JPH0599632A - Illuminating method for use in measuring object using video camera and illumination system therefor - Google Patents

Illuminating method for use in measuring object using video camera and illumination system therefor

Info

Publication number
JPH0599632A
JPH0599632A JP28698191A JP28698191A JPH0599632A JP H0599632 A JPH0599632 A JP H0599632A JP 28698191 A JP28698191 A JP 28698191A JP 28698191 A JP28698191 A JP 28698191A JP H0599632 A JPH0599632 A JP H0599632A
Authority
JP
Japan
Prior art keywords
light
video camera
illumination
emitters
light sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28698191A
Other languages
Japanese (ja)
Inventor
Katsumasa Katayose
勝政 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEKUTORU KK
Original Assignee
BEKUTORU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEKUTORU KK filed Critical BEKUTORU KK
Priority to JP28698191A priority Critical patent/JPH0599632A/en
Publication of JPH0599632A publication Critical patent/JPH0599632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To enhance workability and efficiency in measuring an object by causing light sources on a group of straight lines arranged within the of 180 deg. rotation from the axis of a video camera to sequentially emit light so as to select an optimum direction of illumination for the range object, and restricting use of the light sources to that direction in performing close illumination of the object. CONSTITUTION:Emitters 12 are provided on diameters by which the lower face of an emitter mounting portion 13 perpendicular to the axis 11 of a video camera 4 forming the center of an illumination system 5 has its circumference divided into sixteen equal parts, the center of the circumference being located at the center point of the mounting portion 13. The group of emitters 12 are made in pairs 12A, 12A, 12B, 12B located on the same straight line and the emitters 12 located on different diameters are sequentially caused to emit light to illuminate an object 1. Then an optimum direction of illumination is selected. Simultaneously only those emitters 12 which are provided along the optimum direction of illumination emit light to perform close illumination of the object 1. Therefore, the variable density characteristics of the object 1 and a background portion 2 appear with double peaks and thresholds are precisely set, whereby the object 1 can be distinctly measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、背景部に定置して近接
照明した工場加工物等の物体を、ビデオカメラで捉え
て、画像処理し、その物体の高精度の位置決め(物体に
付されているマーク・形状パターン等を認識して位置決
めする)のための重心計算や形状判断等をなすビデオカ
メラによる物体計測の照明方法と、その方法に用いる照
明装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention captures with a video camera an object such as a factory-processed object which is placed on a background portion and is closely illuminated, performs image processing, and positions the object with high accuracy (attached to the object. The present invention relates to an illumination method for measuring an object by a video camera, which performs a gravity center calculation for recognizing and positioning existing marks, shape patterns, etc.) and shape determination, and an illumination device used for the method.

【0002】[0002]

【従来の技術】物体計測用ビデオカメラシステムは、図
6参照、背景部2となる定置テーブルの上に定置した被
計測物の物体1の上方に照明装置5を設けて物体1を近
接照明し、物体1と背景部2からの反射光をビデオカメ
ラ4で捉えると共に、そのビデオカメラ4の入力信号を
コンピュータ内臓の画像処理部6によって画像処理して
計測するシステムになっている。
2. Description of the Related Art Referring to FIG. 6, an object measuring video camera system is provided with an illuminating device 5 above an object 1 to be measured, which is placed on a stationary table serving as a background portion 2, to illuminate the object 1 in proximity. The system is such that the reflected light from the object 1 and the background portion 2 is captured by the video camera 4, and the input signal of the video camera 4 is image-processed by the image processing unit 6 built in the computer and measured.

【0003】そして、その画像処理は、ビデオカメラ4
からの信号が二値化処理によって黒・白の二値の濃度を
もつデータに置換され、ビデオカメラ4で捉えられた背
景部2と物体1の全体から物体1のみを切り出して画像
処理される。即ち、この物体1のみの切り出し方法は、
処理時間とコストの関係から「モード法」と言われる
「しきい値」の選択手法が用いられており、図5参照、
ビデオカメラ4で捉られて入力された映像の濃度分布に
基づいて、物体1と物体1の周辺に存在する背景部2に
濃度差があらわれて両者の濃度の分布特性が双峰形状を
呈するので、その双峰形の谷を「しきい値」Sになして
物体1の映像のみが切り出されて物体1が計測される。
The image processing is performed by the video camera 4
The signal from is replaced with data having binary densities of black and white by the binarization process, and only the object 1 is cut out from the entire background portion 2 and the object 1 captured by the video camera 4 and subjected to image processing. .. That is, the method of cutting out only this object 1 is
A “threshold” selection method called a “mode method” is used because of the relationship between processing time and cost. See FIG.
Based on the density distribution of the image captured and input by the video camera 4, a density difference appears between the object 1 and the background portion 2 existing around the object 1, and the density distribution characteristics of both have a bimodal shape. , The double-peaked valley is set as the “threshold value” S, and only the image of the object 1 is cut out and the object 1 is measured.

【0004】そして、以上の物体計測には図7〜図10
に示す近接照明装置が用いられている。即ち、図7のも
のは、光源8からハーフミラー9を介してビデオカメラ
4と同一軸方向の照射光を物体1に与える同軸照明装
置、図8図9のものは、光ファイバー10またはリング
状光源8によって、リング状の照射光を物体1に与える
リング照明装置、図10のものはカメラ軸心11と直交
する直線上の2点に、光源8を固定したスポット照明装
置であり、これ等公知例のものが図6の計測システムに
用いられている。なお、図中の20は反射板である。
7 to 10 are used for the above object measurement.
The proximity illumination device shown in is used. That is, the one shown in FIG. 7 is a coaxial illuminating device which gives irradiation light from the light source 8 through the half mirror 9 to the object 1 in the same axial direction as the video camera 4, and the one shown in FIG. 8 is an optical fiber 10 or a ring-shaped light source. 8 is a ring illuminating device for giving a ring-shaped irradiation light to the object 1, and FIG. 10 is a spot illuminating device in which the light source 8 is fixed to two points on a straight line orthogonal to the camera axis 11, and these are known. The example is used in the measurement system of FIG. Reference numeral 20 in the drawing is a reflector.

【0005】[0005]

【発明が解決しようとする課題】一般に、物体1が工場
加工物で、例えばプリント基板の銅パターンのように、
表面が研磨された研磨物である場合は、その物体1の表
面はミクロ的に同一方向の波状をなす波状表面を有する
ので、照明装置5で近接照明すると、図11参照、物体
1への照射光の進入方向15と波形の山・谷の条方向1
4がずれていると、照射光による反射が乱反射する現象
があり、この乱反射があるとビデオカメラ4からの映像
信号による濃度分布が乱れることになる。
Generally, the object 1 is a factory-processed product, such as a copper pattern on a printed circuit board.
When the surface is a polished object, the surface of the object 1 has a wavy surface that has a microscopic wavy shape in the same direction. Therefore, when the illumination device 5 performs close illumination, the object 1 is irradiated with light. Light entry direction 15 and wavy peak / valley stripe direction 1
If 4 is deviated, there is a phenomenon that the reflection due to the irradiation light is irregularly reflected, and if this irregular reflection occurs, the density distribution due to the video signal from the video camera 4 is disturbed.

【0006】従って、前記の同軸照明装置とリング照明
装置では、照射光があらゆる方向から照射されるので、
波状表面の物体1の場合、前記の乱反射は当然に激しく
発生して、物体1と背景部2の濃度分布が重なり合う部
分が生じ、図5の点線のように、物体1と背景部2の濃
度分布の境界が不明瞭になって、「しきい値」Sの選定
が極めて困難又は不可能になる。また、前記のスポット
照明装置では、カメラ軸心11を中心とする直径上に照
明ポイントを有するので、その直径の方向と物体1の波
状表面の波形の条方向が一致すれば、前記の乱反射が極
めて少なくなる。しかし、その両者の方向がずれると前
記の同軸照明と同一の現象が生じる。
Therefore, in the above-mentioned coaxial lighting device and ring lighting device, since the irradiation light is emitted from all directions,
In the case of the object 1 having a wavy surface, the above-mentioned diffused reflection naturally occurs violently, and there occurs a portion where the density distributions of the object 1 and the background portion 2 overlap each other. As shown by the dotted line in FIG. The boundaries of the distribution are obscured, making the selection of the "threshold" S extremely difficult or impossible. Further, since the spot illuminating device has the illuminating point on the diameter with the camera axis 11 as the center, if the direction of the diameter coincides with the line direction of the waveform of the wavy surface of the object 1, the irregular reflection will occur. Extremely low. However, if the two directions are deviated, the same phenomenon as the above-mentioned coaxial illumination occurs.

【0007】以上から、従来手段の照明装置を用いて波
状表面の物体の計測を行う場合、前記の乱反射がある
と、複雑な信号処理技術を必要として処理時間が極めて
長くなって実用性を失うので、前記のスポット照明装置
を用いて、照射光の方向と物体表面の波状の条方向を可
及的にマッチングさせて処理せざるを得なくなる。従っ
て、特殊の照明技術と経験に基づく物体1の観察によっ
て、光源8の位置を変更したり物体1の方向を調整する
作業を、物体1の変更のつど、または、物体1の加工ロ
ット毎に準備作業して行う必要があり、ビデオカメラに
よる物体計測の作業性と計測能率が著しく阻害される。
本発明は、以上の従来技術の難点を解消する照明方法と
照明装置を提供するものである。
From the above, in the case of measuring an object on a wavy surface by using the illumination device of the conventional means, if there is the above-mentioned irregular reflection, a complicated signal processing technique is required and the processing time becomes extremely long and the practicality is lost. Therefore, it becomes necessary to match the direction of the irradiation light with the wavy line direction of the object surface as much as possible using the spot illuminating device for processing. Therefore, the operation of changing the position of the light source 8 or adjusting the direction of the object 1 by observing the object 1 based on a special illumination technique and experience is performed every time the object 1 is changed or each processing lot of the object 1 is processed. It is necessary to perform preparatory work, which significantly impairs the workability and measurement efficiency of object measurement with a video camera.
The present invention provides an illuminating method and an illuminating device which solve the above-mentioned drawbacks of the prior art.

【0008】[0008]

【課題を解決するための手段】以上の技術課題を解決す
る本発明は「背景部上の物体を近接照明してビデオカメ
ラで捕捉し、画像処理して該物体を計測するにおいて、
ビデオカメラの軸心を中心として少くとも180°回転
の範囲内にある直線群上に、光源を存在せしめると共
に、それぞれの該直線上の該光源が順次発光する照明装
置を用い、予め該光源の順次発光によって、背景部上の
物体に対する最適照射方向を選択し、選択された該最適
照射方向に発光を限定して物体の近接照明をなすことを
特徴とするビデオカメラによる物体計測の照明方法」を
特徴とする第一発明と、
According to the present invention for solving the above-mentioned technical problems, "in an object on a background portion is closely illuminated, a video camera captures the image, and image processing is performed to measure the object.
A light source is made to exist on a group of straight lines within a range of at least 180 ° rotation about the axis of the video camera, and an illuminating device that sequentially emits light from each of the straight lines is used. An illumination method for measuring an object by a video camera, characterized in that the optimum irradiation direction for an object on a background portion is selected by sequential light emission, and the light emission is limited to the selected optimum irradiation direction to perform proximity illumination of the object. " A first invention characterized by:

【0009】そして、以上の照明方法に用いる照明装置
として、「ビデオカメラのレンズ軸心を中心として少く
とも180°回転の範囲内にある直線群上に、各直線ご
と少くとも一個の光源を存在させると共に、前記各直線
上の光源がそれぞれの直線毎に順次発光する順次発光手
段と、選定された特定位置の光源のみの発光をなす光源
限定手段を設けた構造を特徴とする照明装置」の第二発
明からなっている。
As an illuminating device used in the above illuminating method, "at least one light source is present for each straight line on a straight line group within a range of at least 180 ° rotation about the lens axis of the video camera. In addition, the lighting device characterized by a structure provided with a sequential light emitting means for sequentially emitting the light sources on the respective straight lines for each straight line, and a light source limiting means for emitting only the light source at the selected specific position. It consists of the second invention.

【0010】そして、以上の照明装置の態様として、カ
メラ軸心を中心とする円周上に光源を点在配設して、そ
の光源群の順次発光回路と光源限定回路を設けたり、又
は、カメラ軸心を中心として回転停止自在に支承した発
光体回転板にしたり、或は、リング状発光体と、回転停
止自在の照射光スリットを有する照射光回転板との組合
せになし、該照射光スリットを通して照明する構造にな
し、それぞれ前記の最適照射方向の選択と光源限定がな
される。
As a mode of the above illumination device, light sources are scattered around a circumference centered on the camera axis, and a sequential light emitting circuit and a light source limiting circuit of the light source group are provided, or The irradiation light is a rotation plate supported so as to be rotatable about the camera axis, or a combination of a ring-shaped light emitter and an irradiation light rotation plate having an irradiation light slit capable of rotation stop is used. The structure is such that illumination is performed through the slit, and the selection of the optimum irradiation direction and the limitation of the light source are made respectively.

【0011】[0011]

【作用】以上の本発明の照明方法と照明装置によると、
背景部上の物体を近接照明してビデオカメラで捉え、画
像処理して物体の計測をなすにおいて、該物体が表面に
研磨条痕等の波状表面を有する場合、物体に対する照明
の光源位置を変化させて、波上表面の条方向と照射光の
入光方向が一致する最適照射方向を予め選択し、その最
適照射方向に光源位置を限定して照明することができ
る。従って、ビデオカメラに捕捉される背景部と物体の
反射光は乱反射が極めて少くなり、図5実線に示す背景
部と物体の双峰形状の濃度特性があらわれるので「しき
い値」Sの選定が的確明瞭になり、高精度の物体計測が
可能になる。
According to the illumination method and the illumination device of the present invention described above,
When an object on the background part is closely illuminated and captured by a video camera, and the image is processed to measure the object, if the object has a wavy surface such as a polishing scratch, the light source position of the illumination is changed with respect to the object. Then, it is possible to select in advance the optimum irradiation direction in which the stripe direction of the corrugated surface and the incident direction of the irradiation light coincide with each other, and illuminate with the light source position limited to the optimum irradiation direction. Therefore, the diffused light reflected by the background portion and the object captured by the video camera is extremely small, and the bimodal density characteristics of the background portion and the object shown by the solid line in FIG. 5 appear. It becomes clear and precise, and highly accurate object measurement becomes possible.

【0012】そして、前記の照明装置は、カメラ軸心を
中心とする180°回転範囲に光源が存在してその光源
の順次発光手段を有するので、その順次発光によって好
ましい照射方向を順次チエックし、物体に対する最適照
射方向の検知選定が能率的かつ迅速にできる。
Further, in the above-mentioned illuminating device, since the light source exists in the 180 ° rotation range around the camera axis and has the sequential light emitting means of the light source, the preferable emission direction is sequentially checked by the sequential emission, The detection and selection of the optimum irradiation direction for an object can be performed efficiently and quickly.

【0013】[0013]

【実施例】以下、図面に基づいて前記照明装置の実施例
を詳しく説明する。まず、その第一実施例を示す図1を
参照して、定置テーブルの背景部2上の被計測物の物体
1とビデオカメラ4のカメラレンズ3の間に照明装置5
を設け、物体1を近接照明して、物体1の高精度位置確
認または形状計測をなすビデオカメラによる物体計測シ
ステムにおいて、照明装置5はカメラ軸心11上に中心
を有し、かつ、カメラ軸心11と直交する下面を有する
発光体取着部13が設けられ、物体1の対向面となる下
面には、取着部13の中心を中心とする円周上に、円周
を16等分する各直径上に、光源となる発光体12が設
けられ、この発光体12群は、同一直径上の2個の12
A12A・12B12B・12C12C等が対になると
共に、異なる直径上の発光体12が順次発光する順次発
光回路が設けられている。そして、その発光回路によっ
て、発光体12A12A・12B12B等を順次発光さ
せて物体1を照射し、前記の最適照射方向を検知して選
択すると共に、その最適照射方向の発光体のみが発光し
て物体1の近接照明をなす構造を有している。
Embodiments of the illuminating device will be described below in detail with reference to the drawings. First, with reference to FIG. 1 showing the first embodiment, an illumination device 5 is provided between an object 1 to be measured on a background portion 2 of a stationary table and a camera lens 3 of a video camera 4.
In the object measurement system using a video camera for illuminating the object 1 in close proximity to perform high-accuracy position confirmation or shape measurement of the object 1, the illumination device 5 has a center on the camera axis 11 and A light emitter attaching portion 13 having a lower surface orthogonal to the core 11 is provided, and the lower surface which is the facing surface of the object 1 is divided into 16 equal parts on the circumference centered on the center of the attaching portion 13. A light-emitting body 12 serving as a light source is provided on each diameter, and a group of this light-emitting body 12 includes two 12
A12A, 12B12B, 12C12C and the like are paired, and a sequential light emitting circuit that sequentially emits the light emitting bodies 12 having different diameters is provided. Then, the light emitting circuit sequentially causes the light emitters 12A12A, 12B12B, etc. to emit light to illuminate the object 1, and the optimum irradiation direction is detected and selected, and only the light emitter in the optimum irradiation direction emits the object. 1 has a structure that forms close-up illumination.

【0014】以上の照明装置を用いると、発光体12の
順次発光によって物体1に対する最適照射方向が簡便に
選択できる。そして、図4参照、その最適照射方向の限
定照射によって照射方向15と物体1の波状表面の条方
向14が一致して乱反射が極めて少くなり、図5実線で
示す物体1と背景部2の濃淡特性が双峰状にあらわれて
「しきい値」Sが的確に設定され、物体1の計測が極め
て明快に行える。なお、発光体12は同一直径上に少く
とも一個存在すれば良く、発光体12の配列数は少くと
も半円周4分割位置の配列があれば、工業加工品の物体
計測として実用上の支承はない。
By using the above illumination device, the optimum irradiation direction for the object 1 can be easily selected by the sequential light emission of the light emitter 12. Then, referring to FIG. 4, the limited irradiation of the optimum irradiation direction causes the irradiation direction 15 and the stripe direction 14 of the corrugated surface of the object 1 to coincide with each other, so that irregular reflection is extremely reduced. The characteristic appears in a bimodal shape and the "threshold value" S is set accurately, and the measurement of the object 1 can be performed very clearly. It is sufficient that at least one light-emitting body 12 exists on the same diameter, and if the light-emitting body 12 is arranged at least at four semicircumferential four-divided positions, it is practically supported as an object measurement of an industrial processed product. There is no.

【0015】つぎに、第2図を参照して、本発明の照明
装置の第二実施例を説明する。この実施例の照明装置5
は、モーター16による自動回転機構を有する回転停止
自在の発光体回転板17が、回転中心をカメラ軸心11
と一致させると共に、その下面をカメラ軸心11と直交
させて設けられ、その下面の一直径上に一対の発光体1
2が吊設されて物体1と対向し、発光回転板17の回転
によって発光体12の順次発光が連続的になされると共
に、発光回転板17の停止によって限定方向照射ができ
る構造になっている。
Next, a second embodiment of the illuminating device of the present invention will be described with reference to FIG. Illumination device 5 of this embodiment
Is an illuminator rotating plate 17 which has an automatic rotation mechanism by a motor 16 and which can be freely stopped.
And a lower surface thereof is provided so as to be orthogonal to the camera axis 11, and a pair of light-emitting bodies 1 are provided on one diameter of the lower surface.
2 is hung to face the object 1, and the light-emitting rotary plate 17 is rotated so that the light-emitting body 12 emits light continuously in succession, and the light-emitting rotary plate 17 is stopped to irradiate in a limited direction. ..

【0016】つぎに、第3図を参照して照明装置の第三
実施例を説明する。即ち、この実施例の照明装置5は、
カメラレンズ3側のリング状の発光体12と物体1側の
照射光回転板18との組合せからなり、この発光体12
と照射光回転板18は、それぞれの中心がレンズ軸心1
1上に位置し、かつ、それぞれがレンズ軸心11と直交
する平面上に配置されている。そして、照射光回転板1
8は、モーター16からなる自動回転機構を有して回転
停止自在であり、さらに、一直線上に配列されて該直径
上に長孔をなす一対の照射光スリット19が設けてあ
り、発光体12の照射光が照射光スリット19を通して
物体1に照射される構造になっている。この実施例の発
光体も順次発光が連続的になり、回転板18の回転停止
によって最適照射方向の選択と、限定方向照射ができ
る。
Next, a third embodiment of the illuminating device will be described with reference to FIG. That is, the illumination device 5 of this embodiment is
The ring-shaped light emitter 12 on the camera lens 3 side and the irradiation light rotating plate 18 on the object 1 side are combined.
And the irradiation light rotating plate 18 have their respective centers at the lens axis 1
1 and are arranged on a plane orthogonal to the lens axis 11. And the irradiation light rotating plate 1
8 has an automatic rotation mechanism composed of a motor 16 and can freely stop rotation. Further, a pair of irradiation light slits 19 arranged in a straight line and having a long hole on the diameter thereof are provided, and a light emitting body 12 is provided. The irradiation light of is irradiated onto the object 1 through the irradiation light slit 19. The light-emitting body of this embodiment also emits light continuously, and by stopping the rotation of the rotary plate 18, the optimum irradiation direction can be selected and limited-direction irradiation can be performed.

【0017】なお、前記各実施例における最適照射方向
の検知セットは、モニターテレビ7の映像による視覚確
認選択、または、画像処理部6内のコンピューターによ
る自動選択によってなされる。そして、その自動選択の
場合は、例えば前記第一実施例の場合では、発光体12
A12A・12B12B・・・12H12Hと順次発光
して、それぞれの発光に基づく物体1と背景部2の濃度
分布が記憶され、そのうち図5実線で示される双峰状の
濃度の分布特性を示す発光体が選択されて最適照射方向
となり、その発光体のみが限定発光して物体を照明し、
物体1の計測がなされる。
The detection set of the optimum irradiation direction in each of the above-described embodiments is made by visual confirmation selection by the image of the monitor TV 7 or automatic selection by a computer in the image processing unit 6. In the case of the automatic selection, for example, in the case of the first embodiment, the light emitter 12
A12A, 12B12B ... 12H12H are sequentially emitted, and the concentration distributions of the object 1 and the background portion 2 based on the respective emission are stored, and among them, a light emitter showing a bimodal concentration distribution characteristic shown by the solid line in FIG. Is selected to be the optimum irradiation direction, and only the light emitter emits limited light to illuminate the object,
The object 1 is measured.

【0018】[0018]

【発明の効果】以上の説明のとおり、本発明のビデオカ
メラによる物体計測の照明方法とそれを用いる照明装置
は、研磨面等の波形表面を有する物体を計測するにおい
て、物体への照射光の方向を該波形表面の波条に一致さ
せた最適照射方向を簡便に選択して限定照射の照明がで
きるので、物体計測の作業性・計測能率が向上すると共
に、鮮明な画像処理による高品質の物体計測ができる効
果がある。
As described above, the illumination method for measuring an object by the video camera of the present invention and the illuminating device using the same, in measuring an object having a corrugated surface such as a polishing surface, It is possible to easily select the optimum irradiation direction that matches the direction of the corrugations on the corrugated surface to perform limited irradiation illumination, which improves the workability and measurement efficiency of object measurement, and also provides high-quality images with clear image processing. It has the effect of being able to measure objects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第一実施例の照明装置を示し、図中のA
はその基本構成の正面図、図中のBはその底面図
FIG. 1 shows an illuminating device according to a first embodiment of the present invention, in which A in FIG.
Is the front view of the basic structure, and B in the figure is the bottom view.

【図2】本発明第二実施例の照明装置を示し、図中のA
はその基本構成の正面図、図中のBはその底面図
FIG. 2 shows an illumination device according to a second embodiment of the present invention, in which A in FIG.
Is the front view of the basic structure, and B in the figure is the bottom view.

【図3】本発明第三実施例の照明装置を示し、図中のA
はその基本構成の正面図、図中のBはその底面図
FIG. 3 shows an illumination device according to a third embodiment of the present invention, in which A in FIG.
Is the front view of the basic structure, and B in the figure is the bottom view.

【図4】図1実施例の作用状態を示す斜視図FIG. 4 is a perspective view showing an operating state of the embodiment of FIG.

【図5】ビデオカメラで捉えた映像信号の濃度ヒストグ
ラム図
FIG. 5: Density histogram diagram of video signal captured by video camera

【図6】従来のビデオカメラによる物体計測のシステム
FIG. 6 is a system diagram of object measurement by a conventional video camera.

【図7】従来の照明装置の正面図FIG. 7 is a front view of a conventional lighting device.

【図8】従来の照明装置を示し、図中のAはその正面
図、図中のBはその底面図
FIG. 8 shows a conventional lighting device, in which A is a front view and B is a bottom view.

【図9】従来の照明装置を示し、図中のAはその正面
図、図中のBはその底面図
FIG. 9 shows a conventional lighting device, in which A is a front view and B is a bottom view.

【図10】従来の照明装置の正面図FIG. 10 is a front view of a conventional lighting device.

【図11】従来の照明装置による乱反射説明図FIG. 11 is an explanatory diagram of diffused reflection by a conventional lighting device.

【符号の説明】[Explanation of symbols]

1 物体 2 背景部 3 カメラレンズ 4 ビデオカメラ 5 照明装置 6 画像処理部 7 モニターテレビ 8 光源 11 カメラ軸心 12 発光体 13 発光体取着部 14 波状表面の条方向 15 照射方向 17 発光体回転板 18 照射光回転板 19 照射光スリット 20 外部計算機 S しきい値 DESCRIPTION OF SYMBOLS 1 Object 2 Background part 3 Camera lens 4 Video camera 5 Illumination device 6 Image processing part 7 Monitor TV 8 Light source 11 Camera axis 12 Light emitter 13 Light emitter attachment part 14 Wavy surface stripe direction 15 Irradiation direction 17 Light emitter rotating plate 18 Irradiation light rotating plate 19 Irradiation light slit 20 External computer S threshold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 背景部上の物体を近接照明してビデオカ
メラで捕捉し、画像処理して該物体を計測するにおい
て、ビデオカメラの軸心を中心として少くとも180°
回転の範囲内にある直線群上に、光源を存在せしめると
共に、それぞれの該直線上の該光源が順次発光する照明
装置を用い、予め該光源の順次発光によって、背景部上
の物体に対する最適照射方向を選択し、選択された該最
適照射方向に発光を限定して物体の近接照明をなすこと
を特徴とするビデオカメラによる物体計測の照明方法。
1. An object on a background portion is closely illuminated and captured by a video camera, and when the object is image-processed and the object is measured, the axis of the video camera is centered at least 180 °.
Optimum irradiation of an object on the background by pre-sequential emission of the light sources by using a lighting device in which light sources are present on a group of straight lines within the range of rotation and the light sources on the respective straight lines sequentially emit light. A lighting method for object measurement by a video camera, characterized in that a direction is selected and light emission is limited to the selected optimum irradiation direction to perform close-up lighting of the object.
【請求項2】 ビデオカメラのレンズ軸心を中心として
少くとも180°回転の範囲内にある直線群上に、各直
線ごと少くとも一個の光源を存在させると共に、前記各
直線上の光源がそれぞれの直線毎に順次発光する順次発
光手段と、選定された特定位置の光源のみの発光をなす
光源限定手段を有する構造を特徴とする請求項1の照明
方法に用いる照明装置。
2. At least one light source is present for each straight line on a group of straight lines within a range of at least 180 ° rotation about the lens axis of the video camera, and the light sources on each straight line are respectively 2. The illuminating device used in the illuminating method according to claim 1, wherein the illuminating method has a structure having sequential light emitting means for sequentially emitting light for each straight line and light source limiting means for emitting light only from a light source at a selected specific position.
JP28698191A 1991-10-07 1991-10-07 Illuminating method for use in measuring object using video camera and illumination system therefor Pending JPH0599632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28698191A JPH0599632A (en) 1991-10-07 1991-10-07 Illuminating method for use in measuring object using video camera and illumination system therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28698191A JPH0599632A (en) 1991-10-07 1991-10-07 Illuminating method for use in measuring object using video camera and illumination system therefor

Publications (1)

Publication Number Publication Date
JPH0599632A true JPH0599632A (en) 1993-04-23

Family

ID=17711475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28698191A Pending JPH0599632A (en) 1991-10-07 1991-10-07 Illuminating method for use in measuring object using video camera and illumination system therefor

Country Status (1)

Country Link
JP (1) JPH0599632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008348A (en) * 2018-07-04 2020-01-16 Dmg森精機株式会社 Measuring apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222510B2 (en) * 1978-09-25 1987-05-18 Sony Corp
JPS62214307A (en) * 1986-03-17 1987-09-21 Agency Of Ind Science & Technol Shape measuring instrument for object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6222510B2 (en) * 1978-09-25 1987-05-18 Sony Corp
JPS62214307A (en) * 1986-03-17 1987-09-21 Agency Of Ind Science & Technol Shape measuring instrument for object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020008348A (en) * 2018-07-04 2020-01-16 Dmg森精機株式会社 Measuring apparatus

Similar Documents

Publication Publication Date Title
US4028728A (en) Method of and video system for identifying different light-reflective surface areas on articles
US4105925A (en) Optical object locator
JPH02115706A (en) Method and device for automatically inspecting surface of cylindrical part in noncontact manner
JPH08510053A (en) Method and apparatus for continuous diffuse illumination
US9879982B2 (en) Method and arrangement for measuring internal threads of a workpiece with an optical sensor
CN101641566A (en) Be used to obtain the measurement mechanism and the method for the geometric properties of section
JP2001266127A (en) Device for inspecting printed wiring board
KR20110069058A (en) Apparatus and method for optically converting a three-dimensional object into a two-dimensional planar image
JP2873410B2 (en) Symbol / character identification device for sample
JP2007024646A (en) Optical measuring instrument
JPH1130508A (en) Method and device for measuring surface shape of golf ball
JPH0599632A (en) Illuminating method for use in measuring object using video camera and illumination system therefor
US5978089A (en) Non-contact method for measuring the shape of an object
US20040114035A1 (en) Focusing panel illumination method and apparatus
JP3641394B2 (en) Optical member inspection apparatus, image processing apparatus, image processing method, and computer-readable medium
JPS636679A (en) Method for detecting tilt of wire
JPS6232345A (en) Defect detecting device
KR200224601Y1 (en) VT Tape Surface Inspection System
JP2015114297A (en) Measuring method and measurement program of opening length, and inspection device
JP3599932B2 (en) Appearance inspection device
JPH0519951U (en) Imaging device for defect inspection of inner wall surface of cylinder
JP3688781B2 (en) Position measuring device
JPH11295228A (en) Apparatus and method for inspecting defect of cylindrical object
JP2018165626A (en) Surface foreign matter detection device and surface foreign matter detection method using the same
JP2005533260A (en) Wafer inspection equipment