WO2020004910A1 - 무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말 - Google Patents

무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말 Download PDF

Info

Publication number
WO2020004910A1
WO2020004910A1 PCT/KR2019/007670 KR2019007670W WO2020004910A1 WO 2020004910 A1 WO2020004910 A1 WO 2020004910A1 KR 2019007670 W KR2019007670 W KR 2019007670W WO 2020004910 A1 WO2020004910 A1 WO 2020004910A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmitting
receiving terminal
signal
reference signal
Prior art date
Application number
PCT/KR2019/007670
Other languages
English (en)
French (fr)
Inventor
채혁진
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/255,327 priority Critical patent/US11451426B2/en
Publication of WO2020004910A1 publication Critical patent/WO2020004910A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3872Compensation for phase rotation in the demodulated signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a method and a terminal for transmitting a feedback signal in a wireless communication system.
  • NR is an expression showing an example of 5G radio access technology (RAT).
  • RAT radio access technology
  • the new RAT system including the NR uses an OFDM transmission scheme or a similar transmission scheme.
  • the new RAT system may follow different OFDM parameters than the OFDM parameters of LTE.
  • the new RAT system can follow the existing numeric / numerology of LTE / LTE-A but have a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of neurology. That is, UEs operating with different neurology may coexist in one cell.
  • V2X vehicle-to-everything is a communication technology that exchanges information with other vehicles, pedestrians, infrastructure, etc. through wired / wireless communication, and V2V (vehicle-to-vehicle) and V2I (vehicle-to 4 types, such as -infrastructure, vehicle-to-network (V2N) and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided via a PC5 interface and / or a Uu interface.
  • the present invention proposes a method for transmitting a feedback signal in a wireless communication system.
  • the present invention proposes a method for removing distance estimation distortion due to selective fading when performing PDoA based positioning and / or ranging in a frequency selective fading channel.
  • An embodiment of the present invention provides a method for a receiving terminal to transmit a feedback signal to a transmitting terminal in a wireless communication system, the receiving terminal receiving a reference signal from the transmitting terminal and the receiving terminal to the reference signal; And transmitting the feedback signal to the transmitting terminal, wherein the feedback signal is transmitted based on a compensation for a phase change occurring when the reference signal is received.
  • Compensation for the phase change is based on a time difference between a first FFT window for transmitting a reference signal of the transmitting terminal and a second FFT window for receiving a reference signal of the receiving terminal. It may be to rotate by phase.
  • the transmitting of the feedback signal to the transmitting terminal may include transmitting, by the receiving terminal, the feedback signal using timing of the second FFT window for receiving the reference signal.
  • phase change Expressed as Is a complex value of the reference signal transmitted to the kth frequency resource region, x represents a reference frequency, Represents the spacing between subcarriers, May represent a time difference between the first FFT window and the second FFT window.
  • I a value representing the amplitude of the multipath channel of the kth frequency resource region
  • x is a reference frequency
  • I represents the spacing between subcarriers
  • the compensation for the phase change is based on a channel function for the reference signal, and the sequence for compensation for the phase change based on the channel function is
  • the feedback signal may be transmitted by the receiving terminal on the same frequency resource as the received frequency resource.
  • the method when there is at least one other terminal for transmitting another feedback signal to the transmitting terminal, the sensing result of the receiving terminal, an identifier (ID) of the transmitting terminal, and the at least one
  • the method may further include selecting a transmission resource for transmitting the feedback signal and transmitting the feedback signal in the selected transmission resource based on at least one of the IDs of the other terminals.
  • the transmitting of the feedback signal to the transmitting terminal may include setting a sequence of the feedback signal based on at least one of an identifier of the transmitting terminal and an identifier of the receiving terminal, and the feedback based on the set sequence.
  • the method may further include transmitting a signal to the transmitting terminal.
  • the method includes the steps of calculating a distance d between the transmitting terminal and the receiving terminal; Further comprising, the distance (d) is Computed based on, where c is the speed of light, Denotes a phase value based on the average of the product of the conjugate product of the first reference signal received through the first frequency and the second reference signal received through the second frequency, Is a phase value based on the phase change by the multipath, and m represents an interval between the first frequency and the second frequency, Represents the spacing between subcarriers, Is a function for representing phase values, Is Where H (k) represents a multipath channel of the k th frequency resource region, Represented by Is a value representing the amplitude of the multipath channel in the k-th frequency resource region, B k represents the phase of the multipath channel in the k-th frequency resource region, silver N may represent the size of FFT (fast Fourier transform).
  • An embodiment of the present invention in a receiving terminal for transmitting a feedback signal in a wireless communication system, comprising a transceiver and a processor, the processor receives a reference signal from the transmitting terminal, the feedback to the reference signal A signal is transmitted to the transmitting terminal, and the feedback signal proposes a receiving terminal that is transmitted based on a compensation for a phase change occurring when the reference signal is received.
  • the receiving terminal may communicate with at least one of a mobile terminal, a network, and an autonomous vehicle other than the device.
  • the receiving terminal may implement at least one Advanced Driver Assistance System (ADAS) function based on a signal for controlling the movement of the terminal.
  • ADAS Advanced Driver Assistance System
  • the terminal may receive a user input and change the driving mode of the device from the autonomous driving mode to the manual driving mode or from the manual driving mode to the autonomous driving mode.
  • the receiving terminal autonomously travels based on external object information
  • the external object information includes information on the presence or absence of an object, location information of the object, distance information between the receiving terminal and the object, and relative speed between the receiving terminal and the object. It may include at least one of the information.
  • the receiving terminal since the receiving terminal may transmit a feedback signal in consideration of the phase change caused by the multipath channel, it may provide a communication environment suitable for an actual communication environment.
  • the distance between the transmitting terminal and the receiving terminal may be calculated based on a reference signal transmitted by the transmitting terminal, and thus, operations of a communication system operating based on the distance may be supported.
  • One embodiment of the present invention may occur when calculating a distance between a transmitting terminal and a receiving terminal even when a reference signal is transmitted in two tones, even if i) the phase difference is too small or ii) the two tones are too far apart. Error can be reduced.
  • 1 shows an example of a frame structure in NR.
  • FIG. 2 shows an example of a resource grid in NR.
  • 3 is a diagram for explaining sidelink synchronization.
  • FIG. 4 shows a time resource unit through which the sidelink synchronization signal is transmitted.
  • FIG. 5 shows an example of a sidelink resource pool.
  • FIG. 6 shows a scheduling scheme according to a sidelink transmission mode.
  • Figure 7 shows the selection of sidelink transmission resources.
  • FIG. 10 is a flowchart illustrating an operation of a terminal according to an embodiment of the present invention.
  • FIG. 11 is a diagram for illustrating a distance d between a transmitting terminal UE A and a receiving terminal UE B.
  • FIG. 12 illustrates a time offset and a propagation delay of an FFT window between a transmitting terminal and a receiving terminal according to an embodiment of the present invention.
  • FIG. 13 is a diagram for describing a time offset and a propagation delay of an FFT window between a transmitting terminal and a receiving terminal according to another embodiment of the present invention.
  • FIG. 14 is a diagram illustrating the apparatus of the present invention.
  • downlink means communication from a base station (BS) to a user equipment (UE)
  • uplink means communication from a UE to a BS.
  • a transmitter may be part of a BS, and a receiver may be part of a UE.
  • the transmission is part of the UE, and the receiver may be part of the BS.
  • a BS may be represented by a first communication device and a UE by a second communication device.
  • the BS may be a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network or 5G network node, AI system, It may be replaced by terms such as RSU (road side unit), robot, and the like.
  • the UE may include a terminal, a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), a wireless terminal (WT), and a machine (MTC).
  • -Type Communication (M2M) device, Machine-to-Machine (M2M) device, Device-to-Device (D2D) device, vehicle (vehicle), robot (robot) can be replaced with terms such as AI module.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier FDMA
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using E-UTRA and LTE-A (Advanced) / LTE-A pro is an evolution of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE / LTE-A / LTE-A pro is an evolution of 3GPP LTE / LTE-A / LTE-A pro.
  • LTE refers to technology after 3GPP TS 36.xxx Release 8.
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
  • 3GPP NR means technology after TS 38.xxx Release 15.
  • LTE / NR may be referred to as a 3GPP system.
  • "xxx" means standard document detail number.
  • LTE / NR may be collectively referred to as 3GPP system.
  • a node refers to a fixed point that can communicate with a UE to transmit / receive radio signals.
  • Various types of BSs may be used as nodes regardless of their names.
  • a node may be a BS, an NB, an eNB, a pico-cell eNB (PeNB), a home eNB (HeNB), a relay, a repeater, or the like.
  • the node may not be a BS.
  • it may be a radio remote head (RRH), a radio remote unit (RRU).
  • RRHs, RRUs, and the like generally have a power level lower than that of the BS.
  • At least one antenna is installed at one node.
  • the antenna may mean a physical antenna or may mean an antenna port, a virtual antenna, or an antenna group. Nodes are also called points.
  • a cell refers to a certain geographic area or radio resource for which one or more nodes provide communication services.
  • a "cell” in a geographic area may be understood as coverage in which a node can provide services using a carrier, and a "cell” of radio resources is a bandwidth (frequency) that is a frequency size configured by the carrier. bandwidth, BW).
  • Downlink coverage which is a range in which a node can transmit valid signals
  • uplink coverage which is a range in which a valid signal can be received from a UE, depends on a carrier carrying the signal, so that the coverage of the node is determined by the radio resources used by the node. It is also associated with the coverage of the "cell”.
  • the term "cell” can sometimes be used to mean coverage of a service by a node, sometimes a radio resource, and sometimes a range within which a signal using the radio resource can reach a valid strength.
  • communicating with a specific cell may mean communicating with a BS or a node that provides a communication service to the specific cell.
  • the downlink / uplink signal of a specific cell means a downlink / uplink signal from / to a BS or a node providing a communication service to the specific cell.
  • a cell that provides uplink / downlink communication service to a UE is particularly called a serving cell.
  • the channel state / quality of a specific cell means a channel state / quality of a channel or communication link formed between a BS or a node providing a communication service to the specific cell and a UE.
  • a "cell" associated with a radio resource may be defined as a combination of DL resources and UL resources, that is, a combination of a DL component carrier (CC) and a UL CC.
  • the cell may be configured with DL resources alone or with a combination of DL resources and UL resources. If carrier aggregation is supported, the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is corresponding. It may be indicated by system information transmitted through the cell.
  • the carrier frequency may be the same as or different from the center frequency of each cell or CC.
  • a cell operating on a primary frequency is referred to as a primary cell (Pcell) or a PCC
  • a cell operating on a secondary frequency (or SCC) is referred to as a secondary cell.
  • cell, Scell) or SCC may be set after a UE performs a Radio Resource Control (RRC) connection establishment process with a BS and an RRC connection is established between the UE and the BS, that is, after the UE is in an RRC_CONNECTED state.
  • RRC connection may mean a path through which the RRC of the UE and the RRC of the BS may exchange RRC messages with each other.
  • Scell may be configured to provide additional radio resources to the UE.
  • the Scell may form a set of serving cells for the UE with the Pcell.
  • the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell configured only for the Pcell.
  • the cell supports a unique radio access technology. For example, transmission / reception according to LTE radio access technology (RAT) is performed on an LTE cell, and transmission / reception according to 5G RAT is performed on a 5G cell.
  • LTE radio access technology RAT
  • 5G RAT 5th Generation
  • Carrier aggregation technology refers to a technology that aggregates and uses a plurality of carriers having a system bandwidth smaller than a target bandwidth for broadband support.
  • Carrier aggregation is one of a base frequency band divided into a plurality of orthogonal subcarriers in that downlink or uplink communication is performed using a plurality of carrier frequencies, each forming a system bandwidth (also called a channel bandwidth). It is distinguished from an OFDMA technology that performs downlink or uplink communication on a carrier frequency.
  • one frequency band having a predetermined system bandwidth is divided into a plurality of subcarriers having a predetermined subcarrier spacing, and information / data is divided into the plurality of subcarriers.
  • the frequency bands mapped in the subcarriers of Mn and the information / data are mapped are transmitted to a carrier frequency of the frequency band through frequency upconversion.
  • frequency bands each having its own system bandwidth and carrier frequency may be used for communication, and each frequency band used for carrier aggregation may be divided into a plurality of subcarriers having a predetermined subcarrier spacing. .
  • 3GPP-based communication standards include upper layers of the physical layer (e.g., medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol) protocol data convergence protocol (PDCP) layer, radio resource control (RRC) layer, service data adaptation protocol (SDAP), non-access stratum (NAS) layer)
  • MAC medium access control
  • RLC radio link control
  • PDCP protocol data convergence protocol
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • NAS non-access stratum
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control)
  • a format indicator channel (PCFICH)
  • a physical downlink control channel (PDCCH)
  • a reference signal and a synchronization signal are defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform that the BS and the UE know from each other.
  • a cell specific RS, UE- UE-specific RS, positioning RS (PRS), channel state information RS (CSI-RS), demodulation reference signal (DM-RS) Is defined as downlink reference signals.
  • the 3GPP-based communication standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Uplink physical signals are defined.
  • a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are the uplink physical channels.
  • a demodulation reference signal (DM-RS) for uplink control / data signals and a sounding reference signal (SRS) used for uplink channel measurement are defined.
  • a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) are used for downlink control information (DCI) and downlink data of a physical layer. It can mean a collection of time-frequency resources or a set of resource elements, respectively.
  • the physical uplink control channel (physical uplink control channel), the physical uplink shared channel (physical uplink shared channel, PUSCH) and the physical random access channel (physical random access channel) is uplink control information (uplink control information) of the physical layer , UCI), a set of time-frequency resources or a set of resource elements that carry uplink data and random access signals, respectively.
  • an uplink physical channel (eg, PUCCH, PUSCH, PRACH) may mean that a DCI, uplink data, or random access signal is transmitted on or through the corresponding uplink physical channel.
  • Receiving an uplink physical channel by the BS may mean receiving a DCI, uplink data, or random access signal on or through the corresponding uplink physical channel.
  • the BS transmitting a downlink physical channel (eg, PDCCH, PDSCH) is used in the same sense as transmitting DCI or uplink data on or through the corresponding downlink physical channel.
  • Receiving a downlink physical channel by the UE may mean receiving DCI or uplink data on or through the corresponding downlink physical channel.
  • a transport block is a payload for a physical layer.
  • data given to the physical layer from an upper layer or medium access control (MAC) layer is basically referred to as a transport block.
  • MAC medium access control
  • HARQ is a type of error control method.
  • HARQ-ACK transmitted through downlink is used for error control on uplink data
  • HARQ-ACK transmitted through uplink is used for error control on downlink data.
  • the transmitting end performing the HARQ operation waits for an acknowledgment (ACK) after transmitting data (eg, a transport block and a codeword).
  • ACK acknowledgment
  • the receiver performing the HARQ operation sends an ACK only when data is properly received, and sends a negative ACK (NACK) when an error occurs in the received data.
  • NACK negative ACK
  • a time delay occurs until the ACK / NACK is received from the UE and the retransmission data is transmitted.
  • This time delay occurs due to the time required for channel propagation delay, data decoding / encoding. Therefore, when new data is sent after the current HARQ process is completed, a time delay causes a gap in data transmission. Therefore, a plurality of independent HARQ processes are used to prevent gaps in data transmission during the time delay period. For example, if there are seven transmission opportunities between initial transmission and retransmission, the communication device may operate seven independent HARQ processes to perform data transmission without a gap. By utilizing a plurality of parallel HARQ processes, UL / DL transmission can be performed continuously while waiting for HARQ feedback for previous UL / DL transmission.
  • channel state information refers to information that may indicate the quality of a radio channel (also called a link) formed between the UE and the antenna port.
  • CSI includes channel quality indicator (CQI), precoding matrix indicator (PMI), CSI-RS resource indicator (CRI), SSB resource indicator (SSBRI) , At least one of a layer indicator (LI), a rank indicator (RI), and a reference signal received power (RSRP).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • CRI CSI-RS resource indicator
  • SSBRI SSB resource indicator
  • LI layer indicator
  • RI rank indicator
  • RSRP reference signal received power
  • frequency division multiplexing may mean transmitting / receiving signals / channels / users on different frequency resources
  • time division multiplexing This may mean transmitting / receiving signals / channels / users in different time resources.
  • frequency division duplex refers to a communication scheme in which uplink communication is performed on an uplink carrier and downlink communication is performed on a downlink carrier linked to the uplink carrier, and time division is performed.
  • time division duplex refers to a communication scheme in which uplink communication and downlink communication are performed by dividing time on the same carrier.
  • 1 is a diagram illustrating an example of a frame structure in NR.
  • the NR system can support multiple neurology.
  • the numerology may be defined by subcarrier spacing and cyclic prefix (CP) overhead.
  • the plurality of subcarrier spacings may be derived by scaling the basic subcarrier spacing to an integer N (or ⁇ ).
  • N or ⁇
  • the used numerology may be selected independently of the cell's frequency band.
  • various frame structures according to a number of numerologies may be supported.
  • OFDM orthogonal frequency division multiplexing
  • NR supports a number of pneumatics (eg, subcarrier spacing) to support various 5G services. For example, if the subcarrier spacing is 15 kHz, it supports wide area in traditional cellular bands, and if the subcarrier spacing is 30 kHz / 60 kHz, it is dense-urban, lower latency Latency and wider carrier carrier bandwidth are supported, and when the subcarrier spacing is 60 kHz or higher, it supports bandwidth greater than 24.25 GHz to overcome phase noise.
  • pneumatics eg, subcarrier spacing
  • FIG. 2 shows an example of a resource grid in NR.
  • a resource grid of N size, ⁇ grid * N RB sc subcarriers and 14 * 2 ⁇ OFDM symbols is defined, where N size, ⁇ grid is defined from BS. It is indicated by RRC signaling of. N size, ⁇ grid can vary between uplink and downlink as well as the subcarrier spacing setting ⁇ .
  • Each element of the resource grid for subcarrier spacing ⁇ and antenna port p is referred to as a resource element and is uniquely identified by an index pair ( k , l ), where k is in the frequency domain L is an index and refers to a symbol location in the frequency domain relative to the reference point.
  • the resource elements ( k , l ) for the subcarrier spacing ⁇ and the antenna port p correspond to the physical resources and the complex value a (p, ⁇ ) k, l .
  • the UE may be configured to operate in a portion of the cell's frequency bandwidth (hereinafter, referred to as a bandwidth part (BWP)). .
  • BWP bandwidth part
  • up to 400 MHz may be supported per one carrier. If a UE operating on such a wideband carrier always operates with a radio frequency (RF) module for the entire carrier, UE battery consumption may increase.
  • RF radio frequency
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • V2X radio frequency
  • the capability for the maximum bandwidth may vary for each UE. In consideration of this, the BS may instruct the UE to operate only in some bandwidths rather than the entire bandwidths of the wideband carriers, and this bandwidth is referred to as a bandwidth part (BWP).
  • BWP bandwidth part
  • the BWP is a subset of contiguous common resource blocks defined for the neuron ⁇ i in bandwidth part i on the carrier, with one numerology (e.g., subcarrier spacing, CP length, slot / mini-slot persistence). Period) can be set.
  • numerology e.g., subcarrier spacing, CP length, slot / mini-slot persistence. Period
  • the BS may configure one or more BWPs in one carrier configured for the UE. Or, when UEs are concentrated in a specific BWP, some UEs may be moved to another BWP for load balancing. Alternatively, in consideration of frequency domain inter-cell interference cancellation between neighboring cells, some BWPs of the cell may be set in the same slot by excluding some spectrum from the entire bandwidth. That is, the BS may configure at least one DL / UL BWP to a UE associated with a wideband carrier, and may perform physical (Physically) at least one DL / UL BWP among DL / UL BWP (s) configured at a specific time point.
  • Switch to another configured DL / UL BWP (L1 signaling, MAC), by layer control signal L1 signaling, MAC layer control signal MAC control element (CE), or RRC signaling). Or by setting a timer value to allow the UE to switch to a predetermined DL / UL BWP when the timer expires.
  • An activated DL / UL BWP is particularly called an active DL / UL BWP.
  • the UE may not receive a configuration for DL / UL BWP in a situation such as when the UE is in an initial access process or before the RRC connection of the UE is set up. In this situation, the UE assumes that the DL / UL BWP is called an initial active DL / UL BWP.
  • V2X time division multiple access
  • FDMA frequency division multiple access
  • ISI intersymbol interference
  • ICI intercarrier interference
  • SLSS sidelink synchronization signal
  • MIB-SL-V2X master information block-sidelink-V2X
  • RLC radio link control
  • FIG. 3 shows an example of a source of synchronization or a reference of synchronization in V2X.
  • a terminal may be directly synchronized to a global navigation satellite systems (GNSS), or may be indirectly synchronized to a GNSS through a terminal (in network coverage or out of network coverage) directly synchronized to the GNSS.
  • GNSS global navigation satellite systems
  • the terminal may calculate the DFN and the subframe number using Coordinated Universal Time (UTC) and a (pre-set) direct frame number (DFN) offset.
  • UTC Coordinated Universal Time
  • DFN direct frame number
  • the terminal may be synchronized directly to the base station or to another terminal time / frequency synchronized to the base station.
  • the terminal may receive synchronization information provided by the base station and may be directly synchronized to the base station. Thereafter, the synchronization information may be provided to another adjacent terminal.
  • the terminal may transmit a cell associated with the frequency (if within cell coverage at the frequency), a primary cell or a serving cell (out of cell coverage at the frequency). Can be followed).
  • the base station may provide a synchronization setting for the carrier used for V2X sidelink communication.
  • the terminal may follow the synchronization setting received from the base station. If no cell is detected in the carrier used for the V2X sidelink communication and no synchronization setting is received from the serving cell, the terminal may follow a preset synchronization setting.
  • the terminal may be synchronized to another terminal that has not obtained synchronization information directly or indirectly from the base station or GNSS.
  • the source and preference of the synchronization may be preset to the terminal or may be set via a control message provided by the base station.
  • the synchronization signal SLSS and the synchronization information will now be described.
  • the SLSS is a sidelink specific sequence, and may include a primary sidelink synchronization signal (PSSS) and a secondary sidelink synchronization signal (SSSS).
  • PSSS primary sidelink synchronization signal
  • SSSS secondary sidelink synchronization signal
  • Each SLSS may have a physical layer sidelink synchronization ID, and its value may be any one of 0 to 335.
  • the synchronization source may be identified depending on which of the above values is used. For example, 0, 168, and 169 may mean GNSS, 1 to 167 are base stations, and 170 to 335 are out of coverage. Alternatively, among the values of the physical layer sidelink synchronization ID, 0 to 167 may be values used by the network, and 168 to 335 may be values used outside the network coverage.
  • the time resource unit may mean a slot in 5G of a subframe of LTE / LTE-A, and the details thereof are based on the contents of the 3GPP TS 36 series or 38 series document.
  • Physical sidelink broadcast channel (PSBCH) is a basic (system) information (for example, information related to SLSS, duplex mode (Duplex Mode, DM), TDD UL / DL configuration that the terminal needs to know first before transmitting and receiving sidelink signals) , Resource pool related information, type of application related to SLSS, subframe offset, broadcast information, etc.).
  • the PSBCH may be transmitted on the same time resource unit as the SLSS or on a subsequent time resource unit.
  • DM-RS can be used for demodulation of PSBCH.
  • the base station performs resource scheduling on the terminal 1 through the PDCCH (more specifically, DCI), and the terminal 1 performs D2D / V2X communication with the terminal 2 according to the resource scheduling.
  • UE 1 may transmit sidelink control information (SCI) to UE 2 through a physical sidelink control channel (PSCCH), and then may transmit data based on the SCI through a physical sidelink shared channel (PSSCH).
  • SCI sidelink control information
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • Transmission mode 1 may be applied to D2D
  • transmission mode 3 may be applied to V2X.
  • the transmission mode 2/4 may be referred to as a mode in which the UE schedules itself. More specifically, the transmission mode 2 is applied to the D2D, and the UE may select a resource by itself in the configured resource pool to perform the D2D operation.
  • the transmission mode 4 is applied to the V2X, and after performing a sensing process, the terminal selects a resource by itself in the selection window and may perform a V2X operation. After transmitting the SCI to the terminal 2 through the PSCCH, the terminal 1 may transmit the data based on the SCI through the PSSCH.
  • the transmission mode can be abbreviated as mode.
  • control information transmitted from the base station to the terminal through the PDCCH is referred to as downlink control information (DCI)
  • control information transmitted from the terminal to another terminal through the PSCCH may be referred to as SCI.
  • SCI may carry sidelink scheduling information.
  • SCI format 0 may be used for scheduling of PSSCH.
  • the frequency hopping flag (1 bit), resource block allocation and hopping resource allocation fields (the number of bits may vary depending on the number of resource blocks in the sidelink), time resource pattern (7 bits), MCS (modulation and coding scheme, 5 bits), a time advance indication (11 bits), a group destination ID (8 bits), and the like.
  • SCI format 1 may be used for scheduling of PSSCH.
  • priority (3 bits), resource reservation (4 bits), frequency resource position of initial transmission and retransmission (the number of bits may vary depending on the number of subchannels in the sidelink), initial transmission and Time gap between initial transmission and retransmission (4 bits), MCS (5 bits), retransmission index (1 bit), reserved information bits, and the like.
  • the reserved information bits may be abbreviated as reserved bits below. The reserved bits can be added until the bit size of SCI format 1 is 32 bits.
  • SCI format 0 may be used for transmission modes 1 and 2
  • SCI format 1 may be used for transmission modes 3 and 4.
  • 5 shows an example of UE1, UE2 and sidelink resource pools that they use to perform sidelink communication.
  • a UE refers to a network equipment such as a base station that transmits and receives a signal according to a terminal or a sidelink communication scheme.
  • the terminal may select a resource unit corresponding to a specific resource in a resource pool representing a set of resources and transmit a sidelink signal using the resource unit.
  • the receiving terminal UE2 may be configured with a resource pool in which UE1 can transmit a signal, and detect a signal of UE1 in the corresponding pool.
  • the resource pool may be notified by the base station when UE1 is in the connection range of the base station.
  • another UE may notify or may be determined as a predetermined resource.
  • a resource pool is composed of a plurality of resource units, and each terminal may select one or a plurality of resource units and use them for transmitting their own sidelink signals.
  • the resource unit may be as illustrated in FIG. 5 (b). Referring to FIG. 5 (b), it can be seen that total frequency resources are divided into NFs and total time resources are divided into NTs so that a total of NF * NT resource units are defined.
  • the resource pool is repeated every NT time resource unit.
  • one resource unit may appear periodically and repeatedly as shown.
  • the inductance of a physical resource unit to which one logical resource unit is mapped may change in a predetermined pattern over time.
  • a resource pool may mean a set of resource units that can be used for transmission by a terminal to which a sidelink signal is to be transmitted.
  • Resource pools can be divided into several types. First, they may be classified according to contents of sidelink signals transmitted from each resource pool. For example, the contents of the sidelink signal may be divided, and a separate resource pool may be configured for each.
  • As the content of the sidelink signal there may be a scheduling assignment or a physical sidelink control channle (PSCCH), a sidelink data channel, and a discovery channel.
  • the SA provides information such as the location of resources used for transmission of a sidelink data channel that is transmitted by a transmitting terminal and other information such as a modulation and coding scheme (MCS), a MIMO transmission scheme, and a timing advance (TA) required for demodulation of other data channels. It may be a signal that includes.
  • MCS modulation and coding scheme
  • TA timing advance
  • This signal may be transmitted multiplexed with sidelink data on the same resource unit.
  • the SA resource pool may mean a pool of resources in which the SA is multiplexed with the sidelink data and transmitted. Another name may be called a sidelink control channel or a physical sidelink control channel (PSCCH).
  • the sidelink data channel (or physical sidelink shared channel (PSSCH)) may be a pool of resources used by a transmitting terminal to transmit user data. If an SA is multiplexed and transmitted along with sidelink data on the same resource unit, only a sidelink data channel having a form other than SA information may be transmitted in a resource pool for the sidelink data channel.
  • the discovery channel may be a resource pool for a message that allows a transmitting terminal to transmit information such as its ID so that the neighboring terminal can discover itself.
  • the transmission timing of the sidelink signal (for example, is transmitted at the time of receiving the synchronization reference signal or is transmitted by applying a constant TA there) or a resource allocation method. (E.g., whether the eNB assigns the transmission resources of the individual signals to the individual transmitting UEs or if the individual transmitting UEs select their own individual signaling resources within the pool), and the signal format (e.g.
  • each sidelink signal has one hour
  • the number of symbols occupied by the resource unit, the number of time resource units used for transmission of one sidelink signal), the signal strength from the eNB, and the transmission power strength of the sidelink UE may be further divided into different resource pools.
  • Sidelink transmission mode 1 the transmission resource region is set in advance, or the eNB designates a transmission resource region in the way that the eNB directly indicates the transmission resources of the sidelink transmitting UE in sidelink communication, The method of directly selecting a transmission resource is called sidelink transmission mode 2.
  • sidelink transmission mode 2 when the eNB directly indicates a resource
  • type 1 when the UE directly selects a transmission resource in a type 2
  • a preset resource region, or a resource region indicated by the eNB will be referred to as type 1.
  • sidelink transmission mode 3 based on centralized scheduling and sidelink transmission mode 4 of distributed scheduling are used.
  • FIG. 6 shows a scheduling scheme according to these two transmission modes.
  • the base station allocates a resource (S902a) and other resources through the resource. Transmission to the vehicle is performed (S903a).
  • resources of other carriers may also be scheduled.
  • the vehicle senses a resource and a resource pool previously set from the base station (S901b), and then selects a resource to be used for transmission (S902b). The transmission may be performed to another vehicle through the selected resource (S903b).
  • a transmission resource of the next packet is selected as a transmission resource selection.
  • V2X two transmissions are performed per MAC PDU.
  • resources for retransmission are reserved with a certain time gap.
  • the terminal identifies the transmission resources reserved by the other terminal or resources used by the other terminal through sensing in the sensing window, and after randomly excluding them in the selection window, randomly among the resources having low interference among the remaining resources. You can select a resource.
  • the UE may decode a PSCCH including information on a period of reserved resources in a sensing window and measure a PSSCH RSRP in resources determined periodically based on the PSCCH. Resources whose PSSCH RSRP value exceeds a threshold may be excluded in the selection window. Thereafter, the sidelink resource may be randomly selected from the remaining resources in the selection window.
  • RSSI Received signal strength indication
  • the sidelink resource may be randomly selected from among the resources included in the selection window among the periodic resources. For example, this method can be used when decoding of the PSCCH fails.
  • Sidelink transmission mode 1 UE may transmit a PSCCH (or sidelink control signal, Sidelink Control Information (SCI)) through the resources configured from the base station.
  • Sidelink transmission mode 2 UE is configured (configured) resources to be used for sidelink transmission from the base station.
  • the PSCCH may be transmitted by selecting a time frequency resource from the configured resource.
  • the PSCCH period may be defined as shown in FIG. 8.
  • the first PSCCH (or SA) period may start at a time resource unit separated by a predetermined offset indicated by higher layer signaling from a specific system frame.
  • Each PSCCH period may include a PSCCH resource pool and a time resource unit pool for sidelink data transmission.
  • the PSCCH resource pool may include the last time resource unit of the time resource unit indicated that the PSCCH is transmitted in the time resource unit bitmap from the first time resource unit of the PSCCH period.
  • a time resource unit used for actual data transmission may be determined by applying a time-resource pattern for transmission (T-RPT) or a time-resource pattern (TRP). .
  • the T-RPT may be repeatedly applied, and the last applied T-RPT is the remaining time resource. It can be applied by truncating the number of units.
  • the transmitting terminal transmits at the position where the T-RPT bitmap is 1 in the indicated T-RPT, and one MAC PDU transmits four times.
  • V2X that is, sidelink transmission mode 3 or 4
  • PSCCH and data are transmitted by the FDM scheme.
  • the PSCCH and data are FDM transmitted on different frequency resources on the same time resource.
  • FIG. 9 One of a scheme in which the PSCCH and data are not directly adjacent to each other as shown in FIG. 9 (a) or a scheme in which the PSCCH and data are directly adjacent to each other as shown in FIG. .
  • the basic unit of such transmission is a subchannel, which is a resource unit having one or more RB sizes on a frequency axis on a predetermined time resource (eg, a time resource unit).
  • the number of RBs included in the subchannel, that is, the size of the subchannel and the start position on the frequency axis of the subchannel are indicated by higher layer signaling.
  • a periodic message type CAM (Cooperative Awareness Message) message, an event triggered message type DENM message, or the like may be transmitted.
  • the CAM may include basic vehicle information such as dynamic state information of the vehicle such as direction and speed, vehicle static data such as dimensions, exterior lighting state, and route details.
  • the size of the CAM message may be 50-300 bytes.
  • the CAM message is broadcast and the latency must be less than 100ms.
  • the DENM may be a message generated in a sudden situation such as a vehicle breakdown or accident.
  • the size of the DENM can be less than 3000 bytes, and any vehicle within the transmission range can receive the message.
  • the DENM may have a higher priority than the CAM, and in this case, having a high priority may mean transmitting a higher priority when a simultaneous transmission occurs from one UE perspective, or priority among a plurality of messages. May attempt to send a higher message in time priority. In many UEs, a higher priority message may be less interference than a lower priority message, thereby reducing the probability of reception error. In the case of a security overhead, CAM can have a larger message size than otherwise.
  • the sidelink communication wireless environment may be easily congested according to the density of a vehicle, an increase in the amount of transmission information, and the like. At this time, various methods are applicable to reduce congestion.
  • One example is distributed congestion control.
  • a terminal grasps a congestion state of a network and performs transmission control. At this time, congestion control considering the priority of traffic (eg, a packet) is necessary.
  • each terminal measures the channel congestion (CBR), and determines the maximum value (CRlimitk) of the channel utilization rate (CRk) that can be occupied by each traffic priority (eg, k) according to the CBR.
  • CBR channel congestion
  • the terminal may derive a maximum value CRlimitk of the channel utilization rate for each traffic priority based on the CBR measurement value and a predetermined table. In the case of relatively high-priority traffic, the maximum value of the greater channel utilization can be derived.
  • the terminal may perform congestion control by limiting the sum of channel utilization rates of the traffics whose priority k is lower than i to a predetermined value or less. This approach places stronger channel utilization restrictions on relatively low priority traffic.
  • the terminal may use a method such as adjusting the transmission power, dropping the packet, determining whether to retransmit, adjusting the transmission RB size (MCS adjustment), or the like.
  • the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes the area of Ultra-reliable and Low Latency Communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G and may not see dedicated voice services for the first time in the 5G era.
  • voice is expected to be treated as an application simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video, and mobile Internet connections will become more popular as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are growing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote tasks in the cloud and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing the need for mobile broadband capabilities. Entertainment is essential in smartphones and tablets anywhere, including in high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all applications, namely mMTC.
  • potential IoT devices are expected to reach 20 billion.
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will change the industry through ultra-reliable / low-latency links available, such as remote control of key infrastructure and self-driving vehicles.
  • the level of reliability and latency is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams that are rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K and above (6K, 8K and above) resolutions as well as virtual and augmented reality.
  • Virtual Reality (AVR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operator's edge network servers to minimize latency.
  • Automotive is expected to be an important new driver for 5G, with many examples for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high quality connections regardless of their location and speed.
  • Another use case in the automotive field is augmented reality dashboards. It identifies objects in the dark above what the driver sees through the front window and overlays information that tells the driver about the distance and movement of the object.
  • wireless modules enable communication between vehicles, the exchange of information between the vehicle and the supporting infrastructure, and the exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • Safety systems guide alternative courses of action to help drivers drive safer, reducing the risk of an accident.
  • the next step will be a remotely controlled or self-driven vehicle.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each hypothesis.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • Smart grids interconnect these sensors using digital information and communication technologies to gather information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the distribution of fuels such as electricity in efficiency, reliability, economics, sustainability of production, and in an automated manner. Smart Grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system may support telemedicine that provides clinical care from a distance. This can help reduce barriers to distance and improve access to healthcare services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing the cables with reconfigurable wireless links is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operates with similar cable delay, reliability, and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected in 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using a location-based information system.
  • the use of logistics and freight tracking typically requires low data rates but requires wide range and reliable location information.
  • Fading is caused by a variety of factors due to the decay of charges that occur within a short time. Dispersion of the propagation path into multiple paths due to reflection, scattering, etc. is called multi-path fading, which causes delay spread and distortion of the signal. .
  • the delay spread of the radio waves due to the movement of the mobile station is called the "Doppler effect,” which causes the center frequency of the radio wave to shift as the mobile station moves, resulting in a frequency shift and Scattering phenomenon occurs.
  • Shadow fading and shadow fading In the process of propagation of radio waves through various paths, shadowed areas of radio waves appear due to buildings and tunnels. It is a model in which radio waves are attenuated by trees, buildings, etc. in a real environment, resulting in a sudden change in signal strength. The path loss varies greatly depending on the actual surrounding environment between transmission and reception. (Multiple reflections and / or scatterings) This can be corrected with the Path Loss Model (e.g. two-ray model). When a signal is received in a bad position or when a signal is received in a small position, it is called shadow fading or shadow fading.
  • Path Loss Model e.g. two-ray model
  • Frequency selective fading or selective fading refers to the case where the coherent bandwidth is narrower than the transmission signal frequency band, which is associated with the multi-path-channel response. This phenomenon occurs when the multipath delay spread is larger than the transmission symbol rate. Signals transmitted over the air pass through a multipath channel and experience various fading environments (attenuation and phase differences) in frequency. As a result, if you measure fading on one wireless communication link, you may find that a particular receive frequency results in greater attenuation than other receive frequencies. The fading channel may cause severe inter symbol interference (ISI) in case of code division multiple access (CDMA) communication.
  • ISI severe inter symbol interference
  • CDMA code division multiple access
  • Frequency selective fading is also utilized in frequency-selective user scheduling or frequency diversity in OFDMA (orthogonal frequency division multiple access) systems to improve overall system gain.
  • Time selective fading means that the fading size varies with time.
  • the fading produced by the Doppler spread It is divided into fast fading and slow fading according to how fast the transmission signal changes according to the change of channel.
  • the received signal is condensed and the bandwidth is increased.
  • the coherence time is smaller than the pulse duration.
  • the larger the frequency bandwidth the smaller the coherence time. Distortion occurs because the pulses are smaller than the minimum time that they must last. This is called fast fading.
  • signal distortion increases as the Doppler spread increases with respect to the transmission frequency. In practice, the fast fading only occurs for slow data transfers. Conversely, when the coherence time is larger, i.e., safe for distortion, is called slow fading.
  • the present invention proposes a method in which a receiving terminal transmits a feedback signal to a transmitting terminal in a wireless communication system.
  • the present invention proposes a high-resolution distance estimation technique based on PDoA (Phase Difference of Arrival) in a frequency selective fading channel.
  • the transmitting terminal may be referred to as a Tx UE, UE A, and the like, and the receiving terminal may be called an Rx UE, UE B, or the like.
  • the terminal may perform step S1001 and perform step S1002.
  • the flowchart does not necessarily mean that the terminal performs all of the above steps or only the above steps.
  • a method of transmitting a feedback signal to a transmitting terminal by a receiving terminal in a wireless communication system includes: receiving, by the receiving terminal, a reference signal from the transmitting terminal (S1001) and The receiving terminal transmits the feedback signal for the reference signal to the transmitting terminal (S1002).
  • the feedback signal may be transmitted based on a compensation for a phase change generated when the reference signal is received.
  • the compensation for the phase change may be based on a time difference between a first FFT window for transmitting a reference signal of a transmitting terminal and a second FFT window for receiving a reference signal of a receiving terminal. It may be to rotate by phase.
  • the transmitting of the feedback signal to the transmitting terminal may include transmitting the feedback signal by using the timing of the second FFT window for receiving the reference signal.
  • the compensation for phase change is Expressed as Is a complex value of the reference signal transmitted to the kth frequency resource region, x represents a reference frequency, Represents the spacing between subcarriers, May represent a time difference between the first FFT window and the second FFT window.
  • Is a value representing the amplitude of the multipath channel of the kth frequency resource region
  • x is a reference frequency
  • Is a time difference between a first FFT window for transmitting a reference signal of a transmitting terminal and a second FFT window for receiving a reference signal of a receiving terminal
  • the compensation for the phase change is based on the channel function for the reference signal, and the sequence for compensation for the phase change based on the channel function is
  • B k may be a value representing the phase of the multipath channel in the k-th frequency resource region.
  • the feedback signal may be transmitted by the receiving terminal on the same frequency resource as the frequency resource on which the reference signal was received.
  • the method may further include selecting a transmission resource for transmitting the feedback signal, and transmitting the feedback signal in the selected transmission resource.
  • the transmitting of the feedback signal to the transmitting terminal may include setting a sequence of the feedback signal based on at least one of an identifier of the transmitting terminal and an identifier of the receiving terminal, and the feedback based on the set sequence.
  • the method may further include transmitting a signal to the transmitting terminal.
  • FIG. 11 is a diagram for illustrating a distance d between a transmitting terminal UE A and a receiving terminal UE B.
  • an embodiment of the present invention may include calculating a distance d between the transmitting terminal and the receiving terminal. This will be described in detail below.
  • One embodiment of the present invention includes a method for measuring a distance, a location between wireless communication devices.
  • a method of measuring a distance by using phase information of wireless signals transmitted and received by devices as targets for measuring the distance will be described.
  • a situation in which a signal is transmitted and received using two frequencies is described.
  • the principle of the present invention can be applied even when the number of frequencies used for transmission and reception is generalized.
  • the present invention assumes a situation in which a plurality of frequencies are simultaneously transmitted, it is also possible to apply the principles of the present invention by transmitting them at different predetermined time points and considering them.
  • a terminal eg, a Tx UE transmits a reference signal at two or more frequencies.
  • the magnitude and phase information of the reference signal may be known in advance by the transceiver.
  • information indicating the magnitude and phase information of the reference signal may be transmitted by the transmitting terminal (Tx UE) to the receiving terminal (Rx UE).
  • the received signal of the reference signal in the frequency domain m th tone (subcarrier) can be described by Equation 1 below.
  • a k and B k represent the amplitude of the multipath channel and the phase response of the multipath channel at the k th frequency tone, respectively, and the channel function H (k) is Is defined.
  • the time offset may include a propagation delay of a radio signal, a sampling time difference between a transceiver, and the like, and the time offset may be an FFT between a transmitter (for example, a Tx UE) and a receiver (for example, an Rx UE).
  • FFT Fast Fourier Transform
  • multipath channel gain refers to channel gain that can be obtained under the assumption that a first path of a channel has no delay (eg, zero delay).
  • the propagation delay may indicate a time taken for a signal transmitted from a transmitter (for example, a Tx UE) to reach a receiver (for example, an Rx UE) in a communication system.
  • Equation 2 When the reception terminal (Rx UE) receives signals in two tones, the phase difference in each tone may be expressed by Equation 2 below. (At this time, it is assumed that the phases of the multipath channels in the two tones are the same.)
  • Equation 2 may be written as Equation 3 below.
  • the distance R m, n between two transmission and reception terminals may be estimated using Equation 4 below.
  • Equation (4) represents a distance estimation in one way ranging, and in two way ranging, it may be multiplied by 1/2 in Equation 4.
  • one way ranging may be a method of measuring propagation delay of a transmitter at a receiver assuming that synchronization between a transceiver (eg, a Tx UE and an Rx UE) is correct, and two way ranging is a transmitter (eg; A receiver (eg, an Rx UE) may be returned to a signal of a Tx UE so that the transmitter estimates a distance using a phase difference.
  • a transceiver eg, a Tx UE and an Rx UE
  • phase difference (phase difference) Equation 2 may be rewritten as Equation 5 below.
  • Equation 4 regarding the distance R m, n between two transmitting and receiving terminals may be rewritten as in Equation 6 below.
  • the distance estimation error increases when the phase difference caused by the multipath channel occurs than the original distance.
  • the frequency selective fading may refer to a phenomenon in which fading selectively appears only in a specific frequency band. (The fading characteristics may change within the signal bandwidth, the channel response may show a large change in the portion of the signal bandwidth, or the delay spread may be selectively shown for each frequency.)
  • an embodiment of the present invention includes the following contents.
  • the received signal Y k in the k-th frequency domain (eg, tone) may be represented by Equation 7 below.
  • W (k) represents noise in the k-th frequency tone.
  • the conjugate product of the received signal of the k th tone and the received signal of the k + m th tone may be expressed by Equation 8 below.
  • Equation 11 the conjugate product of the frequency response of the k th tone and the frequency response of the k + m th tone may be rewritten as in Equation 11 below.
  • N may represent an FFT size (FFT size)
  • L may represent the size of the FFT (FFT size) or may represent the number of multi-path (multi-path). , May be calculated using Equation 12 below.
  • Equations 11 and 12 may be expressed as Equations 13 and 14 below.
  • Average of conjugate product between kth tone and k + mth tone May be calculated using Equation 15 below.
  • N may represent the size of the FFT (FFT Fourier transform)
  • L may represent the size of the FFT (FFT size)
  • multi-path multi-path
  • Equation 15 When L represents the magnitude of the FFT in Equation 15, Equation 15 may be expressed as Equation 16 below.
  • the phase change S (m) due to the multipath channel may be compensated by using the phase value in the m th tone after the IFFT (Inverse Fast Fourier Transform) operation of the channel delay profile.
  • I the average of the conjugate products between two tones spaced apart by m. That is, the receiving terminal divides a constant constant by a value obtained by subtracting a phase value of S (m) from a phase value of an average of conjugate products between two tones spaced m apart. (time offset) can be obtained.
  • N may represent the size of the FFT (FFT Fourier transform)
  • L may represent the size of the FFT (FFT size)
  • multi-path multi-path
  • Equation 17 may be expressed as Equation 18 below.
  • the timing difference between the transmitter terminal (Tx UE) and the receiver terminal (Rx UE) and the distance d between the two terminals may be obtained through Equations 19 and 20 below.
  • a timing difference between terminals is calculated through Equation 15 below.
  • the distance d between terminals is calculated through Equation 20 below.
  • the receiving terminal Since the distance d between two terminals (eg, Tx UE and Rx UE) is performed under the assumption that the transmission time between the two terminals is the same, if this assumption is not made, the receiving terminal must transmit a specific signal again.
  • the terminal may measure the distance between the counterpart terminals. For example, even if all transmitting and receiving terminals transmit signals based on GNSS (Global Navigation Satellite System) timing, the actual transmission timing may not exactly match according to the clock error of the terminal. In this case, even if the signal of the transmitting terminal is received with a predetermined time delay, the delay time may not represent the distance between the terminals. Therefore, in this case, the terminal A transmits the specific signal, and the terminal B returns the specific signal and transmits it again, so that the terminal A can estimate the exact distance from the terminal B.
  • GNSS Global Navigation Satellite System
  • a transmitting terminal (Tx UE) of the present invention may transmit a reference signal to a receiving terminal (Rx UE).
  • a specific terminal eg, a Tx UE transmits a reference signal (RS) in a tone spaced at L intervals in a frequency domain.
  • the RB size through which the RS is transmitted may be represented by M.
  • M may represent the number of RBs corresponding to the same frequency domain.
  • M and / or L may be predetermined (pre-determined or pre-configured), The transmitting terminal (Tx UE) may accordingly determine.
  • L may be set in advance by the network for each resource pool.
  • the network may be an eNB or a gNB, and unless otherwise mentioned in the following description, it refers to a fixed node connected to a core network, and the network may signal specific control information to a neighboring terminal.
  • L may be set large in consideration of multiplexing with several terminals. For example, the network may set L to a large value, and L may be determined based on the number of terminals.
  • the network may configure, for example, L and / or M values for each carrier as a physical layer or higher layer signal.
  • the network may configure L and / or M values for each resource pool or for each slot.
  • the higher layer signal may be RRC signaling.
  • NLOS non-line-of-sight
  • LOS line of sight
  • RS eg, PRS, ranging RS
  • the RS may be transmitted in resources corresponding to consecutive indexes. This is because inband emission interference may occur less when transmitted in consecutive tones at frequency.
  • SNR gain per resource eg, RE, tone, or subcarrier
  • Tx UE transmission terminal
  • the UE may transmit an RS (eg, PRS, ranging RS) for positioning / ranging without using all frequency resources in a specific component carrier (CC).
  • RS eg, PRS, ranging RS
  • This may be referred to as narrow band transmission.
  • a wide band transmission may be referred to as a method using a full band within a CC or a case in which a frequency band is transmitted in a frequency range above a predetermined threshold size.
  • the terminal may determine whether to use narrow band transmission or wide band transmission according to an interference situation or a channel state from a neighboring terminal.
  • a transmission scheme that can be used when the CBR (channel busy ratio) or SNR measured in a specific resource region (eg, a resource region in which an RS for ranging / positioning purpose is transmitted) is less than a predetermined threshold is determined in advance, or a network Can be signaled by
  • a transmitting terminal When a transmitting terminal (Tx UE) transmits a ranging / positioning RS, a RE position (eg, time, time shift, frequency, frequency shift, etc.) and / or a sequence of RSs to which the RS is transmitted is determined by the transmitting terminal (Tx UE) ) May be determined according to at least one of an identifier (ID), a type of terminal, a type of service, and a type of application. For example, the position of the RE where the RS is transmitted or the RS initialization parameter may be determined based on an ID (UE ID (identifier)) of the transmitting terminal.
  • ID an identifier
  • the position of the RE where the RS is transmitted or the RS initialization parameter may be determined based on an ID (UE ID (identifier)) of the transmitting terminal.
  • the set and / or radio resource region (time domain and / or frequency domain) of the RS transmitted by the transmitting terminal (Tx UE) may be set differently according to GNSS-based location information of the terminal.
  • the RS set available when the specific terminal is in a specific region eg, region A
  • the RS set available when it is in another specific region eg, region B that is geographically different from region A.
  • the different sets of RS may mean different sequence sets, and may mean that initialization parameters are set differently when generating a sequence.
  • the terminals in the hidden node range are configured to use different RS sets. This is to prevent collision and improve ranging performance even though RS is different.
  • the reason for separating the resource region is to reduce near far effect when transmitting a narrow band signal in D2D communication.
  • the near far effect may refer to a phenomenon in which a signal of a far terminal is not received by a signal transmitted by a near terminal.
  • Near-far problems (or near-far effects) and / or hearability problems indicate the effects of strong signals from near signal sources that make it difficult for the receiver to hear weak signals from other signal sources. It may occur due to adjacent-channel interference, co-channel interference, distortion, capture effect, dynamic range limitation, and the like. Even if the OFDM waveform is used, interference may occur even in a non-allocated RB due to inband emission.
  • the above near far effect may occur. At this time, if the terminals in the same location using the same time resources can reduce the above near far effect.
  • the Rx UE receiving the specific RS (Time offset of the Fast Fourier Transform (FFT) window between the transmitting terminal (Tx UE) and the receiving terminal (Rx UE)) can be estimated.
  • FFT Fast Fourier Transform
  • Receiving terminal Adjust the transmission timing so that the time offset is 0, or adjust the phase of the transmitted RS to achieve the equivalent effect. can be rotated with a function of (time offset).
  • the transmitted RS is a k ( or Can be displayed based on).
  • a k denotes a complex value of the reference signal RS transmitted to the k th frequency resource region (for example, tone).
  • the RS sequence of the feedback signal transmitted from the reception terminal (Rx UE) to the transmission terminal (Tx UE) and the frequency resource region (for example, tone) used for transmission of the return signal is suggested to determine the location.
  • Frequency resource location method (a k Set of k values)
  • a receiving terminal intends to transmit a feedback signal and / or feedback information to a transmitting terminal (Tx UE)
  • resources eg, RE, tone, subcarrier, etc.
  • the feedback signal may be transmitted by the receiving terminal on the same frequency resource as the frequency resource on which the reference signal was received.
  • a k represents a complex value of the reference signal RS transmitted to the k-th frequency resource region (eg, tone).
  • This method is technical in that the channel complexity can be canceled by using channel reciprocity in case of compensating and transmitting channel information to be described in the future, and the implementation complexity of the UE can be reduced at the receiving end (eg, Rx UE). Provides a phosphorous effect.
  • a receiving terminal attempts to transmit a feedback signal to a transmitting terminal (Tx UE)
  • Tx UE transmitting terminal
  • RS reference signal
  • the method may further include transmitting.
  • a plurality of Rx UEs When there are a plurality of Rx UEs receiving a positioning signal and / or a ranging signal (eg, PRS, ranging RS) from a Tx UE, a plurality of Rx UEs simultaneously return signals (or Feedback information), a plurality of resources are set in order to prevent collision between return signals (or feedback information) simultaneously transmitted by the plurality of receiving terminals (Rx UE), and the set plurality of resources Among them i) through sensing of a transmitting terminal (Tx UE) and / or a receiving terminal (Rx UE) or ii) by an implementation of the transmitting terminal (Tx UE) and / or receiving terminal (Rx UE) or iii)
  • a specific resource may be selected by an identifier (ID) of a transmitting terminal (Tx UE) and / or a receiving terminal (Rx UE).
  • sensing of an Rx UE detects (or discovers) a plurality of other receiving terminals that transmit a return signal (or feedback information) or transmits (or broadcasts) the plurality of other receiving terminals. It may mean sensing (or searching) a signal (or information).
  • sensing of a receiving terminal may refer to an operation of identifying transmission resources reserved by another terminal or resources used by another terminal through sensing in a sensing window.
  • the transmitting of the feedback signal of the present invention to the transmitting terminal may include setting a sequence of the feedback signal based on at least one of an identifier of the transmitting terminal and an identifier of the receiving terminal, and based on the set sequence.
  • the method may further include transmitting a feedback signal to the transmitting terminal.
  • a k ( or Pseudo random sequence (mapping) mapped to) may be generated based on the ID (ID) of the transmitting terminal, ii) may be generated based on the ID of the receiving terminal that received it, iii) It may be generated using the ID of both terminals.
  • a k represents a complex value of a reference signal RS transmitted to a k-th frequency resource region (eg, tone).
  • the transmitting terminal may be a terminal transmitting the reference signal (RS) in the above-described process 1
  • the receiving terminal may be a terminal (successfully) receiving the RS of the process 1 described above.
  • an initialization parameter of a random sequence may be determined using the ID (Tx UE ID) and / or the ID (Rx UE ID) of the receiving terminal.
  • a terminal transmitting a feedback signal may transmit post-processing rather than simply transmitting ak .
  • post-processing may represent phase compensation and / or amplitude compensation.
  • Compensation for the phase change of the present invention may be determined based on the channel function for the reference signal.
  • the receiving terminal (Rx UE) is in equation (19) (time offset) can be estimated, and the channel component H (k) in Equation 7 can be separately estimated using this.
  • Equation 21 after dividing the channel component H (k) by a k , a sequence may be transmitted.
  • the channel component H (k) is It can be defined as. a k is a value representing the amplitude of the multipath channel in the k-th frequency resource region, and B k may be a value representing the phase of the multipath channel in the k-th frequency resource region.
  • phase value of the channel may be compensated for, which may be represented by Equation 22 below.
  • the method allows the terminal receiving the return signal to observe only the phase change due to propagation delay, in which the channel component disappears, thereby eliminating a calculation process such as Equations 15 to 20. . Therefore, implementation complexity of the receiving terminal can be lowered.
  • the receiving terminal It is possible to estimate the time offset.
  • the time offset difference is estimated instead of directly estimating the distance d between the transmitting and receiving terminals.
  • the value (time offset value) can be explicitly signaled.
  • the value (time offset value) may be explicitly encoded in a specific field and transmitted, but may be transmitted by changing a phase of the transmitted RS or It is possible to apply a delay to the transmission signal in consideration of the (time offset). This operation is described below.
  • FIG. 12 illustrates a fast fourier transform (FFT) window between a transmitting terminal UE A and a receiving terminal UE B according to an embodiment of the present invention. This figure illustrates (time offset) and propagation delay.
  • FFT fast fourier transform
  • the receiving terminal may transmit a feedback signal for a reference signal received from the transmitting terminal to the transmitting terminal, wherein the feedback signal is based on a compensation for a phase change generated when the reference signal is received. Can be sent.
  • Compensation for the phase change is based on a time difference between a first FFT window for transmitting a reference signal of the transmitting terminal and a second FFT window for receiving a reference signal of the receiving terminal. It may be to rotate by phase.
  • the reception terminal transmitting the feedback signal to the transmission terminal may be a case where the reception terminal transmits the feedback signal by using the timing of the second FFT window for receiving the reference signal.
  • the ak represents a complex value of the reference signal RS transmitted to the k-th frequency resource region (for example, tone).
  • Specific tones may be designated as a reference tone and / or a reference point.
  • the transmitting terminal (Tx UE) may refer to a reference tone and / or reference point i) a specific tone corresponding to the lowest subcarrier index of the tone on which the RS is transmitted or ii) the lowest subcarrier index of the RB on which the RS is transmitted.
  • Equation 23 May represent an interval between subcarriers, where the subcarriers may be a frequency domain in which a plurality of reference signals are transmitted.
  • the method makes it effective in the time domain Since the same effect as the transmission of the time offset is advanced, the counterpart terminal can estimate a propagation delay. This is illustrated in FIG. 13.
  • FIG. 13 is a diagram of a fast fourier transform (FFT) window between a transmitting terminal UE A and a receiving terminal UE B according to another embodiment of the present invention. This figure illustrates (time offset) and propagation delay.
  • FFT fast fourier transform
  • the receiving terminal may transmit a feedback signal for a reference signal received from the transmitting terminal to the transmitting terminal, wherein the feedback signal is based on a compensation for a phase change generated when the reference signal is received. Can be sent.
  • the phase value is taken into account when the FFT window differs from the FFT (fast Fourier transform) window when it is fed back. Can be set differently.
  • the receiving terminal UE B may transmit a feedback signal (RS sequence) to the transmitting terminal UE A based on Equation 24 below.
  • a k is a value representing the amplitude of the multipath channel in the k-th frequency resource region
  • x is a reference frequency
  • the receiving terminal of the present invention may simultaneously perform correction for time offset and correction for channel using Equation 25 below.
  • the receiving terminal may correct only the phase information of the channel using Equation 26 below.
  • Equations 25 and 26 The method associated with Equations 25 and 26 is in addition, there is no need for explicit signaling for a time offset, and at the same time, a technical effect is provided in that a computational complexity may be reduced at a receiving end (eg, UE B (Rx UE)) by compensating for a channel.
  • a receiving end eg, UE B (Rx UE)
  • the RS cannot be used for data demodulation.
  • the known sequence for data demodulation can be transmitted together.
  • the transmitting terminal (Tx UE) receiving the RS from the receiving terminal (Rx UE) through the method 1 and method 2 may measure the distance d from the specific terminal through equations (19) and (20). have.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • the base station or the terminal may be replaced with a relay.
  • the terminal (UE) 120 may correspond to an Rx UE and a relay UE.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 controls the memory 114 and / or the RF unit 116 and may be configured to implement the procedures and / or methods described / proposed above. For example, the processor 112 may process the information in the memory 114 to generate the first information / signal and then transmit the wireless signal including the first information / signal through the RF unit 116. have. In addition, the processor 112 may receive the radio signal including the second information / signal through the RF unit 116 and then store the information obtained from the signal processing of the second information / signal in the memory 114. have.
  • processor 112 includes a communication modem designed to implement wireless communication technology (eg, LTE, NR).
  • the memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112.
  • the memory 114 may store software code that includes instructions for performing some or all of the processes controlled by the processor 112 or for performing the procedures and / or methods described / proposed above.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • the RF unit 116 may include a transmitter and / or a receiver.
  • the RF unit 116 may be replaced with a transceiver.
  • the processor 112 and the memory 114 may be part of a processing chip (eg, a System on a Chip, SoC) 111.
  • SoC System on a Chip
  • the terminal 120 includes a processor 122, a memory 124, and a radio frequency unit 126.
  • Processor 122 controls memory 124 and / or RF unit 126 and may be configured to implement the procedures and / or methods described / proposed above.
  • the processor 122 may process information in the memory 124 to generate third information / signal, and then transmit the wireless signal including the third information / signal through the RF unit 126. have.
  • the processor 122 may receive the radio signal including the fourth information / signal through the RF unit 126 and then store information obtained from the signal processing of the fourth information / signal in the memory 124. have.
  • the processor selects a plurality of resources from two or more frequency resources, and transmits a sidelink signal based on the selected plurality of resources.
  • the processor 122 may include a transmitting terminal.
  • a reference signal can be received from the mobile station, and the feedback signal for the reference signal can be transmitted to the transmitting terminal.
  • the feedback signal may be transmitted based on a compensation for a phase change generated when the reference signal is received.
  • Processor 122 includes a communication modem designed to implement wireless communication technology (eg, LTE, NR).
  • the memory 124 is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the memory 124 may store software code that includes instructions for performing some or all of the processes controlled by the processor 122 or for performing the procedures and / or methods described / proposed above.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • RF unit 126 may include a transmitter and / or a receiver.
  • the RF unit 126 may be replaced with a transceiver.
  • the processor 122 and the memory 124 may be part of the processing chip (eg, SoC) 121.
  • embodiments of the present invention have been described mainly based on a signal transmission / reception relationship between a terminal and a base station.
  • This transmission / reception relationship is extended to the same / similarly for signal transmission / reception between the UE and the relay or the BS and the relay.
  • Certain operations described in this document as being performed by a base station may in some cases be performed by an upper node thereof. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), a gNode B (gNB), an access point, and the like.
  • the terminal may be replaced with terms such as a user equipment (UE), a mobile station (MS), a mobile subscriber station (MSS), and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • Embodiments of the present invention as described above may be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명의 일 실시예는, 무선 통신 시스템에서 수신 단말이 송신 단말에게 피드백 신호를 전송하는 방법에 있어서, 상기 수신 단말이 상기 송신 단말로부터 참조신호를 수신하는 단계 및 상기 수신 단말이 상기 참조신호에 대한 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계를 포함하고, 상기 피드백 신호는, 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상에 기반하여 전송되는 방법을 제안한다.

Description

무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말에 대한 것이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 대규모 기계 타입 통신(massive Machine Type Communications, mMTC) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 레이턴시(latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(Enhanced mobile Broadband Communication), mMTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 기술을 NR 이라고 부른다. NR은 5G 무선 접속 기술(radio access technology, RAT)의 일례를 나타낸 표현이다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤로지로 동작하는 하는 UE들이 하나의 셀 안에서 공존할 수 있다.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미하며, V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)과 같은 4 가지 유형으로 구성될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
본 발명에서는 무선 통신 시스템에서 피드백 신호를 전송하는 방법을 제안한다.
또한, 본 발명에서는 주파수 선택적 페이딩 채널에서 PDoA 기반의 positioning 및/또는 ranging을 수행할 때 selective fading에 의한 거리 추정 왜곡을 제거하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선 통신 시스템에서 수신 단말이 송신 단말에게 피드백 신호를 전송하는 방법에 있어서, 상기 수신 단말이 상기 송신 단말로부터 참조신호를 수신하는 단계 및 상기 수신 단말이 상기 참조신호에 대한 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계를 포함하고, 상기 피드백 신호는, 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송되는 방법을 제안한다.
상기 위상 변화에 대한 보상은, 상기 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 상기 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이에 기반하는 위상만큼 회전시키는 것일 수 있다.
상기 피드백 신호를 상기 송신 단말에게 전송하는 단계는, 상기 수신 단말이 상기 참조신호 수신을 위한 상기 제2 FFT 윈도우의 타이밍을 이용하여 상기 피드백 신호를 전송하는 단계를 포함할 수 있다.
상기 위상 변화에 대한 보상은,
Figure PCTKR2019007670-appb-img-000001
으로 표현되며,
Figure PCTKR2019007670-appb-img-000002
는 k번째 주파수 자원 영역에 전송되는 참조신호의 복소수 값이며, x는 기준(reference) 주파수를 나타내며,
Figure PCTKR2019007670-appb-img-000003
는 서브캐리어 간의 간격을 나타내며,
Figure PCTKR2019007670-appb-img-000004
는 상기 제1 FFT 윈도우와 상기 제2 FFT 윈도우 사이의 시간 차이를 나타낼 수 있다.
상기 위상 변화에 대한 보상은,
Figure PCTKR2019007670-appb-img-000005
으로 표현되며,
Figure PCTKR2019007670-appb-img-000006
는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, x는 기준(reference) 주파수를 나타내며,
Figure PCTKR2019007670-appb-img-000007
는 서브캐리어 간의 간격을 나타내며,
Figure PCTKR2019007670-appb-img-000008
는 상기 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 상기 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이이며,
Figure PCTKR2019007670-appb-img-000009
는 상기 제2 FFT 윈도우와 상기 수신 단말의 피드백 신호 전송을 위한 제3 FFT 윈도우 사이의 시간 차이를 나타내는 값일 수 있다.
상기 위상 변화에 대한 보상은, 상기 참조신호에 대한 채널 함수에 기반하는 것이고, 상기 채널 함수에 기반하는 상기 위상 변화에 대한 보상을 위한 시퀀스는
Figure PCTKR2019007670-appb-img-000010
으로 표현되며, 상기 채널 함수는
Figure PCTKR2019007670-appb-img-000011
으로 표현되고,
Figure PCTKR2019007670-appb-img-000012
는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, B k는 상기 k번째 주파수 자원 영역의 다중경로 채널의 위상을 나타내는 값일 수 있다.
상기 피드백 신호는, 상기 참조신호가 수신된 주파수 자원과 동일한 주파수 자원에서 상기 수신 단말에 의해 전송되는 것일 수 있다
상기 방법은, 상기 송신 단말에게 다른 피드백 신호를 전송하는 적어도 하나의 다른 단말이 존재하는 경우, 상기 수신 단말의 센싱(sensing) 결과, 상기 송신 단말의 식별자(ID; identifier), 및 상기 적어도 하나의 다른 단말의 ID 중 적어도 하나 이상에 기반하여, 상기 피드백 신호를 전송하기 위한 전송 자원을 선택하는 단계 및 상기 선택된 전송 자원에서 상기 피드백 신호를 전송하는 단계를 더 포함할 수 있다.
상기 피드백 신호를 상기 송신 단말에게 전송하는 단계는, 상기 송신 단말의 식별자와 상기 수신 단말의 식별자 중 적어도 어느 하나에 기반하여, 상기 피드백 신호의 시퀀스를 설정하는 단계 및 상기 설정된 시퀀스에 기반하여 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계를 더 포함할 수 있다.
상기 방법은, 상기 송신 단말과 상기 수신 단말 사이의 거리(d)를 산출하는 단계; 를 더 포함하고, 상기 거리(d)는
Figure PCTKR2019007670-appb-img-000013
에 기반하여 산출되는 것이며, c는 빛의 속도를 나타내며,
Figure PCTKR2019007670-appb-img-000014
는 제1 주파수를 통하여 수신된 제1 참조신호와 제2 주파수를 통하여 수신된 제2 참조신호의 켤레 곱 결과의 평균에 기반하는 위상 값을 나타내고,
Figure PCTKR2019007670-appb-img-000015
는 상기 다중 경로에 의한 위상 변화에 기반하는 위상 값이며, 상기 m은 상기 제1 주파수와 상기 제2 주파수 사이의 간격을 나타내고,
Figure PCTKR2019007670-appb-img-000016
는 서브캐리어 간의 간격을 나타내며,
Figure PCTKR2019007670-appb-img-000017
는 위상 값을 나타내기 위한 함수이며,
Figure PCTKR2019007670-appb-img-000018
Figure PCTKR2019007670-appb-img-000019
으로 표현되고, H(k)는 k번째 주파수 자원 영역의 다중경로 채널을 나타내며,
Figure PCTKR2019007670-appb-img-000020
으로 표현되고,
Figure PCTKR2019007670-appb-img-000021
는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, B k는 상기 k번째 주파수 자원 영역의 다중경로 채널의 위상을 나타내며,
Figure PCTKR2019007670-appb-img-000022
Figure PCTKR2019007670-appb-img-000023
으로 표현되고, N은 FFT (fast Fourier transform)의 크기를 나타낼 수 있다.
본 발명의 일 실시예는, 무선 통신 시스템에서 피드백 신호를 전송하는 수신 단말에 있어서, 송수신기 및 프로세서 를 포함하고, 상기 프로세서는, 상기 송신 단말로부터 참조신호를 수신하고, 상기 참조신호에 대한 상기 피드백 신호를 상기 송신 단말에게 전송하며, 상기 피드백 신호는, 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송되는 수신 단말을 제안한다.
상기 수신 단말은 이동 단말기, 네트워크 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신할 수 있다.
상기 수신 단말은, 상기 단말의 움직임을 제어하는 신호를 기반으로 적어도 하나의 ADAS(Advanced Driver Assistance System) 기능을 구현할 수 있다.
상기 단말은 사용자의 입력을 수신하여, 장치의 주행 모드를 자율 주행 모드에서 수동 주행 모드로 전환하거나 또는 수동 주행 모드에서 자율 주행 모드로 전환할 수 있다.
상기 수신 단말은 외부 오브젝트 정보를 기반으로 자율 주행하되, 상기 외부 오브젝트 정보는 오브젝트 존재 유무에 대한 정보, 오브젝트의 위치 정보, 상기 수신 단말과 오브젝트와의 거리 정보 및 상기 수신 단말과 오브젝트와의 상대 속도 정보 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예는, 수신 단말이 다중경로 채널에 의한 위상 변화를 고려하여 피드백 신호를 전송할 수 있으므로, 실제 통신 환경에 적합한 통신 환경을 제공할 수 있다.
본 발명의 일 실시예는, 송신 단말이 전송한 참조신호에 기반하여 상기 송신 단말과 상기 수신 단말의 거리를 산출해낼 수 있으므로, 상기 거리에 기반하여 동작하는 통신 시스템의 동작들을 지원할 수 있다.
본 발명의 일 실시예는 two tone에서 참조신호가 전송되는 경우 i) phase 차이가 너무 적거나 ii) two tone이 너무 이격되어 있는 경우에도, 송신 단말과 수신 단말 사이의 거리를 산출할 때 발생할 수 있는 오차를 줄일 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 NR에서의 프레임 구조의 일례를 나타낸다.
도 2는 NR에서의 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3은 사이드링크 동기화를 설명하기 위한 도면이다.
도 4에는 사이드링크 동기신호가 전송되는 시간 자원 단위가 도시되어 있다.
도 5는 사이드링크 리소스 풀의 예가 도시되어 있다.
도 6에는 사이드링크 전송모드에 따른 스케줄링 방식이 도시되어 있다.
도 7에는 사이드링크 전송 자원의 선택이 도시되어 있다.
도 8에는 사이드링크 PSCCH의 전송에 관련된 내용이 도시되어 있다.
도 9에는 사이드링크 V2X에서 PSCCH의 전송에 관련된 내용이 도시되어 있다.
도 10은 본 발명의 일 실시예에 따른 단말의 동작을 나타내는 순서도이다
도 11은 송신 단말(UE A)과 수신 단말(UE B) 사이의 거리(d)를 나타내기 위한 도면이다.
도 12는 본 발명의 일 실시예에 따른 송신 단말과 수신 단말 사이의 FFT window의 time offset과 propagation delay를 설명하기 위한 도면이다.
도 13은 본 발명의 다른 실시예에 따른, 송신 단말과 수신 단말 사이의 FFT window의 time offset과 propagation delay를 설명하기 위한 도면이다.
도 14는 본 발명의 장치를 설명하는 도면이다.
이하에서, 하향링크(downlink, DL)는 기지국(base station, BS)에서 사용자 기기(user equipment, UE)로의 통신을 의미하며, 상향링크(uplink, UL)는 UE에서 BS로의 통신을 의미한다. 하향링크에서 전송기(transmitter)는 BS의 일부이고, 수신기(receiver)는 UE의 일부일 수 있다. 상향링크에서 전송이기는 UE의 일부이고, 수신기는 BS의 일부일 수 있다. 본 명세에서 BS는 제 1 통신 장치로, UE는 제 2 통신 장치로 표현될 수도 있다. BS는 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 접속 포인트(access point, AP), 네트워크 혹은 5G 네트워크 노드, AI 시스템, RSU(road side unit), 로봇 등의 용어에 의해 대체될 수 있다. 또한, UE는 단말(terminal), MS(Mobile Station), UT(User Terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier FDMA) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다.
본 명세(disclosure)에서, 노드(node)라 함은 UE와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 포인트(point)을 말한다. 다양한 형태의 BS들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이(relay), 리피터(repeater) 등이 노드가 될 수 있다. 또한, 노드는 BS가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 BS의 전력 레벨(power level) 더욱 낮은 전력 레벨을 갖는다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.
본 명세에서 셀(cell)이라 함은 하나 이상의 노드가 통신 서비스를 제공하는 일정 지리적 영역 혹은 무선 자원을 말한다. 지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 크기인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 나르는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다.
본 명세에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상향링크/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다.
한편, 무선 자원과 연관된 "셀"은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL 컴포넌트 반송파(component carrier, CC) 와 UL CC의 조합으로 정의될 수 있다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수도 있다. 반송파 집성(carrier aggregation)이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 해당 셀을 통해 전송되는 시스템 정보(system information)에 의해 지시될 수 있다. 여기서, 반송파 주파수는 각 셀 혹은 CC의 중심 주파수(center frequency)와 같을 수도 혹은 다를 수도 있다. 이하에서는 1차 주파수(primary frequency) 상에서 동작하는 셀을 1차 셀(primary cell, Pcell) 혹은 PCC로 지칭하고, 2차 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 2차 셀(secondary cell, Scell) 혹은 SCC로 칭한다. Scell이라 함은 UE가 BS와 RRC(Radio Resource Control) 연결 수립(connection establishment) 과정을 수행하여 상기 UE와 상기 BS 간에 RRC 연결이 수립된 상태, 즉, 상기 UE가 RRC_CONNECTED 상태가 된 후에 설정될 수 있다. 여기서 RRC 연결은 UE의 RRC와 BS의 RRC가 서로 RRC 메시지를 주고 받을 수 있는 통로를 의미할 수 있다. Scell은 UE에게 추가적인 무선 자원을 제공하기 위해 설정될 수 있다. UE의 성능(capabilities)에 따라, Scell이 Pcell과 함께, 상기 UE를 위한 서빙 셀의 모음(set)을 형성할 수 있다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, Pcell로만 설정된 서빙 셀이 단 하나 존재한다.
셀은 고유의 무선 접속 기술을 지원한다. 예를 들어, LTE 셀 상에서는 LTE 무선 접속 기술(radio access technology, RAT)에 따른 전송/수신이 수행되며, 5G 셀 상에서는 5G RAT에 따른 전송/수신이 수행된다.
반송파 집성 기술은 광대역 지원을 위해 목표 대역폭(bandwidth)보다 작은 시스템 대역폭을 가지는 복수의 반송파들을 집성하여 사용하는 기술을 말한다. 반송파 집성은 각각이 시스템 대역폭(채널 대역폭이라고도 함)을 형성하는 복수의 반송파 주파수들을 사용하여 하향링크 혹은 상향링크 통신을 수행한다는 점에서, 복수의 직교하는 부반송파들로 분할된 기본 주파수 대역을 하나의 반송파 주파수에 실어 하향링크 혹은 상향링크 통신을 수행하는 OFDMA 기술과 구분된다. 예를 들어, OFDMA 혹은 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM)의 경우에는 일정 시스템 대역폭을 갖는 하나의 주파수 대역이 일정 부반송파 간격을 갖는 복수의 부반송파들로 분할되고, 정보/데이터가 상기 복수의 부반송파들 내에서 매핑되며, 상기 정보/데이터가 맵핑된 상기 주파수 대역은 주파수 상향 변환(upconversion)을 거쳐 상기 주파수 대역의 반송파 주파수로 전송된다. 무선 반송파 집성의 경우에는 각각이 자신의 시스템 대역폭 및 반송파 주파수를 갖는 주파수 대역들이 동시에 통신에 사용될 수 있으며, 반송파 집성에 사용되는 각 주파수 대역은 일정 부반송파 간격을 갖는 복수의 부반송파들로 분할될 수 있다.
3GPP 기반 통신 표준은 물리 계층(physical layer)의 상위 계층(upper layer)(예, 매제 접속 제어(medium access control, MAC) 계층, 무선 링크 제어(radio link control, RLC) 계층, 패킷 데이터 수렴 프로토콜(protocol data convergence protocol, PDCP) 계층, 무선 자원 제어(radio resource control, RRC) 계층, 서비스 데이터 적응 프로토콜(service data adaptation protocol, SDAP), 비-접속 층(non-access stratum, NAS) 계층)로부터 기원한 정보를 나르는 자원 요소(resource element)들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의한다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 BS와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS), 채널 상태 정보 RS(channel state information RS, CSI-RS), 복조 참조 신호(demodulation reference signal, DM-RS)가 하향링크 참조 신호들로서 정의된다. 한편, 3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DM-RS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 명세에서 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)와 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH)는 물리 계층의 하향링크 제어 정보(downlink control information, DCI)와 하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 각각(respectively) 의미할 수 있다. 또한, 물리 상향링크 제어 채널(physical uplink control channel), 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH) 및 물리 임의 접속 채널(physical random access channel)는 물리 계층의 상향링크 제어 정보(uplink control information, UCI), 상향링크 데이터 및 임의 접속 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 각각 의미한다. 이하에서 UE가 상향링크 물리 채널(예, PUCCH, PUSCH, PRACH)를 전송한다는 것은 해당 상향링크 물리 채널 상에서 혹은 통해서 DCI, 상향링크 데이터, 또는 임의 접속 신호를 전송한다는 것을 의미할 수 있다. BS가 상향링크 물리 채널을 수신한다는 것은 해당 상향링크 물리 채널 상에서 혹은 통해서 DCI, 상향링크 데이터, 또는 임의 접속 신호를 수신한다는 것을 의미할 수 있다. BS가 하향링크 물리 채널(예, PDCCH, PDSCH)를 전송한다는 것은 해당 하향링크 물리 채널 상에서 혹은 통해서 DCI 혹은 상향링크 데이터를 전송한다는 것과 동일한 의미로 사용된다. UE가 하향링크 물리 채널을 수신한다는 것은 해당 하향링크 물리 채널 상에서 혹은 통해서 DCI 혹은 상향링크 데이터를 수신한다는 것을 의미할 수 있다.
본 명세에서 수송 블록(transport block)은 물리 계층을 위한 페이로드이다. 예를 들어, 상위 계층 혹은 매체 접속 제어(medium access control, MAC) 계층으로부터 물리 계층에 주어진 데이터가 기본적으로 수송 블록으로 지칭된다.
본 명세에서 HARQ는 오류 제어 방법의 일종이다. 하향링크를 통해 전송되는 HARQ-ACK은 상향링크 데이터에 대한 오류 제어를 위해 사용되며, 상향링크를 통해 전송되는 HARQ-ACK은 하향링크 데이터에 대한 오류 제어를 위해 사용된다. HARQ 동작을 수행하는 전송단은 데이터(예, 수송 블록, 코드워드)를 전송한 후 긍정 확인(ACK)를 기다린다. HARQ 동작을 수행하는 수신단은 데이터를 제대로 받은 경우만 긍정 확인(ACK)을 보내며, 수신 데이터에 오류가 생긴 경우 부정 확인(negative ACK, NACK)을 보낸다. 전송단이 ACK을 수신한 경우에는 (새로운) 데이터를 전송할 수 있고, NACK을 수신한 경우에는 데이터를 재전송할 수 있다. BS가 스케줄링 정보와 상기 스케줄링 정보에 따른 데이터를 전송한 뒤, UE로부터 ACK/NACK을 수신하고 재전송 데이터가 전송될 때까지 시간 딜레이(delay)가 발생한다. 이러한 시간 딜레이는 채널 전파 지연(channel propagation delay), 데이터 디코딩(decoding)/인코딩(encoding)에 걸리는 시간으로 인해 발생한다. 따라서, 현재 진행 중인 HARQ 프로세스가 끝난 후에 새로운 데이터를 보내는 경우, 시간 딜레이로 인해 데이터 전송에 공백이 발생한다. 따라서, 시간 딜레이 구간 동안에 데이터 전송에 공백이 생기는 것을 방지하기 위하여 복수의 독립적인 HARQ 프로세스가 사용된다. 예를 들어, 초기 전송과 재전송 사이에 7번의 전송 기회(occasion)가 있는 경우, 통신 장치는 7개의 독립적인 HARQ 프로세스를 운영하여 공백 없이 데이터 전송을 수행할 수 있다. 복수의 병렬 HARQ 프로세스들을 활용하면, 이전 UL/DL 전송에 대한 HARQ 피드백을 기다리는 동안 UL/DL 전송이 연속적으로 수행될 수 있다.
본 명세에서 채널 상태 정보(channel state information, CSI)는 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 링크라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다. CSI는 채널 품질 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자 (precoding matrix indicator, PMI), CSI-RS 자원 지시자(CSI-RS resource indicator, CRI), SSB 자원 지시자(SSB resource indicator, SSBRI), 레이어 지시자(layer indicator. LI), 랭크 지시자(rank indicator, RI) 또는 참조 신호 수신 품질(reference signal received power, RSRP) 중 적어도 하나를 포함할 수 있다.
본 명세에서 주파수 분할 다중화(frequency division multiplexing, FDM)라 함은 신호/채널/사용자들을 서로 다른 주파수 자원에서 전송/수신하는 것을 의미할 수 있으며, 시간 분할 다중화(time division multiplexing, CDM)이라 함은 신호/채널/사용자들을 서로 다른 시간 자원에서 전송/수신하는 것을 의미할 수 있다.
본 발명에서 주파수 분할 듀플렉스(frequency division duplex, FDD)는 상향링크 반송파에서 상향링크 통신이 수행되고 상기 상향링크용 반송파에 링크된 하향링크용 반송파에서 하향링크 통신이 수행되는 통신 방식을 말하며, 시간 분할 듀플렉스(time division duplex, TDD)라 함은 상향링크 통신과 하향링크 통신이 동일 반송파에서 시간을 나누어 수행되는 통신 방식을 말한다.
본 명세에서 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 3GPP TS 36, 24, 38 시리즈에 해당하는 문서(http://www.3gpp.org/specifications/specification-numbering)를 참조할 수 있다.
프레임 구조
도 1은 NR에서의 프레임 구조의 일례를 나타낸 도이다.
NR 시스템은 다수의 뉴머롤로지들을 지원할 수 있다. 여기에서, 뉴머롤로지는 부반송파 간격(subcarrier spacing)과 순환 프리픽스(cyclic prefix, CP) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 부반송파 간격은 기본 부반송파 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 부반송파 간격을 이용하지 않는다고 가정할지라도, 이용되는 뉴머롤로지는 셀의 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 직교 주파수 분할 다중화(orthogonal frequency division multiplexing, OFDM) 뉴머롤로지 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다. 대역폭 파트에 대한 μ 및 순환 프리픽스는 BS에 의해 제공되는 RRC 파라미터들로부터 얻어진다.
Figure PCTKR2019007670-appb-img-000024
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤러지(예, 부반송파 간격(subcarrier spacing))를 지원한다. 예를 들어, 부반송파 간격이 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, 부반송파 간격이 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 레이턴시(lower latency) 및 더 넓은 반송파 대역폭(wider carrier bandwidth)를 지원하며, 부반송파 간격이 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
자원 그리드(resource grid)
도 2는 NR에서의 자원 그리드(resource grid)의 일 예를 나타낸다.
도 2를 참고하면, 각 부반송파 간격 설정 및 반송파에 대해, N size,μ grid*N RB sc개 부반송파들 및 14*2 μ OFDM 심볼들의 자원 그리드가 정의되며, 여기서 N size,μ grid는 BS로부터의 RRC 시그널링에 의해 지시된다. N size,μ grid는 부반송파 간격 설정 μ뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. 부반송파 간격 설정 μ, 안테나 포트 p 및 전송 방향(상향링크 또는 하향링크)에 대해 하나의 자원 그리드가 있다. 부반송파 간격 설정 μ 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 ( k, l)에 의해 고유하게(uniquely) 식별되며, 여기서 k는 주파수 도메인에서의 인덱스이고 l은 참조 포인트에 상대적인 주파수 도메인 내 심볼 위치를 지칭한다. 부반송파 간격 설정 μ 및 안테나 포트 p에 대한 자원 요소 ( k, l)은 물리 자원 및 복소 값(complex value) a (p,μ) k,l에 해당한다. 자원 블록(resource block, RB)는 주파수 도메인에서 N RB sc=12개의 연속적인(consecutive) 부반송파들로 정의된다.
NR 시스템에서 지원될 넓은 대역폭을 UE가 한 번에 지원할 수 없을 수 있다는 점을 고려하여, UE가 셀의 주파수 대역폭 중 일부(이하, 대역폭 파트(bandwidth part, BWP))에서 동작하도록 설정될 수 있다.
대역폭 파트 (Bandwidth part, BWP)
NR 시스템에서는 하나의 반송파(carrier)당 최대 400 MHz까지 지원될 수 있다. 이러한 와이드밴드(wideband) 반송파에서 동작하는 UE가 항상 반송파 전체에 대한 무선 주파수(radio frequency, RF) 모듈을 켜둔 채로 동작한다면 UE 배터리 소모가 커질 수 있다. 혹은 하나의 와이드밴드 반송파 내에 동작하는 여러 사용 예(use case)들 (e.g., eMBB, URLLC, mMTC, V2X 등)을 고려할 때 해당 반송파 내에 주파수 대역별로 서로 다른 뉴머롤로지(예, 부반송파 간격)가 지원될 수 있다. 혹은 UE별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 BS는 와이드밴드 반송파의 전체 대역폭이 아닌 일부 대역폭에서만 동작하도록 UE에게 지시할 수 있으며, 해당 일부 대역폭을 대역폭 파트(bandwidth part, BWP)라 칭한다. 주파수 도메인에서 BWP는 반송파 상의 대역폭 파트 i 내 뉴머롤러지 μi에 대해 정의된 인접한(contiguous) 공통 자원 블록들의 서브셋이며, 하나의 뉴머롤로지(예, 부반송파 간격, CP 길이, 슬롯/미니-슬롯 지속기간)가 설정될 수 있다.
한편, BS는 UE에게 설정된 하나의 반송파 내에 하나 이상의 BWP를 설정할 수 있다. 혹은, 특정 BWP에 UE들이 몰리는 경우 부하 밸런싱(load balancing)을 위해 일부 UE들을 다른 BWP로 옮길 수 있다. 혹은, 이웃 셀들 간의 주파수 도메인 인터-셀 간섭 소거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 대역폭 중 가운데 일부 스펙트럼을 배제하고 셀의 양쪽 BWP들을 동일 슬롯 내에 설정할 수 있다. 즉, BS는 와이드밴드 반송파 와 연관(associate)된 UE에게 적어도 하나의 DL/UL BWP를 설정해 줄 수 있으며, 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (물리 계층 제어 신호인 L1 시그널링, MAC 계층 제어 신호인 MAC 제어 요소(control element, CE), 또는 RRC 시그널링 등에 의해) 활성화(activate)시킬 수 있고 다른 설정된 DL/UL BWP로 스위칭할 것을 (L1 시그널링, MAC CE, 또는 RRC 시그널링 등에 의해) 지시하거나, 타이머 값을 설정하여 타이머가 만료(expire)되면 UE가 정해진 DL/UL BWP로 스위칭하도록 할 수도 있다. 활성화된 DL/UL BWP를 특히 활성(active) DL/UL BWP라고 한다. UE가 초기 접속(initial access) 과정에 있거나, 혹은 UE의 RRC 연결이 셋업 되기 전 등의 상황에서는 UE가 DL/UL BWP에 대한 설정(configuration)을 수신하지 못할 수도 있다. 이러한 상황에서 UE가 가정하는 DL/UL BWP는 초기 활성 DL/UL BWP라고 한다.
사이드링크 단말의 동기 획득
TDMA(time division multiple access) 및 FDMA(frequency division multiples access) 시스템에서, 정확한 시간 및 주파수 동기화는 필수적이다. 시간 및 주파수 동기화가 정확하게 되지 않으면, 심볼 간 간섭(intersymbol interference: ISI) 및 반송파간 간섭(intercarrier interference: ICI)을 야기하게 되어 시스템 성능이 저하된다. 이는, V2X에도 마찬가지이다. V2X에서는 시간/주파수 동기화를 위해, 물리 계층에서는 사이드링크 동기 신호(sidelink synchronization signal: SLSS)를 사용하고, RLC(radio link control) 계층에서는 MIB-SL-V2X(master information block-sidelink-V2X)를 사용할 수 있다.
도 3은 V2X에서 동기화의 소스 또는 동기화의 기준에 대한 예를 도시한 것이다.
도 3과 같이, V2X에서, 단말은 GNSS(global navigation satellite systems)에 직접적으로 동기화 되거나, 혹은 GNSS에 직접적으로 동기화된 (네트워크 커버리지 내의 혹은 네트워크 커버리지 밖의) 단말을 통해 비간접적으로 GNSS에 동기화 될 수 있다. GNSS가 동기 소스로 설정된 경우, 단말은 UTC(Coordinated Universal Time) 및 (미리)설정된 DFN(direct frame number) 오프셋을 사용하여 DFN 및 서브프레임 번호를 계산할 수 있다.
또는, 단말은 기지국에 직접 동기화되거나, 기지국에 시간/주파수 동기화된 다른 단말에게 동기화될 수 있다. 예를 들어, 단말이 네트워크 커버리지 내에 있는 경우, 상기 단말은 기지국이 제공하는 동기화 정보를 수신하고, 상기 기지국에 직접 동기화될 수 있다. 그 후, 동기화 정보를 인접한 다른 단말에게 제공할 수 있다. 기지국 타이밍이 동기화의 기준으로 설정된 경우, 동기화 및 하향링크 측정을 위해 단말은 해당 주파수에 연관된 셀(상기 주파수에서 셀 커버리지 내에 있는 경우), 프라이머리 셀 또는 서빙 셀(상기 주파수에서 셀 커버리지 바깥에 있는 경우)을 따를 수 있다.
기지국(서빙 셀)은 V2X 사이드링크 통신에 사용되는 반송파에 대한 동기화 설정을 제공할 수 있다. 이 경우, 단말은 상기 기지국으로부터 수신한 동기화 설정을 따를 수 있다. 만약, 상기 V2X 사이드링크 통신에 사용되는 반송파에서 아무 셀도 검출하지 못하였고, 서빙 셀로부터 동기화 설정도 수신하지 못하였다면, 단말은 미리 설정된 동기화 설정을 따를 수 있다.
또는, 단말은 기지국이나 GNSS로부터 직접 또는 간접적으로 동기화 정보를 획득하지 못한 다른 단말에게 동기화될 수도 있다. 동기화의 소스 및 선호도는 단말에게 미리 설정될 수 있거나 또는 기지국에 의하여 제공되는 제어 메시지를 통해 설정될 수 있다.
이제, 동기 신호(SLSS) 및 동기화 정보에 대해 설명한다.
SLSS는 사이드링크 특정적인 시퀀스(sequence)로, PSSS(primary sidelink synchronization signal)와 SSSS(secondary sidelink synchronization signal)를 포함할 수 있다.
각 SLSS는 물리 계층 사이드링크 동기화 ID(identity)를 가질 수 있으며, 그 값은 0부터 335 중 어느 하나일 수 있다. 상기 값들 중에서 어느 값을 사용하는지에 따라 동기화 소스를 식별할 수도 있다. 예를 들어, 0, 168, 169는 GNSS, 1에서 167은 기지국, 170에서 335은 커버리지 바깥임을 의미할 수 있다. 또는, 물리 계층 사이드링크 동기화 ID(identity)의 값들 중에서 0에서 167은 네트워크에 의하여 사용되는 값들이고, 168에서 335는 네트워크 커버리지 바깥에서 사용되는 값들일 수도 있다.
도 4에는 SLSS가 전송되는 시간 자원 단위가 도시되어 있다. 여기서 시간 자원 단위는 LTE/LTE-A의 subframe, 5G에서 slot을 의미할 수 있으며, 구체적인 내용은 3GPP TS 36 시리즈 또는 38 시리즈 문서에 제시된 내용에 의한다. PSBCH(Physical sidelink broadcast channel)는 사이드링크 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보(예를 들어, SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, subframe offset, 브로드캐스트 정보 등)가 전송되는 (방송) 채널일 수 있다. PSBCH는 SLSS와 동일한 시간 자원 단위 상에서 또는 후행하는 시간 자원 단위 상에서 전송될 수 있다. DM-RS는 PSBCH의 복조를 위해 사용될 수 있다.
사이드링크 전송 모드
사이드링크에는 전송 모드 1, 2, 3 및 4가 있다.
전송 모드 1/3에서는, 기지국이 단말 1에게 PDCCH(보다 구체적으로 DCI)를 통해 자원 스케줄링을 수행하고, 단말 1은 해당 자원 스케줄링에 따라 단말 2와 D2D/V2X 통신을 수행한다. 단말 1은 단말 2에게 PSCCH(physical sidelink control channel)을 통해 SCI(sidelink control information)을 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH(physical sidelink shared channel)을 통해 전송할 수 있다. 전송 모드 1은 D2D에, 전송 모드 3은 V2X에 적용될 수 있다.
전송 모드 2/4는, 단말이 스스로 스케줄링을 하는 모드라 할 수 있다. 보다 구체적으로, 전송 모드 2는 D2D에 적용되며, 설정된 자원 풀 내에서 단말이 자원을 스스로 선택하여 D2D 동작을 수행할 수 있다. 전송 모드 4는 V2X에 적용되며, 센싱 과정을 거쳐 선택 윈도우 내에서 단말이 스스로 자원을 선택한 후 V2X 동작을 수행할 수 있다. 단말 1은 단말 2에게 PSCCH을 통해 SCI을 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH을 통해 전송할 수 있다. 이하, 전송 모드를 모드로 약칭할 수 있다.
기지국이 PDCCH를 통해 단말에게 전송하는 제어 정보를 DCI(downlink control information)이라 칭하는데 반해, 단말이 PSCCH를 통해 다른 단말에게 전송하는 제어 정보를 SCI라 칭할 수 있다. SCI는 사이드링크 스케줄링 정보를 전달할 수 있다. SCI에는 여러가지 포맷이 있을 수 있는데, 예컨대, SCI 포맷 0과 SCI 포맷 1이 있을 수 있다.
SCI 포맷 0은 PSSCH의 스케줄링을 위해 사용될 수 있다. SCI 포맷 0에는, 주파수 호핑 플래그(1 비트), 자원 블록 할당 및 호핑 자원 할당 필드(사이드링크의 자원 블록 개수에 따라 비트 수가 달라질 수 있음), 시간 자원 패턴(time resource pattern, 7 비트), MCS (modulation and coding scheme, 5 비트), 시간 어드밴스 지시(time advance indication, 11비트), 그룹 목적지 ID(group destination ID, 8 비트) 등을 포함할 수 있다.
SCI 포맷 1은 PSSCH의 스케줄링을 위해 사용될 수 있다. SCI 포맷 1에는, 우선권(priority, 3 비트), 자원 유보(resource reservation, 4 비트), 초기 전송 및 재전송의 주파수 자원 위치(사이드링크의 서브 채널 개수에 따라 비트 수가 달라질 수 있음), 초기 전송과 재전송 간의 시간 갭(time gap between initial transmission and retransmission, 4 비트), MCS(5 비트), 재전송 인덱스(1 비트), 유보된 정보 비트(reserved information bit) 등을 포함한다. 유보된 정보 비트를 이하 유보된 비트라고 약칭할 수 있다. 유보된 비트는 SCI 포맷 1의 비트 사이즈가 32비트가 될 때까지 추가될 수 있다.
SCI 포맷 0은 전송 모드 1, 2에 사용될 수 있고, SCI 포맷 1은 전송 모드 3, 4에 사용될 수 있다.
사이드링크 리소스 풀
도 5는 사이드링크 통신을 수행하는 UE1, UE2 및 이들이 사용하는 사이드링크 리소스 풀의 예가 도시되어 있다.
도 5(a)에서 UE는 단말 또는 사이드링크 통신 방식에 따라 신호를 송수신하는 기지국 등의 네트워크 장비를 의미한다. 단말은 일련의 자원의 집합을 의미하는 리소스 풀 내에서 특정한 자원에 해당하는 리소스 유닛을 선택하고 해당 리소스 유닛을 사용하여 사이드링크 신호를 송신할 수 있다. 수신 단말(UE2)는 UE1이 신호를 전송할 수 있는 리소스 풀을 구성(configured) 받고 해당 pool내에서 UE1의 신호를 검출할 수 있다. 여기서 리소스 풀은 UE1이 기지국의 연결 범위에 있는 경우 기지국이 알려줄 수 있으며, 기지국의 연결 범위 밖에 있는 경우에는 다른 단말이 알려주거나 또는 사전에 정해진 자원으로 결정될 수도 있다. 일반적으로 리소스 풀은 복수의 리소스 유닛으로 구성되며 각 단말은 하나 또는 복수의 리소스 유닛을 선정하여 자신의 사이드링크 신호 송신에 사용할 수 있다. 리소스 유닛은 도 5(b)에 예시된 것과 같을 수 있다. 도 5(b)를 참조하면, 전체 주파수 자원이 NF개로 분할되고 전체 시간 자원이 NT개로 분할되어 총 NF*NT개의 리소스 유닛이 정의되는 것을 알 수 있다. 여기서는 해당 리소스 풀이 NT 시간 자원 단위를 주기로 반복된다고 할 수 있다. 특히, 하나의 리소스 유닛이 도시된 바와 같이 주기적으로 반복하여 나타날 수 있다. 또는, 시간이나 주파수 차원에서의 다이버시티 효과를 얻기 위해, 하나의 논리적인 리소스 유닛이 매핑되는 물리적 리소스 유닛의 인댁스가 시간에 따라서 사전에 정해진 패턴으로 변화할 수도 있다. 이러한 리소스 유닛 구조에 있어서 리소스 풀이란 사이드링크 신호를 송신하고자 하는 단말이 송신에 사용할 수 있는 리소스 유닛의 집합을 의미할 수 있다.
리소스 풀은 여러 종류로 세분화될 수 있다. 먼저 각 리소스 풀에서 전송되는 사이드링크 신호의 컨텐츠(contents)에 따라서 구분될 수 있다. 예를 들어, 사이드링크 신호의 컨텐츠는 구분될 수 있으며, 각각에 대하여 별도의 리소스 풀이 구성될 수 있다. 사이드링크 신호의 컨텐츠로서, SA(Scheduling assignment 또는 Physical sidelink control channle(PSCCH)), 사이드링크 데이터 채널, 디스커버리 채널(Discovery channel)이 있을 수 있다. SA는 송신 단말이 후행하는 사이드링크 데이터 채널의 전송으로 사용하는 리소스의 위치 및 그 외 데이터 채널의 복조를 위해서 필요한 MCS(modulation and coding scheme)나 MIMO 전송 방식, TA(timing advance)등의 정보를 포함하는 신호일 수 있다. 이 신호는 동일 리소스 유닛 상에서 사이드링크 데이터와 함께 멀티플렉싱되어 전송되는 것도 가능하며, 이 경우 SA 리소스 풀이란 SA가 사이드링크 데이터와 멀티플렉싱되어 전송되는 리소스의 풀을 의미할 수 있다. 다른 이름으로 사이드링크 제어 채널(control channel), PSCCH(physical sidelink control channel)로 불릴 수도 있다. 사이드링크 데이터 채널(또는, PSSCH(Physical sidelink shared channel))은, 송신 단말이 사용자 데이터를 전송하는데 사용하는 리소스의 pool일 수 있다. 만일 동일 리소스 유닛 상에서 사이드링크 데이터와 함께 SA가 멀티플렉싱되어 전송되는 경우 사이드링크 데이터 채널을 위한 리소스 풀에서는 SA 정보를 제외한 형태의 사이드링크 데이터 채널만이 전송 될 수 있다. 다시 말하면 SA 리소스 풀 내의 개별 리소스 유닛 상에서 SA 정보를 전송하는데 사용되었던 REs를 사이드링크 데이터 채널 리소스 풀에서는 여전히 사이드링크 데이터를 전송하는데 사용할 수 있다. 디스커버리 채널은 송신 단말이 자신의 ID 등의 정보를 전송하여 인접 단말로 하여금 자신을 발견할 수 있도록 하는 메시지를 위한 리소스 풀일 수 있다.
사이드링크 신호의 컨텐츠가 동일한 경우에도 사이드링크 신호의 송수신 속성에 따라서 상이한 리소스 풀을 사용할 수 있다. 예를 들어, 동일한 사이드링크 데이터 채널이나 디스커버리 메시지라 하더라도 사이드링크 신호의 송신 타이밍 결정 방식(예를 들어 동기 기준 신호의 수신 시점에서 송신되는지 아니면 거기에서 일정한 TA를 적용하여 전송되는지)이나 자원 할당 방식(예를 들어 개별 신호의 전송 자원을 eNB가 개별 송신 UE에게 지정해주는지 아니면 개별 송신 UE가 pool 내에서 자체적으로 개별 신호 전송 자원을 선택하는지), 신호 포맷(예를 들어 각 사이드링크 신호가 한 시간 자원 단위에서 차지하는 심볼의 개수나, 한 사이드링크 신호의 전송에 사용되는 시간 자원 단위의 개수), eNB로부터의 신호 세기, 사이드링크 UE의 송신 전력 세기 등에 따라서 다시 상이한 리소스 풀로 구분될 수 있다. 사이드링크 커뮤니케이션에서 eNB가 사이드링크 송신 UE의 송신 자원을 직접 지시하는 방식을 사이드링크 전송 모드(Sidelink transmission mode) 1, 전송 자원 영역이 사전에 설정되어 있거나, eNB가 전송 자원 영역을 지정하고, UE가 직접 송신 자원을 선택하는 방식을 사이드링크 전송 모드 2라 한다. 사이드링크 discovery의 경우에는 eNB가 직접 자원을 지시하는 경우에는 Type 2, 사전에 설정된 자원영역 또는 eNB가 지시한 자원 영역에서 UE가 직접 전송 자원을 선택하는 경우는 Type 1이라 부르기로 한다.
V2X에서는 집중형 스케줄링(Centralized scheduling)에 기반하는 사이드링크 전송 모드 3와 분산형 스케줄링 방식의 사이드링크 전송 모드 4가 사용된다.
도 6에는 이러한 두 가지 전송모드에 따른 스케줄링 방식이 도시되어 있다. 도 6를 참조하면, 도 6(a)의 집중형 스케줄링 방식의 전송 모드 3에서는 차량이 기지국에 사이드링크 자원을 요청하면(S901a), 기지국이 자원을 할당(S902a)해 주고 그 자원을 통해 다른 차량에게 전송을 수행(S903a)한다. 집중형 전송 방식에서는 다른 캐리어의 자원도 스케줄링될 수 있다. 이에 비해, 전송 모드 4에 해당하는 도 6(b)의 분산형 스케줄링 방식은, 차량은 기지국으로부터 미리 설정받은(S901b) 자원, 리소스 풀을 센싱하다가 전송에 사용할 자원을 선택(S902b)한 후, 선택한 자원을 통해 다른 차량에게 전송을 수행(S903b)할 수 있다.
이 때 전송 자원의 선택은 도 7에 도시된 바와 같이, 다음 패킷의 전송 자원도 예약되는 방식이 사용된다. V2X에서는 MAC PDU 별 2회의 전송이 이루어지는데, 최초 전송을 위한 자원 선택시 재전송을 위한 자원이 일정한 시간 간격(time gap)을 두고 예약되는 것이다. 단말은 센싱 윈도우 내에서의 센싱을 통해 다른 단말이 예약한 전송 자원들 또는 다른 단말이 사용하고 있는 자원들을 파악하고, 선택 윈도우 내에서 이를 배재한 후 남아 있는 자원들 중 간섭이 적은 자원에서 랜덤하게 자원을 선택할 수 있다.
예를 들어, 단말은 센싱 윈도우 내에서, 예약된 자원들의 주기에 대한 정보를 포함하는 PSCCH를 디코딩하고, 상기 PSCCH에 기반하여 주기적으로 결정된 자원들에서 PSSCH RSRP를 측정할 수 있다. 상기 PSSCH RSRP 값이 문턱치를 초과하는 자원들을 선택 윈도우 내에서 제외할 수 있다. 그 후, 선택 윈도우 내의 남은 자원들에서 사이드링크 자원을 랜덤하게 선택할 수 있다.
또는, 센싱 윈도우 내에서 주기적인 자원들의 RSSI(Received signal strength indication)를 측정하여 예컨대, 하위 20%에 해당하는 간섭이 적은 자원들을 파악한다. 그리고 상기 주기적인 자원들 중 선택 윈도우에 포함된 자원들 중에서 사이드링크 자원을 랜덤하게 선택할 수도 있다. 예를 들어, PSCCH의 디코딩을 실패한 경우, 이러한 방법을 사용할 수 있다.
이에 대한 상세한 설명은 3GPP TS 36.213 V14.6.0 문서 14절을 참조하며, 본 발명의 종래기술로써 명세서에 산입된다.
PSCCH의 송수신
사이드링크 전송 모드 1 단말은 기지국으로부터 구성 받은 자원을 통해 PSCCH(또는, 사이드링크 제어 신호, SCI(Sidelink Control Information))을 전송할 수 있다. 사이드링크 전송 모드 2 단말은 기지국으로부터 사이드링크 송신에 사용할 리소스를 구성 받는(configured)다. 그리고, 구성 받은 그 리소스에서 시간 주파수 자원을 선택하여 PSCCH를 전송할 수 있다.
사이드링크 전송 모드 1 또는 2에서 PSCCH 주기는 도 8에 도시된 바와 같이 정의된 것일 수 있다.
도 8을 참조하면, 첫 번째 PSCCH(또는 SA) 주기는 특정 시스템 프레임으로부터 상위계층시그널링에 의해 지시된 소정 오프셋만큼 떨어진 시간 자원 단위에서 시작될 수 있다. 각 PSCCH 주기는 PSCCH 리소스 풀과 사이드링크 데이터 전송을 위한 시간 자원 단위 풀을 포함할 수 있다. PSCCH 리소스 풀은 PSCCH 주기의 첫 번째 시간 자원 단위부터 시간 자원 단위 비트맵에서 PSCCH가 전송되는 것으로 지시된 시간 자원 단위 중 마지막 시간 자원 단위를 포함할 수 있다. 사이드링크 데이터 전송을 위한 리소스 풀은, 모드 1의 경우, T-RPT(Time-resource pattern for transmission 또는 TRP(Time-resource pattern))가 적용됨으로써 실제 데이터 전송에 사용되는 시간 자원 단위가 결정될 수 있다. 도시된 바와 같이, PSCCH 리소스 풀을 제외한 PSCCH 주기에 포함된 시간 자원 단위의 개수가 T-RPT 비트 개수보다 많은 경우 T-RPT는 반복하여 적용될 수 있으며, 마지막으로 적용되는 T-RPT는 남은 시간 자원 단위 개수만큼 truncated되어 적용될 수 있다. 송신 단말은 지시한 T-RPT에서 T-RPT 비트맵이 1인 위치에서 송신을 수행하며 하나의 MAC PDU는 4번씩 송신을 하게 된다.
V2X, 즉 사이드링크 전송 모드 3 또는 4의 경우, 사이드링크와 달리 PSCCH와 데이터(PSSCH)가 FDM 방식으로써 전송된다. V2X에서는 차량 통신이라는 특성 상 지연을 줄이는 것이 중요한 요소이므로, 이를 위해 PSCCH와 데이터를 동일한 시간 자원 상의 서로 다른 주파수 자원 상에서 FDM 전송되는 것이다. 도 9에는 이러한 전송 방식의 예가 도시되어 있는데, 도 9(a)와 같이 PSCCH와 데이터가 직접 인접하지 않는 방식 또는 도 9(b)와 같이 PSCCH와 데이터가 직접 인접하는 방식 중 하나가 사용될 수 있다. 이러한 전송의 기본 단위는 서브채널인데, 서브채널은 소정 시간 자원(예를 들어 시간 자원 단위) 상에서 주파수 축 상으로 하나 이상의 RB 크기를 갖는 자원 단위이다. 서브채널에 포함된 RB의 개수, 즉 서브채널의 크기와 서브채널의 주파수 축 상의 시작 위치는 상위계층 시그널링으로 지시된다.
한편, 차량간 통신에서는 periodic message 타입의 CAM (Cooperative Awareness Message) 메시지, event triggered message 타입의 DENM (Decentralized Environmental Notification Message) 메시지 등이 전송될 수 있다. CAM에는 방향 및 속도와 같은 차량의 동적 상태 정보, 치수와 같은 차량 정적 데이터, 외부 조명 상태, 경로 내역 등 기본 차량 정보가 포함될 수 있다. CAM 메시지의 크기는 50-300 Byte일 수 있다. CAM 메시지는 브로드캐스트되며, 지연(latency)은 100ms 보다 작아야 한다. DENM은 차량의 고장, 사고 등의 돌발적인 상황시 생성되는 메시지일 수 있다. DENM의 크기는 3000 바이트보다 작을 수 있으며, 전송 범위 내에 있는 모든 차량이 메시지를 수신할 수 있다. 이때 DENM은 CAM보다 높은 priority를 가질 수 있으며, 이때 높은 priority를 갖는다는 것은 한 UE 관점에서는 동시에 전송하는 경우가 발생할 때 priority가 높은 것을 우선하여 전송하는 것을 의미할 수 있고, 또는 여러 개의 메시지 중에서 priority가 높은 메시지를 시간적으로 우선하여 전송하려는 것일 수도 있다. 여러 UE 관점에서는 priority가 높은 메시지는 priority가 낮은 메시지에 비해 간섭을 덜 받게 만들어서 수신 오류 확률을 낮추는 것일 수 있다. CAM에서도 security overhead가 포함된 경우에는 그렇지 않은 경우보다 더 큰 message size를 가질 수 있다.
사이드링크 혼잡 제어(sidelink congestion control)
사이드링크 통신 무선 환경은 차량의 밀도, 전송 정보량 증가 등에 따라 쉽게 혼잡해질 수 있다. 이 때, 혼잡을 줄이기 위해 여러 가지 방법이 적용 가능하다. 한 가지 예로, 분산형 혼잡 제어가 있다.
분산형 혼잡 제어에서는, 단말이 네트워크의 혼잡 상황을 파악하고 전송 제어를 수행하는 것이다. 이 때, 트래픽(예: 패킷)의 우선 순위를 고려한 혼잡 제어가 필요하다.
구체적으로, 각 단말은 채널 혼잡도(CBR)을 측정하고, CBR에 따라 각 트래픽 우선순위(예: k)가 점유할 수 있는 채널 사용율(CRk)의 최대값(CRlimitk)을 결정한다. 예컨대, 단말은 CBR 측정값과 미리 정해진 표를 기반으로 각 트래픽의 우선순위에 대한 채널 사용율의 최대값(CRlimitk)를 도출할 수 있다. 상대적으로 우선 순위가 높은 트래픽의 경우 더 큰 채널 사용율의 최대값이 도출될 수 있다.
그 후, 단말은 트래픽의 우선 순위 k가 i보다 낮은 트래픽들의 채널 사용율의 총합을 일정값 이하로 제한함으로써 혼잡 제어를 수행할 수 있다. 이러한 방법에 의하면, 상대적으로 우선 순위가 낮은 트래픽들에 더 강한 채널 사용율 제한이 걸리게 된다.
그 이외에, 단말은 전송 전력의 크기 조절, 패킷의 드롭(drop), 재전송 여부의 결정, 전송 RB 크기 조절(MCS 조정) 등의 방법을 이용할 수도 있다.
5G 사용 예(Use Case)
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 5G와 관련되는 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
페이딩(fading)
페이딩(fading)은 단시간 내에서 일어나는 전하의 감쇠로 여러가지 요인에 의해 발생된다. 전파의 반사, 산란b 등으로 인해 전파의 경로가 여러 경로로 흩어지는 것을 다중 경로(multi-path) 페이딩이라 하며, 다중 경로로 인해 지연 확산(Delay Spread)이 발생하며, 신호의 왜곡을 발생시킨다. 이동국의 움직임으로 인한 전파의 감쇄(delay spread)를 "도플러 효과(Doppler effect)"라고 하는데, 이는 이동국이 이동함으로 인해 전파의 중심 주파수가 천이하는 것 같은 효과가 발생하며, 이로 인해 주파수의 전이 및 흩어짐 현상이 발생한다.
그림자 페이딩, 섀도 페이딩(shadow fading)과 관련하여, 다음과 같이 설명한다. 전파가 다양한 경로로 전달되는 과정에서 건물이나 터널 등으로 인해 전파의 음영지역이 나타난다. 실제 환경에서 나무나 빌딩 등에 의해 전파가 감쇄하는 모델로서 갑작스런 신호 세기의 변화를 가져온다. 송수신시 사이의 실제 주변 환경에 따라 경로 손실(path loss)은 많이 달라지게 된다. (Multiple reflections and /or scatterings) Path Loss Model(e.g. two-ray model)로 보정이 가능하다. 나쁜 위치에서 신호를 못 받을 경우 또는 작게 받는 경우를 가리켜 그림자 페이딩, 섀도 페이딩(shadow fading)이라 한다.
주파수 선택적 페이딩 (Frequency Selective Fading) 또는 선택적 페이딩 (selective fading)은 상관 대역폭 (coherent bandwidth)이 전송 신호 주파수 대역보다 좁은 경우를 말하며, 이는 다중 경로 채널의 응답 (multi-path-channel response)과 연관되어 나타나는 현상이며 다중 경로 지연 확산이 전송 심볼율 보다 큰 경우에 일어나게 된다. 무선으로 전송된 신호는 다중 경로 채널을 통과하면서 주파수상에서 다양한 페이딩 환경 (감쇠차, 위상차)을 경험하게 된다. 그 결과로 어떤 무선 통신 링크에서 페이딩을 측정한다면 특정 수신 주파수가 다른 수신 주파수에 비해 더 큰 감쇠를 초래하는 경우를 발견할 수 있다. 페이딩 채널은 CDMA (Code division multiple access) 통신의 경우 심한 ISI (Inter Symbol Interference)를 야기할 수 있다.
주파수 선택적 페이딩은 OFDMA (orthogonal frequency division multiple access) 시스템에서는 주파수 선택적 사용자 스케줄링 기법 (frequency-selective user scheduling)이나 주파수 다이버시티(frequency diversity) 기법 등에 활용되어 전체 시스템 이득을 개선하는데 활용되기도 한다.
시간 선택적 페이딩(time selective fading)은 시간에 따라 페이딩 크기가 다른 것을 의미한다. 도플러 확산이 만들어 낸 페이딩이다. 송신 신호가 채널의 변화 정도에 따라 얼마나 빠르게 변하는가에 따라 고속 페이딩 (Fast Fading)과 저속 페이딩 (Slow Fading)으로 구분한다.
이동체(예; 이동국)가 빠르게 이동하면, 수신 신호가 응축되어 대역폭이 커지게 된다. 따라서 가간섭성 시간이 펄스 지속 시간(pulse duration)보다 작아지게 된다.
Figure PCTKR2019007670-appb-img-000025
즉, 주파수 대역폭이 커지면 가간섭성(Coherence) 시간이 작아진다. 펄스가 지속되어야 하는 최소한의 시간보다 작아져 왜곡이 발생된다. 이를 고속 페이딩 이라 한다. 일반적으로 신호의 왜곡은 송신 주파수 대비 도플러 확산이 증가하면 증가한다. 실제적인 경우 상기 고속 페이딩은 오직 저속 데이터 전송을 경우 발생한다. 반대로 가간섭성 시간이 더 클 경우, 즉 왜곡에 대해 안전한 경우를 저속 페이딩이라 한다.
본 발명에서는 무선 통신 시스템에서 수신 단말이 송신 단말에게 피드백 신호를 전송하는 방법을 제안한다. 또한, 본 발명에서는 주파수 선택적 페이딩 채널에서 PDoA (Phase Difference of Arrival) 기반의 고해상도 거리 추정 기법을 제안한다. 본 발명에서 송신 단말은 Tx UE, UE A 등으로 호칭될 수 있으며, 수신 단말은 Rx UE, UE B 등으로 호칭될 수 있다.
도 10은 후술할 본 발명과 관련된 단말의 동작을 나타내는 순서도이다. 단말은 단계 S1001을 수행하고, 단계 S1002를 수행할 수 있다. 다만, 상기 순서도는 단말이 반드시 상기 단계들을 모두 수행 또는 위 단계들만 수행을 의미하는 것은 아니다.
도 10을 참조하면, 본 발명의 일 실시예는, 무선 통신 시스템에서 수신 단말이 송신 단말에게 피드백 신호를 전송하는 방법은, 상기 수신 단말이 상기 송신 단말로부터 참조신호를 수신하는 단계(S1001) 및 상기 수신 단말이 상기 참조신호에 대한 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계(S1002)를 포함한다. 또한, 상기 피드백 신호는, 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송될 수 있다.
위상 변화에 대한 보상에 대해서는, 아래의 설명 및/또는 후술할 방법2에 의해 설명될 수 있다.
일 예로, 위상 변화에 대한 보상은, 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이에 기반하는 위상만큼 회전시키는 것일 수 있다. 구체적으로, 피드백 신호를 송신 단말에게 전송하는 단계는, 수신 단말이 참조신호 수신을 위한 제2 FFT 윈도우의 타이밍을 이용하여 피드백 신호를 전송하는 단계를 포함할 수 있다.
다른 예로, 위상 변화에 대한 보상은,
Figure PCTKR2019007670-appb-img-000026
으로 표현되며,
Figure PCTKR2019007670-appb-img-000027
는 k번째 주파수 자원 영역에 전송되는 참조신호의 복소수 값이며, x는 기준(reference) 주파수를 나타내며,
Figure PCTKR2019007670-appb-img-000028
는 서브캐리어 간의 간격을 나타내며,
Figure PCTKR2019007670-appb-img-000029
는 상기 제1 FFT 윈도우와 상기 제2 FFT 윈도우 사이의 시간 차이를 나타낼 수 있다.
위상 변화에 대한 보상은,
Figure PCTKR2019007670-appb-img-000030
으로 표현되며,
Figure PCTKR2019007670-appb-img-000031
는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, x는 기준(reference) 주파수를 나타내며,
Figure PCTKR2019007670-appb-img-000032
는 서브캐리어 간의 간격을 나타내며,
Figure PCTKR2019007670-appb-img-000033
는 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이이며,
Figure PCTKR2019007670-appb-img-000034
는 제2 FFT 윈도우와 수신 단말의 피드백 신호 전송을 위한 제3 FFT 윈도우 사이의 시간 차이를 나타내는 값일 수 있다.
또 다른 예로, 위상 변화에 대한 보상은, 참조신호에 대한 채널 함수에 기반하는 것이고, 채널 함수에 기반하는 위상 변화에 대한 보상을 위한 시퀀스는
Figure PCTKR2019007670-appb-img-000035
으로 표현되며, 채널 함수는
Figure PCTKR2019007670-appb-img-000036
으로 표현되고,
Figure PCTKR2019007670-appb-img-000037
는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, B k는 상기 k번째 주파수 자원 영역의 다중경로 채널의 위상을 나타내는 값일 수 있다.
추가적으로, 피드백 신호는, 참조신호가 수신된 주파수 자원과 동일한 주파수 자원에서 수신 단말에 의해 전송될 수 있다.
한편, 송신 단말에게 다른 피드백 신호를 전송하는 적어도 하나의 다른 단말이 존재하는 경우, 수신 단말의 센싱(sensing) 결과, 송신 단말의 식별자(ID; identifier), 및 적어도 하나의 다른 단말의 ID 중 적어도 하나 이상에 기반하여, 피드백 신호를 전송하기 위한 전송 자원을 선택하는 단계, 및 선택된 전송 자원에서 피드백 신호를 전송하는 단계를 더 포함할 수 있다.
상기 피드백 신호를 상기 송신 단말에게 전송하는 단계는, 상기 송신 단말의 식별자와 상기 수신 단말의 식별자 중 적어도 어느 하나에 기반하여, 상기 피드백 신호의 시퀀스를 설정하는 단계 및 상기 설정된 시퀀스에 기반하여 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계를 더 포함할 수 있다.
도 11은 송신 단말(UE A)과 수신 단말(UE B) 사이의 거리(d)를 나타내기 위한 도면이다.
또한, 본 발명의 일 실시예는 송신 단말과 수신 단말 사이의 거리(d)를 산출하는 단계를 포함할 수 있다. 이에 대해서는 아래에서 구체적으로 설명한다.
본 발명의 일 실시예는 무선 통신 장치 사이의 거리, 위치를 측정하는 방법을 포함한다. 특히, 거리를 측정하는 대상이 되는 장치가 서로 송수신한 무선 신호의 위상(phase) 정보를 이용하여 거리를 측정하는 방법을 설명한다. 본 발명에서는 특징적으로 두 개의 주파수를 이용하여 신호를 송수신하는 상황을 설명하고 있으나, 본 발명의 원리는 송수신에 사용하는 주파수의 개수가 일반화된 경우에도 적용이 가능하다. 또한, 본 발명에서는 복수의 주파수를 동시에 송신하는 상황을 가정하고 있으나, 사전에 정해진 다른 시점에 전송하고 이를 감안하여 본 발명의 원리를 적용하는 것도 가능하다.
먼저, 단말(예; Tx UE)은 2개 이상의 주파수에서 참조신호를 전송한다고 가정한다. 일 예로, 참조신호의 크기, 위상(phase) 정보는 송수신기가 사전에 약속하여 알고 있을 수 있다. 다른 예로, 상기 참조신호의 크기, 위상정보를 나타내는 정보를 송신 단말(Tx UE)이 수신 단말(Rx UE)에게 전송하여 알려줄 수 있다. 주파수 영역 m번째 tone (subcarrier)에서 참조신호의 수신 신호는 아래의 수학식 1에 의해 설명될 수 있다.
[수학식 1]
Figure PCTKR2019007670-appb-img-000038
여기서 A k, B k는 각각 k번째 주파수 tone에서의 다중 경로 채널(multipath channel)의 진폭(amplitude)과 multipath channel의 위상 응답(phase response)를 나타내고, 채널 함수 H(k)는
Figure PCTKR2019007670-appb-img-000039
으로 정의된다.
Figure PCTKR2019007670-appb-img-000040
는 subcarrier간의 간격,
Figure PCTKR2019007670-appb-img-000041
는 시간영역에서의 송수신기 사이의 time offset을 나타낸다.
여기서 time offset은 무선 신호의 전파 지연(propagation delay), 송수신기 사이의 sampling 시간 차이 등이 포함될 수 있으며, 또한, 상기 time offset은 송신기(예; Tx UE)와 수신기(예; Rx UE) 사이의 FFT (Fast Fourier Transform) window의 시간 차이를 나타내는 값일 수 있다. 그리고, 본 문서에서 다중경로 채널 이득(multipath channel gain)이란 채널(channel)의 first path가 delay가 없다는 가정(예; zero delay)하에 얻을 수 있는 채널 이득(channel gain)을 의미한다. 다시 말해 무선 채널(wireless channel)이라는 것은 time offset을 포함하는 개념일 수 있으므로, 여기에서는 그 time offset은 분리하여 생각하기로 한다. 여기서 전파 지연(propagation delay)은 통신 시스템에서 송신기(예; Tx UE)에서 송출된 신호가 수신기(예; Rx UE)에 도달하기까지 걸리는 시간을 나타낼 수 있다.
수신 단말(Rx UE)가 두 tone에서의 신호를 수신할 경우, 각 tone에서의 위상 차이는 아래의 수학식 2로 표현할 수 있다. (이때, two tone에서 multipath channel의 위상은 동일하다고 가정한다)
[수학식 2]
Figure PCTKR2019007670-appb-img-000042
이때 송수신기(예; Tx UE 및 Rx UE) 사이의 timing error가 없다고 가정하고, time offset이 전파 지연(propagation delay)에만 의존한다고 가정할 경우,
Figure PCTKR2019007670-appb-img-000043
에 대한 상기 수학식 2를 다음의 수학식 3과 같이 쓸 수 있다.
[수학식 3]
Figure PCTKR2019007670-appb-img-000044
이를 통하여 두 송수신 단말(예; Tx UE 및 Rx UE) 사이의 거리(R m,n)는 아래의 수학식 4를 이용하여 추정할 수 있다.
[수학식 4]
Figure PCTKR2019007670-appb-img-000045
여기서,
Figure PCTKR2019007670-appb-img-000046
는 two tone 간의 주파수 차이,
Figure PCTKR2019007670-appb-img-000047
는 two tone에서 위상차(phase difference), c는 빛의 상수 (약 3*10^8[m/s])를 의미한다. 상기 수학식 (4)는 one way ranging 에서의 거리 추정을 나타내고, 만약 two way ranging 에서는 상기 수학식 4에서 '1/2'을 곱하면 된다. 여기서, one way ranging은 송수신기(예; Tx UE 및 Rx UE) 사이의 동기가 맞는다고 가정하고 수신기에서 송신기의 전파 지연(propagation delay)을 측정한 방법일 수 있고, two way ranging는 송신기(예; Tx UE)의 신호에 대하여 수신기(예; Rx UE)가 되돌림(feedback)하여 송신기가 위상 차이를 이용하여 거리를 추정하는 방법일 수 있다.
한편, 만약 two tone 간의 채널의 위상이 상이한 경우, 위상차(phase difference)
Figure PCTKR2019007670-appb-img-000048
에 관한 수학식 2는 아래의 수학식 5와 같이 다시 쓸 수 있다.
[수학식 5]
Figure PCTKR2019007670-appb-img-000049
그리고, 두 송수신 단말 사이의 거리(R m,n)에 관한 수학식 4는 아래의 수학식 6과 같이 다시 쓸 수 있다.
[수학식 6]
Figure PCTKR2019007670-appb-img-000050
즉, 원래 거리보다 multipath 채널에 의한 위상 차이가 발생할 경우 거리 추정 오차가 증가하게 된다.
다중 경로(multipath) 채널에 의한 위상 차이를 줄이기 위해서는 가능한 채널의 위상이 동일한 two tone을 사용해야 하지만, 이 경우에는 거리 차이에 의한 two tone 사이의 phase가 너무 적게 변하여 (phase difference가 너무 작아) 거리 추정이 쉽지 않고, two tone을 멀리 이격 시키는 경우에는 주파수 선택적 페이딩(frequency selective fading)으로 인하여 거리 추정 오차가 증가 한다. 여기서 주파수 선택적 페이딩은 어떤 특정 주파수 대역에서만 선택적으로 페이딩이 나타나는 현상을 의미할 수 있다. (신호 대역폭 내에서 페이딩 특성이 변하거나, 신호 대역폭 일부분에서 채널 응답이 큰 변화를 보이거나, 지연확산이 주파수 별로 선택적으로 나타날 수 있음)
이를 해결하기 위해서 본 발명의 일 실시예는 아래와 같은 내용을 포함한다.
먼저, k번째 주파수 영역(예; tone)의 수신 신호(Y k)는 아래의 수학식 7과 같이 나타낼 수 있다.
[수학식 7]
Figure PCTKR2019007670-appb-img-000051
여기서, W(k)는 k번째 주파수 tone에서의 잡음(noise)을 나타낸다.
k번째 tone의 수신신호와 k+m번째 tone의 수신신호와의 켤레 곱(conjugate product)은 아래의 수학식 8과 같이 나타낼 수 있다.
[수학식 8]
Figure PCTKR2019007670-appb-img-000052
Figure PCTKR2019007670-appb-img-000053
는 아래의 수학식 9를 통하여 산출되고,
Figure PCTKR2019007670-appb-img-000054
은 아래의 수학식 10을 통하여 산출될 수 있다.
[수학식 9]
Figure PCTKR2019007670-appb-img-000055
[수학식 10]
Figure PCTKR2019007670-appb-img-000056
여기서, k번째 tone의 주파수 응답과 k+m번째 tone의 주파수 응답의 켤레 곱(conjugate product)은 아래의 수학식 11과 같이 다시 쓸 수 있다.
[수학식 11]
Figure PCTKR2019007670-appb-img-000057
여기서, N은 FFT (fast Fourier transform)의 크기(FFT size)를 나타낼 수 있으며, L은 FFT의 크기(FFT size)를 나타내거나, 다중-경로(multi-path)의 개수를 나타낼 수 있다.여기서,
Figure PCTKR2019007670-appb-img-000058
은 아래의 수학식 12를 이용하여 산출할 수 있다.
[수학식 12]
Figure PCTKR2019007670-appb-img-000059
수학식 11 및 12에서 L이 FFT의 크기를 나타내는 경우, 상기 수학식 11과 12는 아래 수학식 13 및 14와 같이 나타낼 수 있다.
[수학식 13]
Figure PCTKR2019007670-appb-img-000060
[수학식 14]
Figure PCTKR2019007670-appb-img-000061
k번째 tone과 k+m번째 tone간의 켤레 곱(conjugate product)의 평균
Figure PCTKR2019007670-appb-img-000062
은 아래의 수학식 15를 이용하여 산출할 수 있다.
[수학식 15]
Figure PCTKR2019007670-appb-img-000063
여기서, N은 FFT (fast Fourier transform)의 크기(FFT size)를 나타낼 수 있으며, L은 FFT의 크기(FFT size)를 나타내거나, 다중-경로(multi-path)의 개수를 나타낼 수 있다.
수학식 15에서 L이 FFT의 크기를 나타내는 경우, 상기 수학식 15는 아래 수학식 16과 같이 나타낼 수 있다.
[수학식 16]
Figure PCTKR2019007670-appb-img-000064
여기서, 서로 다른 channel tap간의 상관관계(correlation)가 없다고 가정하면
Figure PCTKR2019007670-appb-img-000065
가 된다. 따라서 수학식 12와 같이 channel delay profile 의 IFFT (Inverse Fast Fourier Transform) operation 후의 m번째 tone에서의 위상값을 이용하여 multipath channel에 의한 위상 변화(S(m))를 보상할 수 있다. 참고로
Figure PCTKR2019007670-appb-img-000066
은 m간격으로 떨어진 두 tone 사이의 켤레 곱(conjugate product)을 평균 취한 것으로 구할 수 있다. 즉, 수신 단말은 m 간격 떨어진 two tone 사이의 켤레 곱(conjugate product)의 평균의 위상값에서 S(m)의 위상값을 뺀 값에 일정 상수를 나눗셈하여
Figure PCTKR2019007670-appb-img-000067
(time offset)를 구할 수 있다.
한편, S(m)은 아래의 수학식 17을 이용하여 산출할 수 있다.
[수학식 17]
Figure PCTKR2019007670-appb-img-000068
여기서, N은 FFT (fast Fourier transform)의 크기(FFT size)를 나타낼 수 있으며, L은 FFT의 크기(FFT size)를 나타내거나, 다중-경로(multi-path)의 개수를 나타낼 수 있다.
수학식 17에서 L이 FFT의 크기를 나타내는 경우, 상기 수학식 17은 아래 수학식 18과 같이 나타낼 수 있다.
[수학식 18]
Figure PCTKR2019007670-appb-img-000069
송신기 단말(Tx UE)과 수신기 단말(Rx UE) 사이의 시간차(timing difference) 및 두 단말 사이의 거리(d)는 아래의 수학식 19 및 20을 통해 구할 수 있다.
아래의 수학식 15를 통해 단말 사이의 시간차(timing difference)를 산출한다.
[수학식 19]
Figure PCTKR2019007670-appb-img-000070
아래의 수학식 20을 통해 단말 사이의 거리(d)를 산출한다.
[수학식 20]
Figure PCTKR2019007670-appb-img-000071
두 단말(예; Tx UE 및 Rx UE) 사이의 거리(d)는 두 단말 사이의 송신 시점이 동일하다는 가정하에 수행하는 동작이기 때문에, 이 가정이 없을 경우 수신 단말이 다시 특정 신호를 전송해주어야 송신 단말에서 상대 단말간의 거리를 측정할 수 있다. 가령 모든 송수신 단말이 GNSS (Global Navigation Satellite System) timing을 기준으로 신호를 전송한다고 하더라도 단말의 clock 오차에 따라 실제 전송하는 시점이 정확히 일치하지 않을 수 있다. 이러한 경우 송신 단말의 신호를 일정 시간 지연이 되어서 수신하더라도 그 지연 시간이 단말 사이의 거리를 나타내지는 않을 수 있다. 따라서, 이러한 경우에는 단말 A가 특정 신호를 전송하고, 다시 단말 B가 특정 신호를 되돌림 하여 전송함으로써, 단말 A가 단말 B와의 정확한 거리를 추정할 수 있다.
상기 설명을 기반으로 다음과 같은 단말의 동작을 제안한다.
방법1) 참조신호(예; positioning RS 및/또는 ranging RS)의 전송
본 발명의 송신 단말(Tx UE)는 수신 단말(Rx UE)에게 참조신호를 전송할 수 있다. 특정 단말(예; Tx UE)은 주파수 영역에서 L 간격으로 이격된 tone에 참조신호 (RS; reference signal)를 전송한다. 이때 RS가 전송되는 RB size는 M으로 나타낼 수 있다. (예를 들어, 상기 M은 동일한 주파수 영역에 대응되는 RB들의 개수를 나타낼 수 있다) 여기서, M 및/또는 L은 사전에 정해져 있을 수도 있고(pre-determined or pre-configured), 채널의 상황에 따라 송신 단말(Tx UE)이 결정할 수도 있다. 가령 채널(channel)이 NLOS (non-line-of-sight) 채널일 확률이 높다면 (혹은 상대 단말로부터 채널 상태 정보 궤환(feedback)이 NLOS라고 판단한 경우) L 및/또는 M이 큰 값이 설정될 수 있다. L은 resource pool마다 사전에 네트워크에 의해 설정되어 있을 수 있다. 여기서, 상기 네트워크는 eNB 또는 gNB일 수 있으며, 이하 설명에서 별다른 언급이 없다면 코어 망과 연결된 고정 노드를 지칭하며, 상기 네트워크는 주변 단말에게 특정 제어 정보를 시그널링 할 수 있다. 또한, 여기서 L은 여러 단말과의 multiplexing을 고려하여 크게 설정될 수도 있다. 예를 들어, 상기 네트워크는 상기 L을 큰 값으로 설정할 수 있으며, 상기 L은 단말의 개수에 기반하여 결정될 수 있다. 이를 위해 네트워크는, 일 예로, 물리계층 혹은 상위계층 신호로 L 및/또는 M 값을 캐리어(carrier)별로 구성(configure)할 수 있다. 상기 네트워크는, 다른 예로, L 및/또는 M 값을 자원 풀(resource pool)별로 혹은 슬롯(slot) 별로 구성할 수 있다. 여기서 상위계층 신호는 RRC signaling일 수 있다. 또한, NLOS (non-line-of-sight)는 송신 안테나와 수신 안테나가 안테나의 빔폭 내에서 서로 정면으로 일직선상에 놓여 있는 않는 상태이거나, 무선통신에서 송신기와 수신기 사이의 전파 경로에 장애물이 없는 LOS (line of sight) 조건이 만족되지 않은 상태일 수 있다.
단말간 직접 통신(예; D2D, V2X 등)의 경우 positioning/ranging을 위한 RS(예; PRS, ranging RS)는 주파수 영역에서 연속된 tone에 할당될 수도 있다. 예를 들어, 상기 RS는 연속되는 index에 대응되는 자원들에서 전송될 수 있다. 이는 inband emission interference가 주파수에서 연속된 tone에서 전송될 때 적게 발생할 수 있기 때문이다. 다만, RS가 전송될 때의 자원(예; RE (resource element), tone, 또는 subcarrier)당 SNR 이득을 높이기 위하여 특정 심볼 관점에서는 주파수 영역에서 불연속(discontinuous)할 수 있다. 한편, 몇 개의 심볼(symbol)을 이용하여 positioning/ranging RS가 전송될지, 어떤 심볼에 positioning/ranging RS가 전송될지는 사전에 정해져 있거나, 송신 단말(Tx UE)이 스스로 결정하거나, 네트워크에 의해 설정될 수 있다.
단말은 특정 CC (component carrier)에서 모든 주파수 자원을 사용하지 않고 positioning/ranging을 위한 RS (예; PRS, ranging RS)를 전송할 수 있다. 이를 협대역 (narrow band) 전송이라고 칭할 수 있다. 이와 반대로 CC내의 전 대역을 사용하여 전송하는 방식 혹은 일정 임계 크기 이상의 주파수 영역에서 전송되는 경우를 광대역 (wide band) 전송이라고 칭할 수 있다. 단말은 주변 단말로부터의 간섭 상황이나 채널의 상태에 따라 narrow band 전송을 사용할지 또는 wide band 전송을 수행할지 여부를 결정할 수 있다. 가령 단말이 특정 자원 영역 (예; ranging/positioning 목적의 RS가 전송되는 자원 영역)에서 측정한 CBR (channel busy ratio)이나 SNR이 일정 임계 미만인 경우에 사용할 수 있는 전송 방식이 사전에 정해져 있거나, 네트워크에 의해 시그널링 될 수 있다.
송신 단말(Tx UE)이 ranging/positioning RS를 전송할 때, 상기 RS가 전송되는 RE 위치 (예; time, time shift, frequency, frequency shift 등) 및/또는 RS의 sequence는, 상기 송신 단말(Tx UE)의 식별자(ID), 단말의 종류, 및 서비스의 종류, application의 종류 중 적어도 어느 하나에 따라 결정될 수 있다. 가령 송신 단말의 ID (UE ID (identifier))를 기반으로 RS가 전송되는 RE의 위치나 RS initialization parameter가 결정될 수 있다.
이때 송신 단말(Tx UE)이 전송하는 RS의 set 및/또는 무선 자원 영역(시간 영역 및/또는 주파수 영역)은, 단말의 GNSS 기반의 위치 정보에 따라 상이하게 설정될 수 있다. 가령, 특정 단말이 특정 지역 (예; 지역 A)에 있을 때 사용 가능한 RS set은 다른 특정 지역 (예; 지역 A와 지리적으로 상이한 지역 B)에 있을 때 사용 가능한 RS set은 서로 상이한 set일 수 있다. 여기서, RS의 set이 상이하다는 것은 서로 다른 sequence set을 의미하며, sequence를 생성할 때 initialization parameter가 다르게 설정된다는 의미일 수 있다.
이는 단말이 ranging signal을 전송함에 있어서 hidden node (sensing range 밖에 있는 단말이 같은 ranging signal을 전송하는 경우) 문제를 해결하기 위해서 hidden node range에 있는 단말끼리는 서로 다른 RS set을 사용하도록 설정하여 설령 같은 자원을 사용하더라도 RS가 달라서 충돌(collision)을 예방하고 ranging 성능을 향상시키기 위함이다.
자원 영역을 분리하는 이유는 D2D 통신에서 협대역(narrow band) 신호를 전송할 때 near far effect를 줄이기 위함이다. 여기서, near far effect 는 가까이 있는 단말이 전송한 신호에 의해 멀리 있는 단말의 신호가 수신되지 않는 현상을 의미할 수 있다. near-far problem (또는 near-far effect) 및/또는 hearability problem은 수신기가 다른 신호 소스(source)로부터 약한 신호를 듣기 어렵게 만드는 근거리 신호 소스(near signal source)로부터의 강한 신호의 효과를 나타내며, 이는 인접 채널 간섭(adjacent-channel interference), 동일-채널 간섭(co-channel interference), 왜곡(distortion), 포착 효과(capture effect), 동적 범위 제한(dynamic range limitation) 등으로 인해 발생할 수 있다. OFDM waveform을 사용하더라도 inband emission 때문에 non allocated RB에서도 간섭이 발생할 수 있다. 또한, 동일한 시간 자원을 사용하는 단말 사이에 거리가 멀리 떨어질 경우, 수신 단말 관점에서 서로 다른 주파수의 수신 전력이 크게 차이날 경우, 전술한 near far effect 가 생길 수 있다. 이때 비슷한 위치에 있는 단말들끼리 동일한 시간 자원을 사용할 경우 전술한 near far effect를 줄일 수 있다.
방법2) time offset 추정 방법
상기 방법1을 통해서 송신 단말(Tx UE)로부터 특정 참조신호(RS)가 전송 되었을 때, 상기 특정 RS를 수신한 단말(Rx UE)은
Figure PCTKR2019007670-appb-img-000072
(송신 단말(Tx UE)과 수신 단말(Rx UE) 사이의 FFT (Fast Fourier Transform) window의 time offset)를 추정할 수 있다. 이때 다음과 같은 되돌림 신호(feedback signal) 전송 동작을 고려할 수 있다.
수신 단말은
Figure PCTKR2019007670-appb-img-000073
(time offset)가 0이 되도록 전송 timing을 조절하거나, 이와 동등한 효과를 내기 위해서 전송되는 참조신호(RS)의 위상(phase)을
Figure PCTKR2019007670-appb-img-000074
(time offset)에 관한 함수로 회전시킬 수 있다.
본 문서에서, 전송되는 참조신호(RS)를 a k (
Figure PCTKR2019007670-appb-img-000075
또는
Figure PCTKR2019007670-appb-img-000076
)에 기반하여 표시할 수 있다. 여기서 a k는 k번째 주파수 자원 영역(예; tone)에 전송되는 참조신호(RS)의 복소수 값(complex value)을 나타낸다. 여기서, 수신 단말(Rx UE)이 송신 단말(Tx UE)에게 전송하는 되돌림 신호(feedback signal)의 참조신호 시퀀스(RS sequence)와 상기 되돌림 신호의 전송에 사용되는 주파수 자원 영역(예; tone)의 위치를 결정하는 데에는 다음과 같은 방법을 제안한다.
주파수 자원 위치 결정 방법 (a k 에서 k값의 set)
수신 단말(Rx UE)이 송신 단말(Tx UE)에게 피드백 신호 및/또는 피드백 정보를 전송하려는 경우, 상기 수신 단말에 의해 수신된 참조신호(RS)가 사용한 자원(예; RE, tone, subcarrier 등)과 같은 위치에서 피드백 신호(예; 되돌림 RS)를 전송하는 방법을 제안한다. 상기 피드백 신호는, 참조신호가 수신된 주파수 자원과 동일한 주파수 자원에서 상기 수신 단말에 의해 전송될 수 있다. 한편, 전술한 바와 같이, 상기 a k는 k번째 주파수 자원 영역(예; tone)에 전송되는 참조신호(RS)의 복소수 값(complex value)을 나타낸다.
이 방법은 향후 설명하는 채널 정보를 보상하여 전송하는 경우에 채널 상호관계 (channel reciprocity)를 이용하여 채널의 효과를 상쇄하고 수신단(예; Rx UE)에서 단말의 구현 복잡도를 줄일 수 있다는 점에서 기술적인 효과를 제공한다.
수신 단말(Rx UE)이 송신 단말(Tx UE)에게 피드백 신호를 전송하려고 할 때, 상기 송신 단말이 상기 수신 단말에게 전송한 참조신호(RS) 또는 상기 RS가 전송된 자원과 연동되는 복수개의 자원 중에서 하나를 단말이 스스로 선택하여 전송하는 방법을 제안한다.
본 발명의 일 실시예는 송신 단말(Tx UE)에게 (수신 단말(Rx UE) 이외의) 다른 피드백 신호를 전송하는 적어도 하나의 다른 단말이 존재하는 경우, 상기 수신 단말의 센싱(sensing) 결과, 상기 송신 단말의 식별자(ID; identifier), 및 상기 적어도 하나의 다른 단말의 ID 중 적어도 하나 이상에 기반하여, 상기 피드백 신호를 전송하기 위한 전송 자원을 선택하는 단계 및 상기 선택된 전송 자원에서 상기 피드백 신호를 전송하는 단계를 더 포함할 수 있다.
송신 단말(Tx UE)로부터 positioning 신호 및/또는 ranging 신호 (예; PRS, ranging RS)를 수신한 수신 단말(Rx UE)이 복수개일 때, 복수개의 수신 단말(Rx UE)이 동시에 되돌림 신호(또는 피드백 정보)를 전송할 경우, 상기 복수개의 수신 단말(Rx UE)이 동시에 전송하는 되돌림 신호(또는 피드백 정보)들 사이의 충돌(collision)을 방지하기 위하여 복수개의 자원들을 설정해두고, 상기 설정된 복수의 자원들 중에서 i) 송신 단말(Tx UE) 및/또는 수신 단말(Rx UE)의 센싱(sensing)을 통해서 혹은 ii) 송신 단말(Tx UE) 및/또는 수신 단말(Rx UE) 구현에 의해 혹은 iii) 송신 단말(Tx UE) 및/또는 수신 단말(Rx UE)의 식별자(ID)에 의해 특정 자원을 선택할 수 있다. 일 예로, 수신 단말(Rx UE)의 센싱(sensing)은 되돌림 신호(또는 피드백 정보)를 전송하는 복수개의 다른 수신 단말을 감지(또는 탐색)하거나 상기 복수개의 다른 수신 단말이 전송(또는 방송)하는 신호(또는 정보)를 감지(또는 탐색)하는 것을 의미할 수 있다. 다른 예로, 수신 단말의 센싱은 센싱 윈도우(sensing window) 내에서의 센싱을 통해 다른 단말이 예약한 전송 자원들 또는 다른 단말이 사용하고 있는 자원들을 파악하는 동작을 의미할 수 있다.
RS sequence 결정 방법(feedback signal의 sequence 결정 방법)
본 발명의 피드백 신호를 송신 단말에게 전송하는 단계는, 상기 송신 단말의 식별자와 수신 단말의 식별자 중 적어도 어느 하나에 기반하여, 상기 피드백 신호의 시퀀스를 설정하는 단계, 및 상기 설정된 시퀀스에 기반하여 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계를 더 포함할 수 있다.
a k (
Figure PCTKR2019007670-appb-img-000077
또는
Figure PCTKR2019007670-appb-img-000078
)에 매핑(mapping)되는 유사 랜덤 시퀀스 (pseudo random sequence)는 i) 송신 단말의 식별자(ID)를 기반으로 생성될 수도 있고, ii) 이를 수신한 수신 단말의 ID를 기반으로 생성될 수도 있고, iii) 두 단말의 ID를 모두 이용하여 생성될 수도 있다. 상기 a k는 k번째 주파수 자원 영역(예; tone)에 전송되는 참조신호(RS)의 복소수 값(complex value)을 나타낸다. 한편, 상기 송신 단말은 전술한 과정1에서 참조신호(RS)를 전송한 단말일 수 있으며, 상기 수신 단말은 전술한 과정1의 상기 RS를 (성공적으로) 수신한 단말일 수 있다.
예를 들어, 상기 송신 단말의 ID (Tx UE ID) 및/또는 상기 수신 단말의 ID (Rx UE ID)를 이용하여 랜덤 시퀀스(random sequence)의 initialization parameter가 결정될 수 있다.
되돌림 신호(feedback signal)를 전송하는 단말은 단순히 a k를 전송하는 것이 아니라 이를 후가공 (Post-processing) 하여 전송할 수 있다. 여기서 후가공은 위상 보상(phase compensation) 및/또는 진폭 보상(amplitude compensation)을 나타낼 수 있다.
채널을 보상하는 방법
본 발명의 위상 변화에 대한 보상은, 참조신호에 대한 채널 함수에 기반하여 결정될 수 있다. 수신 단말(Rx UE)은 수학식 19에서
Figure PCTKR2019007670-appb-img-000079
(time offset)를 추정할 수 있게 되고, 이를 이용하여 전술한 수학식 7에서의 채널 성분 H(k)을 따로 추정할 수 있게 된다. 이 경우, 아래의 수학식 21과 같이, a k에 채널 성분 H(k)를 나눈 다음 시퀀스(sequence)를 전송할 수 있다.
[수학식 21]
Figure PCTKR2019007670-appb-img-000080
여기서
Figure PCTKR2019007670-appb-img-000081
는 전력 정규화(power normalization)를 위한 파라미터이다. 또한, 일 예로, 채널 성분 H(k)는
Figure PCTKR2019007670-appb-img-000082
으로 정의될 수 있다. a k는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, B k는 상기 k번째 주파수 자원 영역의 다중경로 채널의 위상을 나타내는 값일 수 있다.
혹은, 채널의 위상 값만 보상할 수 있으며, 이는 아래의 수학식 22로 나타낼 수 있다.
[수학식 22]
Figure PCTKR2019007670-appb-img-000083
상기 방법은 되돌림 신호를 수신하는 단말이 채널 성분이 사라진, 오로지 전파 지연(propagation delay)에 의한 위상 변화만 관찰할 수 있게 해주기 때문에 수학식 15 내지 수학식 20과 같은 연산 과정을 생략할 수 있게 해준다. 따라서 수신 단말의 구현 복잡도가 낮아질 수 있다.
이 경우에는 수신 단말이
Figure PCTKR2019007670-appb-img-000084
(time offset)를 추정할 수 있게 되는데, 이때에는 결국 송수신 단말 사이의 거리(d)를 직접 추정하는 것이 아니라, time offset 차이를 추정하는 것이 된다.
따라서, 채널(의 위상 값)만 보상하여 참조신호(RS)를 전송하는 경우에는
Figure PCTKR2019007670-appb-img-000085
값(time offset value)을 명시적으로 시그널링 해줄 수 있다.
Figure PCTKR2019007670-appb-img-000086
값(time offset value)은 명시적으로 특정 필드에 인코딩(encoding)되어 전송될 수도 있지만, 전송되는 RS의 위상(phase)을 변경하여 전송하는 동작 혹은
Figure PCTKR2019007670-appb-img-000087
(time offset)를 고려하여 송신 신호에 delay를 부과하는 동작이 가능하다. 이러한 동작을 이하에서 설명한다.
Time offset을 보상하는 방법
도 12는 본 발명의 일 실시예에 따른 송신 단말(UE A)과 수신 단말(UE B) 사이의 FFT (Fast Fourier Transform) window의
Figure PCTKR2019007670-appb-img-000088
(time offset)과 propagation delay를 설명하기 위한 도면이다.
상기 수신 단말은, 상기 송신 단말로부터 수신한 참조신호에 대한 피드백 신호를 상기 송신 단말에게 전송할 수 있으며, 상기 피드백 신호는 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송될 수 있다.
상기 위상 변화에 대한 보상은, 상기 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 상기 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이에 기반하는 위상만큼 회전시키는 것일 수 있다. 여기서, 상기 수신 단말이 상기 피드백 신호를 상기 송신 단말에게 전송하는 것은, 상기 수신 단말이 상기 참조신호 수신을 위한 상기 제2 FFT 윈도우의 타이밍을 이용하여 상기 피드백 신호를 전송하는 경우일 수 있다.
수신 단말(Rx UE)의 FFT window를 바꾸지 않으면서 동등한 효과를 내기 위해서는
Figure PCTKR2019007670-appb-img-000089
만큼 RS의 위상을 회전 시키면 된다. 이를 아래의 수학식 23으로 표현할 수 있다.
[수학식 23]
Figure PCTKR2019007670-appb-img-000090
한편, 전술한 바와 같이, 상기 ak는 k번째 주파수 자원 영역(예; tone)에 전송되는 참조신호(RS)의 복소수 값(complex value)을 나타낸다. 수학식 23에서 x는 reference tone의 index를 나타내는데 이 값은 특정 값으로 고정되어 있을 수도 있고(예를 들어, x=0), 송신 단말(Tx UE)이 참조신호(RS)를 전송하는 주파수 영역에서 특정 tone을 reference tone 및/또는 reference point로 지정할 수 있다. 예를 들어, 상기 송신 단말(Tx UE)은 i) 상기 RS가 전송되는 tone의 lowest subcarrier index 혹은 ii) 상기 RS가 전송되는 RB의 lowest subcarrier index에 대응하는 특정 tone을 reference tone 및/또는 reference point로 설정할 수 있다. 어차피 tone 사이의 위상 차이(phase difference)가 일정 값이 되면 되기 때문에, 상기 x값(reference tone의 index)은 참조신호(RS)를 송신하는 단말 관점에서 일정 상수가 되기만 하면 된다. 또한, 상기 수학식 23에서
Figure PCTKR2019007670-appb-img-000091
는 subcarrier간의 간격을 나타낼 수 있으며, 여기서 subcarrier들은 복수의 참조신호가 전송되는 주파수 영역일 수 있다.
상기 방법은 시간 영역에서 effective하게
Figure PCTKR2019007670-appb-img-000092
(time offset)를 앞당겨서 전송하는 것과 동일한 효과를 내기 때문에, 상대 단말이 전파 지연(propagation delay)을 추정할 수 있게 된다. 이는 도 13에 도시되어 있다.
도 13은 본 발명의 다른 실시예에 따른, 송신 단말(UE A)과 수신 단말(UE B) 사이의 FFT (Fast Fourier Transform) window의
Figure PCTKR2019007670-appb-img-000093
(time offset)과 propagation delay를 설명하기 위한 도면이다.
상기 수신 단말은, 상기 송신 단말로부터 수신한 참조신호에 대한 피드백 신호를 상기 송신 단말에게 전송할 수 있으며, 상기 피드백 신호는 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송될 수 있다.
한편, UE B (Rx UE)가 UE A (Tx UE)로부터 RS를 수신할 때, FFT (fast Fourier transform) window와 이를 되돌림(feedback)할 때의 FFT window가 차이가 날 때에는 이를 고려하여 위상 값을 다르게 설정할 수 있다. 상기 수신 단말(UE B)은 아래의 수학식 24에 기반하여 feedback signal (RS sequence)를 상기 송신 단말(UE A)에게 전송할 수 있다.
[수학식 24]
Figure PCTKR2019007670-appb-img-000094
여기서, a k는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, x는 기준(reference) 주파수를 나타내며,
Figure PCTKR2019007670-appb-img-000095
는 서브캐리어 간의 간격을 나타낼 수 있다.
Figure PCTKR2019007670-appb-img-000096
는 상기 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 상기 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이일 수 있다.
Figure PCTKR2019007670-appb-img-000097
는 수신시 FFT window와 송신시 FFT window의 차이를 나타낼 수 있다. 일 예로,
Figure PCTKR2019007670-appb-img-000098
는 상기 제2 FFT 윈도우와 상기 수신 단말의 피드백 신호 전송을 위한 제3 FFT 윈도우 사이의 시간 차이를 나타내는 값일 수 있다. 상기
Figure PCTKR2019007670-appb-img-000099
값은 단말이 여러 단말로부터의 신호를 동시에 궤환/되돌림(feedback) 할 때 FFT window를 변경한 경우 이를 반영하여 설정할 수 있다.
Figure PCTKR2019007670-appb-img-000100
값은 고정되어 있을 수도 있고 단말이 구현에 의해 결정될 수도 있다.
한편, 본 발명의 수신 단말은 아래의 수학식 25를 이용하여 time offset에 대한 보정과 채널에 대한 보정을 동시에 수행할 수 있다.
[수학식 25]
Figure PCTKR2019007670-appb-img-000101
혹은, 상기 수신 단말은 아래의 수학식 26을 이용하여 채널의 위상 정보만 보정을 수행할 수도 있다.
[수학식 26]
Figure PCTKR2019007670-appb-img-000102
상기 수학식 25, 수학식 26과 관련되는 방법은
Figure PCTKR2019007670-appb-img-000103
(time offset)에 대한 명시적인 시그널링이 필요 없음과 동시에 채널(channel)에 대해서도 보상함으로써 수신단(예; UE B (Rx UE))에서 연산 복잡도를 낮출 수 있다는 점에서 기술적인 효과를 제공한다.
한편, 상기 방법에서처럼 송신되는 positioning/ranging RS에 다시 가공을 수행하여 전송을 수행하는 경우에는, 해당 RS는 데이터 복조(data demodulation) 목적으로 활용할 수 없다. 이 경우에는 데이터 복조(data demodulation)를 위한 known sequence를 함께 전송할 수 있다.
방법3) 상기 방법1 및 방법2를 통해 수신 단말(Rx UE)로부터 RS를 수신한 송신 단말(Tx UE)은 수학식 19 및 수학식 20을 통하여 특정 단말로부터의 거리(d)를 측정할 수 있다.
본 발명의 실시예에 의한 장치 구성
도 14를 참조하면, 무선 통신 시스템은 기지국(BS, 110) 및 단말(UE, 120)을 포함한다. 무선 통신 시스템이 릴레이를 포함하는 경우, 기지국 또는 단말은 릴레이로 대체될 수 있다. 또한, 여기서 단말(UE, 120)은 Rx UE, Relay UE에 해당될 수 있다.
기지국(110)은 프로세서(112), 메모리(114) 및 무선 주파수(Radio Frequency: RF) 유닛(116)을 포함한다. 프로세서(112)는 메모리(114) 및/또는 RF 유닛(116)을 제어하며, 앞에서 설명/제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(112)는 메모리(114) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, RF 유닛(116)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송하게 할 수 있다. 또한, 프로세서(112)는 RF 유닛(116)을 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(114)에 저장하게 할 수 있다. 일 예로, 프로세서(112)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀을 포함한다. 메모리(114)는 프로세서(112)와 연결되고 프로세서(112)의 동작과 관련한 다양한 정보를 저장한다. 예를 들어, 메모리(114)는 프로세서(112)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. RF 유닛(116)은 프로세서(112)와 연결되고 무선 신호를 송신 및/또는 수신한다. RF 유닛(116)은 송신기(transmitter) 및/또는 수신기(receiver)를 포함할 수 있다. RF 유닛(116)은 송수신기(transceiver)로 대체될 수 있다. 여기서, 프로세서(112)와 메모리(114)는 프로세싱 칩(예, System on a Chip, SoC)(111)의 일부일 수 있다.
단말(120)은 프로세서(122), 메모리(124) 및 무선 주파수 유닛(126)을 포함한다. 프로세서(122)는 메모리(124) 및/또는 RF 유닛(126)을 제어하며, 앞에서 설명/제안한 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(122)는 메모리(124) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, RF 유닛(126)을 통해 제3 정보/신호를 포함하는 무선 신호를 전송하게 할 수 있다. 또한, 프로세서(122)는 RF 유닛(126)을 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(124)에 저장하게 할 수 있다. 구체적인 예로써, 상기 프로세서는, 두 개 이상의 주파수 자원에서 복수의 자원을 선택하고, 상기 선택된 복수의 자원에 기초하여, 사이드링크 신호를 전송하며, 구체적인 예로써, 상기 프로세서(122)는, 송신 단말로부터 참조신호를 수신하고, 상기 참조신호에 대한 상기 피드백 신호를 상기 송신 단말에게 전송할 수 있다. 상기 피드백 신호는, 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송될 수 있다.
프로세서(122)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀을 포함한다. 메모리(124)는 프로세서(122)와 연결되고 프로세서(122)의 동작과 관련한 다양한 정보를 저장한다. 예를 들어, 메모리(124)는 프로세서(122)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. RF 유닛(126)은 프로세서(122)와 연결되고 무선 신호를 송신 및/또는 수신한다. RF 유닛(126)은 송신기 및/또는 수신기를 포함할 수 있다. RF 유닛(126)은 송수신기로 대체될 수 있다. 여기서, 프로세서(122)와 메모리(124)는 프로세싱 칩(예, SoC)(121)의 일부일 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 신호 송수신 관계를 중심으로 설명되었다. 이러한 송수신 관계는 단말과 릴레이 또는 기지국과 릴레이간의 신호 송수신에도 동일/유사하게 확장된다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), gNode B(gNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다. 또한, 단말은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 수신 단말이 송신 단말에게 피드백 신호를 전송하는 방법에 있어서,
    상기 수신 단말이 상기 송신 단말로부터 참조신호를 수신하는 단계; 및
    상기 수신 단말이 상기 참조신호에 대한 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계; 를 포함하고,
    상기 피드백 신호는, 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송되는,
    방법.
  2. 제1항에 있어서,
    상기 위상 변화에 대한 보상은, 상기 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 상기 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이에 기반하는 위상만큼 회전시키는 것인,
    방법.
  3. 제2항에 있어서,
    상기 피드백 신호를 상기 송신 단말에게 전송하는 단계는,
    상기 수신 단말이 상기 참조신호 수신을 위한 상기 제2 FFT 윈도우의 타이밍을 이용하여 상기 피드백 신호를 전송하는 단계; 를 포함하는,
    방법.
  4. 제3항에 있어서,
    상기 위상 변화에 대한 보상은,
    Figure PCTKR2019007670-appb-img-000104
    으로 표현되며,
    Figure PCTKR2019007670-appb-img-000105
    는 k번째 주파수 자원 영역에 전송되는 참조신호의 복소수 값이며, x는 기준(reference) 주파수를 나타내며,
    Figure PCTKR2019007670-appb-img-000106
    는 서브캐리어 간의 간격을 나타내며,
    Figure PCTKR2019007670-appb-img-000107
    는 상기 제1 FFT 윈도우와 상기 제2 FFT 윈도우 사이의 시간 차이를 나타내는,
    방법.
  5. 제1항에 있어서,
    상기 위상 변화에 대한 보상은,
    Figure PCTKR2019007670-appb-img-000108
    으로 표현되며,
    Figure PCTKR2019007670-appb-img-000109
    는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, x는 기준(reference) 주파수를 나타내며,
    Figure PCTKR2019007670-appb-img-000110
    는 서브캐리어 간의 간격을 나타내며,
    Figure PCTKR2019007670-appb-img-000111
    는 상기 송신 단말의 참조신호 전송을 위한 제1 FFT (fast Fourier transform) 윈도우(window)와 상기 수신 단말의 참조신호 수신을 위한 제2 FFT 윈도우 사이의 시간 차이이며,
    Figure PCTKR2019007670-appb-img-000112
    는 상기 제2 FFT 윈도우와 상기 수신 단말의 피드백 신호 전송을 위한 제3 FFT 윈도우 사이의 시간 차이를 나타내는 값인,
    방법.
  6. 제1항에 있어서,
    상기 위상 변화에 대한 보상은, 상기 참조신호에 대한 채널 함수에 기반하는 것이고,
    상기 채널 함수에 기반하는 상기 위상 변화에 대한 보상을 위한 시퀀스는
    Figure PCTKR2019007670-appb-img-000113
    으로 표현되며,
    상기 채널 함수는
    Figure PCTKR2019007670-appb-img-000114
    으로 표현되고,
    Figure PCTKR2019007670-appb-img-000115
    는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, B k는 상기 k번째 주파수 자원 영역의 다중경로 채널의 위상을 나타내는 값인,
    방법.
  7. 제1항에 있어서,
    상기 피드백 신호는, 상기 참조신호가 수신된 주파수 자원과 동일한 주파수 자원에서 상기 수신 단말에 의해 전송되는,
    방법.
  8. 제1항에 있어서,
    상기 송신 단말에게 다른 피드백 신호를 전송하는 적어도 하나의 다른 단말이 존재하는 경우,
    상기 수신 단말의 센싱(sensing) 결과, 상기 송신 단말의 식별자(ID; identifier), 및 상기 적어도 하나의 다른 단말의 ID 중 적어도 하나 이상에 기반하여, 상기 피드백 신호를 전송하기 위한 전송 자원을 선택하는 단계; 및
    상기 선택된 전송 자원에서 상기 피드백 신호를 전송하는 단계; 를 더 포함하는,
    방법.
  9. 제1항에 있어서,
    상기 피드백 신호를 상기 송신 단말에게 전송하는 단계는,
    상기 송신 단말의 식별자와 상기 수신 단말의 식별자 중 적어도 어느 하나에 기반하여, 상기 피드백 신호의 시퀀스를 설정하는 단계; 및
    상기 설정된 시퀀스에 기반하여 상기 피드백 신호를 상기 송신 단말에게 전송하는 단계; 를 더 포함하는,
    방법.
  10. 제1항에 있어서,
    상기 송신 단말과 상기 수신 단말 사이의 거리(d)를 산출하는 단계; 를 더 포함하고,
    상기 거리(d)는
    Figure PCTKR2019007670-appb-img-000116
    에 기반하여 산출되는 것이며,
    c는 빛의 속도를 나타내며,
    Figure PCTKR2019007670-appb-img-000117
    는 제1 주파수를 통하여 수신된 제1 참조신호와 제2 주파수를 통하여 수신된 제2 참조신호의 켤레 곱 결과의 평균에 기반하는 위상 값을 나타내고,
    Figure PCTKR2019007670-appb-img-000118
    는 상기 다중 경로에 의한 위상 변화에 기반하는 위상 값이며, 상기 m은 상기 제1 주파수와 상기 제2 주파수 사이의 간격을 나타내고,
    Figure PCTKR2019007670-appb-img-000119
    는 서브캐리어 간의 간격을 나타내며,
    Figure PCTKR2019007670-appb-img-000120
    는 위상 값을 나타내기 위한 함수이며,
    Figure PCTKR2019007670-appb-img-000121
    Figure PCTKR2019007670-appb-img-000122
    으로 표현되고,
    H(k)는 k번째 주파수 자원 영역의 다중경로 채널을 나타내며,
    Figure PCTKR2019007670-appb-img-000123
    으로 표현되고,
    Figure PCTKR2019007670-appb-img-000124
    는 k번째 주파수 자원 영역의 다중경로 채널의 진폭을 나타내는 값이며, B k는 상기 k번째 주파수 자원 영역의 다중경로 채널의 위상을 나타내며,
    Figure PCTKR2019007670-appb-img-000125
    Figure PCTKR2019007670-appb-img-000126
    으로 표현되고,
    N은 FFT (fast Fourier transform)의 크기를 나타내는,
    방법.
  11. 무선 통신 시스템에서 피드백 신호를 전송하는 수신 단말에 있어서,
    송수신기; 및
    프로세서; 를 포함하고,
    상기 프로세서는, 상기 송신 단말로부터 참조신호를 수신하고, 상기 참조신호에 대한 상기 피드백 신호를 상기 송신 단말에게 전송하며,
    상기 피드백 신호는, 상기 참조신호를 수신할 때 발생하는 위상 변화에 대한 보상(compensation)에 기반하여 전송되는,
    수신 단말.
  12. 제11항에 있어서,
    상기 수신 단말은 이동 단말기, 네트워크 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신하는,
    수신 단말.
  13. 제11항에 있어서,
    상기 수신 단말은, 상기 단말의 움직임을 제어하는 신호를 기반으로 적어도 하나의 ADAS(Advanced Driver Assistance System) 기능을 구현하는,
    수신 단말.
  14. 제11항에 있어서,
    상기 단말은 사용자의 입력을 수신하여, 장치의 주행 모드를 자율 주행 모드에서 수동 주행 모드로 전환하거나 또는 수동 주행 모드에서 자율 주행 모드로 전환하는,
    수신 단말.
  15. 제11항에 있어서,
    상기 수신 단말은 외부 오브젝트 정보를 기반으로 자율 주행하되,
    상기 외부 오브젝트 정보는 오브젝트 존재 유무에 대한 정보, 오브젝트의 위치 정보, 상기 수신 단말과 오브젝트와의 거리 정보 및 상기 수신 단말과 오브젝트와의 상대 속도 정보 중 적어도 하나를 포함하는,
    수신 단말.
PCT/KR2019/007670 2018-06-25 2019-06-25 무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말 WO2020004910A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/255,327 US11451426B2 (en) 2018-06-25 2019-06-25 Method and terminal for transmitting feedback signal in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0073001 2018-06-25
KR20180073001 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020004910A1 true WO2020004910A1 (ko) 2020-01-02

Family

ID=68985148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007670 WO2020004910A1 (ko) 2018-06-25 2019-06-25 무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말

Country Status (2)

Country Link
US (1) US11451426B2 (ko)
WO (1) WO2020004910A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988866A (zh) * 2020-08-10 2020-11-24 北京科技大学 一种基于直连链路信道信息的d2d双工模式选择方法及系统
WO2022084089A1 (en) * 2020-10-22 2022-04-28 Sony Group Corporation Method for device-to-device communication

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7434331B2 (ja) * 2019-01-11 2024-02-20 オッポ広東移動通信有限公司 サイドリンク通信の方法、端末機器及びネットワーク機器
US20220075054A1 (en) * 2020-09-04 2022-03-10 Qualcomm Incorporated Target detection using multiple radar waveforms
US20220338169A1 (en) * 2021-04-16 2022-10-20 Qualcomm Incorporated Resource allocations to source user equipment from a user equipment in a hop

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120032855A1 (en) * 2006-10-05 2012-02-09 Ivan Reede High-resolution ranging and location finding using multicarrier signals
KR20130046713A (ko) * 2011-10-28 2013-05-08 세종대학교산학협력단 순환 지연 다이버시티 기법이 적용된 uwb-ofdm 시스템에서의 주파수 오차 추정 방법 및 장치
KR20130059788A (ko) * 2011-11-29 2013-06-07 세종대학교산학협력단 직교 주파수 분할 다중 변조 방식 통신 시스템의 순환 지연 다이버시티 기법을 이용하는 송신기 및 잔여 시간 오차를 추정하는 수신기
WO2014043237A1 (en) * 2012-09-11 2014-03-20 Deere & Company Navigation using range measurements to ofdm transmitters
WO2018186663A1 (ko) * 2017-04-04 2018-10-11 엘지전자 주식회사 무선 통신 시스템에서 거리 측정을 위한 방법 및 이를 위한 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643419B1 (ko) * 2009-12-24 2016-07-27 삼성전자주식회사 무선 통신 시스템에서 위상 보상을 이용한 채널 추정 방법 및 장치
CN103650364A (zh) * 2011-07-01 2014-03-19 瑞典爱立信有限公司 具有相位补偿的波束形成
US8917679B2 (en) * 2011-08-16 2014-12-23 Nokia Corporation Method for signaling the overlap of downlink control and data channels
WO2014183274A1 (en) * 2013-05-15 2014-11-20 Telefonaktiebolaget L M Ericsson (Publ) Method and bs for identifying ue transmits sr, and method and ue for transmitting sr to bs
US10097254B2 (en) * 2016-04-18 2018-10-09 Qualcomm Incorporated Channel state information estimation and channel information reporting
EP3738216A1 (en) * 2018-01-10 2020-11-18 SONY Corporation Flexible beamforming control
US11930517B2 (en) * 2020-09-04 2024-03-12 Qualcomm Incorporated CSI difference report
US11270127B1 (en) * 2021-05-05 2022-03-08 Marc Joseph Kirch Synchronized pulses identify and locate targets rapidly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120032855A1 (en) * 2006-10-05 2012-02-09 Ivan Reede High-resolution ranging and location finding using multicarrier signals
KR20130046713A (ko) * 2011-10-28 2013-05-08 세종대학교산학협력단 순환 지연 다이버시티 기법이 적용된 uwb-ofdm 시스템에서의 주파수 오차 추정 방법 및 장치
KR20130059788A (ko) * 2011-11-29 2013-06-07 세종대학교산학협력단 직교 주파수 분할 다중 변조 방식 통신 시스템의 순환 지연 다이버시티 기법을 이용하는 송신기 및 잔여 시간 오차를 추정하는 수신기
WO2014043237A1 (en) * 2012-09-11 2014-03-20 Deere & Company Navigation using range measurements to ofdm transmitters
WO2018186663A1 (ko) * 2017-04-04 2018-10-11 엘지전자 주식회사 무선 통신 시스템에서 거리 측정을 위한 방법 및 이를 위한 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111988866A (zh) * 2020-08-10 2020-11-24 北京科技大学 一种基于直连链路信道信息的d2d双工模式选择方法及系统
WO2022084089A1 (en) * 2020-10-22 2022-04-28 Sony Group Corporation Method for device-to-device communication

Also Published As

Publication number Publication date
US20210266212A1 (en) 2021-08-26
US11451426B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2020032653A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 무선 링크 모니터링을 수행하는 방법 및 이를 위한 장치
WO2020032698A1 (ko) Nr v2x에서 이종 rat과 관련된 사이드링크 통신이 공존하는 방법 및 장치
WO2020032657A1 (ko) 무선통신시스템에서 단말이 사이드링크 신호의 전송 전력을 제어하는 방법 및 이를 위한 장치
WO2020101266A1 (ko) 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2019216750A1 (ko) 무선 통신 시스템에서 상향링크 전송을 수행하는 방법 및 이를 위한 장치
WO2020032658A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 사이드링크 신호를 전송하는 방법 및 이를 위한 장치
WO2020004910A1 (ko) 무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말
WO2020145804A1 (ko) 무선 통신 시스템에서 피드백 신호를 수신하는 방법 및 송신 단말
WO2019182341A1 (ko) 사이드링크를 지원하는 무선 통신 시스템에서 송신 빔을 결정하는 방법 및 이를 위한 단말
WO2020067761A1 (ko) 데이터 신호를 송수신하는 방법 및 이를 위한 장치
WO2020060214A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 단말
WO2020032679A1 (ko) Nr v2x에서 유연한 슬롯 포맷을 고려한 통신 방법 및 장치
WO2020145487A1 (ko) 무선 통신 시스템에서 신호를 전송하는 방법 및 단말
WO2020067843A1 (ko) Nr v2x에서 사이드링크 자원을 선택하는 방법 및 장치
WO2020159312A1 (ko) 무선 통신 시스템에서 단말의 위치를 측정하는 방법 및 단말
WO2020159326A1 (ko) 무선 통신 시스템에서 단말의 위치를 측정하는 방법 및 단말
WO2020067842A1 (ko) Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
WO2020067760A1 (ko) 무선 링크 모니터링을 수행하는 방법 및 이를 위한 장치
WO2020032770A1 (ko) 무선 통신 시스템에서 신호를 수신 단말에게 전송하는 방법 및 단말
WO2020141857A1 (ko) 무선 통신 시스템에서 제1 단말이 제2 단말과의 거리를 측정하는 방법 및 단말
WO2022075695A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치
WO2021040433A1 (ko) Nr v2x에서 동기화를 수행하는 방법 및 장치
WO2020139051A1 (ko) 무선 통신 시스템에서 피드백 신호를 전송하는 방법 및 단말
WO2020159325A1 (ko) 무선 통신 시스템에서 단말의 위치를 측정하는 방법 및 단말
WO2019216642A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827124

Country of ref document: EP

Kind code of ref document: A1