WO2020035956A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020035956A1
WO2020035956A1 PCT/JP2018/030586 JP2018030586W WO2020035956A1 WO 2020035956 A1 WO2020035956 A1 WO 2020035956A1 JP 2018030586 W JP2018030586 W JP 2018030586W WO 2020035956 A1 WO2020035956 A1 WO 2020035956A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
downlink
mcs
information
signal
Prior art date
Application number
PCT/JP2018/030586
Other languages
English (en)
French (fr)
Inventor
翔平 吉岡
一樹 武田
祐輝 松村
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/268,718 priority Critical patent/US20210320747A1/en
Priority to CN201880098793.1A priority patent/CN112930666A/zh
Priority to PCT/JP2018/030586 priority patent/WO2020035956A1/ja
Publication of WO2020035956A1 publication Critical patent/WO2020035956A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0019Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach
    • H04L1/0021Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy in which mode-switching is based on a statistical approach in which the algorithm uses adaptive thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Abstract

本開示の一態様に係るユーザ端末は、下り共有チャネル又は上り共有チャネルをスケジューリングする下り制御情報を受信する受信部と、前記下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つの決定に用いられるテーブルと、トランスフォームプリコーディングの適用有無と、の少なくとも一つに対応する複数の閾値と、前記下り制御情報内の変調及び符号化方式(MCS)インデックスとに基づいて、位相追従参照信号(PTRS)の時間密度を決定する制御部と、を具備することを特徴とする。

Description

ユーザ端末及び無線通信方法
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(UE:User Equipment)は、基地局からの下り制御情報(DCI:Downlink Control Information、下りリンク(DL:Downlink)アサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(上りリンク(UL:Uplink)グラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。
 将来の無線通信システム(例えば、NR)では、位相追従参照信号(PTRS:Phase Tracking Reference Signal)を用いて、位相雑音(phase noise)を決定し、下り信号(例えば、下り共有チャネル(例えば、PDSCH))及び上り信号(例えば、上り共有チャネル(例えば、PUSCH))の少なくとも一つの位相誤差を補正することが検討されている。
 また、PTRSの時間領域の密度(time domain density)(時間密度)をDCIで通知される変調及び符号化方式(MCS:Modulation and Coding Scheme)のインデックスに基づいて制御することが検討されている。しかしながら、MCSインデックスに基づいてPTRSの時間密度を制御する場合、位相雑音(位相誤差)の補正効果が低下したり、又は、無線リソースの利用効率(伝送可能なデータ量)が低下したりする恐れがある。
 そこで、本開示は、PTRSの時間密度を適切に制御することができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、下り共有チャネル又は上り共有チャネルをスケジューリングする下り制御情報を受信する受信部と、前記下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つの決定に用いられるテーブルと、トランスフォームプリコーディングの適用有無と、の少なくとも一つに対応する複数の閾値と、前記下り制御情報内の変調及び符号化方式(MCS)インデックスとに基づいて、位相追従参照信号(PTRS)の時間密度を決定する制御部と、を具備することを特徴とする。
 本開示の一態様によれば、PTRSの時間密度を適切に制御できる。
図1は、第1のMCSテーブルの一例を示す図である。 図2は、第2のMCSテーブルの一例を示す図である。 図3は、第3のMCSテーブルの一例を示す図である。 図4は、第1~第3のMCSテーブルの切り替えの一例を示す図である。 図5は、時間密度テーブルの一例を示す図である。 図6A~6Cは、本実施の形態に係る第1~第3の時間密度テーブルの一例を示す図である。 図7A及び7Bは、本実施の形態に係る第4~第5の時間密度テーブルの一例を示す図である。 図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 図9は、本実施の形態に係る基地局の全体構成の一例を示す図である。 図10は、本実施の形態に係る基地局の機能構成の一例を示す図である。 図11は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 図12は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 図13は、本実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。 図14は、第4のMCSテーブルの一例を示す図である。 図15は、第5のMCSテーブルの一例を示す図である。
 NRにおいて、基地局(例えば、gNB)は、DLで位相追従参照信号(PTRS:Phase Tracking Reference Signal、PT-RS)を送信する。基地局は、PTRSを、例えば、所定数のサブキャリアにおいて時間方向に連続又は非連続の所定数のリソース要素(RE:resource element)(シンボル)にマッピングして送信してもよい。基地局は、PTRSを、下り共有チャネル(PDSCH:Physical Downlink Shared Channel)を送信する期間(スロット、シンボルなど)の少なくとも一部において送信してもよい。基地局が送信する(UEが受信する)PTRSは、下りPTRS(downlink PTRS)と呼ばれてもよい。
 また、UEは、ULで位相追従参照信号(PTRS)を送信する。UEは、PTRSを、例えば、所定数のサブキャリアにおいて時間方向に連続又は非連続の所定数のRE(シンボル)にマッピングして送信してもよい。UEは、PTRSを、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)を送信する期間(スロット、シンボルなど)の少なくとも一部において送信してもよい。UEが送信する(基地局が受信する)PTRSは、上りPTRS(uplink PTRS)と呼ばれてもよい。
 UEは、上位レイヤシグナリングによる設定情報(例えば、PTRS-DownlinkConfig又はPTRS-UplinkConfig)に基づいて、DL又はULにおいてPTRSがあるか否かを判断してもよい。UEは、PDSCH又はPUSCHに割り当てられる周波数領域リソース(例えば、物理リソースブロック(PRB:Physical Resource Block)(リソースブロック(RB))、又は、一以上のRBを含むリソースブロックグループ(RBG:Resource Block Group))にPTRSが存在すると想定してもよい。
 UEは、下りPTRSに基づいて位相雑音(phase noise)を決定し、下り信号(例えば、PDSCH)の位相誤差を補正してもよい。基地局は、上りPTRSに基づいて位相雑音を決定し、上り信号(例えば、PUSCH)の位相誤差を補正してもよい。
 ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、その他のシステム情報(OSI:Other System Information)などであってもよい。
 また、NRでは、DCI(例えば、DCIフォーマット0_0、0_1、1_0、1_1)に含まれる所定フィールド(例えば、変調及び符号化方式(MCS:Modulation and coding scheme)フィールド(例えば5ビット)、MCSインデックス(IMCS)、単にインデックスともいう)の値に基づいて、当該DCIによりスケジューリングされるPDSCH又はPUSCHの変調方式(又は変調次数(Modulation order))及び符号化率の少なくとも一つ(変調次数/符号化率)を制御することが検討されている。
 具体的には、UEは、MCSインデックスと変調次数と符号化率(例えば、ターゲット符号化率)とを関連付けるテーブル(MCSテーブル、MCSインデックステーブル等ともいう)を用いて、上記DCI内の上記MCSフィールドが示すMCSインデックスに対応する変調次数/符号化率をPUSCH又はPDSCH用に決定することが検討されている。
 ここで、各変調次数は、各変調方式に対応する値である。例えば、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM、256QAMの変調次数は、それぞれ、2、4、6、8である。
 図1-3は、MCSテーブルの一例を示す図である。図1、2、3に例示される第1、第2、第3のMCSテーブルは、所定のインデックス(MCSインデックス)、変調次数及び符号化率(ターゲット符号化率)を関連付けるテーブルである。なお、図1-3に示される第1-第3のMCSテーブルの値は、例示にすぎず、これに限られない。また、MCSインデックス(IMCS)に関連付けられる一部の項目(例えば、スペクトル効率)は省略されてもよいし、他の項目が追加されてもよい。
 図1、3に示す第1、第3のMCSテーブルにおいて、変調次数「2」、「4」、「6」は、それぞれ、QPSK、16QAM、64QAMに対応する。図3に示される第3のMCSテーブルでは、同じ変調次数に対応する符号化率の少なくとも一つが図1に示される第1のMCSテーブルより小さい。第3のMCSテーブルは、例えば、超高信頼及び低遅延(例えば、URLLC:Ultra Reliable and Low Latency Communications)等、遅延に対する要求条件が他のユースケースよりも厳しい場合や、信頼性の要求条件が求められる場合等に使用されてもよい。
 また、図2に示す第2のMCSテーブルでは、変調次数「2」、「4」、「6」に加えて、「8」をサポートする。変調次数「8」は、256QAMに対応する。第2のMCSテーブルは、例えば、高速及び大容量(例えば、eMBB:enhanced Mobile Broad Band)等、容量(キャパシティ)が求められる場合に使用されてもよい。なお、第1~第3のMCSテーブルのユースケースは、上記で例示するのに限られない。
 また、NRでは、UEは、PDSCH又はPUSCHの変調次数/符号化率の制御に用いるMCSテーブルを動的に変更することが検討されている。具体的には、UEは、以下の少なくとも一つに基づいて、上記第1~第3のMCSテーブルを動的に切り替えて、PDSCH又はPUSCHの変調次数/符号化率の制御に用いることが検討されている:
・上位レイヤシグナリングにより設定される一以上のMCSテーブルを示す情報(MCSテーブル情報、mcs-Table)、
・上位レイヤシグナリングにより設定される一以上の無線ネットワーク一時識別子(RNTI:Radio Network Temporary Identifier)を示す情報(RNTI情報)、
・DCIの巡回冗長検査(CRC:Cyclic Redundancy Check)ビットのスクランブル(CRCスクランブル)に用いられるRNTI、
・DCIフォーマット(例えば、DCIフォーマット1_0、1_1、0_0又は0_1のいずれか)、
・当該DCIが検出されるサーチスペース(例えば、一以上のUEに共通のサーチスペース(CSS:Common Search Space)又はUE固有のサーチスペース(USS:UE-specific Search Space))、
・トランスフォームプリコーダー(transformprecoder)(トランスフォームプリコーディング)が適用されるか否か(DFT拡散OFDM(Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形又はCP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing)波形のいずれであるか)。
 図4は、第1~第3のMCSテーブルの切り替えの一例を示す図である。例えば、図4では、DLにおいて、第1のMCSテーブル(qam64)、第2のMCSテーブル(qam256)、第3のMCSテーブル(qam64LowSE)が上位レイヤシグナリング(例えば、RRCシグナリング)により設定される場合が示される。
 例えば、図4に示すように、第1のMCSテーブル(qam64)が上位レイヤシグナリングにより設定される場合でも、UEは、DCIが特定のRNTIでCRCスクランブルされるなら、PDSCHの変調次数/符号化率の制御に第3のMCSテーブル(qam64LowSE)を用いてもよい。当該特定のRNTIは、URLLC用のRNTI、新規RNTI(new RNTI)、MCS RNTI、mcs-c-RNTI、URLLC-RNTI、U-RNTI、Y-RNTI、又はX-RNTI等と呼ばれてもよい。
 また、第1のMCSテーブル(qam64)が上位レイヤシグナリングにより設定される場合、UEは、DCIが他のRNTIでCRCスクランブルされるなら、PDSCHの変調次数/符号化率の制御に第1のMCSテーブル(qam64)を用いてもよい。当該他のRNTIは、例えば、C-RNTI(Cell-RNTI)、TC-RNTI(Temporary Cell RNTI)、CS-RNTI(Configured Scheduling RNTI)、SI-RNTI(System Information RNTI)、RA-RNTI(Random Access RNTI)又はP-RNTI(Paging RNTI)であってもよい。
 また、第2のMCSテーブル(qam256)が上位レイヤシグナリングにより設定される場合でも、UEは、DCIが特定のRNTIでCRCスクランブルされるなら、PDSCHの変調次数/符号化率の制御に第3のMCSテーブル(qam64LowSE)を用いてもよい。一方、UEは、当該DCIが他のRNTI(例えば、C-RNTI)でCRCスクランブルされるなら、当該DCIのフォーマット(例えば、DCIフォーマット1_0又は1_1のいずれか)に基づいて、第2のMCSテーブル(qam256)又は第1のMCSテーブル(qam64)のいずれを用いるかを決定してもよい。例えば、UEは、DCIフォーマット1_0であれば第1のMCSテーブル(qam64)を用い、DCIフォーマット1_1であれば、第2のMCSテーブル(qam256)を用いてもよい。
 また、第3のMCSテーブル(qam64LowSE)が上位レイヤシグナリングにより設定される場合、少なくとも特定のRNTIが上位レイヤシグナリングにより設定されるなら、DCIがCRCスクランブルされるRNTIに基づいて、PDSCHの変調次数/符号化率の制御に用いるMCSテーブルを決定してもよい。例えば、UEは、特定のRNTIでDCIがCRCスクランブルされる場合、第3のMCSテーブル(qam64LowSE)を用い、他のRNTI(例えば、C-RNTI)でDCIがCRCスクランブルされる場合、第1のMCSテーブル(qam64)を用いてもよい。
 また、第3のMCSテーブル(qam64LowSE)が上位レイヤシグナリングにより設定される場合、特定のRNTIが上位レイヤシグナリングにより設定されないなら、DCIフォーマット及びサーチスペースの少なくとも一つに基づいて、PDSCHの変調次数/符号化率の制御に用いるMCSテーブルを決定してもよい。例えば、UEは、DCIがDCIフォーマット1_0であり、当該DCIがCSSで検出されるなら第1のMCSテーブル(qam64)を用い、当該DCIがUSSで検出されるなら第3のMCSテーブル(qam64LowSE)を用いてもよい。また、UEは、DCIがDCIフォーマット1_1なら、第3のMCSテーブル(qam64LowSE)を用いてもよい。
 なお、図4では、DLにおける第1~第3のMCSテーブルの切り替えの一例を示すが、ULにおいても、第1~第3のMCSテーブルを上記少なくとも一つの条件に基づいて切り替えることができる。なお、ULでは、トランスフォームプリコーダーの適用有無に基づいて第1~第3のMCSテーブルの切り替えが制御されてもよい。
 ところで、NRでは、PTRSの時間領域密度(time domain density、時間密度(time density))を、所定のテーブルとDCI内のMCSインデックスとに基づいて決定することが検討されている。
 図5は、MCSインデックス(例えば、MCSインデックスの範囲)と、PTRSの時間密度の対応が規定されたテーブル(時間密度テーブルとも記す)を示している。例えば、MCSインデックスの閾値(境界)として、所定数の閾値(例えば、4つの閾値ptrs-MCS1、ptrs-MCS2、ptrs-MCS3、ptrs-MCS4)のセット(閾値セット)が上位レイヤシグナリングにより設定される。例えば、図5では、DCI内のMCSインデックスがptrs-MCS1未満である場合にPTRSは存在しない。
 また、図5では、DCI内のMCSインデックスがptrs-MCS1以上ptrs-MCS2未満である場合にPTRSの時間密度は4である。DCI内のMCSインデックスがptrs-MCS2以上ptrs-MCS3未満である場合にPTRSの時間密度は2である。DCI内のMCSインデックスがptrs-MCS3以上ptrs-MCS4未満である場合にPTRSの時間密度は1である。もちろん、MCSインデックスとPTRSの時間密度の対応関係はこれに限られない。
 一方、上述のように、NRでは、UEは、PDSCH又はPUSCHの変調次数/符号化率の制御に用いるMCSテーブル(例えば、第1~第3のMCSテーブル)を動的に切り替えることが想定される。このように、複数のMCSテーブルが動的に切り替えられる場合、単一の時間密度テーブル(例えば、図5に示される第1の時間密度テーブル)を用いてPTRSの時間密度を決定すると、位相雑音(位相誤差)の補正効果が低下したり、無線リソースの利用効率(伝送可能なデータ量)が低下したりする恐れがある。
 例えば、第1のMCSテーブル(例えば、図1)が用いられる場合、MCSインデックスの第1、第2、第3、第4の閾値(ptrs-MCS1,ptrs-MCS2,ptrs-MCS3,ptrs-MCS4)がそれぞれ、10、17、23、29であるとする。高次の変調次数の性能は、位相雑音に、よりセンシティブ(more sensitive)となる。このため、これらの閾値は、第1のMCSテーブルに協調(align)する。例えば、C-RNTIによりCRCスクランブルされるDCIによってPDSCHがスケジューリングされる場合、当該DCI内のMCSインデックスが12(図1によると、変調次数「4」の16QAM)であれば(図1参照)、PTRSの密度は、4となる(図5参照)。
 しかしながら、第3のMCSテーブル(例えば、図3)が用いられる場合、当該DCI内のMCSインデックスが12であっても、第1のMCSテーブル(例えば、図1)とは異なり、変調次数が「2」(QPSK)となる。この場合、16QAMの場合と同様のPTRSの密度4を適用すると、PTRSの不足により、位相雑音の補正効果が低下する恐れがある。
 一方、第2のMCSテーブル(例えば、図2)が用いられる場合、当該DCI内のMCSインデックスが12であっても、第1のMCSテーブル(例えば、図1)とは異なり、変調次数が「6」(64QAM)となる。この場合、16QAMの場合と同様のPTRSの密度4を適用すると、PTRSを必要以上に配置する結果、無線リソースの利用効率(伝送可能なデータ量)が低下する恐れがある。
 そこで、本発明者らは、PDSCH又はPUSCHの変調次数/符号化率の制御に用いる複数のMCSテーブル(例えば、第1~第3のMCSテーブル)を動的に切り替える場合に、PTRSの時間密度を最適化する方法を検討し、本発明に至った。
 具体的には、本発明者らは、MCSテーブルにそれぞれ対応する複数の閾値セットを設け、使用するMCSテーブルに対応する閾値セットを用いることで、PTRSの時間密度を適切に制御することを着想した。
 以下、本実施の形態について、図面を参照して詳細に説明する。本実施の形態に係る態様は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(第1の態様)
 第1の態様では、下りPTRSの受信制御について説明する。
<下りPTRS設定情報>
 ユーザ端末は、下りPTRSの設定情報(下りPTRS設定情報、PTRS-DownlinkConfig等ともいう)を受信する。例えば、当該下りPTRS設定情報は、PDSCHの復調用参照信号(DMRS:Demodulation Reference Signal)の設定に用いられる情報(下りDMRS設定情報、DMRS-DownlinkConfig等ともいう)に含まれてもよい。また、当該下りPTRS設定情報は、上位レイヤシグナリングにより、ユーザ端末に設定(通知)されてもよい。
 当該下りPTRS設定情報は、下りPTRSの時間密度の決定に用いられる一以上の閾値セットを含んでもよい。例えば、当該一以上の閾値セットは、上記第1~第3のMCSテーブルそれぞれに対応する第1~第3の閾値セットの少なくとも一つを含んでもよい。
 例えば、第1のMCSテーブル(例えば、図1、qam64)に対応する第1の閾値セット(timeDensity)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1、ptrs-MCS2、ptrs-MCS3、ptrs-MCS4)を含んでもよい。
 また、第2のMCSテーブル(例えば、図2、qam256)に対応する第2の閾値セット(timeDensityqam256)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1-qam256、ptrs-MCS2-qam256、ptrs-MCS3-qam256、ptrs-MCS4-qam256又はptrs-qam256-MCS1,ptrs-qam256-MCS2,ptrs-qam256-MCS3,ptrs-qam256-MCS4)を含んでもよい。
 また、第3のMCSテーブル(例えば、図3、qam64LowSE)に対応する第3の閾値セット(timeDensityURLLC)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1-URLLC、ptrs-MCS2-URLLC、ptrs-MCS3-URLLC、ptrs-MCS4-URLLC又はptrs-URLLC-MCS1,ptrs-URLLC-MCS2,ptrs-URLLC-MCS3,ptrs-URLLC-MCS4)を含んでもよい。
 なお、第1~第3の閾値セットに含まれるMCSインデックスの閾値数は、全て同一であってもよいし、少なくとも一部の閾値セットに含まれる閾値数が異なってもよい。
 また、下りPTRS設定情報は、下りPTRSの周波数領域密度(frequency domain density、周波数密度(frequency density))の決定に用いられる情報(周波数密度情報、frequencyDensity)を含んでもよい。
 以上の下りPTRS設定情報は、セル内の部分的な帯域(帯域幅部分(BWP:Bandwidth Part))毎にユーザ端末に設定されてもよいし、又は、BWP共通に(セル固有)にユーザ端末に設定されてもよい。
 図6A~6Cは、MCSインデックス(例えば、MCSインデックスの範囲)と、PTRSの時間密度とを関連付ける第1~第3のテーブル(第1~第3の時間密度テーブル)を示す図である。
 図6A~6Cでは、それぞれ、第1~第3の閾値セットに基づいて定められるMCSインデックスの範囲とPTRSの時間密度とが関連付けられてもよい。第1~第3の閾値セットそれぞれ含まれる第1~第4の閾値の値は異なってもよい。このため、図6A~6Cにおいて、同じ時間密度(例えば、4)に関連付けられるMCSインデックスの範囲は異なってもよい。
<下りPTRSの時間密度の決定手順>
 次に、上記下りPTRS設定情報に基づく下りPTRSの時間密度の決定手順について説明する。当該決定手順において、DCIは、PDSCHのスケジューリングに用いられるDCI(DLアサインメント、DCIフォーマット1_0又は1_1)であってもよい。また、当該DCIは、C-RNTI、上記特定のRNTI(例えば、新規RNTI)、TC-RNTI、CS-RNTI、SI-RNTI、RA-RNTI又はP-RNTIのいずれかによりCRCスクランブルされてもよい。
≪第2の閾値セットに基づく場合≫
 UEは、以下の少なくとも一つの条件が満たされる場合、下りPTRS設定情報内の第2の閾値セット(例えば、第1~第4の閾値ptrs-MCS1-qam256、ptrs-MCS2-qam256、ptrs-MCS3-qam256、ptrs-MCS4-qam256)に基づいて、下りPTRSの時間密度を決定してもよい:
(1)UEが、PDSCHに用いる変調次数/符号化率の決定に第2のMCSテーブル(例えば、図2、qam256)を用いる場合、
(2)PDSCHの設定情報(PDSCH-Config)内のMCSテーブル情報(mcs-Table)が第2のMCSテーブルを示し、かつ、PDSCHがDCIフォーマット1_1のDCI(PDCCH)によりスケジューリングされ、かつ、当該DCIがC-RNTI又はCS-RNTIによってCRCスクランブルされる場合、
(3)セミパーシステントスケジューリング(SPS:Semi-persistent scheduling)用の設定情報(SPS-Config)内でMCSテーブル情報(mcs-Table)が設定されず、PDSCHの設定情報(PDSCH-Config)内のMCSテーブル情報(mcs-Table)が第2のMCSテーブルを示し、かつ、PDSCHがCS-RNTIでCRCスクランブルされるDCIによってスケジュールされ(アクティブ化され)、かつ、PDSCHがDCIフォーマット1_1のDCI(PDCCH)により割り当てられる場合。
 なお、上記PDSCHの設定情報(PDSCH-Config)及びSPS用の設定情報(SPS-Config)の少なくとも一つは、上位レイヤシグナリングによりUEに設定されてもよい。
 また、SPSは、上位レイヤシグナリングにより設定される周波数領域リソース及び時間領域リソースを用いた所定周期の下り送信である。SPSによる下り送信は、CS-RNTIによりCRCスクランブルされるDCIによりアクティブ化又は非アクティブ化が制御されてもよい。
 具体的には、UEは、上記条件(1)~(3)の少なくとも一つが満たされる場合、上記第2の閾値セットに基づいて定められる第2の時間密度テーブル(例えば、図6B)と、DCI内のMCSインデックスに基づいて、下りPTRSの時間密度を決定してもよい。
≪第3の閾値セットに基づく場合≫
 UEは、以下の少なくとも一つの条件が満たされる場合、下りPTRS設定情報内の第3の閾値セット(例えば、第1~第4の閾値ptrs-MCS1-URLLC、ptrs-MCS2-URLLC、ptrs-MCS3-URLLC、ptrs-MCS4-URLLC)に基づいて、下りPTRSの時間密度を決定してもよい:
(1)UEが、PDSCHに用いる変調次数/符号化率の決定に第3のMCSテーブル(例えば、図3、qam64LowSE)を用いる場合、
(2)上記特定のRNTIがUEに設定され、かつ、PDSCHが上記特定のRNTIによりCRCスクランブルされるDCIによってスケジューリングされる場合、
(3)上記特定のRNTIがUEに設定されず、かつ、PDSCHの設定情報(PDSCH-Config)内のMCSテーブル情報(mcs-Table)が第3のMCSテーブルを示し、かつ、PDSCHがC-RNTIによりCRCスクランブルされるDCIによってスケジューリングされ、かつ、PDSCHが、USSで検出されるDCI(PDCCH)によって割り当てられる場合、
(4)上記SPS用の設定情報(SPS-Config)内のMCSテーブル情報(mcs-Table)が第3のMCSテーブルを示し、かつ、PDSCHがCS-RNTIによりCRCスクランブルされるDCIによってスケジューリングされる(アクティブ化される)場合。
 なお、上記PDSCHの設定情報(PDSCH-Config)及びSPS用の設定情報(SPS-Config)の少なくとも一つは、上位レイヤシグナリングによりUEに設定されてもよい。
 具体的には、UEは、上記条件(1)~(4)の少なくとも一つが満たされる場合、上記第3の閾値セットに基づいて定められる第3の時間密度テーブル(例えば、図6C)と、DCI内のMCSインデックスに基づいて、下りPTRSの時間密度を決定してもよい。
≪第1の閾値セットに基づく場合≫
 UEは、以下の少なくとも一つの条件が満たされる場合、下りPTRS設定情報内の第1の閾値セット(例えば、第1~第4の閾値ptrs-MCS1、ptrs-MCS2、ptrs-MCS3、ptrs-MCS4)に基づいて、下りPTRSの時間密度を決定してもよい:
(1)UEが、PDSCHに用いる変調次数/符号化率の決定に第1のMCSテーブル(例えば、図1、qam64)を用いる場合、
(2)第2、第3の閾値セットの条件が満たされない場合。
 具体的には、UEは、上記条件(1)が満たされる場合、上記第1の閾値セットに基づいて定められる第1の時間密度テーブル(例えば、図6A)と、DCI内のMCSインデックスに基づいて、下りPTRSの時間密度を決定してもよい。
 なお、上記条件(1)は明示的に示されなくともよく、UEは、上記第2、第3の閾値セットを利用する条件が満たされない場合(すなわち、otherwise)、上記条件(1)が満たされると想定して、上記第1の時間密度テーブルとDCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
≪第1~第3の閾値セットが設定されない場合≫
 UEは、上位レイヤシグナリングにより第1~第3の閾値のいずれも設定されない場合、下りPTRSの時間密度を所定値(例えば、1)と想定してもよい。
 第1の態様において、UEは、以上のように時間密度が決定される下りPTRSに基づいて、位相雑音を決定し、下り信号(例えば、PDSCH)の位相誤差を補正してもよい。
 以上のように、第1の態様では、UEは、PDSCHの変調次数/符号化率の決定に用いるMCSテーブルに対応する閾値セットを用いてPTRSの時間密度が決定される。このため、複数のMCSテーブル(例えば、第1~第3のMCSテーブル)を動的に切り替える場合に、下りPTRSの時間密度を最適化でき、位相雑音(位相誤差)の補正効果を向上させることができる。
(第2の態様)
 第2の態様では、上りPTRSの送信制御について説明する。なお、第2の態様では、第1の態様との相違点を中心に説明する。
<上りPTRS設定情報>
 ユーザ端末は、上りPTRSの設定情報(上りPTRS設定情報、PTRS-UplinkConfig等ともいう)を受信する。例えば、当該上りPTRS設定情報は、PUSCHの復調用参照信号(DMRS:Demodulation Reference Signal)の設定に用いられる情報(上りDMRS設定情報、DMRS-UplinkConfig等ともいう)に含まれてもよい。また、当該上りPTRS設定情報は、上位レイヤシグナリングにより、ユーザ端末に設定(通知)されてもよい。
 当該上りPTRS設定情報は、上りPTRSの時間密度の決定に用いられる一以上の閾値セットを含んでもよい。具体的には、当該一以上の閾値セットは、MCSテーブルと、トランスフォームプリコーダーの適用有無(トランスフォームプリコーディングの適用有無、上り信号の波形、DFT拡散OFDM波形又はCP-OFDM波形のいずれであるか)と、の少なくとも一つに基づいて定められてもよい。
 なお、ULでは、第2のMCSテーブルについては、トランスフォームプリコーダーの適用有無に関係なく、DLと同様のMCSテーブル(例えば、図2)が使用されてもよい。一方、トランスフォームプリコーディングが適用される場合、変調次数「2」、「4」、「6」をサポートし、変調次数「8」をサポートしないMCSテーブル(上記第1、第3のMCSテーブル)については、DLとは異なる第4、第5のMCSテーブルが用いられてもよい。トランスフォームプリコーディングが適用されない場合、DLと同様に、第1、第3のMCSテーブルが用いられてもよい。
 図14は、第4のMCSテーブルの一例を示す図である。図14において、トランスフォームプリコーダーが適用され(enable)、かつ、BPSK(Binary Phase Shift Keying)が適用されることを示す上位レイヤパラメータ(例えば、PUSCH-tp-pi2BPSK又はtp-pi2PBSK)が設定される場合、q=1であり、設定されない場合、q=2である。q=1の場合、MCSインデックス「0」及び「1」に対応する変調次数は「1」となる。なお、変調次数「1」は、BPSKに対応する。一方、q=2の場合、MCSインデックス「0」及び「1」に対応する変調次数は「2」となる。
 図15は、第5のMCSテーブルの一例を示す図である。図15において、トランスフォームプリコーダーが適用され(enable)、かつ、BPSKが適用されることを示す上位レイヤパラメータ(例えば、PUSCH-tp-pi2BPSK又はtp-pi2PBSK)が設定される場合、q=1であり、設定されない場合、q=2である。q=1の場合、MCSインデックス「0」~「5」に対応する変調次数は「1」となる。一方、q=2の場合、MCSインデックス「0」~「5」に対応する変調次数は「2」となる。
 例えば、当該一以上の閾値セットは、第1~第5の閾値セットの少なくとも一つであってもよい。
 例えば、トランスフォームプリコーディングが適用されない場合の第1のMCSテーブル(例えば、図1)に対応する第1の閾値セット(timeDensity)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1、ptrs-MCS2、ptrs-MCS3、ptrs-MCS4)を含んでもよい。
 また、第2のMCSテーブル(例えば、図2)に対応する第2の閾値セット(timeDensityqam256)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1-qam256、ptrs-MCS2-qam256、ptrs-MCS3-qam256、ptrs-MCS4-qam256又はptrs-qam256-MCS1,ptrs-qam256-MCS2,ptrs-qam256-MCS3,ptrs-qam256-MCS4)を含んでもよい。
 また、トランスフォームプリコーディングが適用されない場合の第3のMCSテーブル(例えば、図3)に対応する第3の閾値セット(timeDensityURLLC)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1-URLLC、ptrs-MCS2-URLLC、ptrs-MCS3-URLLC、ptrs-MCS4-URLLC又はptrs-URLLC-MCS1,ptrs-URLLC-MCS2,ptrs-URLLC-MCS3,ptrs-URLLC-MCS4)を含んでもよい。
 例えば、トランスフォームプリコーディングが適用される場合の第4のMCSテーブル(例えば、図14)に対応する第4の閾値セット(timeDensitypi2BPSK)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1-pi2BPSK、ptrs-MCS2-pi2BPSK、ptrs-MCS3-pi2BPSK、ptrs-MCS4-pi2BPSK又はptrs-pi2BPSK-MCS1,ptrs-pi2BPSK-MCS2,ptrs-pi2BPSK-MCS3,ptrs-pi2BPSK-MCS4)を含んでもよい。なお、第4の閾値セットは、上位レイヤパラメータ(例えば、PUSCH-tp-pi2BPSK又はtp-pi2PBSK)が設定されるか否かによって異なる値が設定されてもよい。また、当該上位レイヤパラメータが設定される場合の閾値セットと設定されない場合の閾値セットとの双方が上りPTRS設定情報に含まれてもよい。
 また、トランスフォームプリコーディングが適用される場合の第5のMCSテーブル(例えば、図15)に対応する第5の閾値セット(timeDensitypi2BPSKURLLC)は、MCSインデックスの所定数の閾値(例えば、第1~第4の閾値ptrs-MCS1-URLLC、ptrs-MCS2-pi2BPSK-URLLC、ptrs-MCS3-pi2BPSK-URLLC、ptrs-MCS4-pi2BPSK-URLLC又はptrs-pi2BPSK-URLLC-MCS1,ptrs-pi2BPSK-URLLC-MCS2,ptrs-pi2BPSK-URLLC-MCS3,ptrs-pi2BPSK-URLLC-MCS4)を含んでもよい。なお、第5の閾値セットは、上位レイヤパラメータ(例えば、PUSCH-tp-pi2BPSK又はtp-pi2PBSK)が設定されるか否かによって異なる値が設定されてもよい。また、当該上位レイヤパラメータが設定される場合の閾値セットと設定されない場合の閾値セットとの双方が上りPTRS設定情報に含まれてもよい。
 なお、第1~第5の閾値セットに含まれるMCSインデックスの閾値数は、全て同一であってもよいし、少なくとも一部の閾値セットに含まれる閾値数が異なってもよい。なお、第2のMCSテーブルは、DL、ULで共通に用いられるが、第2のMCSテーブルの代わりに、UL用の変調次数「8」をサポートする第6のMCSテーブルが用いられてもよい。
 また、上りPTRS設定情報は、上りPTRSの周波数密度の決定に用いられる情報(周波数密度情報、frequencyDensity)を含んでもよい。
 以上の上りPTRS設定情報は、セル内のBWP毎にユーザ端末に設定されてもよいし、又は、BWP共通に(セル固有)にユーザ端末に設定されてもよい。
 図6A~6Cで説明したように、第1~第3の閾値セットに基づいて定められるMCSインデックスの範囲とPTRSの時間密度とが関連付ける第1~第3の時間密度テーブルが設けられてもよい。
 また、図7A及び7Bに示すように、第4、第5の閾値セットに基づいて定められるMCSインデックスの範囲とPTRSの時間密度とが関連付ける第4、第5のテーブル(第4、第5の時間密度テーブル)が設けられてもよい。
 なお、第1~第5の閾値セットそれぞれ含まれる第1~第4の閾値の値は異なってもよい。このため、図6A~6C、図7A及び7Bにおいて、同じ時間密度(例えば、4)に関連付けられるMCSインデックスの範囲は異なってもよい。
<上りPTRSの時間密度の決定手順>
 次に、上記上りPTRS設定情報に基づく上りPTRSの時間密度の決定手順について説明する。当該決定手順において、DCIは、PUSCHのスケジューリングに用いられるDCI(ULグラント、DCIフォーマット0_0又は0_1)であってもよいし、ランダムアクセス応答(RAR:Random Access Response)メッセージを伝送するPUSCHのスケジューリングに用いられるDCI(RAR ULグラント)であってもよい。
 また、当該DCIは、C-RNTI、上記特定のRNTI(例えば、新規RNTI)、TC-RNTI、CS-RNTI、SI-RNTI、SP-CSI-RNTI(Semi-Persistent Channel State Information RNTI)、CS-RNTI(Configured Scheduling RNTI)のいずれかによりCRCスクランブルされてもよい。
≪トランスフォームプリコーダーが適用されず、第2の閾値セットに基づく場合≫
 UEは、トランスフォームプリコーダーが適用されず、以下の少なくとも一つの条件が満たされる場合、上りPTRS設定情報内の第2の閾値セット(例えば、第1~第4の閾値ptrs-MCS1-qam256、ptrs-MCS2-qam256、ptrs-MCS3-qam256、ptrs-MCS4-qam256)に基づいて、上りPTRSの時間密度を決定してもよい:
(1)UEが、PUSCHに用いる変調次数/符号化率の決定に第2のMCSテーブル(例えば、図2、qam256)を用いる場合、
(2)PUSCHの設定情報(PUSCH-Config)内のMCSテーブル情報(mcs-Table)が第2のMCSテーブルを示し、かつ、PUSCHがDCIフォーマット0_1のDCI(PDCCH)によりスケジューリングされ、かつ、当該DCIがC-RNTI又はSP-CSI-RNTIによってCRCスクランブルされる場合、
(3)設定グラント(Configured grant)用の設定情報(ConfiguredGrantConfig)内でMCSテーブル情報(mcs-Table)を示し(mcs-Tableが256QAMを示し)、PUSCHがCS-RNTIでCRCスクランブルされるDCIによってスケジュールされる(アクティブ化される)場合。
 なお、上記PUSCHの設定情報(PUSCH-Config)及び設定グラント用の設定情報(ConfiguredGrantConfig)の少なくとも一つは、上位レイヤシグナリングによりUEに設定されてもよい。
 また、設定グラントは、上位レイヤシグナリングにより設定される周波数領域リソース及び時間領域リソースを用いた所定周期の上り送信であり、グラントフリー送信等とも呼ばれる。設定グラントによる上り送信は、CS-RNTIによりCRCスクランブルされるDCIによりアクティブ化又は非アクティブ化が制御されてもよい。
 具体的には、UEは、上記条件(1)~(3)の少なくとも一つが満たされる場合、上記第2の閾値セットに基づいて定められる第2の時間密度テーブル(例えば、図6B)と、DCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
≪トランスフォームプリコーダーが適用されず、第3の閾値セットに基づく場合≫
 UEは、トランスフォームプリコーダーが適用されず、以下の少なくとも一つの条件が満たされる場合、上りPTRS設定情報内の第3の閾値セット(例えば、第1~第4の閾値ptrs-MCS1-URLLC、ptrs-MCS2-URLLC、ptrs-MCS3-URLLC、ptrs-MCS4-URLLC)に基づいて、上りPTRSの時間密度を決定してもよい:
(1)UEが、PUSCHに用いる変調次数/符号化率の決定に第4のMCSテーブル(q=2)(例えば、図15)を用いる場合、
(2)上記特定のRNTIがUEに設定され、かつ、PUSCHが上記特定のRNTIによりCRCスクランブルされるDCIによってスケジューリングされる場合、
(3)上記特定のRNTIがUEに設定されず、かつ、PUSCHの設定情報(PUSCH-Config)内のMCSテーブル情報(mcs-Table)が第4のMCSテーブル(q=2)を示し(又は当該設定情報内にmcs-Tableが存在せず)、かつ、PUSCHがC-RNTI又はSP-CSI-RNTIによりCRCスクランブルされるDCIによってスケジューリングされ、かつ、PUSCHが、USSで検出されるDCI(PDCCH)によって割り当てられる場合、
(4)上記設定グラント用の設定情報(ConfiguredGrantConfig)内のMCSテーブル情報(mcs-Table)が第4のMCSテーブル(q=2)を示し(又は当該設定情報内にmcs-Tableが存在せず)、かつ、PUSCHがCS-RNTIによりCRCスクランブルされるDCIによってスケジューリングされる(アクティブ化)場合。
 なお、上記PUSCHの設定情報(PUSCH-Config)及び設定グラント用の設定情報(ConfiguredGrantConfig)の少なくとも一つは、上位レイヤシグナリングによりUEに設定されてもよい。
 具体的には、UEは、上記条件(1)~(4)の少なくとも一つが満たされる場合、上記第3の閾値セットに基づいて定められる第3の時間密度テーブル(例えば、図6C)と、DCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
≪トランスフォームプリコーダーが適用されず、第1の閾値セットに基づく場合≫
 UEは、トランスフォームプリコーダーが適用されず、以下の少なくとも一つの条件が満たされる場合、上りPTRS設定情報内の第1の閾値セット(例えば、第1~第4の閾値ptrs-MCS1、ptrs-MCS2、ptrs-MCS3、ptrs-MCS4)に基づいて、上りPTRSの時間密度を決定してもよい:
(1)UEが、PUSCHに用いる変調次数/符号化率の決定に第4のMCSテーブル(q=2)(例えば、図14)を用いる場合、
(2)第2及び第3の閾値セットの条件が満たされない場合。
 具体的には、UEは、上記条件(1)が満たされる場合、上記第1の閾値セットに基づいて定められる第1の時間密度テーブル(例えば、図6A)と、DCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
 なお、上記条件(1)は明示的に示されなくともよく、UEは、トランスフォームプリコーダーが適用されず、上記第3、第2の閾値セットを利用する条件が満たされない場合(すなわち、otherwise)、上記条件(1)が満たされると想定して、上記第1の時間密度テーブルとDCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
≪トランスフォームプリコーダーが適用され、第2の閾値セットに基づく場合≫
 UEは、トランスフォームプリコーダーが適用され、以下の少なくとも一つの条件が満たされる場合、上りPTRS設定情報内の第2の閾値セット(例えば、第1~第4の閾値ptrs-MCS1-qam256、ptrs-MCS2-qam256、ptrs-MCS3-qam256、ptrs-MCS4-qam256)に基づいて、上りPTRSの時間密度を決定してもよい:
(1)UEが、PUSCHに用いる変調次数/符号化率の決定に第2のMCSテーブル(例えば、図2、qam256)を用いる場合、
(2)PUSCHの設定情報(PUSCH-Config)内のトランスフォームプリコーダー適用時のMCSテーブルを示す情報(TFP(TransFormPrecoder)用MCSテーブル情報、mcs-TableTransformPrecoder)が第2のMCSテーブルを示し、かつ、PUSCHがDCIフォーマット0_1のDCI(PDCCH)によりスケジューリングされ、かつ、当該DCIがC-RNTI又はSP-CSI-RNTIによってCRCスクランブルされる場合、
(3)設定グラント(Configured grant)用の設定情報(ConfiguredGrantConfig)内でTFP用MCSテーブル情報(mcs-TableTransformPrecoder)を示し、PUSCHがCS-RNTIでCRCスクランブルされるDCIによってスケジュールされる(アクティブ化される)場合。
 なお、上記PUSCHの設定情報(PUSCH-Config)及び設定グラント用の設定情報(ConfiguredGrantConfig)の少なくとも一つは、上位レイヤシグナリングによりUEに設定されてもよい。
 具体的には、UEは、上記条件(1)~(3)の少なくとも一つが満たされる場合、上記第2の閾値セットに基づいて定められる第2の時間密度テーブル(例えば、図6B)と、DCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
≪トランスフォームプリコーダーが適用され、第5の閾値セットに基づく場合≫
 UEは、トランスフォームプリコーダーが適用され、以下の少なくとも一つの条件が満たされる場合、上りPTRS設定情報内の第5の閾値セット(例えば、第1~第4の閾値ptrs-MCS1-pi2BPSK-URLLC、ptrs-MCS2-pi2BPSK-URLLC、ptrs-MCS3-pi2BPSK-URLLC、ptrs-MCS4-pi2BPSK-URLLC)に基づいて、上りPTRSの時間密度を決定してもよい:
(1)UEが、PUSCHに用いる変調次数/符号化率の決定に第5のMCSテーブル(q=1)(例えば、図15)を用いる場合、
(2)上記特定のRNTIがUEに設定され、かつ、PUSCHが上記特定のRNTIによりCRCスクランブルされるDCIによってスケジューリングされる場合、
(3)上記特定のRNTIがUEに設定されず、かつ、PUSCHの設定情報(PUSCH-Config)内のTFP用MCSテーブル情報(mcs-TableTransformPrecoder)が第5のMCSテーブル(q=1)を示し(又は当該設定情報内にmcs-TableTransformPrecoderが存在せず)、かつ、PUSCHがC-RNTI又はSP-CSI-RNTIによりCRCスクランブルされるDCIによってスケジューリングされ、かつ、PUSCHが、USSで検出されるDCI(PDCCH)によって割り当てられる場合、
(4)上記設定グラント用の設定情報(ConfiguredGrantConfig)内のTFP用MCSテーブル情報(mcs-TableTransformPrecoder)が第5のMCSテーブル(q=1)を示し(又は当該設定情報内にmcs-TableTransformPrecoderが存在せず)、かつ、PUSCHがCS-RNTIによりCRCスクランブルされるDCIによってスケジューリングされる(アクティブ化される)場合。
 なお、上記PUSCHの設定情報(PUSCH-Config)及び設定グラント用の設定情報(ConfiguredGrantConfig)の少なくとも一つは、上位レイヤシグナリングによりUEに設定されてもよい。
 具体的には、UEは、上記条件(1)~(4)の少なくとも一つが満たされる場合、上記第5の閾値セットに基づいて定められる第5の時間密度テーブル(例えば、図7B)と、DCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
≪トランスフォームプリコーダーが適用され、第4の閾値セットに基づく場合≫
 UEは、トランスフォームプリコーダーが適用され、以下の少なくとも一つの条件が満たされる場合、上りPTRS設定情報内の第4の閾値セット(例えば、第1~第4の閾値ptrs-MCS1-pi2BPSK、ptrs-MCS2-pi2BPSK、ptrs-MCS3-pi2BPSK、ptrs-MCS4-pi2BPSK)に基づいて、上りPTRSの時間密度を決定してもよい:
(1)UEが、PUSCHに用いる変調次数/符号化率の決定に第4のMCSテーブル(例えば、図14)を用いる場合、
(2)第2及び第5の閾値セットの条件が満たされない場合。
 具体的には、UEは、上記条件(1)が満たされる場合、上記第4の閾値セットに基づいて定められる第4の時間密度テーブル(例えば、図7A)と、DCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
 なお、上記条件(1)は明示的に示されなくともよく、UEは、トランスフォームプリコーダーが適用されず、上記第2、第5の閾値セットを利用する条件が満たされない場合(すなわち、otherwise)、上記条件(1)が満たされると想定して、上記第4の時間密度テーブルとDCI内のMCSインデックスに基づいて、上りPTRSの時間密度を決定してもよい。
≪第1~第3の閾値セットが設定されない場合≫
 UEは、上位レイヤシグナリングにより第1~第5の閾値のいずれも設定されない場合、上りPTRSの時間密度を所定値(例えば、1)と想定してもよい。
 第2の態様において、UEは、以上のように上りPTRSの時間密度を決定し、決定した時間密度に基づいて上りPTRSをREにマッピングして送信してもよい。基地局は、上りPTRS基づいて位相雑音を決定し、上り信号(例えば、PUSCH)の位相誤差を補正してもよい。
 以上のように、第2の態様では、UEは、トランスフォームプリコーダーの適用有無及びMCSテーブルの少なくとも一つに対応する閾値セットを用いてPTRSの時間密度を決定する。このため、複数のMCSテーブル(例えば、第1~第3のMCSテーブル)を動的に切り替える場合に、上りPTRSの時間密度を最適化でき、位相雑音(位相誤差)の補正効果を向上させることができる。
(その他の態様)
 図6A~6C、7A、7Bに示す第1~第5の時間密度テーブルは例示にすぎず、これに限られない。例えば、第1~第5の時間密度テーブルの少なくとも一つの行数は、4でなくてもよく、例えば、2、6、8などであってもよい。また、第1~第5の時間密度テーブル間で用いられる閾値の数は同一であってもよいし、異なってもよい。
 また、下りPTRS設定情報に含まれる第1~第3の閾値セットの各値と、上りPTRS設定情報に含まれる第1~第3の閾値セットの各値とは、同一であってもよいし、異なってもよい。
 また、上記MCSインデックスの閾値セットだけでなく、他のパラメータも、MCSテーブル及びトランスフォームプリコーディングの適用有無に対応して設定されてもよい。例えば、当該他のパラメータには、例えば、PTRSの密度に関する推奨情報(PTRS-DensityRecommendationDL、PTRS-DensityRecommendationUL)等が含まれてもよい。
 なお、第1及び第2の態様で説明したどの閾値セット(MCSテーブル)を用いるかの条件は、上記のものに限られない。例えば、第2のMCSテーブル及び第3のMCSテーブルのいずれを用いるかの判定には、PUSCHがUSSで検出されるDCI(PDCCH)によってスケジューリングされる否かの判定が加えられてもよい。また、MCSテーブルの動的な切り替え条件も上記のものに限られず、どのような条件であってもよい。
(無線通信システム)
 以下、本開示の実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記実施形態に示す無線通信方法の少なくとも一つ又はこれらの組み合わせを用いて通信が行われる。
 図8は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、複数のコンポーネントキャリア(セル、キャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、5G+などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity))をサポートしてもよい。MR-DCは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN)となり、NRの基地局(gNB)がセカンダリーノード(SN)となるLTEとNRとのデュアルコネクティビィティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRの基地局(gNB)がMNとなり、LTE(E-UTRA)の基地局(eNB)がSNとなるNRとLTEとのデュアルコネクティビィティ(NE-DC:NR-E-UTRA Dual Connectivity)等を含んでもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、基地局11及び基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、基地局11との間と同じキャリアが用いられてもよい。なお、各基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
 基地局11と基地局12との間(又は、2つの基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 基地局11及び各基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各基地局12は、基地局11を介して上位局装置30に接続されてもよい。
 なお、基地局11は、相対的に広いカバレッジを有する基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、基地局12は、局所的なカバレッジを有する基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)の少なくとも一つを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線リンク品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
<基地局>
 図9は、本実施の形態に係る基地局の全体構成の一例を示す図である。基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図10は、本実施の形態に係る基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
 制御部301は、同期信号(例えば、PSS/SSS)、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理などが行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
 なお、送受信部103は、位相追従参照信号(PTRS:Phase Tracking Reference Signal)を受信又は送信してもよい。また、送受信部103は、下り信号(例えば、PDSCH、PDCCH、DCI、参照信号、同期信号等)を送信し、上り信号(例えば、PUSCH、PUCCH、UCI等)を受信する。
 また、送受信部103は、各種の設定情報(例えば、PDSCHの設定情報、PUSCHの設定情報、SPS用の設定情報、設定グラント用の設定情報、DMRSの設定情報、下りPTRS設定情報、上りPTRS設定情報)を送信してもよい。
 また、制御部301は、前記下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つの決定に用いられるテーブルと、トランスフォームプリコーディングの適用有無と、の少なくとも一つに対応する複数の閾値と、前記下り制御情報内の変調及び符号化方式(MCS)インデックスとに基づいて、位相追従参照信号(PTRS)の時間密度を決定してもよい。
 また、制御部301は、前記複数の閾値に基づいて決定されるMCSインデックスの範囲と時間密度とを関連付けるテーブルを参照して、前記下り制御情報内の前記MCSインデックスに対応する前記時間密度を決定してもよい。
 ここで、前記変調次数及び前記符号化率の少なくとも一つの決定に用いられるテーブル(MCSテーブル、MCSインデックステーブル)は、6より小さい変調次数をサポートする第1のテーブル(例えば、図1)、8より小さい変調次数をサポートする第2のテーブル(例えば、図2)、又は、前記第1のテーブルよりも同じ変調次数に関連付けられる符号化率の少なくとも一つが小さい第3のテーブル(例えば、図3)のいずれかであってもよい。
 また、制御部301は、上記第1~第3のテーブルの動的な切り替えを制御してもよい。制御部301は、上記第1~第3のテーブルの何れかに基づいて、下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つを決定してもよい。
 また、制御部301は、上位レイヤシグナリングにより前記複数の閾値が設定されない場合、前記時間密度を所定値に決定してもよい。
<ユーザ端末>
 図11は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、トランスフォームプリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などの少なくとも一つが行われて送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 図12は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 また、制御部401は、基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
 なお、送受信部203は、位相追従参照信号(PTRS:Phase Tracking Reference Signal)を受信又は送信してもよい。また、送受信部203は、下り信号(例えば、PDSCH、PDCCH、DCI、参照信号、同期信号等)を受信し、上り信号(例えば、PUSCH、PUCCH、UCI等)を送信する。
 また、送受信部203は、各種の設定情報(例えば、PDSCHの設定情報、PUSCHの設定情報、SPS用の設定情報、設定グラント用の設定情報、DMRSの設定情報、下りPTRS設定情報、上りPTRS設定情報)を受信してもよい。
 また、制御部401は、前記下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つの決定に用いられるテーブルと、トランスフォームプリコーディングの適用有無と、の少なくとも一つに対応する複数の閾値と、前記下り制御情報内の変調及び符号化方式(MCS)インデックスとに基づいて、位相追従参照信号(PTRS)の時間密度を決定してもよい。
 また、制御部401は、前記複数の閾値に基づいて決定されるMCSインデックスの範囲と時間密度とを関連付けるテーブルを参照して、前記下り制御情報内の前記MCSインデックスに対応する前記時間密度を決定してもよい。
 ここで、前記変調次数及び前記符号化率の少なくとも一つの決定に用いられるテーブル(MCSテーブル、MCSインデックステーブル)は、6より小さい変調次数をサポートする第1のテーブル(例えば、図1)、8より小さい変調次数をサポートする第2のテーブル(例えば、図2)、又は、前記第1のテーブルよりも同じ変調次数に関連付けられる符号化率の少なくとも一つが小さい第3のテーブル(例えば、図3)のいずれかであってもよい。
 また、制御部401は、上記第1~第3のテーブルの動的な切り替えを制御してもよい。制御部401は、上記第1~第3のテーブルの何れかに基づいて、下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つを決定してもよい。
 また、制御部401は、上位レイヤシグナリングにより前記複数の閾値が設定されない場合、前記時間密度を所定値に決定してもよい。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の本実施の形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、本実施の形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa、an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  下り共有チャネル又は上り共有チャネルをスケジューリングする下り制御情報を受信する受信部と、
     前記下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つの決定に用いられるテーブルと、トランスフォームプリコーディングの適用有無と、の少なくとも一つに対応する複数の閾値と、前記下り制御情報内の変調及び符号化方式(MCS)インデックスとに基づいて、位相追従参照信号(PTRS)の時間密度を決定する制御部と、
    を具備することを特徴とするユーザ端末。
  2.  前記制御部は、前記複数の閾値に基づいて決定されるMCSインデックスの範囲と時間密度とを関連付けるテーブルを参照して、前記下り制御情報内の前記MCSインデックスに対応する前記時間密度を決定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記変調次数及び前記符号化率の少なくとも一つの決定に用いられるテーブルは、6より小さい変調次数をサポートする第1のテーブル、8より小さい変調次数をサポートする第2のテーブル、又は、前記第1のテーブルよりも同じ変調次数に関連付けられる符号化率の少なくとも一つが小さい第3のテーブルのいずれかであることを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記受信部は、上位レイヤシグナリングにより、前記複数の閾値を受信することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、上位レイヤシグナリングにより前記複数の閾値が設定されない場合、前記時間密度を所定値に決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  6.  下り共有チャネル又は上り共有チャネルをスケジューリングする下り制御情報を受信する工程と、
     前記下り共有チャネル又は前記上り共有チャネルの変調次数及び符号化率の少なくとも一つの決定に用いられるテーブルと、トランスフォームプリコーディングの適用有無と、の少なくとも一つに対応する複数の閾値と、前記下り制御情報内の変調及び符号化方式(MCS)インデックスとに基づいて、位相追従参照信号(PTRS)の時間密度を決定する工程と、
    を有することを特徴とする無線通信方法。
     
PCT/JP2018/030586 2018-08-17 2018-08-17 ユーザ端末及び無線通信方法 WO2020035956A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/268,718 US20210320747A1 (en) 2018-08-17 2018-08-17 User terminal and radio communication method
CN201880098793.1A CN112930666A (zh) 2018-08-17 2018-08-17 用户终端以及无线通信方法
PCT/JP2018/030586 WO2020035956A1 (ja) 2018-08-17 2018-08-17 ユーザ端末及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030586 WO2020035956A1 (ja) 2018-08-17 2018-08-17 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020035956A1 true WO2020035956A1 (ja) 2020-02-20

Family

ID=69525416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030586 WO2020035956A1 (ja) 2018-08-17 2018-08-17 ユーザ端末及び無線通信方法

Country Status (3)

Country Link
US (1) US20210320747A1 (ja)
CN (1) CN112930666A (ja)
WO (1) WO2020035956A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230235A1 (en) * 2020-05-14 2021-11-18 Sharp Kabushiki Kaisha User equipments, base stations and methods for uplink ptrs transmission
WO2022080392A1 (en) * 2020-10-14 2022-04-21 Sharp Kabushiki Kaisha User equipments, base stations and signaling for reduced data buffers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10623224B2 (en) * 2018-05-14 2020-04-14 At&T Intellectual Property I, L.P. Conveying modulation and coding information for an uplink data transmission
US11924014B2 (en) * 2020-10-15 2024-03-05 Qualcomm Incorporated Dynamic modulation and coding scheme table switching to indicate transmit waveform switching
CN116470987A (zh) * 2022-01-17 2023-07-21 华为技术有限公司 编码方法、解码方法和通信装置
US11736320B2 (en) * 2022-02-14 2023-08-22 Ultralogic 6G, Llc Multiplexed amplitude-phase modulation for 5G/6G noise mitigation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11102789B2 (en) * 2016-08-05 2021-08-24 Apple Inc. Transmission of phase tracking reference signals (PT-RS)
WO2018044715A1 (en) * 2016-08-30 2018-03-08 Intel IP Corporation System and method for imr associated with data transmission
WO2018070767A1 (ko) * 2016-10-11 2018-04-19 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음을 제거하는 신호 전송 방법 및 그 장치
CN112654089B (zh) * 2017-01-06 2022-02-25 华为技术有限公司 一种参考信号的配置方法、装置及系统
US10701724B2 (en) * 2018-01-12 2020-06-30 Apple Inc. Time density and frequency density determination of phase tracking reference signals (PT-RS) in new radio (NR) systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT: "Maintenance for reference signals and QCL", 3GPP TSG RAN WG1 MEETING #94 RL-1809139, 11 August 2018 (2018-08-11), XP051516509, Retrieved from the Internet <URL:http:www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94/Docs/R1-1809139.zip> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021230235A1 (en) * 2020-05-14 2021-11-18 Sharp Kabushiki Kaisha User equipments, base stations and methods for uplink ptrs transmission
WO2022080392A1 (en) * 2020-10-14 2022-04-21 Sharp Kabushiki Kaisha User equipments, base stations and signaling for reduced data buffers

Also Published As

Publication number Publication date
CN112930666A (zh) 2021-06-08
US20210320747A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
WO2020053978A1 (ja) ユーザ端末及び無線通信方法
JP7100134B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020026296A1 (ja) ユーザ端末及び無線通信方法
WO2020026297A1 (ja) 基地局及び無線通信方法
WO2020026292A1 (ja) 基地局
CN111066358B (zh) 用户终端以及无线通信方法
JPWO2019193700A1 (ja) ユーザ端末及び無線基地局
WO2020035956A1 (ja) ユーザ端末及び無線通信方法
WO2020016934A1 (ja) ユーザ端末
WO2020053941A1 (ja) ユーザ端末及び無線通信方法
WO2020053942A1 (ja) ユーザ端末及び無線通信方法
WO2020008644A1 (ja) ユーザ端末及び基地局
WO2020026291A1 (ja) ユーザ端末
WO2020009144A1 (ja) 端末及び無線通信方法
WO2020017055A1 (ja) ユーザ端末及び無線通信方法
WO2019193731A1 (ja) ユーザ端末及び無線基地局
JPWO2019026188A1 (ja) ユーザ端末及び無線通信方法
US20230198656A1 (en) Terminal, radio communication method, and system
WO2020035949A1 (ja) ユーザ端末及び無線通信方法
WO2020039483A1 (ja) ユーザ端末
WO2020031385A1 (ja) ユーザ端末及び無線通信方法
JP2023089241A (ja) 端末、無線通信方法、基地局及びシステム
JPWO2018163431A1 (ja) ユーザ端末及び無線通信方法
WO2020053943A1 (ja) ユーザ端末及び無線通信方法
WO2020039481A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP