WO2020008947A1 - Method for treating wet paint booth circulating water - Google Patents

Method for treating wet paint booth circulating water Download PDF

Info

Publication number
WO2020008947A1
WO2020008947A1 PCT/JP2019/025109 JP2019025109W WO2020008947A1 WO 2020008947 A1 WO2020008947 A1 WO 2020008947A1 JP 2019025109 W JP2019025109 W JP 2019025109W WO 2020008947 A1 WO2020008947 A1 WO 2020008947A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating water
water
mass
phenol resin
added
Prior art date
Application number
PCT/JP2019/025109
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 有元
努 吉川
恒行 吉田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201980041969.4A priority Critical patent/CN112334416A/en
Publication of WO2020008947A1 publication Critical patent/WO2020008947A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for treating circulating water in a wet coating booth. More specifically, the present invention relates to a method of forming a coating material such as surplus paint (dry oil, resin, etc., a film forming component such as a resin, a surfactant, a thickener, a pigment, a dye, etc.) in a wet painting booth.
  • the present invention relates to a method for treating circulating water in a wet coating booth, which can efficiently remove components, viscosity adjusting components such as solvents, etc.) and can reduce the chemical oxygen demand of circulating water.
  • Excess paint that has not been applied to the painting target in the wet painting booth is collected by circulating water. Next, part or all of the surplus paint collected in the circulating water is removed, and the circulating water from which the surplus paint has been removed is reused in a wet coating booth.
  • various methods have been proposed for removing the excess paint collected in the circulating water of the wet coating booth.
  • Patent Literature 1 discloses that in a circulating water of a wet coating booth, a solvent for degrading accumulated paint and a odorous component-decomposing bacterium are separated into a nitrogen source (eg, ammonium nitrate, urea, etc.), a phosphorus source (eg, potassium phosphate, etc.), and inorganic salts. (E.g., magnesium salts, iron salts, etc.), and a method for treating a wet coating booth, wherein the method is grown under the control of the amount of nutrients added, such as organic growth factors (e.g., yeast extract, peptone, etc.).
  • a nitrogen source eg, ammonium nitrate, urea, etc.
  • a phosphorus source eg, potassium phosphate, etc.
  • inorganic salts E.g., magnesium salts, iron salts, etc.
  • a method for treating a wet coating booth wherein the method is grown under the control of the amount of nutrients
  • Patent Literature 2 discloses a culture medium in which nitrogen and phosphorus are added to an aqueous glucose solution, in which microorganisms that decompose organic components contained in paint are cultured, and a culture solution in which the microorganisms are grown is added to circulating water in a painting booth. And a method for treating circulating water in a coating booth.
  • Patent Document 3 discloses a method in which a phenol resin and a cationic polymer are added to circulating water of a wet coating booth containing an aqueous coating and / or a solvent-type coating, and a coating treatment in the circulating water is performed.
  • Patent Document 4 discloses that sewage from a pulp paper mill or the like includes strains of Mucor racemosus, Paecitomyces lilacinus, Aspergillus ustus, or Trichoderma inhamatum treated with Trichoderma inhamatum. Disclosed are compositions and methods of treating sewage, including adding nutrients, if desired, to the sewage.
  • Patent Document 4 discloses that as the nutrient, an inorganic phosphate compound, particularly a soluble phosphonate or orthophosphate, preferably phosphoric acid, monosodium phosphate, disodium phosphate or trisodium phosphate, or diammonium phosphate; ammonia (NH 3 ) or ammonium salt (NH 4 + ), preferably anhydrous ammonia, aqueous ammonia, ammonium nitrate or diammonium phosphate; trace elements, preferably aluminum, antimony, barium, boron, calcium, cobalt, copper, iron, lead , Magnesium, manganese, molybdenum, nickel, strontium, titanium, tin, zinc or zirconium.
  • an inorganic phosphate compound particularly a soluble phosphonate or orthophosphate, preferably phosphoric acid, monosodium phosphate, disodium phosphate or trisodium phosphate, or diammonium phosphate; am
  • JP 2001-286800 A JP 2011-110517 A JP-A-2004-337671 JP-A-2005-51432
  • a method for treating circulating water in a wet coating booth comprising adding a phosphorus compound and a phenol resin to circulating water containing excess paint and water.
  • the treatment method according to [1] further comprising adding a nitrogen compound to circulating water containing excess paint and water.
  • the treatment method of the present invention of the excess paint collected by the circulating water in the wet coating booth, drying oil, film-forming components such as resins, surfactants, additives such as thickeners, pigments, dyes It can remove colored components such as flakes, remove viscosity adjusting components such as solvents by biodegradation, and reduce the chemical oxygen demand of circulating water. Furthermore, the processing method of the present invention can also suppress foaming in pits and the like. Further, the treatment method of the present invention is excellent in clarifying the circulating water and has a high recycling rate of the circulating water. The amount of water discharged from the water pit to the wastewater treatment facility is also reduced.
  • the method for treating circulating water in a wet coating booth of the present invention is a method including adding a phosphorus compound and a phenol resin to circulating water containing surplus paint and water, preferably a circulating water containing surplus paint and water.
  • the method includes adding a nitrogen compound, a phosphorus compound and a phenol resin to water.
  • Examples of the wet coating booth to which the method for treating circulating water of the wet coating booth of the present invention are applicable include a water plate type (water film type) coating booth that collects excess paint with water film type circulating water, and a shower type circulation booth.
  • shower type painting booth that collects excess paint with water
  • water film / shower type painting booth that combines water film type and shower type, surplus paint separated by centrifugal force in the spiral chamber into water film-like circulating water
  • a venturi-type painting booth to be collected can be mentioned.
  • the phenolic resin used in the present invention is a condensate of phenols and aldehydes or a modified product thereof before crosslinking and curing.
  • the phenol resin include a condensate of phenol and formaldehyde, a condensate of cresol and formaldehyde, and a condensate of xylenol and formaldehyde.
  • the modified product include an alkyl-modified phenol resin and polyvinyl phenol. These phenolic resins may be of novolak type or resol type. The phenol resins may be used alone or in combination of two or more.
  • the phenol resin is not particularly limited by the molecular weight and other physical properties, and may be appropriately selected from those commonly used for treating circulating water in a wet coating booth.
  • the phenol resin preferably used in the present invention has a weight average molecular weight of preferably 100 or more and 100,000 or less, more preferably 1,000 or more and 50,000 or less.
  • the phenol resin may be added by dissolving or dispersing (for example, suspending or emulsifying) the phenol resin in a solvent or a dispersion medium.
  • the solvent or dispersion medium for dissolving or dispersing the phenol resin include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, alkaline aqueous solutions, and amines.
  • aqueous alkali solutions are preferred.
  • the aqueous alkali solution include an aqueous sodium hydroxide solution and an aqueous potassium hydroxide solution.
  • the concentration of the alkali component is preferably 1 to 25% by mass, and the concentration of the phenol resin is preferably 1 to 50% by mass.
  • the amount of the phenol resin (solid content) is preferably 1 mg or more, more preferably 5 mg or more, per liter of circulating water, from the viewpoint of making the excess paint tack-free.
  • the upper limit of the amount of the phenol resin (solid content) to be added is preferably 1000 mg, more preferably 200 mg, per 1 L of circulating water.
  • the addition amount of the phenol resin (solid content) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the surplus paint (solids).
  • the upper limit of the amount of the phenol resin (solid content) is preferably 100% by mass, more preferably 10% by mass, based on the surplus paint (solid content).
  • Phenol resin is suitable for water treatment in circulating water having a large amount of surface foam that has captured an aqueous paint or circulating water that has captured an organic solvent paint having a surface potential of almost zero.
  • phenolic resin By adding the phenolic resin, it is possible to reduce the tackiness of the surplus paint in the circulating water (make it less tacky) and to suppress foaming.
  • the phosphorus compound used in the present invention is preferably an inorganic phosphorus compound, more preferably phosphoric acid or phosphate, and still more preferably orthophosphoric acid, monosodium phosphate, disodium phosphate, trisodium phosphate, dihydrogen phosphate. Ammonium or ammonium dihydrogen phosphate. Of these, orthophosphoric acid is preferred.
  • the phosphorus element derived from the phosphorus compound is preferably 0.5 to 8 parts by mass, more preferably 0.6 to 4 parts by mass, based on 100 parts by mass of BOD (biochemical oxygen demand). More preferably, it is added in an amount of 0.7 to 2 parts by mass.
  • the phosphorus compound may be added as it is to the circulating water, or may be added by dissolving or dispersing the phosphorus compound in a solvent or a dispersion medium.
  • the solvent or dispersion medium for dissolving or dispersing the phosphorus compound is not particularly limited, and examples thereof include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, and water. Of these, water is preferred in that it does not increase COD.
  • the nitrogen compound used as necessary in the present invention is preferably an inorganic nitrogen compound, more preferably urea, ammonia (NH 3 ), ammonium salt (NH 4 + ), nitrate (NO 3 ⁇ ) or nitrite (NO 2 2- ), more preferably anhydrous ammonia, aqueous ammonia solution, ammonium nitrate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, aluminum nitrate or urea.
  • diammonium hydrogen phosphate and ammonium dihydrogen phosphate are used as a phosphorus compound and a nitrogen compound.
  • Aluminum nitrate is used as a nitrogen compound and an inorganic coagulant. Of these, urea, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium nitrate, and / or aluminum nitrate are preferred.
  • the nitrogen element derived from the nitrogen compound is preferably 2 to 20 parts by mass, more preferably 3 to 15 parts by mass, and still more preferably 4 to 10 parts by mass with respect to 1 part by mass of the phosphorus element derived from the phosphorus compound. It is added in an amount of 15 parts by mass. The addition of the nitrogen compound enhances the COD reduction effect.
  • the nitrogen compound may be added as it is to the circulating water, or may be added by dissolving or dispersing the nitrogen compound in a solvent or a dispersion medium.
  • the solvent or dispersion medium for dissolving or dispersing the nitrogen compound is not particularly limited, and examples thereof include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, and water. Of these, water is preferred because it does not increase COD (chemical oxygen demand).
  • the treatment method of the present invention further comprises adding a coagulant to the circulating water.
  • the coagulant has an action of neutralizing the charge of the fine fine particles in water to coagulate.
  • Coagulants are broadly classified into organic coagulants and inorganic coagulants.
  • organic coagulants sodium alginate; chitin / chitosan coagulants; biocoagulants such as TKF04 strain, BF04; polyethyleneimine, cation-modified polyacrylamide, polyamine, polyamine sulfone, polyamide, polyalkylene polyamine, amine cross-linked polycondensate Dimethylaminoethyl polyacrylate, dimethyldiallylammonium chloride (DADMAC) polymer, polycondensate of alkylamine and epichlorohydrin, polycondensate of alkylene dichloride and polyalkylenepolyamine, polycondensate of dicyandiamide and formalin, DAM (Dimethylaminoethyl methacrylate) acid salt or quaternary ammonium salt homopolymer or copolymer, DAA (dimethylaminoethyl acrylate) acid salt or quaternary ammonium salt homopolymer Cationic polymers such as limmer or
  • cationic polymer coagulant preferably has a weight average molecular weight of 1,000 or more and 1,000,000 or less, more preferably 5,000 or more and 300,000 or less.
  • inorganic coagulants include aluminum coagulants such as aluminum sulfate (sulfuric acid band), polyaluminum chloride (PAC), polyaluminum hydroxychloride, pseudoboehmite alumina sol (AlO (OH)); ferrous hydroxide, sulfuric acid Iron salt-based coagulants such as iron, ferric chloride, ferric polysulfate, and iron-silica inorganic polymer coagulants; zinc-based coagulants such as zinc chloride; activated silicic acid and polysilica iron coagulants Can be.
  • aluminum coagulants such as aluminum sulfate (sulfuric acid band), polyaluminum chloride (PAC), polyaluminum hydroxychloride, pseudoboehmite alumina sol (AlO (OH)
  • ferrous hydroxide sulfuric acid Iron salt-based coagulants such as iron, ferric chloride, ferric polysulfate, and iron-silica inorganic polymer coagulants
  • the amount of the coagulant added to the circulating water can be appropriately adjusted according to the state of formation of coagulated flocs of the surplus paint.
  • the amount of the coagulant added to the circulating water is preferably 0.01 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, based on 100 parts by mass of the phenol resin.
  • its addition amount is, for example, preferably 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the phenol resin.
  • the amount of the cationic polymer coagulant added is, for example, preferably 0.001 to 1 meq / L, more preferably 0.002 to 0.5 meq / L, as a colloid equivalent value with respect to circulating water.
  • its addition amount is preferably from 0.01 to 100 parts by mass, more preferably from 1 to 50 parts by mass, in terms of metal oxide, based on 100 parts by mass of the phenol resin.
  • the coagulant may be added as it is to the circulating water, or may be added by dissolving or dispersing the coagulant in a solvent or a dispersion medium.
  • the solvent or dispersion medium for dissolving or dispersing the coagulant is not particularly limited, and examples thereof include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, and water. Of these, water is preferred because it does not increase COD (chemical oxygen demand).
  • a polymer flocculant can be added to the circulating water to form coarse flocs.
  • the polymer flocculant comprises an anionic, cationic or amphoteric polymer.
  • Such polymers usually have a weight average molecular weight of more than 1,000,000, preferably 5,000,000 or more.
  • polymer flocculant comprising an anionic polymer
  • examples of the polymer flocculant comprising an anionic polymer include sodium polyacrylate, sodium polyacrylate / amide derivative, partially hydrolyzed polyacrylamide, partially sulfomethylated polyacrylamide, and poly (2-acrylamide) -2-methylpropane sulfate. And the like.
  • polymer flocculant comprising a cationic polymer examples include polyaminoalkyl acrylate, polyaminoalkyl methacrylate, polyethyleneimine, polydiallylammonium halide, chitosan, urea-formalin resin, acrylamide / [2- (acryloyloxy) ethyl] benzyldimethylammonium chloride Copolymer of / [2- (acryloyloxy) ethyl] trimethylammonium chloride, copolymer of acrylamide / [3- (acryloyloxy) propyl] benzyldimethylammonium chloride / [2- (acryloyloxy) ethyl] trimethylammonium chloride Acrylamide / [2- (acryloyloxy) ethyl] benzyldimethylammonium chloride / [3- (acryloyloxy) propyl A copolymer of trimethyl ammonium chloride
  • polymer aggregating agent comprising an amphoteric polymer
  • examples of the polymer aggregating agent comprising an amphoteric polymer include a copolymer of (meth) acrylamide, quaternary ammonium alkyl (meth) acrylate, and sodium (meth) acrylate; a copolymer of acrylamide, aminoalkyl methacrylate, and sodium acrylate; Can be mentioned.
  • a liquid product as the polymer flocculant from the viewpoint of handling properties.
  • a W / O emulsion and a dispersion can be used as the liquid product of the polymer flocculant.
  • the dispersion is obtained by dispersing polymer flocculant particles in an aqueous medium having a high salt concentration. Therefore, it is preferable to use a dispersion from the viewpoint of reducing COD.
  • W / O emulsions there are many types of W / O emulsions, and therefore, W / O emulsions are more preferable in terms of aggregation effect.
  • the amount of the polymer flocculant can be appropriately adjusted according to the formation state of the coarse flocs.
  • the amount of the polymer flocculant to be added is, for example, preferably 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, per 100 parts by mass of the phenol resin.
  • the amount of the polymer coagulant added is, for example, preferably from 0.001 to 1 meq / L, more preferably from 0.002 to 0.5 meq / L, as a colloid equivalent value with respect to circulating water.
  • the amount of the polymer flocculant (solid content) to be added is preferably 0.1 to 10% by mass, more preferably 0.2 to 3% by mass, based on the excess paint (solids).
  • a tackifier In the treatment method of the present invention, a tackifier, a pH adjuster, an aerobic microorganism, oxygen (air), and the like can be further added to the circulating water.
  • tackifier examples include alumina sol, sepiolite, carboxylic acid-based polymer, tannin alkaline solution, tannin-based polymer, melamine formaldehyde resin, melamine dicyandiamide resin, bentonite, hectorite, linear cationic polyamine, sodium zincate, etc. Can be mentioned.
  • Examples of the pH adjuster include water-soluble alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate; hydrochloric acid, sulfuric acid, and nitric acid.
  • the pH of the circulating water is adjusted to preferably 5 to 9, more preferably 6 to 8.5, and even more preferably 7 to 8.
  • Aerobic microorganisms include bacteria such as zooglare, pseudomonas, and bacillus; protozoa such as trichomes and rotifers.
  • Oxygen or air can be added using an aerator, a bubble generator, or the like. The addition of oxygen or air enhances the COD lowering effect.
  • the oxygen concentration of the circulating water is not particularly limited, but is preferably adjusted to 1.2 to 10 mg-O 2 / L, more preferably to 1.5 to 8 mg-O 2 / L.
  • the position at which a phosphorus compound, a nitrogen compound, a phenol resin, a coagulant, a coagulant, a tackifier, a pH adjuster, an aerobic microorganism, oxygen (air), and the like are added to the circulating water is not particularly limited.
  • a coating booth, a transfer pipe from the coating booth to the circulating water pit, a circulating water pit, a transfer pipe from the circulating water pit to the coating booth, and the like can be given.
  • the temperature of the circulating water is preferably adjusted to 0 to 70 ° C., more preferably 0 to 60 ° C., and still more preferably 0 to 40 ° C.
  • the coagulated floc or coarse floc generated by the above method is separated and removed from the circulating water by a known method. In this way, it is possible to reduce turbidity and COD of water circulating in the wet coating booth.
  • the present invention will be described more specifically with reference to examples.
  • the following examples merely show one embodiment of the present invention, and the present invention is not limited to the following examples.
  • the drugs used are as follows, and the amount of drug added in the examples is not the amount added as an active ingredient, but the amount added as a product (aqueous solution).
  • PAC polyaluminum chloride aqueous solution (10% by mass in terms of Al 2 O 3 )
  • Organic coagulant aqueous solution of alkylamine epichlorohydrin condensate (active ingredient concentration: 50% by mass)
  • Phosphorus compound 75% by mass aqueous solution of orthophosphoric acid
  • Nitrogen compound A mixture of 30 parts by mass of urea, 10 parts by mass of ammonium hydrogen phosphate, 0.5 parts by mass of ammonium nitrate and 59.5 parts by mass of water
  • Example 1 500 ml of the coating booth circulating water was collected from the circulating water pit and placed in a 1 L polybin. A test liquid was obtained by adding 5000 mg of the aqueous base paint for automobiles to this. The water quality of the test solution was 6600 mg / L for soluble CODMn, 3900 mg / L for BOD, 390 mg / L for Kjeldahl nitrogen, and 18 mg / L for total phosphorus. To the test solution, 245 mg of a phenol resin alkaline solution, 250 mg of PAC, and 25 mg of an organic coagulant were added. The pH was adjusted to 7 using sulfuric acid or caustic soda.
  • a phosphorus compound was added at a ratio of 1 part by mass of a phosphorus element to 100 parts by mass of BOD.
  • air was supplied to the polybin at a rate of 1 L / min and aerated at room temperature for 7 days.
  • the water quality of the liquid after the aeration was 3600 mg / L in soluble CODMn. There was some foaming during the aeration, but when the aeration was terminated, the foam disappeared within 2 minutes.
  • Example 2 After the addition of the phosphorus compound, the mixture was aerated for 7 days in the same manner as in Example 1 except that the nitrogen compound was added at a ratio of 5 parts by mass of the nitrogen element to 100 parts by mass of the BOD.
  • the water quality of the liquid after aeration was such that the soluble CODMn was 2200 mg / L. There was some foaming during the aeration, but when the aeration was terminated, the foam disappeared within 2 minutes.
  • Comparative Example 1 Aeration was performed for 7 days in the same manner as in Example 1 except that the phosphorus compound was not added.
  • the water quality of the liquid after the aeration was 3800 mg / L in soluble CODMn. There was some foaming during the aeration, but when the aeration was terminated, the foam disappeared within 2 minutes.
  • Comparative Example 2 Aeration was performed for 7 days in the same manner as in Example 1 except that 245 mg of phenol resin alkaline solution, 250 mg of PAC, and 25 mg of organic coagulant were changed to 300 mg of PAC and 25 mg of organic coagulant.
  • the water quality of the liquid after the aeration was 3700 mg / L in soluble CODMn. There was a lot of foaming during the aeration. Even after 2 minutes from the end of the aeration, about 50% of the foam amount at the end of the aeration remained.
  • the treatment method of the present invention (Examples 1 and 2) can efficiently remove excess paints collected by the circulating water, particularly, organic substances that increase the chemical oxygen demand.
  • the chemical oxygen demand of the circulating water can be reduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

A method for treating wet paint booth circulating water, the method including adding, to circulating water that includes water and excess paint: a phosphorous compound such as phosphoric acid; a nitrogen compound such as urea, or ammonium nitrate; and a phenol resin. Using this method makes it possible to effectively remove the excess paint caught in the wet paint booth and to reduce the chemical oxygen demand (COD) of the circulating water.

Description

湿式塗装ブース循環水の処理方法Treatment method for circulating water in wet coating booth
 本発明は、湿式塗装ブース循環水の処理方法に関する。より詳細に、本発明は、湿式塗装ブースにおいて循環水が捕集した余剰塗料(乾性油、樹脂などの塗膜形成成分、界面活性剤、増粘剤などの添加剤、顔料、染料などの着色成分、溶剤などの粘度調整成分などを含む。)を効率的に除去すること、および循環水の化学的酸素要求量を減少させることができる、湿式塗装ブース循環水の処理方法に関する。 The present invention relates to a method for treating circulating water in a wet coating booth. More specifically, the present invention relates to a method of forming a coating material such as surplus paint (dry oil, resin, etc., a film forming component such as a resin, a surfactant, a thickener, a pigment, a dye, etc.) in a wet painting booth. The present invention relates to a method for treating circulating water in a wet coating booth, which can efficiently remove components, viscosity adjusting components such as solvents, etc.) and can reduce the chemical oxygen demand of circulating water.
 湿式塗装ブースにおいて塗装対象物に塗着しなかった余剰塗料は循環水で捕集される。次いで循環水に捕集された余剰塗料の一部または全部を除去し、余剰塗料の除去された循環水を湿式塗装ブースで再使用する。ここで、湿式塗装ブース循環水に捕集された余剰塗料を除去するための方法が種々提案されている。 余 Excess paint that has not been applied to the painting target in the wet painting booth is collected by circulating water. Next, part or all of the surplus paint collected in the circulating water is removed, and the circulating water from which the surplus paint has been removed is reused in a wet coating booth. Here, various methods have been proposed for removing the excess paint collected in the circulating water of the wet coating booth.
 例えば、特許文献1は、湿式塗装ブースの循環水中において、蓄積塗料溶剤分解菌と悪臭成分分解菌とを窒素源(例えば、硝酸アンモニウム、尿素等)、燐源(例えば、燐酸カリウム等)、無機塩類(例えば、マグネシウム塩、鉄塩等)、有機増殖因子(例えば、酵母エキス、ペプトン等)などの栄養塩添加量の制御下で増殖させることを特徴とする湿式塗装ブースの処理方法を開示している。 For example, Patent Literature 1 discloses that in a circulating water of a wet coating booth, a solvent for degrading accumulated paint and a odorous component-decomposing bacterium are separated into a nitrogen source (eg, ammonium nitrate, urea, etc.), a phosphorus source (eg, potassium phosphate, etc.), and inorganic salts. (E.g., magnesium salts, iron salts, etc.), and a method for treating a wet coating booth, wherein the method is grown under the control of the amount of nutrients added, such as organic growth factors (e.g., yeast extract, peptone, etc.). I have.
 特許文献2は、グルコース水溶液に窒素とリンとを添加した液体培地で、塗料に含まれる有機物成分を分解する微生物を培養し、前記微生物を増殖させた培養液を、塗装ブース循環水に添加することを含む、塗装ブース循環水の処理方法を開示している。 Patent Literature 2 discloses a culture medium in which nitrogen and phosphorus are added to an aqueous glucose solution, in which microorganisms that decompose organic components contained in paint are cultured, and a culture solution in which the microorganisms are grown is added to circulating water in a painting booth. And a method for treating circulating water in a coating booth.
 特許文献3は、水性塗料及び/又は溶剤型塗料を含む湿式塗装ブース循環水に、フェノール樹脂とカチオン系ポリマーとを添加して、該循環水中の塗料を凝集処理する方法を開示している。 Patent Document 3 discloses a method in which a phenol resin and a cationic polymer are added to circulating water of a wet coating booth containing an aqueous coating and / or a solvent-type coating, and a coating treatment in the circulating water is performed.
 特許文献4は、バルプ製紙工場などの汚水に、ムコル・ラセモサス(Mucor racemosus)、パエシロマイセス・リラシヌス(Paecitomyces lilacinus)、アスペルギルス・アスタス(Aspergillus ustus)又はトリコデルマ・インハマタム(Trichoderma inhamatum)の株を含む汚水処理組成物、および必要に応じて栄養素を、汚水に加えることを含む、汚水の処理方法を開示している。特許文献4は、前記栄養素として、無機リン酸化合物、特に溶解性ホスホネート又はオルトリン酸塩、好ましくはリン酸、リン酸一ナトリウム、リン酸二ナトリウム又はリン酸三ナトリウム、あるいはリン酸二アンモニウム;アンモニア(NH3)又はアンモニウム塩(NH4 +)、好ましくは無水アンモニア、アンモニア水溶液、硝酸アンモニウム又はリン酸二アンモニウム;微量元素、好ましくはアルミニウム、アンチモン、バリウム、ホウ素、カルシウム、コバルト、銅、鉄、鉛、マグネシウム、マンガン、モリブデン、ニッケル、ストロンチウム、チタン、スズ、亜鉛又はジルコニウムを例示している。 Patent Document 4 discloses that sewage from a pulp paper mill or the like includes strains of Mucor racemosus, Paecitomyces lilacinus, Aspergillus ustus, or Trichoderma inhamatum treated with Trichoderma inhamatum. Disclosed are compositions and methods of treating sewage, including adding nutrients, if desired, to the sewage. Patent Document 4 discloses that as the nutrient, an inorganic phosphate compound, particularly a soluble phosphonate or orthophosphate, preferably phosphoric acid, monosodium phosphate, disodium phosphate or trisodium phosphate, or diammonium phosphate; ammonia (NH 3 ) or ammonium salt (NH 4 + ), preferably anhydrous ammonia, aqueous ammonia, ammonium nitrate or diammonium phosphate; trace elements, preferably aluminum, antimony, barium, boron, calcium, cobalt, copper, iron, lead , Magnesium, manganese, molybdenum, nickel, strontium, titanium, tin, zinc or zirconium.
特開2001-286800号公報JP 2001-286800 A 特開2011-110517号公報JP 2011-110517 A 特開2004-337671号公報JP-A-2004-337671 特開2015-51432号公報JP-A-2005-51432
 本発明の目的は、湿式塗装ブースにおいて循環水が捕集した余剰塗料を効率的に除去すること、および循環水の化学的酸素要求量を減少させることができる、湿式塗装ブース循環水の処理方法を提供することである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for treating wet paint booth circulating water, which is capable of efficiently removing excess paint collected by circulating water in a wet paint booth and reducing the chemical oxygen demand of the circulating water. It is to provide.
 上記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。 検 討 As a result of studying to achieve the above object, the present invention including the following embodiments has been completed.
〔1〕 余剰塗料と水とを含んでなる循環水に、リン化合物、およびフェノール樹脂を添加することを含む、湿式塗装ブース循環水の処理方法。
〔2〕 余剰塗料と水とを含んでなる循環水に、窒素化合物を添加することをさらに含む、〔1〕に記載の処理方法。
[1] A method for treating circulating water in a wet coating booth, comprising adding a phosphorus compound and a phenol resin to circulating water containing excess paint and water.
[2] The treatment method according to [1], further comprising adding a nitrogen compound to circulating water containing excess paint and water.
 本発明の処理方法によれば、湿式塗装ブースにおいて循環水が捕集した余剰塗料のうち、乾性油、樹脂などの塗膜形成成分、界面活性剤、増粘剤などの添加剤、顔料、染料などの着色成分などをフロックにして除去し、溶剤などの粘度調整成分などを生分解して除去し、そして循環水の化学的酸素要求量を減少させることができる。
 さらに、本発明の処理方法は、ピットなどにおける発泡を抑制することもできる。また、本発明の処理方法は、循環水の清澄化に優れ、循環水の再利用率が高いので、本発明の処理方法を行うと、新たに補充しなければならない水の量が減り且つ循環水ピットから排水処理施設に排出される水の量も減る。
According to the treatment method of the present invention, of the excess paint collected by the circulating water in the wet coating booth, drying oil, film-forming components such as resins, surfactants, additives such as thickeners, pigments, dyes It can remove colored components such as flakes, remove viscosity adjusting components such as solvents by biodegradation, and reduce the chemical oxygen demand of circulating water.
Furthermore, the processing method of the present invention can also suppress foaming in pits and the like. Further, the treatment method of the present invention is excellent in clarifying the circulating water and has a high recycling rate of the circulating water. The amount of water discharged from the water pit to the wastewater treatment facility is also reduced.
実施例および比較例で使用した試験装置を示す概念図である。It is a conceptual diagram showing the test equipment used in the example and the comparative example.
 本発明の湿式塗装ブース循環水の処理方法は、余剰塗料と水とを含んでなる循環水にリン化合物およびフェノール樹脂を添加することを含む方法、好ましくは余剰塗料と水とを含んでなる循環水に窒素化合物、リン化合物およびフェノール樹脂を添加することを含む方法である。 The method for treating circulating water in a wet coating booth of the present invention is a method including adding a phosphorus compound and a phenol resin to circulating water containing surplus paint and water, preferably a circulating water containing surplus paint and water. The method includes adding a nitrogen compound, a phosphorus compound and a phenol resin to water.
 本発明の湿式塗装ブース循環水の処理方法を適用可能な湿式塗装ブースとしては、例えば、水膜状の循環水により余剰塗料を捕集する水流板式(水膜式)塗装ブース、シャワー状の循環水により余剰塗料を捕集するシャワー式塗装ブース、水膜式とシャワー式とを組み合わせた水膜・シャワー式塗装ブース、渦巻室における遠心力により分離された余剰塗料を水膜状の循環水に捕集するベンチュリー式塗装ブース等を挙げることができる。 Examples of the wet coating booth to which the method for treating circulating water of the wet coating booth of the present invention are applicable include a water plate type (water film type) coating booth that collects excess paint with water film type circulating water, and a shower type circulation booth. Shower type painting booth that collects excess paint with water, water film / shower type painting booth that combines water film type and shower type, surplus paint separated by centrifugal force in the spiral chamber into water film-like circulating water A venturi-type painting booth to be collected can be mentioned.
 本発明に用いられるフェノール樹脂は、フェノール類とアルデヒド類との縮合物またはこれの変性物であって、架橋硬化させる前の物である。フェノール樹脂の具体例としては、フェノールとホルムアルデヒドとの縮合物、クレゾールとホルムアルデヒドとの縮合物、キシレノールとホルムアルデヒドとの縮合物などを挙げることができる。変性物としては、アルキル変性フェノール樹脂、ポリビニルフェノールなどを挙げることができる。これらフェノール樹脂はノボラック型であっても、レゾール型であってもよい。フェノール樹脂は1種単独で若しくは2種以上を組み合わせて用いてもよい。また、フェノール樹脂は、分子量その他物性によって特に制限はなく、湿式塗装ブース循環水処理用として一般に使用されているものの中から適宜選択して使用することもできる。本発明において好ましく用いられるフェノール樹脂は、重量平均分子量が、好ましくは100以上10万以下、より好ましくは1000以上5万以下である。 フ ェ ノ ー ル The phenolic resin used in the present invention is a condensate of phenols and aldehydes or a modified product thereof before crosslinking and curing. Specific examples of the phenol resin include a condensate of phenol and formaldehyde, a condensate of cresol and formaldehyde, and a condensate of xylenol and formaldehyde. Examples of the modified product include an alkyl-modified phenol resin and polyvinyl phenol. These phenolic resins may be of novolak type or resol type. The phenol resins may be used alone or in combination of two or more. The phenol resin is not particularly limited by the molecular weight and other physical properties, and may be appropriately selected from those commonly used for treating circulating water in a wet coating booth. The phenol resin preferably used in the present invention has a weight average molecular weight of preferably 100 or more and 100,000 or less, more preferably 1,000 or more and 50,000 or less.
 フェノール樹脂は、フェノール樹脂を溶媒若しくは分散媒に溶解若しくは分散(例えば、懸濁、乳化)させて添加してもよい。
 フェノール樹脂を溶解若しくは分散させるための溶媒若しくは分散媒としては、アセトン等のケトン、酢酸メチル等のエステル、メタノール等のアルコール、アルカリ水溶液、アミン等を挙げることができる。これら溶媒若しくは分散媒のうち、アルカリ水溶液が好ましい。アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液などを挙げることができる。フェノール樹脂をアルカリ水溶液に溶解若しくは分散させてなる物は、アルカリ成分の濃度が好ましくは1~25質量%であり、フェノール樹脂の濃度が好ましくは1~50質量%である。
The phenol resin may be added by dissolving or dispersing (for example, suspending or emulsifying) the phenol resin in a solvent or a dispersion medium.
Examples of the solvent or dispersion medium for dissolving or dispersing the phenol resin include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, alkaline aqueous solutions, and amines. Among these solvents or dispersion media, aqueous alkali solutions are preferred. Examples of the aqueous alkali solution include an aqueous sodium hydroxide solution and an aqueous potassium hydroxide solution. In a product obtained by dissolving or dispersing a phenol resin in an aqueous alkali solution, the concentration of the alkali component is preferably 1 to 25% by mass, and the concentration of the phenol resin is preferably 1 to 50% by mass.
 フェノール樹脂(固形分)の添加量は、余剰塗料の不粘着化の観点から、循環水1Lに対して、好ましくは1mg以上、より好ましくは5mg以上である。過度の発泡および運転コストの上昇を抑えるという観点から、フェノール樹脂(固形分)の添加量の上限は、循環水1Lに対して、好ましくは1000mg、より好ましくは200mgである。また、フェノール樹脂(固形分)の添加量は、余剰塗料(固形分)に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上である。また、フェノール樹脂(固形分)の添加量の上限は、余剰塗料(固形分)に対して、好ましくは100質量%、より好ましくは10質量%である。 The amount of the phenol resin (solid content) is preferably 1 mg or more, more preferably 5 mg or more, per liter of circulating water, from the viewpoint of making the excess paint tack-free. From the viewpoint of suppressing excessive foaming and increase in operating cost, the upper limit of the amount of the phenol resin (solid content) to be added is preferably 1000 mg, more preferably 200 mg, per 1 L of circulating water. Further, the addition amount of the phenol resin (solid content) is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, based on the surplus paint (solids). The upper limit of the amount of the phenol resin (solid content) is preferably 100% by mass, more preferably 10% by mass, based on the surplus paint (solid content).
 フェノール樹脂は、水性塗料を捕捉した表面泡末の多い循環水、または表面電位がほとんどゼロの有機溶剤塗料を捕捉した循環水における、水処理に好適である。フェノール樹脂の添加によって、循環水中の余剰塗料の粘着性を下げる(不粘着化する)こと、および発泡を抑制することができる。 (4) Phenol resin is suitable for water treatment in circulating water having a large amount of surface foam that has captured an aqueous paint or circulating water that has captured an organic solvent paint having a surface potential of almost zero. By adding the phenolic resin, it is possible to reduce the tackiness of the surplus paint in the circulating water (make it less tacky) and to suppress foaming.
 本発明に用いられるリン化合物として、好ましくは無機リン化合物、より好ましくはリン酸またはリン酸塩、さらに好ましくはオルトリン酸、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、リン酸水素二アンモニウム、またはリン酸二水素アンモニウムを挙げることができる。これらのうち、オルトリン酸が好ましい。 The phosphorus compound used in the present invention is preferably an inorganic phosphorus compound, more preferably phosphoric acid or phosphate, and still more preferably orthophosphoric acid, monosodium phosphate, disodium phosphate, trisodium phosphate, dihydrogen phosphate. Ammonium or ammonium dihydrogen phosphate. Of these, orthophosphoric acid is preferred.
 リン化合物は、BOD(生物化学的酸素要求量)100質量部に対して、リン化合物に由来するリン元素が、好ましくは0.5~8質量部、より好ましくは0.6~4質量部、さらに好ましくは0.7~2質量部となる、量で添加する。 In the phosphorus compound, the phosphorus element derived from the phosphorus compound is preferably 0.5 to 8 parts by mass, more preferably 0.6 to 4 parts by mass, based on 100 parts by mass of BOD (biochemical oxygen demand). More preferably, it is added in an amount of 0.7 to 2 parts by mass.
 リン化合物は、リン化合物そのままを循環水に添加してもよいし、リン化合物を溶媒若しくは分散媒に溶解若しくは分散させて添加してもよい。
 リン化合物を溶解若しくは分散させるための溶媒若しくは分散媒は、特に限定されないが、例えば、アセトン等のケトン、酢酸メチル等のエステル、メタノール等のアルコール、水などを挙げることができる。これらのうち、CODを増加させない点で、水が好ましい。
The phosphorus compound may be added as it is to the circulating water, or may be added by dissolving or dispersing the phosphorus compound in a solvent or a dispersion medium.
The solvent or dispersion medium for dissolving or dispersing the phosphorus compound is not particularly limited, and examples thereof include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, and water. Of these, water is preferred in that it does not increase COD.
 本発明に必要に応じて用いられる窒素化合物として、好ましくは無機窒素化合物、より好ましくは尿素、アンモニア(NH3)、アンモニウム塩(NH4 +)、硝酸塩(NO3 -)又は亜硝酸塩(NO2 2-)、さらに好ましくは無水アンモニア、アンモニア水溶液、硝酸アンモニウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム、硝酸アルミニウムまたは尿素を挙げることができる。なお、リン酸水素二アンモニウム、リン酸二水素アンモニウムはリン化合物および窒素化合物として用いられる。また、硝酸アルミニウムは窒素化合物および無機凝結剤として用いられる。これらのうち、尿素、リン酸水素二アンモニウム、リン酸二水素アンモニウム、硝酸アンモニム、および/または硝酸アルミニウムが好ましい。 The nitrogen compound used as necessary in the present invention is preferably an inorganic nitrogen compound, more preferably urea, ammonia (NH 3 ), ammonium salt (NH 4 + ), nitrate (NO 3 ) or nitrite (NO 2 2- ), more preferably anhydrous ammonia, aqueous ammonia solution, ammonium nitrate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, aluminum nitrate or urea. Note that diammonium hydrogen phosphate and ammonium dihydrogen phosphate are used as a phosphorus compound and a nitrogen compound. Aluminum nitrate is used as a nitrogen compound and an inorganic coagulant. Of these, urea, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium nitrate, and / or aluminum nitrate are preferred.
 窒素化合物は、リン化合物に由来するリン元素1質量部に対して、窒素化合物に由来する窒素元素が、好ましくは2~20質量部、より好ましくは3~15質量部、さらにより好ましくは4~15質量部となる、量で添加する。窒素化合物の添加によって、CODの低減効果が高まる。 In the nitrogen compound, the nitrogen element derived from the nitrogen compound is preferably 2 to 20 parts by mass, more preferably 3 to 15 parts by mass, and still more preferably 4 to 10 parts by mass with respect to 1 part by mass of the phosphorus element derived from the phosphorus compound. It is added in an amount of 15 parts by mass. The addition of the nitrogen compound enhances the COD reduction effect.
 窒素化合物は、窒素化合物そのままを循環水に添加してもよいし、窒素化合物を溶媒若しくは分散媒に溶解若しくは分散させて添加してもよい。
 窒素化合物を溶解若しくは分散させるための溶媒若しくは分散媒は、特に限定されないが、例えば、アセトン等のケトン、酢酸メチル等のエステル、メタノール等のアルコール、水などを挙げることができる。これらのうち、COD(化学的酸素要求量)を増加させない点で、水が好ましい。
The nitrogen compound may be added as it is to the circulating water, or may be added by dissolving or dispersing the nitrogen compound in a solvent or a dispersion medium.
The solvent or dispersion medium for dissolving or dispersing the nitrogen compound is not particularly limited, and examples thereof include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, and water. Of these, water is preferred because it does not increase COD (chemical oxygen demand).
 本発明の処理方法は、凝結剤を前記循環水に添加することをさらに含むことが好ましい。凝結剤は、水中の微細微粒子の荷電を中和して凝結させる作用を有するものである。凝結剤は、有機凝結剤と無機凝結剤とに大別される。
 有機凝結剤としては、アルギン酸ソーダ;キチン・キトサン系凝結剤;TKF04株、BF04などのバイオ凝結剤;ポリエチレンイミン、カチオン変性ポリアクリルアミド、ポリアミン、ポリアミンスルホン、ポリアミド、ポリアルキレンポリアミン、アミン架橋重縮合体、ポリアクリル酸ジメチルアミノエチル、ジメチルジアリルアンモニウムクロライド(DADMAC)重合物、アルキルアミンとエピクロルヒドリンとの重縮合物、アルキレンジクロライドとポリアルキレンポリアミンとの重縮合物、ジシアンジアミドとホルマリンとの重縮合物、DAM(ジメチルアミノエチルメタアクリレート)の酸塩又は四級アンモニウム塩のホモポリマー又はコポリマー、DAA(ジメチルアミノエチルアクリレート)の酸塩又は四級アンモニウム塩のホモポリマー又はコポリマー、ポリビニルアミジン、ジアリルジメチルアンモニウムクロライドとアクリルアミドとの共重合物、メラミンとアルデヒドとの重縮合物、ジシアンジアミドとアルデヒドとの重縮合物、ジシアンジアミドとジエチレントリアミンとの重縮合物などのカチオン系高分子凝結剤などを挙げることができる。これらのうち、ジメチルジアリルアンモニウムクロライド(DADMAC)重合物、アルキルアミンとエピクロルヒドリンとの重縮合物が好ましい。カチオン系高分子凝結剤は、例えば、重量平均分子量が、好ましくは1千以上100万以下、より好ましくは5千以上30万以下である。
Preferably, the treatment method of the present invention further comprises adding a coagulant to the circulating water. The coagulant has an action of neutralizing the charge of the fine fine particles in water to coagulate. Coagulants are broadly classified into organic coagulants and inorganic coagulants.
As organic coagulants, sodium alginate; chitin / chitosan coagulants; biocoagulants such as TKF04 strain, BF04; polyethyleneimine, cation-modified polyacrylamide, polyamine, polyamine sulfone, polyamide, polyalkylene polyamine, amine cross-linked polycondensate Dimethylaminoethyl polyacrylate, dimethyldiallylammonium chloride (DADMAC) polymer, polycondensate of alkylamine and epichlorohydrin, polycondensate of alkylene dichloride and polyalkylenepolyamine, polycondensate of dicyandiamide and formalin, DAM (Dimethylaminoethyl methacrylate) acid salt or quaternary ammonium salt homopolymer or copolymer, DAA (dimethylaminoethyl acrylate) acid salt or quaternary ammonium salt homopolymer Cationic polymers such as limmer or copolymer, polyvinylamidine, copolymer of diallyldimethylammonium chloride and acrylamide, polycondensate of melamine and aldehyde, polycondensate of dicyandiamide and aldehyde, and polycondensate of dicyandiamide and diethylenetriamine. Molecular coagulants and the like can be mentioned. Among these, a dimethyldiallylammonium chloride (DADMAC) polymer and a polycondensate of an alkylamine and epichlorohydrin are preferred. For example, the cationic polymer coagulant preferably has a weight average molecular weight of 1,000 or more and 1,000,000 or less, more preferably 5,000 or more and 300,000 or less.
 無機凝結剤としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)、ポリアルミニウムヒドロキシクロライド、擬ベーマイトアルミナゾル(AlO(OH))などのアルミニウム系凝結剤;水酸化第一鉄、硫酸第一鉄、塩化第二鉄、ポリ硫酸第二鉄、鉄-シリカ無機高分子凝結剤などの鉄塩系凝結剤;塩化亜鉛などの亜鉛系凝結剤;活性ケイ酸、ポリシリカ鉄凝結剤などを挙げることができる。これらのうち、ポリ塩化アルミニウム(PAC)、ポリアルミニウムヒドロキシクロライドが好ましい。 Examples of inorganic coagulants include aluminum coagulants such as aluminum sulfate (sulfuric acid band), polyaluminum chloride (PAC), polyaluminum hydroxychloride, pseudoboehmite alumina sol (AlO (OH)); ferrous hydroxide, sulfuric acid Iron salt-based coagulants such as iron, ferric chloride, ferric polysulfate, and iron-silica inorganic polymer coagulants; zinc-based coagulants such as zinc chloride; activated silicic acid and polysilica iron coagulants Can be. Of these, polyaluminum chloride (PAC) and polyaluminum hydroxychloride are preferred.
 凝結剤の循環水への添加量は、余剰塗料の凝固フロックの形成状態に応じて適宜調整することができる。凝結剤の循環水への添加量は、フェノール樹脂100質量部に対して、好ましくは0.01~30質量部、より好ましくは0.5~20質量部である。
 カチオン系高分子凝結剤を使用する場合、その添加量は、例えば、フェノール樹脂100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.5~10質量部である。また、カチオン系高分子凝結剤の添加量は、例えば、循環水に対するコロイド当量値として、好ましくは0.001~1meq/L、より好ましくは0.002~0.5meq/Lである。
 無機凝結剤を使用する場合、その添加量は、フェノール樹脂100質量部に対して、金属酸化物換算で、好ましくは0.01~100質量部、より好ましくは1~50質量部である。
The amount of the coagulant added to the circulating water can be appropriately adjusted according to the state of formation of coagulated flocs of the surplus paint. The amount of the coagulant added to the circulating water is preferably 0.01 to 30 parts by mass, more preferably 0.5 to 20 parts by mass, based on 100 parts by mass of the phenol resin.
When a cationic polymer coagulant is used, its addition amount is, for example, preferably 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, based on 100 parts by mass of the phenol resin. The amount of the cationic polymer coagulant added is, for example, preferably 0.001 to 1 meq / L, more preferably 0.002 to 0.5 meq / L, as a colloid equivalent value with respect to circulating water.
When an inorganic coagulant is used, its addition amount is preferably from 0.01 to 100 parts by mass, more preferably from 1 to 50 parts by mass, in terms of metal oxide, based on 100 parts by mass of the phenol resin.
 凝結剤は、凝結剤そのままを循環水に添加してもよいし、凝結剤を溶媒若しくは分散媒に溶解若しくは分散させて添加してもよい。凝結剤を溶解若しくは分散させるための溶媒若しくは分散媒は、特に限定されないが、例えば、アセトン等のケトン、酢酸メチル等のエステル、メタノール等のアルコール、水などを挙げることができる。これらのうち、COD(化学的酸素要求量)を増加させない点で、水が好ましい。 The coagulant may be added as it is to the circulating water, or may be added by dissolving or dispersing the coagulant in a solvent or a dispersion medium. The solvent or dispersion medium for dissolving or dispersing the coagulant is not particularly limited, and examples thereof include ketones such as acetone, esters such as methyl acetate, alcohols such as methanol, and water. Of these, water is preferred because it does not increase COD (chemical oxygen demand).
 凝結剤の作用によって得られる凝固フロックを凝集させて粗大フロックを形成させることが、沈降分離や遠心分離を容易にするという観点から好ましい。
 本発明の処理方法においては、粗大フロックの形成のために、高分子凝集剤を前記循環水に添加することができる。高分子凝集剤は、アニオン、カチオンまたは両性のポリマーからなるものである。係るポリマーは、重量平均分子量が、通常、100万超、好ましくは500万以上のものである。
It is preferable from the viewpoint of facilitating sedimentation and centrifugal separation that flocculated floc obtained by the action of the coagulant is aggregated to form coarse flocs.
In the treatment method of the present invention, a polymer flocculant can be added to the circulating water to form coarse flocs. The polymer flocculant comprises an anionic, cationic or amphoteric polymer. Such polymers usually have a weight average molecular weight of more than 1,000,000, preferably 5,000,000 or more.
 アニオンポリマーからなる高分子凝集剤としては、ポリアクリル酸ナトリウム、ポリアクリル酸ソーダ・アミド誘導体、ポリアクリルアミド部分加水分解物、部分スルホメチル化ポリアクリルアミド、ポリ(2-アクリルアミド)-2-メチルプロパン硫酸塩などを挙げることができる。 Examples of the polymer flocculant comprising an anionic polymer include sodium polyacrylate, sodium polyacrylate / amide derivative, partially hydrolyzed polyacrylamide, partially sulfomethylated polyacrylamide, and poly (2-acrylamide) -2-methylpropane sulfate. And the like.
 カチオンポリマーからなる高分子凝集剤としては、ポリアミノアルキルアクリレート、ポリアミノアルキルメタクリレート、ポリエチレンイミン、ハロゲン化ポリジアリルアンモニウム、キトサン、尿素-ホルマリン樹脂、アクリルアミド/[2-(アクリロイルオキシ)エチル]ベンジルジメチルアンモニウムクロリド/[2-(アクリロイルオキシ)エチル]トリメチルアンモニウムクロリドの共重合体、アクリルアミド/[3-(アクリロイルオキシ)プロピル]ベンジルジメチルアンモニウムクロリド/[2-(アクリロイルオキシ)エチル]トリメチルアンモニウムクロリドの共重合体、アクリルアミド/[2-(アクリロイルオキシ)エチル]ベンジルジメチルアンモニウムクロリド/[3-(アクリロイルオキシ)プロピル]トリメチルアンモニウムクロリドの共重合体、アクリルアミド/[3-(アクリロイルオキシ)プロピル]ベンジルジメチルアンモニウムクロリド/[3-(アクリロイルオキシ)プロピル]トリメチルアンモニウムクロリドの共重合体などを挙げることができる。 Examples of the polymer flocculant comprising a cationic polymer include polyaminoalkyl acrylate, polyaminoalkyl methacrylate, polyethyleneimine, polydiallylammonium halide, chitosan, urea-formalin resin, acrylamide / [2- (acryloyloxy) ethyl] benzyldimethylammonium chloride Copolymer of / [2- (acryloyloxy) ethyl] trimethylammonium chloride, copolymer of acrylamide / [3- (acryloyloxy) propyl] benzyldimethylammonium chloride / [2- (acryloyloxy) ethyl] trimethylammonium chloride Acrylamide / [2- (acryloyloxy) ethyl] benzyldimethylammonium chloride / [3- (acryloyloxy) propyl A copolymer of trimethyl ammonium chloride, acrylamide / [3- (acryloyloxy) propyl] benzyl dimethyl ammonium chloride / [3- (acryloyloxy) propyl] and the like trimethyl ammonium chloride copolymer.
 両性ポリマーからなる高分子凝集剤としては、(メタ)アクリルアミドと4級アンモニウムアルキル(メタ)アクリレートと(メタ)アクリル酸ナトリウムとの共重合体;アクリルアミドとアミノアルキルメタクリレートとアクリル酸ナトリウムの共重体などを挙げることができる。 Examples of the polymer aggregating agent comprising an amphoteric polymer include a copolymer of (meth) acrylamide, quaternary ammonium alkyl (meth) acrylate, and sodium (meth) acrylate; a copolymer of acrylamide, aminoalkyl methacrylate, and sodium acrylate; Can be mentioned.
 高分子凝集剤は、ハンドリング性の観点より、液状品を用いることが好ましい。高分子凝集剤の液状品としては、W/O型エマルジョンとディスパージョンとを用いることができる。ディスパージョンは、高塩類濃度の水系媒体中に高分子凝集剤粒子が分散したものである。このため、CODの低減の観点からはディスパージョンを用いることが好ましい。ただし、W/O型エマルジョンは種類が多く、このため、凝集効果の点ではW/O型エマルジョンの方が好ましい。 液状 It is preferable to use a liquid product as the polymer flocculant from the viewpoint of handling properties. As the liquid product of the polymer flocculant, a W / O emulsion and a dispersion can be used. The dispersion is obtained by dispersing polymer flocculant particles in an aqueous medium having a high salt concentration. Therefore, it is preferable to use a dispersion from the viewpoint of reducing COD. However, there are many types of W / O emulsions, and therefore, W / O emulsions are more preferable in terms of aggregation effect.
 高分子凝集剤の添加量は、粗大フロックの形成状態に応じて適宜調整することができる。高分子凝集剤の添加量は、例えば、フェノ-ル樹脂100質量部に対して、好ましくは0.01~20質量部、より好ましくは0.5~10質量部である。また、高分子凝集剤の添加量は、例えば、循環水に対するコロイド当量値として、好ましくは0.001~1meq/L、より好ましくは0.002~0.5meq/Lである。高分子凝集剤(固形分)の添加量は、余剰塗料(固形分)に対して、好ましくは0.1~10質量%、より好ましくは0.2~3質量%である。 添加 The amount of the polymer flocculant can be appropriately adjusted according to the formation state of the coarse flocs. The amount of the polymer flocculant to be added is, for example, preferably 0.01 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, per 100 parts by mass of the phenol resin. The amount of the polymer coagulant added is, for example, preferably from 0.001 to 1 meq / L, more preferably from 0.002 to 0.5 meq / L, as a colloid equivalent value with respect to circulating water. The amount of the polymer flocculant (solid content) to be added is preferably 0.1 to 10% by mass, more preferably 0.2 to 3% by mass, based on the excess paint (solids).
 本発明の処理方法においては、さらに不粘着化剤、pH調整剤、好気性微生物、酸素(空気)などを前記循環水に添加することができる。 処理 In the treatment method of the present invention, a tackifier, a pH adjuster, an aerobic microorganism, oxygen (air), and the like can be further added to the circulating water.
 不粘着化剤としては、アルミナゾル、セピオライト、カルボン酸系重合体、タンニンアルカリ溶液、タンニン基重合体、メラミンホルムアルデヒド樹脂、メラミンジシアンジアミド樹脂、ベントナイト、ヘクトライト、直鎖型カチオン性ポリアミン、亜鉛酸ナトリウムなどを挙げることができる。 Examples of the tackifier include alumina sol, sepiolite, carboxylic acid-based polymer, tannin alkaline solution, tannin-based polymer, melamine formaldehyde resin, melamine dicyandiamide resin, bentonite, hectorite, linear cationic polyamine, sodium zincate, etc. Can be mentioned.
 pH調整剤としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどの水溶性アルカリ金属化合物;塩酸、硫酸、硝酸;などを挙げることができる。循環水のpHは、好ましくは5~9、より好ましくは6~8.5、さらに好ましくは7~8に調整する。 Examples of the pH adjuster include water-soluble alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate; hydrochloric acid, sulfuric acid, and nitric acid. The pH of the circulating water is adjusted to preferably 5 to 9, more preferably 6 to 8.5, and even more preferably 7 to 8.
 好気性微生物としては、ズーグレア、シュードモナス、バチルスなどの細菌;ツリガネ虫、ワムシなどの原生動物などを挙げることができる。
 酸素または空気は、曝気装置、バブル発生装置などを用いて添加することができる。酸素または空気の添加によって、CODの低下効果が向上する。循環水の酸素濃度は、特に限定されないが、好ましくは1.2~10mg-O2/L、より好ましくは1.5~8mg-O2/Lに調整することが好ましい。
Aerobic microorganisms include bacteria such as zooglare, pseudomonas, and bacillus; protozoa such as trichomes and rotifers.
Oxygen or air can be added using an aerator, a bubble generator, or the like. The addition of oxygen or air enhances the COD lowering effect. The oxygen concentration of the circulating water is not particularly limited, but is preferably adjusted to 1.2 to 10 mg-O 2 / L, more preferably to 1.5 to 8 mg-O 2 / L.
 リン化合物、窒素化合物、フェノール樹脂、凝結剤、凝集剤、不粘着化剤、pH調整剤、好気性微生物、酸素(空気)などを循環水に添加する位置は、特に限定されない。例えば、塗装ブース、塗装ブースから循環水ピットへの移送管、循環水ピット、循環水ピットから塗装ブースへの移送管などを挙げることができる。また、循環水の温度は、好ましくは0~70℃、より好ましくは0~60℃、さらに好ましくは0~40℃に調整することが好ましい。 The position at which a phosphorus compound, a nitrogen compound, a phenol resin, a coagulant, a coagulant, a tackifier, a pH adjuster, an aerobic microorganism, oxygen (air), and the like are added to the circulating water is not particularly limited. For example, a coating booth, a transfer pipe from the coating booth to the circulating water pit, a circulating water pit, a transfer pipe from the circulating water pit to the coating booth, and the like can be given. Further, the temperature of the circulating water is preferably adjusted to 0 to 70 ° C., more preferably 0 to 60 ° C., and still more preferably 0 to 40 ° C.
 上記の方法によって生成した凝固フロックまたは粗大フロックは公知の方法によって循環水から分離除去される。このようにして、湿式塗装ブースを循環する水の除濁およびCOD低減をすることができる。 凝固 The coagulated floc or coarse floc generated by the above method is separated and removed from the circulating water by a known method. In this way, it is possible to reduce turbidity and COD of water circulating in the wet coating booth.
 次に、実施例を示して、本発明をより具体的に説明する。但し、以下の実施例は本発明の一実施形態を示すに過ぎず、本発明を以下の実施例に限定するものでない。用いた薬剤は以下の通りであり、実施例においての薬剤の添加量は有効成分としての添加量ではなく、製品(水溶液)としての添加量である。 Next, the present invention will be described more specifically with reference to examples. However, the following examples merely show one embodiment of the present invention, and the present invention is not limited to the following examples. The drugs used are as follows, and the amount of drug added in the examples is not the amount added as an active ingredient, but the amount added as a product (aqueous solution).
 フェノール樹脂のアルカリ溶液:ノボラック型フェノール樹脂(重量平均分子量=約2000)20質量部および48%苛性ソーダ10質量部を純水70質量部に添加し、加温して溶解させた。得られた液を室温に戻して、フェノール樹脂アルカリ溶液を得た。
 PAC:ポリ塩化アルミニウム水溶液(Al23換算10質量%)
 有機凝結剤:アルキルアミンエピクロルヒドリン縮合物水溶液(有効成分濃度50質量%)
 リン化合物:オルトリン酸の75質量%水溶液
 窒素化合物:尿素30質量部、リン酸水素アンモニウム10質量部、硝酸アンモニウム0.5質量部および水59.5質量部の混合物
Phenolic resin alkaline solution: 20 parts by mass of a novolak type phenolic resin (weight average molecular weight = about 2000) and 10 parts by mass of 48% caustic soda were added to 70 parts by mass of pure water, and heated to dissolve. The obtained liquid was returned to room temperature to obtain a phenol resin alkaline solution.
PAC: polyaluminum chloride aqueous solution (10% by mass in terms of Al 2 O 3 )
Organic coagulant: aqueous solution of alkylamine epichlorohydrin condensate (active ingredient concentration: 50% by mass)
Phosphorus compound: 75% by mass aqueous solution of orthophosphoric acid Nitrogen compound: A mixture of 30 parts by mass of urea, 10 parts by mass of ammonium hydrogen phosphate, 0.5 parts by mass of ammonium nitrate and 59.5 parts by mass of water
実施例1
 循環水ピットから塗装ブース循環水500mlを採取し、1Lポリビンに入れた。これに自動車用水性ベース塗料5000mgを添加して、試験液を得た。試験液の水質は、溶解性CODMnが6600mg/L、BODが3900mg/L、ケルダール窒素が390mg/L、総リンが18mg/Lであった。
 試験液に、フェノール樹脂アルカリ溶液245mg、PAC250mg、および有機凝結剤25mgを添加した。硫酸または苛性ソーダを用いてpHを7に調整した。これにリン化合物をBOD100質量部に対してリン元素1質量部となる割合で添加した。図1に示すように、ポリビンに空気を1L/分で供給して、室温下で7日間曝気した。曝気後の液の水質は、溶解性CODMnが3600mg/Lであった。曝気中に若干の発泡があったが、曝気を終了させると2分間以内に消泡した。
Example 1
500 ml of the coating booth circulating water was collected from the circulating water pit and placed in a 1 L polybin. A test liquid was obtained by adding 5000 mg of the aqueous base paint for automobiles to this. The water quality of the test solution was 6600 mg / L for soluble CODMn, 3900 mg / L for BOD, 390 mg / L for Kjeldahl nitrogen, and 18 mg / L for total phosphorus.
To the test solution, 245 mg of a phenol resin alkaline solution, 250 mg of PAC, and 25 mg of an organic coagulant were added. The pH was adjusted to 7 using sulfuric acid or caustic soda. To this, a phosphorus compound was added at a ratio of 1 part by mass of a phosphorus element to 100 parts by mass of BOD. As shown in FIG. 1, air was supplied to the polybin at a rate of 1 L / min and aerated at room temperature for 7 days. The water quality of the liquid after the aeration was 3600 mg / L in soluble CODMn. There was some foaming during the aeration, but when the aeration was terminated, the foam disappeared within 2 minutes.
実施例2
 リン化合物を添加した後、窒素化合物をBOD100質量部に対して窒素元素5質量部となる割合で添加した以外は実施例1と同じ方法で7日間曝気した。
 曝気後の液の水質は、溶解性CODMnが2200mg/Lであった。曝気中に若干の発泡があったが、曝気を終了させると2分間以内に消泡した。
Example 2
After the addition of the phosphorus compound, the mixture was aerated for 7 days in the same manner as in Example 1 except that the nitrogen compound was added at a ratio of 5 parts by mass of the nitrogen element to 100 parts by mass of the BOD.
The water quality of the liquid after aeration was such that the soluble CODMn was 2200 mg / L. There was some foaming during the aeration, but when the aeration was terminated, the foam disappeared within 2 minutes.
比較例1
 リン化合物を添加しなかった以外は実施例1と同じ方法で7日間曝気した。
 曝気後の液の水質は、溶解性CODMnが3800mg/Lであった。曝気中に若干の発泡があったが、曝気を終了させると2分間以内に消泡した。
Comparative Example 1
Aeration was performed for 7 days in the same manner as in Example 1 except that the phosphorus compound was not added.
The water quality of the liquid after the aeration was 3800 mg / L in soluble CODMn. There was some foaming during the aeration, but when the aeration was terminated, the foam disappeared within 2 minutes.
比較例2
 フェノール樹脂アルカリ溶液245mg、PAC250mg、および有機凝結剤25mgを、PAC300mg、および有機凝結剤25mgに変えた以外は、実施例1と同じ方法で7日間曝気した。
 曝気後の液の水質は、溶解性CODMnが3700mg/Lであった。曝気中に多量の発泡があった。曝気を終了させて2分間経過した後でも、曝気終了時の泡量の約50%の泡が残っていた。
Comparative Example 2
Aeration was performed for 7 days in the same manner as in Example 1 except that 245 mg of phenol resin alkaline solution, 250 mg of PAC, and 25 mg of organic coagulant were changed to 300 mg of PAC and 25 mg of organic coagulant.
The water quality of the liquid after the aeration was 3700 mg / L in soluble CODMn. There was a lot of foaming during the aeration. Even after 2 minutes from the end of the aeration, about 50% of the foam amount at the end of the aeration remained.
 以上の結果を表1にまとめて示す。
 表1に示すように、本発明の処理方法(実施例1、2)は、循環水が捕集した余剰塗料、特に化学的酸素要求量を増加させる有機物質を効率的に除去することができ、循環水の化学的酸素要求量を減少させることができる。
The above results are summarized in Table 1.
As shown in Table 1, the treatment method of the present invention (Examples 1 and 2) can efficiently remove excess paints collected by the circulating water, particularly, organic substances that increase the chemical oxygen demand. The chemical oxygen demand of the circulating water can be reduced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1:ポリビン
 2:空気供給用のチューブ
 3:混合液
 4:泡
1: Polyvin 2: Tube for air supply 3: Mixture 4: Foam

Claims (6)

  1.  余剰塗料と水とを含んでなる循環水に、リン化合物、およびフェノール樹脂を添加することを含む、湿式塗装ブース循環水の処理方法。 (4) A method for treating circulating water in a wet coating booth, comprising adding a phosphorus compound and a phenol resin to circulating water containing excess paint and water.
  2.  リン化合物がリン酸である、請求項1に記載の処理方法。 The method according to claim 1, wherein the phosphorus compound is phosphoric acid.
  3.  フェノール樹脂がノボラック型フェノール樹脂であり、アルカリ水溶液に溶解若しくは分散させた状態で添加する、請求項1に記載の処理方法。 The method according to claim 1, wherein the phenol resin is a novolak type phenol resin, and is added in a state of being dissolved or dispersed in an aqueous alkaline solution.
  4.  余剰塗料と水とを含んでなる循環水に、窒素化合物を添加することをさらに含む、請求項1に記載の処理方法。 The treatment method according to claim 1, further comprising: adding a nitrogen compound to circulating water containing surplus paint and water.
  5.  窒素化合物が尿素、リン酸水素二アンモニウム、リン酸二水素アンモニウム、硝酸アンモニウムおよび硝酸アルミニウムからなる群から選ばれる少なくとも一つである、請求項4に記載の処理方法。 The method according to claim 4, wherein the nitrogen compound is at least one selected from the group consisting of urea, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium nitrate and aluminum nitrate.
  6.  余剰塗料と水とを含んでなる循環水に、無機凝結剤および有機凝結剤を添加することをさらに含む、請求項1または4に記載の処理方法。 The processing method according to claim 1 or 4, further comprising: adding an inorganic coagulant and an organic coagulant to circulating water containing surplus paint and water.
PCT/JP2019/025109 2018-07-02 2019-06-25 Method for treating wet paint booth circulating water WO2020008947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980041969.4A CN112334416A (en) 2018-07-02 2019-06-25 Treatment method of circulating water of wet coating chamber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-126061 2018-07-02
JP2018126061A JP7206650B2 (en) 2018-07-02 2018-07-02 Wet paint booth circulating water treatment method

Publications (1)

Publication Number Publication Date
WO2020008947A1 true WO2020008947A1 (en) 2020-01-09

Family

ID=69059642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025109 WO2020008947A1 (en) 2018-07-02 2019-06-25 Method for treating wet paint booth circulating water

Country Status (3)

Country Link
JP (1) JP7206650B2 (en)
CN (1) CN112334416A (en)
WO (1) WO2020008947A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727292B1 (en) * 1969-09-12 1972-07-21
JPH0370780A (en) * 1989-08-09 1991-03-26 Kurita Water Ind Ltd Treating agent for wet spray booth
JP2001286800A (en) * 2000-04-10 2001-10-16 Neos Co Ltd Treatment method for wet coating booth
JP3196996U (en) * 2015-01-07 2015-04-16 伯東株式会社 Paint soot collection and recovery equipment in wet painting booth
JP2015188846A (en) * 2014-03-28 2015-11-02 栗田工業株式会社 Water treatment agent, and water treatment method
JP2016052639A (en) * 2014-09-04 2016-04-14 栗田工業株式会社 Wet coating booth circulation water treatment agent, and wet coating booth circulation water treatment method
JP2016140805A (en) * 2015-01-30 2016-08-08 栗田工業株式会社 Apparatus and method for treating wet coating booth circulating water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238537A (en) * 2006-03-10 2007-09-20 K I Chemical Industry Co Ltd Additive for circulating water in coating booth, method for treating water and circulating water for coating booth
JP2009022852A (en) * 2007-07-18 2009-02-05 Kurita Water Ind Ltd Treatment method of wet coating booth circulating water
JP5354679B2 (en) * 2009-11-27 2013-11-27 パーカーエンジニアリング株式会社 Coating booth circulating water treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4727292B1 (en) * 1969-09-12 1972-07-21
JPH0370780A (en) * 1989-08-09 1991-03-26 Kurita Water Ind Ltd Treating agent for wet spray booth
JP2001286800A (en) * 2000-04-10 2001-10-16 Neos Co Ltd Treatment method for wet coating booth
JP2015188846A (en) * 2014-03-28 2015-11-02 栗田工業株式会社 Water treatment agent, and water treatment method
JP2016052639A (en) * 2014-09-04 2016-04-14 栗田工業株式会社 Wet coating booth circulation water treatment agent, and wet coating booth circulation water treatment method
JP3196996U (en) * 2015-01-07 2015-04-16 伯東株式会社 Paint soot collection and recovery equipment in wet painting booth
JP2016140805A (en) * 2015-01-30 2016-08-08 栗田工業株式会社 Apparatus and method for treating wet coating booth circulating water

Also Published As

Publication number Publication date
CN112334416A (en) 2021-02-05
JP2020001027A (en) 2020-01-09
JP7206650B2 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
EP0522334B1 (en) A method of treating BCTMP/CTMP wastewater
JP5228520B2 (en) Coagulation sedimentation method
JP5364298B2 (en) Dispersant-containing water treatment method
JP5621254B2 (en) Oil-containing wastewater treatment method
JP5621256B2 (en) Wastewater coagulation method
JP2002346572A (en) Clean water treatment method and treatment agent
JP5659487B2 (en) Wastewater coagulation method
JP6738492B2 (en) Water treatment method and water treatment device
JP2007038177A (en) Waste-water treatment agent and waste-water treatment method
WO2020008947A1 (en) Method for treating wet paint booth circulating water
EP3121152B1 (en) Wet paint booth circulating water treatment agent
JP2020093228A (en) Treatment method of circulating water of wet coating booth
JP2017029894A (en) Processing method of wet coating booth circulation water
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP6642616B2 (en) Treatment method for circulating water in wet painting booth
JP6917299B2 (en) Dehydration method of organic sludge, processing equipment used for dehydration of organic sludge, organic coagulant
JP2008080185A (en) Sludge dewatering method
JP6797089B2 (en) Water treatment method and treatment equipment for organic wastewater containing oil
CN109626536A (en) A kind of preparation method and applications of anion base metal agent for capturing
JP2005103361A (en) Coating material mist treatment agent and coating material mist treatment method
JP5681828B1 (en) Wet paint booth circulating water treatment method
CN114751499A (en) Composite flocculant for treating dye wastewater and preparation method and application thereof
JP3064878B2 (en) Organic sludge treatment
JP6186944B2 (en) Papermaking wastewater treatment method
JP2020116534A (en) Wastewater treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830111

Country of ref document: EP

Kind code of ref document: A1