WO2020007313A1 - 定位参考信号配置、接收方法和设备 - Google Patents

定位参考信号配置、接收方法和设备 Download PDF

Info

Publication number
WO2020007313A1
WO2020007313A1 PCT/CN2019/094515 CN2019094515W WO2020007313A1 WO 2020007313 A1 WO2020007313 A1 WO 2020007313A1 CN 2019094515 W CN2019094515 W CN 2019094515W WO 2020007313 A1 WO2020007313 A1 WO 2020007313A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
ssb
ofdm symbol
same
pdsch
Prior art date
Application number
PCT/CN2019/094515
Other languages
English (en)
French (fr)
Inventor
司晔
孙鹏
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217001598A priority Critical patent/KR102605434B1/ko
Priority to ES19830906T priority patent/ES2960975T3/es
Priority to EP19830906.4A priority patent/EP3820069B1/en
Priority to JP2021521871A priority patent/JP7160501B2/ja
Priority to EP23189464.3A priority patent/EP4246865A3/en
Priority to SG11202100093WA priority patent/SG11202100093WA/en
Publication of WO2020007313A1 publication Critical patent/WO2020007313A1/zh
Priority to US17/137,639 priority patent/US11758503B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present disclosure relates to the field of communication technologies, and more particularly, to a positioning reference signal configuration and receiving method and device.
  • Positioning Reference Signals can only be transmitted in resource blocks in downlink subframes configured for positioning reference signal transmission. PRS cannot be mapped to On the resource particles (Resource Element, RE) allocated to the physical broadcast channel (PBCH), primary synchronization signal (PSS) and secondary synchronization signal (SSS), the PRS will not Cell-specific reference signals for any antenna port overlap.
  • RE Resource Element
  • New Radio New Radio
  • UE User Equipment
  • the present disclosure takes the NR system as an example to explain the configuration of these contents, but is not limited to the NR system.
  • Embodiments of the present disclosure provide a positioning reference signal configuration and receiving method and device, so as to solve a problem that a UE cannot correctly receive a PRS, and the UE cannot perform positioning according to the PRS.
  • a positioning reference signal configuration method is provided and is applied to a network device.
  • the method includes:
  • the specific downlink signal includes one or more of the following signals: a channel state information reference signal CSI-RS, a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a synchronization signal block SSB.
  • CSI-RS channel state information reference signal
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • a positioning reference signal receiving method which is applied to a terminal device.
  • the method includes:
  • Receiving configuration information which is sent by a network device based on a spatial quasi co-location QCL relationship between a positioning reference signal PRS and a specific downlink signal, and the configuration information is used to determine resources occupied by the PRS and the specific downlink signal ;
  • the specific downlink signal includes one or more of the following signals: a channel state information reference signal CSI-RS, a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a synchronization signal block SSB.
  • CSI-RS channel state information reference signal
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • a network device includes:
  • a first sending module configured to send configuration information based on a spatial quasi-co-location QCL relationship between a positioning reference signal PRS and a specific downlink signal, where the configuration information is used to determine resources occupied by the PRS and the specific downlink signal;
  • the specific downlink signal includes one or more of the following signals: a channel state information reference signal CSI-RS, a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a synchronization signal block SSB.
  • CSI-RS channel state information reference signal
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • a terminal device includes:
  • a first receiving module is configured to receive configuration information sent by a network device based on a spatial quasi co-location QCL relationship between a positioning reference signal PRS and a specific downlink signal, and the configuration information is used to determine the PRS and all Describe the resources occupied by specific downlink signals;
  • the specific downlink signal includes one or more of the following signals: a channel state information reference signal CSI-RS, a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a synchronization signal block SSB.
  • CSI-RS channel state information reference signal
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • a network device includes a memory, a processor, and a wireless communication program stored on the memory and operable on the processor.
  • the wireless communication program is processed by the processor. When executed, the steps of the method as described in the first aspect are carried out.
  • a terminal device includes a memory, a processor, and a wireless communication program stored in the memory and operable on the processor.
  • the wireless communication program is processed by the processor. When executed, the steps of the method as described in the second aspect are carried out.
  • a computer-readable medium stores a wireless communication program, and when the wireless communication program is executed by a processor, the method according to the first aspect or the second aspect is implemented. step.
  • the configuration information sent by the network device to determine the resources occupied by the PRS and the specific downlink signal enables the terminal device to determine whether the PRS and the specific downlink signal are multiplexing downlink time domain resources, and thus is correct.
  • the terminal device can be located according to the received PRS, and the communication efficiency is improved.
  • FIG. 1 is one of the schematic flowcharts of a positioning reference signal configuration method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an SSB resource mapping structure according to an embodiment of the present disclosure.
  • FIG. 3 is a second schematic flowchart of a positioning reference signal configuration method according to an embodiment of the present disclosure
  • FIG. 4 is one of the schematic flowcharts of a positioning reference signal receiving method according to an embodiment of the present disclosure.
  • FIG. 5 is a second schematic flowchart of a positioning reference signal receiving method according to an embodiment of the present disclosure.
  • FIG. 6 is one of the schematic structural diagrams of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a second schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 8 is one of the structural diagrams of a terminal device according to an embodiment of the present disclosure.
  • FIG. 9 is a second schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 10 is a third schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 11 is a third schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • Terminal equipment can communicate with at least one core network via a wireless access network (for example, Radio Access Network, RAN).
  • the device can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • it can be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device that connects wirelessly Network access to exchange language and / or data.
  • a network device is a device that is deployed in a radio access network to provide positioning reference signal configuration functions for terminal devices.
  • the network device may be a base station, and the base station may be a base station in GSM or CDMA (Base Transceiver Station). , BTS), or a base station (NodeB) in WCDMA, or an evolutionary base station (eNB or e-NodeB) and 5G base station (gNB) in LTE, or a location server (Evolved in LTE) Serving Mobile Location Center (E-SMLC), 5G's Location Server (Location Management Function, LMF), and network-side equipment in subsequent evolution communication systems, however, the wording does not limit the scope of protection of this disclosure.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the implementation of the embodiments of the present disclosure.
  • the process constitutes any qualification.
  • the following uses the NR system as an example to describe the positioning reference signal configuration, receiving method, and device provided by the embodiments of the present disclosure. It should be understood that the positioning reference signal configuration, receiving method, and device provided by the embodiments of the present disclosure may also be applied. For other communication systems, it is not limited to NR systems.
  • FIG. 1 illustrates a positioning reference signal configuration method according to an embodiment of the present disclosure, which is applied to a network device. As shown in FIG. 1, the method may include the following steps:
  • Step 101 Send configuration information based on a spatial quasi-co-location QCL relationship between a positioning reference signal PRS and a specific downlink signal, where the configuration information is used to determine resources occupied by the PRS and the specific downlink signal.
  • the specific downlink signal includes a downlink system common signal or a system common channel.
  • the specific downlink signal includes one or more of the following signals: a channel state reference signal (Channel Information-Reference Signals, CSI-RS), System common signals or system common channels such as Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Synchronization Signal Block (SSB).
  • CSI-RS Channel State reference signal
  • System common signals or system common channels such as Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), and Synchronization Signal Block (SSB).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • SSB Synchronization Signal Block
  • QCL relationships can include the following types:
  • QCL Type A (QCL-TypeA): ⁇ Doppler frequency shift, Doppler spread, average delay, delay spread ⁇
  • QCL Type B (QCL-TypeB): ⁇ Doppler frequency shift, Doppler extension ⁇
  • QCL Type C (QCL-TypeC): ⁇ average delay, Doppler shift ⁇
  • QCL type D QCL-TypeD: ⁇ spatial Rx parameter ⁇ .
  • the above configuration information includes: the PRS and the specific downlink signal can occupy the same (or the same) orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the above configuration information may also include that the PRS and the specific downlink signal may occupy different OFDM symbols.
  • the above configuration information includes: the PRS and the specific downlink signal occupy different OFDM symbols. The resources occupied by the PRS and a specific downlink signal will be described in a more specific embodiment below. For details, see the following.
  • the network device configures PRS and specific downlink signals to occupy the same OFDM symbol, or the network device configures PRS and specific downlink signals to occupy different OFDM symbols.
  • the intention is to configure PRS to multiplex or not multiplex downlink time domain resources with specific downlink signals. That is, it is intended to configure whether the PRS should avoid collision with a specific downlink signal.
  • the configuration information sent by the network device to determine the resources occupied by the PRS and the specific downlink signal enables the terminal device to determine whether the PRS and the specific downlink signal are multiplexed with the downlink. Domain resources, so as to correctly receive PRS, and then to locate the terminal device according to the received PRS, and improve communication effectiveness.
  • the content included in the configuration information sent by the network device is described below in conjunction with a more specific embodiment.
  • the specific downlink signal includes the CSI-RS.
  • the configuration information includes that the PRS and the CSI-RS occupy the same orthogonal frequency division multiplexed OFDM symbol. That is, PRS and CSI-RS can reuse the same time domain resources, which means that the terminal device can receive both PRS and CSI-RS at the same time.
  • the PRS and the CSI-RS occupy the same orthogonal frequency division multiplexed OFDM symbol, and may include: the PRS and the CSI-RS frequency division multiplexed different resource particles RE on the same OFDM symbol; Alternatively, when the PRS and the CSI-RS are transmitted on the same RE in the OFDM symbol, the PRS and the CSI-RS share the same RE.
  • the configuration information includes that the PRS and the CSI-RS occupy different OFDM symbols. That is, the PRS and the CSI-RS do not reuse the same time domain resources, which means that at the same time, the terminal device only receives the PRS or only the CSI-RS.
  • the CSI-RS may include one or more of the following information: 1 CSI-RS for tracking (CSI-RS), for example, Tracking Reference Signal (Tracking Reference Signal, TRS); 2 CSI-RS used to calculate the physical layer (L1) Reference Signal Received Power (RSRP), that is, CSI-RS for L1-RSRP computation; 3 CSI-RS for mobility CSI-RS for mobility), and so on.
  • 1 CSI-RS for tracking CSI-RS
  • Tracking Reference Signal Tracking Reference Signal
  • TRS Tracking Reference Signal
  • 2 CSI-RS used to calculate the physical layer (L1) Reference Signal Received Power (RSRP), that is, CSI-RS for L1-RSRP computation
  • 3 CSI-RS for mobility CSI-RS for mobility and so on.
  • the configuration information sent by the network device to determine the resources occupied by the PRS and CSI-RS allows the terminal device to determine whether the PRS and CSI-RS are multiplexing downlink time domain resources, so as to receive correctly.
  • the PRS can further implement the positioning of the terminal device according to the received PRS, thereby improving the communication effectiveness.
  • the specific downlink signal includes the PDSCH.
  • the configuration information includes that the PRS and the PDSCH occupy the same orthogonal frequency division multiplexed OFDM symbol.
  • PRS and PDSCH can reuse the same time domain resources, network equipment can send PRS and PDSCH on the same OFDM symbol, and correspondingly, terminal equipment can receive PRS and PDSCH at the same time.
  • the PRS and the PDSCH occupy the same OFDM symbol, which may specifically include: rate matching the PDSCH around the PRS, or when the PRS and the PSCH are transmitted on the same RE in the OFDM symbol.
  • the PDSCH mapped on the RE is punctured by the PRS (PDSCH).
  • the PDSCH mapped on the RE is punctured by the PRS, which means that the PDSCH mapped on the RE is dropped, and the PRS is mapped on the RE.
  • the rate matching of the PDSCH around the PRS refers to mapping the PRS on the RE and mapping the PDSCH on a RE other than the RE occupied by the PRS.
  • the configuration information may also include: the PRS and the PDSCH occupy different OFDM symbols.
  • the PRS and the PDSCH occupy different OFDM symbols, which may specifically include: the PRS and the PDSCH occupy different OFDM symbols in the same time slot; or the PRS and the PDSCH occupy different time slots. OFDM symbols, that is, PDSCH is not transmitted in the time slot in which PRS is transmitted.
  • the PRS and the PDSCH may not reuse the same time domain resources, and the network device only sends the PRS and does not send the PDSCH on one or more OFDM symbols. Accordingly, Yes, at the same time, the terminal device only receives PRS.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDSCH, the configuration information includes: the PRS and the PDSCH occupy different OFDM symbols.
  • PRS and PDSCH do not multiplex the same time domain resources, and the network device sends only PRS and does not send PDSCH on one or more OFDM symbols; or, the network device sends only PDSCH and does not send on one or more OFDM symbols PRS. Accordingly, at the same time, the terminal device only receives the PRS or only the PDSCH.
  • the configuration information sent by the network device to determine the resources occupied by the PRS and PDSCH allows the terminal device to determine whether the PRS and PDSCH are multiplexing downlink time domain resources, so that the PRS can be received correctly, and thus the PRS can be received correctly.
  • the positioning of the terminal device is realized according to the received PRS, which improves the communication effectiveness.
  • the specific downlink signal includes the PDCCH.
  • the configuration information includes that the PRS and the PDCCH occupy the same orthogonal frequency division multiplexed OFDM symbol.
  • PRS and PDCCH can reuse the same time domain resources, network equipment can send PRS and PDCCH on the same OFDM symbol, and correspondingly, terminal equipment can receive PRS and PDCCH at the same time.
  • the PRS and the PDCCH occupying the same OFDM symbol may specifically include: rate matching the PDCCH around the PRS, or when the PRS and the PDCCH are transmitted on the same RE in the OFDM symbol.
  • rate matching the PDCCH around the PRS or when the PRS and the PDCCH are transmitted on the same RE in the OFDM symbol.
  • the PDCCH mapped on the RE is punctured by the PRS.
  • the PDCCH mapped on the RE is punctured by the PRS, which means that the PDCCH mapped on the RE is dropped, and the PRS is mapped on the RE.
  • the rate matching of the PDCCH around the PRS means that the PRS is mapped on the RE, and the PDCCH is mapped on REs other than the RE occupied by the PRS.
  • the configuration information may also include that the PRS and the PDCCH occupy different OFDM symbols.
  • the PRS and the PDCCH may not reuse the same time domain resources, and the network device may be configured not to send the PRS on the OFDM symbols occupied by the PDCCH. Accordingly, in the At the same time, the terminal device does not receive the PRS on the OFDM symbols occupied by the PDCCH.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDCCH, the configuration information includes that the PRS and the PDCCH occupy different OFDM symbols.
  • the PRS and the PDCCH do not reuse the same time domain resources, and the network device can be configured not to send the PRS on the OFDM symbols occupied by the PDCCH. Accordingly, at the same time, The terminal device only receives the PDCCH.
  • the configuration information sent by the network device to determine the resources occupied by the PRS and PDCCH allows the terminal device to determine whether the PRS and PDCCH are multiplexing downlink time domain resources, so that the PRS can be received correctly, and thus the PRS can be received
  • the positioning of the terminal device is realized according to the received PRS, which improves the communication effectiveness.
  • the specific downlink signal includes SSB.
  • the configuration information includes: the PRS and the SSB occupation The same orthogonal frequency division multiplexed OFDM symbol.
  • a manner in which the network device configures the PRS and the SSB to occupy the same OFDM symbol may be any one of the following manners:
  • the PRS and the physical broadcast channel PBCH in the SSB occupy a resource block (Resource Block, RB) at a different frequency domain position in the OFDM symbol; On the resource block RBs outside the RBs occupied by the physical broadcast channel PBCH in the SSB.
  • Resource Block Resource Block
  • SSB can include: Primary synchronization signal (PSS), secondary synchronization signal (SSS), physical broadcast channel (PBCH), and physical broadcast channel demodulation reference signal (Physical broadcast channel Channel-Demodulation Reference Signal (PBCH-DMRS).
  • PSS Primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • PBCH-DMRS physical broadcast channel demodulation reference signal
  • PRS and SSB occupy RBs with different frequency domain positions in the same OFDM symbol.
  • FIG. 2 illustrates a schematic diagram of resource mapping reception in 4 OFDM symbols.
  • NR-PSS, NR-SSS, NR-PBCH, and NR-PBCH-DMRS are mapped in these 4 OFDM symbols.
  • These 4 OFDM symbols include 20 RBs occupied by the SSB.
  • Network equipment The PRS can be configured on the RBs outside these 20 RBs. Even if the first OFDM symbol is not occupied by the SSB (the part with no padding pattern in Figure 2), the PRS must be configured on the RBs outside these 20 RBs. .
  • one RB may include 12 consecutive subcarriers.
  • the network device may configure that the PRS and the SSB occupy the same OFDM symbol, and when the PRS and the SSB are transmitted on the same RE in the OFDM symbol, the PRS mapped on the RE is deleted, and The SSB is mapped on the RE.
  • the network device may configure that the PRS and the SSB occupy the same OFDM symbol, and when the PRS and the SSB are transmitted on the same RE in the OFDM symbol, the SSB mapped on the RE is deleted, and The PRS is mapped on the RE.
  • the PRS and the physical broadcast channel demodulation reference signal PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS and the PBCH DMRS share the RE, and when When the PRS and an SSB other than the PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS mapped on the RE is punctured by an SSB other than the PBCH DMRS.
  • the network device may configure that the PRS and the SSB occupy the same OFDM symbol.
  • the PRS and the PBCH DMRS in the SSB are transmitted on the same RE in the OFDM symbol, the PRS and the PBCH share the same DMRS.
  • the PRS and the physical broadcast channel in the SSB demodulate a reference signal PBCH DMRS on the same RE in the OFDM symbol
  • the PRS shares the RE with the PBCH DMRS
  • the PRS and the SSB other than the PBCH and DMRS are transmitted on the same RE in the OFDM symbol
  • the SSB other than the PBCH and DMRS mapped on the RE is punctured by the PRS.
  • the network device may configure that the PRS and the SSB occupy the same OFDM symbol, and when the PRS and the PBCH DMRS in the SSB are transmitted on the same RE in the OFDM symbol, the PRS and the PBCH DMRS The RE is shared, and when the PRS and the SSB other than the PBCH DMRS are transmitted on the same RE in the OFDM symbol, the SSB other than the PBCH and DMRS mapped on the RE is deleted , Mapping the PRS on the RE.
  • the configuration information when there is a spatial QCL relationship between the PRS and the SSB, the configuration information includes that the PRS and the SSB occupy different OFDM symbols. This means that the network equipment is configured not to send PRS on the OFDM symbols occupied by the SSB.
  • the configuration information when there is no spatial QCL relationship between the PRS and the SSB, the configuration information includes: the PRS and the SSB occupy different OFDM symbols. That is, if there is no spatial QCL relationship between the PRS and the SSB, the network device is configured not to send the PRS on the OFDM symbol occupied by the SSB, and the terminal device only receives the SSB.
  • the configuration information sent by the network device to determine the resources occupied by the PRS and SSB enables the terminal device to determine whether the PRS and SSB are multiplexing downlink time domain resources, so that the PRS can be received correctly, and thus the PRS can be received.
  • the positioning of the terminal device is realized according to the received PRS, which improves the communication effectiveness.
  • the foregoing describes the resource occupation configuration of the PRS and CSI-RS, PDSCH, PDCCH, and SSB with specific embodiments.
  • the following describes how the network device sends the configuration information.
  • the network device may send the configuration information based on one or more of the following methods: 1 Send the configuration information based on high-level signaling, for example, using a Radio Resource Control (RRC) message Sending the configuration information; 2 sending the configuration information based on Media Access Control (MAC) layer signaling; or, 3 sending the configuration information based on Downlink Control Information (DCI).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • DCI Downlink Control Information
  • the foregoing configuration information may also be specified by a protocol. It should be understood that when the configuration information is specified by a protocol, the network device may not send the configuration information, but the terminal device may obtain the configuration information through a query protocol, and receive the PRS based on the configuration information.
  • the positioning reference signal configuration method may further include:
  • Step 102 Send the PRS and the specific downlink signal based on the configuration information.
  • the terminal device can correctly receive the PRS and the specific downlink signal, and can be based on the received
  • the PRS and the above-mentioned specific downlink signal are processed in the next step, which improves the communication effectiveness.
  • a positioning reference signal receiving method which is applied to a terminal device, may include the following steps:
  • Step 401 Receive configuration information, which is sent by a network device based on a spatial quasi co-location QCL relationship between a positioning reference signal PRS and a specific downlink signal, and the configuration information is used to determine the PRS and the specific downlink signal. Occupied resources.
  • the specific downlink signal includes a downlink system common signal or a system common channel.
  • the specific downlink signal includes one or more of the following signals: a channel state information reference signal CSI-RS, a physical downlink shared channel PDSCH, and a physical downlink.
  • CSI-RS channel state information reference signal
  • PDSCH physical downlink shared channel
  • SSB synchronization signal block
  • the terminal device since the configuration information sent by the network device received by the terminal device to determine the resources occupied by the PRS and the specific downlink signal, the terminal device can determine whether the PRS and the specific downlink signal are present.
  • the downlink time domain resources are multiplexed to correctly receive the PRS, and the terminal equipment can be located according to the received PRS, which improves the communication efficiency.
  • the content included in the configuration information from the network device is described below in conjunction with a more specific embodiment.
  • the configuration information includes: The PRS and the CSI-RS occupy the same orthogonal frequency division multiplexed OFDM symbol.
  • the PRS and the CSI-RS occupy the same OFDM symbol, and may include: the PRS and the CSI-RS frequency division multiplexing different resource particles RE on the same OFDM symbol; or, when the When the PRS and the CSI-RS are transmitted on the same RE in an OFDM symbol, the PRS and the CSI-RS share the same RE.
  • the configuration information when there is no spatial QCL relationship between the PRS and the CSI-RS, the configuration information includes that the PRS and the CSI-RS occupy different OFDM symbols.
  • the CSI-RS includes one or more of the following information: a CSI-RS used for tracking, a CSI-RS used to calculate a physical layer reference signal received power L1-RSRP, or a CSI used for mobility -RS.
  • the configuration information includes: the PRS and all The PDSCH occupies the same orthogonal frequency division multiplexed OFDM symbol; or the PRS and the PDSCH occupy different OFDM symbols.
  • the PRS and the PDSCH occupy the same OFDM symbol, including: rate matching the PDSCH around the PRS, or when sending the PRS and the PDSCH on the same RE in the OFDM symbol,
  • the PDSCH mapped on the RE is punctured by the PRS.
  • the PRS and the PDSCH when the PRS and the PDSCH have a spatial QCL relationship, the PRS and the PDSCH occupy different OFDM symbols, including: the PRS and the PDSCH occupy different OFDM symbols in the same time slot; or, The PRS and the PDSCH occupy OFDM symbols in different time slots.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDSCH, the configuration information includes that the PRS and the PDSCH occupy different OFDM symbols.
  • the configuration information includes: the PRS and The PDCCH occupies the same orthogonal frequency division multiplexed OFDM symbol; or, the PRS and the PDCCH occupy different OFDM symbols.
  • the PRS and the PDCCH occupy the same OFDM symbol include: rate matching the PDCCH around the PRS, or when in the OFDM symbol
  • the PRS and the PDCCH mapped on the RE is punctured by the PRS.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDCCH, the configuration information includes that the PRS and the PDCCH occupy different OFDM symbols.
  • the configuration information includes: the PRS and the SSB occupy the same orthogonal frequency division multiplexed OFDM symbol; or the PRS and the SSB occupy different OFDM symbols.
  • the PRS and the SSB occupying the same OFDM symbol include one of the following methods:
  • the PRS and the physical broadcast channel PBCH in the SSB occupy resource block RBs with different frequency domain positions in the OFDM symbol.
  • the PRS and the physical broadcast channel demodulation reference signal PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS and the PBCH DMRS share the RE, and when When the PRS and an SSB other than the PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS mapped on the RE is punctured by an SSB other than the PBCH DMRS.
  • the PRS and the physical broadcast channel in the SSB demodulate a reference signal PBCH DMRS on the same RE in the OFDM symbol
  • the PRS shares the RE with the PBCH DMRS
  • the PRS and the SSB other than the PBCH and DMRS are transmitted on the same RE in the OFDM symbol
  • the SSB other than the PBCH and DMRS mapped on the RE is punctured by the PRS.
  • the configuration information when there is no spatial QCL relationship between the PRS and the SSB, the configuration information includes that the PRS and the SSB occupy different OFDM symbols.
  • the foregoing describes the resource occupation configuration of the PRS and CSI-RS, PDSCH, PDCCH, and SSB with specific embodiments.
  • the following describes how the terminal device receives the configuration information.
  • the terminal device may receive the configuration information based on one or more of the following methods: 1 receiving the configuration information based on high-level signaling, for example, receiving the configuration information based on an RRC message; 2 based on MAC Receiving the configuration information through layer signaling; or, 3 receiving the configuration information based on DCI.
  • the foregoing configuration information may also be specified by a protocol. It should be understood that when the above-mentioned configuration information is specified by a protocol, the terminal device may not receive the above-mentioned configuration information from the network device, but may obtain the above-mentioned configuration information by querying the protocol, and receive the PRS based on the above-mentioned configuration information.
  • the positioning reference signal receiving method may further include:
  • Step 402 Receive the PRS and the specific downlink signal based on the configuration information.
  • the terminal device can correctly receive the PRS and the specific downlink signal based on the configuration information, and perform the next processing based on the received PRS and the specific downlink signal, which improves the communication efficiency. Sex.
  • the terminal device may further perform positioning based on the PRS.
  • the following uses the PRS in Observed Time Difference of Arrival (OTDOA) positioning as an example to briefly explain the process of positioning a terminal device based on PRS.
  • OTDOA Observed Time Difference of Arrival
  • the PTD positioning method based on the OTDOA positioning method may include:
  • a network device generates a PRS based on the method described above, and sends the PRS to a terminal device, where the network device includes a serving cell of the terminal device and a plurality of neighboring cells selected from near the terminal device.
  • the terminal device performs time-domain correlation between the PRS from the neighboring cell and the local PRS to obtain the delay power spectrum corresponding to each neighboring cell.
  • the local PRS is a PRS generated by a terminal device based on a PRS generation rule.
  • the terminal device searches for the first reach of the neighboring cell according to the delay power spectrum corresponding to the neighboring cell, and obtains the arrival time (Time of Arrival, TOA) of the PRS sent by each neighboring cell to the terminal device.
  • TOA Time of Arrival
  • the network device determines a reference signal time difference (RSTD) between the serving cell and each neighboring cell based on the TOAs corresponding to at least three neighboring cells, and determines the location of the terminal device. Specifically, the coordinates of the terminal device can be calculated.
  • RSTD reference signal time difference
  • the position of the terminal device is determined by the arrival time difference (Time Difference of Arrival, TDOA) of at least three neighboring cells, that is, determined by relative time instead of absolute time.
  • TDOA Time Difference of Arrival
  • the positioning reference signal receiving method provided by the embodiment of the present disclosure corresponds to the positioning reference signal configuration method provided by the embodiment of the present disclosure. Therefore, the description of the positioning reference signal receiving method in this specification is relatively simple. For related points, please refer to the above. The description of the positioning reference signal configuration method.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 6, the network device 600 includes a first sending module 601.
  • a first sending module 601 is configured to send configuration information based on a spatial quasi co-location QCL relationship between a positioning reference signal PRS and a specific downlink signal, where the configuration information is used to determine resources occupied by the PRS and the specific downlink signal. .
  • the specific downlink signal includes one or more of the following signals: a channel state information reference signal CSI-RS, a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a synchronization signal block SSB.
  • CSI-RS channel state information reference signal
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • the network device 600 provided in the embodiment shown in FIG. 6 is configured to determine whether the PRS and the specific downlink signal are multiplexed in the downlink time domain due to the configuration information sent to determine the resources occupied by the PRS and the specific downlink signal. Resources, so as to correctly receive PRS, and then to achieve positioning of terminal equipment based on the received PRS, and improve communication effectiveness.
  • the content included in the configuration information sent by the network device 600 is described below in conjunction with a more specific embodiment.
  • the configuration information includes: The PRS and the CSI-RS occupy the same orthogonal frequency division multiplexed OFDM symbol.
  • the PRS and the CSI-RS occupy the same OFDM symbol, and may include: the PRS and the CSI-RS frequency division multiplexing different resource particles RE on the same OFDM symbol; or, when the When the PRS and the CSI-RS are transmitted on the same RE in an OFDM symbol, the PRS and the CSI-RS share the same RE.
  • the configuration information when there is no spatial QCL relationship between the PRS and the CSI-RS, the configuration information includes that the PRS and the CSI-RS occupy different OFDM symbols.
  • the CSI-RS includes one or more of the following information: a CSI-RS used for tracking, a CSI-RS used to calculate a physical layer reference signal received power L1-RSRP, or a CSI used for mobility -RS.
  • the configuration information includes: the PRS and all The PDSCH occupies the same orthogonal frequency division multiplexed OFDM symbol; or the PRS and the PDSCH occupy different OFDM symbols.
  • the PRS and the PDSCH occupy the same OFDM symbol, including: rate matching the PDSCH around the PRS, or when sending the PRS and the PDSCH on the same RE in the OFDM symbol,
  • the PDSCH mapped on the RE is punctured by the PRS.
  • the PRS and the PDSCH when the PRS and the PDSCH have a spatial QCL relationship, the PRS and the PDSCH occupy different OFDM symbols, including: the PRS and the PDSCH occupy different OFDM symbols in the same time slot; or, The PRS and the PDSCH occupy OFDM symbols in different time slots.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDSCH, the configuration information includes that the PRS and the PDSCH occupy different OFDM symbols.
  • the configuration information includes: the PRS and The PDCCH occupies the same orthogonal frequency division multiplexed OFDM symbol; or, the PRS and the PDCCH occupy different OFDM symbols.
  • the PRS and the PDCCH occupying the same OFDM symbol include: rate matching the PDCCH around the PRS, or when When the PRS and the PDCCH are transmitted on the same RE in the, the PDCCH mapped on the RE is punctured by the PRS.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDCCH, the configuration information includes that the PRS and the PDCCH occupy different OFDM symbols.
  • the configuration information includes: the PRS and the SSB occupy the same orthogonal frequency division multiplexed OFDM symbol; or the PRS and the SSB occupy different OFDM symbols.
  • the PRS and the SSB occupying the same OFDM symbol include one of the following methods:
  • the PRS and the physical broadcast channel PBCH in the SSB occupy resource block RBs with different frequency domain positions in the OFDM symbol.
  • the PRS and the physical broadcast channel demodulation reference signal PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS and the PBCH DMRS share the RE, and when When the PRS and an SSB other than the PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS mapped on the RE is punctured by an SSB other than the PBCH DMRS.
  • the PRS and the physical broadcast channel in the SSB demodulate a reference signal PBCH DMRS on the same RE in the OFDM symbol
  • the PRS shares the RE with the PBCH DMRS
  • the PRS and the SSB other than the PBCH and DMRS are transmitted on the same RE in the OFDM symbol
  • the SSB other than the PBCH and DMRS mapped on the RE is punctured by the PRS.
  • the configuration information when there is no spatial QCL relationship between the PRS and the SSB, the configuration information includes that the PRS and the SSB occupy different OFDM symbols.
  • the foregoing describes the resource occupation configuration of the PRS and CSI-RS, PDSCH, PDCCH, and SSB with specific embodiments.
  • the following describes how the network device 600 sends the configuration information.
  • the network device may send the configuration information based on one or more of the following methods: 1 send the configuration information based on high-level signaling, for example, send the configuration information based on an RRC message; 2 based on MAC Layer signaling sends the configuration information; or, 3 sends the configuration information based on DCI.
  • the foregoing configuration information may also be specified by a protocol. It should be understood that, when the configuration information is specified by a protocol, the network device may not send the configuration information to the terminal device, but the terminal device may query the protocol to obtain the configuration information, and receive the PRS based on the configuration information.
  • the network device 600 provided by the embodiment of the present disclosure may further include:
  • a second sending module 602 is configured to receive the PRS and the specific downlink signal based on the configuration information.
  • the network device 600 after sending the above configuration information to the terminal device, the network device 600 subsequently sends the PRS and the specific downlink signal to the terminal device based on the configuration information, so that the terminal device can correctly receive the PRS and the specific downlink signal, and can receive the The received PRS and the above specific downlink signal are processed in the next step, which improves the communication effectiveness.
  • the foregoing network device 600 shown in FIG. 6 to FIG. 7 may be used to implement the embodiments of the positioning reference signal configuration method shown in FIG. 1 to FIG. 3.
  • an embodiment of the present disclosure further provides a terminal device 800.
  • the terminal device 800 may include a first receiving module 801.
  • a first receiving module 801 is configured to receive configuration information sent by a network device based on a spatial quasi co-location QCL relationship between a positioning reference signal PRS and a specific downlink signal, and the configuration information is used to determine the PRS and Resources occupied by the specific downlink signal;
  • the specific downlink signal includes one or more of the following signals: a channel state information reference signal CSI-RS, a physical downlink shared channel PDSCH, a physical downlink control channel PDCCH, and a synchronization signal block SSB.
  • CSI-RS channel state information reference signal
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • the terminal device 800 provided in the embodiment shown in FIG. 8 receives configuration information from a network device for determining a resource occupied by the PRS and a specific downlink signal, the terminal device can determine whether the PRS and the specific downlink signal are duplicated.
  • the downlink time domain resources are used to correctly receive the PRS, and the terminal equipment can be located according to the received PRS, which improves the communication efficiency.
  • the content included in the configuration information from the network device is described below in conjunction with a more specific embodiment.
  • the configuration information includes: The PRS and the CSI-RS occupy the same orthogonal frequency division multiplexed OFDM symbol.
  • the PRS and the CSI-RS occupy the same OFDM symbol, and may include: the PRS and the CSI-RS frequency division multiplexing different resource particles RE on the same OFDM symbol; or, when the When the PRS and the CSI-RS are transmitted on the same RE in an OFDM symbol, the PRS and the CSI-RS share the same RE.
  • the configuration information when there is no spatial QCL relationship between the PRS and the CSI-RS, the configuration information includes that the PRS and the CSI-RS occupy different OFDM symbols.
  • the CSI-RS includes one or more of the following information: a CSI-RS used for tracking, a CSI-RS used to calculate a physical layer reference signal received power L1-RSRP, or a CSI used for mobility -RS.
  • the configuration information includes: the PRS and all The PDSCH occupies the same orthogonal frequency division multiplexed OFDM symbol; or the PRS and the PDSCH occupy different OFDM symbols.
  • the PRS and the PDSCH occupy the same OFDM symbol, including: rate matching the PDSCH around the PRS, or when sending the PRS and the PDSCH on the same RE in the OFDM symbol,
  • the PDSCH mapped on the RE is punctured by the PRS.
  • the PRS and the PDSCH when the PRS and the PDSCH have a spatial QCL relationship, the PRS and the PDSCH occupy different OFDM symbols, including: the PRS and the PDSCH occupy different OFDM symbols in the same time slot; or, The PRS and the PDSCH occupy OFDM symbols in different time slots.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDSCH, the configuration information includes that the PRS and the PDSCH occupy different OFDM symbols.
  • the configuration information includes: the PRS and The PDCCH occupies the same orthogonal frequency division multiplexed OFDM symbol; or, the PRS and the PDCCH occupy different OFDM symbols.
  • the PRS and the PDCCH occupy the same OFDM symbol include: rate matching the PDCCH around the PRS, or when in the OFDM symbol
  • the PRS and the PDCCH mapped on the RE is punctured by the PRS.
  • the configuration information when there is no spatial QCL relationship between the PRS and the PDCCH, the configuration information includes that the PRS and the PDCCH occupy different OFDM symbols.
  • the configuration information includes: the PRS and the SSB occupy the same orthogonal frequency division multiplexed OFDM symbol; or the PRS and the SSB occupy different OFDM symbols.
  • the PRS and the SSB occupying the same OFDM symbol include one of the following methods:
  • the PRS and the physical broadcast channel PBCH in the SSB occupy resource block RBs with different frequency domain positions in the OFDM symbol.
  • the PRS and the physical broadcast channel demodulation reference signal PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS and the PBCH DMRS share the RE, and when When the PRS and an SSB other than the PBCH DMRS are transmitted on the same RE in the OFDM symbol, the PRS mapped on the RE is punctured by an SSB other than the PBCH DMRS.
  • the PRS and the physical broadcast channel in the SSB demodulate a reference signal PBCH DMRS on the same RE in the OFDM symbol
  • the PRS shares the RE with the PBCH DMRS
  • the PRS and the SSB other than the PBCH and DMRS are transmitted on the same RE in the OFDM symbol
  • the SSB other than the PBCH and DMRS mapped on the RE is punctured by the PRS.
  • the configuration information when there is no spatial QCL relationship between the PRS and the SSB, the configuration information includes that the PRS and the SSB occupy different OFDM symbols.
  • the foregoing describes the resource occupation configuration of the PRS and CSI-RS, PDSCH, PDCCH, and SSB with specific embodiments.
  • the following describes how the terminal device 800 receives the configuration information.
  • the terminal device 800 may receive the configuration information based on one or more of the following methods: 1 receiving the configuration information based on high-level signaling, for example, receiving the configuration information based on an RRC message; 2 based on MAC layer signaling receives the configuration information; or, 3 receives the configuration information based on DCI.
  • the foregoing configuration information may also be specified by a protocol. It should be understood that when the above-mentioned configuration information is specified by a protocol, the terminal device 800 may not receive the above-mentioned configuration information from the network device, but obtain the above-mentioned configuration information through a query protocol, and receive the PRS based on the above-mentioned configuration information.
  • the terminal device 800 provided in this embodiment of the present disclosure may further include:
  • the second receiving module 802 is configured to receive the PRS and the specific downlink signal based on the configuration information.
  • the terminal device 800 can subsequently correctly receive the PRS and the specific downlink signal based on the configuration information, and perform the next processing based on the received PRS and the specific downlink signal, which improves communication. Effectiveness.
  • the terminal device 800 shown in the foregoing FIG. 8 to FIG. 9 may be used to implement the embodiments of the positioning reference signal receiving method shown in FIG. 4 to FIG. 5.
  • FIG. 10 is a structural diagram of a network device applied in an embodiment of the present disclosure, which can implement the details of the positioning reference signal configuration method described above and achieve the same effect.
  • the network device 1000 includes: a processor 1001, a transceiver 1002, a memory 1003, a user interface 1004, and a bus interface, where:
  • the network device 1000 further includes: a computer program stored on the memory 1003 and executable on the processor 1001.
  • the computer program is executed by the processor 1001 and implements each process of the positioning reference signal configuration method described above. And can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the bus architecture may include any number of interconnected buses and bridges, and at least one processor specifically represented by the processor 1001 and various circuits of the memory represented by the memory 1003 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not further described herein.
  • the bus interface provides an interface.
  • the transceiver 1002 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the user interface 1004 may also be an interface capable of externally connecting internally required devices.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1003 can store data used by the processor 1001 when performing operations.
  • FIG. 11 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 1100 shown in FIG. 11 includes: at least one processor 1101, a memory 1102, at least one network interface 1104, and a user interface 1103.
  • the various components in the terminal device 1100 are coupled together by a bus system 1105.
  • the bus system 1105 is used to implement connection and communication between these components.
  • the bus system 1105 includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are marked as the bus system 1105 in FIG. 11.
  • the user interface 1103 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball, a touchpad, or a touch screen).
  • a pointing device for example, a mouse, a trackball, a touchpad, or a touch screen.
  • the memory 1102 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • DRRAM direct memory bus random access memory
  • the memory 1102 stores the following elements, executable modules or data structures, or a subset of them, or their extended set: an operating system 11021 and an application program 11022.
  • the operating system 11021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 11022 includes various application programs, such as a media player (Player), a browser (Browser), and the like, and is used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 11022.
  • the terminal device 1100 further includes: a computer program stored on the memory 1102 and executable on the processor 1101.
  • the computer program is executed by the processor 1101, the processes of the positioning reference signal receiving method are implemented, and Can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the method disclosed in the foregoing embodiments of the present disclosure may be applied to the processor 1101, or implemented by the processor 1101.
  • the processor 1101 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1101 or an instruction in the form of software.
  • the above processor 1101 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA), or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as completion of execution by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer-readable storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like in the art.
  • the computer-readable storage medium is located in the memory 1102, and the processor 1101 reads the information in the memory 1102 and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 1101, the steps of the positioning reference signal receiving method embodiment described above are implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), and Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, and other electronic units for performing the functions described in this disclosure Or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure may be implemented by modules (for example, procedures, functions, etc.) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • An embodiment of the present disclosure further provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program that, when executed by a processor, implements the positioning reference signal configuration method or the positioning reference signal receiving method embodiment described above. Each process can achieve the same technical effect. To avoid repetition, we will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • An embodiment of the present disclosure further provides a computer program product including instructions.
  • a computer runs the instructions of the computer program product, the computer executes the positioning reference signal configuration method or the positioning reference signal receiving method.
  • the computer program product can run on the network device.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to related technologies or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several
  • the instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the foregoing storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

提供了一种定位参考信号配置、接收方法和设备,该配置方法包括:基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系,发送配置信息,配置信息用于确定PRS与特定下行信号占用的资源。

Description

定位参考信号配置、接收方法和设备
相关申请的交叉引用
本申请主张在2018年7月6日在中国提交的中国专利申请号No.201810738246.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,更具体地涉及一种定位参考信号配置、接收方法和设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,定位参考信号(Positioning Reference Signal,PRS)只能在配置用于定位参考信号传输的下行链路子帧中的资源块中传输,PRS不能映射到分配给物理广播信道(Physical broadcast channel,PBCH)、主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)的资源粒子(Resource Element,RE)上,PRS也不会和任何天线端口的小区特定参考信号重叠。
但是,在新无线(New Radio,NR)系统中,网络设备如何配置PRS还不清楚,使得终端设备(User Equipment,UE)无法正确的接收PRS,进而无法基于PRS进行定位。本公开以NR系统为例说明这些内容的配置,但并不局限于NR系统。
发明内容
本公开实施例提供一种定位参考信号配置、接收方法和设备,以解决UE无法正确接收PRS,导致UE无法依据PRS进行定位的问题。
第一方面,提供了一种定位参考信号配置方法,应用于网络设备,所述方法包括:
基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系, 发送配置信息,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
第二方面,提供了一种定位参考信号接收方法,应用于终端设备,所述方法包括:
接收配置信息,所述配置信息由网络设备基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系发送,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
第三方面,提供了一种网络设备,该网络设备包括:
第一发送模块,用于基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系,发送配置信息,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
第四方面,提供了一种终端设备,该终端设备包括:
第一接收模块,用于接收配置信息,所述配置信息由网络设备基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系发送,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
第五方面,提供了一种网络设备,该网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信 程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端设备,该终端设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种计算机可读介质,所述计算机可读介质上存储有无线通信程序,所述无线通信程序被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
在本公开实施例中,由于网络设备发送的用于确定所述PRS与特定下行信号占用的资源的配置信息,使得终端设备可以明确PRS与特定下行信号有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开实施例的定位参考信号配置方法的示意性流程图之一。
图2是根据本公开实施例的SSB资源映射结构示意图。
图3是根据本公开实施例的定位参考信号配置方法的示意性流程图之二
图4是根据本公开实施例的定位参考信号接收方法的示意性流程图之一。
图5是根据本公开实施例的定位参考信号接收方法的示意性流程图之二。
图6是根据本公开实施例的网络设备的结构示意图之一。
图7是根据本公开实施例的网络设备的结构示意图之二。
图8是根据本公开实施例的终端设备的结构示意图之一。
图9是根据本公开实施例的终端设备的结构示意图之二。
图10是根据本公开实施例的网络设备的结构示意图之三。
图11是根据本公开实施例的终端设备的结构示意图之三。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统,或者说新无线(New Radio,NR)系统。
终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、移动终端设备等,可以经无线接入网(例如,Radio Access Network,RAN)与至少一个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
网络设备是一种部署在无线接入网设中用于为终端设备提供定位参考信号配置功能的装置,所述网络设备可以为基站,所述基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),或LTE中的位置服务器(Evolved Serving Mobile Location Center,E-SMLC)及5G的位置服务器(Location Management Function,LMF),以及后续演进通信系统中的网络侧设备,然而用词并不构成对本公开 保护范围的限制。
需要说明的是,在描述具体实施例时,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
需要说明的是,下文仅以NR系统为例说明本公开实施例提供的定位参考信号配置、接收方法及装置,应理解,本公开实施例提供的定位参考信号配置、接收方法及装置还可以应用于其他通信系统,并不局限于NR系统。
下面先结合附图1至3,对应用于网络设备的定位参考信号配置方法进行说明。
图1示出了根据本公开一个实施例的定位参考信号配置方法,应用于网络设备。如图1所示,该方法可以包括如下步骤:
步骤101、基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系,发送配置信息,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源。
其中,特定下行信号包括下行系统公共信号或系统公共信道,例如,所述特定下行信号包括下列信号中的一种或多种:信道状态参考信号(Channel State Information-Reference Signals,CSI-RS)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)和同步信号块(Synchronization Signal Block,SSB)等系统公共信号或系统共信道。
下面对准共址(Quasi Co-location,QCL)关系进行简要的介绍。
具体来说,如果两个天线端口的信号满足QCL关系,那么两组信号经历的信道的多普勒频移、多普勒扩展、平均时延、时延扩展和空间接收参数等参数中的至少一项近似相同。QCL关系可以包括如下几种类型:
QCL类型A(QCL-TypeA):{多普勒频移,多普勒扩展,平均延迟,延迟扩展}
QCL类型B(QCL-TypeB):{多普勒频移,多普勒扩展}
QCL类型C(QCL-TypeC):{平均延迟,多普勒频移}
QCL类型D(QCL-TypeD):{空间Rx参数}。
一般而言,如果PRS与特定下行信号之间具有空间QCL关系,则上述配置信息包括:PRS与特定下行信号可占用相同的(或者说同一个)正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。当然,如果PRS与特定下行信号之间具有空间QCL关系,上述配置信息也可以包括:PRS与特定下行信号可占用不同的OFDM符号。如果PRS与特定下行信号之间不具有空间QCL关系,则上述配置信息包括:PRS与特定下行信号占用不同的OFDM符号。下面会通过更为具体实施例对PRS与特定下行信号占用的资源进行说明,详见下文。
可以理解,网络设备配置PRS与特定下行信号占用同一OFDM符号,或者网络设备配置PRS与特定下行信号占用不同的OFDM符号,意在配置PRS与特定下行信号复用或不复用下行时域资源,也即意在配置PRS是否要避免与特定下行信号发生碰撞。
本公开实施例提供的定位参考信号配置方法,由于网络设备发送的用于确定所述PRS与特定下行信号占用的资源的配置信息,使得终端设备可以明确PRS与特定下行信号有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
下面结合更为具体的实施例对网络设备发送的配置信息包含的内容进行说明。
在一个实施例中,假设所述特定下行信号包括所述CSI-RS。
则作为一个例子,当所述PRS与所述CSI-RS之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用同一正交频分复用OFDM符号。也即,PRS与CSI-RS可复用相同的时域资源,这意味着终端设备可同时接收PRS和CSI-RS。
具体来说,所述PRS与所述CSI-RS占用同一正交频分复用OFDM符号,可包括:所述PRS与所述CSI-RS频分复用同一OFDM符号上的不同资源粒子RE;或者,当在所述OFDM符号中的同一RE上发送所述PRS与所述CSI-RS时,所述PRS与所述CSI-RS共用所述同一RE。
作为另一个例子,当所述PRS与所述CSI-RS之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用不同的OFDM符号。 也即,PRS与CSI-RS不复用相同的时域资源,这意味着在同一时刻,终端设备只接收PRS或只接收CSI-RS。
在上述两个例子中,所述CSI-RS可以包括下列信息中的一种或多种:①用于跟踪的CSI-RS(CSI-RS for tracking),例如,跟踪参考信号(Tracking Reference Signal,TRS);②用于计算物理层(L1)参考信号接收功率(Reference Signal Receiving Power,RSRP)的CSI-RS,也即CSI-RS for L1-RSRP computation;③用于移动性的CSI-RS(CSI-RS for mobility),等等。
在本实施例中,由于网络设备发送的用于确定所述PRS与CSI-RS占用的资源的配置信息,使得终端设备可以明确PRS与CSI-RS有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
在另一个实施例中,假设所述特定下行信号包括所述PDSCH。
则作为一个例子,当所述PRS与所述PDSCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用同一正交频分复用OFDM符号。这意味着,PRS与PDSCH可复用相同的时域资源,网络设备可在同一OFDM符号上发送PRS和PDSCH,相应的,终端设备可同时接收PRS和PDSCH。
在该例子中,所述PRS与所述PDSCH占用同一OFDM符号,具体可以包括:对所述PDSCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDSCH时,映射在所述RE上的所述PDSCH被所述PRS打孔(PDSCH are punctured by PRS)。
其中,映射在所述RE上的所述PDSCH被所述PRS打孔,是指将映射在所述RE上的PDSCH打掉,而将所述PRS映射在所述RE上。
其中,对所述PDSCH围绕所述PRS进行速率匹配,是指将所述PRS映射在所述RE上,在所述PRS占用的RE以外的RE上映射所述PDSCH。
作为另一个例子,当所述PRS与所述PDSCH之间具有空间QCL关系时,所述配置信息也可以包括:所述PRS与所述PDSCH占用不同的OFDM符号。其中,所述PRS与所述PDSCH占用不同的OFDM符号,具体可包括:所述PRS与所述PDSCH占用同一时隙内的不同OFDM符号;或者,所述PRS与 所述PDSCH占用不同时隙内的OFDM符号,即在发送PRS的时隙中不发送PDSCH。
这意味着,所述PRS与所述PDSCH之间具有空间QCL关系时,PRS与PDSCH也可不复用相同的时域资源,网络设备在一个或多个OFDM符号上只发送PRS不发送PDSCH,相应的,在同一时刻,终端设备只接收PRS。
作为又一个例子,当PRS与所述PDSCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用不同的OFDM符号。这意味着,PRS与PDSCH不复用相同的时域资源,网络设备在一个或多个OFDM符号上只发送PRS不发送PDSCH;或者,网络设备在一个或多个OFDM符号上只发送PDSCH不发送PRS。相应的,在同一时刻,终端设备只接收PRS或只接收PDSCH。
在本实施例中,由于网络设备发送的用于确定所述PRS与PDSCH占用的资源的配置信息,使得终端设备可以明确PRS与PDSCH有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
在另一个实施例中,假设所述特定下行信号包括所述PDCCH。
则作为一个例子,当所述PRS与所述PDCCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用同一正交频分复用OFDM符号。这意味着,PRS与PDCCH可复用相同的时域资源,网络设备可在同一OFDM符号上发送PRS和PDCCH,相应的,终端设备可同时接收PRS和PDCCH。
在该例子中,所述PRS与所述PDCCH占用同一OFDM符号具体可包括:对所述PDCCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDCCH时,映射在所述RE上的所述PDCCH被所述PRS打孔。
其中,映射在所述RE上的所述PDCCH被所述PRS打孔,是指将映射在所述RE上的PDCCH打掉,而将所述PRS映射在所述RE上。
其中,对所述PDCCH围绕所述PRS进行速率匹配,是指将所述PRS映射在所述RE上,在所述PRS占用的RE以外的RE上映射所述PDCCH。
或者,作为另一个例子,当所述PRS与所述PDCCH之间具有空间QCL关系时,所述配置信息也可以包括:所述PRS与所述PDCCH占用不同的OFDM符号。这意味着,所述PRS与所述PDCCH之间具有空间QCL关系时,PRS与PDCCH也可不复用相同的时域资源,网络设备可配置不在PDCCH占用的OFDM符号上发送PRS,相应的,在同一时刻,终端设备不在PDCCH占用的OFDM符号上接收PRS。
作为又一个例子,当所述PRS与所述PDCCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用不同的OFDM符号。
这意味着,PRS与所述PDCCH之间不具有空间QCL关系时,PRS与PDCCH不复用相同的时域资源,网络设备可配置不在PDCCH占用的OFDM符号上发送PRS,相应的,在同一时刻,终端设备只接收PDCCH。
在本实施例中,由于网络设备发送的用于确定所述PRS与PDCCH占用的资源的配置信息,使得终端设备可以明确PRS与PDCCH有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
在另一个实施例中,假设所述特定下行信号包括SSB。
则作为一个例子,当所述PRS与所述SSB之间具有空间QCL关系,以及所述PRS与所述SSB具有相同的子载波间隔时,所述配置信息包括:所述PRS与所述SSB占用同一正交频分复用OFDM符号。
在该例子中,网络设备配置所述PRS与所述SSB占用同一OFDM符号的方式可以是下列方式中的任一种:
①所述PRS与所述SSB中的物理广播信道PBCH占用所述OFDM符号中频域位置不同的资源块(Resource Block,RB),或者说,所述PRS占用所述OFDM符号中频域位置在所述SSB中的物理广播信道PBCH占用的RBs外部的资源块RBs上。
SSB可以包括:主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)、物理广播信道(Physical Broadcast Channel,PBCH)和物理广播信道解调参考信号(Physical Broadcast Channel-Demodulation Reference Signal,PBCH-DMRS)等信号。
该方式可以引申为,PRS与SSB占用同一OFDM符号中频域位置不同的RB。例如,请参考图2,图2示出了4个OFDM符号中的资源映射接收示意图。如图2所示,在这4个OFDM符号中映射有NR-PSS、NR-SSS、NR-PBCH和NR-PBCH-DMRS,这4个OFDM符号中共包括20个被SSB占用的RB,网络设备可以将PRS配置在这20个RB外部的RB上,即使第一个OFDM符号没有被SSB占满(图2中没有填充图案的部分),也要将PRS配置在这20个RB外部的RB上。在图2所示的例子中,一个RB中可包含12个连续的子载波。
②当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述PRS被所述SSB打孔。
也即,网络设备可配置PRS与SSB占用相同的OFDM符号,且当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,将映射在所述RE上PRS打掉,将所述SSB映射在所述RE上。
③当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述SSB被所述PRS打孔。
也即,网络设备可配置PRS与SSB占用相同的OFDM符号,且当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,将映射在所述RE上SSB打掉,将所述PRS映射在所述RE上。
④当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的所述PRS被除所述PBCH DMRS外的SSB打孔。
也即,网络设备可配置PRS与SSB占用相同的OFDM符号,在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,将映射在所述RE上的所述PRS打掉,将除所述PBCH DMRS外的SSB映射在所述RE上。
⑤当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的 物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的除所述PBCH DMRS外的SSB被所述PRS打孔。
也即,网络设备可配置PRS与SSB占用相同的OFDM符号,且当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,将映射在所述RE上的除所述PBCH DMRS外的SSB打掉,将所述PRS映射在所述RE上。
或者,作为另一个例子,当所述PRS与所述SSB之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述SSB占用不同的OFDM符号。这意味着,网络设备配置不在SSB占用的OFDM符号上发送PRS。
作为又一个例子,当所述PRS与所述SSB之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述SSB占用不同的OFDM符号。也即,如果所述PRS与所述SSB之间不具有空间QCL关系,网络设备配置不在SSB占用的OFDM符号上发送PRS,终端设备只接收SSB。
在本实施例中,由于网络设备发送的用于确定所述PRS与SSB占用的资源的配置信息,使得终端设备可以明确PRS与SSB有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
以上结合具体的实施例分别对PRS与CSI-RS、PDSCH、PDCCH和SSB的资源占用配置情况进行了说明。下面对网络设备发送上述配置信息的方式进行说明。
在具体配置过程中,网络设备可以基于下列方式中的一种或多种发送所述配置信息:①基于高层信令发送所述配置信息,例如,利用无线资源控制(Radio Resource Control,RRC)消息发送所述配置信息;②基于媒体访问控制(Media Access Control,MAC)层信令发送所述配置信息;或者,③基于下行控制信息(Downlink Control Information,DCI)发送所述配置信息。
当然,在另一实施例中,也可以由协议规定上述配置信息。应理解,当上述配置信息由协议规定时,网络设备可不发送上述配置信息,而是由终端设备通过查询协议获得上述配置信息,并基于上述配置信息接收PRS。
可选地,在另一个实施例中,如图3所示,在上述步骤101的基础上,本公开实施例提供的定位参考信号配置方法,还可以包括:
步骤102、基于所述配置信息,发送所述PRS和所述特定下行信号。
可以理解,在向终端设备发送上述配置信息以后,后续再基于上述配置信息向终端设备发送PRS和上述特定下行信号,可以使终端设备正确的接收PRS和上述特定下行信号,并可以依据接收到的PRS和上述特定下行信号进行下一步地处理,提高了通信有效性。
以上对应用于网络设备的定位参考信号配置方法进行了说明,下面结合图4和图5对本公开实施例提供的应用于终端设备中的定位参考信号接收方法进行说明。
如图4所示,根据本公开一个实施例的定位参考信号接收方法,应用于终端设备,可以包括如下步骤:
步骤401、接收配置信息,所述配置信息由网络设备基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系发送,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源。
其中,特定下行信号包括下行系统公共信号或系统公共信道,例如,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
本公开实施例提供的定位参考信号接收方法,由于终端设备接收的网络设备发送的用于确定所述PRS与特定下行信号占用的资源的配置信息,使得终端设备可以明确PRS与特定下行信号有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
下面结合更为具体的实施例对来自网络设备的配置信息包含的内容进行说明。
在一个实施例中,假如所述特定下行信号包括所述CSI-RS,则在一个例子中,当所述PRS与所述CSI-RS之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用同一正交频分复用OFDM符号。
具体来说,所述PRS与所述CSI-RS占用同一OFDM符号,可包括:所述PRS与所述CSI-RS频分复用同一OFDM符号上的不同资源粒子RE;或者,当在所述OFDM符号中的同一RE上发送所述PRS与所述CSI-RS时,所述PRS与所述CSI-RS共用所述同一RE。
在另一个例子中,当所述PRS与所述CSI-RS之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用不同的OFDM符号。
其中,所述CSI-RS包括下列信息中的一种或多种:用于跟踪的CSI-RS,用于计算物理层参考信号接收功率L1-RSRP的CSI-RS,或用于移动性的CSI-RS。
在一个实施例中,假如所述特定下行信号包括所述PDSCH,则在一个例子中,当所述PRS与所述PDSCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDSCH占用不同的OFDM符号。
其中,所述PRS与所述PDSCH占用同一OFDM符号,包括:对所述PDSCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDSCH时,映射在所述RE上的所述PDSCH被所述PRS打孔。
其中,当所述PRS与所述PDSCH具有空间QCL关系时,所述PRS与所述PDSCH占用不同的OFDM符号,包括:所述PRS与所述PDSCH占用同一时隙内的不同OFDM符号;或者,所述PRS与所述PDSCH占用不同时隙内的OFDM符号。
在一个例子中,当所述PRS与所述PDSCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用不同的OFDM符号。
在又一个实施例中,假如所述特定下行信号包括所述PDCCH时,在一个例子中,当所述PRS与所述PDCCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用同一正交频分复用OFDM符号;或 者,所述PRS与所述PDCCH占用不同的OFDM符号。
其中,当所述PRS与所述PDCCH之间具有空间QCL关系,所述PRS与所述PDCCH占用同一OFDM符号包括:对所述PDCCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDCCH时,映射在所述RE上的所述PDCCH被所述PRS打孔。
在另一个例子中,当所述PRS与所述PDCCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用不同的OFDM符号。
在另一个实施例中,假如所述特定下行信号包括所述SSB时,在一个例子中,当所述PRS与所述SSB之间具有空间QCL关系,以及所述PRS与所述SSB具有相同的子载波间隔时,所述配置信息包括:所述PRS与所述SSB占用同一正交频分复用OFDM符号;或者,所述PRS与所述SSB占用不同的OFDM符号。
其中,所述PRS与所述SSB占用同一OFDM符号包括如下方式中的一种:
①所述PRS与所述SSB中的物理广播信道PBCH占用所述OFDM符号中频域位置不同的资源块RB。
②当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述PRS被所述SSB打孔。
③当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述SSB被所述PRS打孔。
④当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的所述PRS被除所述PBCH DMRS外的SSB打孔。
⑤当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的除所述PBCH DMRS外的 SSB被所述PRS打孔。
在另一个例子中,当所述PRS与所述SSB之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述SSB占用不同的OFDM符号。
以上结合具体的实施例分别对PRS与CSI-RS、PDSCH、PDCCH和SSB的资源占用配置情况进行了说明。下面对终端设备接收上述配置信息的方式进行说明。
在具体接收过程中,终端设备可以基于下列方式中的一种或多种接收所述配置信息:①基于高层信令接收所述配置信息,例如,基于RRC消息接收所述配置信息;②基于MAC层信令接收所述配置信息;或者,③基于DCI接收所述配置信息。
当然,在另一实施例中,也可以由协议规定上述配置信息。应理解,当上述配置信息由协议规定时,终端设备可不接收来自网络设备的上述配置信息,而是通过查询协议获得上述配置信息,并基于上述配置信息接收PRS。
可选地,在另一个实施例中,如图5所示,在上述步骤401的基础上,本公开实施例提供的定位参考信号接收方法,还可以包括:
步骤402、基于所述配置信息,接收所述PRS和所述特定下行信号。
可以理解,终端设备在接收到上述配置信息以后,后续可以基于上述配置信息正确地接收PRS和上述特定下行信号,并依据接收到的PRS和上述特定下行信号进行下一步地处理,提高了通信有效性。
可选地,在另一个实施例中,终端设备在接收到网络设备配置的PRS之后,还可以进一步基于该PRS进行定位。下面以将PRS应用在观测到达时间(Observed Time Difference of Arrival,OTDOA)定位中为例,对终端设备基于PRS进行定位的过程进行简要的说明。
作为一个例子,OTDOA定位方法基于PRS定位的过程可以包括:
首先,网络设备基于上文中述及的方法生成PRS,并向终端设备发送所述PRS,其中,所述网络设备包括所述终端设备的服务小区和从终端设备附近选出的多个邻小区。
其次,终端设备对来自邻小区的PRS与本地PRS做时域相关,得到每一邻小区对应的时延功率谱。其中,本地PRS是终端设备基于PRS生成规则生 成的PRS。
再次,终端设备根据邻小区对应的时延功率谱寻找该邻小区的首达径,获得每个邻小区发送的PRS到达终端设备的到达时间(Time of Arrival,TOA)。
最后,网络设备基于至少三个邻小区对应的TOA,确定服务小区与每个邻小区的参考信号时差(Reference Signal Time Difference,RSTD),确定终端设备的位置。具体可以是计算终端设备的坐标。
在上述过程中,终端设备的位置由至少三个邻小区的到达时间差(Time Difference of Arrival,TDOA)来确定,即由相对时间而不是绝对时间确定。
由于本公开实施例提供的定位参考信号接收方法,与本公开实施例提供的定位参考信号配置方法相对应,因此,本说明书对定位参考信号接收方法的描述较为简单,相关之处,请参考上文中对定位参考信号配置方法的描述。
下面将结合图6至图9详细描述本公开实施例提供的网络设备和终端设备。
图6示出了本公开实施例提供的网络设备的结构示意图,如图6所示,网络设备600包括:第一发送模块601。
第一发送模块601,用于基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系,发送配置信息,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源。
其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
图6所示的实施例提供的网络设备600,由于发送的用于确定所述PRS与特定下行信号占用的资源的配置信息,使得终端设备可以明确PRS与特定下行信号有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
下面结合更为具体的实施例对网络设备600发送的配置信息包含的内容进行说明。
在一个实施例中,假如所述特定下行信号包括所述CSI-RS,则在一个例子中,当所述PRS与所述CSI-RS之间具有空间QCL关系时,所述配置信息 包括:所述PRS与所述CSI-RS占用同一正交频分复用OFDM符号。
具体来说,所述PRS与所述CSI-RS占用同一OFDM符号,可包括:所述PRS与所述CSI-RS频分复用同一OFDM符号上的不同资源粒子RE;或者,当在所述OFDM符号中的同一RE上发送所述PRS与所述CSI-RS时,所述PRS与所述CSI-RS共用所述同一RE。
在另一个例子中,当所述PRS与所述CSI-RS之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用不同的OFDM符号。
其中,所述CSI-RS包括下列信息中的一种或多种:用于跟踪的CSI-RS,用于计算物理层参考信号接收功率L1-RSRP的CSI-RS,或用于移动性的CSI-RS。
在一个实施例中,假如所述特定下行信号包括所述PDSCH,则在一个例子中,当所述PRS与所述PDSCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDSCH占用不同的OFDM符号。
其中,所述PRS与所述PDSCH占用同一OFDM符号,包括:对所述PDSCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDSCH时,映射在所述RE上的所述PDSCH被所述PRS打孔。
其中,当所述PRS与所述PDSCH具有空间QCL关系时,所述PRS与所述PDSCH占用不同的OFDM符号,包括:所述PRS与所述PDSCH占用同一时隙内的不同OFDM符号;或者,所述PRS与所述PDSCH占用不同时隙内的OFDM符号。
在一个例子中,当所述PRS与所述PDSCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用不同的OFDM符号。
在又一个实施例中,假如所述特定下行信号包括所述PDCCH,则在一个例子中,当所述PRS与所述PDCCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDCCH占用不同的OFDM符号。
其中,当所述PRS与所述PDCCH之间具有空间QCL关系时,所述PRS 与所述PDCCH占用同一OFDM符号包括:对所述PDCCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDCCH时,映射在所述RE上的所述PDCCH被所述PRS打孔。
在另一个例子中,当所述PRS与所述PDCCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用不同的OFDM符号。
在另一个实施例中,假如所述特定下行信号包括所述SSB,则在一个例子中,当所述PRS与所述SSB之间具有空间QCL关系,以及所述PRS与所述SSB具有相同的子载波间隔时,所述配置信息包括:所述PRS与所述SSB占用同一正交频分复用OFDM符号;或者,所述PRS与所述SSB占用不同的OFDM符号。
其中,所述PRS与所述SSB占用同一OFDM符号包括如下方式中的一种:
①所述PRS与所述SSB中的物理广播信道PBCH占用所述OFDM符号中频域位置不同的资源块RB。
②当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述PRS被所述SSB打孔。
③当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述SSB被所述PRS打孔。
④当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的所述PRS被除所述PBCH DMRS外的SSB打孔。
⑤当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的除所述PBCH DMRS外的SSB被所述PRS打孔。
在另一个例子中,当所述PRS与所述SSB之间不具有空间QCL关系时, 所述配置信息包括:所述PRS与所述SSB占用不同的OFDM符号。
以上结合具体的实施例分别对PRS与CSI-RS、PDSCH、PDCCH和SSB的资源占用配置情况进行了说明。下面对网络设备600发送上述配置信息的方式进行说明。
在具体发送过程中,网络设备可以基于下列方式中的一种或多种发送所述配置信息:①基于高层信令发送所述配置信息,例如,基于RRC消息发送所述配置信息;②基于MAC层信令发送所述配置信息;或者,③基于DCI发送所述配置信息。
当然,在另一实施例中,也可以由协议规定上述配置信息。应理解,当上述配置信息由协议规定时,网络设备可以不向终端设备发送所述配置信息,而是由终端设备查询协议获得上述配置信息,并基于上述配置信息接收PRS。
可选地,在另一个实施例中,如图7所示,本公开实施例提供的网络设备600还可以包括:
第二发送模块602,用于基于所述配置信息,接收所述PRS和所述特定下行信号。
可以理解,网络设备600在向终端设备发送上述配置信息以后,后续再基于上述配置信息向终端设备发送PRS和上述特定下行信号,可以使终端设备正确的接收PRS和上述特定下行信号,并依据接收到的PRS和上述特定下行信号进行下一步地处理,提高了通信有效性。
上述图6至图7所示的网络设备600,可以用于实现上述图1-图3所示的定位参考信号配置方法的各个实施例,相关之处请参考上述方法实施例。
如图8所示,本公开实施例还提供了终端设备800,该终端设备800可以包括:第一接收模块801。
第一接收模块801,用于接收配置信息,所述配置信息由网络设备基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系发送,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
图8所示的实施例提供的终端设备800,由于接收的来自网络设备的用于确定所述PRS与特定下行信号占用的资源的配置信息,使得终端设备可以明确PRS与特定下行信号有没有复用下行时域资源,从而正确接收PRS,进而可以依据接收到的PRS实现终端设备的定位,提高了通信有效性。
下面结合更为具体的实施例对来自网络设备的配置信息包含的内容进行说明。
在一个实施例中,假如所述特定下行信号包括所述CSI-RS,则在一个例子中,当所述PRS与所述CSI-RS之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用同一正交频分复用OFDM符号。
具体来说,所述PRS与所述CSI-RS占用同一OFDM符号,可包括:所述PRS与所述CSI-RS频分复用同一OFDM符号上的不同资源粒子RE;或者,当在所述OFDM符号中的同一RE上发送所述PRS与所述CSI-RS时,所述PRS与所述CSI-RS共用所述同一RE。
在另一个例子中,当所述PRS与所述CSI-RS之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用不同的OFDM符号。
其中,所述CSI-RS包括下列信息中的一种或多种:用于跟踪的CSI-RS,用于计算物理层参考信号接收功率L1-RSRP的CSI-RS,或用于移动性的CSI-RS。
在一个实施例中,假如所述特定下行信号包括所述PDSCH,则在一个例子中,当所述PRS与所述PDSCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDSCH占用不同的OFDM符号。
其中,所述PRS与所述PDSCH占用同一OFDM符号,包括:对所述PDSCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDSCH时,映射在所述RE上的所述PDSCH被所述PRS打孔。
其中,当所述PRS与所述PDSCH具有空间QCL关系时,所述PRS与所述PDSCH占用不同的OFDM符号,包括:所述PRS与所述PDSCH占用同一时隙内的不同OFDM符号;或者,所述PRS与所述PDSCH占用不同时 隙内的OFDM符号。
在一个例子中,当所述PRS与所述PDSCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用不同的OFDM符号。
在又一个实施例中,假如所述特定下行信号包括所述PDCCH,则在一个例子中,当所述PRS与所述PDCCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDCCH占用不同的OFDM符号。
其中,当所述PRS与所述PDCCH之间具有空间QCL关系,所述PRS与所述PDCCH占用同一OFDM符号包括:对所述PDCCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDCCH时,映射在所述RE上的所述PDCCH被所述PRS打孔。
在另一个例子中,当所述PRS与所述PDCCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用不同的OFDM符号。
在另一个实施例中,假如所述特定下行信号包括所述SSB,则在一个例子中,当所述PRS与所述SSB之间具有空间QCL关系,以及所述PRS与所述SSB具有相同的子载波间隔时,所述配置信息包括:所述PRS与所述SSB占用同一正交频分复用OFDM符号;或者,所述PRS与所述SSB占用不同的OFDM符号。
其中,所述PRS与所述SSB占用同一OFDM符号包括如下方式中的一种:
①所述PRS与所述SSB中的物理广播信道PBCH占用所述OFDM符号中频域位置不同的资源块RB。
②当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述PRS被所述SSB打孔。
③当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述SSB被所述PRS打孔。
④当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所 述PBCH DMRS外的SSB时,映射在所述RE上的所述PRS被除所述PBCH DMRS外的SSB打孔。
⑤当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的除所述PBCH DMRS外的SSB被所述PRS打孔。
在另一个例子中,当所述PRS与所述SSB之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述SSB占用不同的OFDM符号。
以上结合具体的实施例分别对PRS与CSI-RS、PDSCH、PDCCH和SSB的资源占用配置情况进行了说明。下面对终端设备800接收上述配置信息的方式进行说明。
在具体接收过程中,终端设备800可以基于下列方式中的一种或多种接收所述配置信息:①基于高层信令接收所述配置信息,例如,基于RRC消息接收所述配置信息;②基于MAC层信令接收所述配置信息;或者,③基于DCI接收所述配置信息。
当然,在另一实施例中,也可以由协议规定上述配置信息。应理解,当上述配置信息由协议规定时,终端设备800可不接收来自网络设备的上述配置信息,而是通过查询协议获得上述配置信息,并基于上述配置信息接收PRS。
可选地,在另一个实施例中,如图9所示,本公开实施例提供的终端设备800还可以包括:
第二接收模块802,用于基于所述配置信息,接收所述PRS和所述特定下行信号。
可以理解,终端设备800在接收到上述配置信息以后,后续可以基于上述配置信息正确地接收PRS和上述特定下行信号,并依据接收到的PRS和上述特定下行信号进行下一步地处理,提高了通信有效性。
上述图8至图9所示的终端设备800,可以用于实现上述图4-图5所示的定位参考信号接收方法的各个实施例,相关之处请参考上述方法实施例。
请参阅图10,图10是本公开实施例应用的网络设备的结构图,能够实 现上述定位参考信号配置方法的细节,并达到相同的效果。如图10所示,网络设备1000包括:处理器1001、收发机1002、存储器1003、用户接口1004和总线接口,其中:
在本公开实施例中,网络设备1000还包括:存储在存储器1003上并可在处理器1001上运行的计算机程序,计算机程序被处理器1001、执行时实现上述定位参考信号配置方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图10中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的至少一个处理器和存储器1003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1002可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端设备,用户接口1004还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1001负责管理总线架构和通常的处理,存储器1003可以存储处理器1001在执行操作时所使用的数据。
图11是本公开另一个实施例提供的终端设备的结构示意图。图11所示的终端设备1100包括:至少一个处理器1101、存储器1102、至少一个网络接口1104和用户接口1103。终端设备1100中的各个组件通过总线系统1105耦合在一起。可理解,总线系统1105用于实现这些组件之间的连接通信。总线系统1105除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图11中将各种总线都标为总线系统1105。
其中,用户接口1103可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等)。
可以理解,本公开实施例中的存储器1102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM, EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器1102旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器1102存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统11021和应用程序11022。
其中,操作系统11021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序11022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序11022中。
在本公开实施例中,终端设备1100还包括:存储在存储器1102上并可在处理器1101上运行的计算机程序,计算机程序被处理器1101执行时实现上述定位参考信号接收方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法可以应用于处理器1101中,或者由处理器1101实现。处理器1101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1101可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array, FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器1102,处理器1101读取存储器1102中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器1101执行时实现如上述定位参考信号接收方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在至少一个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述定位参考信号配置方法或上述定位参考信号接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本公开实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指令时,所述计算机执行上述定位参考信号配置方 法或者上述定位参考信号接收方法。具体地,该计算机程序产品可以运行于上述网络设备上。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者 网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。

Claims (32)

  1. 一种定位参考信号配置方法,应用于网络设备,包括:
    基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系,发送配置信息,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
    其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
  2. 根据权利要求1所述的方法,其中,
    当所述特定下行信号包括所述CSI-RS,且所述PRS与所述CSI-RS之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用同一正交频分复用OFDM符号;
    当所述特定下行信号包括所述CSI-RS,且所述PRS与所述CSI-RS之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用不同的OFDM符号。
  3. 根据权利要求2所述的方法,其中,
    其中,所述PRS与所述CSI-RS占用同一OFDM符号,包括:
    所述PRS与所述CSI-RS频分复用同一OFDM符号上的不同资源粒子RE;或者,当在所述OFDM符号中的同一RE上发送所述PRS与所述CSI-RS时,所述PRS与所述CSI-RS共用所述同一RE。
  4. 根据权利要求1-3任一项所述的方法,其中,
    所述CSI-RS包括下列信息中的一种或多种:
    用于跟踪的CSI-RS,
    用于计算物理层参考信号接收功率L1-RSRP的CSI-RS,或
    用于移动性的CSI-RS。
  5. 根据权利要求1所述的方法,其中,
    当所述特定下行信号包括所述PDSCH,且所述PRS与所述PDSCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用同 一正交频分复用OFDM符号;或者,所述PRS与所述PDSCH占用不同的OFDM符号;
    当所述特定下行信号包括所述PDSCH,且所述PRS与所述PDSCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用不同的OFDM符号。
  6. 根据权利要求5所述的方法,其中,
    其中,所述PRS与所述PDSCH占用同一OFDM符号,包括:
    对所述PDSCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDSCH时,映射在所述RE上的所述PDSCH被所述PRS打孔;
    其中,当所述PRS与所述PDSCH具有空间QCL关系时,所述PRS与所述PDSCH占用不同的OFDM符号,包括:
    所述PRS与所述PDSCH占用同一时隙内的不同OFDM符号;或者,所述PRS与所述PDSCH占用不同时隙内的OFDM符号。
  7. 根据权利要求1所述的方法,其中,
    当所述特定下行信号包括所述PDCCH,且所述PRS与所述PDCCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDCCH占用不同的OFDM符号;
    当所述特定下行信号包括所述PDCCH,且所述PRS与所述PDCCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用不同的OFDM符号。
  8. 根据权利要求7所述的方法,其中,
    其中,所述PRS与所述PDCCH占用同一OFDM符号包括:
    对所述PDCCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDCCH时,映射在所述RE上的所述PDCCH被所述PRS打孔。
  9. 根据权利要求1所述的方法,其中,
    当所述特定下行信号包括所述SSB,且所述PRS与所述SSB之间具有空 间QCL关系,,所述配置信息包括:所述PRS与所述SSB占用同一正交频分复用OFDM符号;或者,所述PRS与所述SSB占用不同的OFDM符号;
    当所述特定下行信号包括所述SSB,且所述PRS与所述SSB之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述SSB占用不同的OFDM符号。
  10. 根据权利要求9所述的方法,其中,所述PRS与所述SSB占用同一OFDM符号时,所述PRS与所述SSB具有相同的子载波间隔。
  11. 根据权利要求10所述的方法,其中,所述PRS与所述SSB占用同一OFDM符号包括如下方式中的一种:
    在所述OFDM符号上,所述PRS占用的频域位置在所述SSB中物理广播信道PBCH占用的RBs外部的资源块RBs上;
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述PRS被所述SSB打孔;
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述SSB被所述PRS打孔;
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的所述PRS被除所述PBCH DMRS外的SSB打孔;或
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的除所述PBCH DMRS外的SSB被所述PRS打孔。
  12. 根据权利要求1所述的方法,其中,
    基于下列方式中的一种或多种发送所述配置信息:
    高层信令;
    MAC层信令;或
    下行控制信息DCI。
  13. 根据权利要求1所述的方法,还包括:
    基于所述配置信息,发送所述PRS和所述特定下行信号。
  14. 一种定位参考信号接收方法,应用于终端设备,包括:
    接收配置信息,所述配置信息由网络设备基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系发送,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
    其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
  15. 根据权利要求14所述的方法,其中,
    当所述特定下行信号包括所述CSI-RS,且所述PRS与所述CSI-RS之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用同一正交频分复用OFDM符号;
    当所述特定下行信号包括所述CSI-RS,且所述PRS与所述CSI-RS之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述CSI-RS占用不同的OFDM符号。
  16. 根据权利要求15所述的方法,其中,
    其中,所述PRS与所述CSI-RS占用同一OFDM符号,包括:
    所述PRS与所述CSI-RS频分复用同一OFDM符号上的不同资源粒子RE;或者,当在所述OFDM符号中的同一RE上发送所述PRS与所述CSI-RS时,所述PRS与所述CSI-RS共用所述同一RE。
  17. 根据权利要求14-16任一项所述的方法,其中,
    所述CSI-RS包括下列信息中的一种或多种:
    用于跟踪的CSI-RS,
    用于计算物理层参考信号接收功率L1-RSRP的CSI-RS,或
    用于移动性的CSI-RS。
  18. 根据权利要求14所述的方法,其中,
    当所述特定下行信号包括所述PDSCH,且所述PRS与所述PDSCH之间 具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDSCH占用不同的OFDM符号;
    当所述特定下行信号包括所述PDSCH,且所述PRS与所述PDSCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDSCH占用不同的OFDM符号。
  19. 根据权利要求18所述的方法,其中,
    其中,所述PRS与所述PDSCH占用同一OFDM符号,包括:
    对所述PDSCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDSCH时,映射在所述RE上的所述PDSCH被所述PRS打孔;
    其中,当所述PRS与所述PDSCH具有空间QCL关系时,所述PRS与所述PDSCH占用不同的OFDM符号,包括:
    所述PRS与所述PDSCH占用同一时隙内的不同OFDM符号;或者,所述PRS与所述PDSCH占用不同时隙内的OFDM符号。
  20. 根据权利要求14所述的方法,其中,
    当所述特定下行信号包括所述PDCCH,且所述PRS与所述PDCCH之间具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用同一正交频分复用OFDM符号;或者,所述PRS与所述PDCCH占用不同的OFDM符号;
    当所述特定下行信号包括所述PDCCH,且所述PRS与所述PDCCH之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述PDCCH占用不同的OFDM符号。
  21. 根据权利要求20所述的方法,其中,
    其中,所述PRS与所述PDCCH占用同一OFDM符号包括:
    对所述PDCCH围绕所述PRS进行速率匹配,或当在所述OFDM符号中的同一RE上发送所述PRS与所述PDCCH时,映射在所述RE上的所述PDCCH被所述PRS打孔。
  22. 根据权利要求14所述的方法,其中,
    当所述特定下行信号包括所述SSB,且所述PRS与所述SSB之间具有空间QCL关系,所述配置信息包括:所述PRS与所述SSB占用同一正交频分复用OFDM符号;或者,所述PRS与所述SSB占用不同的OFDM符号;
    当所述特定下行信号包括所述SSB,且所述PRS与所述SSB之间不具有空间QCL关系时,所述配置信息包括:所述PRS与所述SSB占用不同的OFDM符号。
  23. 根据权利要求22所述的方法,其中,所述PRS与所述SSB占用同一OFDM符号时,所述PRS与所述SSB具有相同的子载波间隔。
  24. 根据权利要求23所述的方法,其中,其中,所述PRS与所述SSB占用同一OFDM符号包括如下方式中的一种:
    在所述OFDM符号上,所述PRS占用的频域位置在所述SSB中物理广播信道PBCH占用的RBs外部的资源块RBs上;
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述PRS被所述SSB打孔;
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB时,映射在所述RE上的所述SSB被所述PRS打孔;
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的所述PRS被除所述PBCH DMRS外的SSB打孔;或
    当在所述OFDM符号中的同一RE上发送所述PRS与所述SSB中的物理广播信道解调参考信号PBCH DMRS时,所述PRS与所述PBCH DMRS共用所述RE,且当在所述OFDM符号中的同一RE上发送所述PRS与除所述PBCH DMRS外的SSB时,映射在所述RE上的除所述PBCH DMRS外的SSB被所述PRS打孔。
  25. 根据权利要求22所述的方法,其中,所述PRS与所述SSB之间不具有空间QCL关系时,所述终端只接收所述SSB。
  26. 根据权利要求14所述的方法,其中,
    基于下列方式中的一种或多种接收所述配置信息:
    高层信令;
    MAC层信令;或
    下行控制信息DCI。
  27. 根据权利要求14所述的方法,还包括:
    基于所述配置信息,接收所述PRS和所述特定下行信号。
  28. 一种网络设备,包括:
    第一发送模块,用于基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系,发送配置信息,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
    其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
  29. 一种终端设备,包括:
    第一接收模块,用于接收配置信息,所述配置信息由网络设备基于定位参考信号PRS与特定下行信号之间的空间准共址QCL关系发送,所述配置信息用于确定所述PRS与所述特定下行信号占用的资源;
    其中,所述特定下行信号包括下列信号中的一种或多种:信道状态信息参考信号CSI-RS、物理下行共享信道PDSCH、物理下行控制信道PDCCH和同步信号块SSB。
  30. 一种网络设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如权利要求1-13任一项所述的方法的步骤。
  31. 一种终端设备,包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如权利要求14-27任一项所述的方法的步骤。
  32. 一种计算机可读介质,存储有无线通信程序,所述无线通信程序被处理器执行时实现如权利要求1-27任一项所述的方法的步骤。
PCT/CN2019/094515 2018-07-06 2019-07-03 定位参考信号配置、接收方法和设备 WO2020007313A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217001598A KR102605434B1 (ko) 2018-07-06 2019-07-03 포지셔닝 기준 신호 구성 방법, 수신 방법 및 기기
ES19830906T ES2960975T3 (es) 2018-07-06 2019-07-03 Método y dispositivo para configurar y recibir señal de referencia de posicionamiento
EP19830906.4A EP3820069B1 (en) 2018-07-06 2019-07-03 Method and device for configuring and receiving positioning reference signal
JP2021521871A JP7160501B2 (ja) 2018-07-06 2019-07-03 測位基準信号設定方法、受信方法及び機器
EP23189464.3A EP4246865A3 (en) 2018-07-06 2019-07-03 Method and device for configuring and receiving positioning reference signal
SG11202100093WA SG11202100093WA (en) 2018-07-06 2019-07-03 Method and device for configuring and receiving positioning reference signal
US17/137,639 US11758503B2 (en) 2018-07-06 2020-12-30 Method and device for configuring and receiving positioning reference signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810738246.7A CN110690950B (zh) 2018-07-06 2018-07-06 定位参考信号配置、接收方法和设备
CN201810738246.7 2018-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/137,639 Continuation US11758503B2 (en) 2018-07-06 2020-12-30 Method and device for configuring and receiving positioning reference signal

Publications (1)

Publication Number Publication Date
WO2020007313A1 true WO2020007313A1 (zh) 2020-01-09

Family

ID=69059908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094515 WO2020007313A1 (zh) 2018-07-06 2019-07-03 定位参考信号配置、接收方法和设备

Country Status (10)

Country Link
US (1) US11758503B2 (zh)
EP (2) EP3820069B1 (zh)
JP (1) JP7160501B2 (zh)
KR (1) KR102605434B1 (zh)
CN (1) CN110690950B (zh)
ES (1) ES2960975T3 (zh)
HU (1) HUE063889T2 (zh)
PT (1) PT3820069T (zh)
SG (1) SG11202100093WA (zh)
WO (1) WO2020007313A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11533144B2 (en) * 2019-08-15 2022-12-20 Qualcomm Incorporated Indication of time-frequency synchronization signal block (SSB) locations of neighboring transmission-reception points for positioning reference signal puncturing purposes
US11909589B2 (en) * 2019-10-03 2024-02-20 Qualcomm Incorporated Constraints on a source reference signal for quasi-collocation timing reference of a positioning reference signal
GB2588101B (en) * 2019-10-04 2022-09-28 Samsung Electronics Co Ltd Frequency layer configuration for positioning reference signals
CN113271187A (zh) * 2020-02-14 2021-08-17 展讯通信(上海)有限公司 确定参考信号或资源或集合的方法、系统、设备和介质
US20210360611A1 (en) * 2020-05-18 2021-11-18 Qualcomm Incorporated Transmission-reception point (trp) association for positioning measurements performed on physical downlink channels
CN113677028B (zh) * 2021-08-20 2023-09-29 哲库科技(北京)有限公司 Pdcch监测方法、装置、设备及存储介质
CN118339894A (zh) * 2021-12-27 2024-07-12 Oppo广东移动通信有限公司 无线通信的方法及终端设备
WO2023141986A1 (en) * 2022-01-28 2023-08-03 Huawei Technologies Co., Ltd. Client device and network access node for reception of prs and pdcch/pdsch
US20230275725A1 (en) * 2022-01-31 2023-08-31 Sharp Kabushiki Kaisha User equipments, base stations and methods for time domain correlation information signaling
WO2023182802A1 (ko) * 2022-03-23 2023-09-28 주식회사 케이티 무선 통신 시스템에서 nr(new radio technology) pdcch(physical downlink control channel)를 전송 및 수신하는 방법 및 장치
WO2024029986A1 (ko) * 2022-08-05 2024-02-08 엘지전자 주식회사 무선 통신 시스템에서 동기 신호 및 방송 채널 신호를 온/오프하기 위한 장치 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122757A1 (en) * 2015-01-29 2016-08-04 Intel Corporation Wireless system for determining the position of a ue involved in carrier aggregation
CN107113569A (zh) * 2015-01-26 2017-08-29 英特尔Ip公司 提高水平和垂直定位准确性的设备和方法
CN107113771A (zh) * 2015-01-26 2017-08-29 英特尔Ip公司 利用异构参考信号的otdoa(观察到达时间差)定位增强

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112972A1 (en) 2012-01-27 2013-08-01 Interdigital Patent Holdings, Inc. Systems and/or methods for providing epdcch in a multiple carrier based and/or quasi-collated network
US10057839B2 (en) * 2013-09-27 2018-08-21 Samsung Electronics Co., Ltd. Methods and apparatus for discovery signals for LTE advanced
CN105099635A (zh) * 2014-05-13 2015-11-25 北京三星通信技术研究有限公司 基于ofdm的帧配置的方法和设备
US9706517B2 (en) * 2014-06-30 2017-07-11 Lg Electronics Inc. Position calculation method and apparatus in wireless communication system
US10178571B2 (en) * 2014-08-28 2019-01-08 Lg Electronics Inc. Method for performing positioning in wireless communication system and device therefor
EP3186905B1 (en) 2014-08-29 2021-08-18 LG Electronics Inc. Method for handling zero power channel state information reference signal configurations for discovery signals in wireless communication system
US10225759B2 (en) * 2015-02-13 2019-03-05 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus for the method
JP6639650B2 (ja) * 2015-08-25 2020-02-05 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて位置決定のための参照信号の受信又は送信方法、及びそのための装置
CN107889222B (zh) * 2016-09-29 2022-03-08 华为技术有限公司 信号传输方法、终端设备、网络设备和通信系统
US11323892B2 (en) * 2017-09-29 2022-05-03 Lg Electronics Inc. Method for transmitting and receiving data on basis of QCL in wireless communication system, and device therefor
US10834623B2 (en) * 2017-10-13 2020-11-10 Telefonaktiebolaget Lm Ericsson (Publ) Methods for reference determination in inter-RAT TDOA
US20200389883A1 (en) * 2017-11-16 2020-12-10 Telefonaktiebolaget Lm Ericsson (Publ) Configuring spatial qcl reference in a tci state
US11006287B2 (en) * 2017-11-17 2021-05-11 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and network node for configuring measurements of cells and beams in a wireless communication system
US11442135B2 (en) * 2018-05-31 2022-09-13 Qualcomm Incorporated Positioning methods for wireless networks that utilize beamformed communication
US11076286B2 (en) * 2018-06-21 2021-07-27 Qualcomm Incorporated Beam-switching capability indication in wireless networks that utilize beamforming
CN110635876B (zh) * 2018-06-22 2020-11-06 维沃移动通信有限公司 Nr系统的定位参考信号配置、接收方法和设备
US11399356B2 (en) * 2018-06-26 2022-07-26 Qualcomm Incorporated Synchronization signal block (SSB)-based positioning measurement signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107113569A (zh) * 2015-01-26 2017-08-29 英特尔Ip公司 提高水平和垂直定位准确性的设备和方法
CN107113771A (zh) * 2015-01-26 2017-08-29 英特尔Ip公司 利用异构参考信号的otdoa(观察到达时间差)定位增强
WO2016122757A1 (en) * 2015-01-29 2016-08-04 Intel Corporation Wireless system for determining the position of a ue involved in carrier aggregation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On Design of OTDOA Positioning Reference Signal", 3GPP TSG-RANI MEETING #87 RL-1611116, 18 November 2016 (2016-11-18), XP051175098 *
HUAWEI ET AL.: "Rl-1701753, Relationships between NPRS and PRS", 3GPP TSG RAN WGI MEETING #88, 17 February 2017 (2017-02-17), XP051208919 *
INTEL CORPORATION: "Rl-1612163, CRS Awareness on CRS+PRS for OTDOA", 3GPP TSG RAN WGI MEETING #87, 18 November 2016 (2016-11-18), XP051176115 *
LG ELECTRONICS: "Rl-1611763, OTDOA Configuration for eNB-IoT", 3GPP TSG RAN WGI MEETING #87, 18 November 2016 (2016-11-18), XP051175732 *
NEW POSTCOM.: "Rl-123429, RE Mapping for ePDCCH in Presence of other Channels and Signals", 3GPP TSG RAN WGI MEETING #70, 17 August 2012 (2012-08-17), XP050661310 *

Also Published As

Publication number Publication date
EP3820069A1 (en) 2021-05-12
KR102605434B1 (ko) 2023-11-22
EP4246865A2 (en) 2023-09-20
EP4246865A3 (en) 2023-12-27
EP3820069B1 (en) 2023-09-20
US11758503B2 (en) 2023-09-12
SG11202100093WA (en) 2021-02-25
JP2021529495A (ja) 2021-10-28
HUE063889T2 (hu) 2024-02-28
US20210120519A1 (en) 2021-04-22
JP7160501B2 (ja) 2022-10-25
CN110690950B (zh) 2020-08-11
EP3820069A4 (en) 2021-07-28
ES2960975T3 (es) 2024-03-07
CN110690950A (zh) 2020-01-14
PT3820069T (pt) 2023-10-17
KR20210019100A (ko) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2020007313A1 (zh) 定位参考信号配置、接收方法和设备
WO2019242635A1 (zh) Nr系统的定位参考信号配置、接收方法和设备
RU2725164C2 (ru) Способы и пользовательское оборудование, радиопередающее устройство и сетевой узел для управления опорными сигналами позиционирования
US11611908B2 (en) System information transmission method, base station, and terminal
WO2019029422A1 (zh) 一种定位、测量上报方法及装置
CN110932828B (zh) 消息接收方法、消息发送方法、终端设备和网络侧设备
WO2014166032A1 (zh) 传输公共信号的方法及其装置
CN110719148A (zh) 定位参考信号配置、接收方法和设备
WO2014090203A1 (zh) 资源映射的方法、基站和用户设备
WO2020164352A1 (zh) 配置信息的方法和装置
JP2020515134A (ja) 同期信号を伝送するための方法及び装置
WO2019033396A1 (zh) 无线通信方法和设备
WO2019084842A1 (zh) 无线通信方法和设备
EP3544345B1 (en) Method and apparatus for wireless communication
TW201840225A (zh) 處理信號的方法和設備
WO2021121194A1 (zh) 位置配置方法、终端设备和网络设备
WO2020001533A1 (zh) 定位参考信号配置、接收方法和设备
WO2018000318A1 (zh) 同步信号的传输装置、方法以及多天线通信系统
WO2019061370A1 (zh) 信号传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830906

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001598

Country of ref document: KR

Kind code of ref document: A