WO2020008635A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020008635A1
WO2020008635A1 PCT/JP2018/025748 JP2018025748W WO2020008635A1 WO 2020008635 A1 WO2020008635 A1 WO 2020008635A1 JP 2018025748 W JP2018025748 W JP 2018025748W WO 2020008635 A1 WO2020008635 A1 WO 2020008635A1
Authority
WO
WIPO (PCT)
Prior art keywords
wus
signal
drx
information
unit
Prior art date
Application number
PCT/JP2018/025748
Other languages
English (en)
French (fr)
Inventor
一樹 武田
翔平 吉岡
聡 永田
リフェ ワン
シャオツェン グオ
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/025748 priority Critical patent/WO2020008635A1/ja
Publication of WO2020008635A1 publication Critical patent/WO2020008635A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, LTE @ Rel. 10, 11, 12, 13
  • LTE @ Rel. 8, 9 LTE @ Rel. 8, 9
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the RRC state of the UE is classified into the following three according to the connection state between the UE and the network: a connected (Connected) mode, a C-DRX (Connected @ DRX (Discontinuous @ Reception)) mode, and an idle ( Idle) mode.
  • the UE performs the intermittent operation in the C-DRX mode while maintaining the RRC connection. Thereby, low power consumption operation of the UE is expected.
  • an object of the present disclosure is to provide a user terminal and a wireless communication method that can appropriately control an operation mode.
  • a user terminal includes a receiving unit that receives a wake-up signal (WUS: Wake-Up-Signal), and switches from a low power consumption operation mode to a non-low power consumption operation mode based on the WUS. And a control unit for controlling the transition.
  • WUS Wake-Up-Signal
  • the operation mode can be appropriately controlled.
  • FIG. 1A and 1B are diagrams illustrating an example of LTE DRX control.
  • 2A and 2B are diagrams illustrating an example of the WUS monitoring time.
  • FIG. 3 is a diagram illustrating an example of a case where DRX is controlled for each MAC entity.
  • FIG. 4 is a diagram illustrating an example where DRX is controlled for each CC.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of the base station according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of the base station according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a base station and
  • CORESET In NR, in order to transmit a physical layer control signal (for example, downlink control information (DCI: Downlink Control Information)) from a base station to a user terminal (UE: User Equipment), a control resource set (CORESET: Control) is used. REsource SET) is used.
  • DCI Downlink Control Information
  • UE User Equipment
  • REsource SET REsource SET
  • $ CORESET is an allocation candidate area for a control channel (for example, PDCCH (Physical Downlink Control Channel)).
  • the coreset may be configured to include a predetermined frequency domain resource and a time domain resource (for example, one or two OFDM symbols).
  • the UE may receive the configuration information of the coreset (which may be referred to as coreset configuration (coreset configuration) or coreset-config) from the base station.
  • the UE can detect the physical layer control signal by monitoring the coreset set in the own terminal.
  • the CORESET setting may be notified by, for example, higher layer signaling, or may be represented by a predetermined RRC information element (which may be called “ControlResourceSet”).
  • the upper layer signaling may be, for example, any of RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the MAC signaling may use, for example, a MAC control element (MAC CE (Control Element)), a MAC PDU (Protocol Data Unit), or the like.
  • the broadcast information may be, for example, a master information block (MIB: Master @ Information @ Block), a system information block (SIB: System @ Information @ Block), a minimum system information (RMSI: Remaining @ Minimum @ System @ Information), or the like.
  • the CORESET may be set to a predetermined number (for example, three or less) for each bandwidth portion (BWP: Bandwidth Part) set for the UE in the serving cell.
  • BWP Bandwidth Part
  • BWP is a partial band set in a carrier (also called a cell, a serving cell, a component carrier (CC: Component Carrier), etc.), and is also called a partial band.
  • the BWP may include a BWP for uplink (UL: Uplink) (UL @ BWP, uplink BWP) and a BWP for downlink (DL: Downlink) (DL @ BWP, downlink BWP).
  • UL Uplink
  • DL Downlink
  • Each BWP to which the predetermined number of coresets are given may be DL BWP.
  • the coreset configuration may mainly include information on the PDCCH resource-related configuration and the RS-related configuration.
  • the following parameters may be provided to the UE for higher CORESET # p (eg, 0 ⁇ p ⁇ 3) set in each DL BWP by higher layer signaling (CORESET setting).
  • a CORESET identifier CORESET-ID (Identifier)
  • a scramble ID of a demodulation reference signal (DMRS) for a PDCCH A CORESET time length (eg, time duration, CORESET-time-duration) indicated by the number of consecutive symbols (consecutive); Frequency-domain Resource Allocation (for example, information (CORESET-freq-dom) indicating a predetermined number of resource blocks constituting CORESET),
  • a mapping type information indicating interleaving or non-interleaving from a control channel element (CCE: Control Channel Element) in the RESET to a resource element group (REG: Resource Element Group) (for example, CORESET-CCE-to-REG-mapping) -type
  • CORESET-ID # 0 may indicate a RESET (may be called an initial RESET, a default RESET, or the like) set using the MIB.
  • a search area and a search method for PDCCH candidates are defined as a search space (SS).
  • One SS may correspond to a PDCCH candidate corresponding to one or a plurality of aggregation levels (AL: Aggregation Level).
  • the AL may represent the number of control channel elements (CCEs) allocated to the PDCCH.
  • the PDCCH candidate may mean a PDCCH in a position where the PDCCH in the SS is transmitted or a specific position in the SS.
  • One or more SSs may be referred to as an SS set.
  • the UE may receive search space configuration information (which may be referred to as search space configuration (search space configuration)) from the base station.
  • search space configuration may be notified to the UE by, for example, higher layer signaling (eg, RRC signaling) or may be represented by a predetermined RRC information element (which may be referred to as “SearchSpace”).
  • higher layer signaling eg, RRC signaling
  • SearchSpace a predetermined RRC information element
  • search space search space set
  • search space setting search space set setting
  • the search space configuration mainly includes information on the monitoring-related configuration and the decoding-related configuration of the PDCCH, and may include, for example, information on at least one of the following: -Search space identifier (search space ID), An identifier of a reset associated with the search space setting (coreset-id); Information indicating whether a common search space (C-SS: Common SS) or a UE-specific search space (UE-SS: UE-specific SS); The number of PDCCH candidates for each AL, ⁇ Monitoring cycle, Monitoring offset, A monitoring pattern in the slot (eg a 14 bit bitmap).
  • the UE monitors CORESET based on search space setting.
  • the UE can determine the correspondence between the RESET and the search space based on the RESET-ID included in the search space setting.
  • One coreset may be associated with one or more search spaces.
  • monitoring of CORESET “monitor of search space (PDCCH candidate) associated with CORESET”, “monitor of downlink control channel (for example, PDCCH)”, and “monitor of downlink control information (DCI)” "May be read as each other. “Monitor” may be read as “at least one of blind decoding and blind detection”.
  • the RRC state of the UE is classified into the following three according to the connection state between the UE and the network: a connected (Connected) mode, a C-DRX (Connected DRX (Discontinuous Reception)) mode, and an idle ( Idle) mode.
  • the connection mode corresponds to, for example, a state where transmission and reception can be performed using radio resources secured by the base station.
  • the UE transitions to the C-DRX mode in order to reduce power consumption when there is no up / down communication for a certain period of time in the connection mode.
  • the UE performs intermittent operation in C-DRX while maintaining the RRC connection.
  • the UE returns to the connection mode (non-intermittent operation) when uplink or downlink communication occurs during the C-DRX state.
  • a UE in the ON period of the C-DRX mode may be called active (active state) or may be called awake (waking up).
  • An active UE monitors the PDCCH and transmits channel state information (CSI: Channel ⁇ State ⁇ Information) and an uplink reference signal (SRS: Sounding ⁇ Reference ⁇ Signal).
  • CSI Channel ⁇ State ⁇ Information
  • SRS Sounding ⁇ Reference ⁇ Signal
  • a UE in the off state of the C-DRX mode may be called inactive (inactive) (or inactive state) or may be called sleeping.
  • Inactive UEs do not monitor the PDCCH and do not transmit CSI and SRS. Thereby, power consumption of the UE can be suppressed.
  • FIGS. 1A and 1B are diagrams showing an example of DRX control of LTE.
  • FIG. 1A shows a case where the UE transitions (transitions) to the C-DRX mode due to expiration of drx-inactivityTimer
  • FIG. 1B shows a MAC control element (DRX ⁇ command ⁇ MAC ⁇ control ⁇ Element) instructing a transition to the DRX state.
  • DRX ⁇ command ⁇ MAC ⁇ control ⁇ Element instructing a transition to the DRX state.
  • the case where a user terminal changes to intermittent reception is shown.
  • the DRX cycle may correspond to a cycle obtained by combining an ON period and an OFF period (or a sleep period) following the ON period.
  • a short cycle (parameters such as shortDRX-cycle and drx-ShortCycle may be used)
  • a long cycle (parameters such as longDRX-cycle and drx-LongCycle may be used) and the like for the UE. May be set by higher layer signaling.
  • the UE when the UE successfully decodes the PDCCH instructing new DL reception or UL transmission, the UE starts a predetermined timer (drx-InactivityTimer). The UE remains active until the timer expires. If the UE successfully decodes the PDCCH that instructs the UE to perform a new DL reception or UL transmission before the timer expires, the UE restarts the timer.
  • drx-InactivityTimer a predetermined timer
  • the UE When the timer expires, the UE starts a DRX cycle at a predetermined timing (for example, a subframe satisfying a specific condition) (transition to C-DRX mode).
  • the UE starts an on-period timer (drx-onDurationTimer) at the start timing of the DRX cycle.
  • the UE for which the on-period timer is running is active.
  • transmission is performed on the PUCCH during a period in which a DL retransmission timer (drx-RetransmissionTimerDL), a UL retransmission timer (drx-RetransmissionTimerUL), a random access collision resolution timer (ra-ContentionResolutionTimer), and the like are active.
  • the UE may be active during a period when the scheduling request is pending (pending), during a period after successful reception of the random access response and before receiving a predetermined PDCCH, and the like.
  • the UE starts a DRX cycle when a predetermined MAC control element (DRX MAC CE: DRX command MAC control element) is received. . That is, the UE that has received DRX @ MAC @ CE may forcibly stop the timer and transition to the C-DRX mode.
  • DRX MAC CE DRX command MAC control element
  • control using the C-DRX mode is being studied.
  • the UE monitors a PDCCH candidate according to the setting of the set SS set at a monitoring opportunity (monitoring @ occasion) during the ON period of the C-DRX mode.
  • the transition to the C-DRX mode discussed so far is the same as in FIGS. 1A and 1B.
  • the transition from the connection mode based on the timer or the MAC $ CE as shown in FIGS. 1A and 1B to the C-DRX mode requires a relatively long time.
  • the active state is maintained when some kind of communication is occurring, so that power may not be effectively reduced.
  • the conventional DRX control has problems in terms of power reduction and scheduling flexibility.
  • the present inventors have conceived a new control signal and a related UE operation for suitably switching an operation mode for reducing power consumption of the UE.
  • C-DRX is also simply referred to as DRX.
  • WUS Wake-Up-Signal
  • GTS Go-To-sleep-Signal
  • WUS may be called a wake-up signal, a wake-up signal, or the like.
  • the GTS may be called a sleep signal, a sleep signal, or the like.
  • WUS may be used, for example, to transition the state of the UE from the DRX mode to the non-DRX mode.
  • the UE may transition to a non-DRX mode (eg, a connected mode).
  • the UE may activate (or restart) the drx-InactivityTimer.
  • the UE may use WUS for at least one of synchronization, measurement, AGC setting, channel estimation, and the like.
  • the GTS may be used, for example, to transition the state of the UE from the non-DRX mode to the DRX mode.
  • the UE may transition to the DRX mode.
  • the UE may use the GTS for at least one of synchronization, measurement, AGC setting, channel estimation, and the like.
  • GTS and WUS may be transmitted periodically or aperiodically.
  • the UE may set information on at least one of the GTS / WUS cycle and offset using higher layer signaling. Note that aperiodic transmission may be called on-demand transmission.
  • $ WUS may be called a wake-up channel (WUCH: Wake-Up @Channel), a wake-up channel, or the like.
  • the GTS may be called a sleep channel (GTCH: Go-To-sleep @ Channel), a sleep channel, or the like.
  • the UE may be configured for DRX and WUS. WUS may also be set in the UE when at least one of a long-period DRX cycle (drx-LongCycle) and a short on-period timer is set.
  • drx-LongCycle long-period DRX cycle
  • a short on-period timer is set.
  • the UE monitors the WUS during at least one of the ON period, the active time, the inactive time, and the idle time of the DRX based on the settings such as the DRX cycle and the offset described above. May be.
  • ON period “time during activation of the ON period timer”, “active time”, and the like may be interchanged with each other.
  • the UE may periodically monitor the WUS based on WUS-related information (for example, setting information such as a cycle, a monitoring time, and an offset) which is set independently of the DRX setting information.
  • WUS-related information for example, setting information such as a cycle, a monitoring time, and an offset
  • the UE may monitor the WUS during at least one of the DRX ON period and the active time.
  • the UE may monitor the WUS over the entire period or a part of the period (for example, The WUS may be monitored at the beginning or end X symbol, the beginning or end X slot).
  • the time for monitoring (or detecting) WUS may be referred to as WUS monitoring time (WUS @ monitoring @ occasion), WUS detection time (WUS @ detection @ occasion), or the like.
  • FIGS. 2A and 2B are diagrams illustrating an example of the WUS monitoring time.
  • FIG. 2A corresponds to a case where WUS is transmitted on demand
  • FIG. 2B corresponds to a case where WUS is transmitted periodically.
  • the WUS monitoring time is the same as the DRX ON period or a part of the DRX ON period. That is, the UE attempts to detect WUS during the ON period of DRX.
  • the WUS monitoring time is a part of the DRX on-period
  • the UE sets the WUS for any part of the DRX on-period (for example, one or more symbols, slots, subframes, sections represented by ms, etc.). Whether to monitor may be set by higher layer signaling or the like.
  • the WUS monitoring time may or may not overlap with the DRX ON period.
  • the WUS monitoring cycle may be the same as or different from the DRX cycle (FIG. 2B is a different example).
  • the WUS monitoring time for each WUS monitoring cycle may be a predetermined time length (for example, one or more symbols, one or more slots).
  • the UE may set information on a PDCCH (or a PDCCH candidate) to be monitored during the DRX on period (hereinafter, also referred to as DRX mode monitor information) using higher layer signaling, physical layer signaling, or a combination thereof. . Even if the UE is set to monitor WUS during the DRX ON period, the UE may use some of the set search space sets (PDCCH candidates) based on the DRX mode monitor information. May be monitored during the ON period simultaneously with the monitoring of WUS.
  • “for the DRX mode”, “in the DRX mode” and the like may be read as “while the on-period timer is running” and “in the active state during the DRX cycle”.
  • the DRX mode monitor information may be any of the following or a combination thereof: Information on one or more SS sets to monitor in DRX mode, Information on one or more SS (AL) to monitor in DRX mode, Information on one or more PDCCH candidates to monitor in DRX mode, One or more coreset information to monitor in DRX mode; Information on one or more BWPs to monitor in DRX mode; Information on one or more CCs to be monitored in DRX mode.
  • the UE does not have to monitor the corresponding PDCCH candidate in the ON period for the SS set / SS / PDCCH candidate / CORESET / BWP / CC in which nothing is set for the monitoring of the DRX mode.
  • the UE may monitor the SS set / SS / PDCCH candidate / CORESET / BWP / CC in which nothing is set for monitoring in the DRX mode during the ON period.
  • PDCCH candidate information (DRX mode monitor information) that is monitored (or not) simultaneously with WUS as described above includes SS set setting information (RRC SearchSpace information element), CORESET setting information (RRC ControlResourceSet information element), BWP
  • the UE may be configured to be included in at least one of configuration information (for example, downlink BWP configuration information (RRC BWP-Downlink information element)) and serving cell configuration information (RRC ServingCellConfig information element).
  • the DRX mode monitor information is notified to the UE by using other information (included in another information element) other than the above-described SS set setting information, CORESET setting information, BWP setting information, serving cell setting information, and the like. May be done.
  • the DRX mode monitor information may include information for specifying at least one of the SS set, SS (AL), PDCCH candidate, CORESET, BWP, and CC to be monitored (or not to be monitored).
  • the information of the SS set may be expressed in at least one of a DCI format to be monitored and an RNTI (Radio Network Temporary Identifier) corresponding to the DCI format.
  • the UE may monitor the SS set corresponding to the set DCI format or RNTI during the ON period, or may monitor the SS set other than the SS set corresponding to the set DCI format or RNTI during the ON period. Good.
  • the DRX mode monitor information may be determined in advance by specifications.
  • the UE may determine the BWP monitoring WUS according to at least one of the following: (1) Default or initial BWP, (2) a specific BWP set by higher layer signaling, (3) a currently active BWP (eg, a BWP that monitors PDCCH candidates during the DRX on period); (4) All DL BWPs to which WUS may be transmitted.
  • the UE may expect that WUS is transmitted with a predetermined SCS in the default / initial BWP of (1).
  • the predetermined SCS may be determined by specifications, or may be set in the UE by higher layer signaling or the like.
  • the setting information of the specific BWP in the above (2) may include a WUS bandwidth (BW) and an SCS.
  • the UE may assume that the CC monitoring WUS is a CC including the BWP to be monitored, or assume that the CC is configured to monitor WUS using higher layer signaling or the like. May be.
  • the UE detects a WUS on a CC corresponding to a MAC entity, it activates at least one of the following BWPs for each active CC (or each configured CC) in the MAC entity: May be: (I) default or initial BWP, (Ii) a specific BWP set by higher layer signaling, (Iii) the latest active BWP before the DRX mode transition, (Iv) For a CC that has detected WUS, one or more BWPs (first BWP set) determined based on WUS.
  • the setting information of the specific BWP in (ii) above may include a corresponding WUS bandwidth (BW) and SCS.
  • BW WUS bandwidth
  • SCS SCS
  • the UE identifies the BWP included in the first BWP set, for example, as a detected WUS sequence (sequence), a WUS radio resource (time resource, frequency resource, etc.), an index related to WUS, and the like.
  • the determination may be based on at least one.
  • FIG. 3 is a diagram illustrating an example of a case where DRX is controlled for each MAC entity.
  • the UE has two MAC entities (# 1 and # 2).
  • MAC entity # 1 is associated with two CCs (CC # 1 and # 2).
  • MAC entity # 2 is associated with three CCs (CC # 3, # 4 and # 5).
  • DRX / non-DRX control is performed for each MAC entity.
  • the UE may perform DRX / non-DRX control of all active or configured CCs in MAC entity # 1 based on WUS detection of CC # 1.
  • the UE may perform DRX / non-DRX control of all active or configured CCs in MAC entity # 2 based on WUS detection of CC # 4.
  • the DRX / non-DRX control is as follows. It may include the activation of BWP described above.
  • the operation of the UE based on WUS may be performed in units of MAC entities.
  • the predetermined control unit may be, for example, any one of a CC, a CC group, a cell group, a PUCCH group, a frequency range (FR), a band, or a combination thereof.
  • the predetermined control unit may be simply called a group.
  • the UE when the UE detects WUS in a CC included in a certain control unit, the UE may include one or more (for example, all) CCs (active CCs, set CCs, and the like) related to the control unit. May activate at least one BWP of (i)-(iv) above:
  • FIG. 4 is a diagram illustrating an example in which DRX is controlled for each CC.
  • the configuration of the CC of this example is the same as that of FIG. However, the difference is that DRX / non-DRX control is performed for each CC.
  • the UE may perform DRX / non-DRX control of CC # 1 based on WUS detection of CC # 1.
  • the UE may be assumed not to perform DRX / non-DRX control of another CC (CC # 2- # 5) based on WUS detection of CC # 1.
  • the UE may perform DRX / non-DRX control of CC # 4 based on WUS detection of CC # 4.
  • the UE may be assumed not to perform DRX / non-DRX control of another CC (CC # 1- # 3, # 5) based on the WUS detection of CC # 4.
  • the DRX for each predetermined control unit may be realized as follows. First, the upper layer setting for DRX may be provided for each predetermined control unit.
  • any of the following may be assumed.
  • the UE does not have to expect that DRX (per-MAC entity DRX) for each MAC entity and DRX for each predetermined control unit are set simultaneously (overlapping) in the same carrier.
  • DRX for each MAC entity and DRX for each predetermined control unit may be configured simultaneously (overlapping) on the same carrier.
  • one of the DRX setting for each MAC entity and the DRX setting for each predetermined control unit may override the other. That is, when both of these DRXs are set, the UE may ignore one of the settings.
  • the UE may be set to WUS even when DRX is not set.
  • the US does not set parameters such as the DRX cycle and the ON period timer.
  • UEs that are not set for DRX and set for WUS may be operable in at least the low power consumption operation mode and the non-low power consumption operation mode (for example, the connection mode).
  • the low power consumption operation mode may mean a mode in which the power consumption of the UE is expected to be lower than in the connection mode.
  • the low power consumption operation mode may be called, for example, a power saving (power (efficient) mode, or another name may be used.
  • the non-low power consumption operation mode may be called a network access mode, a high power consumption operation mode, a normal mode, a connection mode, or the like, or another name may be used.
  • WUS may be used, for example, to change the state of the UE from the low power consumption operation mode to the high power consumption operation mode.
  • the UE in the low power consumption operation mode may monitor the WUS at a specific timing.
  • the UE may transition to the high power consumption operation mode.
  • the UE may use WUS for at least one of synchronization, measurement, AGC configuration, channel estimation, and so on.
  • the time required for the transition may be determined based on a parameter set by higher layer signaling. , May be predetermined by the specification, or may depend on the UE implementation.
  • the UE that has transitioned from the high power consumption operation mode to the low power consumption operation mode may perform at least one of the following: Stop monitoring the PDCCH as soon as possible and performing certain types of measurements or any measurements, Stop performing certain types of uplink transmissions or any uplink transmissions as early as possible; Flush (empty) the HARQ buffer.
  • the UE may determine whether to perform these operations at the time of transition to the low power consumption operation mode based on higher layer signaling. For example, the UE may determine whether to flush the HARQ buffer based on higher layer settings.
  • the UE in the high power consumption operation mode may monitor the PDCCH based on the PDCCH setting, for example.
  • the UE may monitor the WUS based on information about the WUS described later (for example, setting information such as a cycle, a monitoring time, and an offset).
  • the UE is set to monitor WUS, and information on the PDCCH (or PDCCH candidate) to be monitored when the WUS monitoring time overlaps with (collides with) the PDCCH monitoring time (hereinafter referred to as low power consumption operation). Mode monitor information) may be set using higher layer signaling, physical layer signaling, or a combination thereof. If the UE is configured not to set DRX and to monitor WUS, based on the low power consumption operation mode, a part of PDCCH candidates in the set search space set (PDCCH candidates) May be monitored simultaneously with the monitoring of WUS.
  • PDCCH or PDCCH candidate
  • the monitor information for the low power consumption operation mode may be determined in advance in the specification.
  • the low power consumption operation mode monitor information may correspond to the DRX mode monitor information in which the DRX mode is replaced with the low power consumption operation mode. Further, the UE operation based on the monitor information for the low power consumption operation mode may correspond to the operation in which the DRX mode is replaced with the low power consumption operation mode with respect to the UE operation based on the monitor information for the DRX mode.
  • BBWP / carrier for monitoring WUS, operation based on WUS detection, and the like may be the same as those described above for WUS when DRX is set.
  • At least one BWP may be activated for the associated active CC (or configured CC) of the control unit: (I) default or initial BWP, (Ii) a specific BWP set by higher layer signaling, (Iii) the latest active BWP for the CC, (Iv) For a CC that has detected WUS, one or more BWPs (first BWP set) determined based on WUS.
  • a certain control unit for example, any one of CC, CC group, MAC entity, cell group, PUCCH group, FR, band, or a combination thereof.
  • the following description of the embodiment may be applied when DRX is set or may be applied when DRX is not set.
  • the UE may assume that the WUS is a QCL with at least one of the following: (A) a specific synchronization signal block (SSB: Synchronization Signal Block), CSI-RS (Channel State Information-Reference Signal), RESET or SS (for example, SSB # 0 or RESET # 0), (B) SSB, CSI-RS, CORESET or SS set by higher layer signaling, (C) PDCCH last detected in BWP in which WUS was detected, (D) PDCCH monitored during at least one of the DRX on period and the DRX active time. The PDCCH may or may not be a PDCCH monitored simultaneously with WUS. (E) GTS.
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • RESET or SS for example, SSB # 0 or RESET # 0
  • B SSB
  • CSI-RS Channel State Information-Reference Signal
  • C PDCCH last detected in BWP
  • the SSB may be called an SS / PBCH (Physical Broadcast Channel) block, and may include a PSS (Primary Synchronization Signal), an SSS (Secondary Synchronization Signal), a PBCH, a DMRS for the PBCH, and the like.
  • the CSI-RS is at least one of NZP-CSI-RS (Non-Zero-Power @ CSI-RS), ZP-CSI-RS (Zero-Power @ CSI-RS) and CSI-IM (Interference @ Measurement). Is also good.
  • the SS may be at least one of PSS, SSS and other synchronization signals.
  • the UE may assume that WUS is at least one signal and QCL included in the SSB.
  • the UE may be notified of the QCL (or TCI state) between SSB, CSI-RS or CORRESET and WUS using higher layer signaling, physical layer signaling or a combination thereof.
  • WUS may be a sequence-based signal.
  • the sequence of WUS may be determined (generated) based on any of the following or a combination thereof: A sequence of one or more synchronization signals (eg, PSS, SSS); A sequence of one or more CSI-RSs (eg, NZP-CSI-RS (Non-Zero-Power CSI-RS), ZP-CSI-RS (Zero-Power CSI-RS)); A sequence of one or more other reference signals (eg, DMRS, PTRS (Phase Tracking Reference Signal)); Resources of one or more synchronization signals, One or more CSI-RS resources, One or more other reference signal resources.
  • a sequence of one or more synchronization signals eg, PSS, SSS
  • a sequence of one or more CSI-RSs eg, NZP-CSI-RS (Non-Zero-Power CSI-RS), ZP-CSI-RS (Zero-Power CSI-RS)
  • the UE may assume that some or all of the information about WUS is the same as the parameter of other setting information (for example, the RESET setting information) (the parameter of the other setting information may be reused). ).
  • WUS may be a message-based signal.
  • a message-based signal it may include a flag bit for identifying WUS / GTS, and the UE may determine whether the detected signal is WUS or GTS based on the flag bit.
  • the message-based WUS may include a payload portion for storing information and a reference signal for decoding the payload portion (a demodulation reference signal (DMRS: DeModulation Reference Signal)).
  • the payload portion may be multiplexed with the DMRS using at least one of TDM and FDM.
  • the message-based WUS may be notified using a predetermined DCI format.
  • the payload portion may be scrambled by a cyclic redundancy check (CRC) with a specific identifier (a CRC bit scrambled by a specific identifier may be added).
  • CRC cyclic redundancy check
  • the specific identifier may be called, for example, a WUS identifier (WUS-RNTI (Radio Network Temporary Identifier)).
  • the UE may encode the payload portion using a specific encoding method.
  • the specific encoding method is, for example, any one of a repetition code (repetition code), a simplex code (simplex code), a Reed-Muller code (RM code: Reed-Muller code), a polar code, or a combination thereof. May be.
  • the UE may determine the encoding method according to the payload size.
  • Information about WUS may be sent to the UE using higher layer signaling, physical layer signaling, or a combination thereof.
  • the information about WUS is, for example, information about resources for WUS (eg, possible PRB, symbol number in slot, slot number, BWP / CC monitoring WUS, WUS monitoring cycle, WUS monitoring time, offset, time or Density, frequency direction), an antenna port, a TCI state, an ID for sequence initialization (for example, a scramble ID), and the like.
  • the information on WUS may further include information on at least one of a payload size, a DMRS density, a WUS identifier, and the like.
  • WUS is preferably based on a series. This is because a sequence-based signal has a lighter load of reception (detection) processing than a message-based signal and can reduce UE power consumption. Even if the UE erroneously detects WUS, it is only necessary to increase power consumption to some extent, so that the error resistance of WUS need not be so high.
  • the unit for maintaining the DRX mode may be, for example, any of the following: One or more CCs (or BWPs) configured to send WUS, One or more CCs (or BWPs) active (or configured); One or more active (or configured) CCs (or BWPs) associated with one MAC entity; One or more CCs (or BWPs) active (or configured) in the CC / CC group / cell group / PUCCH group / FR / band.
  • the UE may automatically transition to the inactive or idle state if it does not detect WUS for a certain period of time for all active (or configured) CCs (or all BWPs) of the UE. Note that the UE may or may not transmit information on the automatic transition (for example, a state transition) to the base station.
  • the UE If the UE has not detected WUS for a certain period of time for all active (or configured) CCs (or all BWPs) of the UE, the UE sends a request to the base station to release (release) the RRC connection. May be. The UE may transition the RRC state to the inactive or idle state according to an instruction from the base station.
  • the base station does not transmit WUS to the UE, so that the UE can transition to the idle state in a relatively short time.
  • the fixed period (or the timer corresponding to the fixed period) becomes equal to or longer than the SCell / BWP inactivity timer, RRC idle timer, or inactive timer, it may be determined that WUS has not been detected for the certain period. .
  • the timer may be started when entering the DRX mode.
  • the information on the certain period may be set in the UE using higher layer signaling or the like, or may be determined in advance by specifications.
  • DRX (or DRX mode) in the present disclosure may be read as any low power consumption operation (or low power consumption operation mode) of the UE.
  • non-DRX (or non-DRX mode) in the present disclosure may be read as any high power consumption operation (or high power consumption operation mode) of the UE.
  • wireless communication system Wireless communication system
  • communication is performed using any of the wireless communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the wireless communication system 1 includes a base station 11 forming a macro cell C1 having relatively wide coverage, and a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • a base station 11 forming a macro cell C1 having relatively wide coverage
  • a base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1.
  • user terminals 20 are arranged in the macro cell C1 and each small cell C2.
  • the arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the base station 11 and the base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. Further, the user terminal 20 may apply CA or DC using a plurality of cells (CCs).
  • CCs cells
  • a communication between the user terminal 20 and the base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz or the like
  • a wide bandwidth may be used, or between the user terminal 20 and the base station 11.
  • the same carrier as described above may be used.
  • the configuration of the frequency band used by each base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, specific filtering processing performed by the transceiver in the frequency domain, specific windowing processing performed by the transceiver in the time domain, and the like.
  • the numerology may be referred to as different.
  • the base station 11 and the base station 12 may be connected by a wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like) or wirelessly. Good.
  • a wire for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, or the like
  • CPRI Common Public Radio Interface
  • X2 interface or the like
  • the base station 11 and each base station 12 are connected to the upper station device 30 and are connected to the core network 40 via the upper station device 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), and a mobility management entity (MME), but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each base station 12 may be connected to the upper station device 30 via the base station 11.
  • the base station 11 is a base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the base station 12 is a base station having local coverage, such as a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and a transmission / reception point. May be called.
  • a base station 10 when the base stations 11 and 12 are not distinguished, they are collectively referred to as a base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • Orthogonal Frequency Division Multiple Access (OFDMA) is applied to the downlink as a wireless access scheme, and Single-Carrier Frequency Division Multiple Access (SC-FDMA: Single Carrier) is applied to the uplink. Frequency Division Multiple Access) and / or OFDMA is applied.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier to perform communication.
  • SC-FDMA divides a system bandwidth into bands each composed of one or a continuous resource block for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System Information Block), and the like.
  • SIB System Information Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) of HARQ (Hybrid Automatic Repeat Repeat request) for the PUSCH.
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • user data higher layer control information, etc. are transmitted.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information delivery confirmation information
  • scheduling request (SR: Scheduling Request), and the like are transmitted by PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal CRS: Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS Demodulation Reference Signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • the transmitted reference signal is not limited to these.
  • FIG. 6 is a diagram illustrating an example of the overall configuration of the base station according to the embodiment.
  • the base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control)
  • the transmission / reception unit performs retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, and so on.
  • HARQ transmission processing for example, HARQ transmission processing
  • IFFT inverse fast Fourier transform
  • precoding processing precoding processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to the transmission / reception unit 103.
  • the transmission / reception section 103 converts the baseband signal precoded and output from the baseband signal processing section 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • fast Fourier transform FFT: Fast Fourier Transform
  • IDFT inverse discrete Fourier transform
  • error correction is performed on user data included in the input uplink signal.
  • Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission line interface 106 transmits and receives signals (backhaul signaling) to and from another base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). Is also good.
  • CPRI Common Public Radio Interface
  • X2 interface X2 interface
  • the transmission / reception unit 103 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmitting / receiving antenna 101 may be configured by, for example, an array antenna.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a base station according to an embodiment of the present disclosure. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations need only be included in base station 10, and some or all of the configurations need not be included in baseband signal processing section 104.
  • the control unit (scheduler) 301 controls the entire base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resources) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resources
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls scheduling of a synchronization signal (for example, Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS)) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
  • a synchronization signal for example, Primary Synchronization Signal (PSS) / Secondary Synchronization Signal (SSS)
  • SSS Secondary Synchronization Signal
  • CRS channel CSI-RS
  • DMRS Downlink reference signal
  • the control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, acknowledgment information, etc.), a random access preamble (for example, PRACH). (Transmission signal), scheduling of uplink reference signals and the like.
  • an uplink data signal for example, a signal transmitted on PUSCH
  • an uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, acknowledgment information, etc.
  • a random access preamble for example, PRACH.
  • Transmission signal scheduling of uplink reference signals and the like.
  • the control unit 301 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 104 and / or analog BF (for example, phase rotation) in the transmission and reception unit 103. May be performed.
  • the control unit 301 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be acquired from the reception signal processing unit 304 and / or the measurement unit 305.
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated downlink signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process and a modulation process according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 and the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generating section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs it to transmitting / receiving section 103.
  • the mapping unit 303 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • the measurement unit 305 is configured to receive power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio, SNR (Signal to Noise Ratio)). , Signal strength (for example, RSSI (Received @ Signal @ Strength @ Indicator)), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 301.
  • the transmitting and receiving unit 103 may transmit a wake-up signal (WUS: Wake-Up-Signal), a sleep signal (GTS: Go-To-sleep @ Signal), or the like to the user terminal 20.
  • the transmission / reception unit 103 may transmit setting information related to search space setting (for example, SearchSpace information element), setting information related to CORRESET (for example, ControlResourceSet information element), and the like.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception section 203 converts the frequency of the received signal into a baseband signal, and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beamforming unit includes an analog beamforming circuit (for example, a phase shifter, a phase shift circuit) or an analog beamforming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. May be.
  • the transmitting / receiving antenna 201 may be configured by, for example, an array antenna.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • the control unit 401 controls to form a transmission beam and / or a reception beam using digital BF (for example, precoding) in the baseband signal processing unit 204 and / or analog BF (for example, phase rotation) in the transmission / reception unit 203. May be performed.
  • the control unit 401 may perform control to form a beam based on downlink channel information, uplink channel information, and the like. These propagation path information may be obtained from the reception signal processing unit 404 and / or the measurement unit 405.
  • control unit 401 When the control unit 401 acquires various information notified from the base station 10 from the reception signal processing unit 404, the control unit 401 may update parameters used for control based on the information.
  • Transmission signal generating section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like, based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the downlink control signal notified from the base station 10 includes a UL grant.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 may perform the same frequency measurement and / or the different frequency measurement on one or both of the first carrier and the second carrier.
  • measurement section 405 may perform the different frequency measurement on the second carrier based on the measurement instruction acquired from reception signal processing section 404.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • the transmitting and receiving unit 203 may receive a wake-up signal (WUS: Wake-Up-Signal), a sleep signal (GTS: Go-To-sleep @ Signal), or the like.
  • the transmission / reception unit 203 may receive, from the base station 10, setting information (for example, a SearchSpace information element) related to search space setting, setting information (for example, a ControlResourceSet information element) related to CORRESET.
  • the control unit 401 controls transition from a low power consumption operation mode (for example, DRX mode, power saving mode, etc.) to a non-low power consumption operation mode (for example, non-DRX mode, network access mode, etc.) based on WUS. May be.
  • a low power consumption operation mode for example, DRX mode, power saving mode, etc.
  • a non-low power consumption operation mode for example, non-DRX mode, network access mode, etc.
  • control unit 401 may perform control to monitor WUS during the DRX ON period.
  • control unit 401 may perform control of not monitoring or monitoring a specific PDCCH candidate among PDCCH (Physical Downlink Control Channel) candidates included in the set search space set.
  • PDCCH Physical Downlink Control Channel
  • the control unit 401 may perform control for monitoring WUS at a cycle independent of a DRX (Discontinuous Reception) cycle.
  • control unit 401 may perform a transition to the inactive or idle state.
  • WUS may be a sequence-based signal or a message-based signal.
  • each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated from each other). , Wired, wireless, etc.) and using these multiple devices.
  • the functional block may be realized by combining one device or the plurality of devices with software.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block that makes transmission function may be referred to as a transmitting unit (transmitting unit / section), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 10 is a diagram illustrating an example of a hardware configuration of a base station and a user terminal according to an embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.)), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission line interface 106, and the like may be realized by the communication device 1004.
  • the transmission / reception unit 103 may be physically or logically separated by the transmission unit 103a and the reception unit 103b.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware.
  • the processor 1001 may be implemented using at least one of these hardware.
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots.
  • Each minislot may be constituted by one or more symbols in the time domain.
  • minislots may be called subslots.
  • a minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding thereto. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • TTI Transmission @ Time @ Interval
  • one slot or one minislot is called a TTI.
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a code word, or a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms.
  • the TTI having the TTI length described above may be replaced with the TTI.
  • the resource block (RB: Resource Block) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or a plurality of RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may also be referred to as a partial bandwidth or the like) may represent a subset of contiguous common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined in a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE may not have to assume transmitting and receiving a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, and symbol are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the configuration such as the cyclic prefix (CP) length can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be represented using an absolute value, may be represented using a relative value from a predetermined value, or may be represented using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any way. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, etc. can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, and the like may be input and output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific location (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1) or by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • Software whether called software, firmware, middleware, microcode, hardware description language, or any other name, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules , Applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo collocation (QCL: Quasi-Co-Location)”, “transmission power”, “phase rotation”, “antenna port” , “Antenna port group”, “layer”, “number of layers”, “rank”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel”, etc. The terms may be used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “ “Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)", “panel”, “cell” Terms such as, “sector”, “cell group”, “carrier”, “component carrier” may be used interchangeably.
  • a base station may be referred to by a term such as a macro cell, a small cell, a femto cell, a pico cell, and the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio ⁇ Head).
  • RRH Small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , A handset, a user agent, a mobile client, a client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • each aspect / embodiment of the present disclosure may be applied.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station 10 may have the function of the user terminal 20 described above.
  • an operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility @ Management @ Entity), S-GW (Serving-Gateway), etc., but not limited thereto, or a combination thereof.
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be switched and used in execution.
  • the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
  • elements of the various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B Long Term Evolution-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • system 5G (5th generation mobile communication system)
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods a next-generation system extended based on these systems, and the like.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (up, search, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determination includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, the light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate” and “coupled” may be construed similarly to “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係るユーザ端末は、ウェイクアップ信号(WUS:Wake-Up-Signal)を受信する受信部と、前記WUSに基づいて、低消費電力動作モードから非低消費電力動作モードへの遷移を制御する制御部と、を有することを特徴とする。本開示の一態様によれば、適切に動作モードを制御できる。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 ところで、LTEにおいて、UEとネットワークとの接続状態に応じてUEのRRC状態は以下の3つに分類される:接続(Connected)モード、C-DRX(Connected DRX(Discontinuous Reception))モード、アイドル(Idle)モード。UEは、C-DRXモードにおいて、RRCコネクションを維持したまま間欠動作を行う。これにより、UEの低消費電力動作が期待される。
 NRにおいても、C-DRXモードを用いる制御が検討されている。しかしながら、これまで検討されたUE動作に基づくと、接続モード及びC-DRXモード間の遷移に関して、電力低減及びスケジューリングの柔軟性の観点で問題がある。
 そこで、本開示は、適切に動作モードを制御できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、ウェイクアップ信号(WUS:Wake-Up-Signal)を受信する受信部と、前記WUSに基づいて、低消費電力動作モードから非低消費電力動作モードへの遷移を制御する制御部と、を有することを特徴とする。
 本開示の一態様によれば、適切に動作モードを制御できる。
図1A及び1Bは、LTEのDRX制御の一例を示す図である。 図2A及び2Bは、WUSモニタリング時間の一例を示す図である。 図3は、DRXがMACエンティティごとに制御される場合の一例を示す図である。 図4は、DRXがCCごとに制御される場合の一例を示す図である。 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図6は、一実施形態に係る基地局の全体構成の一例を示す図である。 図7は、一実施形態に係る基地局の機能構成の一例を示す図である。 図8は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図9は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(CORESET)
 NRにおいては、物理レイヤ制御信号(例えば、下り制御情報(DCI:Downlink Control Information))を、基地局からユーザ端末(UE:User Equipment)に対して送信するために、制御リソースセット(CORESET:COntrol REsource SET)が利用される。
 CORESETは、制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))の割当て候補領域である。CORESETは、所定の周波数領域リソースと時間領域リソース(例えば1又は2OFDMシンボルなど)を含んで構成されてもよい。
 UEは、CORESETの設定情報(CORESET設定(CORESET configuration)、coreset-Configと呼ばれてもよい)を、基地局から受信してもよい。UEは、自端末に設定されたCORESETをモニタすれば、物理レイヤ制御信号を検出できる。
 CORESET設定は、例えば、上位レイヤシグナリングによって通知されてもよく、所定のRRC情報要素(「ControlResourceSet」と呼ばれてもよい)で表されてもよい。
 ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)などであってもよい。
 CORESETは、サービングセルにおいてUEに設定される帯域幅部分(BWP:Bandwidth Part)ごとに、所定数(例えば、3個以下)設定されてもよい。
 ここで、BWPとは、キャリア(セル、サービングセル、コンポーネントキャリア(CC:Component Carrier)などともいう)内に設定される部分的な帯域であり、部分帯域などとも呼ばれる。BWPは、上り(UL:Uplink)用のBWP(UL BWP、上りBWP)及び下り(DL:Downlink)用のBWP(DL BWP、下りBWP)を有してもよい。上記所定数のCORESETが与えられる各BWPは、DL BWPであってもよい。
 CORESET設定は、主にPDCCHのリソース関連設定及びRS関連設定の情報を含んでもよい。UEには、各DL BWPに設定されるCORESET#p(例えば、0≦p<3)について、以下のパラメータが上位レイヤシグナリング(CORESET設定)によって与えられてもよい。すなわち、以下のパラメータは、CORESET毎にUEに通知(設定)されてもよい:
・CORESETの識別子(CORESET-ID(Identifier))、
・PDCCH用の復調用参照信号(DMRS:DeModulation Reference Signal)のスクランブルID、
・連続する(consecutive)シンボル数で示されるCORESETの時間長(例えば、time duration、CORESET-time-duration)、
・周波数領域のリソース割り当て(Frequency-domain Resource Allocation)(例えば、CORESETを構成する所定数のリソースブロックを示す情報(CORESET-freq-dom))、
・CORESET内の制御チャネル要素(CCE:Control Channel Element)からリソース要素グループ(REG:Resource Element Group)へのマッピングタイプ(インターリーブ又は非インターリーブを示す情報)(例えば、CORESET-CCE-to-REG-mapping-type)、
・所定数のREGを含むグループ(REGバンドル)のサイズ(REGバンドル内のREG数)を示す情報(例えば、CORESET-REG-bundle-size)、
・REGバンドルのインターリーバ用の巡回シフト(CS:Cyclic Shift、CS量又はCSインデックス)を示す情報(例えば、CORESET-shift-index)、
・PDCCH用の送信設定通知(TCI:Transmission Configuration Indication)状態(PDCCH受信用のDMRSのアンテナポートのQCL情報(アンテナポートQCL)などともいう)、
・CORESET#p内でPDCCHによって送信されるDCI(例えば、DCIフォーマット1_0又はDCIフォーマット1_1)内のTCIフィールドの有無の指示(例えば、TCI-PresentInDCI)。
 なお、「CORESET-ID#0」は、MIBを用いて設定されるCORESET(イニシャルCORESET、デフォルトCORESETなどと呼ばれてもよい)を示してもよい。
(サーチスペース)
 PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法は、サーチスペース(SS:Search Space)として定義される。1つのSSは、1つ又は複数のアグリゲーションレベル(AL:Aggregation Level)に該当するPDCCH候補に対応してもよい。ここで、ALは、PDCCHに割り当てられる制御チャネル要素(CCE:Control Channel Element)の数を表してもよい。また、PDCCH候補は、SS内のPDCCHが送信される位置又はSS内の特定の位置のPDCCHのことを意味してもよい。1つ又は複数のSSは、SSセットと呼ばれてもよい。
 UEは、サーチスペースの設定情報(サーチスペース設定(search space configuration)と呼ばれてもよい)を、基地局から受信してもよい。サーチスペース設定は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によってUEに通知されてもよく、所定のRRC情報要素(「SearchSpace」と呼ばれてもよい)で表されてもよい。
 なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」などは、互いに読み替えられてもよい。
 サーチスペース設定は、主にPDCCHのモニタリング関連設定及び復号関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい:
・サーチスペースの識別子(サーチスペースID)、
・当該サーチスペース設定が関連するCORESETの識別子(CORESET-ID)、
・共通サーチスペース(C-SS:Common SS)かUE固有サーチスペース(UE-SS:UE-specific SS)かを示す情報、
・ALごとのPDCCH候補数、
・モニタリング周期、
・モニタリングオフセット、
・スロット内のモニタリングパターン(例えば14ビットのビットマップ)。
 UEは、サーチスペース設定に基づいて、CORESETをモニタする。UEは、上記サーチスペース設定に含まれるCORESET-IDに基づいて、CORESETとサーチスペースとの対応関係を判断できる。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。
 なお、本開示において、「CORESETのモニタ」、「CORESETに対応付けられたサーチスペース(PDCCH候補)のモニタ」、「下り制御チャネル(例えばPDCCH)のモニタ」及び「下り制御情報(DCI)のモニタ」は、互いに読み替えられてもよい。また、「モニタ」は、「ブラインド復号及びブラインド検出の少なくとも一方」で読み替えられてもよい。
(DRX)
 ところで、LTEにおいて、UEとネットワークとの接続状態に応じてUEのRRC状態は以下の3つに分類される:接続(Connected)モード、C-DRX(Connected DRX(Discontinuous Reception))モード、アイドル(Idle)モード。
 接続モードは、例えば、基地局によって確保される無線リソースを用いて送受信可能な状態に該当する。UEは、接続モードにおいて一定時間上り下りの通信がない場合に、消費電力低減のためにC-DRXモードに遷移する。UEは、C-DRXにおいて、RRCコネクションを維持したまま間欠動作を行う。UEは、C-DRX状態中に、上り又は下りの通信が発生した場合には、接続モード(非間欠動作)に復帰する。
 C-DRXモードのオン期間(ON duration)のUEは、アクティブ(active)(アクティブ状態)であると呼ばれてもよいし、起きている(waking up)と呼ばれてもよい。アクティブなUEは、PDCCHをモニタしたり、チャネル状態情報(CSI:Channel State Information)及び上り参照信号(SRS:Sounding Reference Signal)の送信を行ったりする。なお、後述の所定のタイマ(drx-InactivityTimer)が起動中の場合も、アクティブ状態に該当する。アクティブなUEは、アクティブ時間(active time)中のUEと表現されてもよい。
 一方で、C-DRXモードのオフ状態のUEは、非アクティブ(インアクティブ(inactive))(又は非アクティブ状態)であると呼ばれてもよいし、寝ている(sleeping)と呼ばれてもよい。非アクティブなUEは、PDCCHをモニタせず、CSI及びSRSの送信も行わない。これにより、UEの電力消費を抑制できる。
 図1A及び1Bは、LTEのDRX制御の一例を示す図である。なお、図1Aは、drx-inactivityTimer満了によりUEがC-DRXモードに遷移(移行)する場合を示し、図1Bは、DRX状態への遷移を指示するMAC制御要素(DRX command MAC control Element)によりユーザ端末が間欠受信へ遷移する場合を示している。
 DRX周期(DRX cycle)は、オン期間と当該オン期間に続くオフ期間(又はスリープ期間(sleep duration))とを合わせた周期に該当してもよい。DRX周期として、短周期(shortDRX-cycle、drx-ShortCycleなどのパラメータが用いられてもよい)、長周期(longDRX-cycle、drx-LongCycleなどのパラメータが用いられてもよい)などがUEに対して上位レイヤシグナリングによって設定されてもよい。
 図1Aにおいて、UEは、新たなDL受信又はUL送信を指示するPDCCHの復号に成功すると、所定のタイマ(drx-InactivityTimer)を起動する。UEは、当該タイマが満了(expire)するまではアクティブ状態を継続する。なお、UEは、上記タイマが満了するまでに、当該UEに対して新たなDL受信又はUL送信を指示するPDCCHの復号に成功すると、上記タイマを再起動する。
 UEは、上記タイマが満了すると、所定のタイミング(例えば、特定の条件を満たすサブフレーム)でDRX周期を開始する(C-DRXモードに遷移する)。UEは、DRX周期の開始タイミングで、オン期間用タイマ(drx-onDurationTimer)を起動する。オン期間用タイマが起動中のUEは、アクティブである。
 なお、例えば、DL再送用のタイマ(drx-RetransmissionTimerDL)、UL再送用のタイマ(drx-RetransmissionTimerUL)、ランダムアクセスの衝突解決用のタイマ(ra-ContentionResolutionTimer)などが起動中の期間、PUCCHで送信するスケジューリングリクエストが保留中(pending)の期間、ランダムアクセスレスポンス受信成功後に所定のPDCCHを受信する前の期間などにおいては、UEはアクティブであってもよい。
 また、図1Bに示すように、UEは、上記タイマが満了する前であっても、所定のMAC制御要素(DRX MAC CE:DRX command MAC control Element)を受信した場合にはDRX周期を開始する。つまり、DRX MAC CEを受信したUEは、上記タイマを強制的に停止してC-DRXモードに遷移してもよい。
 NRにおいても、C-DRXモードを用いる制御が検討されている。例えば、UEがC-DRXモードのオン期間中のモニタリング機会(monitoring occasion)において、設定されたSSセットの設定に従って、PDCCH候補をモニタすることが検討されている。これまで検討されているC-DRXモードへの遷移は、図1A及び1Bと同様の方法である。
 しかしながら、図1A及び1Bのようなタイマ又はMAC CEに基づく接続モードからC-DRXモードへの遷移は、比較的長時間を要する。また、何かしらの通信が発生しているとアクティブ状態が維持されるため、効果的に電力を低減できないおそれがある。
 また、C-DRXモードから接続モードへの遷移は、新たなUL又はDLを指示するPDCCHを検出しなければ行われないため、データ通信がないUEを接続モードに移行させることができない。
 このため、従来のDRX制御は、電力低減及びスケジューリングの柔軟性の観点で問題がある。
 そこで、本発明者らは、UEの消費電力低減のための動作モードを好適に切り替えるための新たな制御信号及び関連するUE動作を着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 以下、C-DRXを、単にDRXとも表す。
(無線通信方法)
 本開示においては、ウェイクアップ信号(WUS:Wake-Up-Signal)、スリープ信号(GTS:Go-To-sleep-Signal)などに基づくUE動作を説明する。WUSは、ウェイクアップ用信号、起床信号などと呼ばれてもよい。GTSは、スリープ用信号、入眠信号などと呼ばれてもよい。
 WUSは、例えば、UEの状態をDRXモードから非DRXモードへと遷移させるために用いられてもよい。UEは、WUSを検出すると、非DRXモード(例えば、接続モード)に遷移してもよい。例えば、UEは、WUSを検出すると、drx-InactivityTimerを起動(又は再起動)してもよい。また、UEは、WUSを、同期、測定、AGC設定、チャネル推定などの少なくとも1つに用いてもよい。
 GTSは、例えば、UEの状態を非DRXモードからDRXモードへと遷移させるために用いられてもよい。UEは、GTSを検出すると、DRXモードに遷移してもよい。また、UEは、GTSを、同期、測定、AGC設定、チャネル推定などの少なくとも1つに用いてもよい。
 GTS及びWUSは、周期的に送信されてもよいし、非周期的に送信されてもよい。前者の場合、UEは、GTS/WUSの周期及びオフセットの少なくとも一方に関する情報を、上位レイヤシグナリングを用いて設定されてもよい。なお、非周期的な送信は、オンデマンド送信と呼ばれてもよい。
 WUSは、起床チャネル(WUCH:Wake-Up Channel)、ウェイクアップ用チャネルなどと呼ばれてもよい。GTSは、入眠チャネル(GTCH:Go-To-sleep Channel)、スリープ用チャネルなどと呼ばれてもよい。
 以下、主にWUSに関して説明する。
[DRXを設定される場合のWUS]
 UEは、DRX及びWUSを設定されてもよい。WUSは、長周期のDRXサイクル(drx-LongCycle)及び短いオン期間用タイマの少なくとも一方が設定される場合に、あわせてUEに設定されてもよい。
 WUSが周期的に送信される場合、UEは、上述したDRX周期、オフセットなどの設定に基づいて、DRXのオン期間、アクティブ時間、インアクティブ時間及びアイドル時間の少なくとも1つにおいて、WUSをモニタしてもよい。なお、本開示において、「オン期間」、「オン期間用タイマ起動中の時間」、「アクティブ時間」などは互いに読み替えられてもよい。
 なお、UEは、DRXの設定情報とは独立に設定される後述のWUSに関する情報(例えば、周期、モニタリング時間、オフセットなどの設定情報)に基づいて、WUSを周期的にモニタしてもよい。
 WUSがオンデマンド送信される場合、UEは、DRXのオン期間及びアクティブ時間の少なくとも一方において、WUSをモニタしてもよい。
 なお、UEは、ある期間(オン期間、アクティブ時間、インアクティブ時間、アイドル時間)においてWUSをモニタする場合、当該期間の全てにわたってWUSをモニタしてもよいし、当該期間の一部(例えば、先頭又は末尾Xシンボル、先頭又は末尾Xスロット)においてWUSをモニタしてもよい。WUSをモニタ(又は検出)する時間は、WUSモニタリング時間(WUS monitoring occasion)、WUS検出時間(WUS detection occasion)などと呼ばれてもよい。
 図2A及び2Bは、WUSモニタリング時間の一例を示す図である。図2Aは、WUSがオンデマンド送信される場合に対応し、図2Bは、WUSが周期的に送信される場合に対応する。
 図2Aにおいて、WUSモニタリング時間は、DRXのオン期間と同じ、又はDRXのオン期間の一部である。つまり、UEは、DRXのオン期間においてWUSの検出を試行する。WUSモニタリング時間がDRXのオン期間の一部である場合、UEは、DRXのオン期間のどの一部期間(例えば一以上のシンボル、スロット、サブフレーム、msで表される区間など)でWUSをモニタリングするかを上位レイヤシグナリングなどで設定されてもよい。
 図2Bにおいて、WUSモニタリング時間は、DRXのオン期間と重複することもあれば、重複しないこともある。WUSモニタリング周期は、DRX周期と同じであってもよいし、異なってもよい(図2Bは異なる例)。また、WUSモニタリング周期ごとのWUSモニタリング時間は、所定の時間長(例えば、1又は複数のシンボル、1又は複数のスロット)であってもよい。
 UEは、DRXのオン期間においてモニタするPDCCH(又はPDCCH候補)に関する情報(以下、DRXモード用モニタ情報とも呼ぶ)を、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて設定されてもよい。UEは、DRXのオン期間においてWUSをモニタすることを設定される場合であっても、DRXモード用モニタ情報に基づいて、設定されたサーチスペースセット(PDCCH候補)のうちの一部のPDCCH候補を、WUSのモニタと同時にオン期間においてモニタしてもよい。
 なお、本開示において、「DRXモード用」、「DRXモードにおいて」などは、「オン期間用タイマ起動中」、「DRX周期中のアクティブ状態において」などで読み替えられてもよい。
 DRXモード用モニタ情報は、以下のいずれか又はこれらの組み合わせであってもよい:
・DRXモードにおいてモニタする1つ又は複数のSSセットの情報、
・DRXモードにおいてモニタする1つ又は複数のSS(AL)の情報、
・DRXモードにおいてモニタする1つ又は複数のPDCCH候補の情報、
・DRXモードにおいてモニタする1つ又は複数のCORESETの情報、
・DRXモードにおいてモニタする1つ又は複数のBWPの情報、
・DRXモードにおいてモニタする1つ又は複数のCCの情報。
 UEは、DRXモードのモニタに関して何も設定されないSSセット/SS/PDCCH候補/CORESET/BWP/CCについては、オン期間において対応するPDCCH候補をモニタしなくてもよい。
 なお、上記「モニタする…情報」は「モニタしない…情報」で読み替えられてもよい。この場合、UEは、DRXモードのモニタに関して何も設定されないSSセット/SS/PDCCH候補/CORESET/BWP/CCについては、オン期間においてモニタしてもよい。
 上記のようなWUSと同時にモニタする(又はしない)PDCCH候補の情報(DRXモード用モニタ情報)は、SSセット設定情報(RRCのSearchSpace情報要素)、CORESET設定情報(RRCのControlResourceSet情報要素)、BWP設定情報(例えば、下りリンク用のBWPの設定情報(RRCのBWP-Downlink情報要素))、サービングセル設定情報(RRCのServingCellConfig情報要素)などの少なくとも1つに含まれてUEに設定されてもよい。
 なお、DRXモード用モニタ情報は、上述したSSセット設定情報、CORESET設定情報、BWP設定情報、サービングセル設定情報などとは別の情報を用いて(別の情報要素に含まれて)、UEに通知されてもよい。その場合、DRXモード用モニタ情報は、モニタ対象(又は非モニタ対象)のSSセット、SS(AL)、PDCCH候補、CORESET、BWP及びCCの少なくとも1つを特定するための情報を含んでもよい。
 なお、上記のSSセットの情報は、モニタするDCIフォーマット及び当該DCIフォーマットに対応するRNTI(Radio Network Temporary Identifier)の少なくとも一方で表現されてもよい。UEは、設定されたDCIフォーマット又はRNTIに対応するSSセットをオン期間においてモニタしてもよいし、設定されたDCIフォーマット又はRNTIに対応するSSセット以外のSSセットをオン期間においてモニタしてもよい。
 また、DRXモード用モニタ情報は、予め仕様で定められてもよい。例えば、UEは、以下のいずれか又はこれらの組み合わせに該当するPDCCH候補を、WUSのモニタと同時にオン期間においてモニタしてもよいし、モニタしない制御をしてもよい:
・特定のSSセット(例えば、サーチスペースセットID#0に対応するSSセット)に含まれるPDCCH候補、
・特定のSS(AL)(例えば、サーチスペースID#0に対応するSS、AL=1に対応するSSなど)に含まれるPDCCH候補、
・特定のPDCCH候補(例えば、PDCCH候補インデックス#0に対応するPDCCH候補)、
・特定のCORESET(例えば、CORESET-ID#0に対応するCORESET)に含まれるPDCCH候補、
・特定のBWP(例えば、BWP#0に対応するBWP)に含まれるPDCCH候補、
・特定のCC(例えば、セルインデックス#0に対応するCC)に含まれるPDCCH候補、
・特定のDCIフォーマットに該当するPDCCH候補、
・特定のRNTIに対応するPDCCH候補。
 なお、上記の「含まれる」は「含まれない」で読み替えられてもよい。また、DRXモード用モニタ情報が仕様で定められる場合、UEは、他に設定されるモニタ対象のPDCCH候補があっても、WUSのモニタと同時にオン期間においては当該PDCCH候補をモニタしなくてもよい。
[[WUSをモニタするBWP/キャリア]]
 UEは、WUSをモニタするBWPを以下の少なくとも1つに従って決定してもよい:
 (1)デフォルト又はイニシャルBWP、
 (2)上位レイヤシグナリングによって設定された特定のBWP、
 (3)現在のアクティブなBWP(例えばDRXのオン期間においてPDCCH候補をモニタするBWP)、
 (4)WUSが送信される可能性のある全てのDL BWP。
 UEは、上記(1)のデフォルト/イニシャルBWPにおいては、所定のSCSでWUSが送信されると期待してもよい。当該所定のSCSは仕様によって定められてもよいし、UEに上位レイヤシグナリングなどによって設定されてもよい。
 上記(2)の上記特定のBWPの設定情報には、WUSの帯域幅(BW)及びSCSが含まれてもよい。
 UEは、WUSをモニタするCCは、上記モニタするBWPが含まれるCCであると想定してもよいし、上位レイヤシグナリングなどを用いてWUSをモニタするために設定されたCCであると想定してもよい。
[[WUS検出に基づく動作]]
[[[DRXがMACエンティティごとに制御される場合]]]
 DRXがMACエンティティごとに制御される場合、WUSの検出は、所定のMACエンティティにおける全てのCCに影響を与えてもよい。
 例えば、UEは、あるMACエンティティに対応するCCにおいてWUSを検出した場合には、当該MACエンティティ内の各アクティブなCC(又は各設定されたCC)のために、以下の少なくとも1つのBWPをアクティベートしてもよい:
(i)デフォルト又はイニシャルBWP、
(ii)上位レイヤシグナリングによって設定された特定のBWP、
(iii)DRXモード遷移前における最新のアクティブなBWP、
(iv)WUSを検出したCCについては、WUSに基づいて決定される1つ又は複数のBWP(第1のBWPセット)。他のアクティブなCC(又は他の設定されたCC)については、第1のBWPセットと同じBWPインデックスに該当する1つ又は複数のBWP(第2のBWPセット)、デフォルトBWP、イニシャルBWP、最新のアクティブなBWPのいずれか。
 上記(ii)の特定のBWPの設定情報には、対応するWUSの帯域幅(BW)及びSCSが含まれてもよい。この場合、UEは、検出したWUSに応じて、設定された特定のBWPのいずれをアクティベートするかを決定できる。
 また、上記(iv)において、UEは、第1のBWPセットに含まれるBWPを、例えば検出したWUSの系列(sequence)、WUSの無線リソース(時間リソース、周波数リソースなど)、WUSに関するインデックスなどの少なくとも1つに基づいて決定してもよい。
 図3は、DRXがMACエンティティごとに制御される場合の一例を示す図である。本例では、UEは、2つのMACエンティティ(#1及び#2)を有する。MACエンティティ#1は、2つのCC(CC#1及び#2)に関連している。MACエンティティ#2は、3つのCC(CC#3、#4及び#5)に関連している。DRX/非DRX制御は、MACエンティティごとに行われる。
 ここで、CC#1及び#4にそれぞれWUSが設定されたと想定する。UEは、CC#1のWUS検出に基づいて、MACエンティティ#1における全てのアクティブな又は設定されたCCのDRX/非DRX制御を行ってもよい。UEは、CC#4のWUS検出に基づいて、MACエンティティ#2における全てのアクティブな又は設定されたCCのDRX/非DRX制御を行ってもよい。当該DRX/非DRX制御は。上述のBWPのアクティベートを含んでもよい。
 図3に示したように、WUSの設定がサービングセル(CC)単位で行われる場合であっても、WUSに基づくUEの動作はMACエンティティ単位で行われてもよい。
[[[DRXがMACエンティティとは異なる単位で制御される場合]]]
 DRXが所定の制御単位ごとに制御される場合、WUSの検出は、同じ制御単位内の関連するCC又は全てのCCに影響を与えてもよい。ここで、上記所定の制御単位は、例えば、CC、CCグループ、セルグループ、PUCCHグループ、周波数レンジ(FR:Frequency Range)、バンドなどのいずれか又はこれらの組み合わせであってもよい。上記所定の制御単位は、単にグループと呼ばれてもよい。
 例えば、UEは、ある制御単位に含まれるCCにおいてWUSを検出した場合には、当該制御単位に関連する1つ又は複数(例えば、全部)のCC(アクティブなCC、設定されたCCなどであってもよい)のために、上述の(i)-(iv)の少なくとも1つのBWPをアクティベートしてもよい:
 図4は、DRXがCCごとに制御される場合の一例を示す図である。本例のCCの構成は、図3と同様である。ただし、DRX/非DRX制御が、CCごとに行われる点が異なる。
 ここで、CC#1及び#4にそれぞれWUSが設定されたと想定する。UEは、CC#1のWUS検出に基づいて、CC#1のDRX/非DRX制御を行ってもよい。UEは、CC#1のWUS検出に基づいて、他のCC(CC#2-#5)のDRX/非DRX制御をしないと想定してもよい。
 UEは、CC#4のWUS検出に基づいて、CC#4のDRX/非DRX制御を行ってもよい。UEは、CC#4のWUS検出に基づいて、他のCC(CC#1-#3、#5)のDRX/非DRX制御をしないと想定してもよい。
 なお、所定の制御単位ごとのDRXは、以下のようにして実現されてもよい。まず、DRXについての上位レイヤ設定は、所定の制御単位ごとに提供されてもよい。
 DRXについての上位レイヤ設定については、以下のいずれかが想定されてもよい。
(A)UEは、MACエンティティごとのDRX(per-MAC entity DRX)と、所定の制御単位ごとのDRXと、が同じキャリアにおいて同時に(重複して)設定されることを期待しなくてもよい。
(B)UEは、MACエンティティごとのDRXと、所定の制御単位ごとのDRXと、を同じキャリアにおいて同時に(重複して)設定されてもよい。ここで、MACエンティティごとのDRXの設定及び所定の制御単位毎のDRXの設定のうち一方は、他方をオーバーライド(上書き)してもよい。つまり、UEは、これら両方のDRXが設定される場合には、一方の設定を無視してもよい。
[DRXを設定されない場合のWUS]
 UEは、DRXを設定されない場合であっても、WUSを設定されてもよい。この場合、USは、DRX周期、オン期間用タイマなどのパラメータは設定されない。
 DRXを設定されずWUSを設定されるUEは、少なくとも低消費電力動作モード及び非低消費電力動作モード(例えば、接続モード)で動作可能であってもよい。
 低消費電力動作モードは、接続モードよりUEの消費電力が低減されると期待されるモードを意味してもよい。なお、低消費電力動作モードは、例えば省電力(power efficient)モードと呼ばれてもよいし、他の呼称が用いられてもよい。
 非低消費電力動作モードは、ネットワークアクセスモード、高消費電力動作モード、通常モード、接続モードなどと呼ばれてもよいし、他の呼称が用いられてもよい。
 WUSは、例えば、UEの状態を低消費電力動作モードから高消費電力動作モードへと遷移させるために用いられてもよい。低消費電力動作モードのUEは、WUSを特定のタイミングでモニタしてもよい。UEは、WUSを検出すると、高消費電力動作モードに遷移してもよい。UEは、WUSを、同期、測定、AGC設定、チャネル推定などの少なくとも1つに用いてもよい。
 なお、高消費電力モードから低消費電力モードへの遷移及びその逆の遷移の少なくとも一方について、遷移のために必要な時間は、上位レイヤシグナリングによって設定されるパラメータに基づいて決定されてもよいし、仕様によって予め定められてもよいし、UE実装に依存してもよい。
 高消費電力動作モードから低消費電力動作モードに遷移したUEは、以下の少なくとも1つを実施してもよい:
・できるだけ早期にPDCCHのモニタリング、及び特定の種類の測定又は任意の測定の実施を停止する、
・できるだけ早期に特定の種類の上りリンク送信又は任意の上りリンク送信の実施を停止する、
・HARQバッファをフラッシュする(空にする)。
 なお、UEは、低消費電力動作モードへの遷移時にこれらの動作を実施するか否かを、上位レイヤシグナリングに基づいて決定してもよい。例えば、UEは、上位レイヤの設定に基づいて、HARQバッファをフラッシュするか否かを決定してもよい。
 高消費電力動作モードのUEは、例えば、PDCCH設定に基づいてPDCCHをモニタしてもよい。
 WUSが周期的に送信される場合、UEは、後述のWUSに関する情報(例えば、周期、モニタリング時間、オフセットなどの設定情報)に基づいて、WUSをモニタしてもよい。
 UEは、WUSをモニタすることを設定される場合であって、当該WUSモニタリング時間とPDCCHモニタリング時間が重複(衝突)する場合においてモニタするPDCCH(又はPDCCH候補)に関する情報(以下、低消費電力動作モード用モニタ情報とも呼ぶ)を、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて設定されてもよい。UEは、DRXを設定されず、WUSをモニタすることを設定される場合には、低消費電力動作モード用に基づいて、設定されたサーチスペースセット(PDCCH候補)のうちの一部のPDCCH候補を、WUSのモニタと同時にモニタしてもよい。
 また、低消費電力動作モード用モニタ情報は、予め仕様で定められてもよい。
 低消費電力動作モード用モニタ情報は、上述のDRXモード用モニタ情報に関して、DRXモードを低消費電力動作モードに読み替えた情報に該当してもよい。また、低消費電力動作モード用モニタ情報に基づくUE動作は、上述のDRXモード用モニタ情報に基づくUE動作に関して、DRXモードを低消費電力動作モードに読み替えた動作に該当してもよい。
 WUSをモニタするBWP/キャリア、WUS検出に基づく動作などについては、DRXを設定する場合のWUSについて上述した内容と同様であってもよい。
 例えば、UEは、ある制御単位(例えば、CC、CCグループ、MACエンティティ、セルグループ、PUCCHグループ、FR、バンドなどのいずれか又はこれらの組み合わせ)に対応するCCにおいてWUSを検出した場合には、当該制御単位の関連するアクティブなCC(又は設定されたCC)のために、以下の少なくとも1つのBWPをアクティベートしてもよい:
(i)デフォルト又はイニシャルBWP、
(ii)上位レイヤシグナリングによって設定された特定のBWP、
(iii)当該CCについて最新のアクティブなBWP、
(iv)WUSを検出したCCについては、WUSに基づいて決定される1つ又は複数のBWP(第1のBWPセット)。他のアクティブなCC(又は他の設定されたCC)については、第1のBWPセットと同じBWPインデックスに該当する1つ又は複数のBWP(第2のBWPセット)、デフォルトBWP、イニシャルBWP、最新のアクティブなBWPのいずれか。
 以降の実施形態の説明は、DRXが設定される場合に適用されてもよいし、DRXが設定されない場合に適用されてもよい。
[QCL]
 UEは、WUSが以下の少なくとも1つとQCLであると想定してもよい:
(a)特定の同期信号ブロック(SSB:Synchronization Signal Block)、CSI-RS(Channel State Information-Reference Signal)、CORESET又はSS(例えば、SSB#0又はCORESET#0)、
(b)上位レイヤシグナリングによって設定されるSSB、CSI-RS、CORESET又はSS、
(c)WUSが検出されたBWPにおいて最後に検出されたPDCCH、
(d)DRXオン期間及びDRXアクティブ時間の少なくとも一方においてモニタされたPDCCH。当該PDCCHは、WUSと同時にモニタされたPDCCHでもよいし、そうでなくてもよい、
(e)GTS。
 なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロックと呼ばれてもよく、PSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal)、PBCH、当該PBCH用のDMRSなどを含んでもよい。上記CSI-RSは、NZP-CSI-RS(Non-Zero-Power CSI-RS)、ZP-CSI-RS(Zero-Power CSI-RS)及びCSI-IM(Interference Measurement)の少なくとも1つであってもよい。上記SSは、PSS、SSS及びその他の同期信号の少なくとも1つであってもよい。上記(a)について、UEは、WUSはSSBに含まれる少なくとも1つの信号とQCLであると想定してもよい。
 上記(b)について、UEは、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて、SSB、CSI-RS又はCORESETと、WUSとのQCL(又はTCI状態)を通知されてもよい。
[信号構成]
 WUSは、系列ベースの信号であってもよい。WUSの系列は、以下のいずれか又はこれらの組み合わせに基づいて決定(生成)されてもよい:
・1つ又は複数の同期信号(例えば、PSS、SSS)の系列、
・1つ又は複数のCSI-RS(例えば、NZP-CSI-RS(Non-Zero-Power CSI-RS)、ZP-CSI-RS(Zero-Power CSI-RS))の系列、
・1つ又は複数のその他参照信号(例えば、DMRS、PTRS(Phase Tracking Reference Signal))の系列、
・1つ又は複数の同期信号のリソース、
・1つ又は複数のCSI-RSのリソース、
・1つ又は複数のその他参照信号のリソース。
 なお、UEは、WUSに関する情報の一部又は全部を、他の設定情報(例えば、CORESET設定情報)のパラメータと同じと想定してもよい(他の設定情報のパラメータを再利用してもよい)。
 WUSは、メッセージベースの信号であってもよい。メッセージベースの信号の場合、WUS/GTSを識別するためのフラグビットを含んでもよく、UEは、当該フラグビットに基づいて、検出した信号がWUSかGTSかを決定してもよい。
 メッセージベースのWUSは、情報を格納するペイロード部分及び当該ペイロード部分を復号するための参照信号(復調用参照信号(DMRS:DeModulation Reference Signal))を含んでもよい。当該ペイロード部分は、TDM及びFDMの少なくとも一方を用いてDMRSと多重されてもよい。メッセージベースのWUSは、所定のDCIフォーマットを用いて通知されてもよい。
 ペイロード部分は、特定の識別子によって巡回冗長検査(CRC:Cyclic Redundancy Check)スクランブルされてもよい(特定の識別子によってスクランブルされるCRCビットが付加されてもよい)。当該特定の識別子は、例えば、WUS用識別子(WUS-RNTI(Radio Network Temporary Identifier))と呼ばれてもよい。
 UEは、ペイロード部分を、特定の符号化方法を用いて符号化してもよい。当該特定の符号化方法は、例えば、繰り返し符号(repetition code)、シンプレックス符号(simplex code)、リード・マラー符号(RM符号:Reed-Muller code)、ポーラー符号などのいずれか又はこれらの組み合わせであってもよい。UEは、ペイロードサイズに応じて符号化方法を決定してもよい。
 WUSに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いて、UEに送信されてもよい。WUSに関する情報は、例えば、WUSのためのリソースに関する情報(例えば、可能なPRB、スロット内のシンボル番号、スロット番号、WUSをモニタするBWP/CC、WUSモニタリング周期、WUSモニタリング時間、オフセット、時間又は周波数方向の密度など)、アンテナポート、TCI状態、系列初期化のためのID(例えば、スクランブルID)などを含んでもよい。
 また、WUSがメッセージベースの信号である場合、WUSに関する情報は、さらにペイロードサイズ、DMRS密度、WUS用識別子などの少なくとも1つに関する情報を含んでもよい。
 なお、WUSは、系列ベースであることが好ましい。系列ベースの信号は、メッセージベースの信号に比べて受信(検出)処理の負荷が軽く、UE消費電力を低減できるためである。仮にUEがWUSを誤検出する場合であっても、多少消費電力が増加する程度で済むため、WUSのエラー耐性はそれほど高くなくてもよい。
[WUS非検出に関連するモード制御]
 UEは、WUSが設定される場合には、DRXが設定されるか否かに関わらず、WUSが検出されなければDRXモードを維持してもよい。なお、DRXモードを維持する単位は、例えば、以下のいずれかであってもよい:
・WUSが送信されると設定された1つ又は複数のCC(又はBWP)、
・アクティブな(又は設定された)1つ又は複数のCC(又はBWP)、
・1つのMACエンティティに関連するアクティブな(又は設定された)1つ又は複数のCC(又はBWP)、
・CC/CCグループ/セルグループ/PUCCHグループ/FR/バンド内のアクティブな(又は設定された)1つ又は複数のCC(又はBWP)。
 UEは、当該UEのアクティブな(又は設定された)全CC(又は全BWP)について一定期間WUSを検出しなかった場合には、インアクティブ又はアイドル状態に自動的に遷移してもよい。なお、UEは、基地局に対して当該自動的な遷移に関する情報(例えば、状態が遷移したこと)を送信してもよいし、送信しなくてもよい。
 UEは、当該UEのアクティブな(又は設定された)全CC(又は全BWP)について一定期間WUSを検出しなかった場合には、基地局に対してRRC接続を解放(リリース)する要求を送信してもよい。UEは、基地局からの指示に従ってRRC状態をインアクティブ又はアイドル状態に遷移させてもよい。
 このような制御によれば、基地局がUEに対してWUSを送信しないことによって、当該UEを比較的短時間でアイドル状態に移行させることができる。
 なお、一定期間(又は当該一定期間に対応するタイマ)がSCell/BWPのインアクティビティタイマ、RRCアイドルタイマ又はインアクティブタイマ以上になったことによって、一定期間WUSを検出しなかったと判断されてもよい。当該タイマは、DRXモードに入った場合に開始されてもよい。
 なお、上記一定期間に関する情報は、上位レイヤシグナリングなどを用いてUEに設定されてもよいし、予め仕様によって定められてもよい。
<変形例>
 本開示におけるDRX(又はDRXモード)は、UEの任意の低消費電力動作(又は低消費電力動作モード)で読み替えられてもよい。また、本開示における非DRX(又は非DRXモード)は、UEの任意の高消費電力動作(又は高消費電力動作モード)で読み替えられてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末ごとに1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(基地局)
 図6は、一実施形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ101は、例えばアレーアンテナによって構成してもよい。
 図7は、本開示の一実施形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
 制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 制御部301は、ベースバンド信号処理部104におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部103におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部301は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部304及び/又は測定部305から取得されてもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
 なお、送受信部103は、ウェイクアップ信号(WUS:Wake-Up-Signal)、スリープ信号(GTS:Go-To-sleep Signal)などをユーザ端末20に送信してもよい。送受信部103は、サーチスペース設定に関する設定情報(例えば、SearchSpace情報要素)、CORESETに関する設定情報(例えば、ControlResourceSet情報要素)などを送信してもよい。
(ユーザ端末)
 図8は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成してもよい。また、送受信アンテナ201は、例えばアレーアンテナによって構成してもよい。
 図9は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204におけるデジタルBF(例えば、プリコーディング)及び/又は送受信部203におけるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。制御部401は、下り伝搬路情報、上り伝搬路情報などに基づいて、ビームを形成する制御を行ってもよい。これらの伝搬路情報は、受信信号処理部404及び/又は測定部405から取得されてもよい。
 また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。例えば、測定部405は、第1のキャリア及び第2のキャリアの一方又は両方について、同周波測定及び/又は異周波測定を行ってもよい。測定部405は、第1のキャリアにサービングセルが含まれる場合に、受信信号処理部404から取得した測定指示に基づいて第2のキャリアにおける異周波測定を行ってもよい。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 なお、送受信部203は、ウェイクアップ信号(WUS:Wake-Up-Signal)、スリープ信号(GTS:Go-To-sleep Signal)などを受信してもよい。送受信部203は、サーチスペース設定に関する設定情報(例えば、SearchSpace情報要素)、CORESETに関する設定情報(例えば、ControlResourceSet情報要素)などを基地局10から受信してもよい。
 制御部401は、WUSに基づいて、低消費電力動作モード(例えば、DRXモード、省電力モードなど)から非低消費電力動作モード(例えば、非DRXモード、ネットワークアクセスモードなど)への遷移を制御してもよい。
 制御部401は、DRX(Discontinuous Reception)が設定される場合に、当該DRXのオン期間において、WUSをモニタする制御を行ってもよい。
 制御部401は、上記オン期間において、設定されたサーチスペースセットに含まれるPDCCH(Physical Downlink Control Channel)候補のうち、特定のPDCCH候補をモニタしない又はモニタする制御を行ってもよい。
 制御部401は、DRX(Discontinuous Reception)の周期とは独立した周期で、WUSをモニタする制御を行ってもよい。
 制御部401は、一定期間WUSを検出しなかった場合、インアクティブ又はアイドル状態への遷移を実施してもよい。
 なお、WUSは、系列ベースの信号であってもよいし、メッセージベースの信号であってもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit/section)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  ウェイクアップ信号(WUS:Wake-Up-Signal)を受信する受信部と、
     前記WUSに基づいて、低消費電力動作モードから非低消費電力動作モードへの遷移を制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、DRX(Discontinuous Reception)が設定される場合に、当該DRXのオン期間において、前記WUSをモニタする制御を行うことを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記オン期間において、設定されたサーチスペースセットに含まれるPDCCH(Physical Downlink Control Channel)候補のうち、特定のPDCCH候補をモニタしない制御を行うことを特徴とする請求項2に記載のユーザ端末。
  4.  前記制御部は、DRX(Discontinuous Reception)の周期とは独立した周期で、前記WUSをモニタする制御を行うことを特徴とする請求項1に記載のユーザ端末。
  5.  前記制御部は、一定期間前記WUSを検出しなかった場合、インアクティブ又はアイドル状態への遷移を実施することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  起床信号(WUS:Wake-Up-Signal)を受信するステップと、
     前記WUSに基づいて、低消費電力動作モードから非低消費電力動作モードへの遷移を制御するステップと、を有することを特徴とする無線通信方法。
PCT/JP2018/025748 2018-07-06 2018-07-06 ユーザ端末及び無線通信方法 WO2020008635A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025748 WO2020008635A1 (ja) 2018-07-06 2018-07-06 ユーザ端末及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025748 WO2020008635A1 (ja) 2018-07-06 2018-07-06 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020008635A1 true WO2020008635A1 (ja) 2020-01-09

Family

ID=69060825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025748 WO2020008635A1 (ja) 2018-07-06 2018-07-06 ユーザ端末及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2020008635A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200840A1 (en) * 2019-03-29 2020-10-08 Sony Corporation Wake-up signals and adaptive numerology
CN112631368A (zh) * 2020-12-25 2021-04-09 联想未来通信科技(重庆)有限公司 一种处理器的计时方法及装置
WO2021262991A1 (en) * 2020-06-26 2021-12-30 Qualcomm Incorporated Positioning signal measurement with discontinuous reception and wake-up signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537516A (ja) * 2014-11-04 2017-12-14 クアルコム,インコーポレイテッド 第2の受信機を用いた低電力不連続受信

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017537516A (ja) * 2014-11-04 2017-12-14 クアルコム,インコーポレイテッド 第2の受信機を用いた低電力不連続受信

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "NR UE power saving", 3GPP TSG RAN WG1 MEETING#93 RL-1806091, 12 May 2018 (2018-05-12), XP051462355 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200840A1 (en) * 2019-03-29 2020-10-08 Sony Corporation Wake-up signals and adaptive numerology
WO2021262991A1 (en) * 2020-06-26 2021-12-30 Qualcomm Incorporated Positioning signal measurement with discontinuous reception and wake-up signal
US11825438B2 (en) 2020-06-26 2023-11-21 Qualcomm Incorporated Positioning signal measurement with discontinuous reception and wake-up signal
CN112631368A (zh) * 2020-12-25 2021-04-09 联想未来通信科技(重庆)有限公司 一种处理器的计时方法及装置
CN112631368B (zh) * 2020-12-25 2023-04-28 联想未来通信科技(重庆)有限公司 一种处理器的计时方法及装置

Similar Documents

Publication Publication Date Title
WO2019244218A1 (ja) ユーザ端末
JP7163391B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020053978A1 (ja) ユーザ端末及び無線通信方法
WO2020054036A1 (ja) ユーザ端末及び無線通信方法
WO2019193700A1 (ja) ユーザ端末及び無線基地局
WO2020031386A1 (ja) ユーザ端末及び無線通信方法
WO2020021723A1 (ja) 基地局及び無線通信方法
WO2020016934A1 (ja) ユーザ端末
WO2020021724A1 (ja) ユーザ端末及び無線通信方法
WO2020053940A1 (ja) ユーザ端末
WO2020031353A1 (ja) ユーザ端末及び無線通信方法
WO2020012661A1 (ja) ユーザ端末及び基地局
WO2020053941A1 (ja) ユーザ端末及び無線通信方法
WO2020035956A1 (ja) ユーザ端末及び無線通信方法
WO2020053942A1 (ja) ユーザ端末及び無線通信方法
WO2017213223A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2020008644A1 (ja) ユーザ端末及び基地局
WO2020026296A1 (ja) ユーザ端末及び無線通信方法
WO2020039557A1 (ja) ユーザ端末
WO2020012662A1 (ja) ユーザ端末及び基地局
JPWO2018143389A1 (ja) ユーザ端末及び無線通信方法
WO2020016938A1 (ja) ユーザ端末
WO2020035954A1 (ja) ユーザ端末及び無線通信方法
WO2020031354A1 (ja) ユーザ端末及び無線通信方法
WO2020008635A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP