WO2020006979A1 - Cnc铣床多自由度微量润滑智能喷头系统 - Google Patents

Cnc铣床多自由度微量润滑智能喷头系统 Download PDF

Info

Publication number
WO2020006979A1
WO2020006979A1 PCT/CN2018/119446 CN2018119446W WO2020006979A1 WO 2020006979 A1 WO2020006979 A1 WO 2020006979A1 CN 2018119446 W CN2018119446 W CN 2018119446W WO 2020006979 A1 WO2020006979 A1 WO 2020006979A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
cylinder
milling machine
telescopic
degree
Prior art date
Application number
PCT/CN2018/119446
Other languages
English (en)
French (fr)
Inventor
李长河
隋孟华
武文涛
张乃庆
吴启东
李钧
韩志光
纪合聚
高腾
张彦彬
杨敏
贾东洲
殷庆安
张晓阳
侯亚丽
Original Assignee
青岛理工大学
上海金兆节能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821049094.1U external-priority patent/CN208496526U/zh
Priority claimed from CN201810707515.3A external-priority patent/CN108555685B/zh
Application filed by 青岛理工大学, 上海金兆节能科技有限公司 filed Critical 青岛理工大学
Priority to KR1020217000453A priority Critical patent/KR102601766B1/ko
Priority to US16/692,159 priority patent/US20200086441A1/en
Publication of WO2020006979A1 publication Critical patent/WO2020006979A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • B23Q11/1076Arrangements for cooling or lubricating tools or work with a cutting liquid nozzle specially adaptable to different kinds of machining operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention patent belongs to the field of metal processing, and particularly relates to a multi-degree-of-freedom micro-lubrication intelligent sprinkler system assisting a CNC milling machine.
  • Micro-lubrication technology has replaced the pouring emulsion and dry processing technology has become an inevitable trend, which is in line with the concepts of green manufacturing and sustainable development. It refers to a technology in which a small amount of lubricating liquid, water and a gas with a certain pressure are mixed and atomized, and then sprayed into the cutting area to cool and lubricate. Water and high-pressure gas play a cooling role, and oil plays a role in lubricating the cutting area and extending the tool life.
  • the design and development of micro-lubrication equipment has become an important content for the realization of micro-lubrication technology. Although many designers have designed micro-lubrication systems, there are still many problems in practical applications.
  • the micro-lubrication system precision lubrication pump designed in the prior art is characterized in that the lubricant enters the liquid cavity from the oil inlet hole; it is driven by compressed air, and when the compressed air enters the gas cavity, the piston rod The pressure at the tail increases. When the pressure is greater than the spring force of the piston spring at the front end of the piston rod, the piston rod moves forward, the liquid cavity shrinks, and the pressure increases.
  • the continuous liquid supply type micro-lubrication device designed in the prior art is characterized in that the device includes a peristaltic pump, a gas source processor, a gas-liquid joint, a gas source gas pipe, an input gas pipe, an infusion hose, an outlet hose, and a gas-liquid co-existing device
  • a shaft tube, a nozzle and a box for installing the above components the air source processor is fixedly installed on the outside of the box, and the inlet of the peristaltic pump passes through the infusion hose and is used for containing
  • the cutting fluid container is connected, and the outlet is connected to the first inlet of the gas-liquid joint through a liquid outlet hose; the inlet of the gas source processor is connected to the gas source gas pipe, and the outlet is connected to the gas and liquid through an input gas pipe.
  • the second inlet of the joint is connected; the outlet of the gas-liquid joint is connected to the nozzle through the gas-liquid coaxial tube, and compressed air and cutting fluid are mixed in the nozzle to form a cutting fluid aerosol and ejection. It has the characteristics of compact structure, easy operation, precise oil quantity control, continuous supply of cutting fluid, and convenient installation.
  • the purpose of the patent of the present invention is to provide an intelligent spray head that supports continuous tracking and injection of cutting fluid in different machining conditions of a CNC milling machine.
  • the horizontal rotation of the device is driven by a stepper motor, and the longitudinal angle adjustment and nozzle follow-up adjustment are driven by compressed air, which is used to track the tricky angle of the milling cutter working point under various processing conditions, and the gas-liquid at different temperatures.
  • the intelligent adjustment of the ratio improves the cooling and lubricating effect of the processing area and the quality of the workpiece processing surface, and provides equipment support for the intelligent supply of trace lubrication.
  • a first object of the present invention is to disclose a CNC milling machine multi-degree-of-freedom micro-lubrication intelligent sprinkler system, including: a ring-shaped rotary table, a longitudinal telescopic section, a rotary section, an intelligent nozzle installation table and an information acquisition system;
  • the ring-shaped rotary table includes a rotating member that rotates in a horizontal circumferential direction.
  • the bottom of the rotating member is connected to at least one longitudinal telescopic portion, and the lower end of the longitudinal telescopic portion is connected to the rotary portion.
  • the connection point is the axis and rotates within a set angle;
  • the intelligent sprinkler mounting table is connected to the rotating part and moves with the rotating part;
  • the information acquisition system is installed on the intelligent sprinkler mounting table.
  • the ring-shaped rotary table includes: a rotary table casing, a rotating body, a stepping motor, and a power transmission device;
  • the stepping motor is arranged inside the housing of the rotating table, and the stepping motor is connected to the rotating body through a power transmission device to drive the rotating body to rotate.
  • the longitudinal telescopic portion includes: a telescopic cylinder and an elongated member; the elongated member includes a fixed end and an extended end; the telescopic cylinder is connected to a ring-shaped rotary table through the fixed end, and the telescopic rod of the telescopic cylinder It is connected with the extended end; a slideway is provided between the extended end of the extended part and the fixed end, and the telescopic cylinder is used to provide power to realize the longitudinal extension of the extended end.
  • the rotating part includes a rotating cylinder and a mechanical arm, the rotating cylinder is connected with the longitudinal telescopic part, and the mechanical arm is fixed on a rotating disc of the rotating cylinder; a magnetic sensor is provided on the rotating cylinder, and The magnetic sensor determines the rotation angle of the rotary disk.
  • fine adjustment of the spray angle of the intelligent nozzle is realized by the rotating cylinder.
  • the mechanical arm is an L-shaped plastic steel frame.
  • the L-shaped plastic steel frame has a fixed end above and below, and the upper fixed end is a flange for connecting the rotating shaft of the rotary cylinder; the lower part of the L-shaped plastic steel frame is a cross bar, and the cross bar is provided with There are screw holes for fixing the rotary cylinder.
  • the rotation part of the intelligent sprinkler installation platform is connected, and the intelligent sprinkler installation platform is provided with a platform connected to a telescopic air cylinder.
  • the information acquisition system includes: an infrared sensor, a single-chip microcomputer, and an information acquisition card.
  • the infrared sensor acquires real-time signals of the processing tools of the milling machine, and the information acquisition card sends the information collected by the infrared sensor to the single-chip microcomputer, so that the motion path of the device. To optimize to achieve better tracking injection.
  • the device uses a stepper motor and air pressure for the combined drive.
  • the stepper motor provides the rotating force for the rotating disk, and the air pressure provides power for the telescopic cylinder and the rotary cylinder.
  • the device has an infrared sensor, which can collect processing data in real time, reasonably adjust the nozzle angle through the processing data, and reasonably configure the gas-liquid ratio to ensure that the nozzle sprays the workpiece at a reasonable angle, instead of traditional cutting.
  • the liquid jet head is fixed and the spraying angle is limited, which solves the problem of dead angle on the cutting surface and the waste of cutting fluid.
  • Figure 1 is a shaft side view of a CNC milling machine multi-degree-of-freedom micro-lubrication intelligent sprinkler system
  • Figures 2 (a)-(c) are three views of a multi-degree-of-freedom micro-lubrication intelligent sprinkler system for a CNC milling machine, respectively;
  • Figure 3 is an exploded view of a ring-shaped rotary table
  • Figure 4 is a shaft side view of the rotary table housing
  • Figure 7 is a sectional view of a ring-shaped rotary table
  • Fig. 8 is a layout diagram of a step belt
  • Figure 9 is an exploded view of an elongated portion of a longitudinal telescopic system
  • FIG. 10 is a structural schematic diagram of a telescopic cylinder
  • FIG. 11 is a plan view of an elongated portion of a longitudinal telescopic system
  • Figure 12 is a sectional view I of an elongated portion of a longitudinal telescopic system
  • 13 is a sectional view II of an elongated portion of the longitudinal telescopic system
  • 15 is a front structural view of a rotary cylinder
  • 16 is a side structural view of a rotary cylinder
  • FIG. 22 is an exploded view of the intelligent nozzle installation table
  • FIG. 23 is a sectional view of a rotating part assembly of the intelligent nozzle mounting table
  • FIG. 24 is an exploded view of the fixed end of the intelligent nozzle
  • Figure 26 is an infrared sensor information acquisition model
  • Figure 27 shows the D-H parameters of the intelligent print head.
  • Ring-shaped rotating table I longitudinal telescopic arm II, rotating arm III, intelligent sprinkler mounting table IV, information acquisition system V, upper end cover I-1 of the rotating body, lower end I1-2 of the rotating body, synchronous wheel I1-3, Synchronous wheel fixing bolt I1-4, thrust ball bearing I1-5, nut I1-6, washer I-7, rotating body connecting bolt I-1-8, rotating body connecting through hole I-9, synchronization Wheel mounting screw holes I-1-10, counterbore I-11-1, timing belt I-12-1, tensioning pulley I-13-1, telescopic cylinder mounting base I-14-1, through hole I-1-15; rotary table housing I 2-1, bolt I 2-2, screw hole I 2-3, through hole I 2-4, stepper motor I 3-1, flat key I 3-2, synchronous wheel I 3-3;
  • Figure 1 is a shaft side view of a CNC milling machine multi-degree-of-freedom micro-lubrication intelligent sprinkler system.
  • Figure 2 is a three-view of a CNC milling machine's multi-degree-of-freedom micro-lubrication intelligent sprinkler system.
  • Figure 2 (a) is a front view
  • Figure 2 (b) is a left view.
  • Fig. 2 (c) is a plan view.
  • the present invention includes five parts: a ring-shaped rotary table I, a longitudinal telescopic arm II, a rotary arm III, a nozzle mounting table IV, and an information acquisition system V.
  • the ring-shaped rotary table includes a rotating member rotating in the horizontal circumferential direction.
  • the bottom of the rotating member is connected to at least one longitudinal telescopic arm.
  • the lower end of the longitudinal telescopic arm is connected to the rotary arm.
  • Rotate within an angle range; the intelligent sprinkler installation platform is connected to the rotating arm and moves with the rotation arm; the information acquisition system is installed on the intelligent sprinkler installation platform.
  • FIG. 3 is an exploded view of the ring-shaped rotary table.
  • the ring-shaped rotary table includes an upper end cover I1-1 of the rotating body, a lower end I1-2 of the rotating body, a synchronous wheel I1-3, and a synchronous wheel fixing bolt.
  • I1-4 thrust ball bearing I1-5, nut I1-6, washer I-7, rotating body connecting bolt I-1-8, telescopic cylinder mounting base I-14, rotary table housing I2- 1.
  • Rotary table housing I 2-1 The rotary table housing is fixed to the bottom surface of the feed box of the CNC milling machine by bolts.
  • the rotary table housing I 2-1 has a rotating body inside.
  • the rotating body consists of an upper end cover 1-1 and a lower end I. 1-2 structure, between the rotary table housing I 2-1 and the rotating body, there is a thrust ball bearing I 1-5, the rotation of the rotating body is achieved through the thrust ball bearing I 1-5, and the synchronous wheel I 1-3 is fixed by bolts
  • a tensioning wheel is installed inside the ring-shaped rotary table.
  • the timing belt is arranged inside the gap of the ring-shaped rotary table through the tensioning wheel, and the stepping motor is used to provide the rotating table inside the ring-shaped rotary table.
  • the lower part of the rotating body has two shrink cylinder mounting bases I-14, which are respectively used to fix the longitudinal telescopic arms, so that the intelligent nozzle can track the working point of the milling cutter when the CNC milling machine is milling the circumference.
  • the upper end cover I1-1 of the rotating body and the lower end I1-2 of the rotating body are connected to form a rotating body through the rotating body connecting bolts 1-8, nuts I1-6, and washers I-7.
  • the rotating body is provided with a screw hole for installing a synchronous wheel, and the synchronous wheel is fixed on the rotating body through a timing belt fixing bolt I1-4.
  • the turntable housing I2-1 has screw holes, and the stepping motor I3-1 is fixed to the turntable housing I2-1 by bolts I-2-2.
  • the thrust ball bearing I1-5 is fixed between the rotating body and the rotating housing I2-1 through the shaft shoulder to realize the rotation of the rotating body.
  • the power for the rotation of the rotating body is provided by the stepper motor 3-1, and the power is transmitted from the tensioning synchronous wheel I-3-3 to the synchronous wheel I-13 by the synchronous belt I-12.
  • FIG. 4 is an axial side view of the rotating body casing.
  • the rotating body casing is a porous member, including a screw hole I2-3 and a through hole I2-4.
  • the screw hole I2-3 is used to fix the stepping motor I3-1
  • the through hole I2-4 is used to fix the rotary table housing I2-1
  • the rotary body I2-1 is fixed to the CNC milling machine.
  • the milling cutter holder is fixed on a flat surface.
  • FIG. 5 is an upper end cover of the rotating body and a left cross-sectional view thereof.
  • the upper end cover of the rotating body is a porous member, and a rotating body connecting through hole I-9 for connecting the lower end of the rotating body is provided to form a rotating body.
  • FIG. 6 is a lower end of the rotating body and a left cross-sectional view thereof.
  • the lower end of the rotating body is a porous member, including a synchronous wheel mounting screw hole I-1-10 and a counterbore I-11-1.
  • the synchronization wheel mounting screw hole I-10 is used to fix the synchronous belt I-12
  • the counterbore I-11 is used to connect the upper end cover I1-1 of the rotating body and the lower end I1-2 of the rotating body to form a rotation.
  • Body to realize the rotation tracking of the nozzle in the XY plane.
  • Figure 7 is a cross-sectional view of a ring-shaped rotary table assembly.
  • the ring-shaped rotary table is composed of a rotating body housing I2-1 and a rotating body, with a thrust ball bearing I1-5 between the two, rotating
  • the body shell is fixed on the machine tool by bolts, so that the rotation body shell is fixed and the rotating body is rotated.
  • the turning power is provided by the stepping motor I3-1, and is transmitted by the timing belt I-12.
  • FIG. 8 is a layout diagram of a step belt. As shown in the figure, the timing belt is installed on two timing wheels, and the timing belt is tensioned by two tensioning wheels to ensure the accuracy of timing belt transmission.
  • the lower end of the rotating body is also provided with a telescopic cylinder mounting seat I-14 for fixing the telescopic cylinder.
  • the longitudinal telescopic system consists of telescopic cylinder II, magnetic sensor II, 2-1, extension arm, compressed air joint II, 1-4, and bolts.
  • the extension arm consists of an extension end II 3-2 and a fixed end II 3-6.
  • the fixed end has a through hole II 3-5 and a screw hole II 3-7.
  • the through hole II 3-5 is used to connect the rotating body.
  • the lower fixed end, screw hole II 3-7 is used to fix the telescopic cylinder.
  • Figure 9 is an exploded view of the extension part of the longitudinal telescopic system.
  • the extension part of the longitudinal telescopic system includes a telescopic cylinder block II, a retracted cylinder block II1-1, a telescopic cylinder piston II1-2, a hexagon Flange nut II 1-3, compressed air connector II 1-4, stud II 1-5, washer II 1-6, nut II 1-7, 90 degree angle II 1-8, bolt II 1-9 , Through hole II 1-17 telescopic cylinder mount I 1-14, through hole I 1-15, magnetic sensor II 2-1, flat head screw II 2-2, through hole II 2-3, telescopic slider base II 3-1, telescopic slider II, 3-2, washer II, 3-3, nut II, 3-4, bolt II3-5, slideway II, 3-6, screw hole II, 3-7, through hole II, 3-8 .
  • the telescopic slider base is fixed to the telescopic cylinder mounting base I-14 through bolts II and 3-5, and the telescopic cylinder is fixed to the telescopic slider base II through 90-degree angles II-8 and bolts 1-9. -1 on.
  • the telescopic slider II has a bayonet on the 3-2, and the front end of the piston of the telescopic cylinder has a cylindrical structure, which can be stuck on the bayonet, and the front end of the piston is fixed at the bayonet with the hexagon flange nut II 1-3. Reciprocating motion to achieve the telescopic movement of the slider.
  • the magnetic sensor II 2-1 is fixed on one side of the telescopic cylinder by the flat head screw II 2-2. It is used to collect the position of the piston in the telescopic cylinder for closed-loop control.
  • An air pipe joint can be installed at each of the front and rear ends of the telescopic cylinder to provide power for the movement of the telescopic slider.
  • Figure 10 is a schematic diagram of the structure of a telescopic cylinder. As shown in the figure, it includes the piston of the telescopic cylinder II, 1-2, the front end of the telescopic cylinder II, 1-10, the rear end of the telescopic cylinder II, 1-11, and the sealing ring II 1-12. , Magnetic ring II 1-13, seal ring II 1-14, telescopic cylinder A air hole II 1-15, telescopic cylinder B air hole II 1-16, seal ring II 1-18, seal ring II 1-19. Compressed air entering from port B moves the cylinder piston to the direction of the A air hole to achieve the elongation of the moving slider.
  • Compressed air entering from port A moves the cylinder piston to the direction of the B air hole to shorten the moving slider.
  • the front end cover II of telescopic cylinder 1-10 and the rear end cover II of telescopic cylinder 1-11 block the cylinder from both sides. Both end covers have four through holes, which are tightly connected together by four studs. .
  • the entire mechanism seals the internal environment of the telescopic cylinder through four sealing rings.
  • a magnetic ring is sleeved on the piston to provide the magnetic sensor with its own position signal.
  • FIG. 11 is a plan view of an extended portion of the longitudinal telescopic system
  • FIG. 12 is a sectional view I of the extended portion of the longitudinal telescopic system
  • FIG. 13 is a sectional view II of the extended portion of the longitudinal telescopic system.
  • the telescopic slider base is fixed to the telescopic cylinder mounting base 1-14 by bolts II-9, and the telescopic cylinder is 90-degree angle II-1-8 and bolts II.
  • 3-5 is fixed on the telescopic slider base A II.
  • the telescopic slider II has a bayonet on the 3-2, and the front end of the piston of the telescopic cylinder has a cylindrical structure, which can be stuck on the bayonet, and the front end of the piston is fixed at the bayonet with the hexagon flange nut II 1-3. Reciprocating motion to achieve the telescopic movement of the slider.
  • the rotating arm is composed of a rotating cylinder and a mechanical arm.
  • the mechanical arm is a hollow L-shaped plastic steel frame.
  • the bottom surface of the rotating cylinder is fixed on the fixed end of the extension arm of the longitudinal telescopic system.
  • the rotating turntable of the rotating cylinder has The flange structure, and the robot arm is fixed on the rotary disc of the rotary cylinder by bolts.
  • the L-shaped plastic steel frame has a fixed end on each side and a flange on the upper end.
  • the rotary shaft of the rotary cylinder is connected by bolts.
  • the lower part of the L-shaped plastic steel frame is a "single end", and there is a screw hole on the "one field" for fixing the rotary cylinder, which is connected by bolts.
  • Figure 14 is an exploded view of the fixed end of the rotating arm, as shown in the figure, including rotating cylinder III, magnetic sensor III, screw III, 2-1, counterbore III-2-2, screw hole III2-3, inner hexagon bolt III2 -4, L-shaped plastic steel frame III 2-5, counterbore III2-6, hexagon socket bolt II 2-7, telescopic slider II 3-1, screw hole II 3-9.
  • Rotary cylinder III is the main actuator of the rotary arm system, which is used to provide the rotating force for the intelligent nozzle installation platform; it is fixed on the telescopic slider II 3-1 through the hexagon socket bolt III and 2-4.
  • the L-shaped steel frame III 2-5 is fixed to the rotary chuck of the rotary cylinder III 1 through the hexagonal bolt III 2-7, and the rotation of the L-shaped steel frame III 2-5 is driven by the rotation of the rotary chuck.
  • Fig. 15 is a front structural view of a rotary cylinder, as shown in the figure, including a seal ring III, 1-1, a buffer III, 1-2, a seal ring III, 1-3, a magnetic ring III, 1-4, and a small rack III.
  • the rotary cylinder has two air holes. The compressed air is connected from the A air hole to move the rack A forward. At the same time, the rotary shaft is rotated counterclockwise by the gear to move the rack B backward.
  • Fig. 16 is a side structural view of the rotating gas, as shown in the figure, including a rotating shaft III, 1-9, a deep groove ball bearing III, 1-10, a sealing ring III, 1-11, a rotating cylinder lower end cover III, 1-12, and a sealing ring III. -13, Deep groove ball bearing III, 1-14, Rotary cylinder upper end cover III, 1-15, Hexagon socket bolt III, 1-16, Hex socket bolt III, 1-17, Gear III, 1-6, Rotary disc III, 1-18, Hex socket head bolts III-1-19, flat keys III-1-20. Gear III-6 is connected to the rotating shaft III through 1-20 through the flat key III.
  • the rotating shaft III-1-9 is inserted into the rotating cylinder III from the port on the rotating cylinder III-1-9, and is placed on the rotating shaft.
  • lower end cover III of rotary cylinder 1-12 and upper end cover III of rotary cylinder 1-15 can position deep groove ball bearing III-10 and deep groove ball bearing III-14.
  • the lower end cover III of the rotary cylinder 1-12 is fixed by the hexagonal bolts III-1-19, and the upper end cap of the rotary cylinder III-1-15 is fixed by the hexagonal bolts III-1-17.
  • the center line of the rotary cylinder has a set of counterbores III and 1-7, which are used to fix the rotary cylinder on the telescopic slider A.
  • Figure 17 is a three-view view of the rotary cylinder. As shown in the figure, the front end of the rotary cylinder III-1-23 and the rear end of the rotary cylinder III1-22 have 4 counterbore holes. The front cover III-1-23 and the rotary cylinder rear cover III1-21-2 are fixed to the cylinder block of the rotary cylinder.
  • FIG. 18 is a three view of the swing arm system
  • FIG. 18 (a) is a front view of the swing arm system
  • FIG. 18 (b) is a left side view of the swing arm system
  • FIG. 18 (c) is a top view of the swing arm system.
  • Figure 19 is a sectional view of the fixed end assembly of the rotating arm.
  • the L-shaped steel frame III 2-5 is connected to the rotary cylinder by the hexagonal screws III 2-7, and the rotary cylinder is fixed at the fixed end II of the extension arm by the hexagonal screws III 2-4. 3-6 on.
  • Fig. 20 is a side view of the fixed end shaft of the rotary arm
  • Fig. 21 is a three view of the nozzle mounting table
  • Fig. 21 (a) is a front view of the nozzle mounting table
  • Fig. 21 (b) is a left view of the nozzle mounting table
  • c) is a top view of the nozzle mounting table.
  • Fig. 22 is an exploded view of the nozzle mounting table, as shown in the figure, including a magnetic sensor IV, a flat head screw IV 1-1, a countersink IV 1-2, a magnetic sensor card holder IV 1-3, a rotary cylinder IV 2, external Card slot IV 2-1, hexagon socket bolt IV 2-2, screw hole IV 2-3, hexagon socket bolt IV 2-4, through hole IV 2-5, nozzle fixing table housing IV, bolt IV 3-1, Through hole IV 3-2, screw hole IV 3-3, end cover IV 3-4, telescopic cylinder mounting table IV 3-5, through hole IV 3-6, L-shaped steel frame III2-5.
  • the two ends of the nozzle fixing table shell are two flange plates, and the rotary cylinder connects the rotary plate and the flange plate by bolts. These two counterbore holes are evenly distributed on the axis of the rotating cylinder, and the rotating cylinder is fixed on the “segment” of the L-shaped steel frame III 2-5 by bolts. There are two square mounting openings on the nozzle fixing table shell, and the rotary disk and the flange can be connected through the mounting holes.
  • Figure 23 is a sectional view of the rotating part assembly of the intelligent sprinkler mounting table.
  • the rotating cylinder fixing table housing IV is connected to the rotating cylinder through the hexagonal bolt IV-2-2, and the rotating cylinder is fixed to the L-shaped plastic steel frame III through the hexagonal bolt IV 2-4. 2-5 on.
  • Figure 24 is an exploded view of the fixed end of the nozzle. As shown in the figure, it includes a two-way nozzle V1, a screw hole V1-1, a first connector V1-2, a second connector V1-3, and a fixing ring V1-4.
  • FIG. 25 is three views of the nozzle fixed end, FIG. 25 (a) is a front view of the nozzle fixed end, FIG. 25 (b) is a left side view of the nozzle fixed end, and FIG. 25 (c) is a plan view of the nozzle fixed end.
  • Figure 26 is an infrared sensor information collection model. As shown in the figure, the optical axes of the left and right infrared sensors are installed on the same straight line, and the camera imaging planes of the two infrared sensors are coplanar. The distance between the two sensors in the picture is B, which is called the baseline distance.
  • Figure 27 shows the D-H parameters of the intelligent nozzle.
  • the coordinate transformation from the coordinate system ⁇ Q i-1 ⁇ to the coordinate system ⁇ Q i ⁇ can be performed through the coordinate system ⁇ Q i-1 ⁇ through the following transformation sequence. achieve:
  • T i Rot (z, ⁇ i ) Trans (0,0, d i ) Trans (a i , 0,0) Rot (x, a i ),
  • Rod length a i link torsion angles ⁇ i, the distance d i and link the link angle ⁇ i.
  • link length a i is the distance between the two joint axis, i.e., z i- z i-1 and the axis perpendicular to the longitudinal axis of the well, measured along the x i axis direction.
  • a i is always a positive value.
  • Link torsion angle ⁇ i is the angle between the two joint axis, i.e. the angle between the axis z i z i-1 axis, rotation about the axis x i z i-1 from the axis to the z i axis, in line with Right-hand rule is positive.
  • Link distance D i is the distance between i and i-1 a, i.e. the distance between the two link shaft axis and a x i x-1 i, z i-1 measured in the shaft.
  • d i is a constant; for the movement of the joint, d i is a variable.
  • the connecting rod rotation angle ⁇ i is the angle between the two connecting rods a i and a i-1 , and it rotates from the x i-1 axis to the x i axis about z i-1 , and is positive when it meets the right-hand rule.
  • ⁇ i is a variable
  • ⁇ i is a constant.
  • Table 1 is the DH parameter table
  • Table 2 is the value range of the connecting rod rotation angle ⁇ i .
  • p y 150s 0 c 0 c 1 + 150s 1 c 0 c 2 -150s 0 s 1 s 2 -150s 2 c 0 c 1 + 600s 0 c 0 + a 0 s 0

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Spray Control Apparatus (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

一种CNC铣床多自由度微量润滑智能喷头系统,包括:环型旋转台、纵向伸缩部、旋转部、智能喷头安装台和信息采集系统;环型旋转台包括沿水平圆周方向旋转的旋转件,旋转件底部连至少一个纵向伸缩部,纵向伸缩部下端连接旋转部,旋转部以与纵向伸缩部的连接点为轴心,在设定的角度范围内转动;智能喷头安装台与旋转部连接,随旋转部一起运动;信息采集系统安装在智能喷头安装台上。通过加工数据对喷头的角度进行合理的调整,对气液比进行合理配置,以保障喷头以合理的角度对加工工件进行喷射,代替了传统切削液喷头固定不动,喷射角度有限的缺陷,解决了被切削面存在死角的问题以及切削液浪费的问题。

Description

CNC铣床多自由度微量润滑智能喷头系统 技术领域
本发明专利属于金属加工领域,具体涉及一种辅助CNC铣床多自由度微量润滑智能喷头系统。
背景技术
传统机加工采用大量乳化液、切削油、冷却剂等对加工区进行冷却润滑,这种冷却润滑方式利用率低、增加了巨额加工生产成本,而且报废的冷却液如果处理不当将对环境造成极大的伤害。干式加工技术是最早出现的一种绿色环保加工技术,它起源于汽车工业。已成功应用于车削、铣削、钻削和镗削等机械加工中。它不是简单的完全摒弃切削液,而是在保证零件加工精度和刀具使用寿命的前提下,废除切削液的使用。然而干式加工并没有解决切削区冷却问题,造成了工件表面烧伤、表面完整性恶化等问题。
微量润滑技术代替浇注乳化液、干式加工技术已经成为必然趋势,适应了绿色制造和可持续发展的理念。它是指将微量的润滑液、水和具有一定压力的气体混合雾化后,喷射到切削区起到冷却润滑作用的一种技术。水和高压气体起到冷却作用,油起到润滑切削区、延长刀具寿命的作用。目前对微量润滑技术的研究已经取得了一定进展,对微量润滑设备的设计研发成为微量润滑技术实现的重要内容。虽然很多设计者设计了微量润滑系统,然而在实际应用中依然存在繁多问题。
现有技术对微量润滑设备进行了深入研究,设计了纳米粒子射流微量润滑磨削三相流供给系统,其特点是:将纳米流体经液路输送至喷嘴处,同时高压气体经气路进入喷嘴,高压气体与纳米流体在喷嘴混合室中充分混合雾化,经加速室加速后进入涡流室,同时压缩气体经涡流室通气孔进入,使三相流进一步旋转混合并加速,然后三相流以雾化液滴的形式经喷嘴出口喷射至磨削区。
现有技术设计的微量润滑系统精密润滑泵,其特点是:润滑剂从所述进油孔进入所述液体腔内;由压缩空气驱动,当压缩空气进入所述气体腔时,所述活塞杆尾部的压力增大,当压力大于所述活塞杆前端的所述活塞弹簧的弹力时,所述活塞杆向前移动,所述液体腔缩小,压力增大,当压力大于所述单向阀弹簧的弹力时,所述单向阀堵头打开,润滑剂泵出;所述液体腔体压力释放,当压力小于所述单向阀弹簧时,所述单向阀弹簧复位,出油口密闭;当所述气体腔压力释放,所述活塞杆尾部压力小于所述活塞弹簧的弹力,所述活塞杆复位。其 优点在于提供能精准供油的微型精密气动泵,设计精密、适用于多种润滑剂使用于金属加工的润滑装置中。
现有技术设计的连续供液式微量润滑装置,其特点是:装置包括蠕动泵、气源处理器、气液接头、气源气管、输入气管、输液软管、出液软管、气液同轴管、喷嘴以及用于安装上述部件的箱体,所述的气源处理器固定安装在所述的箱体外侧,所述的蠕动泵的进口通过所述的输液软管与用于盛放切削液的容器连接,出口通过出液软管与所述的气液接头的第一进口连接;所述的气源处理器的进口与气源气管连接,出口通过输入气管与所述的气液接头的第二进口连接;所述的气液接头的出口通过所述的气液同轴管与所述的喷嘴连接,压缩空气和切削液在所述的喷嘴内混合,形成切削液气雾并喷出。具有结构紧凑、操作简便、油量控制精确、连续供给切削液、安装便捷等特点。
以上三种微量润滑装置在虽然以微量润滑方式代替了传统的浇注式,但它们连接喷头结构仍然是传统的万象管,在进行铣床加工加工之前人们通过对铣床加工的了解,将喷头近似地对准铣刀但当铣床在铣圆周和深沟槽等刁钻角度的加工时,会导致切削液无法喷射到铣刀的工作点周围,造成切削液的浪费和工件表面烧伤,也没有办法实现切削液对铣床加工进行连续跟踪喷射。
发明内容
针对以上问题,本发明专利的目的是提供一种支持CNC铣床不同加工工况进行切削液连续追踪喷射的智能喷头。该装置横向旋转以步进电机为驱动,纵向角度调整和喷头跟进调整以压缩空气为驱动,用以实现多种加工工况下铣刀工作点的刁钻角度的跟踪,以及不同温度下气液比的智能调节,提高了加工区冷却润滑效果、工件加工表面质量,为微量润滑的智能供给提供了设备支持。
为了达到以上目的,本发明采用如下技术方案:
本发明的第一目的是公开一种CNC铣床多自由度微量润滑智能喷头系统,包括:环型旋转台、纵向伸缩部、旋转部、智能喷头安装台和信息采集系统;
所述环型旋转台包括沿水平圆周方向旋转的旋转件,所述旋转件底部连至少一个纵向伸缩部,所述纵向伸缩部下端连接旋转部,所述旋转部以与所述纵向伸缩部的连接点为轴心,在设定的角度范围内转动;所述智能喷头安装台与旋转部连接,随旋转部一起运动;所述信息采集系统安装在智能喷头安装台上。
进一步地,所述环型旋转台包括:旋转台外壳、旋转体、步进电机和动力传递装置;
所述步进电机设置在旋转台外壳内部,所述步进电机通过动力传递装置与旋转体连接,带动旋转体转动。
进一步地,所述纵向伸缩部包括:伸缩气缸和伸长件;所述伸长件包括固定端和伸出端;通过所述固定端将伸缩气缸与环型旋转台连接,所述伸缩气缸的伸缩杆与伸长端连接;所述伸长件的伸出端和固定端之间设有滑道,由伸缩气缸提供动力,实现伸出端的纵向伸缩。
进一步地,所述纵向伸缩部为两个,分别固定在环型旋转台的底部两端。
进一步地,所述旋转部包括旋转气缸和机械臂,所述旋转气缸与纵向伸缩部连接,所述机械臂固定在旋转气缸的旋转盘上;所述旋转气缸上设有磁性传感器,通过所述磁性传感器确定旋转盘旋转的角度。
进一步地,通过所述旋转气缸实现智能喷头喷射角度的微调。
进一步地,所述机械臂为L型塑钢架。
进一步地,所述L型塑钢架上下各有一个固定端,上端固定端为法兰盘,用于连接旋转气缸的旋转轴;L型塑钢架的下部是为横杆,所述横杆上设有用于固定旋转气缸的螺孔。
进一步地,所述智能喷头安装台旋转部连接,所述智能喷头安装台上设有连接伸缩气缸的平台。
进一步地,所述信息采集系统包括:红外线传感器、单片机和信息采集卡,所述红外传感器采集铣床加工工具的实时信号,信息采集卡将红外传感器采集到的信息发送至单片机,使设备的运动路径的到优化,实现更好跟踪喷射。
发明的有益效果
该装置采用步进电机和气压为联合驱动,步进电机为旋转盘提供旋转力,气压则是为伸缩气缸和旋转气缸提供动力。该装置有红外传感器,能够实时地采集加工数据,通过加工数据对喷头的角度进行合理的调整,对气液比进行合理配置,以保障喷头以合理的角度对加工工件进行喷射,代替了传统切削液喷头固定不动,喷射角度有限的缺陷,解决了被切削面存在死角的问题以及切削液浪费的问题。
附图说明
图1是CNC铣床多自由度微量润滑智能喷头系统轴侧图;
图2(a)-(c)分别是CNC铣床多自由度微量润滑智能喷头系统三视图;
图3是环型旋转台爆炸图;
图4是旋转台外壳轴侧图;
图5是旋转体上端盖及其左剖视图;
图6是旋转体下端及其左剖视图;
图7是环型旋转台剖视图;
图8是步带布置图;
图9是纵向伸缩系统的伸长部分爆炸图;
图10是伸缩气缸的结构原理图;
图11是纵向伸缩系统的伸长部分俯视图;
图12是纵向伸缩系统的伸长部分剖视图I;
图13是纵向伸缩系统的伸长部分剖视图II;
图14是旋转臂固定端爆炸图;
图15是旋转气缸正面结构图;
图16是旋转气缸侧面结构图;
图17(a)-(c)是旋转气缸三视图;
图18(a)-(c)是旋转臂三视图;
图19是旋转臂固定端组合体剖视图;
图20是旋转臂固定端轴侧图;
图21(a)-(c)是智能喷头安装台三视图;
图22是智能喷头安装台爆炸图;
图23是智能喷头安装台旋转部分组合体剖视图;
图24是智能喷头固定端爆炸图;
图25(a)-(c)是智能喷头固定端三视图;
图26是红外传感器信息采集模型;
图27是智能喷头的D—H参数。
其中,附图标记如下:
环型旋转台I、纵向伸缩臂II、旋转臂III、智能喷头安装台IV、信息采集系统V,旋转体上端盖I 1-1,旋转体下端I 1-2,同步轮I 1-3,同步轮固定螺栓I 1-4,推力球轴承I 1-5,螺母I 1-6,垫片I 1-7,旋转体连接螺栓I 1-8,旋转体连接通孔I 1-9,同步轮安装螺孔I 1-10,沉孔I 1-11,同步带I 1-12,张紧轮I 1-13,伸缩气缸安装座I 1-14, 通孔I 1-15;旋转台外壳I 2-1,螺栓I 2-2,螺孔I 2-3,通孔I 2-4,步进电机I 3-1,平键I 3-2,同步轮I 3-3;
伸缩气缸II 1,伸缩气缸缸体II 1-1,伸缩气缸活塞II 1-2,六角法兰螺母II 1-3,压缩空气接头II 1-4,螺柱II 1-5,垫片II 1-6,螺母II 1-7,90度角码II 1-8,螺栓II 1-9,伸缩气缸前端盖II 1-10,伸缩气缸后端盖II 1-11,密封环II 1-12,磁环II 1-13,密封环II 1-14,伸缩气缸A气孔II 1-15,伸缩气缸B气孔II 1-16,通孔II 1-17,密封环II 1-18,密封环II 1-19;磁性传感器II 2-1,平头螺钉II 2-2;通孔II 2-3,伸缩滑块基座II 3-1,伸缩滑块II 3-2,垫片II 3-3,螺母II 3-4,螺栓II 3-5,滑道II 3-6,螺孔II 3-7,通孔II 3-8;
旋转气缸III 1,密封环III 1-1,缓冲器III 1-2,密封环III 1-3,磁环III 1-4,小型齿条III 1-5,齿轮III 1-6,沉孔III 1-7,旋转气缸A气孔III 1-8,旋转轴III 1-9,深沟球轴承III 1-10,密封环III 1-11,旋转气缸下端盖III 1-12,密封环III 1-13,深沟球轴承III 1-14,旋转气缸上端盖III 1-15,内六角螺栓III 1-16,内六角螺栓III 1-17,旋转盘III 1-18,内六角螺栓III 1-19,平键III 1-20,内六角螺栓III 1-21,旋转气缸后端盖III 1-22,旋转气缸前端盖III 1-23,,旋转气缸B气孔III 1-24,磁性传感器III 2,螺钉III 2-1,沉孔III 2-2,螺孔III 2-3,内六角螺栓III 2-4,L型塑钢架III2-5,沉孔III 2-6,内六角螺栓III 2-7,磁性传感器IV 1,平头螺钉IV 1-1,沉孔IV 1-2,磁性传感器卡座IV 1-3;
旋转气缸IV 2,外置卡槽IV 2-1,内六角螺栓IV 2-2,螺孔IV 2-3,内六角螺栓IV 2-4,通孔IV 2-5,喷头固定台外壳IV 3,螺栓IV 3-1,通孔IV 3-2,螺孔IV 3-3,端盖IV 3-4,伸缩气缸安装台IV 3-5,通孔IV 3-6;
二通喷头V 1,螺孔V 1-1,第一接头V 1-2,第二接头V 1-3,固定环V 1-4,螺栓V1-5,垫片V 1-6,螺母V 1-7,螺孔V 1-8,螺孔V 1-9,通孔V 1-10,红外传感器V 2,传感器固定螺栓V 2-1。
具体实施方式
图1是CNC铣床多自由度微量润滑智能喷头系统轴侧图,图2是CNC铣床多自由度微量润滑智能喷头系统三视图,图2(a)是主视图,图2(b)左视图,图2(c)是俯视图。
如图1和图2(a)-(c)所示,本发明包括环型旋转台I、纵向伸缩臂II、旋转臂III、喷头安装台IV、信息采集系统V五部分。
环型旋转台包括沿水平圆周方向旋转的旋转件,旋转件底部连至少一个纵向伸缩臂,纵向伸缩臂下端连接旋转臂,旋转臂以与纵向伸缩臂的连接点为轴心,在设定的角度范围内转动;智能喷头安装台与旋转臂连接,随旋转臂一起运动;信息采集系统安装在智能喷头安装台上。
图3是环型旋转台的爆炸视图,如图所示,环型旋转台包括,旋转体上端盖I 1-1,旋转体下端I 1-2,同步轮I 1-3,同步轮固定螺栓I 1-4,推力球轴承I 1-5,螺母I 1-6,垫片I 1-7,旋转体连接螺栓I 1-8,伸缩气缸安装座I 1-14,旋转台外壳I 2-1,螺栓I 2-2,步进电机I 3-1,平键I 3-2,张紧同步轮I 3-3。
旋转台外壳I 2-1通过螺栓将旋转台外壳固定在CNC铣床的进给箱底面上,旋转台外壳I 2-1内部有旋转体,旋转体由上端盖I 1-1和旋转体下端I 1-2构成,旋转台外壳I 2-1和旋转体之间有推力球轴承I 1-5,通过推力球轴承I 1-5来实现旋转体的旋转,同步轮I 1-3通过螺栓固定在旋转件上,在环型旋转台内部安装有张紧轮,通过张紧轮将同步带布置在环型旋转台的空隙内部,并通过步进电机来给环型旋转台内部的旋转台提供动力,使其旋转。旋转体下部有两个缩气缸安装座I 1-14,分别用来固定纵向伸缩臂,以实现智能喷头对CNC铣床铣圆周的时候进行对铣刀工作点的对点跟踪。
旋转体上端盖I 1-1和旋转体下端I 1-2通过旋转体连接螺栓I 1-8,螺母I 1-6,垫片I 1-7,连接成为旋转体。旋转体上有安装同步轮的螺孔,同步轮通过同步带固定螺栓I 1-4固定在旋转体上。旋转台外壳I 2-1有螺孔,步进电机I 3-1通过螺栓I 2-2固定在旋转台外壳I 2-1上。旋转台外壳I 2-1上有方形通孔,同步带I 1-12通过通孔穿过旋转台外壳,安装在同步轮I 1-13上。旋转体和旋转台外壳I 2-1之间有轴肩,推力球轴承I 1-5通过轴肩固定在旋转体和旋转外壳I 2-1之间,实现旋转体的旋转。旋转体旋转的动力由步进电机I 3-1提供,由同步带I 1-12将动力从张紧同步轮I 3-3传递给同步轮I 1-13。
图4是旋转体外壳的轴侧图,旋转体外壳是多孔部件,包括螺孔I 2-3,通孔I 2-4。其中螺孔I 2-3用于步进电机I 3-1的固定,通孔I 2-4用于旋转台外壳I 2-1的固定,将旋转体外壳I 2-1固定在CNC铣床的铣刀夹具固定平面上。
图5是旋转体上端盖及其左剖视图,如图所示旋转体上端盖是多孔部件,其上设置用于连接旋转体下端的旋转体连接通孔I 1-9,形成旋转体。
图6是旋转体下端及其左剖视图,旋转体下端是多孔部件,包括同步轮安装螺孔I 1-10、沉孔I 1-11。其中同步轮安装螺孔I 1-10用于同步带I 1-12的固定,沉孔I 1-11用于旋转体上端盖I 1-1和旋转体下端I 1-2的连接,构成旋转体,实现喷头在XY平面的旋转跟踪。
图7是环型旋转台组合体的剖视图,如图所示环型旋转台是由旋转体外壳I 2-1和旋转体两部分组成,两部分之间有推力球轴承I 1-5,旋转体外壳通过螺栓固定在机床上,以此实现旋转体外壳的固定不动和旋转体的旋转运动。其转动的动力由步进电机I 3-1提供,由同步带I 1-12来传递。
图8是步带布置图,如图所示同步带安装在两个同步轮上,并通过两个张紧轮来张紧同步带,以保证同步带传递的准确性。旋转体下端还设有伸缩气缸安装座I 1-14,用于固定伸缩气缸。
纵向伸缩系统由伸缩气缸II 1,磁性传感器II 2-1,伸长臂,压缩空气接头II 1-4,螺栓等组成。
伸长臂由伸长端II 3-2和固定端II 3-6两部分组成,固定端上有通孔II 3-5和螺孔II 3-7,通孔II 3-5用于连接旋转体下端的固定端,螺孔II 3-7用于固定伸缩气缸。伸长端的前端有安装板,安装板上有螺孔II 3-9,用来固定旋转气缸III 1。伸长臂的伸长端II3-2和固定端II 3-6之间有滑道II 3-6,由伸缩气缸II 1提供动力,实现智能喷头的纵向升降。
图9是纵向伸缩系统的伸长部分爆炸图,如图所示纵向伸缩系统的伸长部分包括伸缩气缸缸体II 1,缩气缸缸体II 1-1,伸缩气缸活塞II 1-2,六角法兰螺母II 1-3,压缩空气接头II 1-4,螺柱II 1-5,垫片II 1-6,螺母II 1-7,90度角码II 1-8,螺栓II 1-9,通孔II 1-17伸缩气缸安装座I 1-14,通孔I 1-15,磁性传感器II 2-1,平头螺钉II 2-2,通孔II 2-3,伸缩滑块基座II 3-1,伸缩滑块II 3-2,垫片II 3-3,螺母II 3-4,螺栓II3-5,滑道II 3-6,螺孔II 3-7,通孔II 3-8。伸缩滑块基座通过螺栓II 3-5固定在伸缩气缸安装座I 1-14,伸缩气缸则是通过90度角码II 1-8和螺栓II 1-9固定在伸缩滑块基座II 3-1上。伸缩滑块II 3-2上有卡口,伸缩气缸的活塞前端有圆柱结构,可以卡在卡口上,并用六角法兰螺母II 1-3将活塞的前端固定在卡口处,通过活塞的往返运动来实现滑块的伸缩运动。磁性传感器II 2-1通过平头螺钉II 2-2固定在伸缩气缸的一侧,用于采集伸缩气缸内活塞的位置,进行闭环控制。伸缩气缸前后两端各可以安装一个气管接头,为伸缩滑块运动提供动力。
图10是伸缩气缸的结构原理图图,如图所示其中包括伸缩气缸活塞II 1-2,伸缩气缸前端盖II 1-10,伸缩气缸后端盖II 1-11,密封环II 1-12,磁环II 1-13,密封环II 1-14,伸缩气缸A气孔II 1-15,伸缩气缸B气孔II 1-16,密封环II 1-18,密封环II 1-19。压缩空气从B口进入使气缸活塞向A气孔方向运动,实现移动滑块的伸长,压缩空气从A口进入使气缸活塞向B气孔方向运动,实现移动滑块的缩短。伸缩气缸的前端盖II 1-10和伸缩气缸后端盖II 1-11从两侧堵住缸体,两个端盖上都有四个通孔,通过四根螺柱紧紧的接合在一起。整个机构通过四个密封环实现伸缩气缸内部环境的密封,活塞上套有磁环,为磁性传感器提供自身的位置信号。
图11是纵向伸缩系统的伸长部分俯视图,图12纵向伸缩系统的伸长部分剖视图I,图13纵向伸缩系统的伸长部分剖视图II。如图所示是纵向伸缩系统的装配情况,伸缩滑块基座通过螺栓II 1-9固定在伸缩气缸安装座I 1-14,伸缩气缸则是通过90度角码II 1-8和螺栓II 3-5固定在伸缩滑块基座A II 3-1上。伸缩滑块II 3-2上有卡口,伸缩气缸的活塞前端有圆柱结构,可以卡在卡口上,并用六角法兰螺母II 1-3将活塞的前端固定在卡口处,通过活塞的往返运动来实现滑块的伸缩运动。
旋转臂是由旋转气缸,机械臂两部分组成,其中机械臂是一个镂空的L型塑钢架,旋转气缸的底面固定在纵向伸缩系统的伸出臂下部固定端上,旋转气缸的旋转转盘上有法兰结构,而机械臂则是通过螺栓固定在旋转气缸的旋转盘上。
L型塑钢架,上下各有一个固定端,上端的是一个法兰盘,用螺栓将旋转气缸的旋转轴连接。L型塑钢架的下部是一个“一字端”,“一字段”上有螺孔用于固定旋转气缸,通过螺栓连接。
图14是旋转臂固定端爆炸图,如图所示包括旋转气缸III 1,磁性传感器III 2,螺钉III 2-1,沉孔III 2-2,螺孔III 2-3,内六角螺栓III 2-4,L型塑钢架III 2-5,沉孔III2-6,内六角螺栓III 2-7,伸缩滑块II 3-1,螺孔II 3-9。旋转气缸III 1作为旋转臂系统的主要执行件,用于为智能喷头安装台提供旋转力;通过内六角螺栓III 2-4固定在伸缩滑块II 3-1上。L型塑钢架III 2-5通过内六角螺栓III 2-7固定在旋转气缸III 1的旋转卡盘上,通过旋转卡盘的旋转来带动L型塑钢架III 2-5的旋转。
图15是旋转气缸的正面结构图,如图所示包括密封环III 1-1,缓冲器III 1-2,密封环III 1-3,磁环III 1-4,小型齿条III 1-5,齿轮III 1-6,沉孔III 1-7,旋转气缸A气孔III 1-8,旋转气缸后端盖III 1-22,旋转气缸前端盖III 1-23,旋转气缸B气孔III 1-24。 旋转气缸有两个气孔,从A气孔接入压缩空气,使齿条A向前移动,同时通过齿轮带动旋转轴逆时针旋转,使齿条B向后移动;当从B气孔接入压缩空气,使齿条B向前移动,同时通过齿轮带动旋转轴逆时针旋转,使齿条A向后移动。以此来带动旋转气缸的旋转盘实现顺时针和逆时针的旋转。在齿条A上有磁环,在齿条A运动的同时磁环也会进行运动,磁性传感器通过采集磁环的磁性信号,来确定齿条A的位置,从而确定旋转盘旋转的角度。
图16是旋转气侧面结构图,如图所示包括旋转轴III 1-9,深沟球轴承III 1-10,密封环III 1-11,旋转气缸下端盖III 1-12,密封环III 1-13,深沟球轴承III 1-14,旋转气缸上端盖III 1-15,内六角螺栓III 1-16,内六角螺栓III 1-17,齿轮III 1-6,旋转盘III 1-18,内六角螺栓III 1-19,平键III 1-20。齿轮III 1-6通过平键III 1-20连接在旋转轴III 1-9上,旋转轴III 1-9从旋转气缸III 1-9上端口装入旋转气缸III 1-9内部,旋转轴上有轴肩、旋转气缸下端盖III 1-12和旋转气缸上端盖III 1-15可以给深沟球轴承III 1-10和深沟球轴承III 1-14定位。旋转气缸下端盖III 1-12通过内六角螺栓III 1-19固定,旋转气缸上端盖III 1-15通过内六角螺栓III 1-17固定.。旋转气缸中心线上有一组沉孔III 1-7,用于将旋转气缸固定在伸缩滑块A上。
图17是旋转气缸是三视图,如图所示旋转气缸前端盖III 1-23和旋转气缸后端盖III1-22各有4个沉孔,用过内六角螺栓III 1-21可以将旋转气缸前端盖III 1-23和旋转气缸后端盖III 1-22固定在旋转气缸的缸体上。
图18是旋转臂系统的三视图,图18(a)是旋转臂系统的主视图,图18(b)是旋转臂系统的左视图,图18(c)是旋转臂系统的俯视图。
图19是旋转臂固定端组合体剖视图,L型塑钢架III 2-5通过内六角螺丝III 2-7与旋转气缸连接,旋转气缸通过内六角螺丝III 2-4固定在伸长臂固定端II 3-6上。
图20是旋转臂固定端轴侧图,图21是喷嘴安装台的三视图,图21(a)是喷嘴安装台的主视图,图21(b)是喷嘴安装台的左视图,图21(c)是喷嘴安装台的俯视图。
图22是喷嘴安装台的爆炸视图,如图所示包括磁性传感器IV 1,平头螺钉IV 1-1,沉孔IV 1-2,磁性传感器卡座IV 1-3,旋转气缸IV 2,外置卡槽IV 2-1,内六角螺栓IV 2-2,螺孔IV 2-3,内六角螺栓IV 2-4,通孔IV 2-5,喷头固定台外壳IV 3,螺栓IV 3-1,通孔IV 3-2,螺孔IV 3-3,端盖IV 3-4,伸缩气缸安装台IV 3-5,通孔IV 3-6,L型塑钢架III2-5。喷嘴固定台外壳两端是两个法兰盘,旋转气缸通过螺栓将旋转盘和法兰盘连接在一起。旋转气缸轴线上均布这两个沉孔,通过螺栓将旋转气缸固定在L型塑钢架III 2-5的“一字 段”上。喷嘴固定台外壳上有两个方形的安装口,通过安装孔可以将旋转盘和法兰盘连接起来
图23是智能喷头安装台旋转部分组合体剖视图,旋转气缸固定台外壳IV 3通过内六角螺栓IV 2-2与旋转气缸连接,旋转气缸通过内六角螺栓IV 2-4固定在L型塑钢架III 2-5上。
图24是喷嘴固定端爆炸图,如图所示包括二通喷头V 1,螺孔V 1-1,第一接头V 1-2,第二接头V 1-3,固定环V 1-4,螺栓V 1-5,垫片V 1-6,螺母V 1-7,螺孔V 1-8,螺孔V1-9,通孔V 1-10,红外传感器V 2,内六角螺栓V 2-1。
图25是喷嘴固定端三视图,图25(a)是喷嘴固定端的主视图,图25(b)是喷嘴固定端的左视图,图25(c)是喷嘴固定端的俯视图。
图26是红外传感器信息采集模型,如图所示将左右红外传感器的光轴安装在同一条直线上,两个红外传感器的摄像头成像平面共面。图中两个传感器的距离为B,称为基线距离。设铣刀与工件的加工点为M(X,Y,Z),在左右摄像头C l、C r成像为点m l(u l,v l)和点m r(u r,v r),假设点M在左摄像头的坐标系下(X c,Y c,Z c),且左右摄像头之间的焦距为f,参数σx、σy、u0、v0。根据相似三角形的原理可得:
Figure PCTCN2018119446-appb-000001
所以点M在左摄像头坐标系下的坐标
Figure PCTCN2018119446-appb-000002
从2式中可以看出点M的深度信息与摄像头的视差d=μ 1r成反比。从这里可以看出当拍摄距离增加时,视差会减少,公共视野会增大。而当拍摄距离减少时,甚至是很小时,此时左右摄头几乎没有公共视野。
图27是智能喷头的D—H参数,从坐标系{Q i-1}到坐标系{Q i}之间的坐标变换,可以经过坐标系{Q i-1}经过下述的变换顺序来实现:
(1)绕z i-1轴旋转θ i角,使x i-1轴和x i-轴同向;
(2)绕z i-1轴平移距离为d i,使x i-1轴和x i轴在同一条直线上;
(3)绕x i轴平移距离阿a i,使坐标系{Q i-1}的坐标原点与坐标系{Q i}的坐标原点重合;
(4)绕x i轴旋转α i角,使z i-1轴与z i轴在同一条直线上。
上述变换每次都是相对于动坐标系进行的,所以经过4次变换的齐次变换矩阵为
T i=Rot(z,θ i)Trans(0,0,d i)Trans(a i,0,0)Rot(x,a i),
即:
Figure PCTCN2018119446-appb-000003
连杆长度a i,连杆扭角α i,连杆距离d i和连杆转角θ i。其中,连杆长度a i为两关节轴线之间的距离,即z i-轴与z i-1轴的公垂线长度,沿着x i轴方向测量。a i总为正值,当两关节轴线平行时,a i=l i,l i为连杆的长度;当两关节轴线垂直时,a i=0。连杆扭角α i为两关节轴线之间的夹角,即z i轴与z i-1轴之间的夹角,绕着x i轴从z i-1轴旋转到z i轴,符合右手规则时为正。当两关节轴线平行时,α i=0;当两关节轴线垂直时,α i=90°。连杆距离d i为两连杆a i与a i-1之间的距离,即x i轴与x i-1轴之间的距离,在z i-1轴上测量。对于转动关节,d i为常数;对于移动关节,d i为变量。连杆转角θ i为两连杆a i与a i-1之间的夹角,绕z i-1从x i-1轴旋转到x i轴,符合右手规则时为正。对于旋转关节,θ i为变量,对于移动关节,θ i为常数。
表1为D-H参数表格,表2为连杆转角θ i的取值范围。
表1D-H参数表格
连杆 θ i/(°) d i/mm a i/mm α i/(°)
i=0 θ 0 d 0 a 0 0
i=1 θ 1 d 1 300 0
i=2 θ 2 0 150 0
表2连杆转角θ i的取值范围
θ i θ 0 θ 1 θ 2
转角范围 [-360,360] [120,240] [120,210]
由上式和表1可得各相邻连杆的变换矩阵为:
Figure PCTCN2018119446-appb-000004
将以上各个连杆变换矩阵相乘,得到智能喷嘴的变换矩阵 0T 3
Figure PCTCN2018119446-appb-000005
式中:
n x=c 0c 1c 2-s 0s 1c 2-s 1s 2c 0-s 0s 2c 1        n y=s 0c 0c 1+s 1c 0c 2-s 0s 1s 2-s 2c 0c 1
n z=0
o x=s 2c 0c 1+s 0s 1s 2-s 1c 0c 2-s 0s 2c 1        o y=-s 0s 2c 1+s 2c 0c 1-s 0s 1s 2-c 0c 1s 2
o z=0
a x=0                                a y=0
a z=0
Figure PCTCN2018119446-appb-000006
p y=150s 0c 0c 1+150s 1c 0c 2-150s 0s 1s 2-150s 2c 0c 1+600s 0c 0+a 0s 0
p z=d 0+d 1
其中,式中s i=sinθ i,c i=cosθ i,如式中s 1=sinθ 1,c 1=cosθ 1
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,包括:环型旋转台、纵向伸缩部、旋转部、智能喷头安装台和信息采集系统;
    所述环型旋转台包括沿水平圆周方向旋转的旋转件,所述旋转件底部连至少一个纵向伸缩部,所述纵向伸缩部下端连接旋转部,所述旋转部以与所述纵向伸缩部的连接点为轴心,在设定的角度范围内转动;所述智能喷头安装台与旋转部连接,随旋转部一起运动;所述信息采集系统安装在智能喷头安装台上。
  2. 如权利要求1所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述环型旋转台包括:旋转台外壳、旋转体、步进电机和动力传递装置;
    所述步进电机设置在旋转台外壳内部,所述步进电机通过动力传递装置与旋转体连接,带动旋转体转动。
  3. 如权利要求1所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述纵向伸缩部包括:伸缩气缸和伸长件;所述伸长件包括固定端和伸出端;通过所述固定端将伸缩气缸与环型旋转台连接,所述伸缩气缸的伸缩杆与伸长端连接;所述伸长件的伸出端和固定端之间设有滑道,由伸缩气缸提供动力,实现伸出端的纵向伸缩。
  4. 如权利要求1所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述纵向伸缩部为两个,分别固定在环型旋转台的底部两端。
  5. 如权利要求1所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述旋转部包括旋转气缸和机械臂,所述旋转气缸与纵向伸缩部连接,所述机械臂固定在旋转气缸的旋转盘上;所述旋转气缸上设有磁性传感器,通过所述磁性传感器确定旋转盘旋转的角度。
  6. 如权利要求5所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,通过所述旋转气缸实现智能喷头喷射角度的微调。
  7. 如权利要求5所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述机械臂为L型塑钢架。
  8. 如权利要求7所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述L型塑钢架上下各有一个固定端,上端固定端为法兰盘,用于连接旋转气缸的旋转轴;L型塑钢架的下部是为横杆,所述横杆上设有用于固定旋转气缸的螺孔。
  9. 如权利要求1所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述智能喷头安装台旋转部连接,所述智能喷头安装台上设有连接伸缩气缸的平台。
  10. 如权利要求1所述的一种CNC铣床多自由度微量润滑智能喷头系统,其特征在于,所述信息采集系统包括:红外线传感器、单片机和信息采集卡,所述红外传感器采集铣床加工工具的实时信号,信息采集卡将红外传感器采集到的信息发送至单片机,使设备的运动路径的到优化,实现更好跟踪喷射。
PCT/CN2018/119446 2018-07-02 2018-12-06 Cnc铣床多自由度微量润滑智能喷头系统 WO2020006979A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217000453A KR102601766B1 (ko) 2018-07-02 2018-12-06 Cnc 밀링 머신 다자유도 미세 윤활 지능형 스프레이 헤드 시스템
US16/692,159 US20200086441A1 (en) 2018-07-02 2019-11-22 Mdof micro-lubrication intelligent spray head system for cnc milling machine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821049094.1U CN208496526U (zh) 2018-07-02 2018-07-02 Cnc铣床多自由度微量润滑智能喷头系统
CN201810707515.3 2018-07-02
CN201821049094.1 2018-07-02
CN201810707515.3A CN108555685B (zh) 2018-07-02 2018-07-02 Cnc铣床多自由度微量润滑智能喷头系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/692,159 Continuation US20200086441A1 (en) 2018-07-02 2019-11-22 Mdof micro-lubrication intelligent spray head system for cnc milling machine

Publications (1)

Publication Number Publication Date
WO2020006979A1 true WO2020006979A1 (zh) 2020-01-09

Family

ID=69060743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119446 WO2020006979A1 (zh) 2018-07-02 2018-12-06 Cnc铣床多自由度微量润滑智能喷头系统

Country Status (2)

Country Link
KR (1) KR102601766B1 (zh)
WO (1) WO2020006979A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700800A (zh) * 2022-03-30 2022-07-05 重庆大学 一种微量润滑喷嘴辅助对准装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006280A1 (zh) * 2009-07-16 2011-01-20 北京航空航天大学 一种微量润滑系统
CN104476318A (zh) * 2014-12-18 2015-04-01 东莞市安默琳节能环保技术有限公司 一种机床加工用的可自动调节油雾量的微量润滑供应系统
CN105817949A (zh) * 2016-05-28 2016-08-03 蚌埠精科机床制造有限公司 一种机床微量润滑系统及方法
CN106392764A (zh) * 2016-12-06 2017-02-15 青岛理工大学 高速铣削微量润滑供液喷嘴结构、分离与回收机构及系统
CN107020542A (zh) * 2017-05-25 2017-08-08 北京航空航天大学 喷嘴定位系统和机床
CN107617927A (zh) * 2017-09-19 2018-01-23 哈尔滨理工大学 一种低温微量润滑切削加工用油‑液雾化喷头装置
CN108555685A (zh) * 2018-07-02 2018-09-21 青岛理工大学 Cnc铣床多自由度微量润滑智能喷头系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011006280A1 (zh) * 2009-07-16 2011-01-20 北京航空航天大学 一种微量润滑系统
CN104476318A (zh) * 2014-12-18 2015-04-01 东莞市安默琳节能环保技术有限公司 一种机床加工用的可自动调节油雾量的微量润滑供应系统
CN105817949A (zh) * 2016-05-28 2016-08-03 蚌埠精科机床制造有限公司 一种机床微量润滑系统及方法
CN106392764A (zh) * 2016-12-06 2017-02-15 青岛理工大学 高速铣削微量润滑供液喷嘴结构、分离与回收机构及系统
CN107020542A (zh) * 2017-05-25 2017-08-08 北京航空航天大学 喷嘴定位系统和机床
CN107617927A (zh) * 2017-09-19 2018-01-23 哈尔滨理工大学 一种低温微量润滑切削加工用油‑液雾化喷头装置
CN108555685A (zh) * 2018-07-02 2018-09-21 青岛理工大学 Cnc铣床多自由度微量润滑智能喷头系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700800A (zh) * 2022-03-30 2022-07-05 重庆大学 一种微量润滑喷嘴辅助对准装置
CN114700800B (zh) * 2022-03-30 2024-04-12 重庆大学 一种微量润滑喷嘴辅助对准装置

Also Published As

Publication number Publication date
KR20210029193A (ko) 2021-03-15
KR102601766B1 (ko) 2023-11-14

Similar Documents

Publication Publication Date Title
CN108555685B (zh) Cnc铣床多自由度微量润滑智能喷头系统
US11819932B2 (en) Intelligent switching system for switching internal cooling and external cooling based on minimal quantity lubrication and method
WO2019019845A1 (zh) 轮胎模具钻孔工作平台、机床及轮胎模具排气孔加工方法
CN107598747A (zh) 管道内壁打磨装置
WO2020006979A1 (zh) Cnc铣床多自由度微量润滑智能喷头系统
CN103586753B (zh) 离轴非球面光学加工装置
WO2019128315A1 (zh) 智能喷漆机器人系统
CN102514043B (zh) 一种钻孔机
CN112025406A (zh) 一种用于销孔驱动球体的故障诊断加工设备
CN109093443A (zh) 基于三轴并联平台的数控卧式车床微量润滑智能喷头系统
CN109093442A (zh) 基于六轴联动平台的数控卧式车床微量润滑智能喷头系统
CN208496526U (zh) Cnc铣床多自由度微量润滑智能喷头系统
US11794297B2 (en) Internal cooling/external cooling-switching milling minimum-quantity-lubrication intelligent nozzle system and method
CN106001654A (zh) 一种车床用可喷冷却液自动回转刀架
CN106378655A (zh) 一种弱刚性工件混联智能夹具装置
CN208601289U (zh) 管道内壁打磨装置
CN110566752A (zh) 一种流量调控市政管道巡检机器人
CN110541998A (zh) 一种节流爬行机器人及检控节流方法
CN211805123U (zh) 基于六轴联动平台的数控卧式车床微量润滑智能喷头系统
CN207688840U (zh) 船用螺旋桨叶片小空间区域激光测量头
CN209110704U (zh) 基于三轴并联平台的数控卧式车床微量润滑智能喷头系统
CN205352366U (zh) 大型回转支承同轴度检测及修形装置
CN104959678B (zh) 一种球支承油线加工装置
CN212683335U (zh) 一种用于销孔驱动球体的故障诊断加工设备
CN206084525U (zh) 多型号万向节内星轮自动定位器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925117

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18925117

Country of ref document: EP

Kind code of ref document: A1