WO2020008713A1 - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
WO2020008713A1
WO2020008713A1 PCT/JP2019/017337 JP2019017337W WO2020008713A1 WO 2020008713 A1 WO2020008713 A1 WO 2020008713A1 JP 2019017337 W JP2019017337 W JP 2019017337W WO 2020008713 A1 WO2020008713 A1 WO 2020008713A1
Authority
WO
WIPO (PCT)
Prior art keywords
positional relationship
imaging
unit
illumination unit
imaging target
Prior art date
Application number
PCT/JP2019/017337
Other languages
French (fr)
Japanese (ja)
Inventor
山田 智明
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2020008713A1 publication Critical patent/WO2020008713A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present invention relates to an apparatus for measuring an object to be photographed, and particularly to a measuring apparatus for measuring an object to be photographed on a machine tool.
  • an image sensor can be attached to a moving part (for example, a main shaft) of the machine tool to measure the object to be photographed.
  • a moving part for example, a main shaft
  • image unevenness in particular, unevenness in luminance may occur.
  • an image processing apparatus that corrects luminance unevenness by performing shading correction (for example, see Patent Document 1).
  • Patent Literature 1 aims to easily calculate correction information for shading correction. This makes it possible to correct uneven brightness.
  • the image sensor attached to the moving part of the machine tool needs to be small, lightweight, and practically inexpensive in consideration of storage in an automatic tool changer. To cope with this, it is preferable to use an image sensor in which ring illumination such as an LED is arranged around the imaging lens.
  • image unevenness in an imaging target having a three-dimensional structure occurs due to a variation in the angle of view of illumination viewed from each point on the surface of the imaging target.
  • image acquisition unit imaging lens
  • arrows E and E of the profile are used.
  • a large error may occur in the profile due to a difference in light distribution characteristics.
  • the present invention has been made in view of the above-described problem, and provides a measuring apparatus capable of realizing highly accurate measurement of an imaging target using an image sensor even when an error in light distribution characteristics occurs due to illumination.
  • the purpose is to provide.
  • a measuring device includes: An image acquisition unit; Lighting part, A control unit; With The image acquisition unit captures an image when the illumination unit and the imaging target are in a first positional relationship, and the illumination unit and the imaging target are in a second positional relationship symmetrical to the first positional relationship. If the imaging and get, The control unit measures a surface position of the imaging target based on the imaging of the first positional relationship and the second positional relationship.
  • FIG. 3 is a flowchart illustrating an example of a process of measuring by offsetting an error in light distribution characteristics using the measurement device illustrated in FIG. 1.
  • 2 is a flowchart illustrating a process for canceling an error in light distribution characteristics and performing a measurement using the measurement device illustrated in FIG. 1 and other examples. It is a figure which shows typically the influence by the error of a light distribution characteristic.
  • FIGS. 1 and 3A to 3C directions orthogonal to each other in the horizontal direction of the machine tool are defined as an X-axis direction and a Y-axis direction, a direction perpendicular to the machine tool is defined as a Z-axis direction, and a rotation direction around the Z-axis is defined as C. Shown as axial direction.
  • FIG. 1 is a perspective view schematically showing a configuration of a measuring device according to one embodiment of the present invention.
  • FIG. 2 is a perspective view schematically illustrating an example of an image sensor provided with an illumination unit and an image acquisition unit.
  • the measurement device 2 includes an image sensor 10 and a control unit 20 that performs control for measurement.
  • the image sensor 10 is electrically connected to the control unit 20. Further, the image sensor 10 is attached to a tool spindle 30 which is a moving part of the machine tool.
  • the drive unit of the moving unit (tool main shaft) 30 of the machine tool is electrically connected to the NC device 40, and the driving unit (tool main shaft) 30 is controlled by the NC device 40 so that the moving unit (tool main shaft) 30 has an X axis, a Y axis, and a Z axis. Direction and can rotate about a main axis.
  • the control unit 20 of the measurement device 2 and the NC device 40 are electrically connected.
  • FIG. 1 shows a case where the photographing target W is attached to the table 50 of the machine tool.
  • the moving unit (tool main shaft) 30 to which the image sensor 10 is attached has a main axis oriented in the Z-axis direction (vertical direction), and the image sensor 10 can image the photographing target W from vertically above.
  • the image sensor 10 attached to the moving part (tool spindle) 30 of the machine tool needs to be small, lightweight, practical and low cost in consideration of storage in an automatic tool changer.
  • the image sensor 10 according to the present embodiment has an image acquisition unit 12 and an illumination unit 14 arranged around the image acquisition unit 12, as shown in FIG. More specifically, an illumination unit 14 that is a ring illumination using six LEDs is arranged around the imaging lens of the image acquisition unit 12. Further, the image sensor 10 includes a shank 16, and the shank 16 is inserted and fixed in a tool holder of a tool spindle 30, which is a moving member of a machine tool.
  • the image sensor 10 acquires the imaging target W by the image acquisition unit 12 while illuminating the imaging target W fixed on the table 50 from above with the illumination unit 14. be able to.
  • the image sensor 10 attached to the moving unit (tool spindle) 30 can be moved in the X-axis direction and the Y-axis direction under the control of the NC device 40, and can be rotated in the C-axis direction around the Z-axis.
  • the image sensor 10 including the ring illumination (illumination unit) 14 is small, lightweight, and excellent in cost.
  • an edge sensor e, f of a convex portion is measured using an image sensor in which a ring illumination is arranged around an image acquisition unit (imaging lens), arrows E,
  • a large error may occur in the profile due to a difference in light distribution characteristics. Therefore, it may be difficult to measure an imaging target with high accuracy due to a difference in light distribution characteristics.
  • highly accurate measurement of the imaging target can be realized. This will be described in detail below.
  • FIG. 3A is a diagram schematically illustrating an example of acquiring an image when the illumination unit 14 and the imaging target object W are in the first positional relationship.
  • the rectangular frame in FIG. 3A indicates the field of view (FOV) of the image acquisition unit 12.
  • 6 shows an arrangement of six LEDs L1 to L3 and R1 to R3 constituting a lighting unit 14 around an image acquisition unit 12.
  • the illumination unit 14 (L1 to L3, R1 to R3) and the imaging target W are in the first positional relationship, and the upper surface shape of the imaging target W is shown at the upper left of the field of view (FOV) of the image acquisition unit 12. I have.
  • the upper surface shape of the photographing target W shows a rectangle having four edges a to d.
  • the rotation center when rotating the image sensor 10 is indicated by P.
  • FIG. 3B is a diagram schematically illustrating an example in which the positional relationship between the illumination unit 14 and the imaging target object W is changed from the first positional relationship to the second positional relationship.
  • ⁇ Circle around (3) ⁇ on the right side of FIG. 3B shows solid-state imaging when the illumination unit 14 and the imaging target W are in the first positional relationship.
  • the moving unit (tool spindle) 30 to which the image sensor 10 is attached moves from the position Ps1 corresponding to the first positional relationship to the second positional relationship under the control of the NC device 40. Move to position Ps2. Furthermore, it is rotated 180 degrees in the C-axis direction around the Z-axis. Thereby, the illumination unit 14 and the imaging target W are changed to the second positional relationship.
  • the position of the relative second positional relationship in the field of view (FOV) of the image acquiring unit 12 having the first positional relationship in FIG. 3A is indicated by a dotted line.
  • FIG. 3C is a diagram schematically illustrating an example of acquiring an image when the illumination unit 14 and the imaging target object W are in the second positional relationship. If the image sensor 10 is rotated 180 degrees without moving in the X-axis and Y-axis directions from the first positional relationship shown in FIG. 3A, the photographing target W is shown at the position shown by the dotted line in FIG. 3C. It is.
  • the measurement position in the field of view (FOV) of the image acquisition unit 12 is changed to a symmetrical edge. It can be in the same position above. Specifically, the edge a at the first position matches the second one edge c, the edge b at the first position matches the second one edge d, and the edge c at the first position Coincides with the second edge a, and the edge d at the first position coincides with the second edge b. Therefore, even if an error occurs in the light distribution characteristics due to the illumination unit 14, the error can be offset.
  • the image acquisition unit 12 of the image sensor 10 captures the image when the illumination unit 14 and the imaging target W are in the first positional relationship, and sets the illumination unit 14 and the imaging target W in the first positional relationship.
  • the control unit 20 measures the surface position of the imaging target based on the images of the first positional relationship and the second positional relationship.
  • the case where the illumination unit 14 and the imaging target object W are rotated by 180 degrees is shown as the “symmetric positional relationship”, but this is merely an example, and even if the relative position is slightly shifted, Seen from the intermediate point before and after the shift, it is also included in the “symmetric positional relationship”.
  • the control unit 20 of the measurement device 2 performs imaging when the illumination unit 14 and the imaging target W are in the first positional relationship, and performs imaging in the second position. It is conceivable to superimpose the imaging in the case of the relationship. As a result, errors in the light distribution characteristics can be effectively canceled, and highly accurate measurement of the imaging target can be efficiently realized.
  • measurement data is acquired from the imaging when the illumination unit 14 and the imaging target W are in the first positional relationship
  • the measurement data is obtained from the imaging when the illumination unit 14 and the imaging target W are in the second positional relationship. It is also conceivable to acquire and obtain the respective measurement data obtained. By canceling out the measurement data obtained by the imaging in the first positional relationship and the imaging in the second positional relationship, it is possible to reliably measure the object to be photographed with high accuracy.
  • the first and second positional relationships are not limited to the case where the image sensor 10 to which the image acquisition unit 12 and the illumination unit 14 are fixed is moved and rotated as described above.
  • the image acquisition unit may not move with respect to the imaging target, but may move only the illumination unit, may move the imaging target side, or may combine them.
  • the table 50 on which the photographing object W is placed is rotated, not only when the moving unit (tool spindle) 30 of the machine tool is rotated and translated.
  • the translation may be performed, or both may be combined.
  • the control unit 20 may exist as a control device unique to the measurement device, or may use a control device of a machine tool. Further, the measuring device 2 may have a unique moving mechanism, and may move from the first positional relationship to the second positional relationship without using the moving mechanism of the machine tool.
  • FIG. 4 is a flowchart showing one example of a process of measuring by offsetting an error in light distribution characteristics using the measurement device shown in FIG.
  • a signal of a preparation command is transmitted from the control unit 20 of the measuring device 2 to the image sensor 10, and after the image sensor 10 completes the preparation, the preparation completion signal is transmitted from the image sensor 10 to the control unit 20.
  • an instruction signal for moving the moving unit (tool spindle) 30 to which the image sensor 10 is attached to the position Ps1 corresponding to the first positional relationship is transmitted from the control unit 20 to the NC device 40.
  • the NC device 40 moves the moving unit (tool spindle) 30 to the position Ps1.
  • a signal indicating the completion of the movement is transmitted from the NC device 40 to the control unit 20.
  • the illumination unit 14 and the photographing target W are arranged in the first positional relationship.
  • a signal of a shooting command is transmitted from the control unit 20 to the image sensor 10.
  • the image sensor 10 performs photographing, and after photographing, transmits a signal indicating that photographing has been completed from the image sensor 10 to the control unit 20.
  • an instruction signal for moving the moving unit (tool spindle) 30 to which the image sensor 10 is attached to the position Ps2 corresponding to the second positional relationship is transmitted from the control unit 20 to the NC device 40.
  • the NC device 40 moves the moving unit (tool spindle) 30 to the position Ps2.
  • a signal indicating the completion of the movement is transmitted from the NC device 40 to the control unit 20.
  • the control unit 20 transmits to the NC device 40 an instruction signal for rotating the main shaft of the moving unit (tool main shaft) 30 to which the image sensor 10 is attached by 180 degrees.
  • the NC device 40 rotates the main shaft of the moving unit (tool main shaft) 30 by 180 degrees.
  • a signal indicating the completion of spindle rotation is transmitted from the NC device 40 to the control unit 20.
  • the illumination unit 14 and the photographing target W are arranged in the second positional relationship.
  • a signal of a shooting command is transmitted from the control unit 20 to the image sensor 10.
  • the image sensor 10 performs photographing, and after photographing, transmits a signal indicating the end of photographing from the image sensor 10 to the control unit 20.
  • the measurement position Ps1a of the edge a of the imaging target W is calculated based on the imaging having the first positional relationship, and the measurement position Ps1c of the edge c of the imaging target W is calculated.
  • the measurement position Ps2a of the edge a of the photographing target W is calculated based on the imaging having the second positional relationship, and the measurement position Ps2c of the edge c of the photographing target W is calculated.
  • the measurement data can be offset by “Ps1a-Ps2a” and “Ps1c-Ps2c”.
  • FIG. 5 is a flowchart showing another example of the step of performing measurement by offsetting an error in light distribution characteristics using the measurement apparatus shown in FIG.
  • the image acquisition unit 12 of the image sensor 10 acquires an image having a positional relationship obtained by rotating the positional relationship between the illumination unit 14 and the imaging target W by 180 degrees.
  • the image acquisition unit 12 of the image sensor 10 is rotated 90, 180, and 270 degrees with respect to the predetermined positional relationship between the illumination unit 14 and the photographing target W as 0 degree. The difference is that an image is acquired.
  • the moving unit (tool spindle) 30 to which the image sensor 10 is attached is moved in the X-axis direction and the Y-axis direction so that the symmetrical edge is located at the same position in the field of view.
  • the image acquisition unit 12 sets the predetermined positional relationship between the illumination unit 14 and the imaging target W to 0 degree, rotates the image by 90 degrees, 180 degrees, and 270 degrees, and captures images having symmetrical positional relationships. By acquiring, the error of the light distribution characteristic can be offset, and highly accurate measurement of the two-dimensional imaging target can be realized. Other points are the same as those of the above-described one example of the process, and thus further description is omitted.
  • the illumination unit 14 when both the illumination unit 14 and the white light source are turned on, and when only one of them is turned on, the illumination unit 14 emits outgoing light of various wavelengths and outputs a difference in luminance or a ratio of luminance. Can detect a large wavelength.
  • the illumination unit 14 is a ring illumination including a red LED, a green LED, and a blue LED, by changing the output of the LED of each wavelength, a wavelength difference or a ratio of the luminance in the emitted light is large. Can be detected.
  • the white light source it is conceivable to use the in-machine illumination of the machine tool or the indoor lighting in which the machine tool is installed.
  • the image acquisition unit 12 acquires an image of the imaging target W in a state where the illumination unit 14 and the white light source are turned on, and further, turns on only the illumination unit 14 or turns on only the white light source. An image of the imaging target W in the state is acquired. Then, of the emitted light that can be emitted from the illumination unit 14, in the two acquired images, light having a wavelength with a large difference in luminance or a large luminance ratio in a region where the object to be photographed W is measured is determined. The image acquisition unit 12 measures the surface position of the imaging target W using the emission light having the determined wavelength.
  • a wavelength having a large difference in luminance or a large luminance ratio in the measurement region of the imaging target W is used.
  • Measurement device 10 Image sensor 12 Image acquisition unit 14 Illumination unit 16 Shank 20 Control unit 30 Moving unit (tool spindle) 40 NC device 50 Table W Object to be photographed

Abstract

Provided is a measurement device provided with an image acquisition unit, an illumination unit, and a control unit, the image acquisition unit acquiring an image in a case in which the illumination unit and an imaging object are in a first positional relationship, and an image in a case in which the illumination unit and the imaging object are in a second positional relationship symmetrical to the first positional relationship, and the control unit measuring the surface position of the imaging object on the basis of the images in the first positional relationship and the second positional relationship. Highly precise measurement of the imaging object using an image sensor can thereby be realized even when error occurs in the light distribution characteristics due to the illumination.

Description

測定装置measuring device
 本発明は、撮影対象物を測定する装置、特に、工作機上の撮影対象物を測定する測定装置に関する。 The present invention relates to an apparatus for measuring an object to be photographed, and particularly to a measuring apparatus for measuring an object to be photographed on a machine tool.
 工作機上の撮影対象物を測定する測定装置では、工作機械の移動部(例えば、主軸)に画像センサを取り付けて、撮影対象物を測定することができる。画像センサを用いる場合、画像むら、特に輝度のむらが生じる可能性がある。これに対処するため、シェーディング補正を行って輝度のむらを補正する画像処置装置が提案されている(例えば、特許文献1参照)。 測定 In a measuring device for measuring an object to be photographed on a machine tool, an image sensor can be attached to a moving part (for example, a main shaft) of the machine tool to measure the object to be photographed. When an image sensor is used, there is a possibility that image unevenness, in particular, unevenness in luminance may occur. To cope with this, there has been proposed an image processing apparatus that corrects luminance unevenness by performing shading correction (for example, see Patent Document 1).
特開2012-94951号JP 2012-94951 A
 特許文献1に記載の画像処置装置では、シェーディング補正用の補正情報を簡便に算出することを目的とし。これにより輝度のむらの補正が可能である。しかし、工作機械の移動部に取り付ける画像センサは、自動工具交換装置への収納を考慮すると、小型、軽量であり、かつ実用上、低コストである必要がある。これに対応するため、撮像レンズの周囲にLED等によるリング照明が配置された画像センサを用いることが好ましい。 画像 The image processing apparatus described in Patent Literature 1 aims to easily calculate correction information for shading correction. This makes it possible to correct uneven brightness. However, the image sensor attached to the moving part of the machine tool needs to be small, lightweight, and practically inexpensive in consideration of storage in an automatic tool changer. To cope with this, it is preferable to use an image sensor in which ring illumination such as an LED is arranged around the imaging lens.
 このようなリング照明を備えた画像センサでは、輝度のむらだけでなく、配光特性の差違も考慮する必要がある。特に、3次元構造の撮影対象物における画像むらは、撮影対象物の面の各点からみた照明の臨み角にばらつきがあることにより発生する。例えば、図6に示すように、画像取得部(撮像レンズ)の周囲にリング照明が配置された画像センサを用いて、凸部のエッジ部e、fを測定しようとすると、プロファイルの矢印E、Fに示す部分のように、配光特性の差違によりプロファイルに大きな誤差が生じる場合がある。 画像 With an image sensor equipped with such a ring illumination, it is necessary to consider not only uneven brightness but also differences in light distribution characteristics. In particular, image unevenness in an imaging target having a three-dimensional structure occurs due to a variation in the angle of view of illumination viewed from each point on the surface of the imaging target. For example, as shown in FIG. 6, when an image sensor in which a ring illumination is arranged around an image acquisition unit (imaging lens) is used to measure the edge portions e and f of the convex portion, arrows E and E of the profile are used. As in the portion indicated by F, a large error may occur in the profile due to a difference in light distribution characteristics.
 本発明は、上記問題に鑑みてなされたものであり、照明により配光特性の誤差が生じる場合であっても、画像センサを用いた精度の高い撮影対象物の測定が実現可能な測定装置を提供することを目的とする。 The present invention has been made in view of the above-described problem, and provides a measuring apparatus capable of realizing highly accurate measurement of an imaging target using an image sensor even when an error in light distribution characteristics occurs due to illumination. The purpose is to provide.
 上記課題を解決するために、本発明の1つの実施態様に係る測定装置は、
 画像取得部と、
 照明部と、
 制御部と、
を備え、
 前記画像取得部が、前記照明部及び撮影対象物が第一の位置関係にある場合の撮像と、前記照明部及び撮影対象物が前記第一の位置関係と対称な第二の位置関係にある場合の撮像とを取得し、
 前記制御部が、前記第一の位置関係及び前記第二の位置関係の撮像に基づき、前記撮影対象物の表面位置を測定する。
In order to solve the above-mentioned problem, a measuring device according to one embodiment of the present invention includes:
An image acquisition unit;
Lighting part,
A control unit;
With
The image acquisition unit captures an image when the illumination unit and the imaging target are in a first positional relationship, and the illumination unit and the imaging target are in a second positional relationship symmetrical to the first positional relationship. If the imaging and get,
The control unit measures a surface position of the imaging target based on the imaging of the first positional relationship and the second positional relationship.
 上記の実施態様によれば、照明により配光特性の誤差が生じる場合であっても、画像センサを用いた精度の高い撮影対象物の測定が実現可能な測定装置を提供することができる。 According to the above-described embodiment, it is possible to provide a measuring apparatus capable of realizing highly accurate measurement of a photographing target using an image sensor even when an error in light distribution characteristics occurs due to illumination.
本発明の1つの実施形態に係る測定装置の構成を模式的に示す斜視図である。It is a perspective view showing typically composition of a measuring device concerning one embodiment of the present invention. 照明部及び画像取得部が備えられた画像センサの一例を模式的に示す斜視図である。It is a perspective view which shows typically an example of the image sensor provided with the illumination part and the image acquisition part. 照明部及び撮影対象物が第一の位置関係にある場合の撮像を取得する一例を模式的に示す図である。It is a figure which shows typically an example which acquires the imaging | photography when a lighting part and an imaging target have a 1st positional relationship. 照明部及び撮影対象物の間の位置関係を第一の位置関係から第二の位置関係に変更する一例を模式的に示す図である。It is a figure which shows typically an example which changes the positional relationship between a lighting part and a photography target object from a 1st positional relationship to a 2nd positional relationship. 照明部及び撮影対象物が第二の位置関係にある場合の撮像を取得する一例を模式的に示す図である。It is a figure showing typically an example which acquires an image pick-up in case a lighting part and a photography subject have the 2nd positional relation. 図1に示す測定装置を用いて配光特性の誤差を相殺させて測定する工程1つの例を示すフローチャートである。3 is a flowchart illustrating an example of a process of measuring by offsetting an error in light distribution characteristics using the measurement device illustrated in FIG. 1. 図1に示す測定装置を用いて配光特性の誤差を相殺させて測定する工程その他の例を示すフローチャートである。2 is a flowchart illustrating a process for canceling an error in light distribution characteristics and performing a measurement using the measurement device illustrated in FIG. 1 and other examples. 配光特性の誤差による影響を模式的に示す図である。It is a figure which shows typically the influence by the error of a light distribution characteristic.
 以下、図面を参照しながら、本発明を実施するための実施形態を説明する。以下に説明する実施形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The embodiment described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified.
 後述の実施形態や実施例では、前述と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、各実施形態、実施例ごとには逐次言及しないものとする。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。
 図1、図3A~Cにおいては、工作機械の水平方向における互いに直交する方向をX軸方向及びY軸方向とし、工作機械の垂直な方向をZ軸方向とし、Z軸周りの回転方向をC軸方向として示す。
In the following embodiments and examples, description of matters common to the above will be omitted, and only different points will be described. In particular, the same operation and effect of the same configuration will not be sequentially described in each embodiment and example. The size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of description.
In FIGS. 1 and 3A to 3C, directions orthogonal to each other in the horizontal direction of the machine tool are defined as an X-axis direction and a Y-axis direction, a direction perpendicular to the machine tool is defined as a Z-axis direction, and a rotation direction around the Z-axis is defined as C. Shown as axial direction.
(1つの実施形態に係る測定装置)
 始めに、図1及び図2を参照しながら、本発明に係る測定装置の概要を説明する。図1は、本発明の1つの実施形態に係る測定装置の構成を模式的に示す斜視図である。図2は、照明部及び画像取得部が備えられた画像センサの一例を模式的に示す斜視図である。
(Measurement device according to one embodiment)
First, an outline of a measuring device according to the present invention will be described with reference to FIGS. FIG. 1 is a perspective view schematically showing a configuration of a measuring device according to one embodiment of the present invention. FIG. 2 is a perspective view schematically illustrating an example of an image sensor provided with an illumination unit and an image acquisition unit.
 本実施形態に係る測定装置2は、画像センサ10と、測定のための制御を行う制御部20とを備える。画像センサ10は、制御部20と電気的に接続されている。また、画像センサ10は、工作機械の移動部である工具主軸30に取り付けられている。
 工作機械の移動部(工具主軸)30の駆動部は、NC装置40と電気的に接続され、NC装置40による駆動制御により、移動部(工具主軸)30は、X軸、Y軸、Z軸方向に移動可能であり、主軸周りに回転可能である。測定装置2の制御部20とNC装置40とは、電気的に接続されている。
The measurement device 2 according to the present embodiment includes an image sensor 10 and a control unit 20 that performs control for measurement. The image sensor 10 is electrically connected to the control unit 20. Further, the image sensor 10 is attached to a tool spindle 30 which is a moving part of the machine tool.
The drive unit of the moving unit (tool main shaft) 30 of the machine tool is electrically connected to the NC device 40, and the driving unit (tool main shaft) 30 is controlled by the NC device 40 so that the moving unit (tool main shaft) 30 has an X axis, a Y axis, and a Z axis. Direction and can rotate about a main axis. The control unit 20 of the measurement device 2 and the NC device 40 are electrically connected.
 図1では、撮影対象物Wが工作機械のテーブル50に取り付けられている場合を示す。画像センサ10が取り付けられた移動部(工具主軸)30は、主軸がZ軸方向(垂直)方向を向いており、画像センサ10により、垂直上方から撮影対象物Wを撮像することができる。 FIG. 1 shows a case where the photographing target W is attached to the table 50 of the machine tool. The moving unit (tool main shaft) 30 to which the image sensor 10 is attached has a main axis oriented in the Z-axis direction (vertical direction), and the image sensor 10 can image the photographing target W from vertically above.
 工作機械の移動部(工具主軸)30に取り付ける画像センサ10は、自動工具交換装置への収納を考慮すると、小型、軽量であり、かつ実用上、低コストである必要がある。これに対応するため、本実施形態に係る画像センサ10は、図2に示すように、画像取得部12及びその周囲に配置された照明部14を有する。
 更に詳細に述べれば、画像取得部12の撮像レンズの周囲に、6個のLEDによるリング照明である照明部14が配置されている。また、画像センサ10はシャンク16を備え、シャンク16が、工作機械の移動部材である工具主軸30の工具ホルダに挿入され固定されている。
The image sensor 10 attached to the moving part (tool spindle) 30 of the machine tool needs to be small, lightweight, practical and low cost in consideration of storage in an automatic tool changer. To cope with this, the image sensor 10 according to the present embodiment has an image acquisition unit 12 and an illumination unit 14 arranged around the image acquisition unit 12, as shown in FIG.
More specifically, an illumination unit 14 that is a ring illumination using six LEDs is arranged around the imaging lens of the image acquisition unit 12. Further, the image sensor 10 includes a shank 16, and the shank 16 is inserted and fixed in a tool holder of a tool spindle 30, which is a moving member of a machine tool.
 このような構成により、画像センサ10は、テーブル50の上に固定された撮影対象物Wに対して、上方から照明部14で照明を行いながら、画像取得部12で撮影対象物Wを取得することができる。移動部(工具主軸)30に取り付けられた画像センサ10は、NC装置40の制御により、X軸方向、Y軸方向に移動可能であり、更にZ軸周りのC軸方向に回転可能である。 With such a configuration, the image sensor 10 acquires the imaging target W by the image acquisition unit 12 while illuminating the imaging target W fixed on the table 50 from above with the illumination unit 14. be able to. The image sensor 10 attached to the moving unit (tool spindle) 30 can be moved in the X-axis direction and the Y-axis direction under the control of the NC device 40, and can be rotated in the C-axis direction around the Z-axis.
(照明部及び撮影対象物が第一及び第二の位置関係にある撮像を用いた測定方法)
 本実施形態に係るリング照明(照明部)14を備えた画像センサ10は、小型、軽量であり、コスト的にも優れる。しかし、図6に示すように、画像取得部(撮像レンズ)の周囲にリング照明が配置された画像センサを用いて、凸部のエッジ部e、fを測定しようとすると、プロファイルの矢印E、Fに示す部分のように、配光特性の差違により、プロファイルに大きな誤差が生じる場合がある。よって、配光特性の差違により、精度の高い撮影対象物の測定が困難な場合がある。
 これに対処するため、照明部14により配光特性の誤差が生じる場合であっても、この誤差を相殺させることにより、精度の高い撮影対象物の測定を実現できる。このことについて、以下に詳細に述べる。
(Measurement method using imaging in which the illumination unit and the imaging target are in the first and second positional relationships)
The image sensor 10 including the ring illumination (illumination unit) 14 according to the present embodiment is small, lightweight, and excellent in cost. However, as shown in FIG. 6, when an edge sensor e, f of a convex portion is measured using an image sensor in which a ring illumination is arranged around an image acquisition unit (imaging lens), arrows E, As in the portion indicated by F, a large error may occur in the profile due to a difference in light distribution characteristics. Therefore, it may be difficult to measure an imaging target with high accuracy due to a difference in light distribution characteristics.
In order to cope with this, even when an error in the light distribution characteristics occurs due to the illumination unit 14, by canceling the error, highly accurate measurement of the imaging target can be realized. This will be described in detail below.
<第一の位置関係にある場合の撮像>
 始めに、図3Aを参照しながら、照明部114及び撮影対象物Wが第一の位置関係にある場合の撮像の説明を行う。図3Aは、照明部14及び撮影対象物Wが第一の位置関係にある場合の撮像を取得する一例を模式的に示す図である。
<Imaging in First Positional Relationship>
First, with reference to FIG. 3A, description will be given of imaging in a case where the illumination unit 114 and the imaging target object W are in the first positional relationship. FIG. 3A is a diagram schematically illustrating an example of acquiring an image when the illumination unit 14 and the imaging target object W are in the first positional relationship.
 図3Aの矩形の枠が画像取得部12の視野(FOV)を示す。画像取得部12の周囲の照明部14を構成する6つのLEDL1~L3、R1~R3の配置を示す。照明部14(L1~L3、R1~R3)及び撮影対象物Wが第一の位置関係にあり、画像取得部12の視野(FOV)の左上方に撮影対象物Wの上面形状が示されている。撮影対象物Wの上面形状は、4つのエッジa~dを有する矩形を示している。画像センサ10を回転させるときの回転中心をPで示す。 矩形 The rectangular frame in FIG. 3A indicates the field of view (FOV) of the image acquisition unit 12. 6 shows an arrangement of six LEDs L1 to L3 and R1 to R3 constituting a lighting unit 14 around an image acquisition unit 12. The illumination unit 14 (L1 to L3, R1 to R3) and the imaging target W are in the first positional relationship, and the upper surface shape of the imaging target W is shown at the upper left of the field of view (FOV) of the image acquisition unit 12. I have. The upper surface shape of the photographing target W shows a rectangle having four edges a to d. The rotation center when rotating the image sensor 10 is indicated by P.
<第一の位置関係からら第二の位置関係への変更>
 次に、図3Bを参照しながら、図3Aに示す照明部14及び撮影対象物Wの第一の位置関係から第二の位置関係に変更する場合の説明を行う。図3Bは、照明部14及び撮影対象物Wの間の位置関係を第一の位置関係から第二の位置関係に変更する一例を模式的に示す図である。
<Change from the first positional relationship to the second positional relationship>
Next, a description will be given of a case where the first positional relationship between the illumination unit 14 and the imaging target object W shown in FIG. 3A is changed to the second positional relationship with reference to FIG. 3B. FIG. 3B is a diagram schematically illustrating an example in which the positional relationship between the illumination unit 14 and the imaging target object W is changed from the first positional relationship to the second positional relationship.
 図3Bの右側に実線で照明部14及び撮影対象物Wが第一の位置関係にある場合の撮像を示す。白抜き矢印に示すように、NC装置40の制御により、画像センサ10が取り付けられた移動部(工具主軸)30を、第一の位置関係に対応する位置Ps1から第二の位置関係に対応する位置Ps2に移動させる。更に、Z軸周りのC軸方向に180度回転させる。これにより、照明部14及び撮影対象物Wの第二の位置関係に変更される。図3Aの第一の位置関係の画像取得部12の視野(FOV)における相対的な第二の位置関係の位置を点線で示す。 {Circle around (3)} on the right side of FIG. 3B shows solid-state imaging when the illumination unit 14 and the imaging target W are in the first positional relationship. As indicated by the white arrow, the moving unit (tool spindle) 30 to which the image sensor 10 is attached moves from the position Ps1 corresponding to the first positional relationship to the second positional relationship under the control of the NC device 40. Move to position Ps2. Furthermore, it is rotated 180 degrees in the C-axis direction around the Z-axis. Thereby, the illumination unit 14 and the imaging target W are changed to the second positional relationship. The position of the relative second positional relationship in the field of view (FOV) of the image acquiring unit 12 having the first positional relationship in FIG. 3A is indicated by a dotted line.
<第二の位置関係にある場合の撮像>
 次に、図3Cを参照しながら、照明部14及び撮影対象物Wが第二の位置関係にある場合の撮像の説明を行う。図3Cは、照明部14及び撮影対象物Wが第二の位置関係にある場合の撮像を取得する一例を模式的に示す図である。もし、図3Aに示す第一の位置関係から、X軸、Y軸方向には移動させず、画像センサ10を180度回転させた場合、図3Cの点線で示す位置に撮影対象物Wが示される。
<Imaging in the second positional relationship>
Next, with reference to FIG. 3C, imaging in a case where the illumination unit 14 and the imaging target object W are in the second positional relationship will be described. FIG. 3C is a diagram schematically illustrating an example of acquiring an image when the illumination unit 14 and the imaging target object W are in the second positional relationship. If the image sensor 10 is rotated 180 degrees without moving in the X-axis and Y-axis directions from the first positional relationship shown in FIG. 3A, the photographing target W is shown at the position shown by the dotted line in FIG. 3C. It is.
 そこで、図3Bの白抜き矢印に示すように、画像センサ10をX軸、Y軸方向に移動させることにより、画像取得部12の視野(FOV)上での測定位置を、対称なエッジが視野上の同じ位置にくるようにすることができる。具体的には、第一の位置のエッジaが第二の一のエッジcに一致し、第一の位置のエッジbが第二の一のエッジdに一致し、第一の位置のエッジcが第二の一のエッジaに一致し、第一の位置のエッジdが第二の一のエッジbに一致するようになる。よって、照明部14により配光特性の誤差が生じる場合であっても、この誤差を相殺させることができる。 Therefore, as shown by the outline arrow in FIG. 3B, by moving the image sensor 10 in the X-axis and Y-axis directions, the measurement position in the field of view (FOV) of the image acquisition unit 12 is changed to a symmetrical edge. It can be in the same position above. Specifically, the edge a at the first position matches the second one edge c, the edge b at the first position matches the second one edge d, and the edge c at the first position Coincides with the second edge a, and the edge d at the first position coincides with the second edge b. Therefore, even if an error occurs in the light distribution characteristics due to the illumination unit 14, the error can be offset.
 仮に、撮影対象物Wの中心座標が画像センサ10の回転中心Pに一致する場合には、画像センサ10をX軸、Y軸方向に移動させる必要はない。図3Bの白抜き矢印に示す移動は、撮影対象物Wの画像センサ10の回転中心Pに対するオフセット分を補正するものである。よって、撮影対象物Wの平面視における中心座標を求め、中心座標の回転中心Pからのオフセット分を考慮して、対称なエッジが視野上の同じ位置にくるように移動させる必要がある。 If the center coordinates of the imaging target W coincide with the rotation center P of the image sensor 10, it is not necessary to move the image sensor 10 in the X-axis and Y-axis directions. The movement indicated by the white arrow in FIG. 3B corrects an offset amount of the photographing target object W with respect to the rotation center P of the image sensor 10. Therefore, it is necessary to obtain the center coordinates of the photographing target W in plan view and move the symmetrical edges so as to be at the same position in the field of view in consideration of the offset of the center coordinates from the rotation center P.
 以上のように、画像センサ10の画像取得部12が、照明部14及び撮影対象物Wが第一の位置関係にある場合の撮像と、照明部14及び撮影対象物Wが第一の位置関係と対称な第二の位置関係にある場合の撮像とを取得し、制御部20が、第一の位置関係及び第二の位置関係の撮像に基づき、撮影対象物の表面位置を測定する。 As described above, the image acquisition unit 12 of the image sensor 10 captures the image when the illumination unit 14 and the imaging target W are in the first positional relationship, and sets the illumination unit 14 and the imaging target W in the first positional relationship. The control unit 20 measures the surface position of the imaging target based on the images of the first positional relationship and the second positional relationship.
 第一の位置関係及びこれと対称な第二の位置関係の撮像に基づいて、撮影対象物Wの表面位置を測定するので、仮に、照明部14により配光特性の誤差が生じる場合であっても、この誤差を相殺させて、精度の高い撮影対象物Wの測定を実現できる。 Since the surface position of the photographing target object W is measured based on the first positional relationship and the imaging of the second positional relationship symmetrical to the first positional relationship, an error in the light distribution characteristics may occur due to the illumination unit 14. However, this error can be canceled out, and highly accurate measurement of the photographing object W can be realized.
 上記の例では、「対称な位置関係」として、照明部14及び撮影対象物Wを180度回転させた場合を示すが、これはあくまでも一例であって、相対的位置が少しずれただけでも、そのずらす前とずらした後の中間点から見れば、それも「対称な位置関係」に含まれる。 In the above example, the case where the illumination unit 14 and the imaging target object W are rotated by 180 degrees is shown as the “symmetric positional relationship”, but this is merely an example, and even if the relative position is slightly shifted, Seen from the intermediate point before and after the shift, it is also included in the “symmetric positional relationship”.
 配光特性の誤差を相殺させるための具体的な一例として、測定装置2の制御部20が、照明部14及び撮影対象物Wが第一の位置関係にある場合の撮像と、第二の位置関係にある場合の撮像とを重ね合わせることが考えられる。これにより、配光特性の誤差を効率的に相殺させることができ、精度の高い撮影対象物の測定を効率的に実現できる。 As a specific example for canceling the error in the light distribution characteristics, the control unit 20 of the measurement device 2 performs imaging when the illumination unit 14 and the imaging target W are in the first positional relationship, and performs imaging in the second position. It is conceivable to superimpose the imaging in the case of the relationship. As a result, errors in the light distribution characteristics can be effectively canceled, and highly accurate measurement of the imaging target can be efficiently realized.
 また、照明部14及び撮影対象物Wが第一の位置関係にある場合の撮像から測定データを取得し、照明部14及び撮影対象物Wが第二の位置関係にある場合の撮像から測定データを取得し、得られたそれぞれの測定データを相殺することも考えられる。第一の位置関係及び第二の位置関係にある撮像により得られた測定データを相殺することにより、確実に精度の高い撮影対象物の測定を実現できる。 In addition, measurement data is acquired from the imaging when the illumination unit 14 and the imaging target W are in the first positional relationship, and the measurement data is obtained from the imaging when the illumination unit 14 and the imaging target W are in the second positional relationship. It is also conceivable to acquire and obtain the respective measurement data obtained. By canceling out the measurement data obtained by the imaging in the first positional relationship and the imaging in the second positional relationship, it is possible to reliably measure the object to be photographed with high accuracy.
 第一の位置関係及び第二の位置関係は、上記のように、画像取得部12及び照明部14が固定された画像センサ10を移動、回転させる場合に限られるものではない。例えば、画像取得部は撮影対象物に対して移動せず、照明部のみを移動する場合もあり得るし、撮影対象物側を移動させることもあり得るし、それらを組み合わせる場合もあり得る。 The first and second positional relationships are not limited to the case where the image sensor 10 to which the image acquisition unit 12 and the illumination unit 14 are fixed is moved and rotated as described above. For example, the image acquisition unit may not move with respect to the imaging target, but may move only the illumination unit, may move the imaging target side, or may combine them.
 第一の位置関係から第二の位置関係に移動させるには、工作機械の移動部(工具主軸)30を回転、並進移動させる場合だけでなく、撮影対象物Wを載せたテーブル50を回転、並進移動させる場合もあり得るし、両方を組み合わせることもできる。制御部20は、測定装置固有の制御装置として存在する場合も、工作機械の制御装置を用いる場合もあり得る。
 また、測定装置2が、固有の移動機構を有し、工作機械の移動機構を用いずに、第一の位置関係から第二の位置関係に移動させる場合もあり得る。
In order to move from the first positional relationship to the second positional relationship, the table 50 on which the photographing object W is placed is rotated, not only when the moving unit (tool spindle) 30 of the machine tool is rotated and translated. The translation may be performed, or both may be combined. The control unit 20 may exist as a control device unique to the measurement device, or may use a control device of a machine tool.
Further, the measuring device 2 may have a unique moving mechanism, and may move from the first positional relationship to the second positional relationship without using the moving mechanism of the machine tool.
(配光特性の誤差を相殺させて測定する工程)
 次に、上記の実施形態に係る測定装置2を用いて、照明部14の配光特性の誤差を相殺させて測定する工程の説明を行う。
<工程の1つの例>
 図4を参照しながら、照明部14の配光特性の誤差を相殺させて測定する工程の1つの例を説明する。図4は、図1に示す測定装置を用いて配光特性の誤差を相殺させて測定する工程の1つの例を示すフローチャートである。
(Step of measuring by offsetting the error of light distribution characteristics)
Next, a description will be given of a process of using the measuring device 2 according to the above-described embodiment to perform measurement while canceling out an error in the light distribution characteristics of the illumination unit 14.
<One example of process>
With reference to FIG. 4, one example of a process of measuring by offsetting an error in the light distribution characteristics of the illumination unit 14 will be described. FIG. 4 is a flowchart showing one example of a process of measuring by offsetting an error in light distribution characteristics using the measurement device shown in FIG.
 図4において、まず、測定装置2の制御部20から画像センサ10へ、準備指令の信号を送信し、画像センサ10が準備を完了した後、画像センサ10から制御部20へ、準備完了の信号を送信する。次に、制御部20からNC装置40へ、画像センサ10が取り付けられた移動部(工具主軸)30を第一の位置関係に対応する位置Ps1へ移動させる指示信号を送信する。NC装置40は、移動部(工具主軸)30を位置Ps1へ移動させる。移動が完了後、NC装置40から制御部20へ、移動完了の信号を送信する。これにより、照明部14及び撮影対象物Wが第一の位置関係に配置される。 In FIG. 4, first, a signal of a preparation command is transmitted from the control unit 20 of the measuring device 2 to the image sensor 10, and after the image sensor 10 completes the preparation, the preparation completion signal is transmitted from the image sensor 10 to the control unit 20. Send Next, an instruction signal for moving the moving unit (tool spindle) 30 to which the image sensor 10 is attached to the position Ps1 corresponding to the first positional relationship is transmitted from the control unit 20 to the NC device 40. The NC device 40 moves the moving unit (tool spindle) 30 to the position Ps1. After the movement is completed, a signal indicating the completion of the movement is transmitted from the NC device 40 to the control unit 20. Thereby, the illumination unit 14 and the photographing target W are arranged in the first positional relationship.
 この状態において、制御部20から画像センサ10へ、撮影指令の信号を送信する。画像センサ10は撮影を行い、撮影後、画像センサ10から制御部20へ、撮影終了の信号を送信する。以上の工程により、照明部14及び撮影対象物Wが第一の位置関係にある場合の撮像が完了する。 (4) In this state, a signal of a shooting command is transmitted from the control unit 20 to the image sensor 10. The image sensor 10 performs photographing, and after photographing, transmits a signal indicating that photographing has been completed from the image sensor 10 to the control unit 20. Through the above steps, the imaging in the case where the illumination unit 14 and the imaging target W are in the first positional relationship is completed.
 次に、制御部20からNC装置40へ、画像センサ10が取り付けられた移動部(工具主軸)30を第二の位置関係に対応する位置Ps2へ移動させる指示信号を送信する。NC装置40は、移動部(工具主軸)30を位置Ps2へ移動させる。移動が完了後、NC装置40から制御部20へ、移動完了の信号を送信する。
 引き続いて、制御部20からNC装置40へ、画像センサ10が取り付けられた移動部(工具主軸)30の主軸を180度回転させる指示信号を送信する。NC装置40は、移動部(工具主軸)30の主軸を180度回転させる。主軸の回転が完了後、NC装置40から制御部20へ、主軸回転完了の信号を送信する。これにより、照明部14及び撮影対象物Wが第二の位置関係に配置される。
Next, an instruction signal for moving the moving unit (tool spindle) 30 to which the image sensor 10 is attached to the position Ps2 corresponding to the second positional relationship is transmitted from the control unit 20 to the NC device 40. The NC device 40 moves the moving unit (tool spindle) 30 to the position Ps2. After the movement is completed, a signal indicating the completion of the movement is transmitted from the NC device 40 to the control unit 20.
Subsequently, the control unit 20 transmits to the NC device 40 an instruction signal for rotating the main shaft of the moving unit (tool main shaft) 30 to which the image sensor 10 is attached by 180 degrees. The NC device 40 rotates the main shaft of the moving unit (tool main shaft) 30 by 180 degrees. After the rotation of the spindle is completed, a signal indicating the completion of spindle rotation is transmitted from the NC device 40 to the control unit 20. Thereby, the illumination unit 14 and the photographing target W are arranged in the second positional relationship.
 この状態において、制御部20から画像センサ10へ、撮影指令の信号を送信する。画像セン10は撮影を行い、撮影後、画像センサ10から制御部20へ、撮影終了の信号を送信する。以上の工程により、照明部14及び撮影対象物Wが第二の位置関係にある場合の撮像が完了する。これにより、画像取得部12の視野(FOV)上で、対称なエッジが視野上の同じ位置にくる第一の位置関係及び第二の位置関係の撮像が得られる。
 なお、X軸、Y軸方向に移動させる制御、及び回転させる制御は同じ1つのステップで行うこともできる。
In this state, a signal of a shooting command is transmitted from the control unit 20 to the image sensor 10. The image sensor 10 performs photographing, and after photographing, transmits a signal indicating the end of photographing from the image sensor 10 to the control unit 20. Through the above steps, the imaging in the case where the illumination unit 14 and the imaging target W are in the second positional relationship is completed. Thereby, in the field of view (FOV) of the image acquisition unit 12, imaging of the first positional relationship and the second positional relationship in which the symmetrical edge is at the same position in the visual field is obtained.
Note that the control for moving in the X-axis and Y-axis directions and the control for rotating can also be performed in the same single step.
 第一の位置関係及び第二の位置関係の撮像を重ね合わせることにより、照明部14の配光特性の誤差を効率的に相殺させることができ、精度の高い撮影対象物Wの測定ができる。
 また、第一の位置関係にある撮像により得られた測定データと、第二の位置関係にある撮像により得られた測定データとを相殺することにより、精度の高い撮影対象物Wの測定ができる。
By superimposing the imaging of the first positional relationship and the imaging of the second positional relationship, an error in the light distribution characteristics of the illumination unit 14 can be effectively canceled, and the measurement of the imaging target W with high accuracy can be performed.
Further, by canceling the measurement data obtained by the imaging having the first positional relationship and the measurement data obtained by the imaging having the second positional relationship, it is possible to measure the imaging target W with high accuracy. .
 例えば、第一の位置関係にある撮像に基づいて、撮影対象物Wのエッジaの測定位置Ps1aを算出し、撮影対象物Wのエッジcの測定位置Ps1cを算出する。同様に、第二の位置関係にある撮像に基づいて、撮影対象物Wのエッジaの測定位置Ps2aを算出し、撮影対象物Wのエッジcの測定位置Ps2cを算出する。
 ”Ps1a-Ps2a”及び”Ps1c-Ps2c”により、測定データを相殺することができる。
 このとき、移動部(工具主軸)30の主軸の回転中心と、画像センサ10の回転中心のずれを同時に推定、補正することもできる。例えば、第一の位置関係にある撮像による測定値及び第二の位置関係にある撮像による測定値のずれの1/2として求めることができる。
For example, the measurement position Ps1a of the edge a of the imaging target W is calculated based on the imaging having the first positional relationship, and the measurement position Ps1c of the edge c of the imaging target W is calculated. Similarly, the measurement position Ps2a of the edge a of the photographing target W is calculated based on the imaging having the second positional relationship, and the measurement position Ps2c of the edge c of the photographing target W is calculated.
The measurement data can be offset by “Ps1a-Ps2a” and “Ps1c-Ps2c”.
At this time, it is possible to simultaneously estimate and correct the deviation between the rotation center of the main shaft of the moving unit (tool main shaft) 30 and the rotation center of the image sensor 10. For example, it can be obtained as 1 / of a difference between a measured value obtained by imaging in the first positional relationship and a measured value obtained by imaging in the second positional relationship.
 このようにして算出した移動部(工具主軸)30及び画像センサ10のずれを、撮影対象物Wの座標補正値として、制御部20からNC装置40へ送信して設定を行う。これにより、照明部14により配光特性の誤差が生じる場合であっても、この誤差を相殺させて、精度の高い撮影対象物Wの測定を実現できる。 (4) The displacement between the moving unit (tool spindle) 30 and the image sensor 10 calculated in this way is transmitted from the control unit 20 to the NC device 40 as a coordinate correction value of the photographing target W, and the setting is performed. Accordingly, even when an error in the light distribution characteristics occurs due to the illumination unit 14, the error can be canceled out, and highly accurate measurement of the imaging target W can be realized.
<工程のその他の例>
 次に、図5を参照しながら、照明部14の配光特性の誤差を相殺させて測定する工程のその他の例を説明する。図5は、図1に示す測定装置を用いて配光特性の誤差を相殺させて測定する工程のその他の例を示すフローチャートである。
<Other examples of process>
Next, with reference to FIG. 5, another example of the step of measuring by offsetting an error in the light distribution characteristics of the illumination unit 14 will be described. FIG. 5 is a flowchart showing another example of the step of performing measurement by offsetting an error in light distribution characteristics using the measurement apparatus shown in FIG.
 図4に示す工程の1つの例では、画像センサ10の画像取得部12が、照明部14及び撮影対象物Wの位置関係を180度回転させた位置関係にある撮像を取得したが、図5に示すその他の例では、画像センサ10の画像取得部12が、照明部14及び撮影対象物Wの所定の位置関係を0度として、90度、180度、270度回転させた位置関係にある撮像を取得する点で異なる。各々の回転角度において、対称なエッジが視野上の同じ位置にくるように、画像センサ10が取り付けられた移動部(工具主軸)30をX軸方項、Y軸方向に移動させる。 In one example of the process illustrated in FIG. 4, the image acquisition unit 12 of the image sensor 10 acquires an image having a positional relationship obtained by rotating the positional relationship between the illumination unit 14 and the imaging target W by 180 degrees. In another example shown in FIG. 5, the image acquisition unit 12 of the image sensor 10 is rotated 90, 180, and 270 degrees with respect to the predetermined positional relationship between the illumination unit 14 and the photographing target W as 0 degree. The difference is that an image is acquired. At each rotation angle, the moving unit (tool spindle) 30 to which the image sensor 10 is attached is moved in the X-axis direction and the Y-axis direction so that the symmetrical edge is located at the same position in the field of view.
 以上のように、画像取得部12が、照明部14及び撮影対象物Wの所定の位置関係を0度として、90度、180度、270度回転させて、それぞれ対称な位置関係にある撮像を取得することにより、配光特性の誤差を相殺させて、精度の高い二次元の撮影対象物の測定を実現できる。
 その他の点については、上記の工程の1つの例と同様なので、更なる説明は省略する。
As described above, the image acquisition unit 12 sets the predetermined positional relationship between the illumination unit 14 and the imaging target W to 0 degree, rotates the image by 90 degrees, 180 degrees, and 270 degrees, and captures images having symmetrical positional relationships. By acquiring, the error of the light distribution characteristic can be offset, and highly accurate measurement of the two-dimensional imaging target can be realized.
Other points are the same as those of the above-described one example of the process, and thus further description is omitted.
(外光の影響を低減した測定)
 更に、照明部14及び白色光源の両方をオンにした場合、及びどちらか一方のみをオンにした場合において、照明部14から様々な波長の出射光を出射して、輝度の差または輝度の比が大きい波長を検出することができる。例えば、照明部14が赤色LED、緑色LED及び青色LEDを備えたリング照明の場合には、それぞれの波長のLEDの出力を変更することにより、出射光における輝度の差または輝度の比が大きい波長を検出することができる。なお、白色光源として、工作機械の機内照明や、工作機械が設置された室内の照明を用いことが考えられる。
(Measurement with reduced influence of external light)
Furthermore, when both the illumination unit 14 and the white light source are turned on, and when only one of them is turned on, the illumination unit 14 emits outgoing light of various wavelengths and outputs a difference in luminance or a ratio of luminance. Can detect a large wavelength. For example, in a case where the illumination unit 14 is a ring illumination including a red LED, a green LED, and a blue LED, by changing the output of the LED of each wavelength, a wavelength difference or a ratio of the luminance in the emitted light is large. Can be detected. Note that, as the white light source, it is conceivable to use the in-machine illumination of the machine tool or the indoor lighting in which the machine tool is installed.
 ここでは、画像取得部12が、照明部14及び白色光源をオンにした状態における撮影対象物Wの撮像を取得し、更に、照明部14のみをオンにした状態または白色光源のみをオンにした状態における撮影対象物Wの撮像を取得する。そして、照明部14から出射され得る出射光のうち、取得した2つの撮像において、撮影対象物Wの測定を行う領域における輝度の差または輝度の比が大きい波長の光を定める。画像取得部12は、定められた波長の出射光を用いて、撮影対象物Wの表面位置を測定する。 Here, the image acquisition unit 12 acquires an image of the imaging target W in a state where the illumination unit 14 and the white light source are turned on, and further, turns on only the illumination unit 14 or turns on only the white light source. An image of the imaging target W in the state is acquired. Then, of the emitted light that can be emitted from the illumination unit 14, in the two acquired images, light having a wavelength with a large difference in luminance or a large luminance ratio in a region where the object to be photographed W is measured is determined. The image acquisition unit 12 measures the surface position of the imaging target W using the emission light having the determined wavelength.
 以上のように、照明部及び白色光源をオンにした状態、及び照明部または白色光源のみをオンにした状態における、撮影対象物Wの測定領域の輝度の差または輝度の比が大きい波長を用いて測定することにより、外光の影響を低減した測定が実現できる。 As described above, in a state where the illumination unit and the white light source are turned on, and in a state where only the illumination unit and the white light source are turned on, a wavelength having a large difference in luminance or a large luminance ratio in the measurement region of the imaging target W is used. By performing the measurement, measurement in which the influence of external light is reduced can be realized.
 本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。 Although the embodiments and modes of the present invention have been described, the disclosed contents may be changed in the details of the configuration, and combinations of elements and changes in the order in the embodiments and the modes of the present invention are the claimed invention. Can be realized without departing from the scope and spirit of the present invention.
2   測定装置
10  画像センサ
12  画像取得部
14  照明部
16  シャンク
20  制御部
30  移動部(工具主軸)
40 NC装置
50 テーブル
W  撮影対象物
2 Measurement device 10 Image sensor 12 Image acquisition unit 14 Illumination unit 16 Shank 20 Control unit 30 Moving unit (tool spindle)
40 NC device 50 Table W Object to be photographed

Claims (5)

  1.  画像取得部と、
     照明部と、
     制御部と、
    を備え、
     前記画像取得部が、前記照明部及び撮影対象物が第一の位置関係にある場合の撮像と、前記照明部及び撮影対象物が前記第一の位置関係と対称な第二の位置関係にある場合の撮像とを取得し、
     前記制御部が、前記第一の位置関係及び前記第二の位置関係の撮像に基づき、前記撮影対象物の表面位置を測定することを特徴とする測定装置。
    An image acquisition unit;
    Lighting part,
    A control unit;
    With
    The image acquisition unit captures an image when the illumination unit and the imaging target are in a first positional relationship, and the illumination unit and the imaging target are in a second positional relationship symmetrical to the first positional relationship. If the imaging and get,
    The measurement device, wherein the control unit measures a surface position of the imaging target based on the imaging of the first positional relationship and the second positional relationship.
  2.  前記画像取得部が、前記照明部及び撮影対象物の所定の位置関係を0度として、90度、180度、270度回転させた位置関係にある撮像を取得することを特徴とする請求項1に記載の測定装置。 2. The image acquisition unit according to claim 1, wherein a predetermined positional relationship between the illumination unit and the object to be photographed is set to 0 degree, and an image having a positional relationship rotated by 90 degrees, 180 degrees, and 270 degrees is acquired. The measuring device according to item 1.
  3.  前記制御部が、前記第一の位置関係にある場合の撮像と、前記第二の位置関係にある場合の撮像とを重ね合わせることにより、前記撮影対象物の表面位置を測定することを特徴とする請求項1または2に記載の測定装置。 The control unit measures the surface position of the imaging target object by superimposing the imaging in the first positional relationship and the imaging in the second positional relationship. The measuring device according to claim 1 or 2, wherein
  4.  前記制御部が、前記第一の位置関係にある場合の撮像により得られた測定データと、前記第二の位置関係にある場合の撮像により得られた測定データとを相殺することにより、前記撮影対象物の表面位置を測定することを特徴とする請求項1または2に記載の測定装置。 The control unit cancels the measurement data obtained by the imaging in the first positional relationship and the measurement data obtained by the imaging in the second positional relationship to perform the imaging. The measuring device according to claim 1, wherein a surface position of the object is measured.
  5.  前記画像取得部が、前記照明部及び白色光源をオンにした状態における前記撮影対象物の撮像、及び前記照明部または前記白色光源のみをオンにした状態における前記撮影対象物の撮像を取得し、
     前記画像取得部が、前記照明部から出射され得る出射光のうち、該2つの撮像において、前記撮影対象物の測定を行う領域における輝度の差または輝度の比が大きい波長の光を用いて、前記撮影対象物の表面位置を測定することを特徴とする請求項1から4の何れか1項に記載の測定装置。
    The image acquisition unit acquires an image of the imaging target in a state where the illumination unit and the white light source are turned on, and acquires an imaging of the imaging target in a state where only the illumination unit or the white light source is turned on,
    The image acquisition unit, among the emitted light that can be emitted from the illumination unit, in the two imaging, using light of a wavelength having a large luminance difference or a large luminance ratio in a region where the measurement of the imaging target is performed, The measuring device according to claim 1, wherein a surface position of the imaging target is measured.
PCT/JP2019/017337 2018-07-04 2019-04-24 Measurement device WO2020008713A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018127663A JP7083282B2 (en) 2018-07-04 2018-07-04 measuring device
JP2018-127663 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020008713A1 true WO2020008713A1 (en) 2020-01-09

Family

ID=69060636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017337 WO2020008713A1 (en) 2018-07-04 2019-04-24 Measurement device

Country Status (2)

Country Link
JP (1) JP7083282B2 (en)
WO (1) WO2020008713A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361104A (en) * 1986-08-30 1988-03-17 T Ii D:Kk Apparatus for inspecting positional shift
JPS63106508A (en) * 1986-10-24 1988-05-11 Toshiba Corp Method and apparatus for inspecting mounting state
JP2007040801A (en) * 2005-08-02 2007-02-15 Techno Horon:Kk Three-dimensional coordinate measuring system and method
JP2008026255A (en) * 2006-07-25 2008-02-07 Kobe Steel Ltd Flaw inspection system, and flaw inspection method
JP2013113793A (en) * 2011-11-30 2013-06-10 Panasonic Corp Three-dimensional measuring instrument and illuminator used in the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599632A (en) * 1991-10-07 1993-04-23 Bekutoru:Kk Illuminating method for use in measuring object using video camera and illumination system therefor
JP2000097669A (en) * 1998-09-18 2000-04-07 Canon Inc Light-wave interferometer device and its data processing method
JPWO2010021090A1 (en) * 2008-08-20 2012-01-26 パナソニック株式会社 Distance estimation device, distance estimation method, program, integrated circuit, and camera
JP2010266330A (en) * 2009-05-14 2010-11-25 Yokogawa Electric Corp Planar motor
JP6241935B2 (en) * 2014-02-12 2017-12-06 東レエンジニアリング株式会社 A device to inspect the application state of fiber reinforced plastic tape
JP6345944B2 (en) * 2014-02-21 2018-06-20 株式会社ミツトヨ Oblique incidence interferometer
JP6547472B2 (en) * 2015-07-10 2019-07-24 日本製鉄株式会社 Shape measuring device
WO2017168469A1 (en) * 2016-03-28 2017-10-05 パナソニックIpマネジメント株式会社 Visual inspection apparatus and visual inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361104A (en) * 1986-08-30 1988-03-17 T Ii D:Kk Apparatus for inspecting positional shift
JPS63106508A (en) * 1986-10-24 1988-05-11 Toshiba Corp Method and apparatus for inspecting mounting state
JP2007040801A (en) * 2005-08-02 2007-02-15 Techno Horon:Kk Three-dimensional coordinate measuring system and method
JP2008026255A (en) * 2006-07-25 2008-02-07 Kobe Steel Ltd Flaw inspection system, and flaw inspection method
JP2013113793A (en) * 2011-11-30 2013-06-10 Panasonic Corp Three-dimensional measuring instrument and illuminator used in the same

Also Published As

Publication number Publication date
JP2020008348A (en) 2020-01-16
JP7083282B2 (en) 2022-06-10

Similar Documents

Publication Publication Date Title
US10508902B2 (en) Three-dimensional measurement device
JP6550536B2 (en) Multi-line array laser light three-dimensional scanning system and multi-line array laser light three-dimensional scanning method
KR101458991B1 (en) Optical measurement method and measurement system for determining 3D coordinates on a measurement object surface
US9441957B2 (en) Three-dimensional shape measuring apparatus
JP6848385B2 (en) 3D shape measuring device
US10380764B2 (en) System and method for performing vision system planar hand-eye calibration from straight line features
KR20130112740A (en) Light distribution characteristic measurement apparatus and light distribution characteristic measurement method
JP6700424B2 (en) Bilayer registration device and method
CN112082480A (en) Method and system for measuring spatial orientation of chip, electronic device and storage medium
JP2014035261A (en) Information processing method, information processor, program, imaging apparatus, inspection method, inspection device, and method of manufacturing substrate
JP6542955B1 (en) Measuring device and measuring method
JP5555049B2 (en) Tire inspection device
WO2020008713A1 (en) Measurement device
US20170069091A1 (en) Measuring apparatus
CN112352137B (en) Motion encoder
JP2006105755A (en) Three-dimensional shape measurement system and measurement method
JP5079779B2 (en) Camera calibration method and camera calibration apparatus
TWI776694B (en) Automatic robot arm system and method of coordinating robot arm and computer vision thereof
TWI758737B (en) Alignment method of substrate
US20220316867A1 (en) Three-dimensional shape measuring apparatus
JP2022103954A (en) Three-dimensional shape measuring method and three-dimensional shape measuring device
JP2007292606A (en) Surface inspection device
JP2022103956A (en) Three-dimensional shape measuring method and three-dimensional shape measuring device
JP2022158516A (en) Three-dimensional shape measuring apparatus
JP5298339B2 (en) Alignment method and alignment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831224

Country of ref document: EP

Kind code of ref document: A1