WO2020008788A1 - 三次元造形装置、制御装置、および造形物の製造方法 - Google Patents

三次元造形装置、制御装置、および造形物の製造方法 Download PDF

Info

Publication number
WO2020008788A1
WO2020008788A1 PCT/JP2019/022277 JP2019022277W WO2020008788A1 WO 2020008788 A1 WO2020008788 A1 WO 2020008788A1 JP 2019022277 W JP2019022277 W JP 2019022277W WO 2020008788 A1 WO2020008788 A1 WO 2020008788A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
light
control unit
photocurable composition
unit
Prior art date
Application number
PCT/JP2019/022277
Other languages
English (en)
French (fr)
Inventor
塩出 浩久
洋 山中
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2020528736A priority Critical patent/JP6956874B2/ja
Priority to EP19829967.9A priority patent/EP3819101A4/en
Priority to US17/257,109 priority patent/US20210129447A1/en
Publication of WO2020008788A1 publication Critical patent/WO2020008788A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a three-dimensional modeling device, a control device, and a method of manufacturing a molded article.
  • Patent Document 1 describes that a polymerizable liquid between a carrier and a build plate is irradiated with light through the build plate to form a three-dimensional object on the carrier.
  • a supply conduit communicating with a flow path in a carrier is formed and a polymerizable liquid is supplied from the carrier.
  • Patent Document 1 it was difficult to supply the polymerizable liquid preferentially to a specific place where the supply of the polymerizable liquid is necessary.
  • the present invention provides a technique for effectively introducing an introduction material into a desired modeling area of a three-dimensional modeling apparatus.
  • the control unit includes: By curing the photocurable composition in the region where the light is irradiated, the position of the carrier and the irradiation unit are controlled so as to form at least a part of a flow path connected to the outside of the container, And, At least one of an enlarged portion in which the inner diameter of the flow channel increases toward the light transmitting portion side end of the flow channel, and at least one of the openings located on the side wall near the front end of the flow channel, at least temporarily.
  • a control device for a three-dimensional printing apparatus The three-dimensional printing apparatus, A container containing the photocurable composition and having at least a part having a light transmitting portion, A carrier having a variable distance to the light transmitting portion; The photocurable composition between the carrier and the light transmitting portion, an irradiation unit for irradiating light through the light transmitting unit,
  • the control device includes a control unit that controls the position of the carrier and the irradiation unit, so as to form a molded article obtained by curing the photocurable composition,
  • the control unit includes: By curing the photocurable composition in the region where the light is irradiated, the position of the carrier and the irradiation unit are controlled so as to form at least a part of a flow path connected to the outside of the container, And, At least one of an enlarged portion in which the inner diameter of the flow channel increases toward the light transmitting portion side end of the flow channel, and at least one of the openings located on the side
  • a method of manufacturing a molded article using a three-dimensional molding apparatus The three-dimensional printing apparatus, A container containing the photocurable composition and having at least a part having a light transmitting portion, A carrier having a variable distance to the light transmitting portion; An irradiation unit that irradiates the photocurable composition between the carrier and the light transmission unit with light through the light transmission unit, A control unit that controls the position of the carrier and the irradiation unit so as to form the shaped object formed by curing the photocurable composition, The control unit includes: By curing the photocurable composition in the region where the light is irradiated, the position of the carrier and the irradiation unit are controlled so as to form at least a part of a flow path connected to the outside of the container, And, At least one of an enlarged portion in which the inner diameter of the flow channel increases toward the light transmitting portion side end of the flow channel, and at least one of the openings located on the side wall near the
  • FIG. 2 is a diagram illustrating a configuration of the three-dimensional printing apparatus according to the first embodiment. It is a figure which illustrates the structure of the modeled object and the flow path formed by the three-dimensional modeling apparatus according to the first embodiment.
  • FIG. 2 is an enlarged view showing a first example of the structure of the flow channel according to the first embodiment.
  • FIG. 3 is an enlarged view showing a second example of the structure of the flow channel according to the first embodiment. It is a figure showing a modification of a modeling thing and a channel formed with a three-dimensional fabrication device concerning a 1st embodiment.
  • (A) is a figure which shows the 1st example of the flow path which concerns on 2nd Embodiment
  • (b) is a figure which shows the 2nd example of the flow path which concerns on 2nd Embodiment. It is a figure which illustrates the structure of the modeled object and the channel formed with the three-dimensional modeling device concerning a 3rd embodiment. It is a figure showing the 1st example of the timing chart of the control which the control part concerning a 4th embodiment performs. It is a figure showing the 2nd example of the timing chart of the control which the control part concerning a 4th embodiment performs. It is a figure showing the 3rd example of the timing chart of the control which the control part concerning a 4th embodiment performs.
  • FIGS. 3A to 3C are diagrams illustrating a light irradiation pattern for forming a side wall of a flow channel. It is a figure which illustrates the composition of the three-dimensional fabrication device concerning a 6th embodiment. It is a block diagram which illustrates the composition of the 3D modeling device and control device concerning a 7th embodiment.
  • control unit 140 of the three-dimensional printing apparatus 10 and the control unit 500 of the control apparatus 50 are not hardware-based configurations but are function-based blocks.
  • the control unit 140 of the three-dimensional printing apparatus 10 and the control unit 500 of the control device 50 include a CPU of an arbitrary computer, a memory, a program for realizing the constituent elements of the drawing loaded in the memory, and a hard disk for storing the program. It is realized by an arbitrary combination of hardware and software with a focus on a storage medium and a network connection interface. There are various modifications of the method and apparatus for realizing the method.
  • FIG. 1 is a diagram illustrating a configuration of a three-dimensional printing apparatus 10 according to the first embodiment.
  • FIG. 2 is a diagram exemplifying a structure of a modeled object 200 and a flow path 230 formed by the three-dimensional modeling apparatus 10 according to the first embodiment. This drawing shows a state in which the modeled object 200 is being formed.
  • the three-dimensional printing apparatus 10 according to the present embodiment includes a container 110, a carrier 120, an irradiation unit 130, and a control unit 140.
  • the container 110 contains the photocurable composition 20 and has a light transmitting portion 112 at least in part. The distance between the carrier 120 and the light transmitting unit 112 is variable.
  • the irradiating unit 130 irradiates the photocurable composition 20 between the carrier 120 and the light transmitting unit 112 with light via the light transmitting unit 112.
  • the control unit 140 controls the position of the carrier 120 and the irradiation unit 130 so as to form the shaped article 200 obtained by curing the photocurable composition 20.
  • the control unit 140 cures the photocurable composition 20 in the region where the light is irradiated, so that the position of the carrier 120 and at least a part of the channel 230 connected to the outside of the container 110 are formed.
  • the position of the carrier 120 and the irradiation unit 130 are controlled so that the irradiation unit 130 is controlled and at least one of the enlarged diameter portion and the opening 238 is provided at least temporarily.
  • the enlarged diameter portion is a portion where the inner diameter of the flow channel 230 increases toward the tip 232 of the flow channel 230 on the light transmitting portion 112 side.
  • the opening 238 is located on the side wall near the tip 232 of the flow channel 230. This will be described in detail below.
  • the three-dimensional printing apparatus 10 is an apparatus that cures the photocurable composition 20 based on three-dimensional data indicating the shape of the shaped article 200 to form the shaped article 200.
  • the shaped object 200 is not particularly limited, but the shaped object 200 can be at least one of a dental application and a medical application. Dental applications and medical applications need to be manufactured precisely for each user, and the three-dimensional modeling apparatus 10 is suitable for use.
  • the photocurable composition 20 is, for example, a resin composition having fluidity, and includes an acrylic resin, a methacrylic resin, a styrene resin, an epoxy resin, a urethane resin, an acrylate resin, an epoxy-acrylate hybrid resin, and an epoxy oxetane. -Including one or more selected from the group consisting of acrylate hybrid resins, urethane acrylate resins, methacrylate resins, urethane methacrylate resins, and these monomers. Further, the photocurable composition 20 may include a polymerization initiator, a filler, a pigment, a dye, a cell, a cell growth factor, and the like.
  • the container 110 of the three-dimensional printing apparatus 10 contains the photocurable composition 20.
  • a part of the container 110 is provided with a light transmitting part 112 having higher light transmitting property than other parts.
  • the light transmitting portion 112 is, for example, glass.
  • the surface 113 is an inner surface of the container 110 among the surfaces of the light transmitting portion 112.
  • the light transmitting section 112 light emitted from the outside of the container 110 is transmitted to the inside of the container 110 with high efficiency.
  • the photocurable composition 20 near the surface 113 is cured.
  • the container 110 has a bat shape.
  • the light transmitting section 112 is provided on the bottom of the container 110.
  • an introduction hole 115 for introducing the photocurable composition 20 is provided on a side surface of the container 110.
  • the carrier 120 is a member serving as a base for modeling.
  • the surface 122 of the carrier 120 faces in parallel with the surface 113 of the light transmitting section 112.
  • the three-dimensional printing apparatus 10 according to the present embodiment further includes a driving unit 142 that drives the carrier 120 at least in a direction perpendicular to the surface 113. When the carrier 120 is driven, the distance between the surface 122 and the surface 113 changes.
  • the photocurable composition 20 cured near the surface 113 is laminated on the surface 122 of the carrier 120.
  • a three-dimensional structure is formed on the surface 122.
  • the modeled object 200 illustrates a structure in the middle of modeling.
  • a support portion that connects the modeled object 200 and the carrier 120 may be further formed between the carrier 120 and the light transmitting section 112, similarly to the modeled object 200. The support is removed after all light irradiation is completed.
  • the carrier 120 is configured to include, for example, a metal.
  • the metal include aluminum and stainless steel.
  • the carrier 120 may have a surface layer.
  • the surface layer include an oxide layer of the above-described metal, a hard coat layer obtained by curing the curable composition, a paint layer, and a resin layer.
  • the resin layer include polyethylene terephthalate (PET) and polypropylene (PP).
  • PET polyethylene terephthalate
  • PP polypropylene
  • the resin layer can be formed on the carrier 120 by attaching a film or a sheet, for example.
  • the irradiation unit 130 includes, for example, a light source and an optical drawing system.
  • the light source is not particularly limited, but may be, for example, an ultraviolet light source, an incandescent lamp, a fluorescent lamp, a phosphorescent lamp, a laser diode, or a light emitting diode.
  • the optical drawing system includes, for example, at least one of a mask, a spatial light modulator (spatial light modulator), a micromirror device, and a MEMS (Micro Electro Mechanical Mechanical Systems) mirror array.
  • the irradiation unit 130 includes a light source and a driving device for an optical drawing system, and irradiates the photocurable composition 20 with light under the control of the control unit 140.
  • the irradiation unit 130 may further include optical components such as a lens and a shutter.
  • the irradiation unit 130 In the irradiation unit 130, light from a light source is irradiated to the light transmission unit 112 via an optical drawing system.
  • the output light from the irradiation unit 130 is a beam light
  • the light irradiation region is scanned with the beam light
  • the photocurable composition 20 in the scanned light irradiation region is cured. Further, light may be simultaneously projected from the irradiation unit 130 onto the entire or a part of the light irradiation area.
  • the control unit 140 controls the irradiation unit 130 and the driving unit 142.
  • the three-dimensional printing apparatus 10 further includes a storage unit 150, and information indicating a three-dimensional shape of the structure to be formed is stored in the storage unit 150 in advance.
  • the control unit 140 reads information indicating the three-dimensional shape from the storage unit 150, and generates light irradiation information including information indicating a plurality of light irradiation regions.
  • each light irradiation region is a region to be irradiated with light by the irradiation unit 130, and corresponds to a cross-sectional shape parallel to the surface 113 of the structure to be formed.
  • the light irradiation information includes information indicating a plurality of light irradiation areas together with information indicating the order in which light irradiation is to be performed.
  • the light irradiation information is not limited to being generated by the control unit 140, but may be generated externally in advance and held in the storage unit 150.
  • the light irradiation information may include information indicating the position of the carrier 120 associated with the information indicating each light irradiation region.
  • At least one of a pattern for forming the formed object 200, a pattern for forming the side wall 235 of the flow path 230, and a pattern for forming the support portion is formed in each light irradiation region. Is included. Note that a part of the flow channel 230 may be provided inside the support portion.
  • the control unit 140 controls the irradiation unit 130 based on the light irradiation information so as to sequentially irradiate the light irradiation area with light. Further, the control unit 140 controls the driving unit 142 to change the distance between the light transmitting unit 112 and the surface 113 according to the light irradiation timing of each light irradiation region. As a result, a model 200 is formed between the carrier 120 and the surface 113.
  • the distance between the surface 122 and the surface 113 may change continuously or intermittently.
  • the control unit 140 widens the distance by one layer in accordance with the switching timing of the light irradiation area. By forming a plurality of layers in this way, the modeled object 200 is obtained as a laminated structure.
  • the amount of change in the distance for one layer is, for example, 30 ⁇ m or more and 100 ⁇ m or less.
  • the control unit 140 switches the light irradiation area according to the change speed of the distance and the curing speed of the photocurable composition 20. By doing so, the modeled object 200 having a smoother surface than when the distance changes intermittently is obtained.
  • the control unit 140 may control the distance between the surface 122 and the surface 113 to be temporarily reduced. By doing so, the photocurable composition 20 is stirred or the photocurable composition 20 easily enters between the surface 122 and the surface 113.
  • control unit 140 controls the position of the carrier 120 and the irradiation unit 130 so that at least a part of the flow path 230 is provided separately from the modeled object 200.
  • that the flow path 230 is provided separately from the modeled object 200 means that the channel 230 is not the structure included in the target modeled object 200 and is removed from the modeled object 200 after all the light irradiations are completed.
  • the side wall 235 of the channel 230 may be connected to the model 200, or a part of the side wall 235 may also function as a part of the model 200. Is also good.
  • the degree of hardening of the side wall 235 of the flow channel 230 is not particularly limited as long as it contributes to the flow of the introduced material.
  • the shape of the cross section parallel to the surface 113 of the flow channel 230 is not particularly limited, and may be a circle, a polygon, or the like.
  • the thickness of the side wall 235 of the flow channel 230 is not particularly limited, but is, for example, 30 ⁇ m or more and 1 mm or less.
  • the flow path 230 includes a first portion composed of a cured product of the photocurable composition 20 and a second portion composed of a material other than the cured product of the photocurable composition 20.
  • the second portion of the channel 230 is provided, for example, inside the carrier 120. Further, the second portion of the flow channel 230 may be configured by a pipe provided outside the carrier 120. The opposite side of the flow path 230 from the tip 232 is connected to the outside of the container 110.
  • the outside of the container 110 is the outside of the space of the container 110 in which the photocurable composition 20 is stored.
  • the three-dimensional printing apparatus 10 further includes an introduction control unit 160 and an introduction container 162.
  • the channel 230 is connected to the introduction control unit 160.
  • the first part of the flow channel 230 is connected to the introduction control unit 160 via the second part.
  • Introduction container 162 is a container for storing the introduction. Further, the introduction control unit 160 controls the supply of the introductory substance from the introductory substance container 162 to the flow channel 230 based on the control by the control unit 140.
  • the introduction control unit 160 includes, for example, a valve and a pump.
  • the flow of the introduced material is illustrated by arrows.
  • the introduction is the same composition as the photocurable composition 20 or a different substance.
  • the control unit 140 increases the diameter of the enlarged portion 234 near the tip 232.
  • the position of the carrier 120 and the irradiation unit 130 are controlled so that at least one of the openings 238 is provided.
  • the flow of the photocurable composition 20 in the container 110 can be controlled by appropriately arranging the flow channel 230 and introducing the introduction material. As a result, the molded article 200 can be molded with high accuracy.
  • the introduced material is the same composition as the photocurable composition 20, the container 110 may also serve as the introduced container 162.
  • the introduced material is a substance different from the photocurable composition 20
  • the introduced material is a photocurable composition having a composition different from that of the photocurable composition 20 or an additive having no photocurability.
  • the transductants may include, for example, fillers, cells, and / or cell growth factors.
  • the introduced substance is a substance different from the photocurable composition 20
  • only a part of the modeled object 200 may be formed of a different composition or material from other parts, or the photocurable composition 20 may be used. And the curing of the resin can be controlled.
  • component A As a component that hinders stereolithography (hereinafter, referred to as “component A”), there is a component having neither photocurability nor a function of promoting photocurability, such as a filler, a cell, or a cell growth factor.
  • component A a component having neither photocurability nor a function of promoting photocurability
  • the channel 230 is arranged around a site to be introduced, and the component A is preferentially supplied around the site to be introduced, so that the component A is supplied to a necessary site. While being introduced, sufficient stereolithography can be realized as a whole.
  • FIG. 3 is an enlarged view showing a first example of the structure of the flow channel 230 according to the present embodiment.
  • the vicinity of the tip 232 of the flow channel 230 is shown in an enlarged manner.
  • an opening 238 is provided in a side wall 235 of the flow channel 230.
  • the opening 238 penetrates the side wall 235 and connects the inside and the outside of the channel 230. Since the opening 238 is provided, the introduced matter from the flow channel 230 is preferentially discharged in the vicinity of the tip 232 in the direction in which the opening 238 is located. Therefore, the introduced substance can be effectively introduced into a desired region. Further, according to the present embodiment, many introduced substances can be introduced into the light irradiation area through the opening 238.
  • the opening 238 is a cut 236.
  • the cut portion 236 has a shape obtained by removing a part of the side wall 235 of the flow channel 230. A part of the outer periphery of the cut portion 236 on the tip 232 side is not surrounded by the side wall 235.
  • the control unit 140 cures the photocurable composition 20 so that the shape of the cutout portion 236 is formed, and forms the side wall 235.
  • the cut portion 236 penetrates the side wall 235 and connects the flow channel 230 to an external space. One end of the cutout portion 236 is open to the surface 113 side.
  • FIG. 4 is an enlarged view showing a second example of the structure of the flow channel 230 according to the present embodiment.
  • the vicinity of the tip 232 of the flow channel 230 is shown in an enlarged manner.
  • the opening 238 is not the notch 236. That is, the entire outer periphery of the opening 238 is surrounded by the side wall 235.
  • the shape of the opening 238 is not particularly limited, and is, for example, a polygon such as a rectangle or a circle.
  • the opening 238 will be described in more detail below. In the following, it does not matter whether the opening 238 is the notch 236 or not.
  • the width of the opening 238 in the direction perpendicular to the surface 113 is w. That is, at the timing when the introduced substance is introduced in the flow path 230, the width from the end farthest from the tip 232 of the opening 238 to the tip 232 is w.
  • w is not particularly limited, but is, for example, 500 ⁇ m or less.
  • w is, for example, not more than five layers.
  • w is, for example, five times or less d.
  • the opening 232 facing the surface 113 may or may not be provided at the tip 232 of the flow path 230.
  • the flow channel 230 may not be further shaped, or may be shaped so as to close the opening.
  • the cut 236 may be left as an opening of the side wall 235 along with the extension of the flow path 230. This opening may or may not be used as the opening 238 for introducing the introduced substance.
  • another flow path formed outside the side wall 235 may be connected to the opening derived from the cutout portion 236, and may block or guide the inflowing substance flowing out from this opening.
  • FIG. 5 is a diagram illustrating a modification of the modeled object 200 and the flow path 230 formed by the three-dimensional modeling apparatus 10 according to the first embodiment.
  • the flow of the introduction is illustrated by arrows.
  • the control unit 140 controls the position of the carrier 120 and the irradiation unit 130 so as to provide a plurality of flow paths 230.
  • the introduced substance can be introduced into a plurality of regions.
  • a state in which a plurality of flow paths 230 are provided means that at least the tip 232 of the flow path 230 is divided into a plurality. That is, the plurality of flow paths 230 may be connected to each other midway.
  • the introduced substance introduced through the plurality of flow paths 230 may include two or more kinds of introduced substances.
  • the three-dimensional modeling apparatus 10 may include a plurality of introduced materials containers 162.
  • the three-dimensional printing apparatus 10 may include a plurality of introduction control units 160.
  • the introduction of the introduced substance into each of the plurality of flow paths 230 may be controlled by a different introduction control section 160, or one introduction control section 160 may control the introduction of the introduced substance into the plurality of flow paths 230.
  • the introduced matter in the flow path 230 may be mixed with the introduced matter in another flow path 230 in the flow path 230.
  • the sidewalls 235 of the plurality of flow paths 230 may be integrated at least partially.
  • the appearance may be a single tube, and the inside may be partitioned into a plurality of sections to form a plurality of flow paths 230.
  • the method for manufacturing the modeled object 200 according to the present embodiment is a method for manufacturing the modeled object 200 using the three-dimensional printing apparatus 10 as described above.
  • the storage unit 150 stores three-dimensional data of the modeled object 200. Further, based on the three-dimensional data of the modeled object 200 and the shape of the channel 230, light irradiation information for forming the modeled object 200 and the channel 230 is generated.
  • the carrier 120 is arranged near the light transmitting portion 112 of the container 110 in which the photocurable composition 20 is stored. At this time, distance d between surface 122 and surface 113 is, for example, 30 ⁇ m or more and 100 ⁇ m or less.
  • the control unit 140 irradiates the light from the irradiation unit 130 to the light transmission unit 112 so as to irradiate the first light irradiation area.
  • the light from the irradiating unit 130 is irradiated to the photocurable composition 20 between the surface 122 and the surface 113 via the light transmitting unit 112.
  • the photocurable composition 20 between the surface 122 and the surface 113 is cured into the shape of the light irradiation area, and the cured product adheres to the surface 122.
  • the control unit 140 sequentially irradiates a plurality of light irradiation areas with light based on the light irradiation information.
  • the control unit 140 controls the driving unit 142 to change the distance between the surface 122 and the surface 113.
  • the cured product of the photocurable composition 20 newly formed by light irradiation is laminated on the cured product of the photocurable composition 20 formed immediately before. At this stage, the cured product of the photocurable composition 20 may be in a semi-cured state.
  • the opening 238 is formed at least temporarily at the tip 232 of the channel 230.
  • the control unit 140 controls the introduction control unit 160 so as to supply the introduced matter to the flow channel 230.
  • the introduced matter is introduced from the opening and the opening 238 of the front end 232 of the flow channel 230 into the region irradiated with light. Further, when the light irradiation of the region where the introduction of the introduction is required ends, the control unit 140 controls the introduction control unit 160 to stop the supply of the introduction.
  • the side wall 235 and the object 200 are removed from the carrier 120. Also, the side wall 235 is removed. Thereafter, the molded article 200 may be post-cured. Thus, the modeled object 200 is obtained.
  • a groove may remain on the surface of the model 200 after the flow path 230 is removed.
  • the opening 238 allows the introduction substance to be preferentially introduced into a desired region.
  • the modeling accuracy of the modeled object 200 can be increased, the composition and the material can be partially changed, and the curing can be controlled.
  • FIG. 6A is a diagram illustrating a first example of the channel 230 according to the second embodiment
  • FIG. 6B is a diagram illustrating a second example of the channel 230 according to the second embodiment.
  • FIG. FIGS. 6A and 6B are cross-sectional views of the vicinity of the front end 232 of the flow channel 230.
  • FIG. The three-dimensional printing apparatus 10 according to the present embodiment is configured such that the control unit 140 at least temporarily provides the enlarged diameter portion 234 in which the inner diameter of the flow channel 230 increases toward the tip 232 of the flow channel 230 on the light transmitting portion 112 side.
  • the configuration is the same as that of the three-dimensional printing apparatus 10 according to the first embodiment except that the position of the carrier 120 and the irradiation unit 130 are controlled.
  • the inner diameter of the channel 230 is a diameter in a cross section parallel to the surface 113.
  • the inner diameter of the flow path 230 is anisotropically expanded. More specifically, in the enlarged diameter portion 234, the inner diameter of the flow path 230 expands anisotropically with reference to the axis 231 of the flow path 230.
  • the shaft 231 is a shaft extending in the length direction of the flow channel 230. The shaft 231 is located at the center of the flow channel 230 in a cross section parallel to the surface 113 at an end of the enlarged diameter portion 234 opposite to the end 232. Since the flow path 230 expands anisotropically in this way, the introduced matter from the flow path 230 is preferentially discharged at the tip 232 in a specific direction in which the flow path 230 spreads. Therefore, the introduced substance can be effectively introduced into a desired region.
  • the enlarged diameter portion 234 is a portion where the diameter changes.
  • the inner diameter of the flow path 230 may be gradually expanded or may be continuously expanded.
  • FIG. 6A shows an example in which the inner diameter of the flow channel 230 gradually increases
  • FIG. 6B shows an example in which the inner diameter of the flow channel 230 continuously expands.
  • the side wall 235 of the enlarged diameter portion 234 does not penetrate.
  • the control unit 140 controls the introduction control unit 160 so as to introduce the introductory substance at the timing when the enlarged diameter part 234 is located near the tip 232.
  • the width from the end farthest from the distal end 232 of the enlarged diameter portion 234 to the distal end 232 is w.
  • w is not particularly limited, but is, for example, 500 ⁇ m or less.
  • w is, for example, not more than five layers. Also, w may be, for example, not more than five times d described above.
  • the diameter of the opening of the distal end 232 of the flow channel 230 is the diameter after expanding at the enlarged diameter portion 234, and the diameter between the enlarged diameter portion 234 and the distal end 232. Has not been reduced.
  • one end of the enlarged diameter portion 234 coincides with the tip 232.
  • the opening 232 facing the surface 113 is provided at the tip 232 of the flow channel 230 when introducing the introduced substance from the flow channel 230. Then, after the introduction material is introduced from the flow channel 230, the flow channel 230 may not be further shaped, or may be continuously shaped so as to extend the flow channel 230. Further, it may be shaped so as to close the opening of the tip 232. Further, in the present embodiment, when the flow path 230 is continuously formed, the diameter expanded by the enlarged diameter portion 234 may be maintained, or the diameter may be reduced.
  • the enlarged diameter portion 234 is formed in the channel 230 at least temporarily while the modeled object 200 is formed. Then, the control unit 140 controls the introduction control unit 160 so as to supply the introduction material to the flow channel 230 when the enlarged diameter portion 234 is near the front end 232. Then, the introduced substance is introduced from the opening of the front end 232 of the flow channel 230 into the region irradiated with light. Further, when the light irradiation of the region where the introduction of the introduction is required ends, the control unit 140 controls the introduction control unit 160 to stop the supply of the introduction.
  • a plurality of flow channels 230 may be provided as in the first embodiment.
  • the control unit 140 may control the carrier 120 and the irradiation unit 130 so as to provide both the opening 238 and the enlarged diameter part 234 described in the first embodiment.
  • the introductory material can be preferentially introduced into a desired region by the enlarged diameter portion 234.
  • the modeling accuracy of the modeled object 200 can be increased, the composition and the material can be partially changed, and the curing can be controlled.
  • the enlarged diameter portion 234 allows the introduction direction of the introduced substance to be controlled without providing an opening in the side wall 235. Therefore, it is easy to repeatedly use the same channel 230.
  • FIG. 7 is a diagram exemplifying the structure of a model 200 and a flow path 230 formed by the three-dimensional model apparatus 10 according to the third embodiment.
  • the flow of the introduction is illustrated by arrows.
  • the three-dimensional printing apparatus 10 according to the present embodiment is related to at least one of the first embodiment and the second embodiment except that at least a part of the flow path 230 is provided inside the modeling object 200. This is the same as the three-dimensional printing apparatus 10. This will be described in detail below.
  • the flow channel 230 is provided inside the modeled object 200 and remains inside the modeled object 200.
  • the flow path 230 may be provided particularly for the purpose of introducing the introduced matter into the modeled object 200, or may be formed by using a structure formed in the modeled object 200 for other purposes such as piping or improving the appearance. 230 may be used. Note that a part of the flow path 230 may be provided inside the modeled object 200, and the other part may be provided separately from the modeled object 200.
  • the side wall 235 of the channel 230 is a part of the modeled object 200.
  • control unit 140 controls the carrier 120 and the irradiation unit 130 so that at least one of the enlarged diameter part 234 and the opening 238 is provided at least temporarily. Further, the control unit 140 controls the introduction control unit 160 according to the timing at which at least one of the enlarged diameter portion 234 and the opening 238 is provided, and introduces the introduced substance into the light irradiation region.
  • This drawing shows an example in which the enlarged diameter portion 234 is provided.
  • the same operation and effect as at least one of the first and second embodiments can be obtained.
  • the flow path 230 can be formed without providing the side wall 235 separately.
  • FIGS. 8 to 11 are diagrams illustrating first to fourth examples of timing charts of control performed by the control unit 140 according to the fourth embodiment.
  • the three-dimensional printing apparatus 10 according to the present embodiment is the same as the three-dimensional printing apparatus 10 according to at least one of the first to third embodiments except for the points described below.
  • control unit 140 controls the position of the carrier 120 and the irradiation unit 130 so as to fill at least one of the enlarged diameter portion 234 and the opening 238.
  • the modeled object 200 is constituted by a plurality of layers formed for each distance between the carrier 120 and the light transmitting portion 112.
  • the width w of at least one of the enlarged diameter portion 234 and the opening 238 in the stacking direction of the plurality of layers is, for example, not more than five layers.
  • the width w from the end of the enlarged diameter portion 234 or the opening 238 farthest from the end 232 to the end 232 is, for example, 500 ⁇ m or less. w may be, for example, not more than five times d described above.
  • the enlarged diameter portion 234 or the opening 238 is filled with the cured product of the photocurable composition 20.
  • the opening 238 is filled with the opening 238 of the side wall 235, and in the filled portion, the inside and outside of the flow path 230 are separated by the side wall 235 in a direction parallel to the surface 113.
  • the opening 238 is preferably a notch 236. If the flow path 230 is continuously formed after the notch 236 is filled, the opening due to the notch 236 does not occur in the side wall 235.
  • the control performed by the control unit 140 to fill the cutout portion 236 will be described below with reference to FIGS.
  • the modeled object 200 is configured by a plurality of layers formed for each distance between the carrier 120 and the light transmitting unit 112
  • a light irradiation pattern for each layer is determined for forming the formed object 200.
  • the distance between the carrier 120 and the light transmitting portion 112 and the light irradiation pattern of the modeled object 200 are associated with each other.
  • the control unit 140 controls the distance between the carrier 120 and the light transmitting unit 112 according to the light irradiation pattern.
  • k is an integer of 1 or more, and it is assumed that the k-th layer, the k + 1-th layer, and the k + 2-th layer are irradiated with light in this order. Further, it is assumed that the distance between the carrier 120 and the light transmitting portion 112 when each layer is irradiated with light is shorter in this order.
  • FIGS. 12A to 12C are diagrams illustrating a light irradiation pattern for forming the side wall 235 of the flow channel 230.
  • FIG. FIG. 12A is an example of a pattern for forming the cut portion 236, and is hereinafter referred to as a pattern A.
  • FIG. 12B is an example of a pattern for filling the cut portion 236, and is hereinafter referred to as a pattern B.
  • FIG. 12C is an example of a formation pattern of the side wall 235 at the timing of extending the flow path 230 without forming the cutout portion 236, and is hereinafter referred to as a pattern C. “A”, “B”, and “C” in FIGS. 8 to 11 correspond to these patterns A, B, and C.
  • FIGS. 12A to 12C show an example in which the cutout portion 236 is provided and filled, but the present invention is not limited to this example, and the opening 238 or the enlarged diameter portion 234 which is not the cutout portion 236 is provided. The same applies to the case of providing and filling.
  • FIG. 8 is a timing chart showing a first example of control performed by the control unit 140.
  • the introduced material is introduced during the light irradiation of the k-th layer constituting the modeled object 200.
  • the cut portion 236 is provided in the vicinity of the tip 232 of the flow channel 230 by the light irradiation in the pattern A.
  • the cut portion 236 is filled by light irradiation with the pattern B.
  • the flow path 230 is extended by the pattern C.
  • the light irradiation time for the patterns A and B is additionally provided. Therefore, the notch 236 is formed more reliably, the k-th layer is formed, and the notch 236 is filled. On the other hand, the distance when the light irradiation of the k-th layer is performed is maintained for a longer time than the distance when the other layers are formed. In the example of this drawing, while the light irradiation of the pattern of the side wall 235 is not performed during the light irradiation with the pattern of the k-th layer, the light irradiation of the pattern A may be continuously performed.
  • FIG. 9 is a timing chart illustrating a second example of the control performed by the control unit 140.
  • the introduced material is introduced during a part of the time period for performing the light irradiation of the k-th layer constituting the modeled object 200. And in this example, the distance corresponding to each layer is maintained for the same time.
  • the light irradiation in the pattern A is started at the same time as the light irradiation of the k-th layer is started.
  • the introduction of a product at the time t 1 defined in advance from the start of light irradiation in the pattern A has elapsed is started.
  • the photocurable composition 20 is hardened at the tip 232 to such an extent that it can affect the flow of the introduction material, and the cutout portion 236 is formed.
  • the pattern of the side wall 235 is switched from the pattern A to pattern B, notch 236 starts filling.
  • the introduction of a product at the time when the time t 3 when the predetermined from the start of light irradiation in the pattern A has elapsed is stopped.
  • T 3 from the time t 1 can be determined by preliminary tests and the like.
  • information indicating the t 3 from the time t 1 is held in the storage unit 150 prior to the molding of the molded article 200, the control unit 140 can be used to control reading it.
  • the additional time for irradiating the light with the patterns A and B is not provided, so that the molding time of the molded article 200 can be shortened.
  • FIG. 10 is a timing chart showing a third example of the control performed by the control unit 140.
  • the light irradiation of the k-th layer is performed, the light irradiation in the pattern A is performed, and the cutout portion 236 is formed.
  • the introduced substance is introduced.
  • the cutout portion 236 is filled.
  • the cut portion 236 can be formed and filled without extending the modeling time of the modeled object 200.
  • FIG. 11 is a timing chart showing a fourth example of the control performed by the control unit 140.
  • the distance between the carrier 120 and the light transmitting portion 112 is temporarily reduced, and light irradiation in the pattern B is performed at the reduced distance.
  • the light irradiation in the pattern A is performed to form the cutout portion 236. Then, while the light irradiation of the (k + 1) th layer is performed, the introduced substance is introduced. Next, after the light irradiation of the (k + 1) th layer and before the light irradiation of the (k + 2) th layer, light irradiation in the pattern B is performed, and the cutout portion 236 is filled.
  • the distance between the carrier 120 and the light transmitting part 112 during light irradiation in the pattern B is shorter than the distance during light irradiation of the (k + 1) th layer.
  • the distance between the carrier 120 and the light transmitting portion 112 is longer than the distance at the time of light irradiation of the (k + 1) th layer. According to this example, it is possible to more reliably fill the cutout portion 236 in a state where the carrier 120 and the light transmitting portion 112 are close to each other.
  • the introduced material is introduced into one layer of the modeled object 200 has been described, but the introduced material may be introduced in two or more layers.
  • the distance between the carrier 120 and the light transmitting unit 112 changes intermittently has been described above, the distance between the carrier 120 and the light transmitting unit 112 may change continuously.
  • the three-dimensional printing apparatus 10 according to the fifth embodiment is the same as the three-dimensional printing apparatus 10 according to at least one of the first to fourth aspects except for the points described below.
  • the three-dimensional printing apparatus 10 according to the present embodiment includes an introduction control unit 160 that controls the introduction of the introduced substance into the flow channel 230.
  • the control unit 140 controls the position of the carrier 120 and the irradiation unit 130 so as to provide at least one of the enlarged diameter portion 234 and the opening 238 at a plurality of timings.
  • the introduction control unit 160 controls the timing for introducing the introduced substance into the flow channel 230 based on the plurality of timings.
  • control unit 140 controls the carrier 120 and the irradiation unit 130 so as to provide one or more flow paths 230.
  • the control section 140 can provide at least one of the enlarged diameter section 234 and the opening section 238 at one or more different timings for one flow path 230.
  • the enlarged diameter portion 234 and the opening 238 provided at the previous timing may or may not be filled as described in the fourth embodiment.
  • the control section 140 may provide at least one of the enlarged diameter section 234 and the opening section 238 for the plurality of flow paths 230 at two or more different timings.
  • Introduced substances introduced at a plurality of timings may include two or more kinds of introduced substances. By doing so, it is possible to cause different introduced materials to act on a plurality of regions of the modeled object 200 having different light irradiation timings.
  • the same operation and effect as at least one of the first and second embodiments can be obtained.
  • the introduced material can act on a plurality of regions of the modeled object 200 at different light irradiation timings.
  • FIG. 13 is a diagram illustrating the configuration of the three-dimensional printing apparatus 10 according to the sixth embodiment.
  • the three-dimensional modeling apparatus 10 according to the present embodiment has the first to fifth embodiments except that an introduced material having a lower temperature than the photocurable composition 20 in the container 110 is introduced into at least one channel 230. This is the same as the three-dimensional printing apparatus 10 according to at least one of the forms. This will be described in detail below.
  • the three-dimensional printing apparatus 10 includes the temperature control unit 170 and the temperature sensor 172.
  • the temperature sensor 172 detects the temperature of the photocurable composition 20 in the container 110. Then, the temperature control section 170 adjusts the temperature of the substance introduced into the channel 230.
  • the temperature control section 170 is a heater or a cooling device.
  • the cooling device is, for example, a device that performs cooling by air blowing, a Peltier element, or water cooling.
  • ⁇ ⁇ Reaction heat is generated when the photocurable composition 20 is cured, and the temperature of the photocurable composition 20 and the molded article 200 may increase. Then, the photocurable composition 20 in the middle of modeling tends to stick to the surface 113 and the shaped article 200 is likely to be warped or deformed.
  • a low-temperature introduced material is introduced into a region where a temperature rise is particularly likely to occur, and such a problem can be suppressed.
  • control unit 140 increases the diameter-increased part 234 and the opening 238 when forming at least the first region of the modeled product 200 having the largest cross-sectional area parallel to the surface 113 of the light transmitting unit 112 on the carrier 120 side.
  • the position of the carrier 120 and the irradiation unit 130 are controlled so that at least one of them is provided.
  • the amount of the photocurable composition 20 that reacts is large, so that the temperature is particularly likely to increase. Therefore, it is particularly effective to introduce a low-temperature introduced substance into the first region.
  • the operation and effect of the present embodiment will be described.
  • the same operation and effect as at least one of the first and second embodiments can be obtained.
  • the temperature rise of the photocurable composition 20 can be suppressed, and deformation and the like of the molded article 200 can be suppressed.
  • FIG. 14 is a block diagram illustrating the configuration of the three-dimensional printing apparatus 40 and the control device 50 according to the seventh embodiment.
  • the control device 50 according to the present embodiment is a control device of the three-dimensional printing device 40.
  • the three-dimensional printing apparatus 40 is the same as the three-dimensional printing apparatus 40 according to the first embodiment, and includes a container 110, a carrier 120, and an irradiation unit 130.
  • the container 110 contains the photocurable composition 20 and has a light transmitting portion 112 at least in part. The distance between the carrier 120 and the light transmitting unit 112 is variable.
  • the irradiating unit 130 irradiates the photocurable composition 20 between the carrier 120 and the light transmitting unit 112 with light via the light transmitting unit 112.
  • control device 50 includes a control unit 500.
  • the control section 500 controls the position of the carrier 120 and the irradiation section 130 so as to form the shaped article 200 obtained by curing the photocurable composition 20.
  • control unit 500 hardens the photocurable composition 20 in the region where the light is irradiated, so that the position of the carrier 120 and at least a part of the channel 230 connected to the outside of the container 110 are formed.
  • the position of the carrier 120 and the irradiation unit 130 are controlled such that the irradiation unit 130 is controlled and at least one of the enlarged diameter portion 234 and the opening 238 is provided at least temporarily.
  • the enlarged diameter portion 234 is a portion where the inner diameter of the flow channel 230 increases toward the tip 232 of the flow channel 230 on the light transmitting portion 112 side.
  • the opening 238 is located on the side wall near the tip 232 of the flow channel 230.
  • control unit 500 is the same as the control unit 140 according to at least one of the first to sixth embodiments.
  • the control unit includes: By curing the photocurable composition in the region where the light is irradiated, the position of the carrier and the irradiation unit are controlled so as to form at least a part of a flow path connected to the outside of the container, And, At least one of an enlarged portion in which the inner diameter of the flow channel increases toward the light transmitting portion side end of the flow channel, and at least one of the openings located on the side wall near the front end of the flow channel, at least temporarily.
  • a three-dimensional printing apparatus for controlling the position of the carrier and the irradiation unit so as to be provided. 1-2. 1-1.
  • the shaped object is constituted by a plurality of layers formed for each of the distances, A width w of at least one of the enlarged portion and the opening from the end farthest from the tip to the tip is equal to or less than five layers.
  • the three-dimensional modeling apparatus wherein the control unit controls a position of the carrier and the irradiation unit so as to fill at least one of the enlarged diameter portion and the opening. 1-5. 1-1. From 1-4.
  • the control unit controls the position and the irradiation unit of the carrier to provide at least one of the enlarged diameter portion and the opening at a plurality of timings
  • the three-dimensional modeling apparatus wherein the introduction control unit controls a timing at which the introduced material is introduced into the flow path based on the plurality of timings. 1-7. 1-6.
  • the three-dimensional modeling apparatus wherein the introduced material introduced at the plurality of timings includes two or more types of the introduced material. 1-8. 1-5. From 1-7.
  • control unit controls a position of the carrier and the irradiation unit so as to provide a plurality of the flow paths. 1-9. 1-5. From 1-8.
  • the control unit is configured to form, at least in the modeled product, a region having a largest area of a cross section parallel to the surface of the light transmitting unit on the carrier side, the enlarged portion and the opening near the tip.
  • a three-dimensional modeling apparatus that controls the position of the carrier and the irradiation unit such that at least one of the three is provided. 1-11. 1-1. From 1-10.
  • the enlarged diameter portion is provided at least temporarily,
  • the inner diameter of the flow path is expanded anisotropically with respect to the axis of the flow path at the enlarged diameter portion. 2-1.
  • a control device for a three-dimensional printing apparatus The three-dimensional printing apparatus, A container containing the photocurable composition and having at least a part having a light transmitting portion, A carrier having a variable distance to the light transmitting portion; The photocurable composition between the carrier and the light transmitting portion, an irradiation unit for irradiating light through the light transmitting unit,
  • the control device includes a control unit that controls the position of the carrier and the irradiation unit, so as to form a molded article obtained by curing the photocurable composition,
  • the control unit includes: By curing the photocurable composition in the area where the light is irradiated, the position of the carrier and the irradiation unit are controlled so as to form at least a part of a flow path connected to the outside of the container, And, At least one of at least one of an enlarged portion in which the inner diameter of the flow channel increases toward the light transmitting portion side end of the flow channel, and at least one of the openings located on the side wall near the
  • the shaped object is constituted by a plurality of layers formed for each of the distances, A width w of at least one of the enlarged portion and the opening from the end farthest from the tip to the tip is equal to or less than five layers.
  • control device wherein the control unit controls a position of the carrier and the irradiation unit so as to fill at least one of the enlarged diameter portion and the opening. 2-5. 2-1. To 2-4.
  • the control device in which the flow path introduces a flowable introductory material into an area irradiated with the light. 2-6. 2-5.
  • the three-dimensional modeling apparatus further includes an introduction control unit that controls introduction of the introduced matter into the flow path, The control unit controls the position and the irradiation unit of the carrier to provide at least one of the enlarged diameter portion and the opening at a plurality of timings, The control device, wherein the introduction control unit controls a timing at which the introduced substance is introduced into the flow path based on the plurality of timings. 2-7. 2-6.
  • the control device according to the above, The control device, wherein the introduced materials introduced at the plurality of timings include two or more types of the introduced materials. 2-8. 2-5. To 2-7.
  • control device wherein the control unit controls a position of the carrier and the irradiation unit so as to provide a plurality of the flow paths. 2-9. 2-5. To 2-8.
  • the control unit is configured to form, at least in the modeled product, a region having a largest area of a cross section parallel to the surface of the light transmitting unit on the carrier side, the enlarged portion and the opening near the tip.
  • a control device that controls the position of the carrier and the irradiation unit so that at least one of the carriers is provided. 2-11. 2-1. To 2-10.
  • the enlarged diameter portion is provided at least temporarily,
  • a method of manufacturing a molded article using a three-dimensional molding apparatus The three-dimensional printing apparatus, A container containing the photocurable composition and having at least a part having a light transmitting portion, A carrier having a variable distance to the light transmitting portion; An irradiation unit that irradiates the photocurable composition between the carrier and the light transmission unit with light through the light transmission unit, A control unit that controls the position of the carrier and the irradiation unit so as to form the shaped object formed by curing the photocurable composition, The control unit includes: By curing the photocurable composition in the area where the light is irradiated, the position of the carrier and the irradiation unit are controlled so as to form at least a part of a flow path connected to the outside of the container, And, At least one of at least one of an enlarged portion in which the inner diameter of the flow channel increases toward the light transmitting portion side end of the flow channel, and at least one of the openings located on the side wall near the front end of the flow channel.
  • a method for producing a molded article according to At least a part of the flow path is provided inside the modeled object. 3-4. 3-1. To 3-3.
  • a width w of at least one of the enlarged portion and the opening from the end farthest from the tip to the tip is equal to or less than five layers.
  • a flowable introduction material is introduced into a region irradiated with the light by the flow path. 3-6. 3-5.
  • the three-dimensional modeling apparatus further includes an introduction control unit that controls introduction of the introduced matter into the flow path, The control unit controls the position and the irradiation unit of the carrier to provide at least one of the enlarged diameter portion and the opening at a plurality of timings, The method of manufacturing a molded article, wherein the introduction control unit controls a timing of introducing the introduced material into the flow channel based on the plurality of timings. 3-7. 3-6.
  • the introduced material introduced at the plurality of timings includes two or more types of the introduced material. 3-8. 3-5. To 3-7.
  • control unit is configured to form, at least in the modeled object, a region having the largest area of a cross section parallel to the surface of the light transmitting unit on the carrier side, the enlarged portion and the opening near the tip.
  • a method of manufacturing a modeled object that controls the position of the carrier and the irradiation unit so that at least one of them is provided. 3-11. 3-1. To 3-10.

Abstract

制御部(140)は、光硬化性組成物(20)を硬化させてなる造形物(200)を形成するよう、キャリア(120)の位置および照射部(130)を制御する。また、制御部(140)は、光が照射されている領域で光硬化性組成物(20)を硬化させることにより、容器(110)の外部に繋がる流路(230)の少なくとも一部を形成するようにキャリア(120)の位置および照射部(130)を制御し、かつ、拡径部および開口部の少なくとも一方を、少なくとも一時的に設けるように、キャリア(120)の位置および照射部(130)を制御する。ここで、拡径部は、流路(230)の光透過部(112)側の先端に向かって流路(230)の内径が広がる部分である。開口部は、流路(230)の先端近傍の側壁に位置する。

Description

三次元造形装置、制御装置、および造形物の製造方法
 本発明は三次元造形装置、制御装置、および造形物の製造方法に関する。
 造形物の製造装置の一つに、造形物の三次元データに基づいて、断面ごとに組成物を硬化させて造形する3Dプリンタがある。
 特許文献1には、キャリアとビルドプレートの間の重合性液体に、ビルドプレートを介して光を照射し、キャリア上に3次元物体を形成することが記載されている。また、キャリア中の流路に連通する供給導管形成し、キャリアから重合性液体を供給することが記載されている。
特表2016-509963号公報
 しかし、特許文献1の技術では、特に重合性液体の供給が必要な特定の場所に対して、優先的に供給を行うことが困難であった。
 本発明は、三次元造形装置の所望の造形領域に対して効果的に導入物を導入する技術を提供する。
 本開示の第一の側面によれば、
 光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
 前記光透過部に対する距離が可変に構成されているキャリアと、
 前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部と、
 前記光硬化性組成物を硬化させてなる造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部とを備え、
 前記制御部は、
  前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
 前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する三次元造形装置が提供される。
 本開示の第二の側面によれば、
 三次元造形装置の制御装置であって、
 前記三次元造形装置は、
  光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
  前記光透過部に対する距離が可変に構成されているキャリアと、
  前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部とを備え、
 当該制御装置は、前記光硬化性組成物を硬化させてなる造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部を備え、
 前記制御部は、
  前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
 前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する制御装置が提供される。
 本開示の第三の側面によれば、
 三次元造形装置を用いた造形物の製造方法であって、
 前記三次元造形装置は、
  光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
  前記光透過部に対する距離が可変に構成されているキャリアと、
  前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部と、
  前記光硬化性組成物を硬化させてなる前記造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部とを備え、
 前記制御部は、
  前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
  前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する造形物の製造方法が提供される。
 本発明によれば、三次元造形装置の所望の造形領域に対して効果的に導入物を導入する技術を提供できる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになるが、それらの具体的な実施の形態、および図面に限定されるものではない。
第1の実施形態に係る三次元造形装置の構成を例示する図である。 第1の実施形態に係る三次元造形装置で形成される造形物および流路の構造を例示する図である。 第1の実施形態に係る流路の構造の第1の例を示す拡大図である。 第1の実施形態に係る流路の構造の第2の例を示す拡大図である。 第1の実施形態に係る三次元造形装置で形成される造形物および流路の変形例を示す図である。 (a)は、第2の実施形態に係る流路の第1の例を示す図であり、(b)は、第2の実施形態に係る流路の第2の例を示す図である。 第3の実施形態に係る三次元造形装置で形成される造形物および流路の構造を例示する図である。 第4の実施形態に係る制御部が行う制御のタイミングチャートの第1例を示す図である。 第4の実施形態に係る制御部が行う制御のタイミングチャートの第2例を示す図である。 第4の実施形態に係る制御部が行う制御のタイミングチャートの第3例を示す図である。 第4の実施形態に係る制御部が行う制御のタイミングチャートの第4例を示す図である。 (a)から(c)は、流路の側壁を造形するための光照射パターンを例示する図である。 第6の実施形態に係る三次元造形装置の構成を例示する図である。 第7の実施形態に係る三次元造形装置および制御装置の構成を例示するブロック図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 なお、以下に示す説明において、三次元造形装置10の制御部140および制御装置50の制御部500は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。三次元造形装置10の制御部140および制御装置50の制御部500は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。
(第1の実施形態)
 図1は、第1の実施形態に係る三次元造形装置10の構成を例示する図である。また、図2は、第1の実施形態に係る三次元造形装置10で形成される造形物200および流路230の構造を例示する図である。本図では、造形物200が造形される途中の一状態を示している。本実施形態に係る三次元造形装置10は、容器110、キャリア120、照射部130、および制御部140を備える。容器110は、光硬化性組成物20を収容し、少なくとも一部に光透過部112を有する。キャリア120は、光透過部112に対する距離が可変に構成されている。照射部130は、キャリア120と光透過部112の間の光硬化性組成物20に、光透過部112を介して光を照射する。制御部140は、光硬化性組成物20を硬化させてなる造形物200を形成するよう、キャリア120の位置および照射部130を制御する。また、制御部140は、光が照射されている領域で光硬化性組成物20を硬化させることにより、容器110の外部に繋がる流路230の少なくとも一部を形成するようにキャリア120の位置および照射部130を制御し、かつ、拡径部および開口部238の少なくとも一方を、少なくとも一時的に設けるように、キャリア120の位置および照射部130を制御する。ここで、拡径部は、流路230の光透過部112側の先端232に向かって流路230の内径が広がる部分である。開口部238は、流路230の先端232近傍の側壁に位置する。以下に詳しく説明する。
 三次元造形装置10は、造形物200の形状を示す三次元データに基づき光硬化性組成物20を硬化させて、造形物200を形成する装置である。造形物200は特に限定されないが、造形物200は歯科用途物および医療用途物の少なくとも一方であり得る。歯科用途物や医療用途物は個々の使用者にあわせて精密に製造される必要があり、三次元造形装置10の使用が適する。
 光硬化性組成物20はたとえば流動性を有する樹脂組成物であり、アクリル系樹脂、メタクリル系樹脂、スチレン系樹脂、エポキシ樹脂、ウレタン樹脂、アクリレート系樹脂、エポキシ・アクリレートハイブリッド系樹脂、エポキシ・オキセタン・アクリレートハイブリッド系樹脂、ウレタンアクリレート系樹脂、メタクリレート系樹脂、ウレタンメタクリレート系樹脂、およびこれらのモノマーからなる群から選択される一以上を含む。また、光硬化性組成物20は重合開始剤、フィラー、顔料、染料、細胞、細胞成長因子等を含んでも良い。
 三次元造形装置10の容器110は光硬化性組成物20を収容する。容器110の一部には、他の部分よりも光透過性が高い光透過部112が設けられている。光透過部112はたとえばガラスである。面113は、光透過部112の面の内、容器110の内側の面である。光透過部112では、容器110の外部から照射された光が高効率で容器110の内部まで透過する。その結果、面113近傍の光硬化性組成物20が硬化される。本図の例において、容器110はバット状である。そして、光透過部112は容器110の底部に設けられている。また、容器110の側面には光硬化性組成物20を導入するための導入孔115が設けられている。
 キャリア120は、造形の土台となる部材である。キャリア120の面122は、光透過部112の面113と平行に対向している。本実施形態に係る三次元造形装置10はキャリア120を少なくとも面113に垂直な方向に駆動する駆動部142をさらに備える。キャリア120が駆動されることで、面122と面113との距離が変化する。
 造形物200の造形において、面113近傍で硬化された光硬化性組成物20はキャリア120の面122に積層される。そして、面122と面113との距離を広げながら光硬化性組成物20の硬化および積層を繰り返すことで、面122に立体的な構造が形成される。なお、本図において、造形物200は造形途中の構造を例示している。
 なお、キャリア120と光透過部112との間には、造形物200と同様に、造形物200とキャリア120とを繋ぐ支持部がさらに形成されても良い。支持部は、全ての光照射が終了した後に、除去される。
 キャリア120はたとえば金属を含んで構成される。金属としてはアルミ、ステンレス等が挙げられる。また、キャリア120は表面層を備えていてもよい。表面層としてはたとえば上記した金属の酸化層、硬化性組成物を硬化させたハードコート層、塗料層、および樹脂層が挙げられる。樹脂層としてはポリエチレンテレフタラート(PET)やポリプロピレン(PP)等が挙げられる。樹脂層は、たとえばフィルムやシートを貼り付けることでキャリア120に形成できる。
 照射部130は、たとえば光源および光学描画系を含んで構成される。光源は特に限定されないが、たとえば紫外線源、白熱灯、蛍光灯、燐光灯、レーザーダイオード、または発光ダイオードであり得る。光学描画系は、特に限定されないが、たとえばマスク、空間光変調器(spatial light modulator)、マイクロミラーデバイス、およびMEMS(Micro Electro Mechanical Systems)ミラーアレイのうち少なくとも一つを含んで構成される。また、照射部130は光源および光学描画系の駆動装置を含み、制御部140による制御に基づき、光硬化性組成物20への光照射を行う。照射部130はレンズやシャッター等の光学部品をさらに含んでも良い。
 照射部130では、光源からの光が光学描画系を介して光透過部112に照射される。照射部130からの出力光がビーム光である場合、ビーム光で光照射領域の走査が行われ、走査された光照射領域の光硬化性組成物20が硬化される。また、照射部130からは光照射領域の全体または一部に対して同時に光が投影されても良い。
 制御部140は、照射部130、および駆動部142を制御する。三次元造形装置10はさらに記憶部150を備え、記憶部150には造形する構造の立体形状を示す情報があらかじめ保持されている。制御部140では記憶部150から、この立体形状を示す情報を読み出し、複数の光照射領域を示す情報を含む光照射情報を生成する。ここで、各光照射領域は、照射部130で光照射すべき領域であり、造形する構造の面113に平行な断面形状に対応する。そして、光照射情報には、複数の光照射領域を示す情報が、光照射すべき順を示す情報と共に含まれる。なお、光照射情報は制御部140で生成されるに限らず、予め外部で生成されて記憶部150に保持されていても良い。また、光照射情報には、各光照射領域を示す情報に関連づけられたキャリア120の位置を示す情報が含まれても良い。
 本実施形態において、各光照射領域には、造形物200を造形するためのパターン、流路230の側壁235を造形するためのパターン、および、支持部を造形するためのパターンのうち少なくともいずれかが含まれる。なお、流路230の一部は支持部の内部に設けられても良い。
 制御部140は、光照射情報に基づいて、順に光照射領域を光照射するように、照射部130を制御する。また、制御部140は、各光照射領域の光照射タイミングに応じて光透過部112と面113との距離を変化させるよう、駆動部142を制御する。その結果、キャリア120と面113との間に造形物200が形成される。
 なお、面122と面113との距離は連続的に変化しても良いし、断続的に変化しても良い。距離が断続的に変化する場合、制御部140は光照射領域の切り替えタイミングに合わせて距離を1層分広げる。こうして複数の層を形成することで、積層構造として造形物200が得られる。1層分の距離の変化量は、たとえば30μm以上100μm以下である。一方、距離が連続的に変化する場合、制御部140は距離の変化速度と光硬化性組成物20の硬化速度に応じて光照射領域を切り替える。こうすることで、距離が断続的に変化する場合よりも滑らかな表面の造形物200が得られる。
 また、制御部140は、面122と面113との距離を一時的に縮めるよう制御しても良い。そうすることで、光硬化性組成物20が攪拌されたり、面122と面113との間に光硬化性組成物20が入り込み易くなったりする。
 本実施形態において、制御部140は少なくとも一部が造形物200とは別途設けられた流路230をさらに設けるようキャリア120の位置および照射部130を制御する。ここで、流路230が造形物200と別途設けられているとは、流路230が目的の造形物200に含まれる構造ではなく、全ての光照射が終了した後に造形物200から取り除かれることを言う。なお、流路230が造形物200から取り除かれる前には、流路230の側壁235が造形物200と接続されていたり、側壁235の一部が造形物200の一部を兼ねていたりしても良い。なお、導入物の流れに寄与する限り、流路230の側壁235の硬化の程度は特に限定されない。また、流路230の面113に平行な断面の形状は特に限定されず、円形や多角形等であり得る。流路230の側壁235の厚さは特に限定されないが、たとえば30μm以上1mm以下である。
 造形物200を造形する間、流路230の一方の先端232は、少なくとも一時的に面113の近傍に位置する。そして、流路230により、光が照射されている領域に流動性がある導入物が導入される。流路230は、光硬化性組成物20の硬化物によって構成される第1部分と、光硬化性組成物20の硬化物以外によって構成される第2部分とを含む。流路230の第2部分はたとえばキャリア120の内部に設けられる。また、流路230の第2部分は、キャリア120の外部に設けられた配管によって構成されても良い。流路230の先端232とは反対側は、容器110の外部に繋がっている。容器110の外部とは、容器110の光硬化性組成物20を収容する空間の外側である。本実施形態において、三次元造形装置10は導入制御部160および導入物容器162をさらに備える。流路230は導入制御部160に繋がっている。具体的には、流路230の第1部分は第2部分を介して、導入制御部160に繋がっている。
 導入物容器162は導入物を収容する容器である。また、導入制御部160は、制御部140による制御に基づき、導入物容器162から流路230への導入物の供給を制御する。導入制御部160はたとえばバルブやポンプを含んで構成される。
 図2において、導入物の流れを矢印で例示している。導入物は光硬化性組成物20と同じ組成物または異なる物質である。
 たとえば制御部140は、少なくとも造形物200のうち、光透過部112のキャリア120側の面113に平行な断面の面積が最も大きい第1領域を造形する際に、先端232近傍に拡径部234および開口部238の少なくとも一方が設けられているよう、キャリア120の位置および照射部130を制御する。
 このような第1領域を形成する際には、直前に形成された光硬化性組成物20の硬化物と面113との間の広い領域に、光硬化性組成物20を行き渡らせる必要があり、流路230によって導入物を導入することが効果的に寄与する。
 また、流路230を適切に配して導入物を導入することにより容器110内の光硬化性組成物20の流れを制御することができる。ひいては、造形物200を精度良く造形することができる。なお、導入物が光硬化性組成物20と同じ組成物である場合、容器110が導入物容器162を兼ねても良い。
 また、導入物が光硬化性組成物20とは異なる物質である場合、たとえば導入物は、光硬化性組成物20とは異なる組成の光硬化性組成物または光硬化性がない添加剤である。導入物はたとえばフィラー、細胞、および細胞成長因子の少なくともいずれかを含んでも良い。このように、導入物が光硬化性組成物20とは異なる物質であれば、造形物200のうちの一部分のみを他の部分とは異なる組成や材料で形成したり、光硬化性組成物20の硬化を制御したりすることができる。
 特に、光造形を妨げる因子となる成分(以下、「成分A」と呼ぶ)として、たとえばフィラーや細胞、細胞成長因子など、光硬化性も光硬化性を促進する機能も持たない成分がある。このような成分Aを造形物200に導入する場合、導入したい部位の周囲に流路230を配置し、導入したい部位周辺に優先的に成分Aを供給することで、必要な部位に成分Aを導入しつつ、全体として充分な光造形を実現することができる。
 図3は、本実施形態に係る流路230の構造の第1の例を示す拡大図である。本図では、流路230の先端232近傍を拡大して示している。本実施形態では、流路230の側壁235に開口部238が設けられている例について説明する。開口部238は側壁235を貫通し、流路230の内外を繋いでいる。開口部238が設けられていることにより、流路230からの導入物は先端232近傍において、開口部238が位置する方向に優先的に放出される。したがって、所望の領域に効果的に導入物を導入することができる。また、本実施形態によれば、開口部238を介して多くの導入物を光照射領域に導入できる。
 本図の例において、開口部238は切れ込み部236である。切れ込み部236は、流路230の側壁235の一部を取り去った形状の部分である。切れ込み部236の外周は先端232側の一部が側壁235に囲まれていない。制御部140は、このような切れ込み部236の形状が形成されるように光硬化性組成物20を硬化させ、側壁235を造形する。切れ込み部236は、側壁235を貫通しており、流路230を外部の空間と接続している。また、切れ込み部236の一端は面113側に開放している。
 図4は、本実施形態に係る流路230の構造の第2の例を示す拡大図である。本図では、流路230の先端232近傍を拡大して示している。本例において、開口部238は切れ込み部236ではない。すなわち、開口部238の外周は全体が、側壁235に囲まれている。開口部238の形状は特に限定されず、たとえば矩形等の多角形または円形である。
 開口部238について以下にさらに詳しく説明する。なお以下において、開口部238が切れ込み部236であるか否かは問わない。開口部238の、面113に垂直な方向の幅はwである。すなわち、流路230で導入物が導入されるタイミングにおいて、開口部238の先端232から最も離れた端から先端232までの幅はwである。wは特に限定されないが、たとえば500μm以下である。また、造形物200が、光透過部112とキャリア120との距離毎に形成される複数の層により構成される場合、wはたとえば層5つ分以下の長さである。
 また、最初の光照射の開始時における面113と面122との距離をdとしたとき、wはたとえばdの5倍以下である。
 開口部238から導入物を導入する際に、流路230の先端232には面113に向いた開口が設けられていても良いし、設けられていなくても良い。ただし、導入量を確保する観点から、開口が設けられていることが好ましい。また、流路230から導入物が導入された後、流路230はそれ以上の造形がされなくても良いし、開口を塞ぐよう造形がされても良い。また、開口部238が切れ込み部236である場合、切れ込み部236は流路230の延長に伴い側壁235の開口として残されても良い。この開口は、開口部238として導入物の導入に用いられても良いし、用いられなくても良い。また、切れ込み部236由来の開口には側壁235の外側に形成された他の流路が接続され、この開口から流出する導入物をせき止めたり、誘導したりしていてもよい。
 造形物200が造形される間、一つの流路230には一つの開口部238のみが形成されても良いし、複数の開口部238が形成されても良い。複数の開口部238が形成される場合、それらの形状は必ずしも互いに同じである必要は無い。また、一つの流路230に、異なる方向を向いた複数の開口部238が同時に形成されても良い。
 図5は、第1の実施形態に係る三次元造形装置10で形成される造形物200および流路230の変形例を示す図である。本図において、導入物の流れを矢印で例示している。本変形例において、制御部140は、流路230を複数設けるようキャリア120の位置および照射部130を制御する。こうすることにより、複数の流路230を用いて、複数箇所からの、または複数のタイミングでの導入物の導入が可能である。ひいては、複数の領域に対して導入物を導入できる。
 なお、流路230が複数設けられている状態とは、少なくとも流路230の先端232が複数に分かれていることを言う。すなわち、複数の流路230は途中で互いに接続されていても良い。
 また、複数の流路230で導入される導入物には、二種以上の導入物が含まれていてもよい。導入物が複数種類用いられる場合、三次元造形装置10は導入物容器162を複数備えても良い。また、複数の流路230が設けられる場合、三次元造形装置10は導入制御部160を複数備えても良い。複数の流路230はそれぞれ異なる導入制御部160で導入物の導入が制御されても良いし、一の導入制御部160が複数の流路230への導入物の導入を制御しても良い。また、流路230内の導入物は、流路230内で他の流路230の導入物と混合されても良い。
 複数の流路230の側壁235は少なくとも一部において一体化されていても良い。たとえば、外観が一つの管であり、内部が複数に仕切られて、複数の流路230が構成されていても良い。
 以下に、本実施形態に係る造形物200の製造方法について説明する。本実施形態に係る造形物200の製造方法は、上記したような三次元造形装置10を用いた造形物200の製造方法である。
 造形に先立ち、記憶部150に造形物200の三次元データが保持されている。また、造形物200の三次元データおよび流路230の形状に基づき、造形物200および流路230を形成するための光照射情報が生成される。
 そして、キャリア120が、光硬化性組成物20が収容された容器110の光透過部112近傍に配置される。このとき面122と面113との距離dは、たとえば30μm以上100μm以下である。
 次いで、制御部140は光照射情報に基づき、最初の光照射領域に光照射するよう、照射部130から光透過部112に向けて光が照射される。照射部130からの光は光透過部112を介して面122と面113との間の光硬化性組成物20に照射される。これにより、面122と面113との間の光硬化性組成物20が光照射領域の形状に硬化され、硬化物が面122に付着する。
 引き続き、制御部140は光照射情報に基づき、複数の光照射領域に順に光照射する。それと共に、上記した通り、制御部140は、面122と面113との間の距離を変化させるよう駆動部142を制御する。光照射により新たに形成された光硬化性組成物20の硬化物は、その直前に形成された光硬化性組成物20の硬化物に対して、積層される。なお、この段階で光硬化性組成物20の硬化物は半硬化状態であってよい。
 造形物200が造形される間、少なくとも一時的に、流路230の先端232には開口部238が形成される。そして、制御部140は流路230に導入物を供給するよう導入制御部160を制御する。そして、導入物は、流路230の先端232の開口および開口部238から、光照射されている領域に導入される。また、導入物の導入が必要な領域の光照射が終了すると、制御部140は導入制御部160を制御して、導入物の供給を停止する。
 最後の光照射領域が光照射された後、側壁235および造形物200はキャリア120から取り外される。また、側壁235が除去される。その後、造形物200はポストキュアされる場合がある。こうして、造形物200が得られる。
 なお、側壁235の一部が造形物200の一部を兼ねている場合、流路230が取り除かれた後に、造形物200の表面に溝が残っても良い。
 次に、本実施形態の作用および効果について説明する。本実施形態によれば、開口部238により、所望の領域に優先的に導入物を導入することができる。その結果、たとえば造形物200の造形精度を高めたり、組成や材料を部分的に変更したり、硬化を制御したりすることができる。
(第2の実施形態)
 図6(a)は、第2の実施形態に係る流路230の第1の例を示す図であり、図6(b)は、第2の実施形態に係る流路230の第2の例を示す図である。図6(a)および図6(b)は、流路230の先端232近傍の断面図である。本実施形態に係る三次元造形装置10は、制御部140が流路230の光透過部112側の先端232に向かって流路230の内径が広がる拡径部234を少なくとも一時的に設けるように、キャリア120の位置および照射部130を制御する点を除いて、第1の実施形態に係る三次元造形装置10と同じである。なお、流路230の内径とは、面113に平行な断面における径である。
 拡径部234では、流路230の内径が、非等方的に広がる。より具体的には、拡径部234では、流路230の軸231を基準に非等方的に流路230の内径が広がる。ここで、軸231は、流路230の長さ方向に延びる軸である。拡径部234の先端232とは反対側の端部における、面113に平行な断面において、軸231は流路230の中心に位置する。このように流路230が非等方的に広がることにより、流路230からの導入物は、先端232において、流路230が広がった特定の方向に優先的に放出される。したがって、所望の領域に効果的に導入物を導入することができる。
 拡径部234は、径が変化する部分である。拡径部234では、流路230の内径が段階的に広がっていても良いし、連続的に広がっていても良い。図6(a)は、流路230の内径が段階的に広がっている例を示し、図6(b)は、流路230の内径が連続的に広がっている例を示している。本実施形態において、拡径部234における側壁235は貫通していない。
 制御部140は拡径部234が先端232の近傍に位置するタイミングで、導入物を導入するよう導入制御部160を制御する。流路230で導入物が導入されるタイミングにおいて、拡径部234の先端232から最も離れた端から先端232までの幅はwである。wは特に限定されないが、たとえば500μm以下である。また、造形物200が、光透過部112とキャリア120との距離毎に形成される複数の層により構成される場合、wはたとえば層5つ分以下の長さである。また、wはたとえば上記したdの5倍以下としてもよい。
 流路230から導入物が導入されるタイミングにおいて、流路230の先端232の開口の径は、拡径部234において広がった後の径であり、拡径部234と先端232との間で径の縮小はされていない。図6(b)の例において、拡径部234の一端は、先端232と一致している。
 本実施形態では、流路230から導入物を導入する際に、流路230の先端232には面113に向いた開口が設けられている。そして、流路230から導入物が導入された後、流路230はそれ以上の造形がされなくても良いし、引き続き流路230を延長するように造形がされても良い。また、先端232の開口を塞ぐよう造形がされても良い。また、本実施形態において、引き続き流路230が造形される場合、拡径部234で広がった径が維持されても良いし、径が縮小されても良い。
 造形物200が造形される間、一つの流路230には一つの拡径部234のみが形成されても良いし、複数の拡径部234が形成されても良い。複数の拡径部234が形成される場合、それらの形状は必ずしも互いに同じである必要は無い。また、一つの流路230に、異なる方向を向いた複数の拡径部234が同時に形成されても良い。
 本実施形態に係る造形物200の製造方法では、造形物200が造形される間、少なくとも一時的に、流路230には拡径部234が形成される。そして、制御部140は、拡径部234が先端232近傍にある時に、流路230に導入物を供給するよう導入制御部160を制御する。そして、導入物は、流路230の先端232の開口から、光照射されている領域に導入される。また、導入物の導入が必要な領域の光照射が終了すると、制御部140は導入制御部160を制御して、導入物の供給を停止する。
 なお、本実施形態においても、第1の実施形態と同様、流路230が複数設けられても良い。
 また、制御部140は、第1の実施形態で説明した開口部238と、拡径部234との両方を設けるようにキャリア120および照射部130を制御しても良い。
 次に、本実施形態の作用および効果について説明する。本実施形態によれば、拡径部234により、所望の領域に優先的に導入物を導入することができる。その結果、たとえば造形物200の造形精度を高めたり、組成や材料を部分的に変更したり、硬化を制御したりすることができる。加えて、本実施形態によれば、拡径部234により、側壁235に開口を設けず導入物の導入方向を制御できる。したがって、同一の流路230を繰り返し利用しやすい。
(第3の実施形態)
 図7は、第3の実施形態に係る三次元造形装置10で形成される造形物200および流路230の構造を例示する図である。本図において、導入物の流れを矢印で例示している。本実施形態に係る三次元造形装置10は、流路230の少なくとも一部が、造形物200の内部に設けられる点を除いて第1の実施形態および第2の実施形態の少なくともいずれかに係る三次元造形装置10と同じである。以下に詳しく説明する。
 本実施形態では、流路230は造形物200の内部に設けられ、造形物200内に残る。流路230は、造形物200に導入物の導入の目的で特に設けても良いし、他の目的の配管や美観の向上等のために造形物200に形成される構造を利用して流路230としてもよい。なお、流路230の一部が造形物200の内部に設けられ、他の一部が造形物200とは別途設けられても良い。造形物200の内部に設けられる流路230において、流路230の側壁235は、造形物200の一部である。
 本実施形態においても、制御部140は、拡径部234および開口部238の少なくとも一方を、少なくとも一時的に設けるよう、キャリア120および照射部130を制御する。また、制御部140は、拡径部234および開口部238の少なくとも一方を設けるタイミングに応じて導入制御部160を制御し、光照射領域に導入物を導入する。本図では、拡径部234が設けられる例を示している。
 本実施例に係る造形物200の製造方法では、最後の光照射領域に光照射された後、側壁235を除去する必要が無い。
 次に、本実施形態の作用および効果について説明する。本実施形態においては第1および第2の実施形態の少なくともいずれかと同様の作用および効果が得られる。加えて、側壁235を別途設ける必要なく、流路230を形成できる。
(第4の実施形態)
 図8から図11は、第4の実施形態に係る制御部140が行う制御のタイミングチャートの第1例から第4例を示す図である。本実施形態に係る三次元造形装置10は以下に説明する点を除いて第1から第3の実施形態の少なくともいずれかに係る三次元造形装置10と同じである。
 本実施形態において、制御部140は、拡径部234および開口部238の少なくとも一方を埋めるよう、キャリア120の位置および照射部130を制御する。
 本実施形態において、造形物200は、キャリア120と光透過部112との距離毎に形成される複数の層により構成される。拡径部234および開口部238の少なくとも一方の、複数の層の積層方向の幅wは、たとえば層5つ分以下である。また、拡径部234または開口部238の先端232から最も離れた端から先端232までの幅wはたとえば500μm以下である。wはたとえば上記したdの5倍以下としてもよい。
 本実施形態に係る三次元造形装置10では、拡径部234または開口部238から導入物が導入された後、その拡径部234または開口部238が光硬化性組成物20の硬化物で埋められる。具体的には、拡径部234については、拡径部234の径を拡大するための領域が埋められ、拡径部234が消失する。また、開口部238については、側壁235の開口部238が埋められ、埋められた部分では、面113に平行な方向において、流路230の内外が側壁235で区切られる。埋めやすさの観点から、開口部238は切れ込み部236であることが好ましい。切れ込み部236が埋められた後に引き続き流路230を造形すれば、側壁235には切れ込み部236に起因する開口は生じない。
 図8から図11を参照し、制御部140が切れ込み部236を埋めるために行う制御の例について以下に説明する。なお、以下では、造形物200がキャリア120と光透過部112との距離毎に形成される複数の層により構成される場合を例に説明する。第1の実施形態で説明した通り、造形物200の造形のためには、層毎の光照射パターンが定められている。そして、キャリア120および光透過部112の距離と、造形物200の光照射パターンとが対応づけられている。また、この光照射パターンに応じて制御部140はキャリア120と光透過部112との距離を制御する。以下において、kは1以上の整数であり、第k層、第k+1層、第k+2層はこの順に光照射されるとする。また、各層に光照射する際のキャリア120と光透過部112との距離は、この順に短いとする。
 図12(a)から図12(c)は、流路230の側壁235を造形するための光照射パターンを例示する図である。図12(a)は、切れ込み部236を形成するためのパターンの例であり、以下、パターンAと呼ぶ。図12(b)は、切れ込み部236を埋めるためのパターンの例であり、以下、パターンBと呼ぶ。図12(c)は、切れ込み部236を形成せず、流路230を延長するタイミングの側壁235の形成パターンの例であり、以下、パターンCと呼ぶ。図8から図11における「A」、「B」、および「C」は、これらのパターンA、B、およびCに対応する。
 図12(a)から図12(c)は、切れ込み部236を設け、埋める場合の例を示しているが、本例に限定されず、切れ込み部236ではない開口部238、または拡径部234を設け、埋める場合も同様である。
 図8は、制御部140が行う制御の第1例を示すタイミングチャートである。本例において、造形物200を構成する第k層の光照射を行う間、導入物が導入される。第k層の光照射の前後には、パターンAで光照射する時間と、パターンBで光照射する時間が存在する。パターンAでの光照射により、切れ込み部236が流路230の先端232近傍に設けられる。そして第k層の光照射後、パターンBでの光照射により、切れ込み部236が埋められる。そして、造形物200の第k+1層および第k+2層の光照射時には、パターンCにより流路230が延長される。
 本例では、パターンAおよびBの光照射時間を追加的に設けている。したがって、より確実に切れ込み部236が形成され、第k層が造形され、切れ込み部236が埋められる。一方、第k層の光照射を行う際の距離が、他の層を形成する際の距離よりも長時間維持されている。なお、本図の例では、第k層のパターンで光照射を行う間、側壁235のパターンの光照射を行っていないが、引き続きパターンAの光照射が行われていても良い。
 図9は、制御部140が行う制御の第2例を示すタイミングチャートである。本例において、造形物200を構成する第k層の光照射を行う時間の一部において導入物が導入される。そして本例において、各層に対応する距離は、同じ時間ずつ維持されている。具体的には、第k層の光照射の開始と共にパターンAでの光照射が開始される。そして、パターンAでの光照射の開始から予め定められた時間tが経過した時点で導入物の導入が開始される。このとき、先端232には導入物の流れに影響しうる程度に光硬化性組成物20が硬化し、切れ込み部236が形成されている。また、パターンAでの光照射の開始から予め定められた時間tが経過した時点で、側壁235のパターンが、パターンAからパターンBに切り替えられ、切れ込み部236が埋まり始める。そして、パターンAでの光照射の開始から予め定められた時間tが経過した時点で導入物の導入が停止される。時間tからtは、事前の試験等により決定することができる。そして、時間tからtを示す情報は造形物200の造形に先立ち記憶部150に保持されており、制御部140はそれを読み出して制御に用いることができる。
 本例によれば、パターンAおよびBで光照射するための追加の時間を設けないため、造形物200の造形時間を短くすることができる。
 図10は、制御部140が行う制御の第3例を示すタイミングチャートである。本例において、第k層の光照射を行う間、パターンAでの光照射が行われ切れ込み部236が形成される。そして、第k+1層の光照射が行われる間、導入物が導入される。次いで、第k+2層の光照射が行われる間、パターンBでの光照射が行われ、切れ込み部236が埋められる。本例によれば、造形物200の造形時間を延ばすことなく切れ込み部236を形成し、埋めることができる。
 なお、本図では、第k+1層の光照射が行われる間にもパターンAでの光照射を行う例を示しているが、第k+1層の光照射を行う間にはパターンA、B、およびCのいずれの光照射もしなくても良い。
 図11は、制御部140が行う制御の第4例を示すタイミングチャートである。本例では、キャリア120と光透過部112との距離が一時的に縮められ、縮められた距離において、パターンBでの光照射が行われる。
 具体的には、第k層の光照射を行う間、パターンAでの光照射が行われ切れ込み部236が形成される。そして、第k+1層の光照射が行われる間、導入物が導入される。次いで、第k+1層の光照射後、第k+2層の光照射前に、パターンBでの光照射が行われ、切れ込み部236が埋められる。ここで、パターンBでの光照射時のキャリア120と光透過部112との距離は、第k+1層の光照射時の距離よりも短い。そして、次の第k+2層の光照射において、キャリア120と光透過部112との距離は第k+1層の光照射時の距離よりも長くなる。本例によれば、キャリア120と光透過部112とを近づけた状態で、より確実に切れ込み部236を埋めることができる。
 なお、本図では、第k+1層の光照射を行う間にもパターンAでの光照射を行う例を示しているが、第k+1層の光照射を行う間にはパターンA、B、およびCのいずれの光照射もしなくても良い。
 なお、第1例から第4例では、導入物が造形物200の一層について導入される場合について説明したが、導入物の導入は二層以上にわたり行われても良い。
 また、キャリア120と光透過部112との距離が断続的に変化する例について上記したが、キャリア120と光透過部112との距離は連続的に変化してもよい。
 次に、本実施形態の作用および効果について説明する。本実施形態においては第1および第2の実施形態の少なくともいずれかと同様の作用および効果が得られる。加えて、途中で拡径部234や開口部238を設けた場合でも、その後に影響なく流路230を延長することができる。
(第5の実施形態)
 第5の実施形態に係る三次元造形装置10は、以下に説明する点を除いて、第1から第4の少なくともいずれかに係る三次元造形装置10と同じである。本実施形態に係る三次元造形装置10は、流路230への導入物の導入を制御する導入制御部160を備える。制御部140は、複数のタイミングで拡径部234および開口部238の少なくとも一方を設けるようキャリア120の位置および照射部130を制御する。そして、導入制御部160は、この複数のタイミングに基づき流路230に導入物を導入するタイミングを制御する。
 本実施形態において、制御部140は、一または二以上の流路230を設けるようキャリア120および照射部130を制御する。制御部140は、一の流路230に対し、異なる二以上のタイミングで拡径部234および開口部238の少なくとも一方を設けることができる。ここで、先のタイミングで設けられた拡径部234や開口部238は、第4の実施形態で説明したように埋められても良いし、埋められなくても良い。
 また、制御部140は、複数の流路230に対し、異なる二以上のタイミングで拡径部234および開口部238の少なくとも一方を設けてもよい。
 複数のタイミングに導入される導入物には、二種以上の導入物が含まれてもよい。そうすることで、造形物200のうち光照射タイミングが異なる複数の領域に対し、異なる導入物を作用させることができる。
 次に、本実施形態の作用および効果について説明する。本実施形態においては第1および第2の実施形態の少なくともいずれかと同様の作用および効果が得られる。加えて、造形物200のうち光照射タイミングが異なる複数の領域に対し、導入物を作用させることができる。
(第6の実施形態)
 図13は、第6の実施形態に係る三次元造形装置10の構成を例示する図である。本実施形態に係る三次元造形装置10は、少なくとも一の流路230に容器110内の光硬化性組成物20よりも低温の導入物が導入される点を除いて第1から第5の実施形態の少なくともいずれかに係る三次元造形装置10と同じである。以下に詳しく説明する。
 本実施形態に係る三次元造形装置10は、温調部170および温度センサ172を備える。温度センサ172は容器110内の光硬化性組成物20の温度を検出する。そして、温調部170は、流路230に導入される導入物の温度を調節する。温調部170はヒーターまたは冷却装置である。冷却装置はたとえば、送風、ペルチェ素子、または水冷による冷却を行う装置である。
 光硬化性組成物20が硬化する際に反応熱が生じ、光硬化性組成物20や造形物200の温度が上昇する場合がある。そうすると、造形途中の光硬化性組成物20が面113に貼り付いたり、造形物200に反りや変形が生じたりしやすくなる。それに対し、本実施形態に係る三次元造形装置10では、特に温度上昇が生じやすい領域に対し低温の導入物を導入し、そのような問題を生じにくくすることができる。
 たとえば制御部140は、少なくとも造形物200のうち、光透過部112のキャリア120側の面113に平行な断面の面積が最も大きい第1領域を造形する際に、拡径部234および開口部238の少なくとも一方が設けられているよう、キャリア120の位置および照射部130を制御する。
 このような第1領域では、反応する光硬化性組成物20が多いため、温度上昇が特に起きやすい。したがって、第1領域に対して低温の導入物を導入することが特に効果的である。
 次に、本実施形態の作用および効果について説明する。本実施形態においては第1および第2の実施形態の少なくともいずれかと同様の作用および効果が得られる。加えて、光硬化性組成物20の温度上昇を抑え、造形物200の変形等を抑制することができる。
(第7の実施形態)
 図14は、第7の実施形態に係る三次元造形装置40および制御装置50の構成を例示するブロック図である。本実施形態に係る制御装置50は、三次元造形装置40の制御装置である。三次元造形装置40は、第1の実施形態係る三次元造形装置40と同様であり、容器110、キャリア120、および照射部130を備える。容器110は、光硬化性組成物20を収容し、少なくとも一部に光透過部112を有する。キャリア120は、光透過部112に対する距離が可変に構成されている。照射部130は、キャリア120と光透過部112の間の光硬化性組成物20に、光透過部112を介して光を照射する。また、制御装置50は制御部500を備える。制御部500は、光硬化性組成物20を硬化させてなる造形物200を形成するよう、キャリア120の位置および照射部130を制御する。また、制御部500は、光が照射されている領域で光硬化性組成物20を硬化させることにより、容器110の外部に繋がる流路230の少なくとも一部を形成するようにキャリア120の位置および照射部130を制御し、かつ、拡径部234および開口部238の少なくとも一方を、少なくとも一時的に設けるように、キャリア120の位置および照射部130を制御する。ここで、拡径部234は、流路230の光透過部112側の先端232に向かって流路230の内径が広がる部分である。開口部238は、流路230の先端232近傍の側壁に位置する。
 本実施形態に係る制御部500は、第1から第6の実施形態の少なくともいずれかに係る制御部140と同じである。
 本実施形態においては第1および第2の実施形態の少なくともいずれかと同様の作用および効果が得られる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。たとえば、上述の各実施形態は、内容が相反しない範囲で組み合わせることができる。
 以下、参考形態の例を付記する。
1-1.光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
 前記光透過部に対する距離が可変に構成されているキャリアと、
 前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部と、
 前記光硬化性組成物を硬化させてなる造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部とを備え、
 前記制御部は、
  前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
  前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する三次元造形装置。
1-2. 1-1.に記載の三次元造形装置において、
 前記流路の少なくとも一部は、前記造形物とは別途設けられる三次元造形装置。
1-3. 1-1.に記載の三次元造形装置において、
 前記流路の少なくとも一部は、前記造形物の内部に設けられる三次元造形装置。
1-4. 1-1.から1-3.のいずれか一つに記載の三次元造形装置において、
 前記造形物は、前記距離毎に形成される複数の層により構成され、
 前記拡径部および前記開口部の少なくとも一方の、前記先端から最も離れた端から前記先端までの幅wは、前記層5つ分以下であり、
 前記制御部は、前記拡径部および前記開口部の少なくとも一方を埋めるよう前記キャリアの位置および前記照射部を制御する三次元造形装置。
1-5. 1-1.から1-4.のいずれか一つに記載の三次元造形装置において、
 前記流路により、前記光が照射されている領域に流動性がある導入物が導入される三次元造形装置。
1-6. 1-5.に記載の三次元造形装置において、
 前記流路への前記導入物の導入を制御する導入制御部をさらに備え、
 前記制御部は、複数のタイミングで前記拡径部および前記開口部の少なくとも一方を設けるよう前記キャリアの位置および前記照射部を制御し、
 前記導入制御部は、前記複数のタイミングに基づき、前記流路に前記導入物を導入するタイミングを制御する三次元造形装置。
1-7. 1-6.に記載の三次元造形装置において、
 前記複数のタイミングに導入される前記導入物には、二種以上の前記導入物が含まれる三次元造形装置。
1-8. 1-5.から1-7.のいずれか一つに記載の三次元造形装置において、
 前記制御部は、前記流路を複数設けるよう前記キャリアの位置および前記照射部を制御する三次元造形装置。
1-9. 1-5.から1-8.のいずれか一つに記載の三次元造形装置において、
 少なくとも一の前記流路には前記容器内の前記光硬化性組成物よりも低温の前記導入物が導入される三次元造形装置。
1-10. 1-1.から1-9.のいずれか一つに記載の三次元造形装置において、
 前記制御部は、少なくとも前記造形物のうち、前記光透過部の前記キャリア側の面に平行な断面の面積が最も大きい領域を造形する際に、前記先端近傍に前記拡径部および前記開口部の少なくとも一方が設けられているよう、前記キャリアの位置および前記照射部を制御する三次元造形装置。
1-11. 1-1.から1-10.のいずれか一つに記載の三次元造形装置において、
 前記拡径部が少なくとも一時的に設けられ、
 前記拡径部では、前記流路の軸を基準に非等方的に前記流路の内径が広がる三次元造形装置。
2-1.三次元造形装置の制御装置であって、
 前記三次元造形装置は、
  光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
  前記光透過部に対する距離が可変に構成されているキャリアと、
  前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部とを備え、
 当該制御装置は、前記光硬化性組成物を硬化させてなる造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部を備え、
 前記制御部は、
  前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
  前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する制御装置。
2-2. 2-1.に記載の制御装置において、
 前記流路の少なくとも一部は、前記造形物とは別途設けられる制御装置。
2-3. 2-1.に記載の制御装置において、
 前記流路の少なくとも一部は、前記造形物の内部に設けられる制御装置。
2-4. 2-1.から2-3.のいずれか一つに記載の制御装置において、
 前記造形物は、前記距離毎に形成される複数の層により構成され、
 前記拡径部および前記開口部の少なくとも一方の、前記先端から最も離れた端から前記先端までの幅wは、前記層5つ分以下であり、
 前記制御部は、前記拡径部および前記開口部の少なくとも一方を埋めるよう前記キャリアの位置および前記照射部を制御する制御装置。
2-5. 2-1.から2-4.のいずれか一つに記載の制御装置において、
 前記流路により、前記光が照射されている領域に流動性がある導入物が導入される制御装置。
2-6. 2-5.に記載の制御装置において、
 前記三次元造形装置は、前記流路への前記導入物の導入を制御する導入制御部をさらに備え、
 前記制御部は、複数のタイミングで前記拡径部および前記開口部の少なくとも一方を設けるよう前記キャリアの位置および前記照射部を制御し、
 前記導入制御部は、前記複数のタイミングに基づき、前記流路に前記導入物を導入するタイミングを制御する制御装置。
2-7. 2-6.に記載の制御装置において、
 前記複数のタイミングに導入される前記導入物には、二種以上の前記導入物が含まれる制御装置。
2-8. 2-5.から2-7.のいずれか一つに記載の制御装置において、
 前記制御部は、前記流路を複数設けるよう前記キャリアの位置および前記照射部を制御する制御装置。
2-9. 2-5.から2-8.のいずれか一つに記載の制御装置において、
 少なくとも一の前記流路には前記容器内の前記光硬化性組成物よりも低温の前記導入物が導入される制御装置。
2-10. 2-1.から2-9.のいずれか一つに記載の制御装置において、
 前記制御部は、少なくとも前記造形物のうち、前記光透過部の前記キャリア側の面に平行な断面の面積が最も大きい領域を造形する際に、前記先端近傍に前記拡径部および前記開口部の少なくとも一方が設けられているよう、前記キャリアの位置および前記照射部を制御する制御装置。
2-11. 2-1.から2-10.のいずれか一つに記載の制御装置において、
 前記拡径部が少なくとも一時的に設けられ、
 前記拡径部では、前記流路の軸を基準に非等方的に前記流路の内径が広がる制御装置。
3-1.三次元造形装置を用いた造形物の製造方法であって、
 前記三次元造形装置は、
  光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
  前記光透過部に対する距離が可変に構成されているキャリアと、
  前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部と、
  前記光硬化性組成物を硬化させてなる前記造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部とを備え、
 前記制御部は、
  前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
  前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する造形物の製造方法。
3-2. 3-1.に記載の造形物の製造方法において、
 前記流路の少なくとも一部は、前記造形物とは別途設けられる造形物の製造方法。
3-3. 3-1.に記載の造形物の製造方法において、
 前記流路の少なくとも一部は、前記造形物の内部に設けられる造形物の製造方法。
3-4. 3-1.から3-3.のいずれか一つに記載の造形物の製造方法において、
 前記造形物は、前記距離毎に形成される複数の層により構成され、
 前記拡径部および前記開口部の少なくとも一方の、前記先端から最も離れた端から前記先端までの幅wは、前記層5つ分以下であり、
 前記制御部は、前記拡径部および前記開口部の少なくとも一方を埋めるよう前記キャリアの位置および前記照射部を制御する造形物の製造方法。
3-5. 3-1.から3-4.のいずれか一つに記載の造形物の製造方法において、
 前記流路により、前記光が照射されている領域に流動性がある導入物が導入される造形物の製造方法。
3-6. 3-5.に記載の造形物の製造方法において、
 前記三次元造形装置は前記流路への前記導入物の導入を制御する導入制御部をさらに備え、
 前記制御部は、複数のタイミングで前記拡径部および前記開口部の少なくとも一方を設けるよう前記キャリアの位置および前記照射部を制御し、
 前記導入制御部は、前記複数のタイミングに基づき、前記流路に前記導入物を導入するタイミングを制御する造形物の製造方法。
3-7. 3-6.に記載の造形物の製造方法において、
 前記複数のタイミングに導入される前記導入物には、二種以上の前記導入物が含まれる造形物の製造方法。
3-8. 3-5.から3-7.のいずれか一つに記載の造形物の製造方法において、
 前記制御部は、前記流路を複数設けるよう前記キャリアの位置および前記照射部を制御する造形物の製造方法。
3-9. 3-5.から3-8.のいずれか一つに記載の造形物の製造方法において、
 少なくとも一の前記流路には前記容器内の前記光硬化性組成物よりも低温の前記導入物が導入される造形物の製造方法。
3-10. 3-1.から3-9.のいずれか一つに記載の造形物の製造方法において、
 前記制御部は、少なくとも前記造形物のうち、前記光透過部の前記キャリア側の面に平行な断面の面積が最も大きい領域を造形する際に、前記先端近傍に前記拡径部および前記開口部の少なくとも一方が設けられているよう、前記キャリアの位置および前記照射部を制御する造形物の製造方法。
3-11. 3-1.から3-10.のいずれか一つに記載の造形物の製造方法において、
 前記拡径部が少なくとも一時的に設けられ、
 前記拡径部では、前記流路の軸を基準に非等方的に前記流路の内径が広がる造形物の製造方法。
 この出願は、2018年7月5日に出願された日本出願特願2018-128299号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1.  光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
     前記光透過部に対する距離が可変に構成されているキャリアと、
     前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部と、
     前記光硬化性組成物を硬化させてなる造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部とを備え、
     前記制御部は、
      前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
      前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する三次元造形装置。
  2.  請求項1に記載の三次元造形装置において、
     前記流路の少なくとも一部は、前記造形物とは別途設けられる三次元造形装置。
  3.  請求項1に記載の三次元造形装置において、
     前記流路の少なくとも一部は、前記造形物の内部に設けられる三次元造形装置。
  4.  請求項1から3のいずれか一項に記載の三次元造形装置において、
     前記造形物は、前記距離毎に形成される複数の層により構成され、
     前記拡径部および前記開口部の少なくとも一方の、前記先端から最も離れた端から前記先端までの幅wは、前記層5つ分以下であり、
     前記制御部は、前記拡径部および前記開口部の少なくとも一方を埋めるよう前記キャリアの位置および前記照射部を制御する三次元造形装置。
  5.  請求項1から4のいずれか一項に記載の三次元造形装置において、
     前記流路により、前記光が照射されている領域に流動性がある導入物が導入される三次元造形装置。
  6.  請求項5に記載の三次元造形装置において、
     前記流路への前記導入物の導入を制御する導入制御部をさらに備え、
     前記制御部は、複数のタイミングで前記拡径部および前記開口部の少なくとも一方を設けるよう前記キャリアの位置および前記照射部を制御し、
     前記導入制御部は、前記複数のタイミングに基づき、前記流路に前記導入物を導入するタイミングを制御する三次元造形装置。
  7.  請求項6に記載の三次元造形装置において、
     前記複数のタイミングに導入される前記導入物には、二種以上の前記導入物が含まれる三次元造形装置。
  8.  請求項5から7のいずれか一項に記載の三次元造形装置において、
     前記制御部は、前記流路を複数設けるよう前記キャリアの位置および前記照射部を制御する三次元造形装置。
  9.  請求項5から8のいずれか一項に記載の三次元造形装置において、
     少なくとも一の前記流路には前記容器内の前記光硬化性組成物よりも低温の前記導入物が導入される三次元造形装置。
  10.  請求項1から9のいずれか一項に記載の三次元造形装置において、
     前記制御部は、少なくとも前記造形物のうち、前記光透過部の前記キャリア側の面に平行な断面の面積が最も大きい領域を造形する際に、前記先端近傍に前記拡径部および前記開口部の少なくとも一方が設けられているよう、前記キャリアの位置および前記照射部を制御する三次元造形装置。
  11.  請求項1から10のいずれか一項に記載の三次元造形装置において、
     前記拡径部が少なくとも一時的に設けられ、
     前記拡径部では、前記流路の軸を基準に非等方的に前記流路の内径が広がる三次元造形装置。
  12.  三次元造形装置の制御装置であって、
     前記三次元造形装置は、
      光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
      前記光透過部に対する距離が可変に構成されているキャリアと、
      前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部とを備え、
     当該制御装置は、前記光硬化性組成物を硬化させてなる造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部を備え、
     前記制御部は、
      前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
      前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する制御装置。
  13.  三次元造形装置を用いた造形物の製造方法であって、
     前記三次元造形装置は、
      光硬化性組成物を収容し、少なくとも一部に光透過部を有する容器と、
      前記光透過部に対する距離が可変に構成されているキャリアと、
      前記キャリアと前記光透過部の間の前記光硬化性組成物に、前記光透過部を介して光を照射する照射部と、
      前記光硬化性組成物を硬化させてなる前記造形物を形成するよう、前記キャリアの位置および前記照射部を制御する制御部とを備え、
     前記制御部は、
      前記光が照射されている領域で前記光硬化性組成物を硬化させることにより、前記容器の外部に繋がる流路の少なくとも一部を形成するように前記キャリアの位置および前記照射部を制御し、かつ、
      前記流路の前記光透過部側の先端に向かって前記流路の内径が広がる拡径部、および、前記流路の前記先端近傍の側壁に位置する開口部の少なくとも一方を、少なくとも一時的に設けるように、前記キャリアの位置および前記照射部を制御する造形物の製造方法。
PCT/JP2019/022277 2018-07-05 2019-06-05 三次元造形装置、制御装置、および造形物の製造方法 WO2020008788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020528736A JP6956874B2 (ja) 2018-07-05 2019-06-05 三次元造形装置、制御装置、および造形物の製造方法
EP19829967.9A EP3819101A4 (en) 2018-07-05 2019-06-05 THREE-DIMENSIONAL MODELING DEVICE, CONTROL DEVICE AND METHOD FOR MAKING A MODELED OBJECT
US17/257,109 US20210129447A1 (en) 2018-07-05 2019-06-05 Three-dimensional modeling apparatus, control apparatus, and method for manufacturing modeled object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-128299 2018-07-05
JP2018128299 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020008788A1 true WO2020008788A1 (ja) 2020-01-09

Family

ID=69060936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022277 WO2020008788A1 (ja) 2018-07-05 2019-06-05 三次元造形装置、制御装置、および造形物の製造方法

Country Status (4)

Country Link
US (1) US20210129447A1 (ja)
EP (1) EP3819101A4 (ja)
JP (1) JP6956874B2 (ja)
WO (1) WO2020008788A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016149151A1 (en) * 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
US20170173880A1 (en) * 2014-03-21 2017-06-22 Carbon 3D, Inc. Method and apparatus for three-dimensional fabrication with gas injection through carrier
US20170355132A1 (en) * 2014-12-31 2017-12-14 Carbon, Inc. Three-dimensional printing of objects with breathing orifices
JP2018128299A (ja) 2017-02-07 2018-08-16 Jfeスチール株式会社 十字引張継手の破断様式判定方法、及び、十字引張継手用薄鋼板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3203318A1 (en) * 2013-02-12 2017-08-09 CARBON3D, Inc. Continuous liquid interphase printing
DE102016216678A1 (de) * 2016-09-02 2018-03-08 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts
WO2019140164A1 (en) * 2018-01-12 2019-07-18 University Of Florida Research Foundation, Inc. Multi-material microstereolithography using injection of resin
KR102418166B1 (ko) * 2018-04-06 2022-07-08 팍시스 엘엘씨 적층 제조 장치, 시스템 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170173880A1 (en) * 2014-03-21 2017-06-22 Carbon 3D, Inc. Method and apparatus for three-dimensional fabrication with gas injection through carrier
US20170355132A1 (en) * 2014-12-31 2017-12-14 Carbon, Inc. Three-dimensional printing of objects with breathing orifices
WO2016149151A1 (en) * 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with concurrent delivery of different polymerizable liquids
JP2018128299A (ja) 2017-02-07 2018-08-16 Jfeスチール株式会社 十字引張継手の破断様式判定方法、及び、十字引張継手用薄鋼板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3819101A4

Also Published As

Publication number Publication date
US20210129447A1 (en) 2021-05-06
EP3819101A1 (en) 2021-05-12
EP3819101A4 (en) 2022-03-30
JPWO2020008788A1 (ja) 2021-06-03
JP6956874B2 (ja) 2021-11-02

Similar Documents

Publication Publication Date Title
CN103029301B (zh) 一种光固化快速成型装置及其方法
JP6800679B2 (ja) 光造形装置、光造形方法および光造形プログラム
ES2833358T3 (es) Método para producir simultáneamente múltiples objetos tridimensionales a partir de múltiples materiales solidificables
JP6849365B2 (ja) 光造形装置、光造形方法および光造形プログラム
CN115257026A (zh) 用于铸造聚合物产品的方法和装置
US20220298459A1 (en) Emulsion stereolithography and 3d printing of multimaterials and nanoscale material gradients
US7736577B2 (en) Stereolithography apparatus and stereolithography method
JP2009132127A (ja) 光造形装置および光造形方法
JP6797155B2 (ja) 3次元印刷システム
CN110770626B (zh) 光学物品的制造方法和光学成形设备
WO2017154457A1 (ja) 三次元造形装置、造形物の製造方法、プログラム及び記録媒体
WO2020008788A1 (ja) 三次元造形装置、制御装置、および造形物の製造方法
KR101990431B1 (ko) 마이크로 led를 이용한 3d프린터
JP7134235B2 (ja) 三次元造形装置、制御装置、および造形物の製造方法
Gibson et al. Vat photopolymerization
JP7003264B2 (ja) 三次元造形装置、制御装置、および造形物の製造方法
KR101851709B1 (ko) 삼차원 프린터의 속도를 향상시키는 장치
BR112021016001A2 (pt) Método e sistema para fabricação de um elemento de volume óptico desde um material curável usando uma tecnologia de fabricação aditiva
JP2004009573A (ja) 光硬化造形方法及び造形装置
JP4834297B2 (ja) 光造形装置及び光造形方法
KR20180019628A (ko) 삼차원 프린터의 속도를 향상시키는 장치
JP2006095807A (ja) 光造形装置及び光造形方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19829967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019829967

Country of ref document: EP