JPS62214307A - Shape measuring instrument for object - Google Patents

Shape measuring instrument for object

Info

Publication number
JPS62214307A
JPS62214307A JP5895786A JP5895786A JPS62214307A JP S62214307 A JPS62214307 A JP S62214307A JP 5895786 A JP5895786 A JP 5895786A JP 5895786 A JP5895786 A JP 5895786A JP S62214307 A JPS62214307 A JP S62214307A
Authority
JP
Japan
Prior art keywords
light
cutting plane
scanner
signal
optical cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5895786A
Other languages
Japanese (ja)
Inventor
Toshio Matsushita
松下 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5895786A priority Critical patent/JPS62214307A/en
Publication of JPS62214307A publication Critical patent/JPS62214307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To process efficiently recognition of an object by controlling the projecting direction of an optical cutting plane and an angle of rotation of the optical cutting plane with respect to the axial circumference. CONSTITUTION:Beams emitted from a laser light source 1 are projected in the direction of an object 11 by a scanner 3 which polarizes the beams independently in the vertical and horizontal directions. The scanner 3 is driven by a signal from a scanner controller 5. Then, a signal generator 7 produces a periodic signal to scan the laser beams periodically and form the optical cutting plane. The output and the output of a D/A converter 9 controlled by a computer 10 are synthesized by a signal synthesizer 6 and inputted to the controller 5. Further, a TV camera 4 picks up a sight including the object 11 on image and its video signal is taken in an image processor 8 and positional information of a part where the optical cutting plane intersects the object 11 is abstracted. Then, the computer 10 computes the distance to the material body based on a principle of triangulation from the geometrical relation with the positional information of a picture element, the camera 4 and the optical cutting plane.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、自動生産工程における製品形状の計測および
検査、あるいは産業用ロボットで視覚情報を利用して自
律的に3次元物体を操作するための物体の位置の測定お
よび物体認識を行う装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to measurement and inspection of product shapes in automatic production processes, or for autonomously manipulating three-dimensional objects using visual information in industrial robots. The present invention relates to a device that measures the position of an object and performs object recognition.

[従来の技術] 本発明と関連した物体位置の測定装置として体ニー す
でに特許第815590%として登録され=+′PI体
位置測定位置測定方式装置が存在する。前旬装置では、
線状光の物体への投射とテレビカメラの使用とを組み合
わせ、テレビ画像Hの物体表面に投射された線状光の位
置と線状光の投射装置とテレビカメラの幾何学的配置関
係とを利用して、3角測量の原理により物体までの距離
を求めている。
[Prior Art] As an object position measuring device related to the present invention, there is a body position measuring device which has already been registered as Patent No. 815590%. In the front device,
By combining the projection of linear light onto an object and the use of a television camera, the position of the linear light projected onto the object surface of the television image H and the geometric arrangement relationship between the linear light projection device and the television camera are determined. The distance to an object is determined using the principle of triangulation.

[発明が解決しようとする問題点] 対象物に投射するために用いる線状光または線状の軌跡
を描くように走査されたビーム状光の通過面を以下では
光切断面と呼ぶ、従来の技術では投射する光切断面に関
しては、投射方向の軸回りの回転角は、基質面に対し水
平あるいは垂直等に、固定されているものを使用してい
る。光切断面の前記回転角が前述のように制限されてい
る場合には以下の問題点が生じる。
[Problems to be Solved by the Invention] The plane through which linear light or beam-shaped light scanned to draw a linear trajectory is used to project onto an object is hereinafter referred to as a light cutting plane. In the technique, a light cutting surface for projection is used in which the rotation angle around the axis of the projection direction is fixed, such as horizontally or vertically with respect to the substrate surface. When the rotation angle of the optical cutting plane is limited as described above, the following problems occur.

対象物の全体的な寸法や形状を知るためには、光v5断
面と物体との交差が生じると予想される区間において光
切断面を走査して全体のデータを入力する必要が有り、
処理時間がかかるという問題射ある。
In order to know the overall size and shape of the object, it is necessary to scan the light section in the section where the intersection of the light V5 section and the object is expected to occur and input the entire data.
There is a problem with the processing time.

また、光切断面の面の傾きと対會物の1慶線の傾簀の差
が小さくなると光切断面と対象物との交差部は対象物の
稜線と平行するようになるので、稜線付近では上記交差
部の明瞭な像を得ることが困難となり、その結果、距l
111測定の精度が落ちる問題がある。
In addition, when the difference between the slope of the light section and the slope of the object's first line becomes smaller, the intersection of the light section and the object becomes parallel to the ridgeline of the object. In this case, it becomes difficult to obtain a clear image of the above-mentioned intersection, and as a result, the distance l
There is a problem that the accuracy of 111 measurement decreases.

[問題へを解決するための手段] 本発明は、かかる問題な解決するためになされたもので
、光切断面を利用して対象物体までの距離を測定する原
理を用いた物体形状計Il[11装置において 対象物
体の形状あるいは姿勢に適した光切断面を発生させて、
物体までの距離の測定およびその結果に基づく物体の認
識を行う物体形状計測装置をその要旨とするものであり
、光切断面の投射方向の制御と、投射方向の軸回りに対
する光切断面の回転角とを制御する機構を備えたことを
特為とする。
[Means for Solving the Problem] The present invention has been made to solve this problem, and is an object shape meter Il [using the principle of measuring the distance to a target object using an optical cutting plane]. 11 device generates a light cutting plane suitable for the shape or posture of the target object,
The gist of the device is an object shape measuring device that measures the distance to the object and recognizes the object based on the results.It also controls the projection direction of the light section and rotates the light section around the axis of the projection direction. Its special feature is that it has a mechanism to control the angle.

r″作作用 −のような機構を備える物体形状計測装置によ七ば、対
象物体の概略の位置および姿勢が既知である場合には、
その物体の認識やその物体について要求された測定を行
うのに最も適した而の傾きを持つ切断光平面を投射して
、高速かつ精度の良いデータの収集が可能となる。また
対象物体の位ごと姿勢が未知である場合には、あらかじ
め定めた傾きの切断光平面を生成して傑常的なデータの
収集を行い、部分的な情報から物体の位置と姿勢および
種類を推定し、それに基づき切断光面の面の傾きと切断
光の投射方向を制御して、次のデータの収集を行い、こ
れを鰻り返すことにより、効率的に対象物体の認識と計
測を行うことが可能になる。
According to an object shape measuring device equipped with a mechanism such as r'', when the approximate position and orientation of the target object are known,
By projecting a cutting light plane with an inclination most suitable for recognizing the object or performing the required measurements on the object, it is possible to collect data with high speed and precision. In addition, when the position and orientation of the target object are unknown, a cutting light plane with a predetermined inclination is generated to collect outstanding data, and the position, orientation, and type of the object can be determined from partial information. Based on the estimation, the inclination of the cutting light surface and the projection direction of the cutting light are controlled, the next data is collected, and this is reflected back to efficiently recognize and measure the target object. becomes possible.

[実施例] 光切断面の発生法の1つとして、線状光源または光源と
線状の間隙とを組み合わせる方法がある。これらの場合
には、光源またはH記間隙自体を回転させるか、線状光
を台形プリズムを通過させ、その台形プリズムを光軸回
りに回転させるこ」で光切断面の回転を実現できる。、
−のとき、投2i方向の制御は回転された光切断面を、
外部からJ回りの回転角が制御可1@な反射ミラーで反
射して実現できる。以下では、レーザー光のようなビー
ム状光を、ビーム走査器を用いて走査し、回転角と投射
方向の両方を同時に制御する実施例について説明する。
[Example] One method of generating a light section is to use a linear light source or a combination of a light source and a linear gap. In these cases, the light cutting plane can be rotated by rotating the light source or the H gap itself, or by passing linear light through a trapezoidal prism and rotating the trapezoidal prism around the optical axis. ,
-, the control in the throw 2i direction changes the rotated light section to
The rotation angle around J can be controlled from the outside.It can be realized by reflecting with a reflecting mirror. In the following, an embodiment will be described in which a beam-like light such as a laser beam is scanned using a beam scanner to simultaneously control both the rotation angle and the projection direction.

第1図は本発明の実施例の構成を示す、レーザ光源lよ
り発したビームは垂直および水平な方向に独立にビーム
を偏向する走査器3で対象物11の方向に投射される。
FIG. 1 shows the configuration of an embodiment of the present invention. A beam emitted from a laser light source 1 is projected toward an object 11 by a scanner 3 that deflects the beam independently in vertical and horizontal directions.

本例では走査器として、ガルバノ−メータを用いた1軸
方向のミラー走査器2台を、それぞれの回転軸が互いに
直交するように配置したものを使用している。走査器3
は走査器用制御装置5からの信号で駆動される。信号発
生器7は、レザービームを周期的に走査して光切断面を
生成するための周期信号を発生するための装置である。
In this example, two uniaxial mirror scanners using galvanometers are used as the scanners, and the scanners are arranged so that their rotation axes are perpendicular to each other. Scanner 3
is driven by a signal from the scanner control device 5. The signal generator 7 is a device for generating a periodic signal for periodically scanning the laser beam to generate a light section.

信号発生器7の出力と計算機10で會御されるDA変換
器9の出力とは信号合成器6虞;合成され、走査器用向
u4装置5に入力される。
The output of the signal generator 7 and the output of the DA converter 9 controlled by the computer 10 are combined by a signal synthesizer 6 and inputted to the scanner U4 device 5.

4は物体を含む情景を撮像するためのテレビ力メイであ
る。テレビカメラからの映像信号は画像処理装置8に取
り込まれ、光切断面と対象物体との交差する部分の画素
の位置情報が抽出される。計算#110では、前記画素
の位置情報およびテレビカメラと光切断面との幾何学的
関係から3角1w量の原理により物体までの距離を計算
する。計算機10は測定された距離に基づく対象物体の
認識処理と、DA変換器9を介した光切断面の制御にも
使用される。
Reference numeral 4 is a television power unit for capturing an image of a scene including an object. The video signal from the television camera is taken into the image processing device 8, and position information of pixels at the intersection of the light section and the target object is extracted. In calculation #110, the distance to the object is calculated from the position information of the pixel and the geometrical relationship between the television camera and the light section using the principle of triangular 1w amount. The computer 10 is also used to recognize the target object based on the measured distance and to control the light section via the DA converter 9.

つぎに、光切断面の方向と回転角を制御する方法につい
て具体的に説明する。走査器3は走査器用制御装置5に
与えらる入力電圧値に比例した偏向角を与える。そこで
、次式で示される信号をそれぞれ走査器の入力とする。
Next, a method for controlling the direction and rotation angle of the light cutting plane will be specifically explained. The scanner 3 provides a deflection angle proportional to the input voltage value applied to the scanner controller 5. Therefore, the signals expressed by the following equations are respectively input to the scanner.

v+ −AI−FD) + 81          
(1)V2− A21F(t) + 82      
    (2)ここに、 Vl、v2はそれぞれ垂直軸
回り、水平軸回りの偏向角を与えるための入力電圧、ま
た、 AI、A2. Bl、B2はIJA変換器9の出
力電圧、F(t)は信3発生器7が出力する周期的電圧
信号で、鋸歯状;鋪1を用いる。
v+ -AI-FD) + 81
(1) V2- A21F(t) + 82
(2) Here, Vl and v2 are input voltages for giving deflection angles around the vertical axis and horizontal axis, respectively, and AI, A2. B1 and B2 are the output voltages of the IJA converter 9, and F(t) is a periodic voltage signal output from the signal generator 7, which has a sawtooth shape;

第2図は走査器として使用したミラー走査器のミラー回
転軸の回転角度とビームの投射方向の座標軸に垂直な平
面上でのビームの軌跡の関係を1次元方向(X方向とす
る)についてのみ表示したものである。偏向角が入力信
号に比例し、かつ。
Figure 2 shows the relationship between the rotation angle of the mirror rotation axis of the mirror scanner used as a scanner and the beam trajectory on a plane perpendicular to the coordinate axis of the beam projection direction, only in one-dimensional direction (X direction). This is what is displayed. the deflection angle is proportional to the input signal, and.

tanO=θ と見なして良い場合には、X方向のビー
ム軌跡の座標値は(3)式のようになる。
If it can be assumed that tanO=θ, the coordinate values of the beam trajectory in the X direction are as shown in equation (3).

X −CI−(At#F(t)+  81 )苧d(3
)ここに、dは第2図に示す走査器の中心から平面Pま
での距離であり、C1は第1図の信号合成回器6への入
力゛電圧から走査器による偏向角への変換係数である。
X -CI-(At#F(t)+81) 苧d(3
) Here, d is the distance from the center of the scanner to the plane P shown in FIG. 2, and C1 is the conversion coefficient from the input voltage to the signal synthesizer 6 in FIG. 1 to the deflection angle by the scanner. It is.

同様に、X方向に垂直なY方向のビーム軌跡座標は(4
)式のようになる。
Similarly, the beam trajectory coordinate in the Y direction perpendicular to the X direction is (4
) is as follows.

Y −C2=(A2−F(t)+  82 )−d  
     (4)C2は式(3)と同様に変換係数を表
す。
Y-C2=(A2-F(t)+82)-d
(4) C2 represents a conversion coefficient similarly to equation (3).

式(3)と式(4)からF(t)を消去するとXとYの
関係は式(5)となる。
When F(t) is eliminated from equations (3) and (4), the relationship between X and Y becomes equation (5).

C2−A21X −C1,AICY =       
   (5)2CImC2(A2l81− AI#B2
 )ld゛=れは、平面Pと光切断面との交線を表わし
ている。そこでA1、B1、A2. B2に適当な値を
指定することにより、走査器の中心を通る、任意の光切
断面を発生できる。
C2-A21X-C1,AICY=
(5) 2CImC2 (A2l81- AI#B2
)ld represents the line of intersection between the plane P and the light section. So A1, B1, A2. By specifying an appropriate value for B2, an arbitrary light section passing through the center of the scanner can be generated.

式(1)で表された信号は第1図の信号合成器で作成す
るが、@号合成器は、例えば、アナログ乗算回路を持い
て実現できる。
The signal expressed by equation (1) is created by the signal synthesizer shown in FIG. 1, but the @ signal synthesizer can be realized by having an analog multiplication circuit, for example.

なお、ミラー走査器を用いた走査器では、9JA歯状波
を駆動信号とした場合、ビームの帰線時に。
In addition, in a scanner using a mirror scanner, when a 9JA toothed wave is used as a drive signal, when the beam returns.

2台のミラー走査器の機械的特性の違いや駆動信号の位
相ずれにより、ビームは非直線的な軌跡を描くことがあ
る。このような場合には、第1図に示したように、光路
シャッター2を鋸歯状波に同期させて帰路のビームを遮
断すれば安定した光切断面を得ることが可能である。
The beam may trace a non-linear trajectory due to differences in the mechanical properties of the two mirror scanners or a phase shift in the drive signals. In such a case, as shown in FIG. 1, it is possible to obtain a stable light section by synchronizing the optical path shutter 2 with the sawtooth wave and blocking the return beam.

[発明の効果] 以上に示したように、本発明による装置を使用すると、
光切断面の回転と移動により、対象物の測定あるいは認
識に最も適した光切断面を選択し千71、効率的な物体
認識処理が可能となる効果かあ・粂。例えば、対象物が
柱状のものであるとする北5、側面の傾きあるいは長袖
の方向は、長軸方向と直交するような2枚の切断面を用
いて1両側エツジ上の2点の座標をそれぞれ求めること
で計算できる。長袖方向の長さや端点座標は、長袖方向
の切断面を適用することにより、1回の光切断面の投射
で求めることができる。また、環境内での姿勢が予測で
きない場合でも、物体のモデルが与えられている場合に
は、試験的に光切断面を投射して、最適な切断方向が推
定可能となる。このように、本発明は、自動生産工程に
おける製品形状検査や3次元物体を取り扱うロボット用
の視覚処理の技術分野に貢献するところが大きい。
[Effect of the invention] As shown above, when the device according to the present invention is used,
By rotating and moving the optical cutting plane, the optical cutting plane most suitable for measuring or recognizing the object is selected, and efficient object recognition processing becomes possible. For example, if the object is columnar, the slope of the side surface or the direction of the long sleeve can be determined by using two cut planes perpendicular to the long axis direction and calculating the coordinates of two points on one edge on both sides. It can be calculated by asking for each. The length in the long-sleeve direction and the coordinates of the end points can be determined by one projection of the light-cut plane by applying the cut plane in the long-sleeve direction. Furthermore, even if the posture in the environment cannot be predicted, if a model of the object is given, the optimal cutting direction can be estimated by projecting a light cutting plane on a trial basis. As described above, the present invention greatly contributes to the technical field of product shape inspection in automatic production processes and visual processing for robots that handle three-dimensional objects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明物体形状計測装置の構成の一例を示すブ
ロック図、第2図はミラー走査器の回転角とビーム軌跡
の関係を示す説明図である。 図中、 l は レーザー光源、 2 は 光路シャッター。 3 は 走査器。 4 は テレビカメラ、 5 は 走査器用制御装置、 6 は 信号合成器、 7 は 信号発生器、 8 は 画像処理装置。 9 は DA変換器、 10 は 計算機、 11 は 対象物体、 12 は ミラー走査器のミラー、 l3 は レーザービーム、である。 iI1図
FIG. 1 is a block diagram showing an example of the configuration of the object shape measuring device of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between the rotation angle of the mirror scanner and the beam trajectory. In the figure, l is the laser light source and 2 is the optical path shutter. 3 is the scanner. 4 is a television camera, 5 is a scanner control device, 6 is a signal synthesizer, 7 is a signal generator, and 8 is an image processing device. 9 is a DA converter, 10 is a computer, 11 is a target object, 12 is a mirror of a mirror scanner, and l3 is a laser beam. iI1 figure

Claims (1)

【特許請求の範囲】[Claims] 線状光または走査軌跡が線状になるように走査したビー
ム状光を対象物体に投射し、この対象物体を含む情景を
テレビカメラにより撮像して、その画像データから撮像
面上に結像した物体上に投射された前記光による明部に
対応する位置情報を取り出し、その情報を用いて物体表
面までの距離を計算することを原理とする物体形状計測
装置において、前記線状光または走査されるビーム状光
の投射方向の制御と、投射された前記光の通過面の投射
方向の軸回りに対する回転角とを制御する機構を設けた
ことを特徴とする物体形状計測装置。
Linear light or a beam of light whose scanning trajectory is linear is projected onto the target object, a scene including the target object is imaged with a television camera, and an image is formed on the imaging surface from the image data. In an object shape measuring device whose principle is to extract position information corresponding to a bright part of the light projected onto an object and use that information to calculate the distance to the object surface, the linear light or the scanned What is claimed is: 1. An object shape measuring device comprising: a mechanism for controlling a projection direction of a beam-like light; and a mechanism for controlling a rotation angle of a passing surface of the projected light around an axis in the projection direction.
JP5895786A 1986-03-17 1986-03-17 Shape measuring instrument for object Pending JPS62214307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5895786A JPS62214307A (en) 1986-03-17 1986-03-17 Shape measuring instrument for object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5895786A JPS62214307A (en) 1986-03-17 1986-03-17 Shape measuring instrument for object

Publications (1)

Publication Number Publication Date
JPS62214307A true JPS62214307A (en) 1987-09-21

Family

ID=13099317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5895786A Pending JPS62214307A (en) 1986-03-17 1986-03-17 Shape measuring instrument for object

Country Status (1)

Country Link
JP (1) JPS62214307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313005A (en) * 1987-06-16 1988-12-21 Mitsubishi Electric Corp Three-dimensional measuring instrument
JPH04295789A (en) * 1991-03-25 1992-10-20 Opt Kk Object sensing device
JPH0599632A (en) * 1991-10-07 1993-04-23 Bekutoru:Kk Illuminating method for use in measuring object using video camera and illumination system therefor
CN111486801A (en) * 2020-03-14 2020-08-04 武汉中观自动化科技有限公司 Three-dimensional scanning intelligent guiding method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198806A (en) * 1981-06-01 1982-12-06 Nissan Motor Co Ltd Attitude recognition of object

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198806A (en) * 1981-06-01 1982-12-06 Nissan Motor Co Ltd Attitude recognition of object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313005A (en) * 1987-06-16 1988-12-21 Mitsubishi Electric Corp Three-dimensional measuring instrument
JPH04295789A (en) * 1991-03-25 1992-10-20 Opt Kk Object sensing device
JPH0599632A (en) * 1991-10-07 1993-04-23 Bekutoru:Kk Illuminating method for use in measuring object using video camera and illumination system therefor
CN111486801A (en) * 2020-03-14 2020-08-04 武汉中观自动化科技有限公司 Three-dimensional scanning intelligent guiding method and system

Similar Documents

Publication Publication Date Title
JP4111166B2 (en) 3D shape input device
US10812694B2 (en) Real-time inspection guidance of triangulation scanner
CN101603812B (en) Ultrahigh speed real-time three-dimensional measuring device and method
US7342668B2 (en) High speed multiple line three-dimensional digitalization
JPH02264808A (en) Three-dimensional curved surface configuration measuring instrument
EP2085744A1 (en) Distance measuring device, method, and program
WO2018204112A1 (en) Triangulation scanner having flat geometry and projecting uncoded spots
WO1993008448A1 (en) High-speed 3-d surface measurement surface inspection and reverse-cad system
JPH05231836A (en) System for measuring three-dimensional position/posture of object
GB2264601A (en) Object inspection
US11293748B2 (en) System and method for measuring three-dimensional coordinates
WO1994015173A1 (en) Scanning sensor
Mada et al. Overview of passive and active vision techniques for hand-held 3D data acquisition
JP2010151697A (en) Apparatus and method for three-dimensional shape measurement
JPS62214307A (en) Shape measuring instrument for object
JP2927179B2 (en) 3D shape input device
JP2002022424A (en) Three-dimensional measuring apparatus
JP2970835B2 (en) 3D coordinate measuring device
CN117348237B (en) Remote high-speed vision real-time tracking system and method based on industrial galvanometer system
JP3740848B2 (en) 3D input device
KR920010548B1 (en) Shape measuring method and system of three dimensional curved surface
KR920010549B1 (en) Shape measuring method and system of three dimensional curved surface
JP2000046534A (en) Moire device
Godber et al. Three-dimensional machine vision using line-scan sensors
JPS6311290A (en) Three-dimensional position setter