WO2020007281A1 - 显示装置和显示装置的控制方法、显示设备 - Google Patents

显示装置和显示装置的控制方法、显示设备 Download PDF

Info

Publication number
WO2020007281A1
WO2020007281A1 PCT/CN2019/094343 CN2019094343W WO2020007281A1 WO 2020007281 A1 WO2020007281 A1 WO 2020007281A1 CN 2019094343 W CN2019094343 W CN 2019094343W WO 2020007281 A1 WO2020007281 A1 WO 2020007281A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
grid
liquid crystal
light
crystal layer
Prior art date
Application number
PCT/CN2019/094343
Other languages
English (en)
French (fr)
Inventor
孟宪东
王维
李忠孝
陈小川
孟宪芹
谭纪风
高健
王方舟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/641,703 priority Critical patent/US11269225B2/en
Publication of WO2020007281A1 publication Critical patent/WO2020007281A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0078Side-by-side arrangements, e.g. for large area displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy

Definitions

  • the present application relates to the field of display technology, and in particular, to a display device, a method for controlling the display device, and a display device.
  • the display device is a device having a display function, which is widely used in various devices.
  • a display device includes a light-transmitting substrate, an edge-type backlight, and a liquid crystal layer disposed between the two.
  • Two electrode assemblies are respectively disposed on two sides of the liquid crystal layer, and a grating is further provided between the liquid crystal layer and the side-type backlight.
  • two electrode assemblies are used to control the refractive index of the liquid crystal layer so that light in the side-type backlight can enter the liquid crystal layer, and the grating is used to adjust the angle of the light entering the liquid crystal layer so that the light can pass through The light substrate exits the display device.
  • the present application provides a display device, a method for controlling the display device, and a display device.
  • the technical solution is as follows:
  • a display device including a light-transmitting substrate, a backlight, a liquid crystal layer, and a grid structure;
  • the liquid crystal layer is located between the light-transmitting substrate and the backlight source, the grid structure is located on a side of the light-transmitting substrate close to the liquid crystal layer, and the grid structure is multiplexed into a grating and used for An electrode for controlling an equivalent refractive index of the liquid crystal layer;
  • the backlight source includes a light guide plate and a collimated light source located on a side of the light guide plate except for two larger surfaces.
  • the display device has a plurality of sub-pixel regions arranged in an array
  • the grid structure includes a plurality of grid electrodes, and each of the sub-pixel regions has at least two grid electrodes.
  • the display device has a plurality of sub-pixel regions arranged in an array
  • the display device includes an electrode assembly including a first electrode structure on a side of the liquid crystal layer close to the backlight source.
  • the first electrode structure includes a plurality of first electrodes
  • the plurality of first electrodes are respectively located in each of the sub-pixel regions, the grid-like structure covers a side of the liquid crystal layer away from the backlight, and the grid-like structure is an integrated structure.
  • the grid structure includes a plurality of grid electrodes
  • the plurality of grid electrodes are respectively located in each of the sub-pixel regions, and the first electrode structure is an electrode layer covering a side of the liquid crystal layer close to the backlight source.
  • the grid structure includes a plurality of grid electrodes
  • the plurality of gate electrodes are respectively located in each of the sub-pixel regions, and the first electrode structure includes a plurality of first electrodes, and the plurality of first electrodes are respectively located in each of the sub-pixel regions.
  • the display device has a plurality of sub-pixel regions arranged in an array
  • the display device includes an electrode assembly including a second electrode structure located between the light-transmitting substrate and the grid-like structure, the grid-like structure including a plurality of grid-like electrodes, and the plurality of grids Shaped electrodes are respectively located in each of the sub-pixel regions, and the second electrode structure and the gate-like structure are insulated.
  • the material of the grid structure includes a reflective conductive material.
  • the display device includes a color filter substrate, and the color filter substrate is located between the light-transmitting substrate and the grid structure.
  • the light-transmitting substrate is a color filter substrate
  • the color filter substrate includes a transparent substrate substrate and a color film layer on a side of the transparent substrate substrate near the liquid crystal layer.
  • the color filter substrate is a quantum dot color filter substrate.
  • the grating structure satisfies a diffraction grating formula, and the diffraction grating formula is:
  • n i is the incident spatial refractive index
  • n d is the outgoing spatial refractive index
  • the ⁇ i is the incident angle
  • the ⁇ d is the outgoing angle
  • the m is the grating order
  • the ⁇ is the light wavelength
  • is a grating period of the grid structure.
  • the display device has a plurality of sub-pixel regions arranged in an array
  • the display device includes a second electrode structure located between the light-transmitting substrate and the grid-like structure, the grid-like structure includes a plurality of grid-like electrodes, and the plurality of grid-like electrodes are respectively located at each of the In the sub-pixel region, the second electrode structure is insulated from the gate-like structure;
  • the material of the grid structure includes a reflective conductive material
  • the light-transmitting substrate is a color filter substrate.
  • the color filter substrate includes a transparent substrate substrate and a color film layer on a side of the transparent substrate substrate near the liquid crystal layer.
  • the color film substrate is a quantum dot color filter.
  • the grating structure satisfies a diffraction grating formula, and the diffraction grating formula is:
  • n i is the incident spatial refractive index
  • n d is the outgoing spatial refractive index
  • the ⁇ i is the incident angle
  • the ⁇ d is the outgoing angle
  • the m is the grating order
  • the ⁇ is the light wavelength
  • is a grating period of the grid structure.
  • a method for controlling a display device for any display device according to the first aspect, and the method includes:
  • control instruction Acquiring a control instruction, where the control instruction is used to instruct a specified display area for performing light control in a display area of the display device;
  • the equivalent refractive index of the liquid crystal layer of the designated display area is changed by a grid structure, so that the light of the collimated light source is directed from the orthographic projection area of the designated display area in the light guide plate. Emitted to the liquid crystal layer.
  • the display device includes an electrode assembly, and after the collimated light source is activated, the equivalent refractive index of the liquid crystal layer of the designated display area is changed by a grid structure, so that the light from the collimated light source is removed from the collimated light source.
  • the projection of the orthographic projection area of the designated display area in the light guide plate to the liquid crystal layer includes:
  • the grid-like structure or the grid-like structure and the electrode assembly are used to control the deflection angle of the liquid crystal in the liquid crystal layer to adjust the light emitting efficiency of the display device.
  • the display device includes an electrode assembly, and after acquiring the control instruction, the method further includes:
  • a display device includes any one of the display devices described in the first aspect.
  • the display device is a virtual reality device or an augmented reality device.
  • FIG. 1 is a schematic structural diagram of a display device
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another display device according to an embodiment of the present application.
  • FIG. 4 is a side view of the display device shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of another display device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another display device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electrode in each of the sub-pixel regions in the display device shown in FIG. 6; FIG.
  • FIG. 8 is a schematic structural diagram of another display device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another display device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another display device according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a method for controlling a display device according to an embodiment of the present application.
  • FIG. 12 is a graph showing a relationship between a deflection angle of a liquid crystal and a light emitting efficiency of a display device in the embodiment shown in FIG. 11.
  • a structure of a display device may be as shown in FIG. 1.
  • the display device may include a transparent substrate 11, an edge-type backlight 12, and a liquid crystal layer 13 disposed between the two.
  • An electrode assembly 14 is provided on both sides of the liquid crystal layer 13, and a grating 15 is further provided between the liquid crystal layer 13 and the side-type backlight 12.
  • the side-type backlight 12 may include a light source 121 and a light guide plate 122, and light emitted by the light source 121 can be totally reflected in the light guide plate 122.
  • the electrode assembly 14 is used to control the refractive index of the liquid crystal layer 13 so that light from the side-type backlight 12 can enter the liquid crystal layer 13, and the grating 15 is used to adjust the angle of the light entering the liquid crystal layer 13 so that the light can
  • the display device is emitted from the light-transmitting substrate 11.
  • the structure of the display device is relatively complicated, and the gratings provided in the display device and the electrode assemblies located on both sides of the liquid crystal layer make the thickness of the display device high.
  • the grating provided on the side of the liquid crystal layer near the light guide plate is too close to the light guide plate, which may cause a dark light leakage problem of the display device.
  • the embodiments of the present application provide a display device, a method for controlling the display device, and a display device, which can solve the foregoing problems.
  • FIG. 2 is a schematic structural diagram of a display device according to an embodiment of the present application.
  • the display device 20 may include a light-transmitting substrate 21, a backlight 22, a liquid crystal layer 23, and a grid structure 24.
  • the liquid crystal layer 21 is located between the light-transmitting substrate 21 and the backlight 22, and the grid structure 24 is located on the side of the light-transmitting substrate 21 near the liquid crystal layer 23.
  • the grid structure 24 is multiplexed into a grating and an equivalent for controlling the liquid crystal layer 23. Refractive index electrode.
  • the backlight 22 includes a light guide plate 221 and a side surface located on the light guide plate 221 except for two larger surfaces (the light guide plate may be composed of a top surface, a bottom surface (the top surface and the bottom surface are two larger surfaces), and a side surface.
  • the side is the collimated light source 222 of the light guide plate).
  • the grid structure 24 can be configured to change the liquid crystal of a specified display area in the display panel 21 by changing the voltage applied to the liquid crystal layer.
  • the equivalent refractive index of the layer thereby destroying the total reflection conditions of the light in the light guide plate 221, so that the light from the collimated light source 222 emerges from the orthographic projection area of the designated display area in the light guide plate 221 to the liquid crystal layer 23, and the light can then be irradiated Diffraction occurs on the grating 24 and exits the light-transmitting substrate.
  • the display device provided in the embodiment of the present application is configured by arranging a grid structure on the side of the liquid crystal layer away from the light guide plate, and multiplexing the grid structure into a grating and an electrode for controlling the refractive index of the liquid crystal. It is not necessary to separately provide an electrode assembly and a grating in a display device.
  • the problem that the structure of the display device is relatively complicated and light leakage in the dark state is solved.
  • the effect of simplifying the overall structure of the display device and avoiding light leakage in the dark state is achieved.
  • the display device provided in the embodiments of the present application can control the refractive index of the liquid crystal layer in various ways. Each is described below.
  • the refractive index of the liquid crystal layer can be controlled by a grid structure.
  • the display device 20 may include a plurality of sub-pixel regions p arranged in an array, and the grid structure may include a plurality of grid-shaped electrodes 241 arranged in an array.
  • Each sub-pixel region p has at least two grid electrodes 241 (shown in the case where each sub-pixel region includes two grid electrodes, but the number of grid electrodes in each sub-pixel region can be larger ),
  • Each grid electrode 241 is an integrated structure, so as to ensure that the voltages at any place of any one of the grid electrodes 241 are equal. With such a structure, when two grid electrodes in each sub-pixel region p have a voltage difference, an arched electric field can be formed between the two grid electrodes, and the equivalent refraction of the liquid crystal layer is controlled by the arched electric field. rate.
  • the grid electrode may be an electrode block formed with a grating pattern.
  • FIG. 4 it is a side view of the display device shown in FIG. 3.
  • an arched electric field can be formed between the two grid electrodes 241, and the refractive index of the liquid crystal layer 23 is controlled by the arched electric field.
  • the gate electrode in the gate structure can be controlled in an active driving manner or a passive driving manner.
  • the display device may further include a thin film transistor array including a plurality of thin film transistors (English: Thin Film Transistor; TFT for short) and a cross arrangement.
  • TFT Thin Film Transistor
  • Gate line G and data line D are used to control the TFT, and the TFT in each sub-pixel region can control the gate-shaped electrode 241 in each sub-pixel region one-to-one correspondingly.
  • the material of the gate electrode 241 may include various conductive materials, such as a transparent conductive material (such as indium tin oxide), a metal (such as aluminum), and an alloy.
  • a transparent conductive material such as indium tin oxide
  • a metal such as aluminum
  • an alloy such as aluminum
  • the refractive index of the liquid crystal layer may be controlled by an electrode structure and a grid structure that are located on different sides of the liquid crystal layer from the grid structure.
  • the display device further includes an electrode assembly 25.
  • the electrode assembly 25 includes a first electrode structure 251 on a side of the liquid crystal layer 23 near the backlight 22.
  • the first electrode structure 251 includes a first electrode respectively located in each sub-pixel region; and / or, the grid-like structure 24 includes a grid-shaped electrode respectively located in each of the sub-pixel regions.
  • FIG. 6 shows a case where the grid-like structure 24 includes grid-like electrodes respectively located in each sub-pixel region, and the first electrode structure 251 is an electrode layer.
  • the grid structure 24 is an electrode layer, and the first electrode structure 251 includes a first electrode located in each sub-pixel region, or the first electrode structure 251 includes a first electrode located in each sub-pixel region.
  • the grid-like structure 24 also includes grid-like electrodes located in each of the sub-pixel regions.
  • each of the sub-pixel regions p may have an electrode e (the electrode may be a first electrode and / or a grid electrode).
  • the electrodes e may include a grating pattern.
  • the material of the first sub-electrode 251 may include a transparent conductive material, such as indium tin oxide (English: Indium tin oxide; ITO for short), or a metal (the metal also has a light transmitting ability when extremely thin), such as molybdenum (Mo ).
  • the thickness of the first sub-electrode 251 can be determined according to the requirements of the applied voltage, such as 70 nm to 300 nm.
  • the refractive index of the liquid crystal layer can be controlled by an electrode structure and a grid structure that are located on the same side of the liquid crystal layer as the grid structure.
  • the display device further includes an electrode assembly 25.
  • the electrode assembly 25 includes a second electrode structure 252 located between the light-transmitting substrate 21 and the grid-like structure 24.
  • the grid-like structure 24 includes a grid-like electrode located in each sub-pixel region.
  • An insulating layer 26 is provided between the second electrode structure 252 and the gate structure 24. With such a structure, an arched electric field can also be formed between the grid structure 24 and the second electrode structure 252 to control the refractive index of the liquid crystal layer 23.
  • the transparent insulating layer 26 can prevent the first sub-electrode 251 from being short-circuited with the gate-like structure 24.
  • the material of the transparent insulating layer 26 may include silicon nitride (Si 3 N 4 ) or other insulating materials.
  • FIG. 8 illustrates a case where the grid-like structure 24 includes grid-like electrodes respectively located in each sub-pixel region, and the first electrode structure 251 is an electrode layer.
  • the first electrode structure 251 may include the first electrode located in each of the sub-pixel regions, like the gate electrode.
  • the structure of the first electrodes in each of the sub-pixel regions may be as shown in FIG. 7, and details are not described herein again.
  • the material of the second sub-electrode 252 may include a transparent conductive material, such as indium tin oxide (English: Indium tin oxide; ITO for short), or a metal, such as molybdenum (Mo).
  • a transparent conductive material such as indium tin oxide (English: Indium tin oxide; ITO for short), or a metal, such as molybdenum (Mo).
  • the thickness of the second sub-electrode 252 can be determined according to the requirements of the applied voltage, such as 70 nm to 300 nm.
  • the material of the liquid crystal layer 23 may be selected to include an advanced super-dimensional field switching (English: Advanced Super Dimension Switch; referred to as: ADS) display panel (ADS display panel may include planar switching (English: In-Plane Switching; referred to as IPS ) Display panel and fringe field switching (English: Fringe Field Switching; abbreviated: FFS) display panel) liquid crystal material or vertical alignment (English: Vertical alignment (abbreviation: VA)) display panel liquid crystal material, you can also use blue Phase liquid crystal (English: blue phase liquid crystal; BP-LC for short) material (BP-LC is a liquid crystal with the advantages of short response time, large viewing angle, and no need for an alignment layer) or other liquid crystals, which are not limited in the embodiments of the present application.
  • the thickness of the liquid crystal layer 23 may be about 1 micrometer, or may be several micrometers or several hundred nanometers.
  • the material of the grid structure 24 includes a reflective conductive material.
  • the grid-like structure 24 made of a reflective conductive material can cause the rays of light directed to the grid-like structure 24 to cancel out the reflected and diffracted light. As the reflected and diffracted light is cancelled out, the light passing through the grid-like structure 24 passes through the law of conservation of energy. The transmitted diffracted light is enhanced. Therefore, the grid structure 24 made of a reflective conductive material can have the effect of increasing the light transmittance of the grid structure.
  • the grating period of the grating structure 24 (the grating period refers to the center distance between two dark stripes of the grating) may be 3 micrometers, and the duty ratio (the duty ratio is the width of the bright stripes in any grating structure period and The ratio of the entire cycle width) is 0.5.
  • the grating period of the grid structure 24 may refer to a grating period of a grating pattern in each electrode.
  • the material of the transparent substrate may include a substrate glass of a liquid crystal display panel, a substrate glass of an organic light emitting diode display panel, other optical glass, and a resin.
  • the collimated light source 222 may be a white light source or a monochromatic light source.
  • the collimated light source 222 may be composed of a monochromatic semiconductor laser chip, or may be made of a monochromatic light-emitting diode (English: Light Emitting Diode; LED for short) with strong collimation.
  • the light exit direction of the collimated light source 222 and the extension direction of the light guide plate 221 (the extension direction is a direction parallel to any one of the two larger surfaces of the light guide plate) form a certain angle, so that the collimated light source 222 enters
  • the light of the light guide plate can be totally reflected in the light guide plate.
  • the light guide plate 221 in the embodiment of the present application may be formed of a transparent material having a higher refractive index (eg, greater than or equal to 1.52).
  • the light guide plate 221 may be a substrate glass of a liquid crystal display panel, a substrate glass of an organic light emitting diode display panel, other optical glass, resin, and the like.
  • the thickness of the light guide plate 221 may be 0.1 mm to 2 mm, and the flatness and parallelism may be high.
  • each display device provided in the embodiments of the present application may further include a color filter substrate, and the color filter substrate may be located between the light-transmitting substrate and the grid structure, or the color film substrate may be formed of a light-transmitting substrate. .
  • the color filter substrate may be located between the light-transmitting substrate and the grid structure, or the color film substrate may be formed of a light-transmitting substrate.
  • FIG. 9 shows a display device with a color filter substrate 27 located between the light-transmitting substrate 21 and the grid structure 24.
  • the color film substrate 27 may include a color film layer 271, and the color film layer 271 may include a color film corresponding to each of the sub-pixel regions, so that the display device can emit light of various colors.
  • FIG. 10 shows a display device in which a color filter substrate is composed of a light-transmitting substrate 21.
  • the light-transmitting substrate 21 may include a transparent substrate substrate 211 and a color filter layer 212 on a side of the transparent substrate substrate 211 near the liquid crystal layer 23.
  • the color film layer 212 may include a color film corresponding to each of the sub-pixel regions, so that the display device can emit light of various colors.
  • the color film substrate may be a quantum dot color film (English : Quantum Dot Color Filter; Abbreviation: QD-CF) substrate.
  • the color filter layer in the quantum dot color filter substrate can be made of quantum dot material.
  • the quantum dot material includes inorganic semiconductor nanocrystals (that is, quantum dots) with a particle size between 1-100 nanometers (nm).
  • the dots have a discrete energy level structure, and the half-wavelength of the spectrum is narrow. Therefore, the color purity of the emitted light is high after being illuminated by the excitation light.
  • a quantum dot material may be formed on a base substrate of a color filter substrate by inkjet or printing to form a quantum dot color film.
  • a monochromatic collimated light source can emit excitation light (such as blue light) that excites the quantum dots in the quantum dot material.
  • excitation light such as blue light
  • high-energy excitation light can excite lower-energy light.
  • blue light with higher energy can excite red and green light with lower energy.
  • Quantum dots in a quantum dot material can emit light with a high color purity after being irradiated with excitation light. The higher purity light can be used to improve the color gamut of a display panel. Due to the high excitation efficiency of quantum dots, Can increase the brightness of the display panel. For example, in FIG.
  • each pixel in the quantum dot color filter substrate may include a color filter layer R for exciting red light.
  • the color filter substrate may be a conventional color filter substrate including various color filters.
  • a frame sealant 28 may be further provided between the two display substrates, and the frame sealant 28 is used to encapsulate the liquid crystal layer 23.
  • the grating structure 24 satisfies a diffraction grating formula, and the diffraction grating formula is:
  • ni is the refractive index of the incident space
  • the refractive index of the incident space may refer to the refractive index of the liquid crystal layer
  • nd is the refractive index of the outgoing space
  • the refractive index of the outgoing space may refer to the refractive index of the transparent insulating layer 26
  • ⁇ i is the light irradiation
  • the angle of incidence to the grating ⁇ d is the exit angle of the light from the grating
  • m is the grating order
  • is the wavelength of the light
  • is the grating period of the grating.
  • the exit space refractive index nd is a fixed value and the light wavelength ⁇ is known.
  • the incident angle ⁇ i can be determined by simulation calculation (such as calculation by optical simulation software). Therefore, the exit angle ⁇ d can be adjusted by adjusting the grating period ⁇ of the grating.
  • the grating pattern possessed by each grid-like electrode can satisfy the above-mentioned diffraction grating formula.
  • a pixel of a position on a liquid crystal display panel The light emitting direction can be determined by the position of the pixel relative to the human eye. For example, the light emission direction can be directed toward the center of the human eye. Therefore, the grating period ⁇ of the grating can be adjusted so that the exit angle ⁇ d of the light emitted from the grating satisfies the requirement of the relative position of the pixel and the human eye for the direction of the light.
  • the width of each sub-pixel may be equal to one or more raster periods according to the difference in brightness to be achieved by each pixel during design. Therefore, the size of the sub-pixels can be made smaller, which can increase the number of pixels per inch (English: pixels per inch; PPI for short) in the display device.
  • the display device provided in the embodiment of the present application is configured by arranging a grid structure on the side of the liquid crystal layer away from the light guide plate, and multiplexing the grid structure into a grating and an electrode for controlling the refractive index of the liquid crystal. It is not necessary to separately provide an electrode assembly and a grating in a display device.
  • the problem that the structure of the display device is relatively complicated and light leakage in the dark state is solved.
  • the effect of simplifying the overall structure of the display device and avoiding light leakage in the dark state is achieved.
  • FIG. 11 is a flowchart of a method for controlling a display device according to an embodiment of the present application.
  • the method may be used by a controller in the display device provided in the foregoing embodiment.
  • the controller may be a processor or a control integrated circuit.
  • the method can include the following steps:
  • Step 701 Obtain a control instruction, where the control instruction is used to instruct a designated display area for light control.
  • the control instruction is an instruction for controlling the display device to display, and the designated display area is an area where a part of the image to be displayed by the display device is not at a brightness of 0.
  • the controller can obtain control instructions from an external signal source.
  • the display device may be activated to enable the collimated light source to be activated.
  • Step 702 After the collimated light source is activated, the refractive index of the liquid crystal layer in the designated display area is changed by the grid structure, so that the light from the collimated light source is emitted from the orthographic projection area of the designated display area in the light guide plate to the liquid crystal layer.
  • a grid structure is disposed on a side of the liquid crystal layer away from the light guide plate, and the grid structure is reused as a grating and a refractive index for controlling the refractive index of the liquid crystal. Electrode without the need to separately provide an electrode assembly and a grating in the display device. The problem that the structure of the display device is relatively complicated and light leakage in the dark state is solved. The effect of simplifying the overall structure of the display device and avoiding light leakage in the dark state is achieved.
  • the control method for the display device may include control of a display gray scale of a light emitting area and control of a non-light emitting area in a display area of the display device.
  • these two types of control can be performed by an electrode assembly (including a first electrode structure or a second electrode structure) and a grating including an array of strip-shaped electrodes.
  • step 702 in the method for controlling the display device shown in FIG. 11 may include:
  • Sub-step 7021 The controller controls the deflection angle of the liquid crystal in the liquid crystal layer through the grid structure or the grid structure and the electrode assembly to adjust the light emitting efficiency of the display device.
  • the relationship between the deflection angle of the liquid crystal and the light-emitting efficiency of the display device can be obtained through the simulation test of the optical simulation software.
  • the incident angle of the light in the light guide plate is 70 °
  • the refractive index of the liquid crystal is 1.522 to 1.8
  • the thickness of the liquid crystal layer is 3 microns
  • the grating period of the grating is 3 ⁇ m (microns)
  • the duty ratio of the grating is 0.5
  • the relationship between the deflection angle of the liquid crystal and the light emitting efficiency of the display device can be shown in FIG. 12.
  • the horizontal axis is the liquid crystal deflection angle
  • the vertical axis is the light output efficiency of the display device (unit is%).
  • the deflection angle of the liquid crystal can be adjusted according to the graph, and then the light output efficiency of the display device can be adjusted.
  • the deflection angle of the liquid crystal and the refractive index are related.
  • the refractive index of the liquid crystal also changes.
  • the method for controlling the non-light-emitting area by the method may include the following two methods:
  • the first type controlling the deflection long axis of the liquid crystal in the liquid crystal layer of the display area except the designated display area in the display device through a grid structure, so that the angle between the deflection long axis and the light guide plate is equal to the incident angle of light in the light guide plate.
  • the grid structure can refer to the display device shown in FIG. 4 described above, and will not be repeated here.
  • the display area other than the designated display area can be considered as a non-light emitting area.
  • the non-light emitting area may leak light due to various reasons, which reduces the display effect of the display device.
  • the liquid crystal When the angle between the long axis of the deflection of the liquid crystal in the layer and the light guide plate is equal to the incident angle of the light in the light guide plate, the refractive index of the liquid crystal for ordinary light and extraordinary light is the smallest, so the light in the light guide plate cannot enter the liquid crystal layer. Therefore, the light is prevented from being emitted from the non-light emitting area, the problem of light leakage in the dark state is further avoided, and the display effect of the display device is improved.
  • the second type controlling the major axis of deflection of the liquid crystal in the liquid crystal layer of the display area except the designated display area in the display device through the grid structure and the electrode assembly, so that the angle between the major axis of deflection and the light guide plate is equal to the incidence of light in the light guide plate angle.
  • the grid structure and the electrode assembly can refer to the display device shown in FIG. 6 or FIG. 8 described above, which will not be described again here.
  • a grid structure is disposed on a side of the liquid crystal layer away from the light guide plate, and the grid structure is reused as a grating and a refractive index for controlling the refractive index of the liquid crystal. Electrode without the need to separately provide an electrode assembly and a grating in the display device. The problem that the structure of the display device is relatively complicated and light leakage in the dark state is solved. The effect of simplifying the overall structure of the display device and avoiding light leakage in the dark state is achieved.
  • An embodiment of the present application further provides a display device, and the display device includes some display devices provided in the foregoing implementation.
  • the display device is a virtual reality device or an augmented reality device. Since the display device in the embodiment of the present application has high transparency, it can be applied to a virtual reality device or an augmented reality device.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk.

Abstract

本申请公开了一种显示装置和显示装置的控制方法、显示设备,属于显示技术领域。该显示装置包括透光基板(21)、背光源(22)、液晶层(23)和栅状结构(24);液晶层(21)位于透光基板(21)和背光源(22)之间,栅状结构(24)位于透光基板(21)靠近液晶层(23)的一侧,栅状结构(24)复用为光栅和用于控制液晶层(23)的等效折射率的电极;背光源(22)包括导光板(221)和位于导光板(221)的侧面的准直光源(222)。通过将栅状结构(24)设置在液晶层(23)远离导光板一侧,且将栅状结构(24)复用为光栅和用于控制液晶的折射率的电极,达到了简化显示装置整体的结构且避免了暗态漏光的效果。

Description

显示装置和显示装置的控制方法、显示设备
本申请要求于2018年7月6日提交的申请号为201810737237.6、申请名称为“显示装置和显示装置的控制方法、显示设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别涉及一种显示装置和显示装置的控制方法、显示设备。
背景技术
显示装置是一种具有显示功能的装置,其广泛应用于各种设备中。
一种显示装置包括透光基板、侧入式背光源和设置在这两者之间的液晶层。液晶层的两侧分别设置有两个电极组件,液晶层和侧入式背光源之间还设置有光栅。其中,两个电极组件用于控制液晶层的折射率以使侧入式背光源中的光线能够射入液晶层,光栅用于调整射入液晶层的光线的角度,以使该光线能够从透光基板射出显示装置。
发明内容
本申请提供了一种显示装置和显示装置的控制方法、显示设备。所述技术方案如下:
根据本申请的一方面,提供了一种显示装置,所述显示装置包括透光基板、背光源、液晶层和栅状结构;
所述液晶层位于所述透光基板和所述背光源之间,所述栅状结构位于所述透光基板靠近所述液晶层的一侧,所述栅状结构复用为光栅和用于控制所述液晶层的等效折射率的电极;
所述背光源包括导光板和位于所述导光板除两个较大面外的侧面的准直光源。
可选地,所述显示装置具有阵列排布的多个子像素区域;
所述栅状结构包括多个栅状电极,每个所述子像素区域中具有至少两个所 述栅状电极。
可选地,所述显示装置具有阵列排布的多个子像素区域;
所述显示装置包括电极组件,所述电极组件包括位于所述液晶层靠近所述背光源的一侧的第一电极结构。
可选地,所述第一电极结构包括多个第一电极;
所述多个第一电极分别位于每个所述子像素区域中,所述栅状结构覆盖在所述液晶层远离所述背光源的一面,且所述栅状结构为一体结构。
可选地,所述栅状结构包括多个栅状电极;
所述多个栅状电极分别位于每个所述子像素区域中,所述第一电极结构为覆盖所述液晶层靠近所述背光源一面的电极层。
可选地,所述栅状结构包括多个栅状电极;
所述多个栅状电极分别位于每个所述子像素区域中,所述第一电极结构包括多个第一电极,所述多个第一电极分别位于每个所述子像素区域中。
可选地,所述显示装置具有阵列排布的多个子像素区域;
所述显示装置包括电极组件,所述电极组件包括位于所述透光基板和所述栅状结构之间的第二电极结构,所述栅状结构包括多个栅状电极,所述多个栅状电极分别位于每个所述子像素区域中,所述第二电极结构与所述栅状结构之间绝缘。
可选地,所述栅状结构的材料包括反光导电材料。
可选地,所述显示装置包括彩膜基板,所述彩膜基板位于所述透光基板和所述栅状结构之间。
可选地,所述透光基板为彩膜基板,所述彩膜基板包括透明衬底基板和位于所述透明衬底基板靠近所述液晶层一侧上的彩膜层。
可选地,所述彩膜基板为量子点彩膜基板。
可选地,所述栅状结构满足衍射光栅公式,所述衍射光栅公式为:
n isinθ i-n dsinθ d=m*λ/Λ(m=0,+/-1,+/-2,…);
所述n i为入射空间折射率,所述n d为出射空间折射率,所述θ i为入射角,所述θ d为出射角,所述m为光栅级次,所述λ为光波长,所述Λ为所述栅状结构的光栅周期。
可选地,所述显示装置具有阵列排布的多个子像素区域;
所述显示装置包括位于所述透光基板和所述栅状结构之间的第二电极结 构,所述栅状结构包括多个栅状电极,所述多个栅状电极分别位于每个所述子像素区域中,所述第二电极结构与所述栅状结构之间绝缘;
所述栅状结构的材料包括反光导电材料;
所述透光基板为彩膜基板,所述彩膜基板包括透明衬底基板和位于所述透明衬底基板靠近所述液晶层一侧上的彩膜层,所述彩膜基板为量子点彩膜基板;
所述栅状结构满足衍射光栅公式,所述衍射光栅公式为:
n isinθ i-n dsinθ d=m*λ/Λ(m=0,+/-1,+/-2,…);
所述n i为入射空间折射率,所述n d为出射空间折射率,所述θ i为入射角,所述θ d为出射角,所述m为光栅级次,所述λ为光波长,所述Λ为所述栅状结构的光栅周期。
根据本申请的另一方面,提供一种显示装置的控制方法,用于第一方面所述的任一显示装置,所述方法包括:
获取控制指令,所述控制指令用于指示所述显示装置的显示区域中,进行光线控制的指定显示区域;
在准直光源启动后,通过栅状结构改变所述指定显示区域的液晶层的等效折射率,以使所述准直光源的光线从所述导光板中所述指定显示区域的正投影区域出射至所述液晶层。
可选地,所述显示装置包括电极组件,所述在准直光源启动后,通过栅状结构改变所述指定显示区域的液晶层的等效折射率,以使所述准直光源的光线从所述导光板中所述指定显示区域的正投影区域出射至所述液晶层,包括:
通过所述栅状结构,或者通过所述栅状结构和所述电极组件控制所述液晶层中液晶的偏转角度以调整所述显示装置的出光效率。
可选地,所述显示装置包括电极组件,所述获取控制指令之后,所述方法还包括:
通过所述栅状结构,或者通过所述栅状结构和所述电极组件控制所述显示装置中除所述指定显示区域外的显示区域的液晶层中液晶的偏转长轴,使所述偏转长轴与所述导光板的夹角等于所述导光板中光线的入射角。
根据本申请的另一方面,提供一种显示设备,所述显示设备包括第一方面所述的任一显示装置。
可选地,所述显示设备为虚拟现实设备或增强现实设备。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种显示装置的结构示意图;
图2是本申请实施例示出的一种显示装置的结构示意图;
图3是本申请实施例提供的另一种显示装置的结构示意图;
图4是图3所示的显示装置的侧视图;
图5是本申请实施例提供的另一种显示装置的结构示意图;
图6是本申请实施例提供的另一种显示装置的结构示意图;
图7是图6所示显示装置中分别位于每个子像素区域中的电极的结构示意图;
图8是本申请实施例提供的另一种显示装置的结构示意图;
图9是本申请实施例提供的另一种显示装置的结构示意图;
图10是本申请实施例提供的另一种显示装置的结构示意图;
图11是本申请实施例提供的一种显示装置的控制方法的流程图;
图12是图11所示实施例中一种液晶的偏转角度与显示装置的出光效率的关系曲线图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
下面将结合附图对本申请实施方式进行描述。
一种显示装置的结构可以如图1所示,该显示装置可以包括透明基板11、侧入式背光源12和设置在这两者之间的液晶层13。液晶层13的两侧设置有电极组件14,液晶层13和侧入式背光源12之间还设置有光栅15。其中,侧入式背光源12可以包括光源121和导光板122,光源121射出的光线能够在导光板122中全反射。
电极组件14用于控制液晶层13的折射率以使侧入式背光源12中的光线能 够射入液晶层13,光栅15用于调整射入液晶层13的光线的角度,以便于该光线能够从透光基板11射出显示装置。
但是,该显示装置的结构较为复杂,且设置在显示装置中的光栅以及位于液晶层两侧的电极组件使得显示装置的厚度较高。此外,设置在液晶层靠近导光板一侧的光栅由于与导光板过于靠近,这可能导致显示装置的暗态漏光问题。
本申请实施例提供了一种显示装置和显示装置的控制方法、显示设备,可以解决上述问题。
图2是本申请实施例示出的一种显示装置的结构示意图。该显示装置20可以包括:透光基板21、背光源22、液晶层23和栅状结构24。
液晶层21位于透光基板21和背光源22之间,栅状结构24位于透光基板21靠近液晶层23的一侧,栅状结构24复用为光栅和用于控制液晶层23的等效折射率的电极。
背光源22包括导光板221和位于导光板221除两个较大的面外的侧面(导光板可以是由顶面、底面(顶面和底面即为两个较大的面)以及侧面围成的一个立体结构,该侧面即为导光板的入光面)的准直光源222。
由于液晶的等效折射率会随着施加在液晶上的电压的改变而改变,因而栅状结构24可以被配置为通过改变施加在液晶层上的电压以改变显示面板21中指定显示区域的液晶层的等效折射率,从而破坏导光板221中光线的全反射条件,以使准直光源222的光线从导光板221中指定显示区域的正投影区域出射至液晶层23,之后该光线能够照射到光栅24上发生衍射并射出透光基板。
综上所述,本申请实施例提供的显示装置,通过将栅状结构设置在液晶层远离导光板一侧,且将栅状结构复用为光栅和用于控制液晶的折射率的电极,而无需分别在显示装置中设置电极组件和光栅。解决了显示装置的结构较为复杂且暗态漏光的问题。达到了简化显示装置整体的结构且避免了暗态漏光的效果。
本申请实施例提供的显示装置可以通过多种方式来控制液晶层的折射率。下面分别进行说明。
在一种可选的实施方式中,可以通过栅状结构来控制液晶层的折射率。如图3所示,显示装置20可以包括阵列排布的多个子像素区域p,栅状结构包括 阵列排布的多个栅状电极241。
每个子像素区域p中具有至少两个栅状电极241(图3示出的是每个子像素区域包括两个栅状电极的情况,但每个子像素区域中的栅状电极的数量还可以更多),每个栅状电极241为一体结构,以确保任意一个栅状电极241的各处的电压相等。如此结构下,使每个子像素区域p中的两个栅状电极具有电压差时,这两个栅状电极之间就能够形成拱形电场,并通过该拱形电场控制液晶层的等效折射率。其中,栅状电极可以是形成有光栅图案的电极块。
如图4所示,其为图3所示的显示装置的侧视图。其中,子像素区域p中的两个栅状电极241具有电压差时,这两个栅状电极241之间就能够形成拱形电场,并通过该拱形电场控制液晶层23的折射率。
在本申请实施例中,可以通过有源驱动的方式或无源驱动的方式来控制栅状结构中的栅状电极。在通过有源驱动的方式控制栅状结构时,如图5所示,该显示装置中还可以具有包括多个薄膜晶体管(英文:Thin Film Transistor;简称:TFT)的薄膜晶体管阵列以及交叉排布的栅线G和数据线D。栅线G和数据线D用于控制TFT,每个子像素区域中的TFT可以一一对应的控制每个子像素区域中的栅状电极241。
可选的,栅状电极241的材料可以包括各种导电材料,例如透明导电材料(如氧化铟锡)、金属(如铝)和合金等。
在另一种可选的实施方式中,可以通过一个与栅状结构位于液晶层不同侧的电极结构和栅状结构共同来控制液晶层的折射率。
如图6所示,显示装置还包括电极组件25。电极组件25包括位于液晶层23靠近背光源22的一侧的第一电极结构251。
其中,第一电极结构251包括分别位于每个子像素区域中的第一电极;和/或,栅状结构24包括分别位于每个子像素区域中的栅状电极。
图6示出的是栅状结构24包括分别位于每个子像素区域中的栅状电极,而第一电极结构251为电极层的情况。但是,也可以是栅状结构24为电极层,而第一电极结构251包括分别位于每个子像素区域中的第一电极,亦或者第一电极结构251包括分别位于每个子像素区域中的第一电极的同时,栅状结构24也包括分别位于每个子像素区域中的栅状电极。
其中,分别位于每个子像素区域中的电极的结构可以如图7所示,每个子 像素区域p中可以具有一个电极e(该电极可以为第一电极,和/或,栅状电极)。当栅状结构包括该分别位于每个子像素区域中的栅状电极时,这些电极e可以包括光栅图案。
第一子电极251的材料可以包括透明导电材料,如氧化铟锡(英文:Indium tin oxide;简称:ITO),也可以为金属(金属在极薄时也具有透光能力),如钼(Mo)。第一子电极251的厚度以可以根据施加电压的要求来决定,如70纳米至300纳米。
在另一种可选的实施方式中,可以通过一个与栅状结构位于液晶层同侧的电极结构和栅状结构共同来控制液晶层的折射率。
如图8所示,显示装置还包括电极组件25。电极组件25包括位于透光基板21和栅状结构24之间的第二电极结构252,栅状结构24包括分别位于每个子像素区域中的栅状电极。第二电极结构252与栅状结构24之间具有绝缘层26。如此结构下,栅状结构24和第二电极结构252之间也可以形成拱形电场以控制液晶层23的折射率。
其中,透明绝缘层26可以避免第一子电极251与包括栅状结构24短路。透明绝缘层26的材料可以包括氮化硅(Si 3N 4)或其它绝缘材料。
图8示出的是栅状结构24包括分别位于每个子像素区域中的栅状电极,第一电极结构251为电极层的情况。但是,第一电极结构251也可以和栅状电极同样包括分别位于每个子像素区域中的第一电极。其中,分别位于每个子像素区域中的第一电极的结构可以如图7所示,在此不再赘述。
第二子电极252的材料可以包括透明导电材料,如氧化铟锡(英文:Indium tin oxide;简称:ITO),也可以为金属,如钼(Mo)。第二子电极252的厚度以可以根据施加电压的要求来决定,如70纳米至300纳米。
可选的,液晶层23的材料可以选择包括高级超维场转换(英文:Advanced Super Dimension Switch;简称:ADS)显示面板(ADS显示面板可以包括平面转换(英文:In-Plane Switching;简称:IPS)显示面板和边缘场开关(英文:Fringe Field Switching;简称:FFS)显示面板)中的液晶材料或垂直配向型(英文:Vertical Alignment;简称:VA)显示面板中的液晶材料,也可以使用蓝相液晶(英文:blue phase liquid crystal;简称BP-LC)材料(BP-LC是一种具有响应时间短、视角大和无需定向层等优点的液晶)或其它液晶,本申请实施例不进 行限制。液晶层23的厚度可以为1微米左右,也可以为几微米或几百纳米。
可选的,栅状结构24的材料包括反光导电材料。由反光导电材料构成的栅状结构24能够使射向栅状结构24的光线中,发生反射衍射的光线相消,由于反射衍射的光线相消,根据能量守恒定律,穿过栅状结构24的透射衍射的光线就会增强。因此,由反光导电材料构成的栅状结构24能够起到提高栅状结构的透光率的效果。
可选的,栅状结构24的光栅周期(光栅周期指光栅两个暗条纹之间的中心间距)可以为3微米,占空比(占空比为任一栅状结构周期中亮条纹宽度与整个周期宽度的比值)为0.5。当栅状结构24包括多个栅状电极时,栅状结构24的光栅周期可以是指每个电极中的光栅图案的光栅周期。
可选的,该透光基板的材料可以包括液晶显示面板的基板玻璃、有机发光二极管显示面板的基板玻璃、其他光学玻璃和树脂等。
可选的,本申请实施例提供的各个显示装置中,准直光源222可以为白色光源,也可以为单色光源。当准直光源222为单色光源时,其可以由单色半导体激光器芯片构成,也可由准直性较强的单色的发光二极管(英文:Light Emitting Diode;简称:LED)芯片制成。该准直光源222的出光方向和导光板221的延伸方向(该延伸方向为平行于导光板两个较大的面中任意一个面的方向)成一定夹角,以使得准直光源222射入导光板的光线能够在导光板内全反射。
可选的,本申请实施例中的导光板221可以由具有较高折射率(如大于或等于1.52)的透明材料构成。示例性的,导光板221可以为液晶显示面板的基板玻璃、有机发光二极管显示面板的基板玻璃、其他光学玻璃和树脂等。导光板221的厚度可以为0.1毫米至2毫米,平整度和平行度可以较高。
可选的,本申请实施例提供的各个显示装置中,还可以包括彩膜基板,该彩膜基板可以位于透光基板和栅状结构之间,或者,该彩膜基板可以由透光基板构成。下面分别进行说明。
如图9所示,其示出了一种彩膜基板27位于透光基板21和栅状结构24之间的显示装置。彩膜基板27中可以包括彩膜层271,该彩膜层271可以包括与每个子像素区域一一对应的彩膜,以使显示装置能够发出各种不同颜色的光线。
该显示装置除彩膜基板27外的结构可以参考上述实施例示出的显示装置,在此不再赘述。
如图10所示,其示出了一种彩膜基板由透光基板21构成的显示装置。透光基板21可以包括透明衬底基板211和位于透明衬底基板211靠近液晶层23一侧上的彩膜层212。该彩膜层212可以包括与每个子像素区域一一对应的彩膜,以使显示装置能够发出各种不同颜色的光线。
对于图9和图10示出的显示装置,当背光源22中的准直光源222为单色光源时,若显示装置不为单色显示装置,则彩膜基板可以为量子点彩膜(英文:Quantum Dot Color Filter;简称:QD-CF)基板。
量子点彩膜基板中的彩膜层可以由量子点材料制成,该量子点材料中包括有粒径在1-100纳米(nm)之间的无机半导体纳米晶体(即量子点),由于量子点具有分立能级结构,光谱半波宽较窄,因此受激发光照射后,发射的光线颜色纯度较高。在本申请实施例中,可以将量子点材料以喷墨或者印刷等方式形成于彩膜基板的衬底基板上,以形成量子点彩膜。
单色准直光源可以发出激发量子点材料中量子点的激发光(比如蓝光)。对于量子点发光技术,高能量的激发光能够激发出能量较低的光线。示例性的,能量较高的蓝光能够激发出能量较低的红光和绿光。量子点材料中的量子点在受到激发光的照射后可以发射光色纯度较高的光线,该纯度较高的光线可以用来改善显示面板的色域,且由于量子点的激发效率高,也可以提高显示面板的亮度。示例性的,在图6中,单色准直光源222为蓝色光源时,量子点彩膜基板(即显示基板21)中的每个像素可以包括用于激发出红光的彩膜层R、用于激发出绿光的彩膜层G和用于透出蓝光的透明彩膜层B。
对于图9和图10示出的显示装置,当背光源22中的准直光源222为白色光源时,彩膜基板可以为常规的包括各种彩色滤光片的彩膜基板。
可选的,两块显示基板之间还可以具有封框胶28,该封框胶28用于封装液晶层23。
可选的,本申请实施例提供的各个显示装置中,栅状结构24满足衍射光栅公式,衍射光栅公式为:
nisinθi-ndsinθd=m*λ/Λ(m=0,+/-1,+/-2,…);
其中,ni为入射空间折射率,入射空间的折射率可以是指液晶层的折射率,nd为出射空间折射率,出射空间的折射率可以是指透明绝缘层26的折射率,θi为光线照射到光栅的入射角,θd为光线从光栅射出的出射角,m为光栅级次,λ为光波长,Λ为光栅的光栅周期。出射空间折射率nd为一个定值,光波长λ 为已知的,在确定出射空间折射率nd以及入射空间折射率ni的情况下,入射角θi可以通过模拟计算(如光学仿真软件计算)确定,因此,可以通过调节光栅的光栅周期Λ来调节出射角θd。
当栅状结构包括分别位于每个子像素区域中的栅状电极时,每个栅状电极具有的光栅图案可以满足上述衍射光栅公式。
当本申请实施例提供的显示装置应用于虚拟现实(英文:Virtual Reality;简称:VR)或增强现实(英文:Augmented Reality;简称:AR)设备中时,液晶显示面板上某一位置的像素的出光方向可以由该像素相对于人眼的位置决定。例如,可以使出光方向指向人眼的中心。因此,可以通过调节光栅的光栅周期Λ,以使光线从光栅射出的出射角θd满足像素与人眼的相对位置对于出光方向的要求。
此外,本申请实施例提供的显示装置,根据设计时每个像素所要达到的亮度的不同,每个子像素的宽度可以等于一个或多个光栅周期。因此,子像素的尺寸可以做得较小,从而能够提高显示装置中每英寸所拥有的像素数目(英文:pixels per inch;简称:PPI)。
综上所述,本申请实施例提供的显示装置,通过将栅状结构设置在液晶层远离导光板一侧,且将栅状结构复用为光栅和用于控制液晶的折射率的电极,而无需分别在显示装置中设置电极组件和光栅。解决了显示装置的结构较为复杂且暗态漏光的问题。达到了简化显示装置整体的结构且避免了暗态漏光的效果。
图11是本申请实施例提供的一种显示装置的控制方法的流程图,该方法可由用于上述实施例提供的显示装置中的控制器,该控制器可以为处理器或者控制集成电路,该方法可以包括下面几个步骤:
步骤701、获取控制指令,控制指令用于指示进行光线控制的指定显示区域。
该控制指令为控制显示装置进行显示的指令,指定显示区域即为显示装置所要进行显示的图像中亮度不为0的部分所在的区域。控制器可以从外部的信号源获取控制指令。
在步骤701之前,可以启动显示装置,使准直光源启动。
步骤702、在准直光源启动后,通过栅状结构改变指定显示区域的液晶层的折射率,以使准直光源的光线从导光板中指定显示区域的正投影区域出射至液 晶层。
综上所述,本申请实施例提供的显示装置的控制方法,通过将栅状结构设置在液晶层远离导光板一侧,且将栅状结构复用为光栅和用于控制液晶的折射率的电极,而无需分别在显示装置中设置电极组件和光栅。解决了显示装置的结构较为复杂且暗态漏光的问题。达到了简化显示装置整体的结构且避免了暗态漏光的效果。
对于显示装置的控制方法,可以包括对于显示装置的显示区域中发光区域的显示灰度的控制和不发光区域的控制。本申请实施例可以通过电极组件(包括第一电极结构或第二电极结构)以及包括阵列排布的条状电极的光栅来进行这两种控制。
可选的,图11所示的显示装置的控制方法中的步骤702可以包括:
子步骤7021、控制器通过栅状结构,或者通过栅状结构和电极组件控制液晶层中液晶的偏转角度以调整显示装置的出光效率。
该栅状结构和电极组件的结构可以参考上述实施例,在此不再赘述。
显示装置的出光效率越高,则指定显示区域的灰度越小(即亮度越高),出光效率越低,则指定显示区域的灰度越大(即亮度越低)。
液晶的偏转角度与显示装置的出光效率的关系可以通过光学仿真软件模拟测试得到。示例性的,当光线在导光板中的入射角为70°,液晶折射率为1.522至1.8,液晶层厚度为3微米,光栅的光栅周期为3μm(微米),光栅的占空比为0.5时,液晶的偏转角度与显示装置的出光效率的关系曲线图可以如图12所示。其中横轴为液晶偏转角度,纵轴为显示装置的出光效率(单位为%),可以根据该曲线图来调节液晶的偏转角度,进而调节显示装置的出光效率。
其中,液晶的偏转角度和折射率是相关的,在改变液晶的偏转角度的同时,液晶的折射率同样也会改变。
可选的,图11所示的显示装置的控制方法中的步骤701之后,该方法对于不发光区域的控制的方式可以包括下面两种:
第一种:通过栅状结构控制显示装置中除指定显示区域外的显示区域的液晶层中液晶的偏转长轴,使偏转长轴与导光板的夹角等于导光板中光线的入射角。
在此种控制方式中,栅状结构可以参考上述图4所示的显示装置,在此不 再赘述。
除指定显示区域外的显示区域可以认为是不发光区域,目前的一些显示装置中,不发光区域可能由于各种原因而漏光,降低了显示装置的显示效果,而本申请实施例中,当液晶层中液晶的偏转长轴与导光板的夹角等于导光板中光线的入射角时,液晶对于寻常光和非寻常光的折射率均为最小,因此导光板中的光线将无法射入液晶层,进而避免了有光线从无发光区域中射出,进一步避免了暗态漏光的问题,提高了显示装置的显示效果。
第二种:通过栅状结构和电极组件控制显示装置中除指定显示区域外的显示区域的液晶层中液晶的偏转长轴,使偏转长轴与导光板的夹角等于导光板中光线的入射角。
在此种控制方式中,栅状结构和电极组件可以参考上述图6或图8所示的显示装置,在此不再赘述。
综上所述,本申请实施例提供的显示装置的控制方法,通过将栅状结构设置在液晶层远离导光板一侧,且将栅状结构复用为光栅和用于控制液晶的折射率的电极,而无需分别在显示装置中设置电极组件和光栅。解决了显示装置的结构较为复杂且暗态漏光的问题。达到了简化显示装置整体的结构且避免了暗态漏光的效果。
本申请实施例还提供一种显示设备,该显示设备包括上述实施提供的一些显示装置。
可选的,该显示设备为虚拟现实设备或增强现实设备。由于本申请实施例中的显示装置的透明度较高,因而可以应用于虚拟现实设备或增强现实设备中。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间惟一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
在本申请中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种显示装置,所述显示装置包括透光基板(21)、背光源(22)、液晶层(23)和栅状结构(24);
    所述液晶层(21)位于所述透光基板(21)和所述背光源(22)之间,所述栅状结构(24)位于所述透光基板(21)靠近所述液晶层(23)的一侧,所述栅状结构(24)复用为光栅和用于控制所述液晶层(23)的等效折射率的电极;
    所述背光源(22)包括导光板(221)和位于所述导光板(221)除两个较大面外的侧面的准直光源(222)。
  2. 根据权利要求1所述的显示装置,所述显示装置具有阵列排布的多个子像素区域(p);
    所述栅状结构包括多个栅状电极(241),每个所述子像素区域(p)中具有至少两个所述栅状电极(241)。
  3. 根据权利要求1所述的显示装置,所述显示装置具有阵列排布的多个子像素区域(p);
    所述显示装置包括电极组件(25),所述电极组件(25)包括位于所述液晶层(23)靠近所述背光源(22)的一侧的第一电极结构(251)。
  4. 根据权利要求3所述的显示装置,所述第一电极结构(251)包括多个第一电极;
    所述多个第一电极分别位于每个所述子像素区域(p)中,所述栅状结构(24)覆盖在所述液晶层(23)远离所述背光源(22)的一面,且所述栅状结构(24)为一体结构。
  5. 根据权利要求3所述的显示装置,所述栅状结构(24)包括多个栅状电极(241);
    所述多个栅状电极(241)分别位于每个所述子像素区域(p)中,所述第一电极结构(251)为覆盖所述液晶层(23)靠近所述背光源(22)一面的电极 层。
  6. 根据权利要求3所述的显示装置,所述栅状结构(24)包括多个栅状电极(241);
    所述多个栅状电极(241)分别位于每个所述子像素区域(p)中,所述第一电极结构(251)包括多个第一电极,所述多个第一电极分别位于每个所述子像素区域(p)中。
  7. 根据权利要求1所述的显示装置,所述显示装置具有阵列排布的多个子像素区域(p);
    所述显示装置包括电极组件(25),所述电极组件(25)包括位于所述透光基板(21)和所述栅状结构(24)之间的第二电极结构(252),所述栅状结构(24)包括多个栅状电极(241),所述多个栅状电极(241)分别位于每个所述子像素区域(p)中,所述第二电极结构(252)与所述栅状结构(24)之间绝缘。
  8. 根据权利要求1所述的显示装置,所述栅状结构(24)的材料包括反光导电材料。
  9. 根据权利要求1-8任一所述的显示装置,所述显示装置包括彩膜基板(27),所述彩膜基板(27)位于所述透光基板(21)和所述栅状结构(24)之间。
  10. 根据权利要求1-8任一所述的显示装置,所述透光基板(21)为彩膜基板,所述彩膜基板包括透明衬底基板(211)和位于所述透明衬底基板(211)靠近所述液晶层(23)一侧上的彩膜层(212)。
  11. 根据权利要求9或10所述的显示装置,所述彩膜基板(27)为量子点彩膜基板。
  12. 根据权利要求1至11任一所述的显示装置,所述栅状结构(24)满足 衍射光栅公式,所述衍射光栅公式为:
    n isinθ i-n dsinθ d=m*λ/Λ(m=0,+/-1,+/-2,…);
    所述n i为入射空间折射率,所述n d为出射空间折射率,所述θ i为入射角,所述θ d为出射角,所述m为光栅级次,所述λ为光波长,所述Λ为所述栅状结构的光栅周期。
  13. 根据权利要求1所述的显示装置,所述显示装置具有阵列排布的多个子像素区域(p);
    所述显示装置包括位于所述透光基板(21)和所述栅状结构(24)之间的第二电极结构(252),所述栅状结构(24)包括多个栅状电极(241),所述多个栅状电极(241)分别位于每个所述子像素区域(p)中,所述第二电极结构(252)与所述栅状结构(24)之间绝缘;
    所述栅状结构(24)的材料包括反光导电材料;
    所述透光基板(21)为彩膜基板,所述彩膜基板包括透明衬底基板(211)和位于所述透明衬底基板(211)靠近所述液晶层(23)一侧上的彩膜层(212),所述彩膜基板为量子点彩膜基板;
    所述栅状结构(24)满足衍射光栅公式,所述衍射光栅公式为:
    n isinθ i-n dsinθ d=m*λ/Λ(m=0,+/-1,+/-2,…);
    所述n i为入射空间折射率,所述n d为出射空间折射率,所述θ i为入射角,所述θ d为出射角,所述m为光栅级次,所述λ为光波长,所述Λ为所述栅状结构的光栅周期。
  14. 一种显示装置的控制方法,用于权利要求1至13任一所述的显示装置,所述方法包括:
    获取控制指令,所述控制指令用于指示所述显示装置的显示区域中,进行光线控制的指定显示区域;
    在准直光源启动后,通过栅状结构改变所述指定显示区域的液晶层的等效折射率,以使所述准直光源的光线从所述导光板中所述指定显示区域的正投影区域出射至所述液晶层。
  15. 根据权利要求14所述的方法,所述显示装置包括电极组件,所述在准 直光源启动后,通过栅状结构改变所述指定显示区域的液晶层的等效折射率,以使所述准直光源的光线从所述导光板中所述指定显示区域的正投影区域出射至所述液晶层,包括:
    通过所述栅状结构,或者通过所述栅状结构和所述电极组件控制所述液晶层中液晶的偏转角度以调整所述显示装置的出光效率。
  16. 根据权利要求14所述的方法,所述显示装置包括电极组件,所述获取控制指令之后,所述方法还包括:
    通过所述栅状结构,或者通过所述栅状结构和所述电极组件控制所述显示装置中除所述指定显示区域外的显示区域的液晶层中液晶的偏转长轴,使所述偏转长轴与所述导光板的夹角等于所述导光板中光线的入射角。
  17. 一种显示设备,所述显示设备包括权利要求1至13任一所述的显示装置。
  18. 根据权利要求17所述的显示设备,所述显示设备为虚拟现实设备或增强现实设备。
PCT/CN2019/094343 2018-07-06 2019-07-02 显示装置和显示装置的控制方法、显示设备 WO2020007281A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/641,703 US11269225B2 (en) 2018-07-06 2019-07-02 Display apparatus and control method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810737237.6A CN108957830B (zh) 2018-07-06 2018-07-06 显示装置和显示装置的控制方法、显示设备
CN201810737237.6 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020007281A1 true WO2020007281A1 (zh) 2020-01-09

Family

ID=64482294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094343 WO2020007281A1 (zh) 2018-07-06 2019-07-02 显示装置和显示装置的控制方法、显示设备

Country Status (3)

Country Link
US (1) US11269225B2 (zh)
CN (1) CN108957830B (zh)
WO (1) WO2020007281A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108957830B (zh) * 2018-07-06 2020-06-09 京东方科技集团股份有限公司 显示装置和显示装置的控制方法、显示设备
CN109613731A (zh) * 2019-01-18 2019-04-12 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置
CN109856854A (zh) * 2019-04-17 2019-06-07 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN110412801A (zh) * 2019-07-31 2019-11-05 京东方科技集团股份有限公司 显示面板和显示装置
CN111240098A (zh) * 2020-03-19 2020-06-05 深圳市华星光电半导体显示技术有限公司 一种显示面板、显示面板制程方法及显示装置
CN111221183A (zh) * 2020-03-19 2020-06-02 深圳市华星光电半导体显示技术有限公司 一种显示面板、显示面板制程方法及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020896A (zh) * 2014-05-14 2014-09-03 上海交通大学 基于光栅的光学触控屏
CN105446001A (zh) * 2016-01-25 2016-03-30 京东方科技集团股份有限公司 一种显示面板及其工作方法、显示装置
CN106324897A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板和显示装置
CN107918233A (zh) * 2016-10-24 2018-04-17 京东方科技集团股份有限公司 一种显示装置
CN108957830A (zh) * 2018-07-06 2018-12-07 京东方科技集团股份有限公司 显示装置和显示装置的控制方法、显示设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60142300D1 (de) * 2001-12-24 2010-07-15 Em Microelectronic Marin Sa Flüssigkristallzelle mit mindestens zwei Beugungsgittern insbesondere für einen optischen Strahlteiler
US6999156B2 (en) * 2002-09-30 2006-02-14 Chou Stephen Y Tunable subwavelength resonant grating filter
CN203433236U (zh) * 2013-09-02 2014-02-12 京东方科技集团股份有限公司 阵列基板及3d显示装置
KR102432351B1 (ko) * 2015-10-07 2022-08-16 삼성디스플레이 주식회사 컬러 필터 및 이를 적용한 디스플레이 장치
US20180299737A1 (en) * 2016-01-20 2018-10-18 Sharp Kabushiki Kaisha Liquid crystal display panel, and liquid crystal display device
CN106154657B (zh) * 2016-09-12 2023-09-01 合肥鑫晟光电科技有限公司 一种3d显示装置及其制备方法
CN206096710U (zh) * 2016-10-24 2017-04-12 京东方科技集团股份有限公司 一种显示装置
CN106444177B (zh) 2016-10-28 2019-03-15 京东方科技集团股份有限公司 显示面板及显示装置
CN108051961B (zh) * 2018-01-02 2021-05-07 京东方科技集团股份有限公司 一种液晶显示面板及其显示方法和液晶显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020896A (zh) * 2014-05-14 2014-09-03 上海交通大学 基于光栅的光学触控屏
CN105446001A (zh) * 2016-01-25 2016-03-30 京东方科技集团股份有限公司 一种显示面板及其工作方法、显示装置
CN107918233A (zh) * 2016-10-24 2018-04-17 京东方科技集团股份有限公司 一种显示装置
CN106324897A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板和显示装置
CN108957830A (zh) * 2018-07-06 2018-12-07 京东方科技集团股份有限公司 显示装置和显示装置的控制方法、显示设备

Also Published As

Publication number Publication date
US11269225B2 (en) 2022-03-08
CN108957830A (zh) 2018-12-07
CN108957830B (zh) 2020-06-09
US20200233271A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
WO2020007281A1 (zh) 显示装置和显示装置的控制方法、显示设备
US11126054B2 (en) Display panel and display device
US20200183202A1 (en) Liquid crystal display panel, liquid crystal display device and display method thereof
US10564488B2 (en) Display panel, display device and control method thereof
CN108761946B (zh) 一种透明显示面板和透明显示装置
WO2018161650A1 (zh) 显示面板和显示装置
CN109239965B (zh) 一种显示器件及其控制方法
CN107918233B (zh) 一种显示装置
US10866453B2 (en) Display panel and method for fabricating the same, display device and display method
US20210096393A1 (en) Aerial display apparatus
JP6008490B2 (ja) ディスプレイ装置
US9857642B2 (en) Display device and liquid crystal display device
US9703104B2 (en) Electro-optical device comprising first, second, and third color beams having different incident angles relative to a light gathering element and electronic apparatus
US10908463B2 (en) Display panel, display device and control method thereof
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
US20200133053A1 (en) Color filter substrate and liquid crystal display device
CN110646989B (zh) 显示面板、显示装置及其控制方法
US10558083B2 (en) Liquid crystal display module and liquid crystal display device
CN108663858B (zh) 背光模组、显示装置及其驱动方法
US10831059B2 (en) Display panel, display apparatus and method of controlling the same
US10884282B1 (en) Transparent display device, method of manufacturing the same, and method of controlling the same
US20170285384A1 (en) Liquid crystal display device and liquid crystal display system
WO2020203313A1 (ja) 表示装置およびレンズアレイ
WO2018012303A1 (ja) 液晶プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19830656

Country of ref document: EP

Kind code of ref document: A1