WO2020004725A1 - 착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템 - Google Patents

착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템 Download PDF

Info

Publication number
WO2020004725A1
WO2020004725A1 PCT/KR2018/013143 KR2018013143W WO2020004725A1 WO 2020004725 A1 WO2020004725 A1 WO 2020004725A1 KR 2018013143 W KR2018013143 W KR 2018013143W WO 2020004725 A1 WO2020004725 A1 WO 2020004725A1
Authority
WO
WIPO (PCT)
Prior art keywords
food
cylinder
probe
cylindrical probe
texture
Prior art date
Application number
PCT/KR2018/013143
Other languages
English (en)
French (fr)
Inventor
윤원병
이윤주
정화빈
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180075412A external-priority patent/KR102061419B1/ko
Priority claimed from KR1020180075395A external-priority patent/KR102061418B1/ko
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to US16/620,239 priority Critical patent/US11579131B2/en
Publication of WO2020004725A1 publication Critical patent/WO2020004725A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/08Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by measuring pressure required to produce a known flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials

Definitions

  • the present invention relates to a texture repeater for detachable food and a system for repeatedly measuring texture.
  • Food products come in various forms, including solids, liquids, semisolids, pastes, dispersed liquid particles, intermediate forms, and particles.
  • the so-called mastication should be repeated for the same volume of food to measure the texture of the food repeatedly.
  • the high strain of the food is achieved by one mastication, and the same mastication is performed once again. It was difficult to measure the texture of food accurately because the volume or strain of food that was previously preserved was not maintained.
  • liquid with particles can not be measured by a viscometer, it is difficult to measure the texture and physical properties of a particular food group.
  • the present applicant has applied for a structure in which the guide unit 230 is wrapped for food (rice).
  • the guide unit 230 can prevent the food from falling out during the chew reproduction process.
  • a pair of plates 240 capable of applying tension to the food side are connected via the elastic part 250, and the elastic part 250 and the plate 240 continuously provide food during the chew reproduction process. Gathered inward, and this process most closely mimics the process of actual human authoring.
  • the present invention uses a so-called 'Texture analyzer' for measuring the texture of food, which is used in the past, and reflects the environment in the oral cavity of a person by using the present invention which is detachable to this device, and has high reproducibility and physical properties of food.
  • the aim is to provide a device capable of measuring texture regardless.
  • this device can be easily attached to a 'texture analyzer' to apply a strain rate similar to a human's mastication form to implement oral chewing reproduction, and can be performed by changing the number of mastications according to food.
  • a 'texture analyzer' to apply a strain rate similar to a human's mastication form to implement oral chewing reproduction, and can be performed by changing the number of mastications according to food.
  • Removable food texture repeater is introduced.
  • the present invention has a guide hole is formed in the center and a predetermined guide hole is formed extending downwards with a predetermined space formed therein, the up and down movement in the state wrapped around the probe guide sphere, the degree of compression when pressing food And a cylindrical probe having a plurality of holes formed in the lower surface thereof so that a portion of the food can be extracted, a space in which the food can be placed therein, and a food sample cup and the holder positioned below the cylindrical probe. It includes a plurality of position fixing guide positioned between the food sample cup.
  • Shear force, compressive stress, and change in food size can be used simultaneously to interpret complex phenomena that can occur in the oral cavity. When foods with different physical properties are mixed by chewing, physical property changes can be observed.
  • FIG. 1 is a photograph showing a part of components of a conventional food texture measuring device
  • FIGS. 4 and 5 are photographs showing a state in which the present invention is fastened to the 'Texture analyzer' which is a device used conventionally,
  • 13 to 16 is a view showing a screen displayed on the display unit implemented by the control unit when the present invention is used in combination with the prior art Texture analyzer,
  • 17 is a graph showing a load value recognized by a load cell according to the transformation of food when repeated 10 times mastication using the present invention
  • the invention is largely applied to the main body 100, the upper needle probe 200a, the temperature maintaining part 300, the constant temperature water tank 400, the artificial needle supply part 500, the control part 600, and the display part 700. ).
  • a load cell 110 is installed inside the main body 100.
  • this load cell is not an essential configuration, but when the present invention is attached to a so-called 'Texture analyzer', the load cell is connected to the present invention.
  • the load cell 110 senses a load value recognized by the upper needle probe 200a connected to the driving unit 210 when it comes into contact with food, and transmits the sensed load value to the display unit 700.
  • Brookfield's 'Texture Analyzer' the model name of 'CT-3'.
  • this is not necessarily limited, and the load value generated by contacting food with artificial teeth is reproduced. Any device that senses this can use other equipment.
  • the food which is chewed at high strain is moved back to the position of the operation after the chewing every time, so that the repeated chewing action occurring in the oral cavity is reproduced, and thus the continuous change of physical properties that occur during the chewing of the food.
  • the saliva in the oral cavity is effective when the food is made in a continuous chewing bar has the advantage of reproducing the role of the saliva on the physical properties during chewing in the mouth by repeated chewing and artificial needle injection.
  • the above-listed invention by the present applicant relates to a work reproduction system that simulates a person's work when authoring a real food, and unlike a person's actual work, there is a limit in analyzing the characteristics of the food itself.
  • the present invention has a purpose to more precisely analyze the characteristics of the food itself, rather than to reproduce the actual human chewing movement, for this purpose it is intended to continuously reproduce the same volume of food.
  • the present invention intends to analyze the characteristics of the food more precisely by newly modifying the structure of the upper teeth probe 200a, the temperature holding unit 300, etc. of the pre- filed invention.
  • 4 to 5 is a state of the present invention is fastened to the invention filed by the present applicant shown in FIG. 3, or is a state fastened to the 'texture analyzer' used in the prior art.
  • Figure 6 is a photograph of the holder 150, which is one component of the present invention.
  • FIG. 7 is an actual photograph illustrating a fastening state between the holder 150, the cylindrical probe 200a, and the food sample cup 160.
  • the present invention largely includes a holder, a cylindrical probe, a food sample cup and a positioning guide.
  • the fixing stand 150 is fixed to the main body 100, a texture analyzer used in the prior art, a predetermined guide hole 151 is formed at the center thereof, a predetermined space is formed therein, and a probe guide sphere formed downwardly ( 152) is formed.
  • Fixture 150 is fixed to the main body 100.
  • the coupling form may be formed in a variety of ways, depending on the type of the main body 100 is used so that the user can be easily fastened with the main body 100 on the inner surface of the bending portion upward from both ends of the fixing table 150 It is possible if there is an adhesive component so that the bonding force can be maintained at the time of fastening, or a configuration that can be fixed by frictional force.
  • fastening structure is also possible by coupling the body 100 and the bolt.
  • a guide hole 151 of a predetermined depth is formed in the center of the fixing table 150.
  • the driving unit is moved up and down along the guide hole 151.
  • the driving unit 210 is not an essential component of the present invention, but may have a sliding structure capable of lifting up and down as shown in FIG. 3, and a motor capable of lifting up and down the driving unit 210 is provided inside the main body 100. Can be installed.
  • a control unit when the present invention is used in combination with the actual texture analyzer, a control unit will generally be required.
  • the motor is operated by the control unit 600, the driving unit 210 moves up and down according to the signal, and the food sample cup 160 You will chew on the food in).
  • the probe guide sphere 152 extending downwards with a predetermined space is formed on the fixing table 150.
  • the driving unit 210 moves up and down along the inside of the probe guide sphere 152, and the cylindrical probe 200a, which will be described later, is raised and lowered while wrapping the probe guide sphere 152 from the outside.
  • a cylindrical probe having a plurality of holes formed in a lower surface thereof is introduced to move up and down in a state in which the probe guide sphere 152 is wrapped and to extract a portion of the food according to the degree of compression when the food is compressed.
  • the cylindrical probe 200a is connected to the extended driving part 210 which can be connected to the present invention later along the guide hole 151.
  • the load cell 110 is connected to the drive unit 210, and the rod probe 110a connected to the drive unit 210 senses a load value recognized when contacting the food, and detects the sensed load value according to the present invention. Transmission to the display unit 700 side that can be actually linked together.
  • the cylindrical probe 200a is formed to surround the probe guide sphere 152.
  • the lower surface of the cylindrical probe (200a) is formed with a plurality of holes 211 in the lower surface so that a portion of the food can be extracted according to the degree of compression when the food is pressed.
  • the food to be tested is placed, and when the cylindrical probe 200a descends, the food is squeezed, and a plurality of the foods are formed on the lower surface of the cylindrical probe 200a according to the degree of compression. A portion of the food comes out along the two holes 211.
  • the lower surfaces of the plurality of holes 211 and the probe guide sphere 152 are located at the same position facing each other, so that a part of the foods that are pulled up along the hole 211 may be formed by the holes 211 and the probe guide sphere 152. It is trapped by the bottom surface.
  • the escaped food is located between the hole 211 and the lower surface of the probe guide sphere 152.
  • cylindrical probe 200a which is raised again, may be lowered to masticate the same volume of food when the food is compressed, thereby more accurately measuring the physical properties of the food.
  • the food may be deformed or broken again by contact with the lower surface of the probe guide sphere 152 due to the rise of the cylindrical probe 200a.
  • the cylindrical probe 200a is opened upward, and a plurality of holes 211 are spaced apart at predetermined intervals along the circumference of the lower surface.
  • the connector 212 of a predetermined length having a plurality of threads formed on its outer circumferential surface so as to be connected to the drive unit 210 is formed.
  • a predetermined space is formed between the connector 212 of a predetermined length having a plurality of threads formed therein and the outer wall of the cylindrical probe 200a, and the food exiting the hole 211 into this space. This is placed.
  • a space in which food can be placed is formed therein, and is seated on the base.
  • the structure of the food sample cup 160 will be described in more detail as follows.
  • the first cylinder 161, the second cylinder 162, and the third cylinder 163 of different radii are sequentially formed with their upper sides radially open from their centers.
  • the water supply hole 164 and the water discharge hole 165 are formed to face the outer wall of the third cylinder 163 so that water at a predetermined temperature can be supplied.
  • the height of the partition wall of the first cylinder 161 is formed to be lower than the height of the second cylinder 162 and the third cylinder 163.
  • Inlet hole 213 is characterized in that formed in the height direction of the cylindrical probe (200a).
  • a predetermined inlet hole 213 is formed in the height direction along the inside of the cylindrical probe 200a in the circumferential direction.
  • the food is placed between the first cylinder 161 and the second cylinder 162, and the partition wall of the first cylinder 161 is inserted into the inlet hole 213 while the cylindrical probe 200a is lowered to insert the food. Authoring is done.
  • the mastication device provided with a plurality of holes 211 was inadequate, thereby limiting the measurement of the physical properties of foods due to repetitive mastication.
  • the repeated reproduction of the same volume of food is important for measuring the physical properties of the food during repeated chewing of the food.
  • the present invention is implemented so that the same volume of food can be continuously repeated chewing through the plurality of holes 211. It was.
  • the present invention When the present invention is used in combination with a conventionally used texture analyzer, it is of course suitable for observing changes in physical properties due to repeated mastication of texture of foods having various physical properties, and in a plurality of holes 211 as described above. This enables the measurement of not only solid foods but also pastes, semisolids and liquid foods.
  • the plurality of position fixing guide 170 is compressed between the food and then between the holder 150 and the food sample cup 160 to prevent the movement of the food sample cup 160 by the rise of the cylindrical probe (200a) Located in
  • the cylindrical probe 200a performs a function of preventing the food sample cup 160 from being lifted up in order to re-writ the food after it has been chewed once.
  • the position fixing guide 170 has a predetermined curved shape, and the lower surface thereof has a fitting hole 171 corresponding to the shape of the outer wall of the third cylinder 163 to be fitted to the outer wall of the third cylinder 163. It is characterized in that formed on the lower surface.
  • It has a curved surface as a whole, and its upper surface is flat and its lower surface has a fitting hole 171 of a predetermined depth so as to be fitted to the outer wall of the third cylinder 163. It is formed along.
  • the food sample cup 160 is not lifted by the position fixing guide 170, and an accurate experiment can be performed.
  • the first outer ring 172 is formed on the lower outer circumferential surface of the cylindrical probe 200a
  • the second outer ring 173 is formed on the lower outer circumferential surface of the probe guide hole 152 to prevent food from escaping to the outside. can do.
  • the driving unit 210 senses the load measured in the load cell and is placed in the food sample cup 160 by the lowering of the cylindrical probe 200a.
  • the control unit 600 stores the set strain of the food and lowers the cylindrical probe 200a by the set speed and the set number of times.
  • the operation of the cylindrical probe 200a is controlled by transmitting and receiving an operation signal to the motor side connected to the driving unit 210 so that the driving unit 210 moves up and down.
  • the present invention when used in combination with a conventionally used texture analyzer includes a constant temperature bath 400 as disclosed in Figure 3, the temperature set by transmitting a signal to the heating source 410 side installed in the constant temperature water tank 400 To adjust the temperature of the water, thereby supplying water at a temperature set toward the water supply hole 164 formed on the outer wall of the third cylinder 163.
  • the signal is transmitted to the artificial needle pump 520 side installed in the artificial needle supply unit 500 so that the artificial needle is supplied to the artificial needle supply port side formed in the probe guide port 152.
  • the artificial needle is supplied to the artificial needle pump 520 by 1.45 ml / min, but it may be variously changed according to an experimental environment.
  • FIGS. 11 and 12 filed with the applicant, to aid in understanding these various structures.
  • control unit 600 senses the load measured in the load cell 110, in particular continuously senses the load value generated when the contact with the food.
  • the sensed load value is displayed on the display 700 as a graph over time.
  • controller 600 stores the set strain of the food F placed on the food sample cup by the operator descending the cylindrical probe 200a in advance.
  • FIG. 13 illustrates a screen displayed on the display unit 700 implemented by the controller 600, and as illustrated, an operator may input a strain value in advance.
  • the set strain of food means the degree of compression of food desired by the operator.
  • the controller 600 is continuously connected to the load cell 110 and continuously receives a load value sensed upon contact with the food F placed on the food sample cup 160 when the cylindrical probe 200a is lowered.
  • the controller 600 previously stores the strain, that is, the degree of compression, of the food, and the driving unit 210 operates by the pre-stored strain so that the cylindrical probe 200a compresses the food.
  • the strain of the food pre-stored by the user is implemented as a distance on the cylindrical probe 200a and the base 120.
  • the controller 600 receives a load value sensed in real time while compressing food through the load cell 110, and the load value is shown to the worker in a graph on the display unit 700 which will be described later.
  • the controller 600 lowers the cylindrical probe 200a by a set speed and a set number of times to masticate the food.
  • the operator may input in advance a cycle that is the speed of the driving unit 210 and the number of times of writing.
  • the worker may input in advance a speed at which the driving unit 210 moves up and down through the display unit 700 implemented by the control unit 600.
  • the maximum speed is set to 3 mm / s, but is not necessarily limited thereto.
  • the operator may store in advance the number of mastications between the cylindrical probe 200a and the food, that is, the number of cycles, and the number of mastications is determined according to the stored number of cycles, and a graph in which the time and the load value according to the number of times are expressed. Is shown to the worker through the display unit 700.
  • the display unit 700 refers to a general monitor and is connected to the main body 100 and the control unit 600, respectively, and displays a graph corresponding to a time according to a work and a load measured by the load cell 110, as well as The speed, the number of times, and the strain rate of the driving unit 210 may be input through the display unit 700.
  • control unit 600 is stored in advance the trigger rod value to recognize when the cylindrical probe (200a) in contact with food.
  • the controller 600 displays the time and load cell according to the work from the measurement point to the display 700. Displaying a graph corresponding to the load recognized by the.
  • FIG. 16 illustrates a trigger load value that a user may store in advance in the display 700 that is linked with the controller 600.
  • the trigger rod value refers to a rod value that is recognized when the cylindrical probe 200a descends upon first contact with the food placed on the food sample cup 160.
  • This trigger rod value can be input by the user in advance through various experiments, and in the case of a soft food, that is, a soft food, the trigger rod value will be formed small. The harder the food, the larger the trigger rod value is. Will be saved.
  • the maximum trigger load value may be set to 10000 g, but is not limited thereto.
  • control unit 600 When the control unit 600 recognizes the load value corresponding to the trigger rod value by the load cell 110, the control unit 600 recognizes that the cylindrical probe 200a contacts the food placed on the food sample cup 160.
  • the control unit 600 moves from the measurement point to the display unit 700. It is characterized by displaying a graph corresponding to the time according to the work and the load recognized by the load cell (110).
  • the set cycle number is masticated, and the load generated while masticating each food per cycle is implemented as a graph.
  • the height of the base 120 is pre-stored in the control unit 600, and the distance between the cylindrical probe 200a before the descent of the cylindrical probe 200a and the food sample cup 160 is pre-stored.
  • the position of the cylindrical probe 200a is sensed at the point of time when the load value is recognized, and the cylindrical probe 200a is lowered to a position corresponding to the set strain of the food.
  • the height of the base 120 is displayed on the display unit 700 in real time by the sensor that recognizes the height installed in the base 120.
  • the front of the base 120 has an adjustment screw for adjusting the height of the base 120, a motor adjacent to the adjustment screw may be installed, the signal by the rotation of the motor or the rotation of the adjustment screw is the main body 100 Alternatively, the height of the base 120 is displayed on the display 700 according to the value transmitted to the controller 600.
  • the height of the base 120 may be displayed on the display unit 700 in various ways in addition to the above method.
  • the height of the cylindrical probe (200a) can also be stored in advance by the user
  • the height of the end of the drive unit 210 connected to the cylindrical probe (200a) can also be stored in advance by the user
  • An upper end of the 210 may be provided with a motor that can also be interlocked with the driving unit 210, the rotation signal of the motor is transmitted to the main body 100 or the control unit 600 to transmit the height according to the rotation of the cylinder
  • the height of the end of the type probe 200a may be displayed on the display 700.
  • the height of the cylindrical probe 200a and the height or distance between the cylindrical probe 200a and the food sample cup 160 may be displayed on the display 700 in various ways.
  • Figure 17 shows the load value recognized by the load cell according to the modification of the food when repeated 10 times chewing using the present invention.
  • the part shown in blue is for rice, and the part shown in red is a graph when an enzyme (artificial needle) is supplied.
  • Both the graph for the rice without enzyme and the graph for rice with enzyme show the load value generated when the cylindrical probe 200a compresses the rice, and the falling portion shows the set strain. It shows the portion where the cylindrical probe 200a rises in order to finish and rewrite.
  • a load value of a positive value occurs and a load value of a negative value occurs.
  • the cylindrical probe 200a descends and the food is lowered.
  • the negative load value is a load value generated when the pressure is compressed, and when the cylindrical probe 200a is raised again, the food sampled out along the hole 211 again moves along the hole 211 to the food sample cup ( The load value sensed by the cylindrical probe 200a when descending to 160 is shown.
  • the load value is generated in the opposite direction to the pressing direction of the food and has a negative value.
  • a negative load value means a load value indicated by a broken food, and if the absolute value is large, it means that the food may be broken more if the absolute value is small. it means.
  • the fundamental reason for knowing the degree of this 'packing' in the present invention is that the volume of the food to be tested can be maintained continuously.
  • the food has voids formed between the particles, and the hard material and the paste material will have different porosities.
  • the cylindrical probe (200a) is pressed down while pressing the food, the porosity is sufficiently reduced accordingly, a portion of the food is released along the hole 211.
  • the slope of the rising curve in the graph shows the degree of 'packing' of this food, and the steep rise indicates that the food is closer to a solid than to a paste. You will find out.
  • the rising curve of the graph includes a packing portion for reducing the porosity of the food, and a portion of the food that is packed after exiting the hole 211 and a portion of the food that is continuously pressed while the portion of the food exits. .
  • the graph for rice without enzyme shows that the maximum load value for each cycle is lower than that for rice with enzyme.
  • the enzyme is injected into the rice 10 times it is changed to the form of 'porridge', and if the experiment using only rice means that it changes to the form of 'rice cake'.
  • the enzyme in order to simulate the oral environment, the enzyme must be injected in addition to the proper temperature water supply.
  • the present invention is suitable for observing changes in physical properties by repeated chewing of texture of foods having various physical properties as various techniques when applied to and used in the conventionally used texture analyzer as described above.
  • FIG. 4 is an actual photograph of some components of the present invention attached to the invention filed by the applicant.
  • the present invention largely includes a main body 100, a fixed stand 150, a cylindrical probe 200a, a food sample cup 160, a position fixing guide 170, a control unit 600 and a display unit 700.
  • the main body 100 has a load cell 110 installed therein and includes a base 120 having a predetermined height.
  • FIG. 12 is a schematic diagram of a state in which the load cell 110 employed in the present invention is installed together with the invention filed by the present applicant.
  • the load cell 110 senses a load value recognized by the cylindrical probe 200a connected to the driver 210 to be described later when contacting the food, and transmits the sensed load value to the display unit 700.
  • the present invention has a base 120 having a predetermined height in front of the main body 100 as shown in FIGS. 3 and 4.
  • the height of the base 120 is adjusted by manipulating a screw that can be raised and lowered, and the food sample cup 160 to be described later is seated on the base 120.
  • the base 120 may be provided with a motor that can sense the height of the base 120 when the lifting and lowering of the base 120 in accordance with the operation of the screw, the height of the base 120 changes depending on the rotation of the motor in real time It may be implemented in a structure that is transmitted to the display unit 700.
  • Figure 4 is an actual picture of the mounting bracket 150, which is one component of the present invention installed on the main body 100
  • Figure 5 is an actual picture of the mounting bracket 150
  • Figure 6 is a holder 150 and cylindrical This is an actual picture showing the fastening state between the probe 200a and the food sample cup 160.
  • a predetermined guide hole 151 is formed at the center thereof, a predetermined space is formed therein and extends downward Guide sphere 152 is formed.
  • Fixture 150 is fixed to the main body 100.
  • the coupling form may be formed in a variety of ways, depending on the type of the main body 100 is used so that the user can be easily fastened with the main body 100 on the inner surface of the bending portion upward from both ends of the fixing table 150 It is possible if there is an adhesive component so that the bonding force can be maintained at the time of fastening, or a configuration that can be fixed by frictional force.
  • fastening structure is also possible by coupling the body 100 and the bolt.
  • a guide hole 151 of a predetermined depth is formed in the center of the fixing table 150.
  • the driving unit is moved up and down along the guide hole 151.
  • the driving unit 210 may have a sliding structure capable of moving up and down, and a motor capable of lifting up and down the driving unit 210 may be installed inside the main body 100.
  • the driving unit 210 moves up and down according to the signal to masticate the food on the food sample cup 160.
  • the probe guide sphere 152 extending downwards with a predetermined space is formed on the fixing table 150.
  • the driving unit 210 moves up and down along the inside of the probe guide sphere 152, and the cylindrical probe 200a, which will be described later, is raised and lowered while wrapping the probe guide sphere 152 from the outside.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

착탈 가능한 식품의 조직감 반복 측정기가 소개된다. 이를 위해 본 발명은 그 중심에 소정의 가이드홀이 형성되고 내부에 소정 공간이 형성된 채 하방으로 연장 형성된 프로브가이드구가 설치된 고정대; 상기 프로브가이드구를 감싼 상태에서 상하 운동하며 식품의 압착시 압착 정도에 따라 식품의 일부가 추출될 수 있도록 그 하부면에 다수개의 홀이 형성된 실린더형 프로브;그 내부에 식품이 놓일 수 있는 공간이 형성되고 상기 실린더형 프로브 하부에 위치하는 식품샘플컵; 및 상기 고정대와 상기 식품샘플컵 사이에 위치하는 복수개의 위치고정가이드;를 포함한다.

Description

착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템
본 발명은 착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템에 관한 것이다.
식품은 고체, 액체, 반고체, 페이스트 형태, 액체 내 입자가 분산되어 있거나, 중간 형태, 입자로 구성된 형태 등 다양한 형태가 존재한다.
한편, 도 1에 도시된 바와 같이 종래의 식품 조직감 측정 장치의 경우 형태를 이루는 고체 식품에 일정 힘을 가하고, 식품 내부 변형된 정도를 force값을 통해 확인하였다.
하지만, 기존의 기기는 페이스트나 일정 형태의 유지가 되지 않는 식품은 높은 변형률로 측정이 불가능하였다.
즉, 동일한 부피의 식품에 대해 반복적으로 식품의 조직감을 측정하기 위해 이른바 저작을 해야 되는데, 도 1에 도시된 바와 같은 식품의 경우 한번의 저작에 의해 식품의 높은 변형률이 이루어지고, 다시 한번 동일한 저작을 수행할 때는 이전에 저작시 유지되었던 식품의 부피 혹은 변형률이 유지되지 않아 정확한 식품의 조직감을 측정하기 어려웠다.
또한, 입자가 있는 액체는 점도계로도 측정이 불가능하여 특정 식품군의 조직감 및 물리적 특성을 측정에 어려움이 있다.
이를 고려하여 본 출원인은 도 2에 도시된 바와 같이, 식품(밥)을 대상으로 가이드부(230)가 감싸진 구조를 출원하였다.
이 가이드부(230)에 의해 식품이 저작 재현 과정 중 외부로 빠지는 것을 방지할 수 있다.
또한, 식품 측으로 텐션을 가할 수 있는 한 쌍의 플레이트(240)가 탄성부(250)를 매개로 연결되어 있으며, 이 탄성부(250)와 플레이트(240)에 의해 저작 재현 과정 중 지속적으로 식품이 안쪽으로 모아지게 하고, 이러한 과정으로 인간이 실제로 저작하는 과정을 가장 유사하게 모사하게 하였다.
그러나, 상기의 과정은 실제 인간의 저작 재현을 가장 유사하게 모사하기 위한 장치에 해당되며, 인간의 저작 재현이 아닌 식품 자체의 고유한 물성을 평가하기에는 미흡한 점이 있었다.
이에 본 발명은 종래에 사용되던 이른바 식품의 조직감을 측정하기 위한 'Texture analyzer'를 그대로 사용하되, 이 기기에 착탈 가능한 본 발명을 사용함으로써 사람의 구강 내 환경을 반영하며 재현성이 높고 식품의 물성에 상관없이 조직감 측정이 가능한 장치를 제공함에 그 목적이 있다.
또한, 이 장치를 'Texture analyzer'에 손쉽게 부착하여 사용하여 구강 내 저작 재현을 구현하기 위해 사람의 저작 형태와 유사한 변형율을 적용시킬 수 있고, 식품에 따라 저작 횟수를 변경하여 수행할 수 있게 함에 그 목적이 있다.
또한, 식품의 물성에 상관없이 고체, 페이스, 반고체, 액체 형태의 모든 식품의 물성 측정이 가능하고, 구강 내 온도, 침의 영향에 따른 새로운 구조의 조직감 시스템을 제공하여 실제 사람의 저작 과정을 반영할 수 있는 새로운 구조의 착탈 가능한 식품의 조직감 반복 측정기를 제공함에 그 목적이 있다.
착탈 가능한 식품의 조직감 반복 측정기가 소개된다.
이를 위해 본 발명은 그 중심에 소정의 가이드홀이 형성되고 내부에 소정 공간이 형성된 채 하방으로 연장 형성된 프로브가이드구가 설치된 고정대, 상기 프로브가이드구를 감싼 상태에서 상하 운동하며 식품의 압착시 압착 정도에 따라 식품의 일부가 추출될 수 있도록 그 하부면에 다수개의 홀이 형성된 실린더형 프로브, 그 내부에 식품이 놓일 수 있는 공간이 형성되고 상기 실린더형 프로브 하부에 위치하는 식품샘플컵 및 상기 고정대와 상기 식품샘플컵 사이에 위치하는 복수개의 위치고정가이드를 포함한다.
상기와 같은 구성으로 이루어진 본 발명에 의한다면 아래와 같은 효과가 구현된다.
(1)종래의 저작 재현 장치(Texture analyzer)에 본 발명의 일부 구성을 사용자가 손쉽게 부착할 수 있는 이점이 있다.
(2)종래의 식품을 압착하는 장치에는 식품을 압착하였을 때 식품의 일부가 빠져나가는 구멍이 없는 상태에서 식품을 저작하여 반복 재현에 의한 정확성이 부족하였다.
이로 인해 식품의 일부가 아예 빠진 상태에서 식품을 저작하여 동일한 부피의 식품을 반복적으로 저작하지 못하는 문제가 있었다.
그러나, 본 발명에 의한다면 동일한 부피의 식품을 여러번 반복 저작 재현이 가능한 이점이 있다.
(3)식품의 반복 저작이 가능함은 물론이고, 매회 반복 저작시 동일한 부피의 식품에 대해 저작 운동이 가능하여 그에 따라 정교한 결과와 재현성이 이루어진다.
(4)종래에는 고체 형태의 식품에 대해서 어느정도 저작 재현이 가능하였다.
그러나, 페이스트와 같은 식품의 경우 한번의 저작으로 식품의 일부가 빠져나가 반복 재현이 어려웠다.
그러나, 본 발명에 의하다면 고정된 부피의 페이스트가 지속적으로 유지되어 반복 재현이 우수한 이점이 있다.
(5)식품 자체의 특성을 보다 정교하게 측정할 수 있는 이점이 있다.
(6)고체 식품 뿐만 아니라 페이스트, 반고체, 액체 식품 측정이 가능하고, 구강 내에서와 유사한 높은 변형률로 식품의 저작 구동이 가능하여 실제 식품을 사람이 저작 시 발생하는 조직감을 측정 가능한 이점이 있다.
(7)본 발명에 의한다면 추가적인 장치의 결합으로 인해 시간에 따라 측정되는 힘(force, 로드)그래프를 통해 식품이 저작 횟수에 따라 변화되는 정도를 확인하여 원하는 식품을 구현하는데 도움이 되는 이점이 있다.
그리고, 충분한 저작 작용을 통해 식품의 조직감이 더 이상 변하지 않을 때 힘과 시간을 제공받을 수 있는 이점이 있다.
(8)본 발명을 이용하는 경우 추가적인 장치의 결합으로 인해 시간에 따른 힘(로드)이 표시되는 그래프를 통해 식품 연구시 충분한 자료가 제공될 수 있다.
그리고, 식품 개발시 본 발명을 이용하여 원하는 물성의 식품을 개발할 수 있는 이점이 있고, 각각의 저작 사이클 마다 생기는 로드(힘)값이 실시간으로 표시되어 작업자가 해당 식품의 물성을 파악 하는데 도움을 주는 이점이 있다.
(9)설정된 온도의 물과 인공 침이 공급되어 사람의 구강 내 환경을 충분히 반영할 수 있는 이점이 있고,높은 변형률로 저작된 식품이 매회 저작이 이루어진 후 저작 전의 위치로 다시 이동함으로써 실제 구강에서 발생하는 반복적인 저작 작용이 재현되어 식품의 저작 시 발생하는 물성의 연속적인 변화에 대한 측정이 가능한 이점이 있다.
(10)인공 침은 물리적인 변형뿐만 아니라 효소적 반응에 의해 조직감 변화를 확인하여 구강 내에서 발생할 수 있는 변화를 측정 가능하고, 다양한 프로브 중 식품 물성에 따라 전단력 또는 압축응력을 측정하기 적합한 프로브 선택이 가능한 이점이 있다.
(11)전단력 및 압축 응력, 식품의 크기 변화가 동시에 작용하여 구강 내에서 발생할 수 있는 복합적인 현상을 해석이 가능하고, 여러 물성을 지닌 식품이 저작에 의해 섞일 때 물성 변화 관찰이 가능하게 된다.
도 1은 종래의 식품 조직감 측정 장치의 구성요소 일부를 나타내는 사진,
도 2는 본 출원인에 의해 출원된 발명의 일부 구성도,
도 3은 본 출원인에 의해 출원된 발명의 전체 구성도,
도 4 및 도 5는 본 발명이 종래 사용되던 장치인 'Texture analyzer'에 체결된 상태를 나타내는 사진,
도 6은 본 발명의 일부 구성도의 실제 사진,
도 7은 본 발명의 일부 구성들의 체결 상태도인 실제 사진,
도 8은 본 발명의 일부 구성요소인 실린더형 프로브의 실제 사진,
도 9은 본 발명의 일부 구성요소인 식품샘플컵의 실제 사진,
도 10은 본 발명의 일부 구성요소인 위치고정가이드의 실제 사진,
도 11과 도 12는 본 출원인에 출원된 발명의 일부 구성도,
도 13 내지 도 16은 본 발명이 종래 기술인 Texture analyzer에 결합되어 사용되는 경우 제어부에 의해 구현되는 디스플레이부에 표시된 화면을 나타내는 도면,
도 17은 본 발명을 이용하여 10회 저작 반복시 식품의 변형에 따른 로드셀에서 인지하는 로드값을 나타내는 그래프,
이하 첨부된 도면을 참조로 본 발명인 착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템의 바람직한 실시 예를 설명한다.
본 발명을 설명하기에 앞서 본 발명의 이해를 돕기 위해 본 출원인이 이미 선출원한 '10-2017-0162847'인 '저작 재현 시스템'을 간략하게 설명하면 다음과 같다. 한편, 후술하는 내용은 도 3에 한정되어 그 도면 부호가 결정되며, 이하 후술할 본 발명의 도면 부호와는 다를 수 있다.
다만, 선출원된 발명에서 동일하게 채용하는 구성에 대해서는 동일한 도면 부호를 사용한다.
도시된 바와 같이 선 출원된 발명은 크게 본체(100), 윗니프로브(200a), 온도유지부(300), 항온수조(400), 인공침공급부(500), 제어부(600) 및 디스플레이부(700)를 포함한다.
도 12에 도시된 바와 같이 본체(100)의 내부에는 로드셀(110)이 설치되어 있다.
본 발명에서는 이 로드셀이 필수적인 구성은 아니지만, 본 발명을 이른바 'Texture analyzer'에 부착하여 사용시 이 로드셀이 본 발명에 연결된다.
로드셀(110)은 구동부(210)에 연결된 윗니프로브(200a)가 식품과의 접촉시 인지하는 로드값을 센싱하고 그 센싱된 로드값을 디스플레이부(700)측으로 전송한다.
실제 실험시 '브룩필드(Brookfield)'사의 'CT-3'의 모델명인 'Texture analyzer'를 사용하지만 반드시 이에 한정되는 것은 아니고 인공치아를 이용하여 저작 재현을 수행하고 식품과의 접촉시 생기는 로드값을 센싱하는 장치라면 다른 장비를 사용할 수 있다.
이 선출원된 발명을 통해 아래와 같은 효과가 구현될 수 있다.
첫째, 구강 내에서 이루어지는 식품의 저작에 따른 높은 변형율과 유사한 변형률로 식품의 저작 구동이 가능하여 실제 식품의 저작시 발생하는 조직감의 측정이 가능한 이점이 있다.
둘째, 시간에 따른 로드값 그래프를 통해 원하는 식품을 구현하는데 도움이 되는 이점이 있다.
셋째, 시간에 따른 로드값 그래프를 통해 처음 저작시 생기는 로드값과 더이상 식품이 변형되지 않을 때의 로드값을 실시간으로 제공받을 수 있는 이점이 있다.
넷째, 시간에 따른 로드값이 표시되는 그래프를 통해 식품 연구시 충분한 자료가 제공될 수 있음은 물론이고, 식품 개발시 본 발명을 이용하여 원하는 물성의 식품을 개발할 수 있는 이점이 있으며, 각각의 저작 사이클 마다 생기는 로드값이 실시간으로 표시되어 작업자가 해당 식품의 물성을 파악 하는데 도움을 주는 이점이 있다.
다섯째, 설정된 온도의 물과 인공침이 공급되어 사람의 구강 내 환경을 충분히 반영할 수 있는 이점이 있다.
여섯째, 본 발명에 의한다면 높은 변형률로 저작된 식품이 매회 저작이 이루어진 후저작전의 위치로 다시 이동함으로써 실제 구강에서 발생하는 반복적인 저작작용이 재현되어 식품의 저작 시 발생하는 물성의 연속적인 변화에 대한 측정이 가능한 이점이 있다.
일곱째, 구강내에서의 침은 식품이 연속적인 저작이 이루어지는 경우 그 효과가 나타나는바 반복적인 저작과 인공침의 주입으로 구강에서 침이 저작 시에 물성에 작용하는 역할을 재현하는 이점이 있다.
그러나, 본 출원인에 의한 선출원된 상기의 발명은 사람이 실제 식품을 저작하는 경우 이를 모사하는 저작 재현 시스템에 관한 것으로, 사람의 실제 저작과 달리 식품 자체의 특성을 정교하게 분석하는 데에는 한계가 있다.
또한, 식품의 저작시 식품의 일부가 빠져나가는 것을 방지하는 구성이 개시되어 있기는 하나 여전히 반복 재현시 동일한 부피의 식품을 저작하는데에는 한계가 있다.
이에 본 발명은 실제 사람의 저작 운동을 재현하기 보다는 식품 자체의 특성을 보다 정교하게 분석함에 그 목적이 있고, 이를 위해 동일한 부피의 식품의 지속적으로 반복 재현하고자 한다.
이를 위해 본 발명은 선출원된 발명 중 윗니프로브(200a), 온도유지부(300) 등의 구조를 새롭게 변형하여 보다 정교하게 식품의 특성을 분석하고자 한다.
이하 본 발명을 구체적으로 설명하면 다음과 같다.
도 4 내지 도 5는 본 발명이 도 3에 도시된 본 출원인에 의해 출원된 발명에 체결된 상태의 실제 사진 혹은, 종래에 사용되던 'Texture analyzer'에 체결된 상태도이다.
도 6은 본 발명의 일 구성요소인 고정대(150)의 사진이다.
도 7은 고정대(150)와 실린더형 프로브(200a) 및 식품샘플컵(160)과의 체결 상태를 나타내는 실제 사진이다.
본 발명은 크게, 고정대, 실린더형 프로브, 식품샘플컵 및 위치고정가이드를 포함한다.
도시된 바와 같이 고정대(150)는 본체(100, 종래에 사용되던 Texture analyzer에 고정되고 그 중심에 소정의 가이드홀(151)이 형성되고 내부에 소정 공간이 형성되며 하방으로 연장 형성된 프로브가이드구(152) 형성된다.
고정대(150)가 본체(100)에 고정된다.
그 결합형태는 다양하게 형성될 수 있으나, 사용되는 본체(100)의 종류에 따라 사용자가 손쉽게 체결할 수 있도록 고정대(150)의 양 끝단에서 상방으로 절곡진 부분의 내측면에 본체(100)와의 체결시 그 결합력이 유지될 수 있도록 접착성분이 있거나, 마찰력에 의해서도 고정될 수 있는 구성이면 가능하다.
물론, 본체(100)와 볼트 결합에 의해 체결 구조도 가능하다.
고정대(150)의 중심에는 소정 깊이의 가이드홀(151)이 형성되어 있다. 이 가이드홀(151)을 따라 구동부가 승하강된다.
구동부(210)는 본 발명의 필수적 구성요소는 아니지만 도 3에 도시된 바와 같이 승하강할 수 있는 슬라이딩구조로 될 수 있고, 본체(100)내부에는 이 구동부(210)를 승하강시킬 수 있는 모터가 설치될 수 있다.
또한, 본 발명이 실제 Texture analyzer에 결합되어 사용되는 경우 제어부가 일반적으로 필요할 것이며, 이 제어부(600)에 의해 모터가 작동하게 되면 그 신호에 따라 구동부(210)가 승하강하면서 식품샘플컵(160)상에 있는 식품을 저작하게 된다.
한편, 소정 공간이 형성된 채 하방으로 연장 형성된 프로브가이드구(152)가 고정대(150)에 형성된다.
프로브가이드구(152)의 내부를 따라 구동부(210)가 승하강되며, 이하 후술할 실린더형 프로브(200a)가 이 프로브가이드구(152)를 외부에서 감싼 채 승하강된다.
한편, 프로브가이드구(152)를 감싼 상태에서 상하 운동하며 식품의 압착시 압착 정도에 따라 식품의 일부가 추출될 수 있도록 그 하부면에 다수개의 홀이 형성된 실린더형 프로브가 소개된다.
도 8은 본 발명의 일부 구성요소인 실린더형 프로브의 실제 사진이다.
이 실린더형 프로브(200a)는 가이드홀(151)을 따라 추후 본 발명에 연결될 수 있는 연장 형성된 구동부(210)에 연결된다.
구동부(210)에는 로드셀(110)이 연결되어 있고, 이 구동부(210)에 연결된 실린더형 프로브(200a)가 식품과의 접촉시 인지하는 로드값을 센싱하고, 그 센싱된 로드값을 본 발명과 함께 실제 연동될 수 있는 디스플레이부(700)측으로 전송한다.
실린더형 프로브(200a)는 프로브가이드구(152)를 감싼 상태로 이루어진다.
이 감싼 상태에서 구동부(210)의 작동에 따라 상하 운동한다.
한편, 실린더형 프로브(200a)의 하부면에는 식품의 압착시 압착 정도에 따라 식품의 일부가 추출될 수 있도록 그 하부면에 다수개의 홀(211)이 형성되어 있다.
이 작동관계를 살펴보면 다음과 같다.
이하 후술할 식품샘플컵(160)에는 실험 대상인 식품이 놓이고, 실린더형 프로브(200a)가 하강하면 식품을 압착하게 되고, 그 압착 정도에 따라 상기 실린더형 프로브(200a)의 하부면에 형성된 다수개의 홀(211)을 따라 식품의 일부가 위로 빠져나오게 된다.
종래에는 식품을 압착하는 경우 식품의 일부가 외부로 빠져나가 재압착시 압착되는 식품의 부피가 일정하지 않아 정확한 식품의 물성을 측정할 수 없었다.
이 다수개의 홀(211)과 프로브가이드구(152)의 하부면은 서로 대향되는 동일한 위치에 있어 홀(211)을 따라 위로 빠져나온 식품의 일부는 홀(211)과 프로브가이드구(152)의 하부면에 의해 갇히게 된다.
이 빠져나온 식품은 홀(211)과 프로브가이드구(152)의 하부면 사이에 위치하게 된다.
그리고, 다시 식품을 저작하기 위해 실린더형 프로브(200a)의 상승시 이 홀(211)을 따라 식품이 다시 아래로 빠져나와 식품샘플컵(160)상에 위치하게 된다.
그리고, 다시 상승한 실린더형 프로브(200a)가 하강하여 식품의 압착시 동일한 부피의 식품에 대해 저작할 수 있어 식품의 물성을 보다 정확하게 측정할 수 있다.
물론, 실린더형 프로브(200a)의 상승에 의해 프로브가이드구(152)의 하부면과의 접촉에 의해 식품이 다시 변형 즉 깨질 수 있는 효과도 있다.
이 실린더형 프로브(200a)는 도 8에 도시된 바와 같이 그 상방이 개방되고, 하부면의 원주를 따라 다수개의 홀(211)이 소정 간격으로 이격 형성되어 있다.
또한, 그 내부에는 구동부(210)에 연결될 수 있도록 그 외주면에 다수개의 나사산이 형성된 소정 길이의 연결구(212)가 형성된 것을 특징으로 한다.
내부적으로는 이중 구조로 되어 있으며, 다수개의 나사산이 형성된 소정 길이의 연결구(212)와 실린더형 프로브(200a)의 외벽 사이에는 일정한 공간이 형성되어 있고, 이 공간으로 홀(211)을 빠져나온 식품이 놓이게 된다.
한편, 그 내부에 식품이 놓일 수 있는 공간이 형성되고 실린더형 프로브 하부에 위치하는 식품샘플컵이 소개된다.
도 9에 도시된 바와 같이 그 내부에 식품이 놓일 수 있는 공간이 형성되어 있고, 베이스 상에 안착된다.
식품샘플컵(160)의 구조를 더욱 자세히 설명하면 다음과 같다.
서로 다른 반지름의 제1실린더(161), 제2실린더(162), 제3실린더(163)가 그 중심에서 반경 방향으로 상방이 개방된 채 순차적으로 형성되어 있다.
제1실린더(161)의 격벽과 제2실린더(162)의 격벽 사이에는 식품이 놓여지고, 제2실린더(162)의 격벽과 제3실린더(163)의 격벽 사이에는 설정된 온도의 물이 공급된다.
설정된 온도의 물이 공급될 수 있도록 제3실린더(163)의 외벽에는 물 공급용홀(164)과 물 배출용 홀(165))이 대향되게 형성된 것을 특징으로 한다.
제1실린더(161)의 격벽 높이는 제2실린더(162)와 제3실린더(163)의 높이와 비교하여 낮게 형성되어 있다.
한편, 실린더형 프로브(200a)의 하강시 제1실린더(161)의 중심으로 인입되어 제1실린더(161)의 외벽이 삽입될 수 있도록 실린더형 프로브(200a)의 하부면에는 원주 방향으로 소정의 인입홀(213)이 실린더형 프로브(200a) 내부 높이 방향으로 형성된 것을 특징으로 한다.
즉, 도시된 바와 같이 실린더형 프로브(200a)의 하부면에는 실린더형 프로브(200a)의 내부를 따라 높이 방향으로 소정의 인입홀(213)이 원주 방향으로 형성되어 있다.
제1실린더(161)와 제2실린더(162) 사이 내부에는 식품이 놓여지고, 실린더형 프로브(200a)가 하강하면서 인입홀(213) 측으로 제1실린더(161)의 격벽이 삽입하게 되면서 식품의 저작이 이루어진다.
이때, 실린더형 프로브(200a)의 하부에 형성된 다수개의 홀(211)을 따라 식품의 일부가 상방으로 빠져나오게 된다.
종래에는 이러한 다수개의 홀(211)이 구비된 저작 장치가 미비하였고, 이로 인해 반복적인 저작에 따른 식품의 물성을 측정하는데 한계가 있었다.
즉, 식품의 반복 저작시 식품의 물성 측정에는 동일한 부피의 식품에 대한 반복 재현이 중요하며, 이를 위해 본 발명은 다수개의 홀(211)을 통해 동일한 부피의 식품이 지속적으로 반복 저작될 수 있도록 구현하였다.
이러한 본 발명을 종래에 사용되던 Texture analyzer에 결합하여 사용하는 경우 여러 물성을 지닌 식품의 조직감의 반복 저작에 의한 물성 변화를 관찰하기에 적합함은 물론이고, 상기와 같은 다수개의 홀(211)에 의해 고체 식품 뿐만 아니라 페이스트, 반고체, 액체 식품 측정이 가능하다.
높은 변형률로 저작된 식품이 매회 저작이 이루어진 후 저작 전의 위치로 다시 이동함으로써 실제 구강에서 발생하는 반복적인 저작 작용이 재현되어 식품의 저작 시 발생하는 물성의 연속적인 변화에 대한 측정이 가능하다.
한편, 고정대와 식품샘플컵 사이에 위치하는 복수개의 위치고정가이드가 소개된다.
이 복수개의 위치고정가이드(170)는 식품을 압착한 후 실린더형 프로브(200a)의 상승에 의해 식품샘플컵(160)의 이동을 방지할 수 있도록 고정대(150)와 식품샘플컵(160) 사이에 위치한다.
즉, 실린더형 프로브(200a)가 식품을 한번 저작한 후 다시 저작하기 위해 위로 상승시 식품샘플컵(160)이 들려지는 것을 방지하는 기능을 수행한다.
이를 위해 위치고정가이드(170)는, 소정 곡면의 형상으로 그 하부면은 제3실린더(163)의 외벽에 끼워질 수 있도록 제3실린더(163)의 외벽의 형상과 대응되는 끼움홀(171)이 그 하부면에 형성된 것을 특징으로 한다.
전체적으로 곡면 형상을 구비하고 있으며, 그 상부면은 평평하고 그 하부면은 제3실린더(163)의 외벽에 끼워질 수 있도록 소정 깊이의 끼움홀(171)이 위치고정가이드(170)의 하부면을 따라 형성되어 있다.
이 위치고정가이드(170)에 의해 식품샘플컵(160)은 들려지지 않고 정확한 실험이 수행될 수 있다.
한편, 실린더형 프로브(200a)의 하부 외주면에는 제1오링(172)이 형성되고, 프로브가이드구(152)의 하부 외주면에도 제2오링(173)이 형성되어 있어 식품이 외부로 빠져나가는 것을 방지할 수 있다.
이하, 본 발명이 종래 사용되던 Texture analyzer에 결합되어 사용되는 경우의 작동 관계를 살펴본다.
다시 도 3을 참조하면 본 발명이 Texture analyzer에 결합되어 사용되는 경우, 구동부(210)의 작동, 로드셀에서 측정되는 로드를 센싱하며 실린더형 프로브(200a)의 하강으로 식품샘플컵(160)에 놓여지는 식품의 설정된 변형률이 저장되며 설정된 속도 및 설정된 횟수만큼 실린더형 프로브(200a)를 하강시켜 식품을 저작하는 제어부(600)를 포함한다.
즉, 구동부(210)에 연결되는 모터 측으로 작동 신호를 송수신하여 구동부(210)가 승하강 되게 하여 실린더형 프로브(200a)의 작동을 제어한다.
또한, 본 발명이 종래 사용되던 Texture analyzer에 결합되어 사용되는 경우 도 3에 개시된 것처럼 항온수조(400)를 포함하는데, 항온수조(400) 내에 설치되는 가열원(410)측으로 신호를 송신하여 설정된 온도로 물의 온도를 조절하게 하고, 그에 따라 제3실린더(163)의 외벽에 형성된 물공급용홀(164)) 측으로 설정된 온도의 물을 공급한다.
또한, 인공침공급부(500)에 설치되는 인공침펌프(520) 측으로 신호를 송신하여 인공침이 프로브가이드구(152)에 형성된 인공침공급구 측으로 공급되게 한다.
바람직하게는 인공침펌프(520) 측으로 인공침이 1.45ml/min 만큼 공급되도록 하나, 실험 환경에 따라 다양하게 변경될 수 있음은 자명하다.
이러한 다양한 구조의 이해를 돕기 위해 본 출원인에 선출원된 도 11과 도 12를 참조한다.
한편, 제어부(600)는 로드셀(110)에서 측정되는 로드를 센싱하는데, 특히 식품과의 접촉시 생성되는 로드값을 지속적으로 센싱한다.
이 센싱된 로드값은 디스플레이부(700)에 시간에 따른 그래프로 표시된다.
또한, 제어부(600)에는 작업자가 미리 실린더형 프로브(200a)의 하강으로 식품샘플컵 상에 놓여지는 식품(F)의 설정된 변형률이 저장된다.
도 13은 제어부(600)에 의해 구현되는 디스플레이부(700)에 표시된 화면을 나타내고, 도시된 바와 같이 작업자가 변형률값을 미리 입력할 수 있다.
식품의 설정된 변형률이란 작업자가 원하는 식품의 압축 정도를 의미한다.
제어부(600)는 로드셀(110)과 연결되어 실린더형 프로브(200a)의 하강시 식품샘플컵(160) 상에 놓여지는 식품(F)과의 접촉시 센싱하는 로드값을 지속적으로 전달받는다.
제어부(600)에는 이미 설명한 바와 같이 작업자가 식품의 변형률 즉 압축정도가 기저장되어 있고, 이 기저장된 변형률만큼 구동부(210)가 작동하여 실린더형 프로브(200a)가 식품을 압축하게 된다.
이하 설명하겠지만, 사용자가 미리 저장한 식품의 변형률은 실린더형 프로브(200a)와 베이스(120) 상의 거리로 구현된다.
제어부(600)는 로드셀(110)을 통해 식품을 압축하는 도중 실시간으로 센싱되는 로드값을 수신하게 되고, 그 로드값은 이하 후술할 디스플레이부(700)에서 그래프로 작업자에게 보여주게 된다.
한편, 제어부(600)는 설정된 속도 및 설정된 횟수만큼 실린더형 프로브(200a)를 하강시켜 식품을 저작한다.
즉, 도 14 및 도 15에 도시된 바와 같이 작업자는 구동부(210)의 속도와 저작의 횟수인 사이클을 미리 입력할 수 있다.
작업자는 제어부(600)에 의해 구현되는 디스플레이부(700)를 통해 구동부(210)가 승하강되는 속도를 미리 입력할 수 있다.
최대 속도는 3mm/s로 설정함이 바람직하나, 반드시 이에 한정되지는 않는다.
또한, 작업자는 실린더형 프로브(200a)와 식품과의 저작 횟수, 즉 사이클 횟수를 미리 저장할 수 있으며, 이 저장된 사이클 횟수에 따라 저작 횟수가 결정되고, 그 횟수에 따르는 시간과 로드값이 표현되는 그래프가 디스플레이부(700)를 통해 작업자에게 보여준다.
한편, 본 발명이 종래 사용되던 Texture analyzer에 결합되어 사용되는 경우 함께 연동되어 사용될 수 있는 디스플레이부(700)가 소개된다.
디스플레이부(700)는 일반적인 모니터를 의미하며 본체(100), 제어부(600)와 각각 연결되어 있고, 저작에 따른 시간과 로드셀(110)에서 측정되는 로드에 해당되는 그래프를 디스플레이함은 물론이고, 디스플레이부(700)를 통해 구동부(210)의 속도, 저작 횟수 및 변형률을 입력할 수 있다.
즉, 예를 들어 저작하는 횟수인 사이클이 5회라 가정하는 경우 각 사이클에 따른 시간과 그 시간 동안 로드셀(110)에서 센싱되는 로드값이 디스플레이되며, 이 작동은 설정된 변형률만큼 실린더형 프로브(200a)가 설정된 횟수만큼 하강하면서 구현된다.
한편, 제어부(600)에는 식품에 실린더형 프로브(200a)가 접촉시 인지하는 트리거로드값이 기 저장되어 있다.
제어부(600)는 구동부의 작동으로 실린더형 프로브(200a)의 하강시 식품과의 접촉에 의해 로드셀에서 트리거로드값이 측정되는 경우 그 측정시점부터 디스플레이부(700) 측으로 그 저작에 따른 시간과 로드셀에서 인지하는 로드에 해당되는 그래프를 디스플레이하는 것을 특징으로 한다.
도 16에는 제어부(600)와 연동되는 디스플레이부(700)에 사용자가 미리 저장할 수 있는 트리거로드값이 개시되어 있다.
트리거로드값이란 실린더형 프로브(200a)가 하강하면서 식품샘플컵(160)에 놓여지는 식품과의 최초로 접촉시 인지하는 로드값을 의미한다.
이 트리거로드값을 다양한 실험을 통해 미리 사용자가 입력할 수 있으며, 재질이 약한, 즉 소프트한 식품의 경우 이 트리거로드값은 작게 형성될 것이며, 딱딱한 재질의 식품일 수록 트리거로드값은 더 크게 미리 저장될 것이다.
최대 트리거로드값은 10000g 으로 설정할 수 있으나, 반드시 이에 한정되는 것은 아니다.
제어부(600)에서 로드셀(110)에 의해 이 트리거로드값에 해당되는 로드값을 인지하게 되면 실린더형 프로브(200a)가 식품샘플컵(160)에 놓여지는 식품에 접촉한다는 것을 인지하게 되는 것이다.
이 시점부터 설정된 변형률에 해당되도록 실린더형 프로브(200a)가 하강하게 된다.
제어부(600)는 구동부(210)의 작동으로 실린더형 프로브(200a)의 하강시 식품과의 접촉에 의해 로드셀(110)에서 트리거로드값이 측정되는 경우 그 측정시점부터 디스플레이부(700) 측으로 그 저작에 따른 시간과 로드셀(110)에서 인지하는 로드에 해당되는 그래프를 디스플레이하는 것을 특징으로 한다.
즉, 트리거로드값에 해당되는 로드가 제어부(600)에서 인지하게 되면, 설정된 사이클 횟수만큼 저작하게 되고, 각각의 사이클당 식품을 저작하면서 생기는 로드가 그래프로 구현된다.
제어부(600)에는 베이스(120)의 높이가 기저장되어 있고, 실린더형 프로브(200a) 하강 전의 실린더형 프로브(200a)와 식품샘플컵(160) 사이의 거리가 기저장되어 있으며, 기 저장된 트리거로드값을 인지하는 시점에 실린더형 프로브(200a)의 위치를 센싱하며, 설정된 식품의 변형률에 해당되는 위치까지 실린더형 프로브(200a)를 하강시키는 것을 특징으로 한다.
베이스(120)의 높이는 베이스(120) 내부에 설치된 높이를 인지하는 센서에 의해 그 베이스(120)의 높이가 실시간으로 디스플레이부(700)에 표시된다.
베이스(120)의 전방에는 베이스(120)의 높이를 조절하는 조절나사가 있고, 이 조절나사에 인접하는 모터가 설치될 수 있으며, 모터의 회전 혹은 조절나사의 회전에 의한 신호가 본체(100)혹은 제어부(600)에 전달되며, 그 값에 따라 베이스(120)의 높이가 디스플레이부(700)에 표시된다.
물론, 상기의 방법 이외에 다양한 방식으로 베이스(120)가 높이가 디스플레이부(700)에 표시될 수 있다.
또한, 실린더형 프로브(200a)의 높이 역시 사용자가 미리 저장할 수 있고, 이 실린더형 프로브(200a)에 연결되는 구동부(210) 끝단의 높이 역시 사용자가 미리 저장할 수 있으며, 본체(100) 내부의 구동부(210)의 상측 끝단에는 역시 구동부(210)와 연동될 수 있는 모터가 설치될 수 있으며, 모터의 회전 신호가 본체(100) 혹은 제어부(600)에 전달되어 그 회전에 따른 높이가 전달되어 실린더형 프로브(200a) 끝단의 높이가 디스플레이부(700)에 표시될 수 있다.
이 역시 상기의 방법 이외에 다양한 방식으로 실린더형 프로브(200a)의 높이 및 실린더형 프로브(200a)와 식품샘플컵(160) 사이의 높이 즉 거리가 디스플레이부(700)에 표시될 수 있다.
한편, 도 17은 본 발명을 이용하여 10회 저작 반복시 식품의 변형에 따른 로드셀에서 인지하는 로드값을 나타낸다.
파란색으로 표시된 부분은 밥을 대상으로 한 것이며, 적색으로 표시된 부분은 효소(인공침)이 공급된 경우의 그래프이다.
효소가 없는 밥을 대상으로 한 그래프와 효소가 있는 밥을 대상으로 한 그래프 모두 상승하는 부분은 실린더형 프로브(200a)가 밥을 압축하는 상태에서 생기는 로드값을 나타내고, 하강하는 부분은 설정된 변형률을 마친 후 다시 저작하기 위해 실린더형 프로브(200a)가 상승하는 부분을 나타낸다.
이때, 양(+)의 값의 로드값이 생기는 경우와 음(-)의 값의 로드값이 생기는데 경우가 있는데 이는 양(+)의 값을 갖는 경우는 실린더형 프로브(200a)가 내려가면서 식품을 압착할 때 생기는 로드값이고, 음(-)의 로드값은 실린더형 프로브(200a)가 다시 상승할 때, 홀(211)을 따라 빠져나온 식품이 다시 홀(211)을 따라 식품샘플컵(160) 측으로 내려갈 때 실린더형 프로브(200a)에 의해 센싱되는 로드값을 나타낸다.
즉, 식품을 누르는 방향과 반대 방향으로 로드값이 생기는 바 음(-)의 값을 가지게 된다.
음의 로드값은 깨진 식품이 나타내는 로드값을 의미하며, 그 절대값이 큰 경우 더 저작해야 식품이 더 깨질 수 있다는 의미이며, 그 절대값이 작은 경우 한번의 저작으로 식품의 깨진 정도가 높다는 것을 의미한다.
한편, 도시된 그래프를 통해 식품의 이른바 'packing' 상태를 알 수 있다.
본 발명에서 이러한 'packing' 정도를 알 수 있는 근본적인 이유는 실험 대상인 식품의 부피가 지속적으로 유지될 수 있기 때문이다.
즉, 식품은 입자들간에 공극이 형성되어 있으며, 단단한 물질과 페이스트 물질은 각각의 공극률이 다를 것이다.
이때, 실린더형 프로브(200a)가 하강하면서 식품을 압착하게 되고, 그에 따라 공극률이 충분히 감소된 뒤 홀(211)을 따라 식품의 일부가 빠져나오게 된다.
도시된 그래프에서 상승하는 곡선의 기울기는 바로 이 식품의 '패킹' 정도를 나타내며, 가파르게 상승하는 것은 그만큼 식품이 페이스트 보다는 고체에 가깝다고 판단할 수 있으며, 완만하게 상승하는 경우에는 고체보다는 페이스트에 가깝다는 것을 알 수 있게 된다.
도시된 그래프의 상승하는 곡선에는 식품의 공극률을 줄이는 패킹 부분과 패킹된 후 식품의 일부가 홀(211)을 따라 빠져나오는 부분과 식품의 일부가 빠져나오는 상태에서 지속적으로 식품을 누르는 부분이 있게된다.
도시된 그래프를 다시 살펴보면, 효소가 없는 밥을 대상으로 한 경우 사이클 당 최대 로드값의 감소율이 효소(인공침)를 넣은 경우보다 작음을 알 수 있다.
효소가 없는 밥을 대상으로 한 그래프는 각 사이클 당 최대 로드값이 효소가 있는 밥을 대상으로 한 경우보다 감소율이 적음을 확인할 수 있다. 즉, 밥에 효소를 주입하면 10회 반복 후 '죽'과 같은 형태로 변화하고 밥만 이용하여 실험한 경우 '떡'과 같은 형태로 변화함을 의미한다.
따라서, 구강 내 환경을 모사하기 위해서는 적절한 온도의 물 공급 이외에 효소를 주입해야 함이 다시 입증된다.
본 발명은 상기와 같이 종래 사용되던 Texture analyzer에 결합하여 사용하는 경우 적용 및 응용분야가 다양한 기술로서 여러 물성을 지닌 식품의 조직감의 반복 저작에 의한 물성 변화를 관찰하기에 적합하다.
여러 입자들로 구성 되어 있는 식품, 페이스트 형태의 식품, 젤리류, 액체와 고체가 혼제되어 있는 식품 등의 반복된 변형에 의한 물성 변화를 관찰할 수 있으며, 관능평가를 대체할 수 있는 기술로써 연구 및 식품산업 전반에 걸쳐 이용될 수 있는 발명에 해당된다.
이하 본 발명인 식품의 조직감 반복 측정 시스템을 설명하면 다음과 같다.
이미 설명하였지만, 도 4는 본 발명의 일부 구성요소가 본 출원인에 의해 출원된 발명에 부착되는 상태의 실제 사진이다.
본 발명은 크게 본체(100), 고정대(150), 실린더형 프로브(200a), 식품샘플컵(160), 위치고정가이드(170), 제어부(600) 및 디스플레이부(700)를 포함한다.
본체(100)는 내부에 로드셀(110)이 설치되고 소정 높이의 베이스(120)를 포함한다.
도 12는 본 출원인에 선출원된 발명과 함께 본 발명에서 채용하고 있는 로드셀(110)이 설치된 상태의 개략도이다.
이 로드셀(110)은 이하 후술할 구동부(210)에 연결된 실린더형 프로브(200a)가 식품과의 접촉시 인지하는 로드값을 센싱하고 그 센싱된 로드값을 디스플레이부(700)측으로 전송한다.
선출원된 발명과 마찬가지로 본 발명은 도 3 및 도 4에 도시된 바와 같이 본체(100)의 전방에는 소정 높이의 베이스(120)가 설치된다.
이 베이스(120)는 승하강 시킬 수 있는 나사의 조작에 의해 그 높이가 조절되고, 이 베이스(120) 상에 이하 후술할 식품샘플컵(160)이 안착된다.
베이스(120)의 내부에는 나사의 조작에 따라 베이스(120)의 승하강시 그 높이가 센싱될 수 있는 모터가 설치될 수 있으며, 이 모터의 회전에 따른 베이스(120)의 변동되는 높이가 실시간으로 디스플레이부(700)에 전송되는 구조로 구현될 수 있다.
물론, 상기의 구성 이외에 베이스(120)의 높이가 디스플레이부(700)에 전송될 수 있는 구조라면 다양한 구조가 본 발명에 채용될 수 있다.
한편, 도 4는 본 발명의 일 구성요소인 고정대(150)가 본체(100)에 설치된 실제 사진이고, 도 5는 이 고정대(150)의 실제 사진이며, 도 6은 고정대(150)와 실린더형 프로브(200a) 및 식품샘플컵(160)과의 체결 상태를 나타내는 실제 사진이다.
도 5, 도 6 및 도 7에 도시된 바와 같이 고정대(150)는 본체(100)에 고정되고 그 중심에 소정의 가이드홀(151)이 형성되고 내부에 소정 공간이 형성되며 하방으로 연장 형성된 프로브가이드구(152) 형성된다.
고정대(150)가 본체(100)에 고정된다. 그 결합형태는 다양하게 형성될 수 있으나, 사용되는 본체(100)의 종류에 따라 사용자가 손쉽게 체결할 수 있도록 고정대(150)의 양 끝단에서 상방으로 절곡진 부분의 내측면에 본체(100)와의 체결시 그 결합력이 유지될 수 있도록 접착성분이 있거나, 마찰력에 의해서도 고정될 수 있는 구성이면 가능하다.
물론, 본체(100)와 볼트 결합에 의해 체결 구조도 가능하다.
고정대(150)의 중심에는 소정 깊이의 가이드홀(151)이 형성되어 있다. 이 가이드홀(151)을 따라 구동부가 승하강된다.
구동부(210)는 도 12에 도시된 바와 같이 승하강할 수 있는 슬라이딩구조로 될 수 있고, 본체(100)내부에는 이 구동부(210)를 승하강시킬 수 있는 모터가 설치될 수 있다.
이하 후술할 제어부(600)에 의해 모터가 작동하게 되면 그 신호에 따라 구동부(210)가 승하강하면서 식품샘플컵(160)상에 있는 식품을 저작하게 된다.
한편, 소정 공간이 형성된 채 하방으로 연장 형성된 프로브가이드구(152)가 고정대(150)에 형성된다.
프로브가이드구(152)의 내부를 따라 구동부(210)가 승하강되며, 이하 후술할 실린더형 프로브(200a)가 이 프로브가이드구(152)를 외부에서 감싼 채 승하강된다.

Claims (18)

  1. 그 중심에 소정의 가이드홀이 형성되고 내부에 소정 공간이 형성된 채 하방으로 연장 형성된 프로브가이드구가 설치된 고정대;
    상기 프로브가이드구를 감싼 상태에서 상하 운동하며 식품의 압착시 압착 정도에 따라 식품의 일부가 추출될 수 있도록 그 하부면에 다수개의 홀이 형성된 실린더형 프로브;
    그 내부에 식품이 놓일 수 있는 공간이 형성되고 상기 실린더형 프로브 하부에 위치하는 식품샘플컵; 및
    상기 고정대와 상기 식품샘플컵 사이에 위치하는 복수개의 위치고정가이드;를 포함하는, 착탈 가능한 식품의 조직감 반복 측정기.
  2. 청구항 1에 있어서,
    상기 실린더형 프로브는,
    그 상방이 개방되고, 하부면의 원주를 따라 다수개의 홀이 소정 간격으로 이격 형성되며, 내부에는 그 외주면에 다수개의 나사산이 형성된 소정 길이의 연결구가 형성된 것을 특징으로 하는, 착탈 가능한 식품의 조직감 반복 측정기.
  3. 청구항 2에 있어서,
    상기 식품샘플컵은,
    서로 다른 반지름의 제1실린더, 제2실린더, 제3실린더가 그 중심에서 반경 방향으로 상방이 개방된 채 순차적으로 형성되고, 상기 제1실린더와 상기 제2실린더 사이에는 식품이 놓여지고, 상기 제2실린더와 상기 제3실린더 사이에는 설정된 온도의 물이 담지되되,
    설정된 온도의 물이 공급될 수 있도록 상기 제3실린더의 외벽에는 물 공급용홀과 물 배출용 홀이 대향되게 형성된 것을 특징으로 하는, 착탈 가능한 식품의 조직감 반복 측정기.
  4. 청구항 3에 있어서,
    상기 실린더형 프로브의 하부면에는 상기 제1실린더의 중심으로 인입시 상기 제1실린더의 외벽이 삽입될 수 있도록 원주 방향으로 소정의 인입홀이 상기 실린더형 프로브의 내부 높이 방향으로 형성된 것을 특징으로 하는,착탈 가능한 식품의 조직감 반복 측정기.
  5. 청구항 3에 있어서,
    상기 복수개의 위치 고정가이드는,
    소정 곡면의 형상으로 그 하부면은 상기 제3실린더의 외벽에 끼워질 수 있도록 상기 제3실린더의 외벽의 형상과 대응되는 끼움홀이 형성된 것을 특징으로 하는, 착탈 가능한 식품의 조직감 반복 측정기.
  6. 청구항 3에 있어서,
    상기 실린더형 프로브의 하부 외주면에는 제1오링이 형성되고, 상기 프로브가이드구의 하부 외주면에도 제2오링이 형성된 것을 특징으로 하는, 착탈 가능한 식품의 조직감 반복 측정기.
  7. 청구항 3에 있어서,
    상기 프로브가이드구에는 높이 방향으로 인공침이 공급될 수 있는 인공침공급구가 형성된 것을 특징으로 하는, 착탈 가능한 식품의 조직감 반복 측정기.
  8. 내부에 로드셀이 설치되고 소정 높이의 베이스를 포함하는 본체;
    상기 본체에 고정되고 그 중심에 소정의 가이드홀이 형성되고 내부에 소정 공간이 형성된 채 하방으로 연장 형성된 프로브가이드구가 설치된 고정대;
    상기 가이드홀의 내부를 따라 연장 형성된 구동부에 연결되고 상기 프로브가이드구를 감싼 상태에서 상하 운동하며 식품의 압착시 압착 정도에 따라 식품의 일부가 추출될 수 있도록 그 하부면에 다수개의 홀이 형성된 실린더형 프로브;
    그 내부에 식품이 놓일 수 있는 공간이 형성되고 상기 베이스 상에 안착되는 식품샘플컵;
    식품을 압착한 후 상기 실린더형 프로브의 상승시 상기 식품샘플컵의 이동을 방지할 수 있도록 상기 고정대와 상기 식품샘플컵 사이에 위치하는 복수개의 위치고정가이드;
    상기 구동부의 작동의 제어하고, 상기 로드셀에서 측정되는 로드를 센싱하며 상기 실린더형 프로브의 하강으로 상기 식품샘플컵에 놓여지는 식품의 설정된 변형률이 저장되며 설정된 속도 및 설정된 횟수만큼 상기 실린더형 프로브를 하강시켜 상기 식품을 저작하는 제어부; 및
    그 저작에 따른 시간과 상기 로드셀에서 측정되는 로드에 해당되는 그래프를 디스플레이하는 디스플레이부; 를 포함하는, 식품의 조직감 반복 측정 시스템.
  9. 청구항 8에 있어서,
    상기 실린더형 프로브는,
    그 상방이 개방되고, 하부면의 원주를 따라 다수개의 홀이 소정 간격으로 이격 형성되며, 내부에는 상기 구동부에 연결될 수 있도록 그 외주면에 다수개의 나사산이 형성된 소정 길이의 연결구가 형성된 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  10. 청구항 9에 있어서,
    상기 식품샘플컵은,
    서로 다른 반지름의 제1실린더, 제2실린더, 제3실린더가 그 중심에서 반경 방향으로 상방이 개방된 채 순차적으로 형성되고, 상기 제1실린더와 상기 제2실린더 사이에는 식품이 놓여지고, 상기 제2실린더와 상기 제3실린더 사이에는 설정된 온도의 물이 공급되되,
    설정된 온도의 물이 공급될 수 있도록 상기 제3실린더의 외벽에는 물 공급용홀과 물 배출용 홀이 대향되게 형성된 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  11. 청구항 10에 있어서,
    상기 실린더형 프로브의 하강시 상기 제1실린더의 중심으로 인입되어 상기 제1실린더의 외벽이 삽입될 수 있도록 상기 실린더형 프로브의 하부면에는 원주 방향으로 소정의 인입홀이 상기 실린더형 프로브의 내부 높이 방향으로 형성된 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  12. 청구항 10에 있어서,
    상기 복수개의 위치 고정가이드는,
    소정 곡면의 형상으로 그 하부면은 상기 제3실린더의 외벽에 끼워질 수 있도록 상기 제3실린더의 외벽의 형상과 대응되는 끼움홀이 형성된 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  13. 청구항 10에 있어서,
    상기 실린더형 프로브의 하부 외주면에는 제1오링이 형성되고, 상기 프로브가이드구의 하부 외주면에도 제2오링이 형성된 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  14. 청구항 10에 있어서,
    상기 프로브가이드구에는 높이 방향으로 인공침이 공급될 수 있는 인공침공급구가 형성된 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  15. 청구항 14에 있어서,
    상기 인공침공급구 측으로 인공침이 공급될 수 있도록 인공침공급라인을 매개로 연결되고 소정 양의 인공침이 저장된 인공침공급부를 더 포함하고,
    상기 인공침공급라인의 일 지점에는 인공침펌프가 설치되며, 상기 인공침펌프는 상기 제어부에 의해 제어되는 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  16. 청구항 10에 있어서,
    설정된 온도의 물이 공급되고 배수될 수 있도록 소정 양의 물이 담지된 항온수조를 더 포함하고, 상기 제3실린더의 외벽에 형성된 물 공급용홀과 물 배출용 홀에 각각 물공급라인과 물배출라인이 연결되고,
    상기 물공급라인과 상기 물배출라인에는 각각 워터펌프가 설치되되, 상기 워터펌프는 상기 제어부에 의해 제어되는 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  17. 청구항 8에 있어서,
    상기 제어부에는 식품에 상기 실린더형 프로브가 접촉시 인지하는 트리거로드값이 기 저장되어 있고,
    상기 제어부는 상기 구동부의 작동으로 상기 실린더형 프로브의 하강시 상기 식품과의 접촉에 의해 상기 로드셀에서 상기 트리거로드값이 센싱되는 경우 그 센싱되는 시점부터 상기 디스플레이부 측으로 그 저작에 따른 시간과 상기 로드셀에서 인지하는 로드에 해당되는 그래프를 디스플레이하는 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
  18. 청구항 17에 있어서,
    상기 제어부에는,
    상기 베이스의 높이가 기저장되어 있고, 상기 실린더형 프로브의 하강 전의 상기 실린더형 프로브와 상기 식품샘플컵 사이의 거리가 기저장되어 있으며,
    상기 기 저장된 트리거로드값을 인지하는 시점에 상기 실린더형 프로브의 위치를 센싱하며, 설정된 식품의 변형률에 해당되는 위치까지 상기 실린더형 프로브를 하강시키는 것을 특징으로 하는, 식품의 조직감 반복 측정 시스템.
PCT/KR2018/013143 2018-06-29 2018-11-01 착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템 WO2020004725A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/620,239 US11579131B2 (en) 2018-06-29 2018-11-01 Detachable device for repeatedly measuring textural characteristics of food and system for repeatedly measuring textural characteristics of food

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0075412 2018-06-29
KR1020180075412A KR102061419B1 (ko) 2018-06-29 2018-06-29 착탈 가능한 식품의 조직감 반복 측정기
KR10-2018-0075395 2018-06-29
KR1020180075395A KR102061418B1 (ko) 2018-06-29 2018-06-29 식품의 조직감 반복 측정 시스템

Publications (1)

Publication Number Publication Date
WO2020004725A1 true WO2020004725A1 (ko) 2020-01-02

Family

ID=68987125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013143 WO2020004725A1 (ko) 2018-06-29 2018-11-01 착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템

Country Status (2)

Country Link
US (1) US11579131B2 (ko)
WO (1) WO2020004725A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11735067B1 (en) * 2022-03-22 2023-08-22 NotCo Delaware, LLC In vitro dynamic mouth simulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021474A (ja) * 1999-07-12 2001-01-26 Shigeta Seisakusho:Kk 食品の堅さ測定装置
JP2003114218A (ja) * 2001-08-02 2003-04-18 Nisshin Oillio Ltd 多孔性食品食感評価方法、多孔性食品データ処理装置、多孔性食品食感評価方法及び多孔性食品食感評価方法をコンピュータに実行させるプログラム
JP2016133460A (ja) * 2015-01-21 2016-07-25 テルモ株式会社 消化管運動シミュレータおよび検査用消化物の採取方法
KR20160089753A (ko) * 2015-01-20 2016-07-28 윤원병 식품 인장력 측정장치 및 그 방법
KR20170142780A (ko) * 2016-06-20 2017-12-28 한국식품연구원 시료차폐수단이 구비된 식품물성 분석용 치아모형 및 이를 이용한 저작운동 시뮬레이터

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015102210A1 (ko) * 2014-01-03 2015-07-09 한국식품연구원 치아 형태를 갖는 식품 물성 분석용 프로브 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021474A (ja) * 1999-07-12 2001-01-26 Shigeta Seisakusho:Kk 食品の堅さ測定装置
JP2003114218A (ja) * 2001-08-02 2003-04-18 Nisshin Oillio Ltd 多孔性食品食感評価方法、多孔性食品データ処理装置、多孔性食品食感評価方法及び多孔性食品食感評価方法をコンピュータに実行させるプログラム
KR20160089753A (ko) * 2015-01-20 2016-07-28 윤원병 식품 인장력 측정장치 및 그 방법
JP2016133460A (ja) * 2015-01-21 2016-07-25 テルモ株式会社 消化管運動シミュレータおよび検査用消化物の採取方法
KR20170142780A (ko) * 2016-06-20 2017-12-28 한국식품연구원 시료차폐수단이 구비된 식품물성 분석용 치아모형 및 이를 이용한 저작운동 시뮬레이터

Also Published As

Publication number Publication date
US20220003734A1 (en) 2022-01-06
US11579131B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2020004725A1 (ko) 착탈 가능한 식품의 조직감 반복 측정기 및 식품의 조직감 반복 측정 시스템
WO2012141392A1 (ko) 컴퓨터 단층촬영 장치와 표준시료를 이용한 시료 공극 측정 시스템 및 그 방법
WO2016021896A1 (en) Gamma setting system of display device and gamma setting method thereof
WO2013127092A1 (zh) 一种斜视角图像的模拟方法及装置
WO2018038334A1 (ko) 틸팅 스테이지 시스템
WO2011115443A2 (ko) 헬스 기구, 이를 이용한 운동 관리 시스템 및 운동 관리 방법
WO2013058567A1 (en) X-ray imaging apparatus and method for controlling the same
MY126895A (en) Contact arm and electronic device testing apparatus using the same
WO2017039280A1 (ko) 샘플 전처리 시스템 및 그 제어방법
WO2015102210A1 (ko) 치아 형태를 갖는 식품 물성 분석용 프로브 장치
WO2014059689A1 (zh) 一种oled显示装置及其控制方法
BR0107945A (pt) Método e aparelho para controlar a voltagem de eletrodo de modo comum em lcos/lcd
WO2012148186A2 (ko) 수분감지형 진공포장기
MY123078A (en) Apparatus and method for testing belt tension of a belt drive
KR102061419B1 (ko) 착탈 가능한 식품의 조직감 반복 측정기
WO2019066126A1 (en) CURVED DISPLAY PANEL CONNECTING APPARATUS
WO2019107765A1 (ko) 저작 재현 시스템
WO2015093833A1 (ko) 하지 근력 측정 시스템
WO2017105043A1 (ko) 인공 두피 패드 제조용 실리콘 고무 조성물, 그 조성물을 이용한 모발이식 훈련용 인공 두피 패드, 모발이식 훈련용 인공 모낭 단위 및 이의 제조 방법, 식립력 측정 및 분석 가능한 모발 이식 트레이닝 시스템
MY120228A (en) An apparatus for impact testing of an electronic product and method thereof
CN215065895U (zh) 一种盖板玻璃表面硬度测试仪
WO2023038211A1 (ko) 사출성형공정 모니터링 시스템 및 방법
WO2022039512A1 (ko) 다채널 혈액 점도 측정 장치
WO2014092251A1 (ko) 계란 품질 계측 장치 및 방법
KR102061418B1 (ko) 식품의 조직감 반복 측정 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923765

Country of ref document: EP

Kind code of ref document: A1