WO2020004670A1 - 分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子 - Google Patents

分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子 Download PDF

Info

Publication number
WO2020004670A1
WO2020004670A1 PCT/JP2019/026162 JP2019026162W WO2020004670A1 WO 2020004670 A1 WO2020004670 A1 WO 2020004670A1 JP 2019026162 W JP2019026162 W JP 2019026162W WO 2020004670 A1 WO2020004670 A1 WO 2020004670A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
electric field
site
dielectric material
ceramic
Prior art date
Application number
PCT/JP2019/026162
Other languages
English (en)
French (fr)
Inventor
祐二 野口
佑樹 北中
颯 野元
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to JP2020527710A priority Critical patent/JPWO2020004670A1/ja
Publication of WO2020004670A1 publication Critical patent/WO2020004670A1/ja
Priority to JP2023172990A priority patent/JP2023181202A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to a dielectric material exhibiting a polarization twist, a dielectric structure capable of controlling polarization, a capacitor and a piezoelectric element using the same, a ceramic, and a capacitor and a piezoelectric element using the same.
  • Dielectric materials are used in many applications, such as insulating materials for electronic devices, inter-electrode insertion materials for capacitors, and piezoelectric elements.
  • insulating materials for electronic devices such as insulating materials for electronic devices, inter-electrode insertion materials for capacitors, and piezoelectric elements.
  • piezoelectric elements such as insulating materials for electronic devices, inter-electrode insertion materials for capacitors, and piezoelectric elements.
  • a dielectric material whose dielectric constant, piezoelectric distortion constant, and the like can be controlled is required.
  • Patent Literature 1 discloses a tunable capacitor that utilizes an electric field-induced phase transition of a ferroelectric substance and dielectric tunability near a critical point.
  • Non-Patent Document 1 the present inventors show that a part of a dielectric crystal having a perovskite structure composed of a unit cell having a coordination polyhedron such as an oxygen octahedron shows a polarization twist, and a dielectric twist. It has been found that it is related to polarization and that polarization can be controlled by voltage.
  • the above-described conventional technology has a problem that the value of the dielectric constant is not sufficiently large, and that the control range of the dielectric constant is not sufficiently large. Further, there is no mention of controlling the piezoelectric strain constant by voltage. Furthermore, there is no mention of controlling the properties of the dielectric material (ceramics) with respect to the polarization characteristics.
  • An object of the present invention is to control a polarization by a voltage, through a voltage applied, a dielectric material showing a polarization twist that can greatly change a dielectric constant and a piezoelectric strain constant by an applied voltage, a dielectric structure capable of controlling a polarization, Another object of the present invention is to provide a capacitor and a piezoelectric element using the same, a ceramic capable of controlling polarization characteristics, and a capacitor and a piezoelectric element using the same.
  • an embodiment of the present invention is a dielectric material exhibiting polarization twist, arranged in a cubic or A site of each vertex of the pseudo cubic with a perovskite structure ABX 3
  • concentration of the vacancies at the anion X site introduced by the vacancy at the A site where the metal is missing is 1% or less
  • the octahedron of the anion present in the perovskite structure with respect to the cubic or pseudo cubic crystal axis Are arranged so as to rotate at an angle ⁇ , and both the angle ⁇ and the polarization value change when an electric field is applied.
  • the dielectric material is preferably a paraelectric, ferrielectric, ferroelectric, or antiferroelectric.
  • the octahedron is an octahedron composed of six oxygen atoms, and the concentration of oxygen vacancies introduced by A-site vacancies (oxygen vacancy number / oxygen site number) is 1% or less. Is preferred.
  • the oxygen site indicates a site of an oxide ion (O 2 ⁇ ).
  • another embodiment of the present invention is a dielectric structure capable of controlling polarization, a dielectric material showing any one of the above-mentioned polarization twists, and applying an electric field to the dielectric material to obtain the angle ⁇ . And a member that controls polarization by changing
  • Still another embodiment of the present invention is a capacitor or a piezoelectric element using the dielectric structure capable of controlling the polarization.
  • Still another embodiment of the present invention is a ceramic composed of a perovskite oxide represented by the following general formula (4), (A1 (1-x + ⁇ ) / 2 A2 (1-x-3 ⁇ ) / 2 A3 x ⁇ ⁇ ) BO 3 (4)
  • A1 is a trivalent metal
  • A2 is a monovalent metal
  • A3 is a divalent metal
  • B is a tetravalent metal
  • represents an A-site vacancy
  • the A-site vacancy The amount of pores ⁇ is 0 to 3%
  • the A3 amount x is 2 to 25%.
  • the perovskite oxide further includes a metal oxide M.
  • A1 is preferably Bi
  • A2 is Na
  • A3 is preferably Ba.
  • M is Cu.
  • Still another embodiment of the present invention is a capacitor or a piezoelectric element using the above ceramics.
  • the dielectric material which shows the polarization twist which can change a dielectric constant or a piezoelectric distortion constant greatly, the dielectric structure which can control polarization, the capacitor and the piezoelectric element using this, and the polarization characteristic are controlled Possible ceramics and capacitors and piezoelectric elements using the same can be realized.
  • FIG. 4 is an explanatory diagram in a case where an electric field E is applied to a crystal of a dielectric material showing a polarization twist.
  • FIG. 2 is a diagram illustrating an example of a dielectric structure capable of controlling polarization P using a dielectric material showing a polarization twist according to the first embodiment. It is a figure showing the measurement result of polarization twist. It is a figure showing the measurement result of polarization twist.
  • FIG. 9 is a diagram illustrating a measurement result of a relationship between a rotation angle ⁇ and a polarization P when an electric field changes. It is a figure showing the measurement result of the relation between the change of the electric field and the change of the dielectric constant.
  • FIG. 7 is a diagram illustrating a measurement result of a relationship between a change in an electric field and a change in a piezoelectric strain constant.
  • FIG. 9 is an explanatory diagram of a ceramic manufacturing process according to the second embodiment.
  • FIG. 9 is a view showing a P (polarization) -E (electric field) curve of the ceramic according to Example 4.
  • FIG. 13 is a diagram showing another example of a P (polarization) -E (electric field) curve of the ceramic according to the fourth example. It is a figure which shows the relationship between the electric field which a phase transition occurs between a ferroelectric phase (space group P4mm) and a ferrielectric phase (space group P4bm), and the quantity (delta) of A site vacancies.
  • FIG. 9 is an explanatory diagram of a ceramic manufacturing process according to the second embodiment.
  • FIG. 9 is a view showing a P (polarization) -E (electric field) curve of the ceramic according to Example 4.
  • FIG. 13 is
  • FIG. 14 is a view showing a PE curve of the ceramic according to Example 5.
  • FIG. 14 is a diagram showing a P (polarization) -E (electric field) curve and an electric susceptibility ⁇ (E) when the electric field E is changed between points A and B in FIG. 13.
  • FIG. 14 is a diagram showing another example of a P (polarization) -E (electric field) curve of the ceramic according to the fifth example.
  • FIG. 16 is a diagram showing a P (polarization) -E (electric field) curve and an electric susceptibility ⁇ (E) when the electric field E is changed between points A and B in FIG. 15.
  • FIG. 14 is a view showing still another example of a P (polarization) -E (electric field) curve of the ceramic according to the fifth example.
  • FIG. 18 is a diagram showing a P (polarization) -E (electric field) curve and an electric susceptibility ⁇ (E) when the electric field E is changed between points A and B in FIG.
  • FIG. FIGS. 1A and 1B are explanatory diagrams of a polarization twist.
  • FIG. 1A is a schematic diagram of a crystal lattice of a general perovskite structure (ABX 3 ) in a dielectric material.
  • ABX 3 general perovskite structure
  • FIG. 1A a parent crystal having a perovskite structure (a crystal phase having a high symmetry) is represented by a cubic unit cell.
  • Metal B is arranged, and six anions X are arranged at each face center of the cubic crystal centering on metal B.
  • the anion X oxygen, fluorine, chlorine, bromine, arsenic and the like can be used. However, oxygen is preferable because of relatively easy production and easy handling.
  • the metal A examples include Pb, Ba, and Sr, which are positive divalent metal elements such as Bi, La, Nd, Pr, and Sm, which are positive trivalent metal elements, and other rare earth elements. And a metal element which becomes a positive monovalent ion, such as K, Na, Ag, Li, and the like.
  • a rare earth element having a relatively small ionic radius such as Y which is a metal element which becomes a positive trivalent ion Mo, which is a metal element that becomes a positive hexavalent ion, such as elements, Sc, Ti, Zr, and Hf that are metal elements that become positive tetravalent ions, and Nb and Ta that are metal elements that become positive pentavalent ions.
  • the metal B also includes transition metal elements such as V, Cr, Mn, Fe, Co, Ni, and Cu, which are metal elements that can have a plurality of valences.
  • transition metal elements such as V, Cr, Mn, Fe, Co, Ni, and Cu, which are metal elements that can have a plurality of valences.
  • Ca, Mg, and Zn that are positively divalent ions are elements that can enter both the A site and the B site.
  • an anion X forms an octahedron.
  • FIG. 1B is a schematic diagram when the crystal lattice is viewed from the direction of arrow D in FIG. 1A.
  • FIG. 1B four unit lattices of ABX 3 shown in FIG. 1A are shown.
  • Each octahedron rotates about a line connecting two vertexes (anions X) facing each other in the direction of arrow D in FIG. 1A, and the rotation direction is reversed between two adjacent octahedrons. And the magnitude of the rotation angle is the same ( ⁇ ).
  • the dielectric material has the above cubic crystal structure having high crystal symmetry, as well as reduced crystal symmetry, such as tetragonal, orthorhombic, and rhombohedral (including trigonal). Some materials have a monoclinic or triclinic crystal structure. These crystal systems with low symmetry can be approximated as pseudo-cubic crystals in which cubic crystals are distorted.
  • the dielectric material showing the polarization twist is a paraelectric, ferrielectric, ferroelectric or antiferroelectric, and each of the above cubic or pseudo-cubic having a perovskite structure (composition formula: ABX 3 )
  • concentration of the A-site vacancy is obtained by the following equation.
  • the concentration of the A-site vacancy is 3% or less in the case of plus trivalence, and the concentration thereof in the case of plus divalent. It is preferable that the concentration of the A-site vacancy is 5% or less, and in the case of plus monovalent, the concentration of the A-site vacancy is 6% or less. In the case of such a concentration of the A-site vacancy, the concentration of the vacancy of the anion X such as oxygen vacancy introduced by the A-site vacancy becomes 1% or less, and the expression of polarization twist becomes easy.
  • the concentration of oxygen vacancies when the anion X is oxygen can be determined by the following equation.
  • the concentration of the vacancy of the anion such as the oxygen vacancy is measured by quantitatively measuring the concentration of the A site vacancy by inductively coupled plasma emission spectroscopy (ICP-AES) or X-ray fluorescence spectrometer (XRF). It can be determined from the electric neutral condition based on the result.
  • ICP-AES or XRF all the compositions (material ratios) of the metal at the A site are determined based on the composition of the metal at the B site, and the total number of the A site and the metal composition at the A site is calculated. From the difference, the A-site vacancy concentration (sum of vacancy concentrations of each metal) is obtained.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • XRF X-ray fluorescence spectrometer
  • a vacancy of an anion X such as oxygen is also formed so as to satisfy the electric neutral condition.
  • an anion X such as oxygen
  • ABO 3 perovskite oxide
  • oxygen vacancies are simultaneously generated.
  • the heat treatment is often performed in air (oxygen partial pressure is about 0.02 MPa).
  • oxygen partial pressure is about 0.02 MPa.
  • heat treatment is performed in air (for example, at a temperature of 1000 ° C. to 1300 ° C.)
  • a defect generation reaction occurs in which elements having a high vapor pressure (Bi and Ag) are volatilized, and the concentration of these A-site vacancies increases.
  • the oxygen partial pressure during this heat treatment is increased, the above-described defect generation reaction is suppressed, and the A-site vacancy concentration decreases.
  • the oxygen partial pressure during the heat treatment is higher, the defect generation reaction is less likely to occur, and the concentration of these A-site vacancies is reduced.
  • the oxygen partial pressure be 0.1 MPa to 1 MPa. If the oxygen partial pressure is further increased to about 10 MPa, a higher quality dielectric material may be manufactured.
  • B Bi- or Ag-based perovskite-type oxides exhibiting a polarization twist are usually produced by heat treatment at a temperature of 1000 ° C to 1200 ° C.
  • the oxygen partial pressure during this heat treatment is increased from 0.02 MPa to 0.1 MPa, the vacancy concentration of Bi and the vacancy concentration of Ag decrease.
  • the heat treatment temperature is lower, the vacancy concentration of the metal such as Bi and Ag can be further reduced.
  • the oxygen partial pressure is increased to about 1 MPa
  • the vacancy concentration of Bi and the vacancy concentration of Ag are reduced to 0.01% to less than 1%, and a clear polarization twist is induced in the obtained single crystal by the electric field. it can.
  • the present inventors apply an electric field to the crystal of the dielectric material exhibiting the above-mentioned polarization twist in a direction parallel to the arrow D in FIG. 1A, and change the rotation angle ⁇ of the octahedron formed by the anion X. It was found that the magnitude of the polarization changed.
  • FIGS. 2A, 2B, 2C, and 2D show explanatory views in the case where an electric field (E) is applied to a crystal of a dielectric material showing a polarization twist.
  • E electric field
  • FIGS. 2A, 2B, 2C, and 2D show explanatory views in the case where an electric field (E) is applied to a crystal of a dielectric material showing a polarization twist.
  • the metals A, B and the anion X are omitted, and only the octahedron formed by the anion X is shown. ing.
  • the polarization P in FIG. 2A when the electric field is zero (no electric field is applied) is the spontaneous polarization Ps.
  • the magnitude of the octahedral rotation angle ⁇ is indicated by an arrow r.
  • the polarization P of the crystal also increases.
  • the magnitude r of the rotation angle ⁇ of the octahedron formed by the anion X can be measured by X-ray diffraction (XRD) or neutron diffraction.
  • ⁇ P / ⁇ E indicates the partial differentiation of polarization P by electric field E. That is, ⁇ P / ⁇ E is equal to the gradient of the polarization P in a certain electric field E.
  • Equation (3) is an equation that holds when the magnitude of the electric field E is as small as 1 kV / cm or less.
  • the piezoelectric strain constant d is a material constant (constant without depending on the electric field E)
  • the slope of the strain S and the electric field E is equal to the piezoelectric strain constant d.
  • the piezoelectric strain constant d of the dielectric material depends on the electric field E.
  • the direction of the electric field E is different from the direction of the spontaneous polarization Ps
  • the spontaneous polarization Ps is given by the direction in which the angle with the electric field E decreases (the free energy of the system (the inner product of the Ps vector and the E vector ( ⁇ Ps ⁇ E)). Is the minimum (most stable) direction).
  • the piezoelectric strain constant d depends on the electric field E.
  • the piezoelectric strain constant d is evaluated by ⁇ S / ⁇ E.
  • the concentration of the A-site vacancy is large and the concentration of the oxygen vacancy exceeds 1%, the polarization twist caused by the application of the electric field is reduced. Cannot be induced.
  • the concentration of the oxygen vacancies is reduced to 1% or less by devising the heat treatment conditions for the production of the dielectric material as described above.
  • Polarization twist can be developed by application. Therefore, the polarization P can be greatly changed by applying an electric field E to the crystal of the dielectric material, and the dielectric constant ⁇ and the piezoelectric strain constant d of the dielectric material can be changed over a wide range through the change of the polarization P. Can be controlled.
  • FIGS. 3A, 3B, and 3C show examples of a dielectric structure capable of controlling polarization using a dielectric material showing a polarization twist according to the first embodiment.
  • electrodes 12a and 12b as members for controlling polarization are arranged on two opposing surfaces of the dielectric material 10 exhibiting a polarization twist.
  • the electrodes 12a and 12b are arranged on two opposing surfaces of the dielectric material 10 exhibiting a polarization twist, as in FIG. 3A, and the electrodes 12a and 12b
  • An intermediate electrode 14 is arranged between the two (inside the dielectric material 10).
  • the electrodes 12a and 12b and the intermediate electrode 14 are arranged in contact with the dielectric material 10, so that an electric field can be arbitrarily applied to the dielectric material 10. ing.
  • the number of intermediate electrodes 14 is not limited to one, and may be an appropriate number according to the application.
  • the shape and arrangement position of the intermediate electrode 14 can be appropriately determined according to the application.
  • FIG. 3C shows a configuration in which the electric field generated by the electrodes 12a and 12b is applied to the dielectric material 10 disposed in the vicinity thereof.
  • an electric field is applied to the dielectric material 10 from the electrodes 12a, 12b and the intermediate electrode 14.
  • the magnitude r of the rotation angle ⁇ of the octahedron formed by the anion X is changed according to the above-described principle, and the dielectric constant ⁇ and the piezoelectric strain constant d are controlled by changing the polarization P. be able to.
  • the members that control polarization by applying an electric field to a dielectric material such as the electrodes 12a and 12b and the intermediate electrode 14 are not limited to the examples shown in FIGS. 3A, 3B, and 3C. If the electric field applied to the body material 10 can be controlled, the number, shape, and location of the electric field can be arbitrarily determined.
  • the dielectric structure capable of controlling polarization according to the first embodiment can control the dielectric constant ⁇ and the piezoelectric strain constant d by applying an electric field.
  • the dielectric constant ⁇ and the piezoelectric distortion constant d can be changed to large values by applying an electric field. Therefore, it can be suitably used for capacitors, piezoelectric elements, and the like.
  • the configuration shown in FIGS. 3A and 3B can be used as it is.
  • the electrodes 12a and 12b are charged with electric charge, the electric field generated thereby greatly increases the dielectric constant ⁇ of the dielectric material 10, so that the capacitance of the capacitor is greatly increased and the charged electric charge is greatly increased. Can be done.
  • the capacitance of the capacitor can be greatly increased by applying an electric field from outside the capacitor.
  • the configuration shown in FIGS. 3A and 3B can be used as it is.
  • the electric field generated thereby greatly increases the piezoelectric distortion constant d of the dielectric material 10, so that a piezoelectric element having a large distortion S can be realized.
  • the amount of distortion S of the piezoelectric element can be greatly increased by applying an electric field from outside the piezoelectric element.
  • FIG. The ceramic according to the second embodiment is a ceramic composed of a perovskite oxide (ABO 3 ) that is a crystal having a perovskite structure.
  • ABO 3 perovskite oxide
  • A1 is a trivalent metal
  • A2 is a monovalent metal
  • A3 is a divalent metal
  • B is a tetravalent metal
  • represents an A-site vacancy
  • the A-site vacancy The amount (mol fraction) ⁇ of the pores is 0 to 3%, and the amount (mol fraction) x of A3 is 2 to 25%.
  • A1 is a rare earth element such as Bi or La, etc.
  • A2 is Li, Na, K or the like
  • A3 is Ca, Sr, Ba or the like.
  • B include Ti, Zr, and Hf.
  • the perovskite oxide may further include a metal M.
  • a metal containing M or a compound containing M such as an oxide or a fluoride
  • the compound acts as an additive and may improve the sinterability and various characteristics of the perovskite oxide.
  • a dense ceramic can be manufactured at a lower firing temperature, and as a result, a high-quality crystal ceramic having a low oxygen vacancy concentration can be manufactured.
  • the added metal M ions trap the vacancies (oxygen vacancies) in the oxygen ion sites, the adverse effects of the oxygen vacancies can be reduced, so that various properties such as dielectric properties, polarization properties, and piezoelectric properties are improved. I do.
  • the perovskite-type oxide containing an oxide of the metal M is represented by the following general formula (5).
  • A1, A2, A3, B, and ⁇ are the same as those in the general formula (4)
  • y is the composition of the metal M (the mole fraction of M at the B site).
  • M include transition metal elements such as Cu, Mn, and Co.
  • y is preferably 0.001 to 5%.
  • the perovskite oxide represented by the general formula (5) is, for example, (Bi (1-x + ⁇ ) / 2 Na (1-x-3 ⁇ ) / 2 Ba x ⁇ ⁇ ) (Ti 0.999 Cu 0.001 ) O 3
  • the crystals represented by are preferred.
  • the perovskite-type oxide ceramics represented by the general formulas (4) and (5) can control the polarization characteristics by adjusting the amount ⁇ of the A-site vacancy and the amount x of A3. Therefore, the polarization characteristics can be adjusted according to the use of the ceramic.
  • a ferroelectric substance for example, a phase having a space group of P4 mm
  • a dielectric material capable of maintaining a small change in the dielectric constant with the electric field change.
  • MLCC multilayer ceramic capacitors
  • a dielectric material that has a high dielectric constant when an electric field is applied due to the action of a polarization twist such as a ferrielectric phase (P4bm phase).
  • P4bm phase ferrielectric phase
  • a large piezoelectric constant of a ferrielectric phase (P4bm phase) can be used for applications in which a conventional soft piezoelectric material having a relatively large piezoelectric strain constant is used.
  • a piezoelectric constant having a good linearity of a ferroelectric phase can be used for applications in which a conventional hard piezoelectric material having a relatively small piezoelectric strain constant and a small electric loss is used. Specifically, it can be used for high-power acoustics, various uses using ultrasonic waves, material processing (such as ultrasonic welding, joining and drilling), and medical sensors.
  • FIG. 9 is an explanatory diagram of a manufacturing process of the ceramic according to the second embodiment.
  • an oxide or carbonate as a raw material is weighed (I). Weighing is performed precisely after the high-purity reagent is sufficiently dried.
  • the weighed oxides or carbonates (raw materials containing A1, A2, A3, B and M) are pulverized and mixed (II), and calcined in air at 600 to 1000 ° C. for 0.5 to 20 hours.
  • the oxide of the metal M may be added after the preliminary firing.
  • the calcination can be performed in air, but is preferably performed in oxygen having a high oxygen partial pressure (oxygen partial pressure of about 0.1 MPa) or in a high-pressure oxygen atmosphere (oxygen partial pressure of about 10 MPa).
  • Embodiment 1 FIG. Relationship between oxygen vacancy concentration based on A-site vacancy concentration and polarization twist ⁇ Measurement of A-site vacancy concentration>
  • an ICP-AES device an ICP emission spectrometer SPS-3100 manufactured by SII Nanotechnology Co., Ltd. was used.
  • ⁇ Also as the XRF apparatus, a scanning X-ray fluorescence analyzer ⁇ ZSX Primus III ⁇ manufactured by Rigaku Corporation was used.
  • single-crystal sample 1 TiO 3 -7% BaTiO 3 and single crystal samples AgNbO 3
  • Po 2 indicates the oxygen partial pressure during single crystal growth.
  • the oxygen gas used was manufactured by Suzuki Shokan Co., Ltd. with a purity of 99.9 vol. %.
  • the oxygen vacancy concentration was determined based on the composition of the other metal elements from the electrical neutral condition.
  • the orientation of the single crystal sample 1 and the single crystal sample of Comparative Example 1 were determined by an X-ray diffraction experiment, cut out so that an electric field could be applied in the [100] direction, and platinum electrodes were sputtered on the upper and lower surfaces of the cut out crystal. It was provided by the method.
  • a step cutter MC-171 manufactured by Maruto Co., Ltd. was used for the cutting.
  • the size of the sample used for the measurement is approximately 1 mm square on the electrode surface and 0.1 to 0.2 mm in thickness. Therefore, a voltage is applied to a sample having a thickness of 0.1 to 0.2 mm.
  • the concentration of the A-site vacancy and the oxygen vacancy concentration were measured by the following methods.
  • Measuring method Inductively coupled plasma atomic emission spectrometry (ICP-AES) method
  • Measuring apparatus ICP emission spectrometer SPS-3100 manufactured by SII Nanotechnology Inc. Measurement results: shown in Table 1 below.
  • the A site vacancy concentration shown in Table 1 It is calculated from the number (1) and the substance amount ratio of Bi, Na, and Ba. Specifically, it is (1- (total of the amount ratios of Bi, Na, and Ba)).
  • the orientations of the single crystal sample 2 and the single crystal sample of Comparative Example 2 were determined by an X-ray diffraction experiment in the same manner as the single crystal sample 1 and the single crystal sample of Comparative Example 1, and an electric field was applied to the [110] direction.
  • the crystal was cut out as possible, and platinum electrodes were provided on the upper and lower surfaces of the cut out crystal by a sputtering method (the size was the same as the single crystal sample 1 and the single crystal sample of Comparative Example 1).
  • the concentration of A-site vacancies and the concentration of oxygen vacancies were measured by the following methods.
  • Measuring method X-ray fluorescence (XRF) method
  • Measuring device Scanning fluorescent X-ray analyzer ZSX Primus III manufactured by Rigaku Corporation Measurement results: shown in Table 2 below.
  • the vacancy concentration at the A site shown in Table 2 is the vacancy concentration of Ag. Specifically, it is (1-Ag substance ratio).
  • FIG. 4A shows the measurement result of Comparative Example 1
  • FIG. 4B shows the measurement result of Single Crystal Sample 1.
  • FIG. 5A shows the measurement result of Comparative Example 2
  • FIG. 5B shows the measurement result of Single Crystal Sample 2.
  • FIG. 5B also shows that the polarization P sharply rises and falls in two ranges of the electric field of ⁇ 100 to 0 kV / cm and 0 to 100 kV / cm in the process of increasing and decreasing the electric field. ing. This indicates that the polarization twist appeared in the single crystal sample 2, and the polarization P changed greatly according to the change in the electric field.
  • Embodiment 2 FIG. Effect of polarization twist ⁇ Preparation of dielectric material showing polarization twist> Preparation of Single Crystal Sample of (Bi 0.96 Na 0.5 ) TiO 3 -7% BaTiO 3
  • This single crystal sample (hereinafter, referred to as single crystal sample 3) is a TSSG described in Non-Patent Document 1.
  • the seeds were grown by a top seeded solution growth method.
  • the orientation of the obtained single crystal sample is determined by an X-ray diffraction experiment, and an electric field can be applied in the [001] direction in the case of the single crystal sample 3 and in the [011] direction in the case of the single crystal sample 4.
  • platinum electrodes were provided on the upper and lower surfaces of the cut crystal by a sputtering method.
  • a step cutter MC-171 manufactured by Maruto Co., Ltd. was used for the cutting.
  • the size of the sample used for the measurement is approximately 1 mm square on the electrode surface and 0.1 to 0.2 mm in thickness. Therefore, a voltage is applied to a sample having a thickness of 0.1 to 0.2 mm.
  • the dependence of the polarization P on the electric field E was determined using a ferroelectric measurement system (Toyo 6252 Rev. B) manufactured by Toyo Corporation. Measured.
  • the dependence of the strain S on the electric field E was measured using an optical heterodyne microvibration measuring device (MLD-221V-STN @ RP ). The dependence of the strain S on the electric field E was measured simultaneously with the dependence of the polarization P on the electric field E.
  • the frequency of the applied electric field E was 1 Hz
  • the electric susceptibility ⁇ and the piezoelectric strain constant d were evaluated as follows from the data of the polarization P and the strain S obtained when the electric field E was increased.
  • about 1000 data sets were measured for both the polarization P and the strain S.
  • FIG. 8 is obtained by plotting the oxygen octahedral rotation angle ⁇ obtained as described above on the horizontal axis and the polarization P obtained from the measurement of the dependence of the polarization P on the electric field E in FIG. 6 on the vertical axis.
  • FIG. 8 shows the relationship between the rotation angle ⁇ and the polarization P when the electric field E changes.
  • the crystal phase is a ferrielectric phase of a low electric field phase P4bm
  • the electric field E is increased from zero
  • the rotation angle ⁇ of the oxygen octahedron gradually decreases from about 3 °, and accordingly, the polarization P greatly increases as shown in FIG.
  • the crystal phase of the dielectric material is a ferrielectric phase (ferrielectric P4bm phase) whose space group, which is a low electric field phase, is P4bm.
  • the electric susceptibility ⁇ greatly increases as the electric field E increases. This corresponds to a large increase in the electric susceptibility ⁇ ⁇ ⁇ when the electric field E in FIG. 6 increases from zero to about 20 kV / cm.
  • the polarization P does not change much even when the electric field E is increased. This is equivalent to the fact that the electric susceptibility ⁇ does not depend on the electric field E. This is observed in the region where the electric field E in FIG. 6 is large.
  • the dielectric constant ⁇ (polarization P) and the piezoelectric strain constant d with respect to the change of the electric field can be largely changed by the polarization twist. it can. For this reason, the characteristics (capacitance, distortion amount S) of the capacitor and the piezoelectric element can be largely changed.
  • Embodiment 3 FIG. Manufacturing of Ceramics
  • bismuth oxide (Bi 2 O 3 ), sodium carbonate (Na 2 CO 3 ), barium carbonate (BaCO 3 ), titanium oxide (TiO 2 ), and copper oxide (CuO) are used as raw materials. Dry at 110 ° C for 12 hours or more (constant temperature dryer DOV-450A manufactured by AS ONE Corporation) and weigh accurately in a glove box (UN-800L) manufactured by UNICO Corporation (using an electronic balance PRACTUM513-1SJP manufactured by Sartorius Japan KK). )did.
  • is the amount of A site vacancies (molar fraction)
  • x is the amount of Ba (molar fraction).
  • the composition of the perovskite oxide that constitutes the manufactured ceramics is (Bi (1-x + ⁇ ) / 2 Na (1-x-3 ⁇ ) / 2 Ba x ⁇ ⁇ ) (Ti 0.999 Cu 0.001 ) O 3
  • the amount of the A-site vacancy (molar fraction) ⁇ and the amount of Ba (molar fraction) x were controlled by adjusting the weight of the raw material and the oxygen concentration during firing.
  • the weights of the raw materials are 15.279 g (Bi 2 O 3 ), 3.416 g (Na 2 CO 3 ), 1.940 g (BaCO 3 ), 11.205 g (TiO 2 ) and 0.011 g (CuO), respectively.
  • FIG. Ceramics with x set to 7% and ⁇ set to 0.00%, 0.75%, and 1.00%, respectively, were manufactured by the method of Example 3, and a ferroelectric measurement system (Model 6252) manufactured by Toyo Corporation. Rev. B) was used to measure the dependence of the polarization P on the electric field E at 25 ° C. (the relationship between the change in the electric field E and the change in the polarization P, sometimes referred to as a PE curve).
  • the frequency of the applied electric field E was 1 Hz, and a data set of about 1000 points was measured.
  • FIGS. 10 (a), (b) and (c) The PE curves of the measurement results are shown in FIGS. 10 (a), (b) and (c).
  • Each PE curve is a plot of a data set of about 1000 points. 10A, 10B, and 10C, the vertical axis represents the polarization P, and the horizontal axis represents the applied electric field E.
  • the ferroelectric phase (P4 mm) and the ferrielectric phase (P4bm) A phase transition is taking place.
  • FIGS. 11 (a), 11 (b) and 11 (c) show PE curves when the value of ⁇ is further increased.
  • 11A, 11B, and 11C as the value of ⁇ increases, the constriction of the PE curve becomes larger (the region of the ferrielectric phase expands) and the four inflection points ( In the figure, the phase transition occurs between the ferroelectric phase (P4 mm) and the ferrielectric phase (P4bm).
  • FIG. 12 shows the relationship between the electric field where a phase transition occurs between the ferroelectric phase (P4 mm) and the ferrielectric phase (P4bm) and the amount ⁇ of A-site vacancies.
  • the vertical axis in FIG. 12 is the electric field E threshold at which the phase transition occurs, and the horizontal axis is ⁇ .
  • FIG. 12 The relationship in FIG. 12 is based on the upper left shoulder of the inflection points (indicated by ⁇ ) shown in FIGS. 10 (a), (b), (c) and FIGS. 11 (a), (b), (c). 7 is a plot of the electric field E and ⁇ at the inflection point of the lower right shoulder (indicated by S1) and the lower right shoulder (indicated by S1).
  • the plot of Su is indicated by a diamond ( ⁇ )
  • the plot of Sl is indicated by a square ( ⁇ ).
  • FIG. 12 it can be seen that the stable ranges of the ferroelectric phase (P4 mm) and the ferrielectric phase (P4bm) with respect to the electric field E vary depending on the amount of holes ⁇ .
  • the ceramic has a ferroelectric phase (P4 mm) and a ferrielectric phase (P4bm) at four inflection points (indicated by a circle in the figure). And a phase transition has occurred.
  • the ferrielectric phase is in the state of zero electric field.
  • the electric field E is increased, a phase transition to a ferroelectric phase occurs at a point indicated by a circle. In the larger electric field region, the ferroelectric phase state is stabilized.
  • the electric field strength is reduced from the point B (ferroelectric phase)
  • the phase transition to the ferrielectric phase occurs at the electric field at the point indicated by a circle, and the ferrielectric phase remains even at zero electric field.
  • the electric field E when the electric field E is applied first, as-prepared (the state where the electric field E is not applied ( When the applied electric field E is increased from the point A (ferrielectric phase (P4bm)) at the time when the electric field E is first applied before the electric field is applied, the ferroelectric phase (P4mm) is obtained at the inflection point of the PE curve. ).
  • the polarization P passes through the point F at 0 ⁇ C / cm 2 , reaches the point G at 97 kV / cm where the electric field E is higher than the point B in FIG.
  • the PE curve (curve passing through the points of GCDEF) is repeated.
  • the ferroelectric phase (P4 mm) changes from the ferrielectric phase (P4bm) at the inflection point (indicated by a circle) at the transition from the point E to the point F.
  • FIG. 18A is the same as FIG. 17A.
  • FIGS. 19A and 19B show polarization P and electric susceptibility ⁇ (E) (where ⁇ P / E) when electric field E is changed between points C and G in FIG. 17B.
  • ⁇ E ⁇ 0 ⁇ (E)).
  • FIG. FIGS. 20 (a) and 20 (b) show before and after (before the electric field application: as-prepared) and after the electric field E was applied to the ceramics, which were examined in the same manner as in the above-described Examples 4 and 5.
  • a summary of the state (phase) of the ceramic after the application of an electric field: polled is shown.
  • 20A and 20B the vertical axis represents the amount ⁇ of the A-site vacancies, and the horizontal axis represents the amount x of Ba.
  • FIG. 20A shows the state of the ceramic before the electric field E is applied (before applying the electric field: as-prepared)
  • FIG. 20B shows the state of the ceramic after applying the electric field of 50 kV / cm. This is the state of the ceramic when stopped (poled after applying an electric field). That is, it is shown that the state shown in FIG. 20A immediately after the manufacturing is changed to the state shown in FIG. 20B after application of the electric field (partly unchanged).
  • a diamond ( ⁇ ) shown by oblique lines indicates a single phase of a ferroelectric phase (P4 mm), and a circle ( ⁇ ) indicates a single phase of a ferrielectric phase (P4bm).
  • a hatched triangle ( ⁇ ) indicates a single ferroelectric phase (R3c).
  • a square ( ⁇ ) indicates a state in which a ferroelectric phase and a ferrielectric phase (P4bm) are mixed.
  • the hatched square on the left side of the square ( ⁇ ) indicates the two-phase coexistence state of the ferroelectric phase (R3c) and the ferrielectric phase (P4bm).
  • the hatched area on the right side of the square ( ⁇ ) indicates the two-phase coexistence state of the ferroelectric phase (P4 mm) and the ferrielectric phase (P4bm).
  • the ceramic within the range surrounded by the broken line has a ferroelectric phase (R3c phase) in accordance with the magnitude of the applied electric field, similarly to those shown in FIGS. (P4mm phase) and the ferrielectric phase (P4bm).
  • the property of the electrically enhanced dielectric constant and the property that the dielectric constant does not depend on the electric field are ceramics that switch according to the electric field. Ceramics outside the range surrounded by the broken line maintain a ferroelectric phase (P4 mm or R3c) irrespective of the magnitude of the applied electric field, and have a property that the permittivity does not always depend on the electric field. ing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子を提供する。 【解決手段】立方晶または疑似立方晶の各頂点のAサイトに配置された金属が欠落したAサイト空孔により導入されるアニオンXサイトの空孔の濃度が1%以下であり、上記立方晶または疑似立方晶の結晶軸に対して、ペロブスカイト構造に存在するアニオンの八面体が角度ωをもって回転して配列するとともに、電場の印加により上記角度ωと分極値との両方がともに変化する、分極ツイストを示す誘電体材料である。また、一般式 (A1(1-x+δ)/2A2(1-x-3δ)/2A3δ)BO で示されるセラミックスは、Aサイト空孔の量δとA3の量xとの組合せを調整し、セラミックスの性質を制御することができる。

Description

分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子
 本発明は、分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子に関する。
 誘電体材料は、電子機器の絶縁材料、キャパシタの電極間挿入材料、圧電素子等多くの用途に使用されている。特に、キャパシタや圧電素子に使用する場合には、誘電率や圧電歪み定数等が制御可能な誘電体材料が求められている。
 例えば、下記特許文献1には、強誘電体の電界誘起相転移および臨界点近傍での誘電チューナビリティーを利用したチューナブルキャパシタが開示されている。
 また、本発明者らは、非特許文献1に示すとおり、酸素8面体等の配位多面体をもつ単位格子から構成されるペロブスカイト構造の誘電体結晶の一部が分極ツイストを示し、誘電体の分極と関係していることおよび電圧により分極を制御可能であることを見いだした。
特開2014-36022号公報
Scientific Reports volume 6, Article number: 32216 (2016)doi:10.1038/srep32216
 しかし、上記従来の技術においては、誘電率の値が十分に大きくはないこと、加えて誘電率の制御範囲が十分に大きくないという問題があった。また、圧電歪み定数を電圧により制御することについては言及がなかった。さらに、誘電体材料(セラミックス)の分極特性に関する性質を制御することについても言及がなかった。
 本発明の目的は、分極を電圧で制御することを介して、印加する電圧によって誘電率や圧電歪み定数を大きく変更可能な分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びに分極特性を制御可能なセラミックス並びにこれを使用したキャパシタ及び圧電素子を提供することにある。
 上記目的を達成するために、本発明の一実施形態は、分極ツイストを示す誘電体材料であって、ペロブスカイト型構造ABXをもつ立方晶または疑似立方晶の各頂点のAサイトに配置された金属が欠落したAサイト空孔により導入されるアニオンXサイトの空孔の濃度が1%以下であり、前記立方晶または疑似立方晶の結晶軸に対して、ペロブスカイト構造に存在するアニオンの八面体が角度ωをもって回転して配列するとともに、電場の印加により前記角度ωと分極値との両方がともに変化することを特徴とする。
 上記誘電体材料は、常誘電体、フェリ誘電体、強誘電体、反強誘電体のいずれかであるのが好適である。
 また、上記八面体が、6個の酸素原子で構成された八面体であり、Aサイト空孔により導入される酸素空孔の濃度(酸素空孔数/酸素サイト数)が1%以下であるのが好適である。ここで、酸素サイトは酸化物イオン(O2-)のサイトを示す。
 また、本発明の他の実施形態は、分極を制御可能な誘電体構造体であって、上記いずれかの分極ツイストを示す誘電体材料と、前記誘電体材料に電場を作用させ、前記角度ωを変化させて分極を制御する部材と、を備えることを特徴とする。
 また、本発明のさらに他の実施形態は、上記分極を制御可能な誘電体構造体を使用したキャパシタまたは圧電素子であることを特徴とする。
 また、本発明のさらに他の実施形態は、下記一般式(4)で表されるペロブスカイト型酸化物で構成されたセラミックスであって、
(A1(1-x+δ)/2A2(1-x-3δ)/2A3δ)BO・・・(4)
 前記A1は三価の金属であり、A2は一価の金属であり、A3は二価の金属であり、Bは四価の金属であり、□はAサイト空孔を表し、前記Aサイト空孔の量δが0~3%であり、前記のA3量xが2~25%であることを特徴とする。
 また、上記ペロブスカイト型酸化物は、さらに金属酸化物Mを含むのが好適である。
 また、上記A1はBiであり、A2はNaであり、A3はBaであるのが好適である。
 また、上記MはCuであるのが好適である。
 また、本発明のさらに他の実施形態は、上記セラミックスを使用したキャパシタまたは圧電素子であることを特徴とする。
 本発明によれば、誘電率や圧電歪み定数を大きく変更可能な分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びに分極特性を制御可能なセラミックス並びにこれを使用したキャパシタ及び圧電素子を実現できる。
分極ツイストの説明図である。 分極ツイストを示す誘電体材料の結晶に電場Eを印加した場合の説明図である。 実施形態1に係る分極ツイストを示す誘電体材料を使用した分極Pを制御可能な誘電体構造体の例を示す図である。 分極ツイストの測定結果を示す図である。 分極ツイストの測定結果を示す図である。 電場が変化したときの回転角度ωと分極Pとの関係の測定結果を示す図である。 電場の変化と誘電率の変化との関係の測定結果を示す図である。 電場の変化と圧電歪み定数の変化との関係の測定結果を示す図である。 実施形態2にかかるセラミックスの製造工程の説明図である。 実施例4にかかるセラミックスのP(分極)-E(電場)曲線を示す図である。 実施例4にかかるセラミックスのP(分極)-E(電場)曲線の他の例を示す図である。 強誘電相(空間群P4mm)とフェリ誘電相(空間群P4bm)との間で相転移が起こる電場とAサイト空孔の量δとの関係を示す図である。 実施例5にかかるセラミックスのP-E曲線を示す図である。 図13のA点、B点間で電場Eを変化させた場合の、P(分極)-E(電場)曲線、電気感受率χ(E)を示す図である。 実施例5にかかるセラミックスのP(分極)-E(電場)曲線の他の例を示す図である。 図15のA点、B点間で電場Eを変化させた場合の、P(分極)-E(電場)曲線、電気感受率χ(E)を示す図である。 実施例5にかかるセラミックスのP(分極)-E(電場)曲線のさらに他の例を示す図である。 図17(a)のA点、B点間で電場Eを変化させた場合の、P(分極)-E(電場)曲線、電気感受率χ(E)を示す図である。 図17(b)のC点、G点間で電場Eを変化させた場合の、P(分極)-E(電場)曲線、電気感受率χ(E)を示す図である。 セラミックスへの電場E(=50kV/cm)の印加前後におけるセラミックスの状態(相)のまとめを示す図である。
 以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。
実施形態1.
 図1(a)、(b)には、分極ツイストの説明図が示される。図1(a)は、誘電体材料において一般的なペロブスカイト型構造(ABX)の結晶格子の模式図である。図1(a)において、ペロブスカイト構造の母結晶(対称性が高い結晶相)は、立方晶の単位格子で表され、立方晶の各頂点のAサイトに金属Aが、体心のBサイトに金属Bが配置され、金属Bを中心として6個のアニオンXが立方晶の各面心に配置されている。ここで、アニオンXとしては、酸素、フッ素、塩素、臭素、ヒ素等が使用できるが、作製が比較的容易で取り扱いの簡便性等の理由で、酸素が好適である。
 また、金属Aとしては、プラス三価のイオンとなる金属元素であるBi,La,Nd,Pr,Smやその他の希土類元素等、プラス二価のイオンとなる金属元素であるPb,Ba,Sr、プラス一価のイオンとなる金属元素であるK,Na,Ag,Li等が挙げられ、金属Bとしては、プラス三価のイオンとなる金属元素であるY等の比較的イオン半径の小さい希土類元素,Sc、プラス四価のイオンとなる金属元素であるTi,Zr,Hf等、プラス五価のイオンとなる金属元素であるNbおよびTa等、プラス六価のイオンとなる金属元素であるMoおよびW等が挙げられる。また、金属Bには、複数の価数を取り得る金属元素であるV,Cr,Mn,Fe,Co,Ni,Cu等の遷移金属元素も挙げられる。なお、プラス二価のイオンとなるCa,Mg,Znは、AサイトとBサイトのいずれにも入りうる元素である。
 図1(a)に示されるように、ペロブスカイト構造の結晶の単位格子では、アニオンXにより八面体が形成されている。
 図1(b)には、図1(a)の矢印D方向から結晶格子を見た場合の模式図が示される。図1(b)の例では、図1(a)に示されたABXの単位格子が四つ示されている。
 結晶系が立方晶や正方晶(空間群P4mm)の結晶では、酸素八面体の回転角度ωはゼロであり、八面体の回転はない。一方、フェリ誘電相(空間群P4bm)では図1(b)に示されるように、アニオンXにより形成された各八面体が立方晶の結晶軸(金属Aを結んだ線に平行な軸)に対して角度ω回転して配列しており、本明細書では、この静的構造および電場を印加すると分極値と八面体の回転角度ωの両方がともに変化する構造を分極ツイストという。また、各八面体は、図1(a)の矢印D方向で対向する二つの頂点(アニオンX)を結ぶ線を回転軸として回転しており、隣接する2つの八面体間で回転方向が逆で、回転角度の大きさが同じ(ω)になっている。
 なお、誘電体材料には、結晶の対称性が高い上記立方晶の結晶構造をもつものの他、結晶の対称性が低下して、正方晶、斜方晶、菱面体晶(三方晶を含む)、単斜晶、三斜晶の結晶構造をもつ材料もある。これら対称性の低い結晶系は、立方晶が歪んだ疑似立方晶として近似することができる。
 上記分極ツイストを示す誘電体材料は、常誘電体、フェリ誘電体、強誘電体または反強誘電体であって、ペロブスカイト構造(組成式:ABX)をもつ上記立方晶または疑似立方晶の各頂点に配置された金属Aが欠落したAサイト空孔の濃度が低いものを挙げることができる。ここで、Aサイト空孔の濃度は、以下の式で求められる。
Figure JPOXMLDOC01-appb-M000001
 具体的には、各頂点(Aサイト)に配置されたAサイト金属の形式電荷について、プラス三価の場合にはそのAサイト空孔の濃度が3%以下、プラス二価の場合にはそのAサイト空孔の濃度が5%以下、プラス一価の場合にはそのAサイト空孔の濃度が6%以下であることが好適である。このようなAサイト空孔の濃度の場合、Aサイト空孔により導入される酸素空孔等のアニオンXの空孔の濃度が1%以下となり、分極ツイストの発現が容易となる。なお、アニオンXが酸素の場合の酸素空孔の濃度は以下の式で求められる。
Figure JPOXMLDOC01-appb-M000002
 上記酸素空孔等のアニオンの空孔の濃度は、上記Aサイト空孔の濃度を誘導結合プラズマ発光分光分析法(ICP-AES)や蛍光X線分析装置(XRF)による定量分析により測定し、その結果に基づき電気的中性条件から決定することができる。なお、上記ICP-AESまたはXRFによる定量分析では、Bサイトの金属の組成を基準として、Aサイトの金属の全ての組成(物質量比)を求め、Aサイト数とAサイト金属組成の合計の差から、Aサイト空孔濃度(各金属の空孔濃度の合算値)が得られる。具体的なAサイト空孔濃度の算出方法は実施例1で説明する。
 一般に、上記Aサイト空孔が生成すると、電気的中性条件を満足するように、酸素等のアニオンXの空孔も形成される。ペロブスカイト型酸化物(ABO)では、Aサイト空孔が生成すると、酸素の空孔が同時に生成する。例えば、A=Biの場合には、Bi3+の空孔が2個できると、酸素サイト(酸化物イオン(O2-)のサイト)に空孔(酸素空孔)が3個生成して、電気的中性条件を満たす。A=Agの場合には、Agの空孔が2個できると、酸素空孔が1個生成して、電気的中性条件を満たす。上記金属の空孔の濃度が高くなると、酸素空孔の濃度も高くなる。分極をもつ誘電体において、酸素空孔は分極と相互作用して、電場によるマクロな分極の変化を妨げる。このため、分極ツイストを潜在的に示す誘電体材料であっても、酸素空孔の濃度が高くその影響が大きい試料では、電場による分極の変化が妨げられ、電場印加による分極ツイストを観測できない場合が多い。一方、上記酸素空孔の濃度を小さくする(1%以下)と、酸素空孔の影響が小さくなり、電場印加による分極ツイストが観測される。
 上記分極ツイストを示す誘電体材料の製造は、熱処理過程を経て得られる。この熱処理条件の温度は低いほど、上記Aサイト空孔及び酸素空孔の濃度は小さくなり、結晶の完全性が高くなる。また、熱処理時の酸素分圧が高いほど、上記Aサイト空孔の濃度は小さくなり、結晶の完全性が高くなる。結晶の完全性が高くなると、電場印加による分極ツイストを誘起し易くなり、分極を電圧で制御することを介して、印加する電場によって誘電率や圧電歪み定数を大きく変更可能となる。
 通常、上記熱処理は空気中(酸素分圧は約0.02MPa)で行われることが多い。空気中で熱処理(例えば1000℃~1300℃の温度で熱処理)すると、蒸気圧の高い元素(BiやAg)が揮発する欠陥生成反応が起こり、これらのAサイト空孔の濃度が大きくなる。この熱処理時の酸素分圧を上げると、上記欠陥生成反応が抑制されて、これらのAサイト空孔濃度が小さくなる。熱処理時の酸素分圧が高ければ高いほど、欠陥生成反応は起こりにくくなり、これらAサイト空孔濃度が小さくなって、結果として酸素空孔の濃度が小さい高品質な誘電体材料が得られる。高品質な誘電体材料を製造するには、酸素分圧を0.1MPaから1MPaとするのが好適である。さらに酸素分圧を10MPa程度にまで上げると、さらに高品質な誘電体材料が製造できる可能性がある。
 また、同じ酸素分圧で熱処理する場合には、熱処理温度が低いほど、上記欠陥生成反応が抑制されて、Aサイト空孔と酸素空孔の濃度が小さくなり、高品質な誘電体材料が得られる。
 分極ツイストを示すBi系やAg系のペロブスカイト型酸化物は、通常1000℃~1200℃の温度で熱処理して製造する。この熱処理時の酸素分圧を0.02MPaから0.1MPaに上げると、Biの空孔濃度とAgの空孔濃度が小さくなる。この場合、熱処理温度が低い程、上記Bi、Ag等の金属の空孔濃度をさらに小さくすることができる。以上の操作により、酸素空孔の濃度を1%以下にすることができる。さらに、酸素分圧を1MPa程度に上げると、Biの空孔濃度とAgの空孔濃度が0.01%~1%未満に小さくなり、得られた単結晶で明瞭な分極ツイストを電場によって誘起できる。
 本発明者らは、上記分極ツイストを示す誘電体材料の結晶に、図1(a)の矢印Dと平行に電場を印加すると、アニオンXにより形成された八面体の回転角度ωが変化するとともに分極の大きさが変化することを見いだした。
 図2(a)、(b)、(c)、(d)には、分極ツイストを示す誘電体材料の結晶に電場(E)を印加した場合の説明図が示される。なお、図2(a)、(b)、(c)、(d)に示すペロブスカイト型構造体ABXにおいて、金属A、B、アニオンXは省略し、アニオンXにより形成された八面体のみ示している。また、電場の大きさがゼロの(電場が印加されていない)場合の図2(a)における分極Pが自発分極Psである。また、八面体の回転角度ωの大きさは矢印rで示される。また、図2(a)、(b)、(c)、(d)の順に印加される電場Eの大きさが大きくなると,結晶の分極Pも大きくなる。
 図2(a)のように、電場Eの印加が無い状態から図2(b)に示される小さい電場Eを印加すると、上記八面体の回転角度ωの大きさrが減少するとともに、分極Pの大きさが大きくなる。次に、図2(c)のように、印加する電場Eをさらに大きくすると、回転角度ωの大きさrがさらに減少するとともに、分極Pの大きさがさらに大きくなる。
 ここで、図2(d)のように、さらに大きな電場Eを印加すると、八面体の回転角度ωの大きさrが0となり(図2(d)に矢印rが記載されていないことにより表現している)、これに伴い分極Pの大きさが図2(a)の場合よりも顕著に大きくなっている。この状態では、誘電体材料の性質が強誘電相(強誘電体の状態)に転移(相転移)している。なお、図2(d)の状態から電場Eの大きさrを小さくして行くと、分極Pの大きさが小さくなると共に八面体の回転角度ωの大きさrが大きくなって、電場Eをゼロにすると図2(a)の状態に戻って行く。
 以上より、誘電体材料の結晶に印加する電場Eを大きくすると、八面体の回転角度ωの大きさrが小さくなり分極Pは大きくなる。一方、電場Eを小さくすると、八面体の回転角度ωの大きさrが大きくなり分極Pは小さくなる。分極ツイストにおける分極Pの大きさは、印加する電場Eに対して正の相関がある。
 なお、上記非特許文献1等に記載されたとおり、アニオンXにより形成された八面体の回転角度ωの大きさrは、X線回折(XRD)または中性子回折により測定することができる。
 誘電体材料の結晶に電場Eを印加すると分極Pが変化して、電束密度Dも変化する。誘電体材料の誘電率をε(ε=ε×ε、ε:真空の誘電率、ε:比誘電率)とし、誘電体の電気感受率をχとすると、以下の関係式が成立する。
Figure JPOXMLDOC01-appb-M000003
 式(1)を変形すると以下の式(2)が得られる。従って、電場Eを印加した状態で分極Pを測定すると、式(2)により電気感受率χが実験で求まり、式(1)より比誘電率ε(ε=1+χ)が得られる。
Figure JPOXMLDOC01-appb-M000004
 ここで、∂P/∂Eは、分極Pの電場Eによる偏微分を示す。すなわち∂P/∂Eは、ある電場Eでの分極Pの勾配に等しい。
 また、誘電体材料の結晶に電場Eを印加すると歪み量S(電場Eでの結晶の長さ/電場Eがゼロでの結晶の長さ)が変化する。誘電体材料が分極Psをもつ系では、その圧電歪み定数をdとすると、これらの関係は以下の式(3)で一応示される。
Figure JPOXMLDOC01-appb-M000005
 式(3)は、電場Eの大きさが1kV/cm以下の小さい場合に成り立つ式である。この場合には、圧電ひずみ定数dは材料定数(電場Eには依存せず一定)であるため、歪みSと電場Eの傾きが圧電ひずみ定数dに等しい。
 一方、電場Eが数kV/cm以上に大きくなると、誘電体材料の圧電ひずみ定数dは電場Eに依存する。例えば、電場Eと自発分極Psの方位が異なる場合、自発分極Psには、電場Eとの角度が小さくなる方向(系の自由エネルギー(PsベクトルとEベクトルの内積(-Ps・E)で与えられる)が最小(最安定)になる方向)に回転する駆動力が働く。この結果、電場Eにより自発分極Psが回転すると(分極ドメインの回転を含む)、歪みSの電場E依存性はヒステリシスを示し、圧電ひずみ定数dは電場Eに依存する。また、分極ツイストを示す誘電体材料では、電場Eを大きくすると分極Pも大きくなって、圧電ひずみ定数dも大きくなる。従って、圧電ひずみ定数dは∂S/∂Eで評価される。
 以上に述べた実施形態1に係る分極ツイストを潜在的に示す誘電体材料でも、上記のAサイト空孔の濃度が大きく、酸素空孔の濃度が1%を超えると、電場印加による分極ツイストを誘起できない。本実施形態1では、誘電体材料の製造の熱処理条件を上記のように工夫することにより、上記酸素空孔の濃度を1%以下としているので、酸素空孔の影響も小さくなり、電場Eの印加により分極ツイストを発現させることができる。このため、誘電体材料の結晶に電場Eを印加することにより分極Pを大きく変化させることができ、分極Pの変化を介して誘電体材料の誘電率εと圧電歪み定数dを、広い範囲で制御することができる。
 図3(a)、(b)、(c)には、実施形態1に係る分極ツイストを示す誘電体材料を使用した分極を制御可能な誘電体構造体の例が示される。図3(a)の例では、分極ツイストを示す誘電体材料10の対向する2つの表面に、分極を制御する部材としての電極12a、12bが配置されている。また、図3(b)の例では、図3(a)と同様に分極ツイストを示す誘電体材料10の対向する2つの表面に電極12a、12bが配置されており、さらに電極12a、12bの間(誘電体材料10の内部)に中間電極14が配置されている。図3(a)、(b)の例では、電極12a、12b、及び中間電極14が誘電体材料10と接触して配置されており、誘電体材料10に任意に電場を印加できる構成となっている。なお、中間電極14の数は1つには限られず、用途に応じて適宜の数とすることができる。また、中間電極14の形状及び配置位置も用途に応じて適宜決定できる。
 また、図3(c)の例では、電極12a、12bが誘電体材料10の外部に、誘電体材料10と接触せずに配置されている。図3(c)では、電極12a、12bにより生じた電場が、その近傍に配置された誘電体材料10に印加される構成となっている。
 以上に述べた図3(a)、(b)、(c)に示された分極を制御可能な誘電体構造体の例では、電極12a、12b、中間電極14から誘電体材料10に電場を印加し、上述した原理によりアニオンXにより形成された八面体の回転角度ωの大きさrを変化させ、分極Pを変化させることにより誘電体材料の誘電率εと圧電歪み定数dとを制御することができる。
 なお、電極12a、12b、中間電極14等の誘電体材料に電場を作用させて分極を制御する部材は、図3(a)、(b)、(c)の例には限定されず、誘電体材料10に印加する電場を制御できればその数、形状、配置場所を任意に決定することができる。
 本実施形態1に係る分極を制御可能な誘電体構造体は、電場の印加により誘電率εと圧電歪み定数dとを制御することができる。具体的には、電場の印加により誘電率εと圧電歪み定数dとを大きな値に変化させることができる。このため、キャパシタ及び圧電素子等に好適に利用できる。
 本実施形態1に係る分極を制御可能な誘電体構造体をキャパシタとして使用する場合、例えば図3(a)、(b)に示された構成をそのまま使用することができる。この場合、電極12a、12bに電荷が充電されると、これにより発生する電場により誘電体材料10の誘電率εが大きく増大するので、キャパシタの静電容量を大きく増大させ、充電電荷を大きく増加させることができる。
 なお、図3(c)の構成により、キャパシタの外部から電場を印加することにより、キャパシタの静電容量を大きく増大させることもできる。
 また、本実施形態1に係る分極を制御可能な誘電体構造体を圧電素子として使用する場合にも、図3(a)、(b)に示された構成をそのまま使用することができる。この場合、電極12a、12bに電圧を印加すると、これにより発生する電場により誘電体材料10の圧電歪み定数dが大きく増大するので、歪み量Sの大きな圧電素子を実現できる。
 なお、図3(c)の構成により、圧電素子の外部から電場を印加することにより、圧電素子の歪み量Sを大きく増大させることもできる。
実施形態2.
 本実施形態2にかかるセラミックスは、ペロブスカイト型構造の結晶であるペロブスカイト型酸化物(ABO)で構成されたセラミックスである。
 具体的な例としては、下記一般式(4)で表されるペロブスカイト型酸化物の多結晶で構成されたセラミックスであって、
(A1(1-x+δ)/2A2(1-x-3δ)/2A3δ)BO・・・(4)
 上記A1は三価の金属であり、A2は一価の金属であり、A3は二価の金属であり、Bは四価の金属であり、□はAサイト空孔を表し、上記Aサイト空孔の量(モル分率)δが0~3%であり、上記A3の量(モル分率)xが2~25%であることを特徴とする。
 ここで、上記A1としては、BiやLa等の希土類元素等があげられ、A2としては、Li,Na、K等があげられ、A3としては、Ca、Sr、Ba等があげられる。また、Bとしては、Ti、Zr,Hf等があげられる。
 なお、上記ペロブスカイト型酸化物は、さらに金属Mを含んでいてもよい。Mの金属もしくは酸化物やフッ化物等のMを含む化合物を添加することにより、これが添加剤として作用し、ペロブスカイト型酸化物の焼結性や各種特性を向上することがある。例えば、金属Mの添加により焼結性が向上すると、より低い焼成温度で緻密なセラミックスが製造でき、結果として酸素空孔濃度が小さい高品質結晶のセラミックスが製造できる。また、添加した金属Mのイオンが酸素イオンサイトの空孔(酸素空孔)をトラップすることによって、酸素空孔の悪影響を軽減できるため、誘電特性、分極特性や圧電特性等の諸特性が向上する。
 金属Mの酸化物を含む場合のペロブスカイト型酸化物は、下記一般式(5)で表される。
(A1(1-x+δ)/2A2(1-x-3δ)/2A3δ)(B1-y)O・・・(5)
 ただし、A1、A2、A3、B及び□は、上記一般式(4)と同じであり、yは金属Mの組成(BサイトにおけるMのモル分率)である。Mとしては、Cu、Mn、Co等の遷移金属元素が挙げられる。また、yは0.001~5%であるのが好適である。
 上記一般式(5)であらわされるペロブスカイト型酸化物は、例えば
(Bi(1-x+δ)/2Na(1-x-3δ)/2Baδ)(Ti0.999Cu0.001)O
で表される結晶が好適である。
 上記一般式(4)、(5)で表されるペロブスカイト型酸化物のセラミックスは、上記Aサイト空孔の量δ及びA3の量xを調整することにより、分極特性を制御することができる。このため、セラミックスの用途に応じて分極特性を調整できる。
 例えば、ハイパワートランジスタ用のキャパシタのような、電場の変化が大きい用途では、電場の変化に対して誘電率の変動を小さく維持できる強誘電体(例えば空間群がP4mmである相)を誘電材料として使用することができる。また、積層セラミックスコンデンサ(MLCC)のように、電場の変化が小さい用途では、フェリ誘電相(P4bm相)のような分極ツイストの作用により、電場を印加したときの誘電率が高くなる誘電材料として使用することができる。また、圧電素子として使用する場合には、圧電歪み定数が比較的大きい従来のソフト系圧電材料が使用されている用途に、フェリ誘電相(P4bm相)の大きな圧電定数が利用できる。具体的には、マイクロポジショニングおよびナノポジショニング用のアクチュエータ、各種センサー、超音波送信機および受信機用、流量や液位測定用、物体識別・監視用、音響変換器やマイク、ピックアップ等の電気音響用に使用できる。圧電歪み定数が比較的小さく電気的損失の小さい従来のハード系圧電材料が使用されている用途に、強誘電相(P4mm相)の線形性の良い圧電定数が利用できる。具体的には、高電力の音響用、超音波を使った各種用途、材料加工(超音波溶接、接合やドリル等)、医療用センサー用に利用できる。
 図9には、本実施形態2にかかるセラミックスの製造工程の説明図が示される。図9において、まず、原料である酸化物または炭酸塩の秤量を行う(I)。秤量は、高純度試薬を十分に乾燥させた後、精密に行う。
 次に、上記秤量した酸化物または炭酸塩(A1、A2、A3、B、Mを含む原料)を粉砕混合し(II)、空気中で600~1000℃、0.5~20時間仮焼成を行う(III)。なお、金属Mの酸化物等は仮焼成の後に添加しても良い。仮焼成は、上記の通り、空気中で行うことができるが、酸素分圧が高い酸素中(酸素分圧0.1MPa程度)や高圧酸素雰囲気中(酸素分圧10MPa程度)が望ましい。
 上記仮焼成後、バインダーとしてPVA(ポリビニルアルコール)やPMMA(ポリメチルメタクリレート)を混合する(IV)。バインダーを混合した粉末を、プレス成形して圧粉体ペレットを作製する(V)。プレス成形は、一軸加圧プレスの後に等方加圧プレスを行う。プレス時の成形圧力は、150MPa程度で行う。その後、上記(III)と同様に、空気中または高濃度酸素雰囲気(酸素分圧0.1~10MPa程度)中で1000~1250℃、0.5~20時間本焼成を行う(VI)。以上により、本実施形態2に係るかかるセラミックスを製造する。また、焼成前に比較的低温(200-500℃)でバインダーを除去する工程を設けてもよい。
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。
実施例1.Aサイト空孔濃度に基づく酸素空孔濃度と分極ツイストとの関係
<Aサイト空孔の濃度の測定>
 ICP-AES装置としてエスアイアイ・ナノテクノロジー株式会社製 ICP発光分光分析装置 SPS-3100を使用した。
 また、XRF装置としては、株式会社リガク製 走査型蛍光X線分析装置 ZSX Primus IIIを使用した。
 以下にペロブスカイト型酸化物ABOである(Bi1/2Na1/2)TiO-7%BaTiOの単結晶試料(以後、単結晶試料1という)及びAgNbOの単結晶試料(以後、単結晶試料2という)の組成分析結果を示す。なお、以下においてPoは単結晶育成時の酸素分圧を表す。この場合、使用した酸素ガスは、株式会社鈴木商館製の純度99.9 vol.%である。また、酸素空孔濃度は、他の金属元素の組成を基に、電気的中性条件から決定した。
・(Bi1/2Na1/2)TiO-7%BaTiO単結晶(単結晶試料1)
 測定試料は、上記非特許文献1に記されているTSSG法(top seeded solution growth 溶液引き上げ法)により育成した。本単結晶試料1の育成は、Po=0.9MPaで行った。また、比較例としてPo=0.02MPaでの育成も行った(以後、比較例1という)。
 上記単結晶試料1及び比較例1の単結晶試料は、X線回折実験により方位を決定し、[100]方位に電場を印加できるように切り出し、切り出した結晶の上面と下面に白金電極をスパッタリング法により設けた。切出しには、株式会社マルトー製ステップカッターMC-171を使用した。なお、測定に供した試料のサイズは、およそ電極面が1mm四方、厚さが0.1-0.2mmである。従って、厚さ0.1-0.2mmの試料に電圧を印加している。以上のように加工した単結晶試料1及び比較例1の単結晶試料について、以下の方法によりAサイト空孔の濃度及び酸素空孔濃度の測定を行った。
測定法 :誘導結合プラズマ原子発光分析(ICP-AES)法
測定装置:エスアイアイ・ナノテクノロジー株式会社製 ICP発光分光分析装置 SPS-3100
測定結果:以下の表1に示す。
Figure JPOXMLDOC01-appb-T000006
 なお、ペロブスカイト型構造体ABXの組成式(Aサイト数1、Bサイト数1、Xサイト数3)に示されているように、表1に示されたAサイト空孔濃度は、Aサイト数(1)とBi、Na、Baの物質量比から計算される。具体的には、(1-(Bi、Na、Baの物質量比の合計))である。
・AgNbO単結晶(単結晶試料2)
 測定試料は、チョクラルスキー(Czochralski, Cz)法により作製した。本単結晶試料2の育成は、Po=0.9MPaで行った。また、比較例として、静置徐冷法により、Po=0.1MPaでの育成も行った(以後、比較例2という)。
 上記単結晶試料2及び比較例2の単結晶試料は、単結晶試料1及び比較例1の単結晶試料と同様にして、X線回折実験により方位を決定し、[110]方位に電場を印加できるように切り出し、切り出した結晶の上面と下面に白金電極をスパッタリング法により設けた(サイズは、単結晶試料1及び比較例1の単結晶試料と同じ)。以上のように加工した単結晶試料2及び比較例2の単結晶試料について、以下の方法によりAサイト空孔の濃度及び酸素空孔濃度の測定を行った。
測定法 :蛍光X線分析(XRF)法
測定装置:株式会社リガク製 走査型蛍光X線分析装置 ZSX Primus III
測定結果:以下の表2に示す。
Figure JPOXMLDOC01-appb-T000007
 なお、表2に示されたAサイト空孔濃度は、Agの空孔濃度である。具体的には、(1-Agの物質量比)である。
 以上の表1、表2に示す通り、試料である単結晶の育成時における酸素分圧(Po)が高いほど、単結晶中の酸素空孔濃度が低下することがわかる。
<分極ツイストの測定>
 上記単結晶試料1及び比較例1([100]方位に電場を印加できるように切り出した試料(主面が1mm四方、厚さが0.1-0.2mm、白金電極付き))、並びに単結晶試料2及び比較例2([110]方位に電場を印加できるように切り出した試料(主面が1mm四方、厚さが0.1-0.2mm、白金電極付き))について、東陽テクニカ株式会社製強誘電体測定システム(Toyo 6252 Rev. B)を用い、25℃における分極Pの電場E依存性(電場Eの変化に対する分極Pの変化の関係)を測定した。本測定では、印加電場Eの周波数を1Hzとし、1000点程度のデータセットを測定した。
 測定結果を、図4、図5に示す。図4(a)が比較例1の測定結果であり、図4(b)が単結晶試料1の測定結果である。また、図5(a)が比較例2の測定結果であり、図5(b)が単結晶試料2の測定結果である。
 図4(b)では、電場の増加及び減少の過程で、電場が-30~30kV/cmの範囲のときに分極Pが急激に立ち上がり及び立ち下がることが示されている。これは、単結晶試料1に分極ツイストが発現し、電場の変化に応じて分極Pが大きく変化したことを示している。
 一方、図4(a)では、電場の増加及び減少の過程で、ほぼ電場の変化に対して直線的に分極Pが変化している。これは、比較例1の単結晶試料に分極ツイストが発現しない(し難い)ことを示している。
 また、図5(b)でも、電場の増加及び減少の過程で、電場が-100~0kV/cm及び0~100kV/cmの2つの範囲で分極Pが急激に立ち上がり及び立ち下がることが示されている。これは、単結晶試料2に分極ツイストが発現し、電場の変化に応じて分極Pが大きく変化したことを示している。
 一方、図5(a)では、電場の増加及び減少の過程で、ほぼ電場の変化に対して直線的に分極Pが変化している。これは、比較例2の単結晶試料に分極ツイストが発現しない(し難い)ことを示している。
 以上の結果から、単結晶中の酸素空孔濃度が1%以下である単結晶試料1、単結晶試料2では分極ツイストが発現するが、酸素空孔濃度が1%を超えている比較例1、比較例2では、分極ツイストが発現しない(し難い)ことがわかる。
実施例2.分極ツイストの効果
<分極ツイストを示す誘電体材料の作製>
・(Bi0.96Na0.5)TiO-7%BaTiOの単結晶試料の作製
 本単結晶試料(以後、単結晶試料3という)は、上記非特許文献1に記されているTSSG法(top seeded solution growth 溶液引き上げ法)により育成した。なお、本単結晶の育成は高圧酸素下(Po=1MPa)で行った(酸素ガスは株式会社鈴木商館製の純度99.9 vol.%)。
・(Ag0.96Li0.04)NbOの単結晶試料の作製
 本単結晶試料(以後、単結晶試料4という)は、Japanese Journal of Applied Physics 55, 10TB03 (2016)に記されているCz法(Czochralski法)により育成した。なお、出発原料として上記文献に記載されたAgNbOの替わりにAg0.96Li0.04NbO粉末を用いた。また、Cz法による結晶育成に際し、Agを4%程度過剰に添加した。また、本単結晶の育成も高圧酸素下(Po=1MPa)で行った(酸素ガスは株式会社鈴木商館製の純度99.9 vol.%)。
<電気感受率χ及び圧電ひずみ定数dの測定用試料の作製及び評価>
 得られた上記単結晶試料の方位をX線回折実験により決定し、単結晶試料3の場合には[001]方位に、単結晶試料4の場合には[011]方位に電場を印加できるように切り出し、切り出した結晶の上面と下面に白金電極をスパッタリング法により設けた。切出しには、株式会社マルトー製ステップカッターMC-171を使用した。なお、測定に供した試料のサイズは、およそ電極面が1mm四方、厚さが0.1-0.2mmである。従って、厚さ0.1-0.2mmの試料に電圧を印加している。
 電気感受率χを評価するにあたり、分極Pの電場E依存性(電場Eの変化に対する分極Pの変化の関係)を、東陽テクニカ株式会社製強誘電体測定システム(Toyo 6252 Rev. B)を用いて測定した。また、圧電ひずみ定数dを評価するにあたり、歪みSの電場E依存性(電場Eの変化に対する歪みSの変化の関係)を、ネオアーク株式会社製光ヘテロダイン微小振動測定装置(MLD-221V-STN RP)を用いて測定した。また、歪みSの電場E依存性は分極Pの電場E依存性と同時に測定した。両測定ともに、印加電場Eの周波数は1Hzとして、電場Eの増加時に得られた分極Pと歪みSのデータから次のようにして電気感受率χと圧電ひずみ定数dを評価した。なお、分極Pと歪みSともに、それぞれ1000点程度のデータセットを測定した。
 電気感受率χは、∂P/∂E=εχの関係式を用いて、分極Pの電場E依存性におけるデータ点(10点)の傾きから、電気感受率χの電場E依存性を評価した。同様に、圧電歪み定数dは、∂S/∂E=dの関係式を用いて、歪みSの電場E依存性のデータ点(10点)の電場Eに対する傾きから、圧電歪み定数dの電場E依存性を評価した。
 以上のようにして測定した結果は、単結晶試料3の場合を図6に、単結晶試料4の場合を図7に示す。
<電場が変化したときの回転角度ωと分極との関係の測定>
 上記単結晶試料3を[001]方位に電場を印加できるように切り出した試料(主面が1mm四方、厚さが0.1-0.2mm、白金電極付き、図6の測定試料と同じ)に、大型放射光施設SPring-8のビームラインBL02B1を用いて、35keV単色X線[波長:0.035313nm]を照射し、上記単結晶試料3のX線回折データを取得し、酸素八面体の回転角度ωを求めた。この場合、X線回折データの測定は、図6における電気感受率χの評価にあたり行った、分極Pの電場Eに対する依存性の測定と同様に、[001]方位に電場Eを印加した状態で行った。
 以上のようにして得られた酸素八面体回転角度ωを横軸に、上記図6における分極Pの電場Eの依存性の測定から得られた分極Pを縦軸にプロットして図8を得た。従って、図8では、電場Eが変化したときの回転角度ωと分極Pとの関係が示されている。
 X線回折データの測定の詳細は以下の通りである。
・電場Eの増加時1(Eが0→20kV/cmの低電場、結晶相は低電場相P4bmのフェリ誘電相)
 電場Eをゼロから増加させると、酸素八面体の回転角度ωが3°程度から徐々に小さくなり、これに伴い、図8に示されるように、分極Pは大きく増加する。回転角度ωが減少するほど、分極Pは大きくなる。この場合の誘電体材料(単結晶試料3)の結晶相は、低電場相である空間群がP4bmのフェリ誘電相(フェリ誘電P4bm相)となっている。
 分極Pの電場E依存性の傾き∂P/∂Eが電気感受率χに比例するため、電場Eが大きくなると、電気感受率χは大きく増大する。これは、図6の電場Eがゼロから20kV/cm程度まで増加すると、電気感受率χが大きく増大することに対応する。
・電場Eの増加時2(Eが20→100kV/cmの高電場、結晶相は高電場相P4mmの強誘電相)
 電場Eを20kV/cmを超えて、さらに増加させると、図8に示されるように、高電場相である空間群がP4mmの強誘電相(強誘電P4mm相)に相転移する。強誘電P4mm相は酸素八面体の回転をもたないため、その回転角度ωはゼロになる。従って、図8の電場Eが大きい領域では。ω=0となる。高電場相では、電場Eを増加させても分極Pはあまり変化しない。これは、電気感受率χが電場Eに依存しないことと等価である。このことは、図6の電場Eが大きい領域で観測されている。
・電場Eの減少時1(Eが100→10kV/cmの高電場、結晶相は高電場相P4mmの強誘電相)
 電場Eを低下させても、高電場相P4mmのままであるため、回転角度ωはゼロのままである。また、高電場相の分極Pも大きいままである。
・電場Eの減少時2(Eが10→0kV/cmの低電場、結晶相は低電場相P4bmのフェリ誘電相)
 電場Eが10kV/cm以下になると、フェリ誘電P4bmへ相転移する。なお、フェリ誘電相と強誘電相との相転移電場は、電場増加時では20kV/cm程度、電場減少時では3-10kV/cmと異なる。フェリ誘電P4bmでは、電場Eが小さくなると回転角度ωは大きくなり、分極Pは減少する。そして、電場Eがゼロになると、酸素八面体回転角度ωは3度となり、もとの構造に戻る。
 上記図6~図8に示されるとおり、印加される電場が20kV/cm以下である場合、分極ツイストにより電場の変化に対する誘電率ε(分極P)と圧電歪み定数dとを大きく変化させることができる。このため、キャパシタや圧電素子の特性(静電容量、歪み量S)を大きく変化させることができる。
実施例3.セラミックスの製造
 図9の工程に従い、原料として、酸化ビスマス(Bi)、炭酸ナトリウム(NaCO)、炭酸バリウム(BaCO)、酸化チタン(TiO)および酸化銅(CuO)を110℃、12時間以上乾燥(アズワン株式会社製定温乾燥機DOV-450A)させ、株式会社UNICO製グローブボックス(UN-800L)内で精密秤量(ザルトリウス・ジャパン株式会社製電子天秤PRACTUM513-1SJPを使用)した。それぞれの重量比は、(Bi):(NaCO):(BaCO):(TiO):(CuO)=116.49×(1-x+δ):26.50×(1-x-3δ):197.34×x:79.79:0.080となるようにした。ただし、δはAサイト空孔の量(モル分率)であり、xはBaの量(モル分率)である。
 上記秤量した原料粉末を粉砕混合(フリッチュ・ジャパン株式会社製 遊星型ボールミルP-5使用)し、空気中で800℃、4時間仮焼成を行った。その後、バインダーとしてPMMAを混合した。その後、150MPaの成形圧力にて一軸加圧プレス(エナパック株式会社製 油圧プレスWMP-5を使用)の後に同圧力で等方加圧プレス(エヌピーエーシステム株式会社製 冷間静水等方圧プレス機CPP-25を使用)を行って円筒状またはコイン状にプレス成形した。その後、空気中で1195℃、4時間本焼成を行い、セラミックスを製造した。
 製造したセラミックスを構成するペロブスカイト型酸化物の組成は、
(Bi(1-x+δ)/2Na(1-x-3δ)/2Baδ)(Ti0.999Cu0.001)O
であり、上記原料の重量及び焼成時の酸素濃度を調整してAサイト空孔の量(モル分率)δ及びBaの量(モル分率)xを制御した。例えば、原料重量をそれぞれ15.279g(Bi)、3.416g(NaCO)、1.940g(BaCO)、11.205g(TiO)および0.011g(CuO)とし、焼成を空気中で行うことによって、x=7%、δ=0.40%の試料を作製した。上記δ及びxの測定には、エスアイアイ・ナノテクノロジー株式会社製 ICP発光分光分析装置 SPS-3100を使用し、誘導結合プラズマ原子発光分析(ICP-AES)法により測定した。
実施例4.
 実施例3の方法により上記xを7%とし、δをそれぞれ0.00%、0.75%及び1.00%としたセラミックスを製造し、東陽テクニカ株式会社製強誘電体測定システム(MODEL 6252 Rev. B)を用い、25℃における分極Pの電場E依存性(電場Eの変化に対する分極Pの変化の関係であり、P-E曲線ということがある)を測定した。本測定では、印加電場Eの周波数を1Hzとし、1000点程度のデータセットを測定した。なお、測定試料としては、プレス成形により成形した、面内サイズ3mm×6mm角程度、厚さ0.1~0.2mm程度の板状試料を使用した。
 測定結果のP-E曲線を図10(a)、(b)、(c)に示す。図10(a)がδ=0.00%の場合、(b)がδ=0.75%の場合、(c)がδ=1.00%の場合のP-E曲線である。各P-E曲線は、上記1000点程度のデータセットをプロットしたものである。なお、図10(a)、(b)、(c)の縦軸が分極Pを示し、横軸が印加電場Eを示している。また、各図のPrは残留分極(E=0を横切る分極値であって電場オフの状態で試料が保持している分極量)である。
 図10(a)の場合は、常時強誘電相(P4mm)が維持されている。これは、x=7%の場合において空孔量δを0.00%とした効果である。これに対して、図10(b)、(c)では、4個の変曲点(図中に○印で示す)において、強誘電相(P4mm)とフェリ誘電相(P4bm)との間で相転移が起こっている。図10(b)、(c)の場合、δの値が大きくなるに従い、分極P=0μC/cm付近におけるP-E曲線のくびれが大きくなり、フェリ誘電相の領域が広がっている。
 図11(a)、(b)、(c)には、さらにδの値を大きくした場合のP-E曲線が示される。図11(a)がδ=1.20%の場合、(b)がδ=1.50%の場合、(c)がδ=1.80%の場合のP-E曲線である。図11(a)、(b)、(c)においても、δの値の増加とともにP-E曲線のくびれがより大きくなり(フェリ誘電相の領域が広がり)つつ、4個の変曲点(図中に○印で示す)において、強誘電相(P4mm)とフェリ誘電相(P4bm)との間で相転移が起こっている。
 図12には、強誘電相(P4mm)とフェリ誘電相(P4bm)との間で相転移が起こる電場とAサイト空孔の量δとの関係が示される。図12の縦軸が相転移が起こる電場Ethresholdであり、横軸がδである。
 図12の関係は、図10(a)、(b)、(c)及び図11(a)、(b)、(c)に示された変曲点(○印)の内、左上の肩(Suで示す)と右下の肩(Slで示す)の変曲点における電場Eとδとをプロットしたものである。図12において、上記Suのプロットが菱形(◆)で示され、Slのプロットが四角(■)で示される。図12に示されるように、電場Eに対する強誘電相(P4mm)とフェリ誘電相(P4bm)の安定な範囲が、空孔の量δによって変化していることがわかる。
実施例5.
 図13には、上記δ=0.75%、x=12%の場合のP-E曲線が示される。図13に示されるように、上記δ及びxの値の組合せでは、セラミックスは常時強誘電相(P4mm)が維持されている。
 図14(a)、(b)には、図13のA点、B点間で電場Eを変化させた場合の、分極P、電気感受率χ(E)(ただし、∂P/∂E=εχ(E))が示される。
 図14(a)、(b)に示されるように、印加される電場Eが変動しても、強誘電体であるセラミックスは、分極Pの勾配すなわち電気感受率χ(E)が一定であり、比誘電率ε=1+χ(E)も一定である(電場Eに依存しない)ことがわかる。
 図15には、上記δ=1.50%、x=8%の場合のP-E曲線が示される。図15に示されるように、上記δ及びxの値の組合せでは、セラミックスは4個の変曲点(図中に○印で示す)において、強誘電相(P4mm)とフェリ誘電相(P4bm)との間で相転移が起こっている。
 図16(a)、(b)には、図15のA点、B点間で電場Eを変化させた場合の、分極P、電気感受率χ(E)(ただし、∂P/∂E=εχ(E))が示される。
 図15に示されるように、印加される電場Eの変動に応じて、相転移が生じているので、図16(a)において、電場ゼロではフェリ誘電相の状態にある。電場Eを大きくすると○印で示す点で強誘電相へ相転移する。さらに大きい電場領域では、強誘電相状態が安定化されている。B点(強誘電相)から電場強度を小さくすると、○印で示す点の電場でフェリ誘電相へ相転移し、ゼロ電場でもフェリ誘電相のままである。
 また、図16(b)に示されるように、A点から印加電場Eを高くしていくと、フェリ誘電相(P4bm)の状態では電気感受率χ(E)が増加し、比誘電率ε=1+χ(E)も増加する(電気的増強誘電率と表記)。さらに印加電場Eを高くし、B点に接近して行く過程で、フェリ誘電相(P4bm)から強誘電相(P4mm)に相転移し、電気感受率χ(E)も比誘電率ε=1+χ(E)も一定となる(電場Eに依存しない)。
 図17(a)、(b)には、上記δ=0.40%、x=7%の場合のP-E曲線が示される。上記δ及びxの値の組み合わせでは、図17(a)のP-E曲線に示されるように、最初に電場Eを印加した場合には、as-prepared(電場Eが印加されていない状態(電場印加前)から最初に電場Eを印加した場合)のA点(フェリ誘電相(P4bm))から印加電場Eを高くして行くと、P-E曲線の変曲点で強誘電相(P4mm)に相転移する。印加電場Eが60kV/cm(B点)に達したところで印加電場Eを下げて行くと、図17(a)のpoled(一旦電場を印加した後の試料)のC点(強誘電相)までP-E曲線が推移する。その後は、一旦電場を印加した後の試料(poled)のP-E曲線として、図17(b)に従ってP-E曲線が推移する。図17(b)に示されるように、印加電場Eを低下させ、-97kV/cm(D点)に達したところで印加電場Eを上げて行くと、印加電場Eが0kV/cmでE点を通過し、さらに20kV/cmで分極Pが0μC/cmのF点を通過し、上記図17(a)のB点よりも電場Eが高い97kV/cmでG点に到達し、以後同様のP-E曲線(GCDEFの点を通過する曲線)が繰り返される。図17(b)に示されたP-E曲線では、上記E点からF点まで移行する際の変曲点(○印で示す)で強誘電相(P4mm)からフェリ誘電相(P4bm)への相転移が起こり、F点からG点まで移行する際の変曲点(○印で示す)でフェリ誘電相(P4bm)から強誘電相(P4mm)への相転移が起こっている。なお、上記F点に到達したときに、印加電場Eを0kV/cmとすると、図17(a)のA点に戻り、図17(a)に示されたP-E曲線に従って推移する。
 図18(a)、(b)には、図17(a)のA点、B点間で電場Eを変化させた場合の、分極P、電気感受率χ(E)(ただし、∂P/∂E=εχ(E))が示される。なお、図18(a)は、図17(a)と同一である。
 図18(a)、(b)に示されるように、A点から印加電場Eを高くして行くと、フェリ誘電相(P4bm)の状態では電気感受率χ(E)が増加し、比誘電率ε=1+χ(E)も増加する(電気的増強誘電率と表記)。さらに印加電場Eを高くし、B点に接近して行く過程(20kV/cm以上)で、フェリ誘電相(P4bm)から強誘電相(P4mm)に相転移し、電気感受率χ(E)も比誘電率ε=1+χ(E)も一定となる(電場Eに依存しない)。
 なお、図17(a)において印加電場Eを上げると、B点では強誘電相(P4mm)に相転移し、以後は図17(b)に示されたP-E曲線で推移するので、図18(a)、(b)に示されたフェリ誘電相(P4bm)でセラミックスを使用する場合には、印加電場EをB点未満、具体的には20kV/cm程度よりも小さい電場に維持する必要がある。
 図19(a)、(b)には、図17(b)のC点、G点間で電場Eを変化させた場合の、分極P、電気感受率χ(E)(ただし、∂P/∂E=εχ(E))が示される。
 図19(a)、(b)に示されるように、印加される電場Eが変動しても、強誘電相にあるセラミックスは、分極Pの勾配すなわち電気感受率χ(E)が一定であり、比誘電率ε=1+χ(E)も一定である(電場Eに依存しない)ことがわかる。これは、上記図14(a)、(b)に示された場合と同様である。
実施例6.
 図20(a)、(b)には、以上に述べた実施例4、実施例5と同様にして調べた、セラミックスへの電場Eの印加前(電場印加前:as-prepared)および後(電場印加後:poled)におけるセラミックスの状態(相)のまとめが示される。図20(a)、(b)において、縦軸がAサイト空孔の量δであり、横軸がBaの量xである。また、図20(a)が電場Eを印加する前(電場印加前:as-prepared)のセラミックスの状態であり、図20(b)が50kV/cmの電場を印加した後、電場の印加を停止した場合のセラミックスの状態(電場印加後:poled)である。すなわち、製造直後には図20(a)の状態であったものが、電場印加後には図20(b)の状態に遷移する(一部は不変)ことが示されている。
 図20(a)、(b)では、斜線で示された菱形(◇)が強誘電相(P4mm)の単相を示し、丸印(○)がフェリ誘電相(P4bm)の単相を示し、斜線で示された三角形(△)が強誘電相(R3c)の単相を示している。また、四角形(□)は、強誘電相とフェリ誘電相(P4bm)とが混在した状態を示している。具体的には、四角形(□)の左側に斜線が入ったものは、強誘電相(R3c)とフェリ誘電相(P4bm)の二相共存状態を示している。また、四角形(□)の右側に斜線が入ったものは、強誘電相(P4mm)とフェリ誘電相(P4bm)の二相共存状態を示している。
 図20(b)において、破線で囲まれた範囲内にあるセラミックスは、上記図15~図19に示されたものと同様に、印加される電場の大きさに応じて強誘電相(R3c相またはP4mm相)とフェリ誘電相(P4bm)との間で相転移する。このため、電気的増強誘電率の性質と誘電率が電場に依存しない性質とが電場に応じてスイッチングするセラミックスである。また、上記破線で囲まれた範囲外にあるセラミックスは、印加される電場の大きさによらず強誘電相(P4mmまたはR3c)が維持されており、常に誘電率が電場に依存しない性質となっている。
 図20(a)、(b)に示されるように、Aサイト空孔の量δとBaの量xとの組合せを調整することにより、実施例3で製造されるセラミックスの性質を制御できることがわかる。
 10 誘電体材料、12a、12b 電極、14 中間電極。

 

Claims (12)

  1.  ペロブスカイト型構造ABXをもつ立方晶または疑似立方晶の各頂点のAサイトに配置された金属が欠落したAサイト空孔により導入されるアニオンXサイトの空孔の濃度が1%以下であり、前記立方晶または疑似立方晶の結晶軸に対して、ペロブスカイト型構造に存在するアニオンの八面体が角度ωをもって回転して配列するとともに、電場の印加により前記角度ωと分極値との両方がともに変化することを特徴とする、分極ツイストを示す誘電体材料。
  2.  前記誘電体材料が、常誘電体、フェリ誘電体、反強誘電体のいずれかである、請求項1に記載の分極ツイストを示す誘電体材料。
  3.  前記八面体が、6個の酸素原子で構成された八面体であり、Aサイト空孔により導入される酸素空孔の濃度が1%以下である、請求項1または請求項2に記載の分極ツイストを示す誘電体材料。
  4.  請求項1から請求項3のいずれか一項に記載の分極ツイストを示す誘電体材料と、
     前記誘電体材料に電場を作用させ、前記角度ωを変化させて分極を制御する部材と、
    を備える、分極を制御可能な誘電体構造体。
  5.  請求項4に記載の分極を制御可能な誘電体構造体を使用したキャパシタ。
  6.  請求項4に記載の分極を制御可能な誘電体構造体を使用した圧電素子。
  7.  下記一般式(4)で表されるペロブスカイト型酸化物で構成されたセラミックスであって、
    (A1(1-x+δ)/2A2(1-x-3δ)/2A3δ)BO・・・(4)
     前記A1は三価の金属であり、A2は一価の金属であり、A3は二価の金属であり、Bは四価の金属であり、□はAサイト空孔を表し、
     前記Aサイト空孔の量δが0~3%であり、前記のA3量xが2~25%であることを特徴とするセラミックス。
  8.  前記ペロブスカイト型酸化物が、さらに金属酸化物Mを含む、請求項7に記載のセラミックス。
  9.  A1はBiであり、A2はNaであり、A3はBaである請求項7または請求項8に記載のセラミックス。
  10.  MはCuである、請求項7から請求項9のいずれか一項に記載のセラミックス。
  11.  請求項7から請求項10のいずれか一項に記載のセラミックスを使用したキャパシタ。
  12.  請求項7から請求項10のいずれか一項に記載のセラミックスを使用した圧電素子。

     
PCT/JP2019/026162 2018-06-29 2019-07-01 分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子 WO2020004670A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020527710A JPWO2020004670A1 (ja) 2018-06-29 2019-07-01 分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子
JP2023172990A JP2023181202A (ja) 2018-06-29 2023-10-04 セラミックス、並びにこれを使用したキャパシタ及び圧電素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124344 2018-06-29
JP2018-124344 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004670A1 true WO2020004670A1 (ja) 2020-01-02

Family

ID=68987233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026162 WO2020004670A1 (ja) 2018-06-29 2019-07-01 分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子

Country Status (2)

Country Link
JP (2) JPWO2020004670A1 (ja)
WO (1) WO2020004670A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508704A (ja) * 2000-08-29 2004-03-18 エプコス アクチエンゲゼルシャフト 銀ニオブタンタル酸塩の誘電性セラミック層を備えたキャパシタ
JP2010225705A (ja) * 2009-03-20 2010-10-07 Nippon Soken Inc 積層型圧電素子及びその製造方法
JP2012099704A (ja) * 2010-11-04 2012-05-24 Seiko Epson Corp 液体噴射ヘッド、液体噴射装置、圧電素子、および圧電セラミックス
JP2013515353A (ja) * 2009-12-21 2013-05-02 エプコス アクチエンゲゼルシャフト 温度依存的なコンデンサ、およびコンデンサモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508704A (ja) * 2000-08-29 2004-03-18 エプコス アクチエンゲゼルシャフト 銀ニオブタンタル酸塩の誘電性セラミック層を備えたキャパシタ
JP2010225705A (ja) * 2009-03-20 2010-10-07 Nippon Soken Inc 積層型圧電素子及びその製造方法
JP2013515353A (ja) * 2009-12-21 2013-05-02 エプコス アクチエンゲゼルシャフト 温度依存的なコンデンサ、およびコンデンサモジュール
JP2012099704A (ja) * 2010-11-04 2012-05-24 Seiko Epson Corp 液体噴射ヘッド、液体噴射装置、圧電素子、および圧電セラミックス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KITANAKA, YUUKI ET AL.: "Enhanced polarization properties of ferrielectric AgNb03 single crystals grown by Czochralski method under high-pressure oxygen atmosphere", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 55, 2016, pages 1 - 4 *
KITANAKA, YUUKI ET AL.: "Polarization twist in perovskite ferrielectrics", SCIENTIFIC REPORTS, vol. 6, no. 32216, 2016, pages 1 - 11 *
XU, QING ET AL.: "Effect of bismuth excess on ferroelectric and piezoelectric properties of a (Na0.5Bi0.5) TiO3-BaTiO3 composition near the morphotropic phase boundary", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 471, 2009, pages 310 - 316, XP025994419, DOI: 10.1016/j.jallcom.2008.03.078 *

Also Published As

Publication number Publication date
JPWO2020004670A1 (ja) 2021-08-05
JP2023181202A (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
Abdessalem et al. Polymorphic phase transition and morphotropic phase boundary in Ba 1− x Ca x Ti 1− y Zr y O 3 ceramics
EP2729970B1 (en) Piezoelectric material
US9515249B2 (en) Piezoelectric material
Verma et al. Structural, morphological, and optical properties of strontium doped lead-free BCZT ceramics
Lanfredi et al. Phase transitions and interface phenomena in the cryogenic temperature domain of a niobate nanostructured ceramic
Gio Enhancement in dielectric, ferroelectric, and piezoelectric properties of BaTiO3-modified Bi0. 5 (Na0. 4K0. 1) TiO3 lead-free ceramics
US10003009B2 (en) Composite piezoelectric ceramic and piezoelectric device
Sutapun et al. High piezoelectric response in the new coexistent phase boundary of 0.87 BaTiO3–(0.13-x) BaZrO3–xCaTiO3
Bhandari et al. Flux growth of lead free (Na 0.5 Bi 0.5) TiO 3–(K 0.5 Bi 0.5) TiO 3 ferroelectric single crystals and their characterization
Hang et al. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67 BiFeO 3-0.33 BaTiO 3 multiferroic ceramics
Verma et al. Frequency-dependent ferro-antiferro phase transition and internal bias field influenced piezoelectric response of donor and acceptor doped bismuth sodium titanate ceramics
Xiong et al. Pressure induced structure distortion in ferroelectrics with high Curie point and enhanced piezoelectric properties
CN105986319A (zh) 长方体状单晶的制造方法、长方体状单晶、陶瓷的制造方法、陶瓷、压电元件、压电装置和电子设备
Laishram et al. Particle-size-induced high piezoelectricity in (Ba0. 88Ca0. 12)(Ti0. 94Sn0. 06) O3 piezoceramics prepared from nanopowders
Kumar et al. Enhanced magneto-capacitance in Sr2+ modified BiFeO3–PbTiO3 solid solutions
Singh et al. An investigation on cubic and monoclinic phase coexistence in sol-gel derived LaFeO3‐Na0. 5Bi0. 5TiO3 ceramics
Monot-Laffez et al. Microstructural features and piezoelectric properties of spark plasma sintered lead-free K 0.5 Na 0.5 NbO 3 ceramics
Gaur et al. Enhanced piezoelectric properties in vanadium-modified lead-free (K0. 485Na0. 5Li0. 015)(Nb0. 88Ta0. 1V0. 02) O3 ceramics prepared from nanopowders
WO2020004670A1 (ja) 分極ツイストを示す誘電体材料、分極を制御可能な誘電体構造体、並びにこれを使用したキャパシタ及び圧電素子、並びにセラミックス、並びにこれを使用したキャパシタ及び圧電素子
Mesrar et al. Impedance spectroscopy and permittivity study of (1-x) NBT-xBT ceramics
Bartkowska et al. The origin of the ferroelectricity in the bismuth titanate Bi4Ti3O12 with perovskite-like layered structure
Mangaiyarkkarasi et al. Electronic structure and bonding interactions in Ba 1− x Sr x Zr 0.1 Ti 0.9 O 3 ceramics
Koduri et al. Influence of Mn on dielectric and piezoelectric properties of A-site and B-site modified PLZT nano-ceramics for sensor and actuator applications
Amouri et al. Structural, dielectric and vibrational properties of Ba (1− x) Bix [Ti0. 95 (Yb0. 5Nb0. 5) 0.05](1− x) FexO3 ceramics (0≤ x≤ 0.2)
Gouitaa et al. Structural, Dielectric and Electrical Properties of Modified Bati 0.80 Fe 0.20 O 3 Ceramics by Zr Addition in Ti Site at X= 0.00 to 0.10.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827396

Country of ref document: EP

Kind code of ref document: A1