/kg K) 712.0 Young's Modulus (GPa) 107.0 Poissons Ratio 0.25 Coefficient of Thermal Expansion 2.5E-06

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

Description

  • [0001] The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to licence others on reasonable terms as provided for by the terms of Contract No. DE-AC04-94AL85000 awarded by the Department of Energy.
  • FIELD OF THE INVENTION
  • The invention relates to projection lithography employing soft x-rays and in particularly to reticles that exhibit minimum thermal distortion during scanning. The invention is particularly suited for systems that use a camera that images with acuity along a narrow arc or ringfield. The camera employs the ringfield to scan the reflective reticle and translate a pattern onto the surface of a wafer. [0002]
  • BACKGROUND OF THE INVENTION
  • In general, lithography refers to processes for pattern transfer between various media. A lithographic coating is generally a radiation-sensitized coating suitable for receiving a projected image of the subject pattern. Once the image is projected, it is indelibly formed in the coating. The projected image may be either a negative or a positive of the subject pattern. Typically, a “tRansparency” of the subject pattern is made having areas which are selectively transparent, opaque, reflective, or non-reflective to the “projecting” radiation. Exposure of the coating through the transparency causes the image area to become selectively crosslinked and consequently either more or less soluble (depending on the coating) in a particular solvent developer. The more soluble (i.e., uncrosslinked) areas are removed in the developing process to leave the pattern image in the coating as less soluble crosslinked polymer. [0003]
  • Projection lithography is a powerful and essential tool for microelectronics processing. As feature sizes are driven smaller and smaller, optical systems are approaching their limits caused by the wavelengths of the optical radiation. “Long” or “soft” x-rays (a.k.a. Extreme UV) (wavelength range of λ=100 to 200 Å (“Angstrom”) are now at the forefront of research in efforts to achieve the smaller desired feature sizes. Soft x-ray radiation, however, has its own problems. The complicated and precise optical lens systems used in conventional projection lithography do not work well for a variety of reasons. Chief among them is the fact that there are no transparent, non-absorbing lens materials for soft x-rays and most x-ray reflectors have efficiencies of only about 70%, which in itself dictates very simple beam guiding optics with very few surfaces. [0004]
  • One approach has been to develop cameras that use only a few surfaces and can image with acuity (i.e., sharpness of sense perception) only along a narrow arc or ringfield. Such cameras then scan a reflective mask across the ringfield and translate the image onto a scanned wafer for processing. Although cameras have been designed for ringfield scanning (e.g., Jewell et al., U.S. Pat. No. 5,315,629 and Offner, U.S. Pat. No. 3,748,015), available condensers that can efficiently couple the light from a synchrotron source to the ringfield required by this type of camera have not been fully explored. Furthermore, full field imaging, as opposed to ringfield imaging, requires severely aspheric mirrors in the camera. Such mirrors cannot be manufactured to the necessary tolerances with present technology for use at the required wavelengths. [0005]
  • The present state-of-the-art for Very Large Scale Integration (“VLSI”) involves chips with circuitry built to design rules of 0.25 μm. Effort directed to further miniaturization takes the initial form of more fully utilizing the resolution capability of presently-used ultraviolet (“UV”) delineating radiation. “Deep UV” (wavelength range of λ=0.3 μm to 0.1 μm), with techniques such as phase masking, off-axis illumination, and step-and-repeat may permit design rules (minimum feature or space dimension) of 0.18 μm or slightly smaller. [0006]
  • To achieve still smaller design rules, a different form of delineating radiation is required to avoid wavelength-related resolution limits. One research path is to utilize electron or other charged-particle radiation. Use of electromagnetic radiation for this purpose will require x-ray wavelengths. [0007]
  • A variety of x-ray patterning approaches are under study. Probably the most developed form of x-ray lithography is proximity printing. In proximity printing, object:image size ratio is necessarily limited to a 1:1 ratio and is produced much in the manner of photographic contact printing. A fine-membrane mask is maintained at one or a few microns spacing from the wafer (i.e., out of contact with the wafer, thus, the term “proximity”), which lessens the likelihood of mask damage but does not eliminate it. Making perfect masks on a fragile membrane continues to be a major problem. Necessary absence of optics in-between the mask and the wafer necessitates a high level of parallelism (or collimation) in the incident radiation. X-ray radiation of wavelength λ≦16 A is required for 0.25 μm or smaller patterning to limit diffraction at feature edges on the mask. [0008]
  • Use has been made of the synchrotron source in proximity printing. Consistent with traditional, highly demanding, scientific usage, proximity printing has been based on the usual small collection arc. Relatively small power resulting from the 10 mrad to 20 mrad arc of collection, together with the high-aspect ratio of the synchrotron emission light, has led to use of a scanning high-aspect ratio illumination field (rather than the use of a full-field imaging field). [0009]
  • Projection lithography has natural advantages over proximity printing. One advantage is that the likelihood of mask damage is reduced, which reduces the cost of the now larger-feature mask. Imaging or camera optics in-between the mask and the wafer compensate for edge scattering and, so, permit use of longer wavelength radiation. Use of extreme ultra-violet radiation (a.k.a., soft x-rays) increases the permitted angle of incidence for glancing-angle optics. The resulting system is known as extreme UV (“EUVL”) lithography (a.k.a., soft x-ray projection lithography (“SXPL”)). [0010]
  • A favored form of EUVL is ringfield scanning. All ringfield optical forms are based on radial dependence of aberration and use the technique of balancing low order aberrations, i.e., third order aberrations, with higher order aberrations to create long, narrow illumination fields or annular regions of correction away from the optical axis of the system (regions of constant radius, rotationally symmetric with respect to the axis). Consequently, the shape of the corrected region is an arcuate or curved strip rather than a straight strip. The arcuate strip is a segment of the circular ring with its center of revolution at the optic axis of the camera. See FIG. 4 of U.S. Pat. No. 5,315,629 for an exemplary schematic representation of an arcuate slit defined by width, W, and length, L, and depicted as a portion of a ringfield defined by radial dimension, R, spanning the distance from an optic axis and the center of the arcuate slit. The strip width is a function of the smallest feature to be printed with increasing residual astigmatism, distortion, and Petzval curvature at distances greater or smaller than the design radius being of greater consequence for greater resolution. Use of such an arcuate field allows minimization of radially-dependent image aberrations in the image. Use of object:image size reduction of, for example, 5:1 reduction, results in significant cost reduction of the, now, enlarged-feature mask. [0011]
  • Masks or reticles for EUV projection lithography typically comprise a silicon substrate coated with an x-ray reflective material and an optical pattern fabricated from an x-ray absorbing material that is formed on the reflective material. In operation, EUV radiation from the condenser is projected toward the surface of the reticle and radiation is reflected from those areas of the reticle reflective surface which are exposed, i.e., not covered by the x-ray absorbing material. The reflected radiation effectively transcribes the pattern from the reticle to the wafer positioned downstream from the reticle. Among the problems encountered in EUV projection lithography are point-to-point reflectivity variations. The art is in search of techniques to reduce reticle distortions. [0012]
  • SUMMARY OF THE INVENTION
  • The present invention is based in part on the recognition that thermal distortion in reticles can be significantly reduced by fabricating reticles exhibiting improved radiative cooling in vacuum systems. For example, this can be achieved by designing the nonactive regions of reflective reticles not to be coated with the high reflective material that is found on the surface of the active region where the pattern is formed. Alternatively, the nonactive regions can be coated with a high emissivity material. By employing emissivity engineering which involves the selective placement or omission of coatings on the reticle, the inventive reflective reticle fabricated will exhibit enhanced heat transfer thereby reducing the level of thermal distortion. Ultimately, the quality of the transcription of the reticle pattern onto the wafer is improved. [0013]
  • Accordingly, in one aspect, the invention is directed to a reflective reticle that includes: [0014]
  • substrate having an active region on a first surface of the substrate; and [0015]
  • at least one non-active region on a second surface of the substrate wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity that is higher than that of the materials forming the active region surface. [0016]
  • In another aspect, the invention is directed to photolithography system that includes: [0017]
  • a source of extreme ultraviolet radiation; [0018]
  • means for collecting the radiation emitted from the source of extreme ultraviolet radiation and forming a light beam therefrom that is directed to an active region of a reflective reticle, wherein the reflective reticle includes: [0019]
  • (i) a substrate having an active region on a first surface of the substrate; and [0020]
  • (ii) at least one non-active region on a second surface of the substrate wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity that is higher than that of the materials forming the active region surface; and [0021]
  • a wafer disposed downstream from the reflective reticle. [0022]
  • In a further embodiment, the invention is directed to a process for fabrication of a device comprising at least one element having a dimension ≦0.25 μm, such process comprising construction of a plurality of successive levels, construction of each level comprising lithographic delineation, in accordance with which a subject active region of a reflective reticle is illuminated to produce a corresponding pattern image on the device being fabricated, ultimately to result in removal of or addition of material in the pattern image regions, in which illumination used in fabrication of at least one level is extreme ultra-violet radiation, characterized in that the process employs the inventive reflective reticle. [0023]
  • Modeling studies suggest that emissivity engineering can effectively reduce the distortions especially for reflective silicon reticles. For silicon reticles, simulations have shown an 82% reduction in total placement errors and a 25% reduction in residual placement errors.[0024]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic of an EUV lithography device; [0025]
  • FIGS. 2A and 2B are plan and cross-sectional views, respectively, of a reflective reticle; [0026]
  • FIG. 3 is a schematic of a dark field reticle; and [0027]
  • FIG. 4 is a schematic of a half dark/half bright field reticle.[0028]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 schematically depicts an apparatus for EUV lithography that comprises a [0029] radiation source 11, such as a synchrontron or a laser plasma source, that emits x-rays 12 into condenser 13 which in turn emits beam 14 that illuminates a portion of reticle or mask 15. The emerging patterned beam is introduced into the imaging optics 16 which projects an image of reticle or mask 15, shown mounted on mask stage 17, onto wafer 18 which is mounted on stage 19. Element 20, an x-y scanner, scans reticle 15 and wafer 18 in such direction and at such relative speed as to accommodate the desired mask-to-image reduction.
  • The wafer is preferably housed in a wafer chamber that is separated from the other elements of the photolithography system located upstream as illustrated in FIG. 1. These other elements can be housed in one or more chambers which are preferably maintained in vacuum to minimize attenuation of the x-rays. EUV radiation projected from the reticle and translated by the camera travels through an aperture in the wafer chamber. [0030]
  • The EUV lithography device of the present invention is particularly suited for fabricating integrated devices that comprise at least one element having a dimension of ≦0.25 μm. The process comprises construction of a plurality of successive levels by lithographic delineation using a mask pattern that is illuminated to produce a corresponding pattern image on the device being fabricated, ultimately to result in removal of or addition of material in the pattern image regions. Typically, where lithographic delineation is by projection, the collected radiation is processed to accommodate imaging optics of a projection camera and image quality that is substantially equal in the scan and cross-scan directions, and smoothly varying as the space between adjacent lines varies. In a preferred embodiment, projection comprises ringfield scanning comprising illumination of a straight or arcuate region of a projection reticle. In another preferred embodiment, projection comprises reduction ringfield scanning in which an imaged arcuate region on the image plane is of reduced size relative to that of the subject arcuate region so that the imaged pattern is reduced in size relative to the reticle region. [0031]
  • The individual elements that form the EUV lithography device as shown in FIG. 1 can comprise conventional optical devices, e.g., condensers, cameras, and lens, for projection EUV lithography. Preferably the EUVL device employs a condenser that collects soft x-rays for illuminating a ringfield camera. A particularly preferred EUVL device that employs a condenser having a diffraction grating on the surface of a mirror upstream from the reflective mask that enhances critical dimension control is described in Sweatt et al., U.S. patent application Ser. No. ______ entitled “Diffractive Element in Extreme-UV Lithography Condenser” filed on Aug. 6, 1998 (Docket No. 023890-003) which is incorporated by reference. The condenser illustrated therein has the ability to separate the light from a line or quasi point source at the entrance pupil into several separated lines or transform point foci that are still superimposed on each other at the ringfield radius, thus maximizing the collection efficiency of the condenser and smoothing out any inhomogeneties in the source optics. [0032]
  • FIG. 2A shows a [0033] reflective reticle 30 having a generally circular perimeter; it is understood that the perimeter of reflective reticle for the present invention can have any figure including, for example, polygons. The surface of the reflective reticle includes an active region 39 where the mask pattern is formed. During projection printing, EUV radiation is reflected from the active region and onto the wafer. The surface of the reflective reticle also includes non-active regions 32, 34, 36, and 38. EUVL preferably employs an x-ray radiation source at about 13 nm, but the absorption at this wavelength is very strong in essentially all materials; therefore, EUVL employs reflective optics such as Mo/Si multilayer mirrors. The multilayer mirror, which typically ranges from about 280 nm to 320 nm in thickness, can also be made from, for example, Mo/Be. The strong x-ray absorption also necessitates the use of reflective mask or reticle patterns which are typically made by depositing absorber patterns on top of the Mo/Si multilayer mirror as described, for instance, in U.S. Pat. No. 5,052,033, and D. M. Tennant et. al., Appl. Opt. 32, 7007 (1993), which are incorporated herein by reference.
  • FIG. 2B shows the cross-section of inventive reflective reticle that comprises a [0034] silicon substrate 40 having a mask pattern that comprises a multilayer mirror structure 42 onto which absorber patterns 48 and 50 are deposited. Silicon substrates that are doped, e.g., by arsenic, boron, or phosphorus, are preferred since they have higher emissivity levels than pure silicon. Absorber materials typically comprises tungsten, titanium, titanium nitride, or aluminum. As illustrated in FIG. 2B, non-active regions 44 and 46 do not include the multilayer reflective structure, rather, in this embodiment, the surface of the non-active regions is bare or exposed silicon. As described herein, it has been demonstrated that not covering the non-active regions with the multilayer reflective structure or any low emissivity material reduces thermal distortion. The reflective reticle as illustrated in FIG. 2B can be made by conventional methods. During the fabrication process, the surface of the silicon substrate corresponding to non-active regions 44 and 46 is covered with photoresist so that subsequent sputtering of the Mo/Si multilayer coating will not deposit any of the reflective substances onto these regions.
  • In addition to constructing the nonactive regions with high emissivity surface materials, further reduction of reticle thermal distortion can be achieved by choosing materials with higher emissivity in fabricating the active regions. For example, in selecting the absorber material, TiN is preferred because of its high emissivity relative to most other absorber materials. Analogous selection of high emissivity materials from among suitable candidates, with respect to other parts of the active regions, can be employed. [0035]
  • Instead of forming non-active regions having bare silicon surfaces, the non-active regions can comprise regions of the substrate that are covered with a suitable high emissivity material. As is apparent, the use of any substrate compatible material which has an emissitivity that is higher than that of the materials forming the active region should enhance heat dissipation. When the multilayer structure of the active region is made Mo/Si, which as an emissivity of about 0.12, then the substrate covering material must have an emissivity of greater than 0.12. However, preferably this substrate covering material has an emissivity of greater than 0.25, and more preferably greater than 0.40. Suitable high emissivity materials include, for example, metal oxides, e.g., aluminum oxide, copper oxide and molybdenum oxide. From a practical standpoint, given that silicon has an emissivity of 0.72, thermal dissipation will not be significantly enhanced unless the substrate covering material has a very high emissivity value. [0036]
  • As is apparent, for any reflective reticle, the higher the ratio of the non-active region surface area to the active region surface area, the greater the reduction in thermal distortion will be when the non-active region is fabricated without the multilayer reflective structure or is covered with a high emissivity substrate covering material. While the present invention is applicable even if this ratio is small, typically the combined surface area of the non-active regions will range from about 50% to about 60% and preferably at least about 25% and more preferably at least about 40% of the total surface area of the reflective reticle. [0037]
  • A series of simulations were performed to examine the effect of emissivity engineering to reduce the thermal distortions of reflective silicon reticles during scanning. Specifically, the simulation measured the placement errors and blurs associated with conventional and inventive reflective reticles. Placement error is defined as the error in position of a point on the reticle just prior to the arrival of the illumination. Blur is defined as the motion of a point during the time that it is illuminated. [0038]
  • FIGS. 3 and 4 show schematics of a 200 mm diameter by 0.75 mm thick silicon wafer and the active reticle region used for the simulation. The dimensions of the reticle were 130 mm in the direction of the scan and 104 mm normal to the scan. The width of the illumination field was 6 mm and the height was 104 mm. The scan velocity was 38.7 mm/sec. The heat flux in the illumination field was 0.76 mW/mm. This flux corresponds to the power required to expose 10 wafers/hour with a resist sensitivity of 10 mJ/cm[0039] 2. The simulation was started with the leading edge of the illumination field aligned with the edge of the reticle. The effect of framing blades was taken into account in this analysis so that the simulated illumination exposed only the active reticle region of the wafer and not the surrounding areas. Dark field and half dark/half bright field reticles were simulated. A schematic of the half dark/half bright reticle configuration is shown in FIG. 4. The dark field reticle conservatively assumes that all incident energy was absorbed. The half dark/half bright field mask assumes all incident energy is absorbed on the dark region and approximately 42 percent is absorbed in the bright region. At the reticle, the integrated average reflectivity for Mo/Si is approximately 58%. The emissivities of the bright and dark fields were based on actual measurements. The emissivity of the Mo/Si coating was 0.122, and that of a tungsten absorber material was 0.037. Outside the active region of the reticle, the Mo/Si coating was not deposited. This region was assumed to be bare silicon with an emissivity of 0.72. The reticle was also allowed to expand freely. This assumption in effect neglected the frictional and electrostatic forces on the reticle from the chuck.
  • The technique used in the finite element analysis to simulate the moving illumination source included the step of tagging all element faces in the active reticle region, and at each time step determining which of the faces were within the bounding area of the moving source. Simple linear equations of motion with constant velocity were used to describe the location of the leading and trailing edges of the source. Finite element faces which lied fully or partially within the boundary of the moving source had an appropriate heat flux boundary condition applied corresponding to the flux within the source and the fraction of the face that lied within the location the source. The silicon material properties used for the simulations are given as follows: [0040]
    Density (Kg/m3) 2330.0
    Thermal Conductivity (W/m K) 148.0
    Specific Heat (J/kg K) 712.0
    Young's Modulus (GPa) 107.0
    Poissons Ratio 0.25
    Coefficient of Thermal Expansion 2.5E-06
  • The following table provides distortion comparisons for silicon reflective reticles with full Mo/Si coating and bare silicon outside the active region. [0041]
    Half
    Bright
    Half Half Dark
    Dark Field Bright Half Dark Bare Si
    Condition/ Full Mo/Si Outside Full Mo/Si Outside
    Distortion Coating Active Coating Active
    Total 1457.8 259.87 879.3 184.6
    Placement (nm)
    Residual 6.64 4.97 7.65 7.65
    Placement (nm)
    Blur (nm) 0.67 0.69 0.72 0.70
  • These simulation results strongly suggest that for both dark and half dark/half bright pattern densities, low distortion reticles can be designed using emissivity engineering approaches. In particular, it is demonstrated that by coating only the active region of the reticle with Mo/Si and absorber, and leaving the non-active region uncoated, a significant reduction in total distortion can be achieved. [0042]
  • Although only preferred embodiments of the invention are specifically disclosed and described above, it will be appreciated that many modifications and variations of the present invention are possible in light of the above teachings and within the purview of the appended claims without departing from the spirit and intended scope of the invention. [0043]

Claims (24)

What is claimed is:
1. A reflective reticle comprising:
a substrate having an active region on a first surface of the substrate; and
at least one non-active region on a second surface of the substrate wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity that is higher than that of the materials forming the active region surface.
2. The reflective reticle of claim 1 wherein the active region includes a surface that comprises a radiation reflective material and wherein each non-active region does not have a layer of radiation reflective material on its surface.
3. The reflective reticle of claim 1 wherein the active region defines a pattern comprising a radiation absorbing material formed on the surface of a radiation reflective material.
4. The reflective reticle of claim 1 wherein the radiation reflective material has a multilayer structure formed of material that is selected from the group consisting of (a) molybdenum and silicon, and (b) molybdenum and beryllium.
5. The reflective reticle of claim 4 wherein the layer radiation reflective material has a thickness of between 280 nm to 320 nm.
6. The reflective reticle of claim 3 wherein radiation absorbing material is selected from the group consisting of tungsten, titanium, titanium nitride, aluminum and mixtures thereof.
7. The reflective reticle of claim 1 wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity of at least 0.25.
8. The reflective reticle of claim 1 wherein the at least one non-active region has a surface area that is at least 25% of the surface area of the reflective reticle.
9. A photolithography system comprising:
a source of extreme ultraviolet radiation;
means for collecting the radiation emitted from the source of extreme ultraviolet radiation and forming a light beam therefrom that is directed to an active region of a reflective reticle, wherein the reflective reticle comprises;
(i) a substrate having an active region on a first surface of the substrate; and
(ii) at least one non-active region on a second surface of the substrate wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity that is higher than that of the materials forming the active region surface; and
a wafer disposed downstream from the reflective reticle.
10. The photolithography system of claim 9 wherein the active region includes a surface that comprises a radiation reflective material and wherein each non-active region does not have a layer of radiation reflective material on its surface.
11. The photolithography system of claim 9 wherein the active region defines a pattern comprising a radiation absorbing material formed on the surface of a radiation reflective material.
12. The photolithography system of claim 9 wherein the radiation reflective material has a multilayer structure formed of material that is selected from the group consisting of (a) molybdenum and silicon, and (b) molybdenum and beryllium.
13. The photolithography system of claim 9 wherein the reflective reticle of claim 4 wherein layer radiation reflective material has a thickness of between 280 nm to 320 nm.
14. The photolithography system of claim 12 wherein the radiation absorbing material is selected from the group consisting of tungsten, titanium, titanium nitride, aluminum and mixtures thereof.
15. The photolithography system of claim 9 wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity of at least 0.25.
16. The photolithography system of claim 9 wherein the at least one non-active region has a surface area that is at least 25% of the surface area of the reflective reticle.
17. A process for fabrication of a device comprising at least one element having a dimension ≦0.25 μm, such process comprising construction of a plurality of successive levels, construction of each level comprising lithographic delineation, in accordance with which a subject active region of a reflective reticle is illuminated to produce a corresponding pattern image on the device being fabricated, ultimately to result in removal of or addition of material in the pattern image regions, in which illumination used in fabrication of at least one level is extreme ultra-violet radiation, characterized in that the process employs a reflective reticle comprising:
a substrate having an active region on a first surface of the substrate; and
at least one non-active region on a second surface of the substrate wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity that is higher than that of the materials forming the active region surface.
18. The process of claim 17 wherein the active region includes a surface that comprises a radiation reflective material and wherein each non-active region does not have a layer of radiation reflective material on its surface.
19. The process of claim 17 wherein the active region defines a pattern comprising a radiation absorbing material formed on the surface of a radiation reflective material.
20. The process of claim 17 wherein the radiation reflective material has a multilayer structure formed of material that is selected from the group consisting of (a) molybdenum and silicon, and (b) molybdenum and beryllium.
21. The process of claim 19 wherein the layer radiation reflective material has a thickness of between 280 nm to 320 nm.
22. The process of claim 19 wherein the radiation absorbing material is selected from the group consisting of tungsten, titanium, titanium nitride, aluminum, and mixtures thereof.
23. The process of claim 17 wherein each non-active region is characterized by having a surface that is formed of material that has an emissivity of at least 0.25.
24. The process of claim 17 wherein the at least one non-active region has a surface area that is at least 25% of the surface area of the reflective reticle.
US09/903,195 1998-08-24 2001-07-10 Low thermal distortion Extreme-UV lithography reticle and method Expired - Lifetime US6395455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/903,195 US6395455B2 (en) 1998-08-24 2001-07-10 Low thermal distortion Extreme-UV lithography reticle and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/139,149 US6316150B1 (en) 1998-08-24 1998-08-24 Low thermal distortion extreme-UV lithography reticle
US09/903,195 US6395455B2 (en) 1998-08-24 2001-07-10 Low thermal distortion Extreme-UV lithography reticle and method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/139,149 Division US6316150B1 (en) 1998-08-24 1998-08-24 Low thermal distortion extreme-UV lithography reticle

Publications (2)

Publication Number Publication Date
US20020001760A1 true US20020001760A1 (en) 2002-01-03
US6395455B2 US6395455B2 (en) 2002-05-28

Family

ID=22485325

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/139,149 Expired - Lifetime US6316150B1 (en) 1998-08-24 1998-08-24 Low thermal distortion extreme-UV lithography reticle
US09/903,196 Expired - Lifetime US6441885B2 (en) 1998-08-24 2001-07-10 Low thermal distortion extreme-UV lithography reticle
US09/903,195 Expired - Lifetime US6395455B2 (en) 1998-08-24 2001-07-10 Low thermal distortion Extreme-UV lithography reticle and method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/139,149 Expired - Lifetime US6316150B1 (en) 1998-08-24 1998-08-24 Low thermal distortion extreme-UV lithography reticle
US09/903,196 Expired - Lifetime US6441885B2 (en) 1998-08-24 2001-07-10 Low thermal distortion extreme-UV lithography reticle

Country Status (5)

Country Link
US (3) US6316150B1 (en)
EP (1) EP1116072A1 (en)
JP (1) JP2002523893A (en)
AU (1) AU5667999A (en)
WO (1) WO2000011519A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053169A1 (en) * 2002-09-17 2004-03-18 International Business Machines Corporation Process and apparatus for minimizing thermal gradients across an advanced lithographic mask
US20040067426A1 (en) * 2002-10-02 2004-04-08 Berger Kurt W. Reticle stage based linear dosimeter
US20140370613A1 (en) * 2011-12-14 2014-12-18 Waters Technologies Corporation Atmospheric Pressure Chemical Ionization Detection
US10228615B2 (en) 2014-07-04 2019-03-12 Asml Netherlands B.V. Membranes for use within a lithographic apparatus and a lithographic apparatus comprising such a membrane

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316150B1 (en) * 1998-08-24 2001-11-13 Euv Llc Low thermal distortion extreme-UV lithography reticle
TW588222B (en) * 2000-02-10 2004-05-21 Asml Netherlands Bv Cooling of voice coil motors in lithographic projection apparatus
US6513151B1 (en) * 2000-09-14 2003-01-28 Advanced Micro Devices, Inc. Full flow focus exposure matrix analysis and electrical testing for new product mask evaluation
US6818357B2 (en) * 2001-10-03 2004-11-16 Intel Corporation Photolithographic mask fabrication
US20030235682A1 (en) * 2002-06-21 2003-12-25 Sogard Michael R. Method and device for controlling thermal distortion in elements of a lithography system
US6642531B1 (en) * 2002-12-23 2003-11-04 Intel Corporation Contamination control on lithography components
US7199994B1 (en) * 2004-01-12 2007-04-03 Advanced Micro Devices Inc. Method and system for flattening a reticle within a lithography system
JP2006111961A (en) * 2004-09-17 2006-04-27 Nippon Seiki Co Ltd Vapor deposition source system
JP5018787B2 (en) * 2006-12-27 2012-09-05 旭硝子株式会社 Reflective mask blank for EUV lithography
JP5018789B2 (en) * 2007-01-31 2012-09-05 旭硝子株式会社 Reflective mask blank for EUV lithography
DE102009014701A1 (en) * 2009-03-27 2010-09-30 Carl Zeiss Smt Ag Optical assembly
US20190083875A1 (en) * 2017-09-19 2019-03-21 Information Systems Laboratories, Inc. System, method and entertainment system for monitoring performance when launching a ball

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3856054T2 (en) 1987-02-18 1998-03-19 Canon K.K., Tokio/Tokyo Reflection mask
US5485497A (en) 1991-11-12 1996-01-16 Hitachi, Ltd. Optical element and projection exposure apparatus employing the same
US5411824A (en) 1993-01-21 1995-05-02 Sematech, Inc. Phase shifting mask structure with absorbing/attenuating sidewalls for improved imaging
JPH06260396A (en) 1993-03-02 1994-09-16 Sony Corp Manufacture of mask for x-ray lithography
US5572562A (en) 1993-04-30 1996-11-05 Lsi Logic Corporation Image mask substrate for X-ray semiconductor lithography
US5688409A (en) 1996-06-21 1997-11-18 Intel Corporation Processes for fabricating device layers with ultrafine features
KR100192549B1 (en) 1996-07-31 1999-06-15 구본준 Manufacturing method and structure of mask
US5935737A (en) * 1997-12-22 1999-08-10 Intel Corporation Method for eliminating final euv mask repairs in the reflector region
US6316150B1 (en) * 1998-08-24 2001-11-13 Euv Llc Low thermal distortion extreme-UV lithography reticle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040053169A1 (en) * 2002-09-17 2004-03-18 International Business Machines Corporation Process and apparatus for minimizing thermal gradients across an advanced lithographic mask
US20040067426A1 (en) * 2002-10-02 2004-04-08 Berger Kurt W. Reticle stage based linear dosimeter
US6906781B2 (en) * 2002-10-02 2005-06-14 Euv Llc. Reticle stage based linear dosimeter
US20050206870A1 (en) * 2002-10-02 2005-09-22 Euv Llc. Reticle stage based linear dosimeter
US7196771B2 (en) * 2002-10-02 2007-03-27 Euv Llc Reticle stage based linear dosimeter
US20140370613A1 (en) * 2011-12-14 2014-12-18 Waters Technologies Corporation Atmospheric Pressure Chemical Ionization Detection
US10228615B2 (en) 2014-07-04 2019-03-12 Asml Netherlands B.V. Membranes for use within a lithographic apparatus and a lithographic apparatus comprising such a membrane
US10698312B2 (en) 2014-07-04 2020-06-30 Asml Netherlands B.V. Membranes for use within a lithographic apparatus and a lithographic apparatus comprising such a membrane

Also Published As

Publication number Publication date
EP1116072A1 (en) 2001-07-18
US20020006556A1 (en) 2002-01-17
US6395455B2 (en) 2002-05-28
US6316150B1 (en) 2001-11-13
US6441885B2 (en) 2002-08-27
JP2002523893A (en) 2002-07-30
WO2000011519A1 (en) 2000-03-02
AU5667999A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US5995582A (en) X-ray reduction exposure apparatus and device manufacturing method using the same
US6469827B1 (en) Diffraction spectral filter for use in extreme-UV lithography condenser
US6395455B2 (en) Low thermal distortion Extreme-UV lithography reticle and method
US7239443B2 (en) Condenser optic with sacrificial reflective surface
US20050236584A1 (en) Exposure method and apparatus
JPH11249313A (en) Annular surface reduction projection optical system
US20170146911A1 (en) Image-forming optical system, exposure apparatus, and device producing method
EP1523699A2 (en) Projection objective for a projection exposure apparatus
US20060008712A1 (en) Exposure method, mask fabrication method, fabrication method of semiconductor device, and exposure apparatus
US6700644B2 (en) Condenser for photolithography system
EP1164407A2 (en) Illumination system and scanning exposure apparatus using the same
US6225027B1 (en) Extreme-UV lithography system
JP2003107354A (en) Image formation optical system and exposure device
US6210865B1 (en) Extreme-UV lithography condenser
US7470033B2 (en) Reflection-type projection-optical systems, and exposure apparatus comprising same
JPH0831407B2 (en) X-ray lithographic mask and X-ray lithographic method
JPH06349715A (en) X-ray mask inspection device
US7623219B2 (en) Exposure apparatus, exposure method, device manufacturing method
JP2000031021A (en) Reflective mask and method of producing device using the same
US7268855B2 (en) Projection optical system
US7463336B2 (en) Device manufacturing method and apparatus with applied electric field
US7381502B2 (en) Apparatus and method to improve the resolution of photolithography systems by improving the temperature stability of the reticle
JP2004258178A (en) Projection optical system and aligner provided with the projection optical system

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: NATIONAL TECHNOLOGY & ENGINEERING SOLUTIONS OF SAN

Free format text: CHANGE OF NAME;ASSIGNOR:SANDIA CORPORATION;REEL/FRAME:043883/0237

Effective date: 20170501