WO2020006781A1 - 一种细胞检测显微镜 - Google Patents

一种细胞检测显微镜 Download PDF

Info

Publication number
WO2020006781A1
WO2020006781A1 PCT/CN2018/096135 CN2018096135W WO2020006781A1 WO 2020006781 A1 WO2020006781 A1 WO 2020006781A1 CN 2018096135 W CN2018096135 W CN 2018096135W WO 2020006781 A1 WO2020006781 A1 WO 2020006781A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
lens
plate
bracket
cell detection
Prior art date
Application number
PCT/CN2018/096135
Other languages
English (en)
French (fr)
Inventor
殷跃锋
Original Assignee
殷跃锋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810723355.1A external-priority patent/CN108519665B/zh
Application filed by 殷跃锋 filed Critical 殷跃锋
Publication of WO2020006781A1 publication Critical patent/WO2020006781A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/248Base structure objective (or ocular) turrets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/362Mechanical details, e.g. mountings for the camera or image sensor, housings

Definitions

  • the invention relates to the technical field of electron microscope, and in particular to a cell detection microscope.
  • the cell detection microscope it is an instrument that can be used to observe and detect the sample of the cell sample to be detected to a certain degree of magnification.
  • people use cell detection microscopes to carry out microscopic research on human cell tissues and blood samples. It is necessary to use cell detection microscopes to take pictures of microstructures to obtain clear photos.
  • current microscopes have three problems when viewed at high magnification: The first is that the focal length of the lens is very small. If the image surface of the lens and the sample surface do not overlap, the imaging will be half clear and half blurred. The second is the Y-axis direction of current cell detection microscopes when they are moved horizontally. The vibration will be transmitted to the X-axis sliding device. Since the X-axis sliding device is in direct contact with the slide, the vibration in the Y-axis direction will cause a large height error between the lens and the slide, affecting the position accuracy of the imaging; Today's cell detection microscopes have little vertical force.
  • a cell testing microscope includes a reference base plate, a Z-axis support frame is provided on the top side of the reference base plate, a first servo motor is provided on the top of the Z-axis support frame, and an axial direction of the Z-axis support frame is provided with the first servo motor
  • a connected screw rod a shooting bracket is slidably sleeved on the screw rod, a laser tube is arranged on the top of the shooting bracket, a lens tube connected with the laser tube is provided on the top of the laser tube, and a camera connected with the lens tube is provided on the top of the lens tube ;
  • the Z-axis support on the side of the laser tube is provided with a driving piezoelectric component.
  • the bottom of the Z-axis support is provided with a lens booster plate that is in contact with the drive piezoelectric component.
  • the lens booster plate is provided with an automatic objective lens wheel.
  • the automatic objective lens wheel is provided with at least one lens communicating with the laser tube, and a side of the lens booster plate is provided with a second servo motor axially connected with the automatic objective lens wheel;
  • An oil tank is provided on the reference bottom plate under the shooting bracket, and a light source corresponding to the lens is provided on the top of the oil tank;
  • the Y-axis translation device of the reference base plate, the top of the Y-axis translation device is provided with an X-axis translation device, and the top of the X-axis translation device is provided with a slide holder and a slide holder vertical adjustment device.
  • the number of the lenses is one.
  • the X-axis translation device includes an X-axis bracket, and a fixing plate connected to the slide holder is slidably arranged on the X-axis bracket, and a side of the X-axis bracket is provided with a flexible connecting rope axially connected to the fixing plate.
  • the third servo motor is also provided with an adjuster for adjusting the tightness of the soft connecting rope on the top of the X-axis bracket.
  • the Y-axis translation device includes a moving plate and a passive driving bracket slidably arranged on the reference bottom plate, and two ends of the passive driving bracket are respectively provided with limit rods abutting the side of the moving plate, and the reference bottom plate is provided with the moving plate.
  • the top of the passive drive bracket is fixed to the X-axis bracket, and the universal wheel in contact with the moving plate is provided on the side of the two limit rods near the moving plate.
  • the vertical force-increasing workpiece for driving the piezoelectric component is a large-thrust piezoelectric stack made of piezoelectric ceramic
  • the control power source for driving the piezoelectric component the large-thrust piezoelectric stack made of piezoelectric ceramic
  • the scale and lens booster plate form a closed-loop system.
  • the sum of the weights of the automatic objective lens wheel and the at least one lens is 5KG.
  • the high-thrust piezoelectric stack made of piezoelectric ceramics reciprocates at a frequency of 600 HZ with an accuracy of less than 0.2 um per second.
  • the translation speed of the X-axis fixed plate is 30 mm per second, and the height error caused by the vibration of the slide holder during the translation of the fixed plate is within 0.2um.
  • the flexible connecting rope is a steel wire rope.
  • the high-thrust piezoelectric stack will be forced along the Z axis (that is, the vertical direction), and the high-thrust piezoelectric stack and a 0.1um precision grating rule form a closed-loop system.
  • the automatic objective wheel and lens with a weight of 5KG are controlled to reciprocate at a frequency of 600HZ with an accuracy of less than 0.2um per second to realize the scanning function, which increases the vertical force, the focal length of the lens is increased and the scanning focal length is increased, which improves the imaging clarity.
  • the device can improve the accuracy of movement in the X-axis direction, and the universal wheel can eliminate the force in the Z-axis direction, preventing the vibration that occurs in the traditional transmission mode from being transmitted to the Y-axis translation device and the X-axis translation device during the movement process, ensuring that During the scanning of the X axis at 30mm / sec, the height error between the lens and the glass due to vibration is within 0.2um, which further improves the imaging position accuracy.
  • FIG. 1 is a schematic perspective view of a cell detection microscope disclosed in the present invention.
  • FIG. 2 is an enlarged view of A in FIG. 1.
  • Base plate 2.
  • Z-axis support frame 21 First servo motor 22.
  • Light source 5. Y-axis translation device 51. Moving plate 52. Limit rod 6.
  • Soft connecting rope 65 Adjuster 7. Slide holder 71. Slide holder vertical adjustment device.
  • a cell detection microscope includes a reference base plate 1, and a Z-axis support frame 2 is provided on the top side of the reference base plate 1, and a first servo motor 21, Z is provided on the top of the Z-axis support frame 2.
  • a screw rod axially connected to the first servo motor 21 is rotatably provided in the shaft support frame 2.
  • a shooting bracket 22 is slidably sleeved on the screw rod.
  • a laser tube 23 is provided on the top of the shooting bracket 22, and a laser tube 23 is provided on the top of the laser tube 23.
  • a lens barrel 24 is connected to the laser barrel 23, and a camera 25 is provided on the top of the lens barrel 24 to communicate therewith.
  • the Z-axis support frame 2 on the side of the laser tube 23 is provided with a driving piezoelectric component 3, and the bottom of the Z-axis support frame 2 is provided with a lens booster plate 31 which is in contact with the drive piezoelectric component 3.
  • An automatic objective lens wheel 32 is rotatably provided.
  • the automatic objective lens wheel 32 is provided with a lens 33 communicating with the laser tube 23.
  • a side of the lens booster plate 31 is provided with a second servo motor 34 axially connected to the automatic objective lens wheel 32.
  • An oil reservoir 4 is provided on the reference bottom plate 1 below the photographing bracket 22, and a light source 41 corresponding to the lens 33 is provided on the top of the oil reservoir 4.
  • the Y-axis translation device 5 of the reference base plate 1 is provided with an X-axis translation device 6 on the top, and the top of the X-axis translation device 6 is provided with a slide holder 7 and a slide holder vertical adjustment device 71.
  • the X-axis translation device 6 includes an X-axis bracket 63, and a fixing plate 62 connected to the slide holder 7 is slidably disposed on the X-axis bracket 63.
  • a side of the X-axis bracket 63 is provided with a fixing plate 64 through a flexible connecting rope 64
  • a third servo motor connected axially to 62, and an adjuster 65 for adjusting the tightness of the soft connecting rope 64 is also provided on the top of the X-axis bracket 63.
  • the Y-axis translation device 5 includes a moving plate 51 and a passive driving bracket slidably disposed on the reference base plate 1, and two ends of the passive driving bracket are respectively provided with limit rods 52 abutting on the side of the moving plate 51.
  • the limiting block corresponding to the moving plate 51 is fixed at the top of the passive driving bracket with the X-axis bracket 63, and the side of the two limiting rods 52 near the moving plate 51 are provided with universal wheels that contact the moving plate 51.
  • a moving plate 51, a passive driving bracket, a limit rod 52 and a universal wheel constitute a oscillating passive translational movement device.
  • the passive components along the Y and Z axes generated by the X-axis translation device 6 during the movement drive the passive The bracket is driven to move, and the force in the Z-axis direction is eliminated by the universal wheel.
  • the passively driven bracket pushes the moving plate 51 to move in the Y-axis direction, thereby reducing the vibration between the lens 33 and the glass.
  • the vertical force-boosting workpiece that drives the piezoelectric component 3 is a large-thrust piezoelectric stack made of piezoelectric ceramics.
  • a closed-loop system is formed with the lens booster plate 31.
  • the sum of the weights of the automatic objective lens wheel 32, the second servo motor 34, and the at least one lens 33 is 5KG.
  • the high-thrust piezoelectric stack made of piezoelectric ceramics reciprocates at a frequency of 600HZ within 0.2um per second.
  • the translation speed of the X-axis fixed plate 62 is 30 mm per second, and the height error caused by the vibration of the slide holder 7 during the translation of the fixed plate 62 is within 0.2um.
  • the flexible connecting rope 64 is a steel wire rope.
  • the high-thrust piezoelectric stack when the driving piezoelectric component 3 is energized, the high-thrust piezoelectric stack will be forced along the Z axis (that is, the vertical direction), and the high-thrust piezoelectric stack and a 0.1um precision grating rule form a closed-loop system to control the weight.
  • the 5kg automatic objective wheel 32 and the lens 33 are reciprocated at a frequency of 600HZ with an accuracy of less than 0.2um per second to realize the scanning function, which increases the vertical force, and the vertical vibration of the lens increases the focal length of the scan, which improves the imaging clarity; adjustment
  • the device 65 can improve the accuracy of the movement in the X-axis direction, and the universal wheel can eliminate the force in the Z-axis direction, which prevents the vibration that occurs in the traditional transmission mode from being transmitted to the Y-axis translation device and the X-axis translation device during the movement process, ensuring that In the process of the machine scanning at the X-axis at 30mm / sec, the height error caused by the vibration between the lens and the glass is within 0.2um, thereby improving the imaging position accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种细胞检测显微镜,包括基准底板(1),基准底板(1)顶部一侧设有Z轴支持架(2),Z轴支持架(2)的顶部设有第一伺服电机(21),Z轴支持架(2)内旋转设有与第一伺服电机(21)轴向相连的丝杆,丝杆上滑动套接有拍摄支架(22),拍摄支架(22)的顶部设有拍照机构;拍照机构侧部的Z轴支持架(2)上设有驱动压电部件(3),Z轴支持架(2)的底部设有镜头装置;拍摄支架(22)下方的基准底板(1)上设有盛油槽(4),盛油槽(4)的顶部设有与镜头装置相应的光源(41);基准底板(1)上设置Y轴平移装置(5),Y轴平移装置(5)的顶部设有X轴平移装置(6),X轴平移装置(6)的顶部设有载玻片架(7)和载玻片架垂直调节装置(71),提高了竖直方向加力,镜头上下震荡扫描焦距增加,提高了成像清晰度,提高了成像的位置精度。

Description

一种细胞检测显微镜 技术领域
本发明涉及电子显微镜技术领域,具体涉及了一种细胞检测显微镜。
背景技术
对于细胞检测显微镜来说,它是一种可以对所需要检测的细胞样品标本进行一定程度的放大后进行显微观察检测的仪器。目前,人们使用细胞检测显微镜对人体细胞组织以及血液样本进行微观的研究,需要利用细胞检测显微镜对微观结构进行拍照,获得清晰的照片,但目前的显微镜在高倍镜观察时,存在三个问题:一是镜头上下震荡扫描焦距很小,如果镜头的像面与样本面不重叠时,成像就会出现一半清晰,一半模糊的情况;二是现今的细胞检测显微镜在做水平移动时Y轴方向的震动会传递到X轴滑移装置上,由于X轴滑移装置与载玻片直接接触,Y轴方向的震动会导致镜头与玻片之间高度误差较大,影响成像的位置精度;三是现今的细胞检测显微镜在竖直方向加力小。
发明内容
为解决上述技术问题,我们提出了一种细胞检测显微镜,其目的:提高竖直方向加力,提高成像清晰度,提高成像的位置精度。
为达到上述目的,本发明的技术方案如下:
一种细胞检测显微镜,包括基准底板,基准底板顶部一侧设有Z轴支持架,Z轴支持架的顶部设有第一伺服电机,Z轴支持架内旋转设有与第一伺服电机轴向相连的丝杆,丝杆上滑动套接有拍摄支架,拍摄支架的顶部设有激光筒,激光筒的顶部设有与激光筒相连通的镜筒,镜筒的顶部设有与其相连通的相机;
激光筒侧部的Z轴支持架上设有驱动压电部件,Z轴支持架的底部设有与驱动压电部件相接触的镜头加力板,镜头加力板上旋转设有自动物镜轮,自动物镜轮上设有与激光筒相通的至少一个镜头,镜头加力板的侧部设有与自动物镜轮轴向连接的第二伺服电机;
拍摄支架下方的基准底板上设有盛油槽,盛油槽的顶部设有与镜头相应的光源;
基准底板的Y轴平移装置,Y轴平移装置的顶部设有X轴平移装置,X轴平移装置的顶部设有载玻片架和载玻片架垂直调节装置。
优选的,所述镜头的数量为一个。
优选的,X轴平移装置包括X轴支架,X轴支架上滑动设有与载玻片架相连接的固定板,所述X轴支架侧部设有通过柔软连接绳与固定板轴向相连的第三伺服电机,X轴支架顶部还设有调节柔软连接绳松紧度的调节器。
优选的,Y轴平移装置包括滑动设置在基准底板上的移动板和被动驱动支架,被动驱动支架的两端分 别设有紧靠移动板侧部的限位杆,基准底板上设有与移动板相应的限位块,被动驱动支架的顶部与X轴支架相固定,所述两根限位杆靠近移动板的侧面上均设有与移动板相接触的万向轮。
优选的,驱动压电部件的竖直方向加力工件是材质为压电陶瓷的大推力压电堆,驱动压电部件的控制电源、材质为压电陶瓷的大推力压电堆、0.1um精度光栅尺和镜头加力板形成了一个闭环系统。
优选的,自动物镜轮和至少一个镜头的重量之和为5KG。
优选的,材质为压电陶瓷的大推力压电堆以每秒0.2um以内精度以600HZ频率做往复运动。
优选的,X轴固定板的平移速度为30mm每秒,载玻片架在固定板平移过程中因震动而引起的高度误差在0.2um以内。
优选的,柔软连接绳为钢丝绳。
通过上述技术方案,对驱动压电部件通电,大推力压电堆会在沿Z轴(即竖直方向)进行加力,且大推力压电堆与0.1um精度光栅尺形成了一个闭环系统,控制重量为5KG的自动物镜轮与镜头以每秒0.2um以内精度以600HZ频率做往复运动,实现扫描功能,提高了竖直方向加力,镜头上下震荡扫描焦距增加,提高了成像清晰度;调节器能提高X轴方向移动的精度,万向轮能消除Z轴方向力,防止了在移动过程中,传统的传动方式下出现的震动传递到Y轴平移装置和X轴平移装置上,保证了机器在X轴以30mm/秒扫描过程中,镜头与玻片之间的因为震动而引起的高度误差在0.2um以内,进而提高了成像的位置精度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所公开的一种细胞检测显微镜的立体示意图;
图2为图1的A处放大图。
图中数字和字母所表示的相应部件名称:
1.基准底板 2.Z轴支持架 21.第一伺服电机 22.拍摄支架 23.激光筒 24.镜筒 25.相机 3.驱动压电部件 31.镜头加力板 32.自动物镜轮 33.镜头 34.第二伺服电机 4.盛油槽 41.光源 5.Y轴平移装置 51.移动板 52.限位杆 6.X轴平移装置 62.固定板 63.X轴支架 64.柔软连接绳 65.调节器 7.载玻片架 71.载玻片架垂直调节装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合示意图对本发明的具体实施方式作进一步详细的说明。
如图1和图2所示,一种细胞检测显微镜,包括基准底板1,基准底板1顶部一侧设有Z轴支持架2,Z轴支持架2的顶部设有第一伺服电机21,Z轴支持架2内旋转设有与第一伺服电机21轴向相连的丝杆,丝杆上滑动套接有拍摄支架22,拍摄支架22的顶部设有激光筒23,激光筒23的顶部设有与激光筒23相连通的镜筒24,镜筒24的顶部设有与其相连通的相机25。
激光筒23侧部的Z轴支持架2上设有驱动压电部件3,Z轴支持架2的底部设有与驱动压电部件3相接触的镜头加力板31,镜头加力板31上旋转设有自动物镜轮32,自动物镜轮32上设有与激光筒23相通的一个镜头33,镜头加力板31的侧部设有与自动物镜轮32轴向连接的第二伺服电机34。
拍摄支架22下方的基准底板1上设有盛油槽4,盛油槽4的顶部设有与镜头33相应的光源41。
基准底板1的Y轴平移装置5,Y轴平移装置5的顶部设有X轴平移装置6,X轴平移装置6的顶部设有载玻片架7和载玻片架垂直调节装置71。
X轴平移装置6包括X轴支架63,X轴支架63上滑动设有与载玻片架7相连接的固定板62,所述X轴支架63侧部设有通过柔软连接绳64与固定板62轴向相连的第三伺服电机,X轴支架63顶部还设有调节柔软连接绳64松紧度的调节器65。
Y轴平移装置5包括滑动设置在基准底板1上的移动板51和被动驱动支架,被动驱动支架的两端分别设有紧靠移动板51侧部的限位杆52,基准底板1上设有与移动板51相应的限位块,被动驱动支架的顶部与X轴支架63相固定,两根限位杆52靠近移动板51的侧面上均设有与移动板51相接触的万向轮,由移动板51、被动驱动支架、限位杆52和万向轮组成了一个摆动性的被动平移移动装置,由X轴平移装置6在移动时产生的沿Y轴和Z轴的分力推动被动驱动支架移动,再通过万向轮消除Z轴方向力,被动驱动支架推动移动板51沿Y轴方向移动,减小了镜头33与玻片之间的震动。
驱动压电部件3的竖直方向加力工件是材质为压电陶瓷的大推力压电堆驱动压电部件3的控制电源、材质为压电陶瓷的大推力压电堆、0.1um精度光栅尺和镜头加力板31形成了一个闭环系统。
自动物镜轮32、第二伺服电机34和至少一个镜头33的重量之和为5KG。
材质为压电陶瓷的大推力压电堆以每秒0.2um以内精度以600HZ频率做往复运动。
X轴固定板62的平移速度为30mm每秒,载玻片架7在固定板62平移过程中因震动而引起的高度误差在0.2um以内。
柔软连接绳64为钢丝绳。
其中,对驱动压电部件3通电,大推力压电堆会在沿Z轴(即竖直方向)进行加力,且大推力压电堆与0.1um精度光栅尺形成了一个闭环系统,控制重量为5KG的自动物镜轮32与镜头33以每秒0.2um以内精度以600HZ频率做往复运动,实现扫描功能,提高了竖直方向加力,镜头上下震荡扫描焦距增加,提高了成像清晰度;调节器65能提高X轴方向移动的精度,万向轮能消除Z轴方向力,防止了在移动过 程中,传统的传动方式下出现的震动传递到Y轴平移装置和X轴平移装置上,保证了机器在X轴以30mm/秒扫描过程中,镜头与玻片之间的因为震动而引起的高度误差在0.2um以内,进而提高了成像的位置精度。
以上就是一种细胞检测显微镜的结构特点和作用效果,其优点:提高了竖直方向加力,提高了成像清晰度,提高了成像的位置精度。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (9)

  1. 一种细胞检测显微镜,其特征在于,包括基准底板(1),基准底板(1)顶部一侧设有Z轴支持架(2),Z轴支持架(2)的顶部设有第一伺服电机(21),Z轴支持架(2)内旋转设有与第一伺服电机(21)轴向相连的丝杆,丝杆上滑动套接有拍摄支架(22),拍摄支架(22)的顶部设有激光筒(23),激光筒(23)的顶部设有与激光筒(23)相连通的镜筒(24),镜筒(24)的顶部设有与其相连通的相机(25);
    激光筒(23)侧部的Z轴支持架(2)上设有驱动压电部件(3),Z轴支持架(2)的底部设有与驱动压电部件(3)相接触的镜头加力板(31),镜头加力板(31)上旋转设有自动物镜轮(32),自动物镜轮(32)上设有与激光筒(23)相通的至少一个镜头(33),镜头加力板(31)的侧部设有与自动物镜轮(32)轴向连接的第二伺服电机(34);
    拍摄支架(22)下方的基准底板(1)上设有盛油槽(4),盛油槽(4)的顶部设有与镜头(33)相应的光源(41);
    基准底板(1)的Y轴平移装置(5),Y轴平移装置(5)的顶部设有X轴平移装置(6),X轴平移装置(6)的顶部设有载玻片架(7)和载玻片架垂直调节装置(71)。
  2. 根据权利要求1所述的一种细胞检测显微镜,其特征在于,所述镜头(33)的数量为一个。
  3. 根据权利要求1所述的一种细胞检测显微镜,其特征在于,X轴平移装置(6)包括X轴支架(63),X轴支架(63)上滑动设有与载玻片架(7)相连接的固定板(62),所述X轴支架(63)侧部设有通过柔软连接绳(64)与固定板(62)轴向相连的第三伺服电机,X轴支架(63)顶部还设有调节柔软连接绳(64)松紧度的调节器(65)。
  4. 根据权利要求3所述的一种细胞检测显微镜,其特征在于,Y轴平移装置(5)包括滑动设置在基准底板(1)上的移动板(51)和被动驱动支架,被动驱动支架的两端分别设有紧靠移动板(51)侧部的限位杆(52),基准底板(1)上设有与移动板(51)相应的限位块,被动驱动支架的顶部与X轴支架(63)相固定,所述两根限位杆(52)靠近移动板(51)的侧面上均设有与移动板(51)相接触的万向轮。
  5. 根据权利要求1所述的一种细胞检测显微镜,其特征在于,驱动压电部件(3)的竖直方向加力工件是材质为压电陶瓷的大推力压电堆,驱动压电部件(3)的检测工件为0.1um精度光栅尺,驱动压电部件(3)的控制电源、材质为压电陶瓷的大推力压电堆、0.1um精度光栅尺和镜头加力板(31)形成了一个闭环系统。
  6. 根据权利要求1所述的一种细胞检测显微镜,其特征在于,自动物镜轮(32)和至少一个镜头(33)的重量之和为5KG。
  7. 根据权利要求5所述的一种细胞检测显微镜,其特征在于,材质为压电陶瓷的大推力压电堆以每秒0.2um以内精度以600HZ频率做往复运动。
  8. 根据权利要求4所述的一种细胞检测显微镜,其特征在于,X轴固定板(62)的平移速度为30mm每秒,载玻片架(7)在固定板(62)平移过程中因震动而引起的高度误差在0.2um以内。
  9. 根据权利要求3所述的一种细胞检测显微镜,其特征在于,柔软连接绳(64)为钢丝绳。
PCT/CN2018/096135 2018-07-04 2018-07-18 一种细胞检测显微镜 WO2020006781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810723355.1 2018-07-04
CN201810723355.1A CN108519665B (zh) 2018-07-04 一种细胞检测显微镜

Publications (1)

Publication Number Publication Date
WO2020006781A1 true WO2020006781A1 (zh) 2020-01-09

Family

ID=63428557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096135 WO2020006781A1 (zh) 2018-07-04 2018-07-18 一种细胞检测显微镜

Country Status (1)

Country Link
WO (1) WO2020006781A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519665A (zh) * 2018-07-04 2018-09-11 殷跃锋 一种细胞检测显微镜
CN113021052A (zh) * 2021-03-29 2021-06-25 宁波市凯博数控机械有限公司 一种大型齿轮齿条传动式数控机床
CN108519665B (zh) * 2018-07-04 2024-06-07 殷跃锋 一种细胞检测显微镜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195333A1 (en) * 2006-02-16 2007-08-23 Canon Kabushiki Kaisha Atomic force microscope
CN202710836U (zh) * 2012-07-31 2013-01-30 广州市道真生物科技有限公司 显微图像自动采集装置
CN103364937A (zh) * 2013-07-11 2013-10-23 四川美生科技有限公司 全自动检验分析显微镜
CN104932092A (zh) * 2015-06-15 2015-09-23 上海交通大学 基于偏心光束法的自动对焦显微镜及其对焦方法
CN106842533A (zh) * 2017-01-24 2017-06-13 宁波江丰生物信息技术有限公司 一种高精度显微镜装置
CN208297826U (zh) * 2018-07-04 2018-12-28 殷跃锋 一种细胞检测显微镜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070195333A1 (en) * 2006-02-16 2007-08-23 Canon Kabushiki Kaisha Atomic force microscope
CN202710836U (zh) * 2012-07-31 2013-01-30 广州市道真生物科技有限公司 显微图像自动采集装置
CN103364937A (zh) * 2013-07-11 2013-10-23 四川美生科技有限公司 全自动检验分析显微镜
CN104932092A (zh) * 2015-06-15 2015-09-23 上海交通大学 基于偏心光束法的自动对焦显微镜及其对焦方法
CN106842533A (zh) * 2017-01-24 2017-06-13 宁波江丰生物信息技术有限公司 一种高精度显微镜装置
CN208297826U (zh) * 2018-07-04 2018-12-28 殷跃锋 一种细胞检测显微镜

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519665A (zh) * 2018-07-04 2018-09-11 殷跃锋 一种细胞检测显微镜
CN108519665B (zh) * 2018-07-04 2024-06-07 殷跃锋 一种细胞检测显微镜
CN113021052A (zh) * 2021-03-29 2021-06-25 宁波市凯博数控机械有限公司 一种大型齿轮齿条传动式数控机床

Also Published As

Publication number Publication date
CN108519665A (zh) 2018-09-11

Similar Documents

Publication Publication Date Title
JP5819389B2 (ja) 撮像システムおよび技法
JP4504479B2 (ja) 顕微鏡用液浸対物レンズ
US5142145A (en) Composite scanning tunneling microscope
AU2012306571B2 (en) Focus and imaging system and techniques using error signal
US6850363B1 (en) System for introducing optical tweezers and/or a treatment beam into a laser scanning microscope
US11513329B2 (en) Varying an illumination path of a selective plane illumination microscopy
US20200096757A1 (en) Device for moving a microscope stage and microscope comprising such a device
WO2020006781A1 (zh) 一种细胞检测显微镜
CN107949800B (zh) 显微镜用光学模块、显微镜、显微镜用光学模块控制装置以及多光子激发显微镜
WO2020151039A1 (zh) 一种细胞检测显微镜
CN108519665B (zh) 一种细胞检测显微镜
CN208297826U (zh) 一种细胞检测显微镜
JP4914537B2 (ja) 倒立型顕微鏡に適用される試料支持装置
US10768405B2 (en) Microscope having an objective-exchanging device
JP3217396B2 (ja) 顕微鏡の粗微動機構
CN211928292U (zh) 一种带有配套载玻片的检测显微镜
US10365464B1 (en) Extending optical microscopes to provide selective plane illumination microscopy
JP2002303797A (ja) 顕微鏡
JPH02123310A (ja) 顕微鏡のオートフォーカス機構
JP2568488B2 (ja) 顕微鏡
JP3868026B2 (ja) 顕微鏡
HU231068B1 (hu) Objektívváltó- és fókuszáló berendezés mikroszkóphoz, valamint ilyen objektívváltó- és fókuszáló berendezést tartalmazó mikroszkóp
US20230350180A1 (en) Automatic correction of spherical aberration in selective plane illumination microscopy
JPH04182615A (ja) 光学像形成装置
KR100866048B1 (ko) 평면 보상 자동 초점장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925454

Country of ref document: EP

Kind code of ref document: A1