WO2020007337A1 - 一种物联网编队通信方法 - Google Patents

一种物联网编队通信方法 Download PDF

Info

Publication number
WO2020007337A1
WO2020007337A1 PCT/CN2019/094654 CN2019094654W WO2020007337A1 WO 2020007337 A1 WO2020007337 A1 WO 2020007337A1 CN 2019094654 W CN2019094654 W CN 2019094654W WO 2020007337 A1 WO2020007337 A1 WO 2020007337A1
Authority
WO
WIPO (PCT)
Prior art keywords
formation
communication mode
information
iot platform
members
Prior art date
Application number
PCT/CN2019/094654
Other languages
English (en)
French (fr)
Inventor
赵灿
徐蓓
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19830348.9A priority Critical patent/EP3800903B1/en
Publication of WO2020007337A1 publication Critical patent/WO2020007337A1/zh
Priority to US17/141,446 priority patent/US20210125501A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0287Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
    • G05D1/0291Fleet control
    • G05D1/0295Fleet control by at least one leading vehicle of the fleet
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/162Decentralised systems, e.g. inter-vehicle communication event-triggered
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/30Control
    • G16Y40/35Management of things, i.e. controlling in accordance with a policy or in order to achieve specified objectives
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols

Definitions

  • the present application relates to the field of communications, and in particular, to a method for communication in the formation of the Internet of Things.
  • the Internet of Vehicles is a typical application of the Internet of Things technology in the field of transportation systems.
  • 3GPP has established two communication modes for the Internet of Vehicles, PC5 and Uu.
  • PC5 vehicles communicate with each other through the PC5 interface for device-to-device (D2D) communication.
  • D2D device-to-device
  • the PC5 communication mode is short-range communication and has a lower time
  • the Uu mode communicates between the vehicle and the base station through the Uu interface. The communication between vehicles needs to be forwarded by the base station and the network.
  • the Uu communication mode is a long-distance communication with a slightly higher delay but more reliability. high.
  • the platooning refers to a business scenario where multiple vehicles are trailing at a small distance.
  • the PC5 communication mode is more suitable for communication between fleet members when members' vehicles in the fleet are driving in line.
  • PC5 communication quality is greatly affected by congestion and occlusion, which may cause PC5 communication quality to decline or even disconnect.
  • the convoy enters a high-speed congested road or is blocked by a building or other vehicles, it may cause abnormal communication between the members of the fleet, and the following vehicles cannot obtain the driving status and intention information of the preceding vehicle in time. Driving is likely to cause a traffic safety accident.
  • a method for planning and adjusting the fleet communication mode is urgently needed.
  • This application proposes an IoT formation communication method.
  • the method uses an IoT platform to plan and manage the communication mode of the formation during driving.
  • the formation is selected according to the communication mode planning sent by the platform.
  • Position-based communication mode for communication Because the platform can obtain global information such as networks and maps, the platform's planned communication mode is more reasonable and accurate, and it solves the problems of convoy members, such as congested sections, poor network coverage sections, and multi-block sections, switching one by one and repeatedly switching.
  • the IoT platform may optionally refer to planning auxiliary information (such as network status and map information) to plan the formation communication mode.
  • the formation is composed of multiple formation members.
  • the formation information includes the identification of each formation member in the formation, the identification of the team leader, the communication mode supported by each formation member, and the formation driving interval information.
  • the formation leader is one of the formation members of the formation, and the formation travels.
  • Section information is formation driving route information or formation driving area information. It should be noted that the IoT platform can obtain all formation information at one time by one entity (such as the leader car); it can also obtain partial formation information from different entities in multiple steps and multiple steps, such as obtaining formation members' information from formation members. Information, and then obtain the identification of the formation members included in the formation, the identification of the leader, and the formation driving range information from the head car or the connected vehicle business server.
  • the IoT platform sends a formation communication mode planned by the IoT platform to the formation leader or each formation member in the formation.
  • the formation communication mode is used to instruct the formation formation members to use the communication mode in the formation driving interval.
  • the platform synthesizes various factors in advance to plan the recommended communication mode on the driving route for the fleet.
  • the leader and fleet members adjust the communication mode according to the platform's planning during the driving process, ensuring reliability without sudden network changes. Continuous communication also reduces the performance consumption of the vehicle in making communication mode adjustment decisions or judgments locally.
  • the planning assistance information described above is a communication mode supported by a geographic area or interval, and the communication mode supported by the geographic area or interval is obtained by the platform according to network state information and map information, and the network state information It includes at least one of coverage information of wireless signals and congestion information of wireless signals, and the map information includes at least one of road topology and building location relationships.
  • the IoT formation communication method proposed in this application includes not only the static planning of the fleet communication mode as described above, but also the dynamic update of the fleet communication mode.
  • the platform can re-plan the future driving interval of the formation, that is, the communication mode of the interval in which the formation has not yet traveled, according to changes in the network status or map information.
  • the communication mode supported by the formation members may change dynamically.
  • the formation member must promptly notify the platform of the updated formation members.
  • the communication mode, the platform should respond in a timely manner, comprehensively consider the updated communication mode supported by the formation members, the current communication mode used by other formation members, etc., plan the communication mode that the formation members should currently use, and notify the formation in a timely manner. member.
  • the IoT platform grasps the formation communication mode information, including the communication modes supported by formation members and the communication modes currently used by formation members.
  • the communication mode currently used by formation members is Uu
  • the IoT The platform can forward business messages directly to the formation members, without the need for the leader to forward, avoiding the roundabout and repeated forwarding of the message forwarding path, improving communication efficiency and saving network communication resources.
  • leader Members of the formation including the leader also need to make corresponding functional improvements to support the IoT formation communication method proposed in this application.
  • the team leader provides formation information required for the IoT platform planning to the IoT platform as a representative of the formation; when the communication mode supported by the formation members or the currently used communication mode changes, the team leader also notifies the IoT platform.
  • formation members may report their respective communication mode related information to the IoT platform, such as the supported communication modes and the currently used communication modes.
  • the leader or formation management entity then notifies the formation members of the IoT platform formation. , Such as formation member identification, leader identification, and formation driving interval information.
  • the formation members directly notify the IoT platform.
  • the communication mode of the formation planned by the IoT platform or the current communication mode of a formation member should be sent to the team leader, and the team leader will notify other formation members to adjust the communication mode according to the plan.
  • the communication mode of the formations planned by the IoT platform or the current communication mode of a formation member can also be directly sent to each formation member, and each formation member adjusts their own communication mode according to the plan.
  • the IoT formation communication method proposed in this application relates to an IoT platform or IoT server, a communication device built in or integrated in a formation member or leader. Therefore, the present application also provides a device or server for implementing the above-mentioned IoT formation communication method.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, causes the computer to execute the foregoing Internet of Things formation communication method.
  • the present application provides a computer program product containing instructions that, when run on a computer, causes the computer to execute the above-mentioned IoT formation communication method.
  • FIG. 1 is a schematic diagram of an IoT system architecture showing the design ideas of the present application
  • FIG. 2 is a schematic diagram of an IoT system architecture using a 3GPP communication network as an example
  • FIG. 3 is a schematic flowchart of a method for planning a communication mode of a fleet member according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for updating a communication mode plan of a fleet member according to an embodiment of the present invention
  • FIG. 5 is a flowchart of a method for planning a communication mode of a fleet member according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of geographical area division used in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of road segment division used in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of driving interval information used in an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for updating a communication mode plan of a fleet member according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for planning a communication mode currently used by members of a fleet according to an embodiment of the present invention
  • FIG. 11 is a flowchart of another method for planning a communication mode of a fleet member according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an in-vehicle device according to an embodiment of the present invention.
  • FIG. 1 shows a system overview of a method provided by an embodiment of the present application.
  • the IoT system shown in FIG. 1 includes an application or server providing map information, an IoT server or IoT platform, formation and communication network.
  • map information includes road topology, building location relationship or occlusion relationship, applications or servers that provide map information such as Google Maps, municipal road relationship systems, etc .
  • the formation includes two or more formation members, one of which is responsible for The functions of the team leader, including formation members, can form, line up, fly, or drive. Compared to other formation members, the team leader has more functions and assumes more responsibilities, such as coordinating formation member information interaction within the formation. , Formation operation control, interaction with the server to assist formation management, environmental awareness, and one or more functions.
  • formation members support one or more communication modes.
  • the device-to-device (D2D) short-range communication communication mode among formation members.
  • the formation members communicate with the platform via the communication network and forward the communication mode communicated with other formation members via the platform.
  • the formation Members can only use one communication mode to enter Communication.
  • the platform plans the formation members' communication mode when the formation travels to different geographical areas.
  • the formation is based on the communication mode sent by the platform. Plan information and adjust the communication mode of formation members.
  • the platform when the platform is planning the communication mode of the group, it may also refer to planning auxiliary information, such as the communication mode supported by the geographic area or interval.
  • the communication mode supported by the geographic area or interval may be the information configured on the platform. It can be obtained by the platform comprehensive map information and network status (such as one or more information such as network coverage of wireless signals in each communication mode, network congestion status of wireless signals in each communication mode), and the map information is provided by a map server The network status information is provided by a communication network.
  • FIG. 1 and the present application mainly describe a vehicle formation as an example.
  • the vehicle formation is also referred to as a fleet or formation in this application.
  • the team leader is referred to as the lead car in this application.
  • the method provided in this application has nothing to do with the specific external form of the formation members, whether it is an aircraft formation, a toy car formation, a tram formation, a bicycle formation, or other types of formation, as long as the formation If the member device has communication capabilities, the formation can use the method provided in this application to adjust the communication mode during the driving or exercise process;
  • the communication network can be a 3GPP communication network or a communication network that provides other long-distance communication technologies, such as a communication network that provides access to SigFox, LoRa, etc .; short-distance D2D communication between fleet members can be PC5 as defined by the 3GPP standard.
  • the communication mode may also be a communication mode based on other short-range communication technologies (such as Z-WAVE, WiFi, dedicated short-range communication (DSRC), etc.).
  • the method proposed in the present application will be described mainly by taking the 3GPP communication network as an example, but it should be clear to those skilled in the art that the method is also applicable to any two or more communication modes among formation members. Adjustment or selection.
  • the communication network in FIG. 1 corresponds to the 3GPP fourth-generation communication network in FIG. 2, and specifically includes an Evolved Universal Terrestrial Radio Access Network (Evolved Universal Terrestrial Radio Access Network, E-UTRAN) and a 4G core network (core network, CN), where E-UTRAN includes equipment or network elements such as 4G base stations, 4G CN includes Mobility Management Entity (MME), packet data network gateway (P-GW), broadcast multicast service center (Broadcast-Multicast-Service Center, BM-SC), media broadcast multicast service gateway (MBMS-GW), service capability open function (Service Capability Exposure Function, SCEF) and other network elements;
  • E-UTRAN includes equipment or network elements such as 4G base stations
  • 4G CN includes Mobility Management Entity (MME), packet data network gateway (P-GW), broadcast multicast service center (Broadcast-Multicast-Service Center, BM-SC), media broadcast multicast service gateway (MBMS-GW), service capability open function (Service Capability Exposure Function, SCEF) and other network
  • the platform shown in FIG. 1 corresponds to the vehicle-to-everything application server (V2X AS) shown in FIG. 2;
  • V2X AS vehicle-to-everything application server
  • the fleet members or formation members shown in FIG. 1 correspond to the user equipment (UE) shown in FIG. 2.
  • UEA, UEB, UEC, and UED in FIG. 2 are fleets in the same fleet. Members, where UE A is the leader.
  • Fleet members can access E-UTRAN through the LTE-Uu interface (or Uu interface for short), and communicate with the platform through the CN.
  • the PC5 interface between some vehicles is shown in FIG. 2. Other vehicles that do not show the PC5 interface may also use PC5 for communication, such as UEA and UEC may also use PC5 for communication.
  • the PC5 communication mode In the PC5 mode, vehicles communicate through the PC5 interface for device-to-device (D2D) communication.
  • the PC5 communication mode is a short-range communication with lower latency but lower reliability; in the Uu mode, vehicles and The base stations communicate through the Uu interface, and the communication between vehicles needs to be forwarded by the base station and the platform.
  • the Uu communication mode belongs to long-distance communication, with slightly higher delay but higher reliability.
  • the platform-to-vehicle downlink message (that is, the message sent by the platform to the vehicle)
  • the platform can be delivered to the vehicle in unicast mode through the P-GW, and can also be sent to the vehicle through BM-SC and MBMS-GW are delivered to vehicles by MBMS broadcast or multicast.
  • the communication mode currently used by formation members must be determined first, and then Only efficient communication is possible between formation members, formation members and the platform.
  • the platform needs to send a message to the fleet member UEB (such as a notification message to exit the fleet, or the platform forwards messages sent by other network equipment or terminal equipment to UEB). If the platform does not perceive the fleet member's current For the communication mode used, the platform may send a message to UEB to the lead vehicle UEA, and the platform instructs the lead vehicle UEA to forward it to UEB in the PC5 communication mode. However, because the communication mode currently used by UEB is Uu, Then UE A has to send the message to the platform again, instructing the platform to forward it to UE B in the Uu communication mode.
  • the platform does not perceive the communication mode currently used by the fleet members, the fleet communication has a problem of message transmission redundancy. Therefore, not only does the fleet itself need a method for efficiently and timely adjusting the communication mode, the platform also needs to perceive the current communication mode of the fleet members in real time in order to improve the efficiency of fleet communication.
  • the platform In addition to planning the communication mode for the fleet, in order to sense the current communication mode of the fleet members in real time, the platform must dynamically update the communication mode of the fleet members.
  • the platform dynamically updates the communication mode of the team members. There are two situations or scenarios. One is that the platform actively updates the communication mode of the team or the communication mode of the team members, and the other is that the team member requests the platform to update the communication mode of the team members.
  • the platform If the platform receives a network status change event from the communication network, the platform actively updates the communication mode of the fleet in the area affected by the network change; if the platform receives a communication mode change request sent by the fleet member, the platform according to the communication mode supported by the fleet member, the fleet Information such as the communication mode currently used by the members and the network status of the driving area determine and notify the fleet members to update the communication mode.
  • the communication mode of the fleet described in this application belongs to the overall attributes of the fleet or group, and the communication mode of the fleet is applicable to each member of the fleet; the communication mode of the fleet members described in this application, Individual attributes belonging to the team members.
  • FIG. 3 and FIG. 4 are brief method flowcharts for implementing this concept based on the system architecture shown in FIG. 1 and FIG. 2.
  • Figure 3 shows a brief method flow chart for communication mode planning:
  • the platform obtains fleet information.
  • it also obtains planning assistance information, such as the communication mode supported by the geographic area or interval.
  • the platform can open the SCEF network to the business capability to obtain network status information.
  • the platform can obtain map information from the application server, and then obtain the geographic area based on the information obtained in steps 3011 and 3012.
  • the team sends the team information to the platform after the formation is successful.
  • the team information includes at least the leader ID, the team member ID, the communication mode supported by the team members, and the team's location information.
  • it also includes The communication mode currently used by the fleet members.
  • the location information of the fleet is used to identify the route or travel range of the fleet, which can be a certain geographic area or a travel route.
  • the platform plans the communication mode of the fleet in different regions or sections according to the fleet information.
  • the communication mode supported by the geographic area or interval may also be referred to.
  • the communication mode supported by the geographic area or interval may be the information configured on the platform or the platform according to step 3011.
  • the obtained map information and network status information obtained in step 3012 are obtained through analysis or planning. It should be noted that this application does not limit the specific steps of the platform to plan the communication mode.
  • the platform can first determine the communication mode supported by each area in the map based on the network status information and map information, and then use the fleet information obtained in 3013 to combine the previous The communication modes supported by each area are determined to determine the communication mode of the fleet in the driving area or driving path.
  • the communication mode can be directly planned based on the fleet information, network status information and map information. It should also be noted that when the platform plans the communication mode of the fleet, the team treats the fleet as a whole, that is, the communication mode of the fleet is applicable to all fleet members in the fleet.
  • the platform issues the communication mode of the fleet planned by the platform to the fleet. Specifically, it may be a communication mode of sending a convoy to a lead vehicle.
  • the communication mode of the team can also be issued to each team member.
  • the communication mode of the team members in the fleet is adjusted according to the location of the fleet and the communication mode planned by the platform. Since the fleet is composed of multiple vehicles, the location of the fleet can have multiple definitions, which is not limited in this application. For example, the location of the fleet can be the location of the lead vehicle, or the location of other member vehicles in the fleet. This is where the middle of the fleet is currently located.
  • the platform sends the planned communication mode to the lead vehicle in step 303, it is recommended that the position of the lead vehicle be used as the position of the fleet.
  • the lead vehicle adjusts according to its current position and the communication mode planned by the platform. Communication mode for fleet members. If the platform sends the planned communication mode to each team member in step 303, each team member can adjust his own communication mode according to his current position and the planned communication mode of the platform during the driving of the team.
  • Figure 4 shows a simplified method flow chart for communication mode update
  • Step 4011 when an abnormal event occurs in the wireless signal coverage of the communication network, the communication network sends a network abnormal event to the platform (such as sending a notification of the network abnormal event to the platform through the service capability open network element shown in the figure, or through another network).
  • Meta sends notification to the platform), information such as event location, event type in the notification of network abnormal events, event types include but are not limited to Uu signal congestion, PC5 network congestion, etc .; for example, step 4012, the platform receives map change events sent by the map application , Including event location, event type, event types include but are not limited to adding blocking areas, deleting blocking areas, etc .; for example, step 4013, the platform receives team member change messages, or communication mode change messages supported by team members. The 4013 messages can be unified It is sent to the platform by the leading car in the fleet, or it can be sent to the platform by other fleet members.
  • the platform re-determines the communication mode of the fleet or the communication mode of the fleet members according to the information of the fleet members, network status information and map information.
  • the platform sends the updated communication mode of the fleet or the communication mode of the fleet members to the fleet members.
  • the fleet and platform communicate and forward messages according to the updated communication mode.
  • Fig. 3 and Fig. 4 briefly introduce the overall planning process of the fleet communication mode and the update process of the communication mode. The following detailed description of the processes shown in Figs.
  • FIG. 5 shows a further detailed process of the process shown in FIG. 3.
  • the platform receives Uu signal coverage and MBMS signal coverage information sent by a service capability open entity.
  • the platform receives map information sent by a map provider, including road topology and building coverage.
  • the platform integrates the map and network coverage, and determines the communication mode supported by each area according to the area.
  • the so-called communication mode supported by the area refers to the communication mode that a certain area can provide, or the communication mode available to the communication device in that area.
  • the area can be divided according to the geographical scope, and also can be divided according to the road topology.
  • Figure 6 is a schematic diagram of determining the communication mode according to the geographical scope. The communication modes supported by different regions are planned according to the geographical scope. Assume that the network status reported by the communication network and the matching results of the map area are shown in Table 1. Area 2 is used as an example.
  • FIG. 7 is a schematic diagram of determining a communication mode according to a road topology.
  • the communication modes of different road sections are planned according to the road topology. Assume that the network state reported by the communication network and the matching result of the road topology are shown in Table 2. Road section 3 is used as an example for illustration.
  • Section 3 is covered by both Uu and MBMS networks, and the Uu and MBMS networks are not congested, but the map information shows that the buildings in section 3 are more severely blocked (not suitable for PC5 communication), then the platform can plan the communication mode supported by section 3 as Uu and MBMS.
  • Table 1 Regional network status and platform-planned regional supported communication modes
  • Table 2 Supported Communication Modes for Road Network Status and Platform Planning Area
  • the leading car in the convoy reports the formation (ie, convoy) information to the platform.
  • This application does not limit the timing of the first team to report the fleet information, for example, the team information can be reported to the platform after the vehicles have teamed up close.
  • the reported fleet information includes at least the formation identification or the fleet identification, the lead vehicle identification, (the identification of the fleet members, the communication mode supported by the fleet members, the communication mode currently used by the fleet members (optional)) (0 ... n), the driving of the fleet Interval information.
  • the reported fleet information should include the identity of each fleet member including the lead car, the communication mode supported by each fleet member (such as one or more modes in Uu, PC5, MBMS) and the current status of each fleet member.
  • the communication mode used (such as any of Uu, PC5, MBMS); the driving zone information of the fleet may be the area information of the fleet, or an administrative area identifier (such as the Xi'an High-tech Zone, or the corresponding on the map) Area number), or it may be a polygon area composed of geographic coordinate points (such as: P1, P2, P3, P4, where P represents a geographical coordinate, and the driving area is sequentially connected from P1 to P4 to form a closed polygon area, each coordinate point You can use the World Geodetic System (WGS) to represent the latitude and longitude information), or it may be the information of the driving route of the convoy.
  • WGS World Geodetic System
  • Coordinates to the n-th intermediate intersection), the end point, and each coordinate point can be represented by WGS latitude and longitude information, such as lat / lon (31.329250 121.223650).
  • the identification of the fleet member or the identification of the lead vehicle may be a vehicle identification number (VIN), or the identification assigned to the vehicle by the platform after the vehicle is registered in advance on the platform;
  • the formation ID reported by the lead car needs to be unique.
  • the formation ID reported by the lead car may be a pre-allocated ID for the lead car or the fleet in advance.
  • the communication mode currently used by the team members is not necessary information for the communication mode of the platform planning team. The team can report the current mode of communication used by the team members to the platform in 504 message, or it can subsequently notify the platform through other messages. The communication mode currently used by each fleet member.
  • the platform sets the communication mode used by the fleet in a certain area according to the communication mode supported by the fleet members, the location information of the fleet, and the communication mode supported by the area.
  • the team members support PC5 and Uu
  • the team's driving route information (as indicated by the thick solid line in Figure 8, and the coordinate positions of positions 1, 2, 3, and 4 are given in the order of the team's travel direction).
  • the communication mode of the team planned by the platform is ( Position 1-> Position 2, Uu; Position 2-> Position 3, PC5; Position 3-> Position 4, PC5). It should be noted that when the platform manages the fleet as a formation, the fleet information reported by the fleet and the communication mode of the fleet planned by the platform for the fleet can be used as formation-related information for recording and management on the platform.
  • the platform sends the planning of the communication mode of the fleet to the leading vehicle, that is, the communication mode planning information of the fleet on the driving route, such as (position 1-> position 2, Uu; position 2 -> Position 3, PC5; Position 3-> Position 4, PC5).
  • the platform may also send the planned communication mode of the fleet to each fleet member, and the platform needs to issue a message according to the communication mode currently used by each fleet member.
  • step 506 if the platform sends the communication mode of the fleet to the lead vehicle, perform steps 507-510:
  • the leading vehicle matches the communication mode of the fleet issued by the platform according to the current driving range of the fleet, and determines the current communication mode of the fleet, that is, the communication mode that the platform-planned fleet should use at the current location.
  • the lead vehicle Because the lead vehicle records the communication mode currently used by each fleet member, after the lead vehicle determines the communication mode that the team planned for the platform should currently use, the lead vehicle can determine which team members currently use the communication mode and platform plan. No match.
  • the lead vehicle notifies the members of the fleet who want to change the communication mode, and updates the current communication mode.
  • the message carries the communication mode that the fleet planned by the platform should use at the current location.
  • the lead vehicle notifies the platform which members of the fleet currently use a change in communication mode, and the notification message includes the member identification and the currently used communication mode after the change.
  • step 506 if the platform sends a fleet communication mode to each fleet member, then:
  • Each team member executes the method executed by the lead vehicle in step 507.
  • the currently used communication mode is adjusted to the communication mode currently used by the team , And notify the lead vehicle and platform to update the communication mode currently used by the fleet members, and the notification message includes the member identification and the currently used communication mode after the change.
  • the platform updates the communication mode currently used by the team members recorded by the platform according to the received message. It should be noted that the platform manages and maintains the fleet in the form of formations. The platform not only saves the overall information or attributes of the fleet (such as the communication mode of the fleet planned by the platform), but also the information of each fleet member (such as The identification of the team members, the communication modes supported by the team members, the communication modes currently used by the team members, etc.).
  • the platform may receive service messages sent by the fleet application, the lead vehicle, and the following vehicle, including the source identifier, the destination identifier (such as the fleet member identifier), and the message payload.
  • the platform After receiving the message, the platform forwards the fleet message based on the communication mode currently used by the fleet members. If the destination identification is a single fleet member, the platform directly sends business messages to the fleet members according to the communication mode currently used by the fleet member; when the communication mode currently used by the fleet member is MBMS, the platform can use both MBMS multicast To send service messages to the team members, or you can use the Uu interface to send business messages to the team members using unicast.
  • the platform needs to send a business message to each fleet member according to the communication mode currently used by each member in the formation or fleet; for the fleet members whose current communication mode is PC5, The platform needs to select the head car in the formation to which the fleet member belongs to forward the message, that is, send the business message to the head car of the formation to which the fleet member belongs, and the head car forwards the business message to the fleet member according to the purpose identifier.
  • the platform aggregates global information (map information, network status information, fleet information, etc.) to plan in advance the communication modes adopted by fleet members in different regions. Due to the integration of global information such as networks and maps, the platform's planned communication mode is more reasonable and accurate, and it solves the problems of convoy members, such as congested sections, poor network coverage sections, and multiple obstruction sections, switching one by one and repeatedly switching.
  • the processes shown in FIG. 3 and FIG. 5 are for the platform to plan or set the communication mode of the fleet during driving according to the static information.
  • the platform performs the planning of the communication mode as shown in Figure 3 or Figure 5, As shown in Figure 4, the platform also needs to re-plan and adjust the communication mode of the fleet members according to the dynamically changing information to ensure the normal communication.
  • FIG. 9 is a further detailed process in the scenario 4011 in FIG. 4, that is, the change of the network state triggers the platform to re-plan the communication mode of the fleet.
  • the platform receives a network status abnormal event reported by a service capability open entity (such as SCEF), including the location and type of the event.
  • the type of the event may be Uu signal congestion, PC5 signal congestion, or MBMS congestion.
  • the network status abnormal event is (Position 2-> Position 3, PC5 is congested).
  • the platform may also receive network status abnormal events from terminals, BM-SC, radio access network congestion awareness function (RCAF) and other devices or network elements.
  • the platform's processing method and diagram The method shown in 9 is the same and will not be repeated here.
  • the platform determines the affected area of the network status abnormal event, and refreshes the communication mode supported by the affected area.
  • the platform sends the updated plan to the leading vehicle, including at least The platform re-plans the communication mode of the affected fleet in the affected area. For example, the platform re-planned the communication mode of the convoy at position 2-> position 3. After the plan, the communication mode of the convoy at position 2-> position 3 was (position 2-> position 3, Uu). It should be noted that, as described in step 506, optionally, the platform may also choose to send each team member a communication mode of the planned team, and the platform needs to issue a message according to the communication mode currently used by each team member.
  • the embodiment shown in FIG. 9 is described by using only an example in which the planning information is sent to the lead vehicle.
  • the lead vehicle refreshes the communication mode of the fleet in the affected area, and manages the communication mode of the fleet according to the latest planned communication mode of the fleet (refer to steps 507-511).
  • the platform updates the planning of the communication mode of the fleet in a timely manner based on the initial planning made in FIG. 5 according to the change of network status or map information, ensuring the timeliness and effectiveness of the platform planning.
  • FIG. 10 is a further detailed process in the scenario 4013 in FIG. 4, that is, the change of the communication mode supported by the team members triggers the platform to plan the communication mode of the team or team members.
  • the platform has obtained the fleet information, and optionally, it has also obtained planning assistance information.
  • the method for the platform to obtain fleet information and planning assistance information refer to the information such as 501, 502, and 503 shown in FIG. 5, which will not be repeated here.
  • the team member detects that the current communication mode network status is abnormal, refreshes the communication mode information supported by the UE, and sends communication mode change information to the platform, including the identity of the team member and the communication mode supported by the team member.
  • team member 1 supports three communication modes (PC5, Uu, MBMS). Currently, the PC5 communication mode is used for communication. During driving, team member 1 detects the PC5 communication quality.
  • Team Member 1 When the communication quality is poor (such as the insertion of other vehicles outside the team causes PC5 communication) Obstructed), Team Member 1 disables PC5 communication capability, Team Member 1 refreshes the supported communication mode (Uu, MBMS), Team Member 1 needs to send update information to the platform to update the supported communication mode, including team members 1 identification, supported communication mode (Uu, MBMS). It should be noted that fleet member 1 can send an update message to the platform through the Uu communication mode, or send the update message to the lead vehicle, which is forwarded to the platform.
  • the platform refreshes the communication mode supported by the fleet members, that is, refreshes the fleet information.
  • the platform sends a response message to the fleet members supporting the refreshed communication mode to identify that the update was successful. It should be noted that the platform uses the same communication path as the 1001 message to send the 1003 message. If a team member sends a 1001 message to the platform through the Uu interface, the platform sends a 1003 message to the team member through the Uu communication mode; The 1001 message is sent to the platform, and the platform forwards the 1003 message to the team members through the lead vehicle.
  • the platform determines whether the communication mode currently used by the fleet members needs to be updated based on the communication mode supported by the fleet members and the communication mode currently used, and the communication mode supported by the area where the fleet is currently driving. If there is no need to change, the process ends. If changes are needed, the platform plans the communication mode currently used by all team members or some team members in the team based on the updated team information, network status information and map information. Assume that the communication mode supported by Fleet Member 1 is (Uu, MBMS), the platform judges that the current driving area of the team supports (Uu, MBMS, PC5), and all the team members in the team support the Uu communication mode, and most of the team members currently use The communication mode is Uu.
  • the current communication mode used by all fleet members in the platform planning fleet is MBMS (broadcasting is more efficient than unicasting). It should be noted that the method provided in this application assumes that the platform can obtain the current location information of the fleet at any time. How the platform obtains the location information of the fleet is not within the scope of protection of this application, and will not be repeated here.
  • the platform combines the current communication mode used by the fleet members and the current communication mode used by the platform members planned in step 1004 to determine which fleet members are to be notified to update the currently used communication mode. Assuming that the current communication mode used by team member 1 and team member 2 is not consistent with the platform plan, the platform needs to notify team member 1 and team member 2 to update the currently used communication mode.
  • the platform notifies fleet member 1 and fleet member 2 to update the currently used communication mode, and the update message includes the identity of the team member and the currently used communication mode. There may be one or more team members who need to update the current communication mode.
  • the platform can directly send the update message to the team members who need to be updated, and can also send the message to the lead car, which is forwarded to the team members.
  • a solution of forwarding by a lead vehicle is taken as an example for description.
  • the leading vehicle After receiving the 1006 message, the leading vehicle records the updated communication mode currently used by the fleet members, and notifies the corresponding fleet members to adjust the current communication mode according to the identity of the fleet member carried in the message.
  • step 1010 After the leader vehicle finishes updating the currently used communication mode, it notifies the platform that the update is complete. If the platform uses the Uu interface to notify team member 1 and team member 2 respectively in step 1006, then in step 1010, team member 1 and team member 2 send an update response message to the platform.
  • the platform receives the update response message sent by the fleet, and the platform refreshes the communication mode currently used by the fleet members.
  • the platform may subsequently receive formation service messages from the formation application or fleet application, the lead vehicle or the following vehicle, including the source, destination identifier, and message payload.
  • the platform After receiving the message, the platform forwards the fleet message based on the communication mode currently used by the fleet members. For details, refer to the description of step 513.
  • the method flow shown in Figure 10 is the platform's timely adjustment of the communication mode currently used by the fleet members.
  • the method flow shown in Figure 10 the change of the communication mode of the fleet members, triggers the platform to adjust the communication mode of the fleet members and other vehicles in the fleet in a timely manner, based on the global information, based on the global communication information, and timely adjusts the bicycle or some vehicles.
  • the communication mode of the mobile phone is adjusted to optimize the communication mode currently used by the fleet members, which further improves the communication efficiency of the fleet.
  • the method provided by the present invention can also derive a variety of flexible and specific implementation methods.
  • the fleet information reported to the platform by the fleet as described in step 3013 or 504 can actually be reported to the platform by multiple entities through different messages.
  • the team members report their respective supported communication modes to the platform.
  • the currently used communication Mode the formation management entity requests the platform to create a formation, and the request message carries the identification of the formation member, the head of the vehicle, and the information of the driving range of the fleet.
  • the functions and method flows of the platform described in this application may also be specifically executed by the connected vehicle server.
  • the platform corresponds to IN-CSE (Common Services, Entity, Infrastructure, and Node) defined by the oneM2M standard.
  • IN-CSE Common Services, Entity, Infrastructure, and Node
  • different types of vehicles may correspond to MN (Middle Node) defined by the oneM2M standard Or ASN (Application Service Node) or ADN (Application Dedicated Node).
  • MN Middle Node
  • ASN Application Service Node
  • ADN Application Dedicated Node
  • the platform manages the fleet or formation as a group.
  • the fleet or formation members are managed as group members. Group members must first register with the platform before they can be created as a group for management and maintenance.
  • the method flow shown in FIG. 5 specifically evolves into the flow shown in FIG. 11.
  • 1101-1103 is a specific implementation of 501-503, 1104-1111 is a specific implementation of 504-506, and 1112-1117 is a specific implementation of 507-511.
  • each member of the fleet needs to register the device with the platform separately, and report the communication modes it supports and the currently used communication mode (as shown in 1104-1107), and then the formation management entity (such as the head Vehicle or service providing server.
  • the formation management entity such as the head Vehicle or service providing server.
  • the figure takes the lead vehicle to create a formation as an example.
  • the 1108 message can also be sent by other fleet management entities to request the platform to create a group resource (such as 1108-1111).
  • the platform records the communication capabilities of each member of the fleet (such as the supported communication mode and the currently used communication mode) under the ⁇ remoteCSE> resource corresponding to the fleet members.
  • the route information and the communication mode of the team planned by the platform are recorded under the ⁇ group> resource created by the lead vehicle.
  • the team members themselves need to initiate an update request to the platform to request an update ⁇ remoteCSE> Information recorded under the resource, as shown in 1115-1117.
  • each device or device such as a vehicle or fleet member, a platform, or a network element in a communication network, includes a hardware structure and / or a software module corresponding to each function.
  • a corresponding communication device should be integrated or built in the fleet or formation members to implement the method flow as described in the above embodiment.
  • the present invention can be implemented in the form of hardware or a combination of hardware and computer software by combining the units and algorithm steps of each example described in the embodiments disclosed herein.
  • the platform, the communication device integrated or built in the fleet member, or the network element in the communication network described in the method embodiment may be implemented by the computer device (or system) in FIG. 12.
  • FIG. 12 is a schematic diagram of a computer device according to an embodiment of the present invention.
  • the computer device 1200 includes at least one processor 1201, a communication bus 1202, a memory 1203, and at least one communication interface 1204.
  • the processor 1201 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the solution of the present invention. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication bus 1202 may include a path for transmitting information between the aforementioned components.
  • the communication interface 1204 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • RAN radio access network
  • WLAN wireless local area networks
  • the memory 1203 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM), or other types that can store information and instructions
  • Dynamic storage device can also be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory (EEPROM)), read-only compact disc (compact disc-read-only memory (CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory may exist independently and be connected to the processor through a bus. The memory can also be integrated with the processor.
  • the memory 1203 is configured to store application program code that executes the solution of the present invention, and is controlled and executed by the processor 1201.
  • the processor 1201 is configured to execute application program code stored in the memory 1203, so as to implement functions in the method of the present patent.
  • the processor 1201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 12.
  • the computer device 200 may include multiple processors, such as the processor 1201 and the processor 1208 in FIG. 12. Each of these processors can be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the computer device 1200 may further include an output device 1205 and an input device 1206.
  • the output device 1205 communicates with the processor 1201 and can display information in a variety of ways.
  • the output device 1205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 1206 is in communication with the processor 1201 and can accept user input in a variety of ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the above-mentioned computer equipment 1200 may be a desktop computer, a network server, a chip, a communication module, or a device or device having a similar structure in FIG. 2.
  • the embodiment of the present invention does not limit the type of the computer equipment 1200.
  • the device 1200 is a chip
  • the function / implementation process of the transceiver module 1204 can also be implemented through pins or circuits; optionally, the memory is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip.
  • the head vehicle or other team members described in the method embodiment above may integrate the device shown in FIG. 13 to implement the method provided by this patent.
  • the device 1300 shown in FIG. 13 includes at least one wireless transceiver 1301, a processor 1302, and a memory 1303, and optionally, a fleet communication transceiver.
  • the wireless transceiver 1301 is mainly used to receive and send wireless signals, and communicate with equipment or devices external to the vehicle (such as base stations, other vehicles, roadside service units, servers, etc.).
  • the wireless transceiver 1301 may support one or more wireless communication technologies, such as Wifi, Uu communication, PC5 communication, MBMS communication, LoRa, etc.
  • the wireless transceiver 1301 selects a corresponding communication mode to communicate with other devices or devices according to an instruction of the processor.
  • the memory 1303 is configured to store vehicle-related information and fleet-related information.
  • 1301 is used to store the identification of the vehicle, the communication mode supported by the vehicle, and the communication mode currently used by the vehicle.
  • 1300 is an integrated device in the lead vehicle, it is also used to store the identification of the team members included in the fleet.
  • the processor 1302 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of the solution of the present invention. integrated circuit.
  • the processor 1302 is mainly used to perform service processing, construct and parse messages, and communicate with external devices or devices through a wireless transceiver.
  • 1302 is used to construct the fleet information sent to the IoT platform, and analyze the communication mode of the fleet planned by the platform received through the wireless transceiver 1301; during the driving process of the fleet, according to the The current position of the fleet and the communication mode of the fleet sent by the IoT platform, determine the communication mode that the fleet members of the fleet planned by the IoT platform should adopt at the current location, determine the fleet members who need to adjust the communication mode, and Send a message to the team member who needs to adjust the communication mode, the message is used to instruct the team member who needs to adjust the communication mode to adjust the current communication mode; when the communication mode supported by the team member changes, 1302 is also used to send The IoT platform sends a first message, the first message includes the identity of the fleet member and the communication mode supported by the fleet member, 1302 parses the notification message sent by the IoT platform, and the notification message includes all Fleet members who have described a change in the supported communication mode that describes the IoT platform
  • 1302 is used to send a registration request to the IoT platform.
  • the registration request includes the identity of the team member, the communication mode supported by the team member, and the current use of the team member. Communication mode.
  • the fleet communication transceiver 1304 is used for the device 1300 to communicate with other devices or components in the vehicle.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.

Abstract

本申请提出一种物联网编队通信方法,该方法由物联网平台对编队在行驶过程中的通信模式进行规划和管理,编队在行驶过程中,根据平台发送的通信模式规划,选择与编队当前所在位置对应的通信模式进行通信。由于平台可以获得网络和地图等全局信息,平台规划的通信模式更合理、更准确,解决了拥塞路段、网络覆盖差路段、多遮挡路段等车队成员逐个切换和反复切换的问题。

Description

一种物联网编队通信方法
本申请要求于2018年7月6日提交中国国家知识产权局、申请号为201810736940.5,发明名称为“一种物联网编队通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种物联网编队通信方法。
背景技术
车联网是物联网技术在交通系统领域的典型应用。3GPP制定了两种车联网通信模式,PC5和Uu;PC5模式下,车辆间通过PC5接口,进行设备到设备(device to device,D2D)通信,PC5通信模式属于近距离通信、具有更低的时延、但可靠性偏低;Uu模式下,车辆与基站间通过Uu接口进行通信,车辆间的通信需要经过基站和网络转发,Uu通信模式属于远距离通信,时延略高,但可靠性更高。
车联网中,存在编队行驶(platooning)的业务场景,platooning指多辆车,以极小的车距尾随行驶的业务场景。当车队中的成员车辆列队行驶时,PC5通信模式更适合车队成员间通信。但是PC5通信质量受拥塞、遮挡影响较大,可能导致PC5通信质量下降,甚至断连。比如,当车队驶入高速拥堵路段,或被建筑物或其他车辆遮挡,可能导致车队成员车辆间通信异常,后车无法及时获取前车驾驶状态和意图信息,由于车队中的成员车辆近距离跟随驾驶,极可能引发交通安全事故。为了保证车队通信的连续性和可靠性,亟需一种规划并调整车队通信模式的方法。
发明内容
本申请提出一种物联网编队通信方法,该方法由物联网平台对编队在行驶过程中的通信模式进行规划和管理,编队在行驶过程中,根据平台发送的通信模式规划,选择与编队当前所在位置对应的通信模式进行通信。由于平台可以获得网络和地图等全局信息,平台规划的通信模式更合理、更准确,解决了拥塞路段、网络覆盖差路段、多遮挡路段等车队成员逐个切换和反复切换的问题。
物联网平台根据编队信息,可选的,还可以参考规划辅助信息(如网络状态和地图信息等),对编队的通信模式进行规划。编队由多个编队成员组成,编队信息包括编队中各编队成员的标识,领队的标识,各编队成员支持的通信模式和编队行驶区间信息,其中领队为所述编队的编队成员之一,编队行驶区间信息为编队行驶路线信息或编队行驶区域信息。需要说明的是,物联网平台可以一个实体(如头车)一次获取全部的编队信息;也可以分多次多个步骤从不同的实体分别获取部分编队信息,如从编队成员获取各编队成员的信息,再从头车或车联网业务服务器获取编队中包括的编队成员的标识,领队的标识和编队行驶区间信息。
物联网平台向编队中的领队或编队的中的每个编队成员发送物联网平台规划的编队的通信模式,编队的通信模式用于指示编队的编队成员在编队行驶区间中应采用的通信模式。如上所述,平台提前综合各方面因素,为车队规划了行驶路线上推荐的通信模式,领队和车队成员在行驶过程根据平台的规划调整通信模式,在没有突发网络变化的情况下保证了可靠连续的通信,也减少了车辆在本地进行通信模式调整决策或判断的性能消耗。
一种可能的实施例中,如上所述的规划辅助信息为地理区域或区间支持的通信模式,地理区域或区间支持的通信模式为所述平台根据网络状态信息和地图信息而获得,网络状态信息包括无线信号的覆盖信息和无线信号的拥塞信息中至少一种信息,所述地图信息包括道路拓扑和建筑物位置关系中至少一种信息。
本申请提出的物联网编队通信方法,不仅包括如上所述的车队通信模式的静态规划,还包括车队通信模式的动态更新。
一种情况下,平台可以根据网络状态变化或地图信息的变化,重新规划编队未来行驶区间,即编队还未行驶到的区间的通信模式。
另一种情况下,由于一些突发情况,如交通拥塞,车辆遮挡等,编队成员支持的通信模式可能动态发生变化,这种情况下,该编队成员要及时通知平台更新后的编队成员支持的通信模式,平台要及时作出响应,综合考虑更新后的编队成员支持的通信模式、编队中其它编队成员当前使用的通信模式等信息,规划该编队成员当前应该使用的通信模式,并及时通知该编队成员。
在一种可能的实施例中,考虑到整个编队通信的整体效率,由于某个编队成员支持的通信模式的变化,可能需要调整编队中其它编队成员当前使用的通信模式,这种情况下,平台还需要通过领队通知或直接通知其他需要调整当前通信模式的编队成员。
本申请提出的物联网编队通信方法,物联网平台掌握编队的通信模式信息,包括编队成员支持的通信模式和编队成员当前使用的通信模式,当编队成员当前使用的通信模式为Uu时,物联网平台可以直接向编队成员转发业务消息,无需经过领队转发,避免了消息转发路径的迂回和重复转发,提高了通信效率,节约了网络通信资源。
包括领队在内的编队成员也需要进行相应的功能改进,以支持本申请提出的物联网编队通信方法。
一种实现方式下,领队作为编队的代表向物联网平台提供物联网平台规划所需的编队信息;编队成员支持的通信模式或当前使用的通信模式发生变化时,也由领队通知物联网平台。
一种实现方式下,编队成员可能分别向物联网平台上报各自的通信模式相关信息,如支持的通信模式和当前使用的通信模式,领队或编队管理实体再通知物联网平台编队中的编队成员组成,如编队成员的标识,领队的标识,和编队行驶区间信息等。编队成员支持的通信模式或当前使用的通信模式发生变化时,由编队成员直接通知物联网平台。
一种实现方式下,物联网平台规划的编队的通信模式或某个编队成员当前应使用的通信模式发送给领队,由领队根据规划通知其它编队成员调整通信模式。
一种实现方式下,物联网平台规划的编队的通信模式或某个编队成员当前应使用的通信模式还可以直接发送给各编队成员,各编队成员根据规划调整自己的通信模式。
本申请所提出的物联网编队通信方法,涉及物联网平台或物联网服务器,内置或集成在编队成员或领队中的通信装置。因此,本申请还提供实现上述物联网编队通信方法的装置或服务器。
另外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述物联网编队通信方法。
最后,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述物联网编队通信方法。
附图说明
图1为呈现本申请设计思想的一种物联网系统架构示意图;
图2为一种以3GPP通信网络为例的物联网系统架构示意图;
图3为本发明实施例提供的一种规划车队成员通信模式的方法概要流程图;
图4为本发明实施例提供的一种更新车队成员通信模式规划的方法概要流程图;
图5为本发明实施例提供的一种规划车队成员通信模式的方法流程图;
图6为本发明实施例所使用的一种地理区域划分示意图;
图7为本发明实施例所使用的一种路段划分示意图;
图8为本发明实施例所使用的一种行驶区间信息示意图;
图9为本发明实施例所提供的一种更新车队成员通信模式规划的方法流程图;
图10为本发明实施例所提供的一种规划车队成员当前使用的通信模式的方法流程图;
图11为本发明实施例所提供的另一种规划车队成员通信模式的方法流程图;
图12为本发明实施例所提供的一种计算机装置结构示意图;
图13为本发明实施例所提供的一种车内装置结构示意图。
具体实施方式
图1所示为本申请实施例所提供方法的系统概览。图1中所示的物联网系统,包括提供地图信息的应用或服务器,物联网服务器或物联网平台,编队和通信网络。其中:地图信息包括道路拓扑、建筑物位置关系或遮挡关系等信息,提供地图信息的应用或服务器如google地图,市政道路关系系统等;编队中包括两个及以上编队成员,其中一个编队成员承担领队的功能,包括领队在内的各编队成员可以编队或列队行驶、飞行或行驶,领队相对于其它编队成员,具备更多的功能,承担更多的责任,如协调编队内的编队成员信息交互,编队运行控制,与服务器交互辅助编队管理,环境感知等一个或多个功能,本申请不限定编队行驶过程中领队与其它编队成员的前后位置关系;编队成员支持一种或多种通信模式,如编队成员间设备到设备(device to device,D2D)短距离通信的通信模式,编队成员经通信网络与平台进行通信,并经平台转发与其它编队成员进行通信的通信模式,在任一时刻,编队成员只能采用一种通信模式进行通信。平台根据编队信息(如编队成员支持的通信模式,编队的行驶路线或行驶区 域等),规划编队行驶到不同地理区域时,编队成员的通信模式,编队在行驶过程中,根据平台发送的通信模式规划信息,调整编队成员的通信模式。可选的,平台在规划群组的通信模式时,还可以参考规划辅助信息,如地理区域或区间支持的通信模式,所述地理区域或区间支持的通信模式可以是平台上配置的信息,也可以是平台综合地图信息和网络状态(如各通信模式下无线信号的网络覆盖、各通信模式下无线信号的网络拥塞状态等一个或多个信息)信息获得的,所述地图信息由地图服务器提供,所述网络状态信息由通信网络提供。
需要说明的是:
首先,图1及本申请中主要以车辆编队为例进行描述,车辆编队在本申请中又称为车队或编队。车队中的领队在本申请中称为头车。本领域技术人员应该清楚的是,本申请所提供的方法和编队成员的具体外在形态无关,无论是飞行器编队,玩具车编队,有轨电车编队,自行车编队,还是其它类型的编队,只要编队成员设备具备通信能力,则编队在行驶或运动过程,均可以使用本申请所提供的方法进行通信模式的调整;
其次,本申请既不限定图1中所示的通信网络的类型,也不限定车队间进行D2D通信的通信技术。通信网络可以是3GPP通信网络,也可以是提供其它长距离通信技术的通信网络,如提供SigFox,LoRa等接入的通信网络;车队成员间的短距离D2D通信,即可以是3GPP标准定义的PC5通信模式,也可以是基于其它短距通信技术(如Z-WAVE,WiFi,专用短距通信(dedicated short range communications,DSRC)等)的通信模式。本申请如下实施例中将主要以3GPP通信网络为例对本申请所提出的方法进行描述,但本领域技术人员应该清楚的是,该方法同样适用于编队成员间任何两种或多种通信模式间的调整或选择。
由于在本申请提出之日,基于5G的车联网标准尚未制定完成,因此以3GPP第四代通信网络为例对本申请所提供的方法进行描述,但本领域技术人员应该清楚的是,本申请所提出的方法在5G网络下同样适用。图1中所示的系统架构可以细化为如图2所示的系统架构。
图1中的通信网络对应于图2中的3GPP第四代通信网络,具体包括演进的通用陆面无线接入网络(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)和4G核心网络(core network,CN),其中E-UTRAN包括4G基站等设备或网元,4G CN包括移动管理实体(Mobility Management Entity,MME),分组数据网络网关(packet data network gateway,P-GW),广播多播业务中心(Broadcast-Multicast-Service Centre,BM-SC),媒体广播多播业务网关(media Broadcast Multicast service-gateway,MBMS-GW),业务能力开放功能(Service Capability Exposure Function,SCEF)等网元;
图1中所示的平台对应于图2中所示的车联网应用服务器(vehicle to everything application server,V2X AS);
图1中所示的车队成员或编队成员对应于图2中所示的用户设备(user equipment,UE),图2中的UE A,UE B,UE C和UE D为同一个车队中的车队成员,其中UE A为头车。
车队成员可以通过LTE-Uu接口(或简称Uu接口)接入E-UTRAN,并通过CN与平台进行通信。车队成员间还存在一个PC5接口,车队成员间还可以直接通过PC5接口进行通信。即,车队成员支持PC5和Uu中至少一种通信模式,其中头车同时支持PC5和Uu,以方便车队管理或与平台进行通信。需要说明的是,图2中仅画出部分车辆间的PC5接口,其它未显示PC5接口的车辆间,也可能使用PC5进行通信,如UE A与UE C间也可能使用PC5通信。
PC5模式下,车辆间通过PC5接口,进行设备到设备(device to device,D2D)通信,PC5通信模式属于近距离通信、具有更低的时延、但可靠性偏低;Uu模式下,车辆与基站间通过Uu接口进行通信,车辆间的通信需要经过基站和平台的转发,Uu通信模式属于远距离通信,时延略高,但可靠性更高。还需要说明的是,当车辆支持Uu通信模式时,平台到车辆的下行消息(即平台向车辆发送的消息),平台即可以通过P-GW以单播的方式下发给车辆,还可以通过BM-SC和MBMS-GW以MBMS广播或多播的方式下发给车辆。当编队成员和平台都存在多种通信模式可以选择的情况下,无论是编队成员和编队成员间进行通信,还是平台向编队成员发送下行消息,都需要首先确定编队成员当前使用的通信模式,进而,编队成员间,编队成员和平台间才能进行高效的通信。假设UE B当前使用Uu通信模式,平台需要向车队成员UE B发送消息(如退出车队的通知消息,或平台向UE B转发其它网络设备或终端设备发送的消息),如果平台不感知车队成员当前使用的通信模式,则平台可能将要发给UE B的消息发给头车UE A,平台指示头车UE A以PC5的通信模式转发给UE B,然而由于UE B当前使用的通信模式为Uu,则UE A只得将该消息再次发给平台,指示平台以Uu的通信模式转发给UE B。可见,在平台不感知车队成员当前使用的通信模式的情况下,车队通信存在消息传输冗余的问题。因此,不仅车队本身需要一种高效地、及时地调整通信模式的方法,平台也需要实时感知车队成员当前的通信模式,以提高车队通信的效率。
平台为车队规划通信模式之外,为了实时感知车队成员当前的通信模式,平台还要动态更新车队成员的通信模式。平台动态更新车队成员的通信模式包括两种情况或场景,一种情况是平台主动更新车队的通信模式或车队成员的通信模式,另一种情况是车队成员请求平台更新车队成员的通信模式。如平台接收到通信网络发送的网络状态变更事件,则平台主动更新处于网络变更影响区域的车队的通信模式;如平台接收车队成员发送的通信模式变更请求,平台依据车队成员支持的通信模式,车队成员当前使用的通信模式,行驶区域的网络状态等信息确定并通知车队成员更新通信模式。需要说明的是,本申请中所述的车队的通信模式,属于车队或群组的整体属性,车队的通信模式适用于车队中的每个成员;本申请中所述的车队成员的通信模式,属于车队成员的个体属性。
如上所述为本申请所提供方法的大体构思,图3和图4所示为基于图1和图2所示系统架构实现此构思的简要方法流程图。
图3所示为通信模式规划的简要方法流程图:
301:平台获取车队信息,可选的,还获取规划辅助信息,如地理区域或区间支持的通信模式。可选的,3011步骤,平台可以向业务能力开放SCEF网络获取网络状态信息,可选的,3012步骤,平台可以从应用服务器获取地图信息,然后根据3011步 骤和3012步骤获得的信息得到地理区域或区间支持的通信模式;3013步骤,车队在编队成功后向平台发送车队信息,车队信息至少包括头车标识,车队成员标识,车队成员支持的通信模式和车队的位置信息,可选的,还包括车队成员当前使用的通信模式。其中车队的位置信息用于标识车队行驶的路径或行驶的范围,可以是某个地理区域范围,或是行驶路径。
302:平台根据车队信息规划车队在不同区域或区间的通信模式。可选的,平台在规划编队的通信模式时,还可以参考地理区域或区间支持的通信模式,所述地理区域或区间支持的通信模式可以是平台上配置的信息,也可以是平台根据3011步骤获得的地图信息和3012步骤获得的网络状态信息分析或规划得到的。需要说明的是,本申请不限定平台规划通信模式的具体步骤,如平台可以先依据网络状态信息和地图信息确定地图中每个区域支持的通信模式,然后依据3013中获取的车队信息,结合先前确定的每个区域支持的通信模式,确定车队在行驶区域或行驶路径的通信模式;也可以在获取3013车队信息后,直接根据车队信息,网络状态信息和地图信息进行通信模式的规划。还需要说明的是,平台在规划车队的通信模式时,将车队作为一个整体看待,即车队的通信模式,适用于车队中所有的车队成员。
303:平台向车队下发平台规划的车队的通信模式。具体的,可以是向头车下发车队的通信模式。也可以向每个车队成员下发车队的通信模式。
304:车队在行驶过程中,根据车队的位置和平台规划的通信模式,调整车队中车队成员的通信模式。由于车队由多辆车组成,因此车队的位置可以有多种定义,本申请对此不进行限定,如车队的位置可以是头车的位置,也可以是车队中其它成员车辆的位置,还可以是车队中部当前所处的位置。如果平台在303步骤中将规划的通信模式下发给头车,则建议将头车的位置作为车队的位置,车队在行驶过程中,由头车根据自己当前的位置和平台规划的通信模式,调整车队成员的通信模式。如果平台在303步骤中将规划的通信模式下发给每个车队成员,则车队在行驶过程中,每个车队成员都可以根据自己当前的位置和平台规划的通信模式,调整自身的通信模式。
图4所示为通信模式更新的简要方法流程图:
401:网络状态或地图信息的变化,都有可能触发平台更新车队的通信模式规划。车队成员也可能请求平台更新某个或某几个车队成员的通信模式。如4011步骤,当通信网络的无线信号覆盖出现异常事件时,通信网络向平台发送网络异常事件(如通过图中所示的业务能力开放网元向平台发送网络异常事件的通知,或通过其它网元向平台发送通知),网络异常事件的通知中事件位置,事件类型等信息,事件类型包括但不限于Uu信号拥塞,PC5网络拥塞等;又比如4012步骤,平台接收地图应用发送的地图变更事件,包括事件位置、事件类型,事件类型包括但不限于新增遮挡区域、删除遮挡区域等;再比如4013步骤,平台接收车队成员变更消息,或车队成员支持的通信模式变更消息,4013消息可以统一由车队中的头车向平台发送,也可以是其它车队成员向平台发送。
402:平台根据车队成员的信息,网络状态信息和地图信息重新确定车队的通信模式或车队成员的通信模式。
403:平台向车队成员下发更新后的车队的通信模式或车队成员的通信模式。
404:车队和平台按照更新后的通信模式进行通信和消息转发。
图3和图4简单介绍了车队通信模式的整体规划流程和通信模式的更新流程,下面结合具体的实例,对图3和图4所示的流程进一步细化的描述。
图5所示是对图3所示的流程的进一步细化流程。
501:平台接收业务能力开放实体发送的Uu信号覆盖和MBMS信号覆盖信息。
502:平台接收地图提供方发送的地图信息,包括道路拓扑、建筑物覆盖等信息。
503:平台综合地图和网络覆盖情况,按照区域确定每个区域支持的通信模式。所谓区域支持的通信模式指某个区域可以提供的通信模式,或通信设备在该区域可用的通信模式。其中,区域可以按照地理范围划分、也可以按照道路拓扑划分。图6是按照地理范围确定通信模式的示意图,图中根据地理范围规划不同区域支持的通信模式;假设通信网络上报的网络状态和地图区域的匹配结果如表1所示,以区域2为例进行说明,区域2被Uu和MBMS网络覆盖,且Uu和MBMS网络不拥塞,但区域2目前PC5拥塞,则平台可能规划区域2支持的通信模式为Uu和MBMS。图7是按照道路拓扑确定通信模式的示意图,图中根据道路拓扑规划不同路段的通信模式;假设通信网络上报的网络状态和道路拓扑的匹配结果如表2所示,以路段3为例进行说明,路段3同时被Uu和MBMS网络覆盖,且Uu和MBMS网络不拥塞,但地图信息显示路段3建筑物遮挡比较严重(不适合PC5通信),则平台可以规划路段3支持的通信模式为Uu和MBMS。
表1:区域网络状态和平台规划的区域支持的通信模式
Figure PCTCN2019094654-appb-000001
表2:路段网络状态和平台规划的区域支持的通信模式
Figure PCTCN2019094654-appb-000002
504:车队中的头车向平台上报编队(即车队)信息。本申请不限定头车上报车队 信息的时机,如可以在车辆近距离组队之后向平台上报车队信息。上报的车队信息至少包括编队标识或车队标识,头车标识,(车队成员的标识,车队成员支持的通信模式,车队成员当前使用的通信模式(可选))(0…n),车队的行驶区间信息。其中,上报的车队信息中应包括包含头车在内的每个车队成员的标识,每个车队成员支持的通信模式(如Uu,PC5,MBMS中一个或多个模式)和每个车队成员当前使用的通信模式(如Uu,PC5,MBMS中任一模式);车队的行驶区间信息可能是车队行驶的区域信息,可能是某个行政区域标识(如:西安市高新区,或地图上对应该区域的编号),也可能是地理坐标点组成的多边形区域(如:P1、P2、P3、P4,其中P表示一个地理坐标,行驶区域为P1到P4顺序连接组成封闭多边形区域,每个坐标点可以用世界大地测量系统(World Geodetic System,WGS)表示经纬度信息),也可能是车队行驶路线信息,一种可能的行驶路径表达方式为:起点、中间路口坐标(0…n)(即第0个到第n个中间路口的坐标)、终点,每个坐标点可以用WGS表示经纬度信息,如lat/lon(31.329250 121.223650)。一种可能的实现方式下,车队成员的标识或头车的标识可以是车辆出厂的标识号码(vehicle identification number,VIN),也可以是车辆提前在平台注册后,平台为为车辆分配的标识;另外,头车上报的编队标识需要保证唯一性,作为一种可能的实现方式,头车上报的编队标识可以采用头车VIN或平台提前为头车或车队预分配的标识。需要说明的是,车队成员当前使用的通信模式不是平台规划车队的通信模式的必要信息,车队可以在504消息中向平台上报车队成员当前使用的通信模式,也可以后续通过别的消息通知平台每个车队成员当前使用的通信模式。
505:平台依据车队成员支持通信模式、车队的位置信息和区域支持的通信模式,设置车队在某个区域内使用的通信模式。比如车队成员支持PC5、Uu,车队行驶路线信息(如图8粗实线标识,按照车队行进方向顺序给出位置1、2、3、4的坐标位置),平台规划的车队的通信模式为(位置1->位置2,Uu;位置2->位置3,PC5;位置3->位置4,PC5)。需要说明的是,在平台将车队作为编队进行管理的情况下,车队上报的车队信息和平台为车队规划的车队的通信模式都可以作为编队相关的信息,在平台进行记录和管理。
506:平台依据头车上报的当前使用的通信模式,向头车发送车队的通信模式的规划,即车队在行驶路线上的通信模式规划信息,如(位置1->位置2,Uu;位置2->位置3,PC5;位置3->位置4,PC5)。可选的,平台也可以给每个车队成员发送规划的车队的通信模式,平台需要依据每个车队成员当前使用的通信模式进行消息下发。
506步骤中,如果平台向头车发送车队的通信模式,则执行507-510步骤:
507:车队在行驶过程中,头车依据车队当前的行驶区间,匹配平台下发的车队的通信模式,确定车队当前使用的通信模式,即平台规划的车队在当前位置应该使用的通信模式。
508:由于头车记录了每个车队成员当前使用的通信模式,因此,当头车确定平台规划的车队当前应该使用的通信模式后,头车可以确定哪些车队成员当前使用的通信模式与平台的规划不符。
509:头车通知要进行通信模式变更的车队成员,更新当前使用的通信模式,消息 中携带平台规划的车队在当前位置应该使用的通信模式。
510:头车通知平台哪些车队成员当前使用的通信模式发生变更,通知消息包括成员标识和变更后的当前使用的通信模式。
506步骤中,如果平台向每个车队成员发送车队的通信模式,则:
每个车队成员执行507步骤中头车执行的方法,当判断平台规划的车队当前使用的通信模式与车队成员自身当前使用的通信模式不一致时,调整当前使用的通信模式为车队当前使用的通信模式,并通知头车和平台更新车队成员当前使用的通信模式,通知消息包括成员标识和变更后的当前使用的通信模式。
511:平台根据收到的消息,刷新平台记录的车队成员当前使用的通信模式。需要说明的是,平台以编队的形式对车队进行管理和信息维护,平台不仅保存了车队的整体信息或属性(如平台规划的车队的通信模式),还保存了每辆车队成员的信息(如车队成员的标识,车队成员支持的通信模式,车队成员当前使用的通信模式等)。
512:平台可能收到车队应用、头车和跟随车辆发送的业务消息,其中包括源标识、目的标识(如车队成员标识)和消息净荷。
513:平台收到消息后基于车队成员当前使用的通信模式进行车队消息转发。如果目的标识为单个车队成员,则平台直接根据该车队成员当前使用的通信模式,将业务消息发送给车队成员;当该车队成员当前使用的通信模式为MBMS时,平台既可以使用MBMS多播的方式发送业务消息给车队成员,也可以直接使用Uu接口使用单播的方式将业务消息发送给车队成员。如果目的标识为编队标识或车队标识,则平台需要根据编队或车队中每个成员当前使用的通信模式,将将业务消息发送给每个车队成员;对于当前使用的通信模式为PC5的车队成员,平台需要选择车队成员所属编队中的头车进行消息转发,即将业务消息发送给该车队成员所属编队的头车,由头车根据目的标识将业务消息转发给车队成员。
由图5所示的方法流程可以看出,本申请实施例所提供的方法,平台汇聚全局信息(地图信息、网络状态信息、车队信息等),提前规划车队成员在不同区域采用的通信模式,由于综合了网络和地图等全局信息,平台规划的通信模式更合理、更准确,解决了拥塞路段、网络覆盖差路段、多遮挡路段等车队成员逐个切换和反复切换的问题。
图3和图5所示的流程为平台根据静态的信息规划或设置车队在行驶过程中的通信模式。然而,由于车队在行驶过程中,车辆的地理位置和地理环境是动态变化的,而且网络状态也是动态变化的,因此平台在执行了如图3或图5中所示的通信模式的规划后,如图4中所示,平台还需要根据动态变化的信息,重新规划和调整车队成员的通信模式,以保证通信的正常。
图9为图4中4011场景下的进一步细化流程,即网络状态的变更,触发平台重新规划车队的通信模式。
901:平台接收到业务能力开放实体(如SCEF)上报的网络状态异常事件,包括事件的位置和事件的类型,其中事件的类型可能是Uu信号拥塞或PC5信号拥塞或MBMS拥塞等。如网络状态异常事件为(位置2->位置3,PC5拥塞)。需要说明的是,平台还可能从终端、BM-SC、无线接入网络拥塞感知功能(radio access network congestion  awareness function,RCAF)等设备或网元接收到网络状态异常事件,平台的处理方式与图9中所示方法相同,此处不再赘述。
902:平台判断网络状态异常事件的影响区域,刷新受影响区域支持的通信模式。
903:若受影响区域的通信模式有变更,则确定受影响的车队,即判断哪些车队的通信模式规划中包含或涉及受影响区域。如果车队A行驶路线为位置1->位置2->位置3->位置4,当前车队位置在位置1,由于位置2->位置3的网络状态发生变更,因此车队A为受影响车队。
904:重新规划受影响车队在受影响区域的通信模式。
905:若平台重新规划的受影响车队在受影响区域的通信模式,与之前规划的通信模式(如步骤505和506中的规划)不同,则平台向头车下发更新后的规划,至少包括平台重新规划的受影响车队在受影响区域的通信模式。如平台重新规划了车队在位置2->位置3的通信模式,规划后车队在位置2->位置3的通信模式为(位置2->位置3,Uu)。需要说明的是,同步骤506中所述,可选的,平台还可以选择给每个车队成员发送规划的车队的通信模式,平台需要依据每个车队成员当前使用的通信模式进行消息下发。图9中所示实施例仅以向头车发送规划信息为例进行描述。
906:头车刷新车队在受影响区域的通信模式,按照最新规划的车队的通信模式来管理车队的通信模式(参考507-511步骤)。
图9所示的方法流程,平台根据网络状态或地图信息的变更,在图5所做的初始规划的基础上,及时更新车队的通信模式的规划,保证了平台规划的及时性和有效性。
图10为图4中4013场景下的进一步细化流程,即车队成员支持的通信模式变更,触发平台规划车队或车队成员的通信模式。需要说明的是,在图10所示的方法流程之前,假设平台已获取了车队信息,可选的,还获得了规划辅助信息。平台获取车队信息和规划辅助信息的方法具体参见图5所示的501、502和503等信息,此处不再赘述。
1001:车队成员检测到当前使用的通信模式网络状态异常,刷新UE支持的通信模式信息,并发送通信模式变更信息给平台,包括车队成员的标识和车队成员支持的通信模式。如车队成员1支持三种通信模式(PC5、Uu、MBMS),当前采用PC5通信模式进行通信,行驶中车队成员1检测PC5通信质量,当通信质量差时(如车队外其他车辆插入导致PC5通信受阻),车队成员1将PC5通信能力置为不可用,车队成员1刷新支持的通信模式为(Uu、MBMS),车队成员1需要发送更新信息给平台,以更新支持的通信模式,包括车队成员1的标识、支持的通信模式(Uu、MBMS)。需要说明的是,车队成员1可以通过Uu通信模式发送更新消息给平台,也可以将更新消息发给头车,由头车转发给平台。
1002:平台刷新记录的车队成员支持的通信模式,即刷新车队的信息。
1003:可选的,平台向刷新支持的通信模式的车队成员发送响应消息,标识更新成功。需要说明的是,平台采用与1001消息相同的通信路径发送1003消息,如车队成员通过Uu接口发送1001消息给平台,则平台通过Uu通信模式发送1003消息给车队成员;如车队成员通过头车发送1001消息给平台,则平台通过头车将1003消息转发给车队成员。
1004:平台根据车队成员支持的通信模式、当前使用的通信模式,结合车队当前 行驶所在区域支持通信模式,判断是否需要更新车队成员当前使用的通信模式,若无需更改,则流程结束。若需要更改,则平台根据更新后车队的信息、网络状态信息和地图信息,规划车队中全部车队成员或部分车队成员当前使用的通信模式。假设车队成员1刷新支持的通信模式为(Uu、MBMS),平台判断车队当前行驶区域支持(Uu、MBMS、PC5),且车队中所有车队成员都支持Uu通信模式,且大部分车队成员当前使用的通信模式为Uu,则考虑到通信的效率,平台规划车队中所有车队成员当前使用的通信模式为MBMS(广播比单播的效率要高)。需要说明的是,本申请所提供的方法假设平台可以随时获取车队当前行驶的位置信息,平台如何获取车队的位置信息不在本申请保护范围之内,这里不再赘述。
1005:平台结合车队成员当前使用的通信模式、和平台在1004步骤中规划的车队成员当前使用的通信模式,确定要通知哪些车队成员更新当前使用的通信模式。假设车队成员1和车队成员2当前使用的通信模式和平台规划的不一致,则平台需要通知车队成员1和车队成员2更新当前使用的通信模式。
1006:平台通知车队成员1和车队成员2更新当前使用的通信模式,更新消息中包括车队成员的标识和当前使用的通信模式。需要更新当前使用的通信模式的车队成员,可能是一个或多个。平台可以直接将更新消息发送给需要更新的车队成员,还可以将消息统一发给头车,由头车转发给车队成员。图10所示的实施例中,以头车转发的方案为例进行描述。
1007-1009:头车收到1006消息后,记录车队成员更新后的当前使用的通信模式,并根据消息中携带的车队成员的标识通知相应的车队成员调整当前使用的通信模式。
1010:头车完成当前使用的通信模式的更新后,通知平台更新完成。如果平台在1006步骤采用Uu接口分别通知车队成员1和车队成员2,则在1010步骤,由车队成员1和车队成员2向平台发送更新响应消息。
1011:平台接收到车队发送的更新响应消息,平台刷新记录的车队成员当前使用的通信模式。
1012:平台后续可能收到编队应用或车队应用、头车或跟随车辆发送的编队业务消息,其中包括源、目的标识和消息净荷。
1013:平台收到消息后基于车队成员当前使用的通信模式进行车队消息转发。具体转发方式参见513步骤的描述。
如果说图5和图9所示的方法流程,是平台对车队在将来行驶路线上通信模式的规划,则图10所示的方法流程,则是平台对车队成员当前使用的通信模式的及时调整。图10所示的方法流程,车队成员通信模式的变更,触发平台对车队成员及车队中其它车辆的通信模式进行及时调整,在通信模式规划的基础上,基于全局信息,及时对单车或部分车辆的通信模式进行机动的调整,优化车队成员当前使用的通信模式,进一步提升了车队的通信效率。
基于如上本发明所提供的思路,结合具体的开发实现架构,本发明所提供的方法还可以衍生出多种灵活变通的具体实现方式。如3013或504步骤所描述的车队向平台上报的车队信息,实际上可以由多个实体通过不同的消息分别向平台进行上报,如车队成员分别向平台上报各自支持的通信模式,当前使用的通信模式,编队管理实体向 平台请求创建编队,请求消息中携带编队成员的标识,头车标识和车队行驶区间信息。另外,本申请中所述的平台的功能和方法流程还可能由车联网服务器具体执行。
如上所述的方法可以采用oneM2M标准为框架来实现。架构上,平台对应oneM2M标准定义的IN-CSE(Common Services Entity resides in Infrastructure Node),针对车辆业务处理能力的强弱或配置的高低,不同类型的车辆可能对应oneM2M标准定义的MN(Middle Node)或ASN(Application Service Node)或ADN(Application Dedicated Node),oneM2M标准定义的如上概念详见oneM2M标准规范“TS-0001_Functional_Architecture”,此处不再赘述。基于oneM2M标准架构,平台以群组的形式对车队或编队进行管理,车队或编队成员作为群组成员进行管理,群组成员首先要在平台进行注册,然后才能创建为群组进行管理和维护,如结合oneM2M标准架构,图5所示的方法流程具体演变为如图11所示的流程。
图11和图5的流程大体相同,1101-1103是501-503的具体实现,1104-1111是504-506的具体实现,1112-1117是507-511的具体实现。与图5不同的是,车队中的每个成员需要单独向平台进行设备注册,并上报自身支持的通信模式和当前使用的通信模式(如1104-1107所示),然后编队管理实体(如头车或业务提供服务器,图中以头车创建编队为例,1108消息也可以由其它车队管理实体发送)向平台请求创建群组资源(如1108-1111)。图11所示的实现方式下,平台将车队中每个成员的通信能力(如支持的通信模式和当前使用的通信模式)记录在车队成员对应的<remoteCSE>资源下,车队的位置信息或行驶路线信息,和平台规划的车队的通信模式记录在头车创建的<group>资源下;另外,车队成员当前使用的通信模式变更的情况下,需要由车队成员自身向平台发起更新请求,请求更新<remoteCSE>资源下记录的信息,如1115-1117所示。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,各个设备或装置,例如车辆或车队成员,平台,通信网络中的网元等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。如,车队或编队成员中应集成或内置相应的通信装置,以实现如上实施例中所述的方法流程。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
例如,如图12所示,如上方法实施例中所述的平台、车队成员中集成或内置的通信装置或通信网络中的网元均可以通过图12中的计算机设备(或系统)来实现。
图12所示为本发明实施例提供的计算机设备示意图。计算机设备1200包括至少一个处理器1201,通信总线1202,存储器1203以及至少一个通信接口1204。
处理器1201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
通信总线1202可包括一通路,在上述组件之间传送信息。
通信接口1204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器1203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1203用于存储执行本发明方案的应用程序代码,并由处理器1201来控制执行。处理器1201用于执行存储器1203中存储的应用程序代码,从而实现本专利方法中的功能。
在具体实现中,作为一种实施例,处理器1201可以包括一个或多个CPU,例如图12中的CPU0和CPU1。
在具体实现中,作为一种实施例,计算机设备200可以包括多个处理器,例如图12中的处理器1201和处理器1208。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,计算机设备1200还可以包括输出设备1205和输入设备1206。输出设备1205和处理器1201通信,可以以多种方式来显示信息。例如,输出设备1205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1206和处理器1201通信,可以以多种方式接受用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的计算机设备1200可以是台式机、网络服务器,芯片,通信模组或有图2中类似结构的设备或装置。本发明实施例不限定计算机设备1200的类型。当该装置1200是芯片时,那么收发模块1204的功能/实现过程还可以通过管脚或电路等来实现;可选地,所述存储器为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是位于所述芯片外部的存储单元。
例如,如图13所示,如上方法实施例中所述的头车或其它车队成员可以集成如图13中的所示的装置来实现本专利所提供的方法。
图13所示装置1300包括至少一个无线收发器1301,处理器1302,存储器1303,可选的,还包括车队通信收发器。
无线收发器1301主要用于接收和发送无线信号,与车辆外部的设备或装置(如基站,其它车辆,路边服务单元,服务器等)进行通信。无线收发器1301可能支持一种 或多种无线通信技术,如Wifi,Uu通信,PC5通信,MBMS通信,LoRa等。无线收发器1301根据处理器的指示,选择相应的通信模式与其它装置或设备进行通信。
存储器1303用于存储车辆相关的信息和车队相关的信息。如1301用于存储车辆的标识,车辆支持的通信模式,车辆当前使用的通信模式,特别的,当1300为头车中集成的装置时,还用于存储车队包含的车队成员标识,每个车队成员支持的通信模式,每个车队成员当前使用的通信模式。
处理器1302可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。处理器1302主要用于进行业务处理,构造和解析消息,并通过无线收发器与外部设备或装置进行通信。如当1300为头车中集成的装置时,1302用于构造向物联网平台发送的车队信息,解析通过无线收发器1301接收的平台规划的车队的通信模式;车队在行驶过程中,根据所述车队当前的位置和所述物联网平台发送的车队的通信模式,确定所述物联网平台规划的所述车队的车队成员在当前位置应该采用的通信模式,确定需要调整通信模式的车队成员,并向所述需要调整通信模式的车队成员发送消息,所述消息用于指示所述需要调整通信模式的车队成员调整当前使用的通信模式;当车队成员支持的通信模式变化时,1302还用于向所述物联网平台发送第一消息,所述第一消息包括所述车队成员的标识和所述车队成员支持的通信模式,1302解析所述物联网平台发送的通知消息,所述通知消息包括所述物联网平台决策的所述支持的通信模式发生变化的车队成员当前应使用的通信模式,并向所述支持的通信模式发生变化的车队成员,转发所述物联网平台决策的所述支持的通信模式发生变化的车队成员当前应使用的通信模式;当车队成员当前使用的通信模式变化时,1302还用于向所述物联网平台发送第二消息,所述第二消息包括所述车队成员的标识和所述车队成员当前使用的通信模式。如当1300为头车之外的其它车队成员中集成的装置时,1302用于向物联网平台发送注册请求,所述注册请求包括车队成员的标识,车队成员支持的通信模式和车队成员当前使用的通信模式。
车队通信收发器1304用于装置1300与车内其它装置或部件进行通信。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了说明,本领域技术人员应该理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。在权利要求中,“包括”一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其它单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能结合起来产生良好的效果。

Claims (48)

  1. 一种编队通信方法,其特征在于,
    物联网平台接收编队信息,所述编队由多个编队成员组成,所述编队信息包括所述编队中编队成员的标识,领队的标识,编队成员支持的通信模式和编队行驶区间信息,其中所述领队为所述编队的编队成员之一;
    所述物联网平台向所述编队发送所述物联网平台规划的编队的通信模式,所述编队的通信模式用于指示所述编队的编队成员在所述编队行驶区间中应采用的通信模式。
  2. 根据权利要求1所述的方法,其特征在于,所述物联网平台规划的编队的通信模式,为所述物联网平台根据所述编队的编队信息规划的。
  3. 根据权利要求1所述的方法,其特征在于,所述物联网平台规划的编队的通信模式,为所述物联网平台根据所述编队的编队信息和规划辅助信息规划的。
  4. 根据权利要求3所述的方法,其特征在于,所述规划辅助信息为地理区域或区间支持的通信模式,所述地理区域或区间支持的通信模式为所述平台根据网络状态信息和地图信息而获得,所述网络状态信息包括无线信号的覆盖信息和无线信号的拥塞信息中至少一种信息,所述地图信息包括道路拓扑和建筑物位置关系中至少一种信息。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述物联网平台接收编队管理实体发送的所述编队信息。
  6. 根据权利要求1-4任一所述的方法,其特征在于,所述物联网平台接收编队信息,具体包括,
    所述物联网平台接收所述编队的编队成员发送的所述编队成员的标识和所述编队成员支持的通信模式;
    所述物联网平台接收编队管理实体发送的编队创建请求,所述编队创建请求中包括所述编队中编队成员的标识,领队的标识和编队行驶区间信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述编队管理实体为所述领队或业务提供服务器。
  8. 根据权利要求1-4任一所述的方法,其特征在于,所述物联网平台接收的编队信息中还包括编队成员当前使用的通信模式。
  9. 根据权利要求8所述的方法,其特征在于,所述物联网平台接收编队管理实体发送的所述编队信息。
  10. 根据权利要求9所述的方法,其特征在于,所述物联网平台接收编队信息,具体包括,
    所述物联网平台接收所述编队的编队成员发送的所述编队成员的标识,所述编队成员支持的通信模式和所述编队成员当前使用的通信模式;
    所述物联网平台接收编队管理实体发送的编队创建请求,所述编队创建请求中包括所述编队中编队成员的标识,领队的标识和编队行驶区间信息。
  11. 根据权利要求8-10任一所述的方法,其特征在于,所述编队管理实体为所述领队或业务提供服务器。
  12. 根据权利要求8-11任一所述的方法,其特征在于,所述物联网平台向所述编队发送所述物联网平台规划的编队的通信模式之后,所述方法还包括,
    所述物联网平台接收第一消息,所述第一消息用于更新第一编队成员支持的通信模式;
    所述物联网平台向所述领队或所述第一编队成员发送所述第一编队成员当前应使用的通信模式,所述第一编队成员当前应使用的通信模式为所述物联网平台根据更新后的编队信息规划的所述第一编队成员当前应使用的通信模式,所述更新后的编队信息为所述物联网平台根据所述第一消息更新的所述编队信息。
  13. 根据权利要求8-12任一所述的方法,其特征在于,所述物联网平台接收所述编队信息之后,所述方法还包括,所述物联网平台接收第二消息,所述第二消息用于更新所述编队的编队成员当前使用的通信模式。
  14. 根据权利要求8-13任一所述的方法,其特征在于,所述方法还包括,
    所述物联网平台接收业务消息,所述业务消息的目的标识为所述编队或所述编队的编队成员;所述物联网平台使用所述编队的编队成员当前使用的通信模式,向所述编队的编队成员转发所述业务消息。
  15. 根据权利要求1-14任一所述的方法,其特征在于,所述编队成员支持的通信模式为Uu通信模式,MBMS通信模式,PC5通信模式和专用短距通信(dedicated short range communications,DSRC)中至少一种。
  16. 根据权利要求1-15任一所述的方法,其特征在于,所述编队行驶区间信息为编队行驶路线信息或编队行驶区域信息。
  17. 一种编队通信方法,其特征在于,
    所述物联网平台接收第一消息,所述第一消息用于更新第一编队成员支持的通信模式;
    所述物联网平台向领队或所述第一编队成员发送所述物联网平台规划的所述第一编队成员当前应使用的通信模式,所述领队与所述第一编队成员为同一个编队的编队成员。
  18. 根据权利要求17所述的方法,其特征在于,所述物联网平台接收第一消息之前,所述方法还包括,
    所述物联网平台接收所述第一编队成员所属编队的编队信息,所述编队信息包括所述编队中编队成员的标识,领队的标识,编队成员支持的通信模式,编队成员当前使用的通信模式和编队行驶区间信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第一编队成员当前应使用的通信模式为所述物联网平台根据更新后的编队信息规划的所述第一编队成员当前应使用的通信模式,所述更新后的编队信息为所述物联网平台根据所述第一消息更新的所述编队信息。
  20. 根据权利要求18所述的方法,其特征在于,所述第一编队成员当前应使用的通信模式为所述物联网平台根据更新后的编队信息和规划辅助信息规划的所述第一编队成员当前应使用的通信模式,所述更新后的编队信息为所述物联网平台根据所述第一消息更新的所述编队信息。
  21. 根据权利要求20所述的方法,其特征在于,所述规划辅助信息为地理区域或 区间支持的通信模式,所述地理区域或区间支持的通信模式为所述平台根据网络状态信息和地图信息而获得,所述网络状态信息包括无线信号的覆盖信息和无线信号的拥塞信息中至少一种信息,所述地图信息包括道路拓扑和建筑物位置关系中至少一种信息。
  22. 根据权利要求18-21任一所述的方法,其特征在于,所述物联网平台接收编队信息,具体包括,
    所述物联网平台接收编队管理实体发送的编队信息,所述编队信息包括所述编队中编队成员的标识,领队的标识,编队成员支持的通信模式,编队成员当前使用的通信模式和编队行驶区间信息。
  23. 根据权利要求18-21任一所述的方法,其特征在于,所述物联网平台接收编队信息,具体包括,
    所述物联网平台接收所述编队的编队成员发送的所述编队成员的标识,所述编队成员支持的通信模式和所述编队成员当前使用的通信模式;
    所述物联网平台接收编队管理实体发送的编队创建请求,所述编队创建请求中包括所述编队中编队成员的标识,领队的标识和编队行驶区间信息。
  24. 根据权利要求22或23所述的方法,其特征在于,所述编队管理实体为所述领队或业务提供服务器。
  25. 根据权利要求18-24任一所述的方法,其特征在于,所述物联网平台接收所述编队信息之后,所述方法还包括,所述物联网平台接收第二消息,所述第二消息用于更新所述编队的编队成员当前使用的通信模式。
  26. 根据权利要求18-25任一所述的方法,其特征在于,所述方法还包括,
    所述物联网平台接收业务消息,所述业务消息的目的标识为所述编队或所述编队的编队成员;所述物联网平台使用所述编队的编队成员当前使用的通信模式,向所述编队的编队成员转发所述业务消息。
  27. 根据权利要求17-26任一所述的方法,其特征在于,所述编队成员支持的通信模式为Uu通信模式,MBMS通信模式,PC5通信模式和DSRC中至少一种。
  28. 根据权利要求18-27任一所述的方法,其特征在于,所述编队行驶区间信息为编队行驶路线信息或编队行驶区域信息。
  29. 一种编队通信方法,其特征在于,
    编队中的领队向物联网平台发送编队信息,所述编队包括多个编队成员,其中所述领队为所述编队的编队成员之一;所述编队信息包括所述编队中编队成员的标识,领队的标识和编队行驶区间信息;
    所述领队接收所述物联网平台发送的编队的通信模式,所述编队的通信模式用于指示所述物联网平台规划的所述编队的编队成员在所述编队行驶区间中应采用的通信模式。
  30. 根据权利要求29所述的方法,其特征在于,所述领队接收所述物联网平台发送的编队的通信模式之后,所述方法还包括,
    所述编队在行驶过程中,所述领队向编队成员发送消息,所述消息用于指示所述 编队成员调整当前使用的通信模式,所述消息包括所述物联网平台规划的所述编队的编队成员在当前位置应该采用的通信模式。
  31. 根据权利要求30所述的方法,其特征在于,所述领队向编队成员发送消息,具体包括,
    所述编队在行驶过程中,所述领队根据所述编队当前的位置和所述物联网平台发送的编队的通信模式,确定所述物联网平台规划的所述编队的编队成员在当前位置应该采用的通信模式;
    所述领队确定需要调整通信模式的编队成员,所述需要调整通信模式的编队成员为当前使用的通信模式,和所述物联网平台规划的所述编队的编队成员在当前位置应该采用的通信模式不一致的编队成员;
    所述领队向所述需要调整通信模式的编队成员发送消息,所述消息用于指示所述需要调整通信模式的编队成员调整当前使用的通信模式,所述消息包括所述物联网平台规划的所述编队的编队成员在当前位置应该采用的通信模式。
  32. 根据权利要求29-31任一所述的方法,其特征在于,所述编队信息还包括所述编队的编队成员支持的通信模式。
  33. 根据权利要求29-32任一所述的方法,其特征在于,所述编队信息还包括所述编队的编队成员当前使用的通信模式。
  34. 根据权利要求33所述的方法,其特征在于,所述领队接收所述物联网平台发送的编队的通信模式之后,所述方法还包括,
    当编队成员支持的通信模式变化时,所述领队向所述物联网平台发送第一消息,所述第一消息包括所述支持的通信模式发生变化的编队成员的标识和所述支持的通信模式发生变化的编队成员当前支持的通信模式。
  35. 根据权利要求34所述的方法,其特征在于,所述领队向所述物联网平台发送第一消息之后,所述方法还包括,
    所述领队接收所述物联网平台发送的消息,所述消息包括所述物联网平台规划的所述支持的通信模式发生变化的编队成员当前应使用的通信模式;
    所述领队向所述支持的通信模式发生变化的编队成员,转发所述物联网平台规划的所述支持的通信模式发生变化的编队成员当前应使用的通信模式。
  36. 根据权利要求33-35任一所述的方法,其特征在于,所述领队接收所述物联网平台发送的编队的通信模式之后,所述方法还包括,
    当编队成员当前使用的通信模式变化时,所述领队向所述物联网平台发送第二消息,所述第二消息包括所述当前使用的通信模式发生变化的编队成员的标识和所述当前使用的通信模式发生变化的编队成员当前使用的通信模式。
  37. 根据权利要求32-36任一所述的方法,其特征在于,所述编队成员支持的通信模式为Uu通信模式,MBMS通信模式,PC5通信模式和DSRC中至少一种。
  38. 根据权利要求29-37任一所述的方法,其特征在于,所述编队行驶区间信息为编队行驶路线信息或编队行驶区域信息。
  39. 一种编队通信方法,其特征在于,编队在行驶过程中,
    编队成员向物联网平台发送第一消息,所述第一消息用于更新所述编队成员支持的通信模式;
    所述编队成员接收所述物联网平台发送的,所述物联网平台规划的所述编队成员在当前位置应该采用的通信模式。
  40. 根据权利要求39所述的方法,其特征在于,所述编队成员向物联网平台发送第一消息之前,所述方法还包括,
    所述编队成员向所述物联网平台发送所述编队成员的标识,所述编队成员支持的通信模式和所述编队成员当前使用的通信模式。
  41. 根据权利要求39或40所述的方法,其特征在于,所述编队成员接收所述物联网平台规划的所述编队成员在当前位置应该采用的通信模式之后,所述方法还包括,
    所述编队成员调整当前使用的通信模式为所述物联网平台规划的所述编队成员在当前位置应该采用的通信模式。
  42. 根据权利要求39-41任一所述的方法,其特征在于,所述编队成员接收所述物联网平台规划的所述编队成员在当前位置应该采用的通信模式之后,所述方法还包括,
    当所述编队成员当前使用的通信模式变化时,所述编队成员向所述物联网平台发送第二消息,所述第二消息包括所述编队成员当前使用的通信模式。
  43. 根据权利要求39-42任一所述的方法,其特征在于,所述编队成员支持的通信模式为Uu通信模式,MBMS通信模式,PC5通信模式和DSRC中至少一种。
  44. 一种物联网平台,其特征在于,所述一种物联网平台包括:通信接口、存储器和处理器,
    所述通信接口用于与编队成员进行通信;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,当所述程序被执行时,所述物联网平台执行如权利要求1至16中任一项所述的方法。
  45. 一种物联网平台,其特征在于,所述一种物联网平台包括:通信接口、存储器和处理器,
    所述通信接口用于与编队成员进行通信;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,当所述程序被执行时,所述物联网平台执行如权利要求17至28中任一项所述的方法。
  46. 一种通信装置,编队成员通过所述通信装置与其它装置进行通信,其特征在于,所述通信装置包括:无线收发器,处理器和存储器,
    所述无线收发器用于接收外部消息,并根据所述处理器的指令向所述编队成员之外的装置发送消息;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,当所述程序被执行时,所述通信装置执行如权利要求29-38中任一项所述的方法。
  47. 一种通信装置,编队成员通过所述通信装置与其它装置进行通信,其特征在于,所述通信装置包括:无线收发器,处理器和存储器,
    所述无线收发器用于接收外部消息,并根据所述处理器的指令向所述编队成员之外的装置发送消息;
    所述存储器用于存储程序;
    所述处理器用于执行所述存储器中存储的程序,当所述程序被执行时,所述通信装置执行如权利要求39-43中任一项所述的方法。
  48. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至43中任一项所述的方法。
PCT/CN2019/094654 2018-07-06 2019-07-04 一种物联网编队通信方法 WO2020007337A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19830348.9A EP3800903B1 (en) 2018-07-06 2019-07-04 Internet of things platoon communication method
US17/141,446 US20210125501A1 (en) 2018-07-06 2021-01-05 Internet of Things (IoT) Platoon Communication Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810736940.5A CN110753300B (zh) 2018-07-06 2018-07-06 一种物联网编队通信方法
CN201810736940.5 2018-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/141,446 Continuation US20210125501A1 (en) 2018-07-06 2021-01-05 Internet of Things (IoT) Platoon Communication Method

Publications (1)

Publication Number Publication Date
WO2020007337A1 true WO2020007337A1 (zh) 2020-01-09

Family

ID=69060127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094654 WO2020007337A1 (zh) 2018-07-06 2019-07-04 一种物联网编队通信方法

Country Status (4)

Country Link
US (1) US20210125501A1 (zh)
EP (1) EP3800903B1 (zh)
CN (1) CN110753300B (zh)
WO (1) WO2020007337A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11625049B2 (en) * 2018-11-30 2023-04-11 Denso Corporation Plurality of vehicles performing platoon travelling and control apparatus for controlling the same
EP3716243A1 (en) * 2019-03-28 2020-09-30 Volkswagen Aktiengesellschaft Methods, apparatuses and computer programs for vehicles and for a base station of a mobile communication system
CN113763742B (zh) * 2020-06-01 2022-09-30 大唐移动通信设备有限公司 一种基于mec的车队辅助行驶的方法、装置及存储介质
CN114189836A (zh) * 2020-09-15 2022-03-15 大唐高鸿智联科技(重庆)有限公司 一种编队车辆的通信方法及车辆
CN113467449B (zh) * 2021-06-30 2023-05-30 深圳市海柔创新科技有限公司 车队控制方法、装置、电子设备和存储介质
CN113848989A (zh) * 2021-08-09 2021-12-28 吴钟博 一种无人机密集编队通信网络的资源协同分配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105610950A (zh) * 2015-12-30 2016-05-25 腾讯科技(深圳)有限公司 车队出行中的会话处理方法及系统
CN106559732A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 车联网通信处理方法和装置
CN106559337A (zh) * 2015-09-24 2017-04-05 中兴通讯股份有限公司 车联网信息传输方法及相关设备
US20170369062A1 (en) * 2016-06-23 2017-12-28 Honda Motor Co., Ltd. System and method for vehicle control using vehicular communication
CN107846434A (zh) * 2016-09-19 2018-03-27 中兴通讯股份有限公司 一种车联网业务处理方法、装置及车联网系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1975802A (zh) * 2006-11-28 2007-06-06 中国电子科技集团公司第三十八研究所 机动车辆编队行驶系统的控制方法
US8676466B2 (en) * 2009-04-06 2014-03-18 GM Global Technology Operations LLC Fail-safe speed profiles for cooperative autonomous vehicles
CN102546696B (zh) * 2010-12-22 2014-09-17 同济大学 行车感知导航系统
CN105374203A (zh) * 2014-08-14 2016-03-02 中国移动通信集团公司 基于车联网的车队控制方法及车载装置
CN106331980A (zh) * 2015-06-26 2017-01-11 中兴通讯股份有限公司 车联网中车辆的管理方法及装置
CN106332122B (zh) * 2015-06-26 2019-01-25 中兴通讯股份有限公司 车联网中车辆的管理方法及装置
EP3345173B1 (en) * 2015-08-31 2020-04-01 Nokia Solutions and Networks Oy Configuration of v2v and v2i radio communication in radio-assisted road traffic management scenarios
WO2017111717A1 (en) * 2015-12-25 2017-06-29 Ozyegin Universitesi Communication between vehicles of a platoon
US10506402B2 (en) * 2016-03-31 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for transmission of control and data in vehicle to vehicle communication
US10332403B2 (en) * 2017-01-04 2019-06-25 Honda Motor Co., Ltd. System and method for vehicle congestion estimation
US10068485B2 (en) * 2016-08-15 2018-09-04 Ford Global Technologies, Llc Platooning autonomous vehicle navigation sensory exchange
WO2018064179A1 (en) * 2016-09-30 2018-04-05 Intel Corporation V2x services in next generation cellular networks
EP3316062B1 (en) * 2016-10-31 2019-09-04 Nxp B.V. Platoon control
CN106643769A (zh) * 2016-12-19 2017-05-10 中国科学院微电子研究所 编队行驶的通信路径的确定方法、系统及编队行驶方法
US10575149B2 (en) * 2017-03-23 2020-02-25 Qualcomm Incorporated Methods to enable efficient intra-platoon communication
US10790945B2 (en) * 2017-03-23 2020-09-29 Qualcomm Incorporated Methods to mitigate inter-platoon interference
ES2949410T3 (es) * 2017-03-31 2023-09-28 Ericsson Telefon Ab L M Señalización de asignación de recursos
CN107808514B (zh) * 2017-10-19 2021-01-08 北京图森智途科技有限公司 一种自动驾驶车队通信方法及装置
CN107757534B (zh) * 2017-10-19 2020-03-10 北京图森未来科技有限公司 一种自动驾驶车队通信方法、装置及系统
CN107972668B (zh) * 2017-11-21 2020-08-04 杭州容大智造科技有限公司 一种车辆自动跟踪驾驶方法、装置及一种汽车
TWI821607B (zh) * 2018-04-03 2023-11-11 美商內數位專利控股公司 合作車間有效資源使用方法
CN115567881A (zh) * 2018-05-11 2023-01-03 三星电子株式会社 用于处理v2x系统中的动态组创建的方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559337A (zh) * 2015-09-24 2017-04-05 中兴通讯股份有限公司 车联网信息传输方法及相关设备
CN106559732A (zh) * 2015-09-25 2017-04-05 中兴通讯股份有限公司 车联网通信处理方法和装置
CN105610950A (zh) * 2015-12-30 2016-05-25 腾讯科技(深圳)有限公司 车队出行中的会话处理方法及系统
US20170369062A1 (en) * 2016-06-23 2017-12-28 Honda Motor Co., Ltd. System and method for vehicle control using vehicular communication
CN107846434A (zh) * 2016-09-19 2018-03-27 中兴通讯股份有限公司 一种车联网业务处理方法、装置及车联网系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800903A4

Also Published As

Publication number Publication date
CN110753300A (zh) 2020-02-04
CN110753300B (zh) 2021-10-15
US20210125501A1 (en) 2021-04-29
EP3800903B1 (en) 2023-07-26
EP3800903A1 (en) 2021-04-07
EP3800903A4 (en) 2021-07-14

Similar Documents

Publication Publication Date Title
WO2020007337A1 (zh) 一种物联网编队通信方法
Chen et al. ASGR: An artificial spider-web-based geographic routing in heterogeneous vehicular networks
Kadhim et al. Energy-efficient multicast routing protocol based on SDN and fog computing for vehicular networks
Chahal et al. Network selection and data dissemination in heterogeneous software-defined vehicular network
Yasser et al. VANET routing protocol for V2V implementation: A suitable solution for developing countries
Ahmad et al. VANET–LTE based heterogeneous vehicular clustering for driving assistance and route planning applications
Yaqoob et al. Congestion avoidance through fog computing in internet of vehicles
Syfullah et al. Data broadcasting on Cloud-VANET for IEEE 802.11 p and LTE hybrid VANET architectures
JP6983169B2 (ja) メッセージマルチキャスト方法、メッセージブロードキャスト方法およびデバイス
KR102569131B1 (ko) 차량 통신 서비스를 수행하는 장치 및 방법
WO2021223507A1 (zh) 一种通信方法、装置及芯片
WO2019128973A1 (zh) 一种通信方法、装置及系统
Wang et al. Delay-constrained routing via heterogeneous vehicular communications in software defined BusNet
CN106603658A (zh) 一种基于软件定义网络的车联网数据传输方法和装置
WO2019223639A1 (zh) 无线通信方法和设备
AlFarraj et al. Neighbor predictive adaptive handoff algorithm for improving mobility management in VANETs
WO2021013203A1 (zh) 一种通信方法及装置
Liu et al. Beta: Beacon-based traffic-aware routing in vehicular ad hoc networks
Thirugnanam et al. A reward based connectivity-aware IoV neighbor selection for improving reliability in healthcare information exchange
Wahid et al. Software-Defined Networks and Named Data Networks in Vehicular Ad Hoc Network Routing: Comparative Study and Future Directions
Debnath et al. A routing technique for enhancing the quality of service in Vanet
Xi et al. An RSUs-Assisted Hybrid Emergency Messages Broadcasting Protocol for VANETs
Elgaroui et al. New routing protocol for reliability to intelligent transportation communication
Sharma et al. TVDD: topology based vehicular data dissemination scheme for stability optimisation in IoV
Rayeni et al. A novel architecture and mechanism for on-demand services in vehicular networks with minimum overhead in target vehicle tracking

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019830348

Country of ref document: EP

Effective date: 20201231