WO2020004547A1 - Correction method, substrate-processing device, and substrate-processing system - Google Patents

Correction method, substrate-processing device, and substrate-processing system Download PDF

Info

Publication number
WO2020004547A1
WO2020004547A1 PCT/JP2019/025597 JP2019025597W WO2020004547A1 WO 2020004547 A1 WO2020004547 A1 WO 2020004547A1 JP 2019025597 W JP2019025597 W JP 2019025597W WO 2020004547 A1 WO2020004547 A1 WO 2020004547A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
nozzle
processing liquid
processing
liquid
Prior art date
Application number
PCT/JP2019/025597
Other languages
French (fr)
Japanese (ja)
Inventor
井上 正史
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020004547A1 publication Critical patent/WO2020004547A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a correction method, a substrate processing apparatus, and a substrate processing system.
  • a substrate processing apparatus for etching a substrate is known.
  • the state of the substrate processing apparatus fluctuates based on aging of components constituting the substrate processing apparatus, variations in the positions of components resulting from replacement of the components constituting the substrate processing apparatus, and the like. Therefore, it is necessary to appropriately correct various setting conditions of the substrate processing apparatus so that optimal etching is performed. Specifically, it is necessary to measure the film thickness of the substrate subjected to the etching process, and to correct the setting condition when the etching amount does not show an expected value.
  • the film thickness of the substrate is measured using a film thickness measuring device (for example, see Patent Document 1).
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a correction method, a substrate processing apparatus, and a substrate processing system that can reduce a burden on an operator.
  • a correction method is a correction method for correcting a setting condition of a substrate processing apparatus for etching a substrate, wherein the correction method indicates at least one execution condition among the execution conditions at the time of performing the etching and an execution result of the etching.
  • the at least one execution condition and the at least one feature amount are input to a learned model generated by machine learning.
  • the correction data is output from the learned model.
  • the correction method further includes a learning step of generating the learned model by machine learning the teacher information.
  • the teacher information is information obtained when the at least one feature value indicates an optimum value, and includes the at least one feature value, the at least one execution condition, and the at least one And setting conditions.
  • the at least one feature amount includes at least one of an etching amount and a uniformity of the etching amount.
  • the substrate processing apparatus includes a processing chamber, a first nozzle, a supply channel, a liquid receiving unit, a second nozzle, a fan filter unit, and an exhaust fan.
  • the processing chamber accommodates the substrate.
  • the first nozzle discharges a processing liquid for etching the substrate toward the substrate.
  • the supply channel supplies the processing liquid to the first nozzle.
  • the liquid receiving unit receives the processing liquid scattered from the substrate.
  • the second nozzle ejects a gas toward the substrate.
  • the fan filter unit sends air into the processing chamber.
  • the exhaust fan exhausts gas from the processing chamber.
  • the execution conditions at the time of performing the etching include a temperature of the processing liquid at a tip of the first nozzle, a temperature of the gas at a tip of the second nozzle, and a temperature of the processing liquid from the first nozzle.
  • Information indicating whether or not the processing liquid is dripping from the tip of the nozzle, the concentration of the processing liquid flowing through the supply flow path, and the supply flow from the first nozzle after the discharge of the processing liquid is stopped.
  • No Information indicating the amount of the treatment liquid attached to the liquid receiving portion, the rotation speed of the substrate, the acceleration of the substrate, the timing of changing the rotation speed of the substrate, the surface temperature of the substrate, The amount of eccentricity of the substrate, the amount of surface runout of the substrate, the position of the liquid receiving portion, the moving speed of the liquid receiving portion, the acceleration of the liquid receiving portion, and the timing of changing the position of the liquid receiving portion The timing of changing the moving speed of the liquid receiver, the wind speed of the air that the fan filter unit sends into the processing chamber, the air volume of the air that the fan filter unit sends into the processing chamber, and the air exhausted from the processing chamber. At least one of a wind speed of a gas discharged from the processing chamber and a flow rate of a gas exhausted from the processing chamber.
  • the substrate processing apparatus includes a processing chamber, a first nozzle, a first supply channel, a circulation channel, a second supply channel, a heating unit, a liquid receiving unit, A nozzle, a third supply channel, a fan filter unit, an exhaust fan, an exhaust duct, and a valve are provided.
  • the processing chamber accommodates the substrate.
  • the first nozzle discharges a processing liquid for etching the substrate toward the substrate.
  • the first supply channel supplies the processing liquid to the first nozzle.
  • the circulation flow path is connected to the first supply flow path, and the processing liquid circulates.
  • the second supply channel supplies the processing liquid to the circulation channel.
  • the heating unit heats the substrate.
  • the liquid receiving section receives the processing liquid scattered from the substrate.
  • the second nozzle ejects a gas toward the substrate.
  • the third supply channel supplies the gas to the second nozzle.
  • the fan filter unit sends air into the processing chamber.
  • the exhaust fan exhausts gas from the processing chamber. Gas exhausted from the processing chamber flows through
  • the setting conditions of the substrate processing apparatus include a temperature of the processing liquid in the circulation flow path, a temperature of the processing liquid in the first supply flow path, and a temperature of the gas in the third supply flow path.
  • the speed at which the processing liquid is sucked toward the upstream side of the road, the position at which the sucked processing liquid stops, the rotational speed of the substrate, and the acceleration of the substrate A change timing of the rotation speed of the substrate, a position of the first nozzle, a moving speed of the first nozzle, an acceleration of the first nozzle, a change timing of a position of the first nozzle, Timing for changing the moving speed of the nozzle, the temperature for heating the substrate, the position of the liquid receiving portion, the moving speed of the liquid receiving portion, the acceleration of the liquid receiving portion, and the change of the position of the liquid receiving portion Timing, timing for changing the moving speed of the liquid receiving portion, differential pressure of the fan filter unit, differential pressure of the valve, wind speed of gas exhausted from the processing chamber, and exhausted gas from the processing chamber At least one of a gas flow rate and a light quantity in the processing chamber is included.
  • the substrate processing apparatus of the present invention etches a substrate.
  • the substrate processing apparatus includes a control unit.
  • the control unit is configured to execute at least one of execution conditions of the substrate processing apparatus based on at least one of execution conditions during the execution of the etching and at least one feature amount indicating an execution result of the etching.
  • Correction data for correcting one set condition is generated.
  • the control unit corrects the at least one setting condition based on the correction data.
  • the substrate processing system of the present embodiment includes a substrate processing apparatus and a correction data generation device.
  • the substrate processing apparatus etches a substrate.
  • the correction data generation device outputs correction data for correcting a setting condition of the substrate processing apparatus.
  • the correction data generation device includes a control unit.
  • the control unit is configured to execute at least one of execution conditions of the substrate processing apparatus based on at least one of execution conditions during the execution of the etching and at least one feature amount indicating an execution result of the etching.
  • Correction data for correcting one set condition is generated.
  • the substrate processing apparatus corrects the at least one setting condition based on the correction data.
  • the burden on the worker can be reduced.
  • FIG. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention.
  • 4 is a flowchart illustrating a substrate processing method according to the first embodiment of the present invention. It is a block diagram of a substrate processing device in Embodiment 1 of the present invention.
  • FIG. 4 is a diagram illustrating an example of a change in the position of a processing liquid nozzle and a change in a moving speed during an etching process. It is a block diagram of a substrate processing device in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a processing liquid supply unit according to the first embodiment of the present invention. It is a schematic diagram of a gas supply unit in Embodiment 1 of the present invention.
  • FIG. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention.
  • 4 is a flowchart illustrating a substrate processing method according to the first embodiment of the present invention. It is a block diagram of a substrate processing
  • FIG. 2 is a schematic diagram illustrating a processing liquid circulation unit, a first processing liquid component supply unit, a second processing liquid component supply unit, and a processing liquid recovery unit according to the first embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a substrate processing system according to a first embodiment of the present invention. It is a figure showing an example of the amount of etching for every radial position of a processed substrate. It is a block diagram of a substrate processing device in Embodiment 1 of the present invention.
  • 5 is a flowchart illustrating a correction method according to the first embodiment of the present invention.
  • 3 is a schematic diagram of a learned model according to the first embodiment of the present invention.
  • 5 is a flowchart illustrating a learning method according to the first embodiment of the present invention. It is a schematic diagram of a substrate processing system in Embodiment 2 of the present invention.
  • FIG. 1 is a schematic diagram of a substrate processing apparatus 100 according to the present embodiment.
  • the substrate processing apparatus 100 supplies the processing liquid L to the substrate W and etches the substrate W with the processing liquid L.
  • the substrate processing apparatus 100 of the present embodiment is a single-wafer type apparatus that etches substrates W one by one.
  • the substrate W is a semiconductor wafer.
  • the substrate W has a substantially disk shape.
  • the substrate processing apparatus 100 includes a box-shaped partition 21, a fan filter unit (FFU) 22, and an exhaust unit 23.
  • the partition 21 partitions the processing chamber 2 (chamber) that accommodates the substrate W.
  • the FFU 22 sends clean air from above the partition 21 to the processing chamber 2.
  • the FFU 22 includes an air supply fan and a filter.
  • the FFU 22 sends the air filtered by the filter to the processing chamber 2.
  • the exhaust part 23 is disposed below the processing chamber 2.
  • the exhaust unit 23 exhausts the gas in the processing chamber 2.
  • the FFU 22 and the exhaust unit 23 form a downflow (downflow) flowing from above to below in the processing chamber 2.
  • the etching of the substrate W is performed in a state where a downflow is formed in the processing chamber 2.
  • the exhaust unit 23 includes an exhaust fan 231, an exhaust duct 232, and a valve 233.
  • the exhaust fan 231 is arranged in the exhaust duct 232.
  • the exhaust fan 231 exhausts gas from the processing chamber 2. Specifically, when the exhaust fan 231 is driven, the gas in the processing chamber 2 flows into the exhaust duct 232. As a result, gas exhausted from the processing chamber 2 flows through the exhaust duct 232.
  • the exhaust duct 232 guides gas to exhaust equipment provided in a factory where the substrate processing apparatus 100 is installed. Therefore, when the exhaust fan 231 is driven, the gas in the processing chamber 2 is guided to the exhaust equipment via the exhaust duct 232.
  • the valve 233 is installed in the exhaust duct 232. Specifically, the valve 233 is disposed downstream of the exhaust fan 231 with respect to the direction in which gas flows through the exhaust duct 232.
  • the valve 233 controls the pressure (exhaust pressure) of a gas flow path (exhaust flow path) formed by the exhaust duct 232.
  • the valve 233 is, for example, an automatic valve.
  • the substrate processing apparatus 100 further includes a spin chuck 3.
  • the spin chuck 3 holds the substrate W horizontally. Further, the spin chuck 3 rotates the substrate W about the rotation axis AX1 extending in the vertical direction while holding the substrate W.
  • the spin chuck 3 includes a spin base 31, a plurality of chuck pins 32, a rotating shaft 33, a spin motor 34, and a motor encoder 35.
  • the spin base 31 of the present embodiment has a disk shape.
  • the spin base 31 is held in a horizontal posture.
  • Each of the plurality of chuck pins 32 holds the substrate W in a horizontal posture above the spin base 31.
  • the rotation shaft 33 extends downward from the center of the spin base 31.
  • the spin motor 34 rotates the substrate W and the spin base 31 about the rotation axis AX1 by rotating the rotation shaft 33 in the rotation direction Dr.
  • the motor encoder 35 generates a signal indicating the rotation speed of the spin motor 34. In other words, the motor encoder 35 generates a signal indicating the rotation speed of the substrate W.
  • the substrate processing apparatus 100 further includes a processing liquid nozzle 41, a processing liquid supply pipe 42, a nozzle arm 43, and a nozzle moving unit 44.
  • the processing liquid nozzle 41 discharges the processing liquid L toward the substrate W held by the spin chuck 3.
  • the treatment liquid L is, for example, an aqueous solution mainly containing phosphoric acid (etching component), an aqueous solution mainly containing hydrofluoric acid (etching component), an aqueous solution mainly containing nitric acid (etching component), and hydrofluoric acid (etching component).
  • nitric acid (etching component) an aqueous solution containing ammonium hydroxide (etching component) as a main component, and an aqueous solution mixing ammonium hydroxide (etching component) and hydrogen peroxide solution (etching component).
  • the processing liquid supply pipe 42 supplies the processing liquid L to the processing liquid nozzle 41.
  • the processing liquid supply pipe 42 forms a processing liquid supply flow path through which the processing liquid L flows toward the processing liquid nozzle 41.
  • the nozzle arm 43 supports the processing liquid nozzle 41.
  • the processing liquid nozzle 41 is attached to the tip of the nozzle arm 43.
  • the nozzle moving unit 44 rotates the nozzle arm 43 about a rotation axis AX2 extending in the vertical direction around the spin chuck 3.
  • the processing liquid nozzle 41 rotates around the rotation axis AX2.
  • the processing liquid nozzle 41 discharges the processing liquid L toward the substrate W while rotating about the rotation axis AX2.
  • the processing liquid nozzle 41 is a scan nozzle.
  • the substrate processing apparatus 100 further includes a heating unit 5.
  • the heating unit 5 heats the substrate W.
  • the heating unit 5 includes an infrared heater 51, a heater arm 52, and a heater moving unit 53.
  • the infrared heater 51 irradiates the substrate W with infrared light. More specifically, the infrared heater 51 has an infrared lamp 51a. The infrared lamp 51a generates infrared light.
  • the heater arm 52 supports the infrared heater 51. Specifically, the infrared heater 51 is attached to the tip of the heater arm 52.
  • the heater moving section 53 rotates the heater arm 52 about a rotation axis AX3 extending in a vertical direction around the spin chuck 3. As a result, the infrared heater 51 rotates around the rotation axis AX3.
  • the infrared heater 51 heats the substrate W while rotating about the rotation axis AX3.
  • the substrate processing apparatus 100 further includes a rinsing liquid supply unit 6.
  • the rinsing liquid supply unit 6 supplies a rinsing liquid to the substrate W.
  • the rinsing liquid is, for example, pure water (deionized water: Deionized Water).
  • the rinsing liquid is not limited to pure water, but may be any of carbonated water, electrolytic ionized water, hydrogen water, ozone water, IPA (isopropyl alcohol), and hydrochloric acid water having a dilute concentration (for example, about 10 to 100 ppm). You may.
  • the rinsing liquid supply unit 6 includes a rinsing liquid nozzle 61, a rinsing liquid supply pipe 62, and a rinsing liquid valve 63.
  • the rinsing liquid nozzle 61 discharges a rinsing liquid toward the substrate W held by the spin chuck 3.
  • the rinse liquid supply pipe 62 supplies a rinse liquid to the rinse liquid nozzle 61.
  • the rinsing liquid nozzle 61 of the present embodiment is a fixed nozzle that discharges the rinsing liquid with the discharge port of the rinsing liquid nozzle 61 stopped. Note that the rinsing liquid nozzle 61 may be a scan nozzle.
  • the rinsing liquid valve 63 switches between supplying and stopping supply of the rinsing liquid to the rinsing liquid nozzle 61. Specifically, when the rinse liquid valve 63 is opened, the rinse liquid is discharged from the rinse liquid nozzle 61 toward the substrate W. On the other hand, when the rinse liquid valve 63 is closed, the discharge of the rinse liquid is stopped.
  • the rinse liquid valve 63 is, for example, a motor valve.
  • the substrate processing apparatus 100 further includes a gas nozzle 71, a gas supply pipe 72, and a liquid receiving unit 8.
  • the gas nozzle 71 jets the gas G toward the substrate W.
  • the gas G is an inert gas containing an inert component such as nitrogen. Specifically, the gas nozzle 71 ejects the gas G toward the substrate W when drying the substrate W.
  • the gas supply pipe 72 supplies the gas G to the gas nozzle 71.
  • the gas supply pipe 72 forms a gas supply passage through which the gas G flows toward the gas nozzle 71.
  • the liquid receiving section 8 is disposed outside the substrate W held by the spin chuck 3.
  • the liquid receiving portion 8 has a substantially cylindrical shape.
  • the liquid receiver 8 is movable in the vertical direction.
  • the liquid receiving unit 8 receives the processing liquid L scattered from the substrate W. Specifically, when the processing liquid L is supplied to the substrate W while the spin chuck 3 is rotating the substrate W, the processing liquid L supplied to the substrate W is shaken off around the substrate W. As a result, the processing liquid L scatters around the substrate W, and the processing liquid L scattered from the substrate W is received by the liquid receiving unit 8.
  • the processing liquid L received by the liquid receiving unit 8 is sent to a processing liquid collecting unit 600 described with reference to FIG.
  • the liquid receiving unit 8 also receives the rinsing liquid scattered from the substrate W in the same manner as the processing liquid L.
  • FIG. 2 is a flowchart illustrating the substrate processing method of the present embodiment. As shown in FIG. 2, the substrate processing method according to the present embodiment includes steps S1 to S5.
  • the substrate W is first loaded into the processing chamber 2 (Step S1). Specifically, the transfer robot loads the substrate W into the processing chamber 2. The loaded substrate W is held by the spin chuck 3.
  • the liquid receiving section 8 is located at the retracted position.
  • the upper end 8a (FIG. 1) of the liquid receiver 8 is located below the spin base 31.
  • the liquid receiving unit 8 moves upward to a liquid receiving position where the processing liquid L and the rinsing liquid scattered from the substrate W can be received.
  • the upper end 8 a of the liquid receiving portion 8 is located above the spin base 31.
  • Step S2 After the spin chuck 3 holds the substrate W, the substrate W is etched with the processing liquid L (Step S2). Specifically, the spin chuck 3 rotates the substrate W before supplying the processing liquid L to the substrate W. After the rotation speed of the substrate W reaches the specified rotation speed, the supply of the processing liquid L is started.
  • the processing liquid nozzle 41 discharges the processing liquid L while rotating about the rotation axis AX2.
  • the processing liquid nozzle 41 discharges the processing liquid L until at least the entire upper surface of the substrate W is covered with the processing liquid L.
  • the processing liquid L is sucked from the processing liquid nozzle 41 toward the upstream side of the processing liquid supply pipe 42 (suck back).
  • the heating unit 5 heats the substrate W and the processing liquid L.
  • the infrared heater 51 heats the substrate W and the processing liquid L while rotating about the rotation axis AX3.
  • a rinsing liquid is supplied to the substrate W (Step S3).
  • the processing liquid L on the surface of the substrate W is removed.
  • the processing liquid L is flushed out of the substrate W by the rinsing liquid, and is discharged around the substrate W.
  • the liquid film of the processing liquid L on the substrate W is replaced with a liquid film of the rinsing liquid covering the entire upper surface of the substrate W.
  • Step S4 After replacing the processing liquid L on the surface of the substrate W with a rinsing liquid, the substrate W is dried (Step S4). Specifically, the rotation speed of the substrate W is set higher than the rotation speed during the etching process and the rinsing process. As a result, a large centrifugal force is applied to the rinsing liquid on the substrate W, and the rinsing liquid attached to the substrate W is shaken off around the substrate W. Thus, the rinse liquid is removed from the substrate W, and the substrate W is dried. When the substrate W is dried, the gas G is ejected from the gas nozzle 71 toward the substrate W.
  • the spin chuck 3 stops the rotation of the substrate W, for example, after a predetermined time has elapsed since the high-speed rotation of the substrate W was started.
  • Step S5 After the rotation of the substrate W is stopped, the substrate W is unloaded from the processing chamber 2 (Step S5), and the processing shown in FIG. 2 ends. Specifically, after the rotation of the substrate W is stopped, the liquid receiving unit 8 moves from the liquid receiving position to the retracted position. Further, the holding of the substrate W by the spin chuck 3 is released. When the liquid receiving unit 8 moves to the retreat position and the holding of the substrate W by the spin chuck 3 is released, the transfer robot unloads the substrate W from the processing chamber 2. As a result, the processing of one substrate W by the substrate processing apparatus 100 ends.
  • the substrate processing apparatus 100 further includes a thermographic camera 101, a video camera 102, and a dimming lamp 103.
  • the thermographic camera 101 detects a temperature distribution in the processing chamber 2.
  • the temperature distribution in the processing chamber 2 includes the temperature of the processing liquid L at the tip of the processing liquid nozzle 41, the temperature of the gas G at the tip of the gas nozzle 71, the temperature of the surface of the substrate W, the temperature of the partition wall 21, and the temperature of the liquid receiving unit 8. , The temperature of the nozzle arm 43, the temperature of the spin base 31, and the like.
  • the video camera 102 captures an image of the inside of the processing room 2. Specifically, the video camera 102 images the processing liquid nozzle 41, the processing liquid supply pipe 42, the nozzle arm 43, the chuck pin 32, the liquid receiving unit 8, the substrate W, and the like.
  • the dimming lamp 103 generates light for illuminating the processing chamber 2.
  • FIG. 3 is a block diagram of the substrate processing apparatus 100. As shown in FIG. 3, the substrate processing apparatus 100 further includes a liquid receiving and moving unit 81 and a control unit 10.
  • the control unit 10 includes a processor 11 and a storage unit 12.
  • the processor 11 is, for example, a central processing unit (CPU). Alternatively, the processor 11 is a general-purpose computer.
  • the storage unit 12 stores data and a computer program.
  • Storage unit 12 includes a main storage device and an auxiliary storage device.
  • the main storage device is constituted by, for example, a semiconductor memory.
  • the auxiliary storage device includes, for example, a semiconductor memory and / or a hard disk drive.
  • the storage unit 12 may include a removable medium.
  • the processor 11 executes the computer program stored in the storage unit 12, and executes the FFU 22, the exhaust unit 23, the spin chuck 3, the nozzle moving unit 44, the heating unit 5, the rinsing liquid supply unit 6, It controls the liquid receiver moving unit 81, the dimming lamp 103, the thermographic camera 101, and the video camera 102.
  • the processor 11 controls the air supply fan provided in the FFU 22.
  • the processor 11 can control the air supply fan and adjust the differential pressure of the FFU 22.
  • the differential pressure of the FFU 22 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 controls the exhaust fan 231 and the valve 233 provided in the exhaust unit 23.
  • the processor 11 can control the exhaust fan 231 to adjust the wind speed of the gas flowing through the exhaust duct 232 (exhaust wind speed) and the flow rate of the gas flowing through the exhaust duct 232 (exhaust air flow rate).
  • the processor 11 can control the valve 233 to adjust the exhaust pressure.
  • the exhaust air speed, the exhaust air volume, and the exhaust pressure are set conditions of the substrate processing apparatus 100.
  • the processor 11 controls the chuck pin 32 and the spin motor 34 provided in the spin chuck 3.
  • the processor 11 can control the spin motor 34 to adjust the rotational speed of the substrate W, the rotational acceleration of the substrate W, and the timing of changing the rotational speed of the substrate W.
  • the rotation speed of the substrate W is a setting condition of the substrate processing apparatus 100.
  • the processor 11 receives a signal from the motor encoder 35 provided in the spin chuck 3. As described with reference to FIG. 1, the motor encoder 35 outputs a signal indicating the rotation speed of the substrate W.
  • the processor 11 detects a rotation speed of the substrate W, a rotation acceleration of the substrate W, and a change timing of the rotation acceleration of the substrate W based on a signal received from the motor encoder 35.
  • the detected rotation speed or the like of the substrate W is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the detected rotation speed of the substrate W and the like.
  • the nozzle moving unit 44 includes a motor 441 and a motor encoder 442.
  • the motor 441 is referred to as a “nozzle motor 441”.
  • the processing liquid nozzle 41 rotates around the rotation axis A2.
  • the motor encoder 442 generates a signal indicating the rotation speed and the rotation position of the nozzle motor 441. In other words, the motor encoder 442 generates a signal indicating the moving speed and the radial position of the processing liquid nozzle 41.
  • the processor 11 controls the nozzle motor 441.
  • the processor 11 controls the nozzle motor 441 to change the position of the processing liquid nozzle 41 in the radial direction, the moving speed of the processing liquid nozzle 41, the acceleration of the processing liquid nozzle 41, the timing of changing the position of the processing liquid nozzle 41, and the processing liquid.
  • the timing for changing the moving speed of the nozzle 41 can be adjusted.
  • the position of the processing liquid nozzle 41 in the radial direction is a setting condition of the substrate processing apparatus 100.
  • the processor 11 receives a signal indicating the rotation speed and the rotation position of the nozzle motor 441 from the motor encoder 442. Based on the signal received from the motor encoder 442, the processor 11 changes the position of the processing liquid nozzle 41 in the radial direction, the moving speed of the processing liquid nozzle 41, the acceleration of the processing liquid nozzle 41, the timing of changing the position of the processing liquid nozzle 41, And the change timing of the moving speed of the processing liquid nozzle 41 is detected.
  • the detected position of the processing liquid nozzle 41 in the radial direction is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the detected position of the processing liquid nozzle 41 in the radial direction and the like.
  • the processor 11 controls the rinsing liquid valve 63 provided in the rinsing liquid supply unit 6. Further, the processor 11 controls the infrared lamp 51 a and the heater moving unit 53 included in the heating unit 5. The processor 11 can control the temperature at which the substrate W is heated (substrate heating temperature) by controlling the infrared lamp 51a.
  • the substrate heating temperature is a setting condition of the substrate processing apparatus 100.
  • the liquid receiving moving section 81 moves the liquid receiving section 8 in the vertical direction.
  • the liquid receiving and moving unit 81 includes a motor 811 and a motor encoder 812.
  • the motor 811 is referred to as a “liquid receiving motor 811”.
  • the liquid receiving motor 811 When the liquid receiving motor 811 is driven, the liquid receiving section 8 moves in the vertical direction.
  • Motor encoder 812 generates a signal indicating the rotation speed and rotation position of liquid receiving motor 811. In other words, the motor encoder 812 generates a signal indicating the moving speed and the vertical position of the liquid receiver 8.
  • the processor 11 controls the liquid receiving motor 811.
  • the processor 11 controls the liquid receiving motor 811 to change the position of the liquid receiving unit 8 in the vertical direction, the moving speed of the liquid receiving unit 8, the acceleration of the liquid receiving unit 8, the timing of changing the position of the liquid receiving unit 8, and the liquid.
  • the timing for changing the moving speed of the receiving portion 8 can be adjusted.
  • the vertical position and the like of the liquid receiving section 8 are set conditions of the substrate processing apparatus 100.
  • the processor 11 receives a signal indicating the rotation speed and the rotation position of the liquid receiving motor 811 from the motor encoder 812.
  • the processor 11 based on the signal received from the motor encoder 812, determines the position of the liquid receiver 8 in the vertical direction, the moving speed of the liquid receiver 8, the acceleration of the liquid receiver 8, the timing of changing the position of the liquid receiver 8, And a change timing of the moving speed of the liquid receiving unit 8 is detected.
  • the detected position of the liquid receiving portion 8 in the vertical direction is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the detected vertical position and the like of the liquid receiving unit 8.
  • the processor 11 can control the dimming lamp 103 to adjust the amount of light in the processing chamber 2.
  • the amount of light in the processing chamber 2 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 receives an image signal indicating the temperature distribution in the processing room 2 from the thermography camera 101. Based on the image signal received from the thermographic camera 101, the processor 11 calculates the temperature of the processing liquid L at the tip of the processing liquid nozzle 41, the temperature of the gas G at the tip of the gas nozzle 71, the temperature of the surface of the substrate W, and the temperature of the partition 21. , The temperature of the liquid receiver 8, the temperature of the nozzle arm 43, the temperature of the spin base 31, and the like. The detected temperature is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the detected temperature.
  • the processor 11 receives an image pickup signal from the video camera 102.
  • information detected by the processor 11 based on the imaging signal will be described.
  • the processor 11 starts the timing at which the processing liquid L is started to be discharged from the processing liquid nozzle 41 based on the imaging signal (the timing at which the processing liquid L is started to be discharged) and the timing at which the processing liquid L is stopped being discharged from the processing liquid nozzle 41.
  • Timing for stopping the discharge of the processing liquid L timing for changing the flow rate of the processing liquid L discharged from the processing liquid nozzle 41 (timing for changing the discharge flow rate of the processing liquid L), and flow rate for discharging the processing liquid L from the processing liquid nozzle 41 (The rising characteristic of the discharge flow rate of the processing liquid L), the falling characteristic of the flow rate of the processing liquid L discharged from the processing liquid nozzle 41 (the falling characteristic of the discharge flow rate of the processing liquid L), and the gas G from the gas nozzle 71.
  • Timing of starting the jetting (timing of starting the jetting of gas G) and timing of stopping jetting of the gas G from the gas nozzle 71 (spouting of the gas G) Stop timing), the change timing of the flow rate at which the gas G is ejected from the gas nozzle 71 (timing of changing the ejection rate of the gas G), the rising characteristic of the flow rate at which the gas G is ejected from the gas nozzle 71 (the rising characteristic of the ejection rate of the gas G), and And the falling characteristic of the flow rate at which the gas G is ejected from the gas nozzle 71 (the falling characteristic of the gas G ejection flow rate).
  • the detected discharge start timing of the processing liquid L is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the detected discharge start timing of the processing liquid L and the like.
  • the processor 11 moves the processing liquid L sucked from the processing liquid nozzle 41 toward the upstream side of the processing liquid supply pipe 42 (suck back speed) based on the imaging signal, and determines the stop position of the sucked processing liquid L. (Suck back stop position) is detected.
  • the detected suckback speed and suckback stop position are execution conditions at the time of performing etching.
  • the processor 11 causes the storage unit 12 to store information indicating the detected suckback speed and the suckback stop position.
  • the processor 11 detects whether or not the processing liquid L is dripping from the tip of the processing liquid nozzle 41 based on the image pickup signal (whether or not dripping has occurred).
  • the presence or absence of the drop is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating presence / absence of dropping.
  • the processor 11 detects a film thickness distribution of the processing liquid L covering the entire surface of the substrate W based on the imaging signal.
  • the film thickness distribution of the processing liquid L is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the film thickness distribution of the processing liquid L.
  • the processor 11 detects whether or not the processing liquid L has adhered to the upper surface and the outer surface of the liquid receiving unit 8 based on the imaging signal.
  • the presence or absence of the treatment liquid L on the upper surface and the outer surface of the liquid receiving unit 8 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the presence or absence of the treatment liquid L on the upper surface and the outer surface of the liquid receiving unit 8.
  • the processor 11 detects the amount of the processing liquid L adhering to the upper surface and the outer surface of the liquid receiver 8 based on the imaging signal.
  • the amount of the processing liquid L adhering to the upper surface and the outer surface of the liquid receiving unit 8 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the amount of the processing liquid L attached to the upper surface and the outer surface of the liquid receiving unit 8.
  • the processor 11 detects the position of the processing liquid nozzle 41, the shape of the nozzle arm 43, the shape of the heater arm 52, the position of the rinsing liquid nozzle 61, and the position of the gas nozzle 71 based on the imaging signal. Further, the processor 11 determines the specified position of the processing liquid nozzle 41 based on the position of the processing liquid nozzle 41 detected based on the imaging signal and the specified position of the processing liquid nozzle 41 stored in the storage unit 12. Is detected. In other words, a change in the position of the processing liquid nozzle 41 is detected.
  • the processor 11 detects the shape of the nozzle arm 43, the shape of the heater arm 52, the position of the rinsing liquid nozzle 61, the position of the gas nozzle 71 detected based on the imaging signal, and the nozzle arm stored in the storage unit 12.
  • a change in the position of the gas nozzle 61 and a change in the position of the gas nozzle 71 are detected.
  • the change in the position of the processing liquid nozzle 41 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating a change in the position of the processing liquid nozzle 41 and the like.
  • the processor 11 detects the position of the liquid receiver 8 and the shape of the liquid receiver 8 based on the image signal. Further, the processor 11 determines the specified position of the liquid receiver 8 based on the position of the liquid receiver 8 detected based on the imaging signal and the specified position of the liquid receiver 8 stored in the storage unit 12. , That is, a change in the position of the liquid receiving portion 8 is detected. Similarly, the processor 11 changes the shape of the liquid receiving unit 8 based on the shape of the liquid receiving unit 8 detected based on the imaging signal and the specified shape of the liquid receiving unit 8 stored in the storage unit 12. Is detected. The change in the position of the liquid receiving portion 8 and the change in the shape of the liquid receiving portion 8 are execution conditions at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating a change in the position of the liquid receiving unit 8 and a change in the shape of the liquid receiving unit 8.
  • the processor 11 detects the shape of the chuck pin 32 based on the imaging signal. Further, the processor 11 changes the shape of the chuck pin 32 from the specified shape based on the shape of the chuck pin 32 detected based on the imaging signal and the specified shape of the chuck pin 32 stored in the storage unit 12. The amount, that is, a change in the shape of the chuck pin 32 is detected. The processor 11 further detects a degree of wear of the chuck pin 32 from a change in the shape of the chuck pin 32. The change in the shape of the chuck pin 32 and the degree of wear of the chuck pin 32 are execution conditions at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the change in the shape of the chuck pin 32 and the degree of wear of the chuck pin 32.
  • the processor 11 detects the distribution of the gas flow (air flow distribution) flowing in the processing chamber 2 based on the imaging signal.
  • the airflow distribution is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the airflow distribution.
  • the processor 11 detects the amount of eccentricity of the substrate W and the amount of runout of the substrate W based on the imaging signal.
  • the amount of eccentricity of the substrate W and the amount of runout of the substrate W are execution conditions when performing etching.
  • the processor 11 causes the storage unit 12 to store information indicating the amount of eccentricity of the substrate W and the amount of runout of the substrate W.
  • FIG. 4 is a diagram illustrating an example of a change in the position of the processing liquid nozzle 41 and a change in the moving speed during the etching process. 4, the vertical axis indicates the moving speed of the processing liquid nozzle 41, and the horizontal axis indicates the radial position of the substrate W.
  • the processing liquid nozzle 41 moves from the center of the substrate W to a radial position c. Specifically, the processing liquid nozzle 41 moves while accelerating from the center of the substrate W to the radial position a. The moving speed of the processing liquid nozzle 41 when reaching the radial position a is “Va”. Thereafter, the processing liquid nozzle 41 moves while decelerating from the radial position a to the radial position b. The moving speed of the processing liquid nozzle 41 when reaching the radial position b is “Vb”.
  • the processing liquid nozzle 41 moves while further decelerating from the radial position b to the radial position c, and stops at the radial position c.
  • the processing liquid nozzle 41 accelerates and decelerates during the etching process.
  • FIG. 5 is a block diagram of the substrate processing apparatus 100. As shown in FIG. 5, the substrate processing apparatus 100 further includes a surface temperature sensor 104 and a surface potential sensor 105.
  • the surface temperature sensor 104 detects the temperature at which the infrared heater 51 heats the substrate W. Specifically, the surface temperature sensor 104 detects the surface temperature of the infrared heater 51.
  • the processor 11 receives from the surface temperature sensor 104 a signal indicating the temperature at which the infrared heater 51 heats the substrate W (substrate heating temperature).
  • the substrate heating temperature is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the substrate heating temperature.
  • the surface potential sensor 105 detects the surface potential of the substrate W.
  • the processor 11 receives a signal indicating the potential of the surface of the substrate W (substrate surface potential) from the surface potential sensor 105.
  • the substrate surface potential is an execution condition when performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the substrate surface potential.
  • the substrate processing apparatus 100 further includes a first differential pressure gauge 106, a supply air velocity meter 107, and a supply air flow meter 108.
  • the first differential pressure gauge 106 detects the differential pressure of the FFU 22.
  • the first differential pressure gauge 106 is, for example, a fine differential pressure gauge.
  • the processor 11 receives a signal indicating the differential pressure of the FFU 22 from the first differential pressure gauge 106.
  • the differential pressure of the FFU 21 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the pressure difference of the FFU 22.
  • the air supply anemometer 107 detects the air velocity (air supply air velocity) of the air that the FFU 22 sends into the processing chamber 2.
  • the processor 11 receives a signal indicating the supply air velocity from the supply air velocity meter 107.
  • the supply air velocity is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the supply air velocity.
  • the air supply air flow meter 108 detects the air flow (air supply air flow) of the air that the FFU 22 sends into the processing chamber 2.
  • the processor 11 receives a signal indicating the supply air flow from the supply air flow meter 108.
  • the supply air volume is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the supply air volume.
  • the substrate processing apparatus 100 further includes a second differential pressure gauge 109, an exhaust anemometer 110, and an exhaust air flow meter 111.
  • the second differential pressure gauge 109 detects the differential pressure of the valve 233.
  • the second differential pressure gauge 109 is, for example, a fine differential pressure gauge.
  • the processor 11 receives, from the second differential pressure gauge 109, a signal indicating the differential pressure of the valve 233.
  • the differential pressure of the valve 233 corresponds to the exhaust pressure.
  • the exhaust pressure is an execution condition when performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the differential pressure (exhaust pressure) of the valve 233.
  • the exhaust gas anemometer 110 detects the wind velocity (exhaust wind velocity) of the gas exhausted from the processing chamber 2.
  • the processor 11 receives a signal indicating the exhaust wind speed from the exhaust anemometer 110.
  • the exhaust air velocity is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the exhaust wind speed.
  • the exhaust air flow meter 111 detects the air volume of the gas exhausted from the processing chamber 2 (the exhaust air volume).
  • the processor 11 receives a signal indicating the exhaust air volume from the exhaust air volume meter 111.
  • the exhaust air volume is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the exhaust air volume.
  • the substrate processing apparatus 100 further includes a light quantity sensor 112, an atmosphere concentration sensor 113, a humidity sensor 114, an oxygen concentration sensor 115, an ammonia concentration sensor 116, and a VOC concentration sensor 117.
  • the light quantity sensor 112 detects the light quantity in the processing chamber 2.
  • the processor 11 receives a signal indicating the amount of light in the processing chamber 2 from the light amount sensor 112.
  • the light amount in the processing chamber 2 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the amount of light in the processing chamber 2.
  • the atmosphere concentration sensor 113 detects the concentration of the processing liquid L gasified in the processing chamber 2 (processing liquid atmospheric concentration).
  • the processor 11 receives a signal indicating the processing solution atmosphere concentration from the atmosphere concentration sensor 113.
  • the processing solution atmosphere concentration is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the processing solution atmosphere concentration.
  • the humidity sensor 114 detects the humidity in the processing chamber 2.
  • the processor 11 receives a signal indicating the humidity in the processing chamber 2 from the humidity sensor 114.
  • the humidity in the processing chamber 2 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the humidity in the processing room 2.
  • the oxygen concentration sensor 115 detects the oxygen concentration in the processing chamber 2.
  • the processor 11 receives a signal indicating the oxygen concentration in the processing chamber 2 from the oxygen concentration sensor 115.
  • the oxygen concentration in the processing chamber 2 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the oxygen concentration in the processing chamber 2.
  • the ammonia concentration sensor 116 detects the ammonia concentration in the processing chamber 2.
  • the processor 11 receives a signal indicating the ammonia concentration in the processing chamber 2 from the ammonia concentration sensor 116.
  • the ammonia concentration in the processing chamber 2 is an execution condition at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the ammonia concentration in the processing chamber 2.
  • the VOC concentration sensor 117 detects the concentration of volatile organic compounds (VOC) in the processing chamber 2 (VOC concentration).
  • the processor 11 receives a signal indicating the VOC concentration in the processing chamber 2 from the VOC concentration sensor 117.
  • the VOC concentration in the processing chamber 2 is an execution condition when performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the VOC concentration in the processing chamber 2.
  • FIG. 6 is a schematic diagram of the processing liquid supply unit 40 of the present embodiment.
  • the substrate processing apparatus 100 includes a processing liquid supply unit 40.
  • the processing liquid supply unit 40 supplies the processing liquid L to the processing liquid nozzle 41.
  • the processing liquid supply unit 40 includes a temperature sensor 421, a concentration sensor 422, a valve 423, a mixing valve 424, a flow meter 425, and a heater in addition to the processing liquid supply pipe 42 described with reference to FIG. 426 and a suck back valve 427 are further provided.
  • the temperature sensor 421 detects the temperature of the processing liquid L flowing through the processing liquid supply pipe 42.
  • the concentration sensor 422 detects the concentration of the etching component contained in the processing liquid L flowing through the processing liquid supply pipe 42.
  • the concentration of the etching component contained in the processing liquid L flowing through the processing liquid supply pipe 42 may be referred to as “first processing liquid concentration”.
  • the valve 423 is disposed in the processing liquid supply pipe 42.
  • the valve 423 switches between supplying and stopping the supply of the processing liquid L to the processing liquid nozzle 41.
  • the valve 423 controls the flow rate of the processing liquid L flowing downstream of the valve 423 in the processing liquid supply pipe 42. Further, the valve 423 controls the discharge flow rate of the processing liquid L discharged from the processing liquid nozzle 41. Further, the valve 423 controls a rising characteristic and a falling characteristic of the discharge flow rate of the processing liquid L. Specifically, when the valve 423 is opened, the processing liquid L is discharged from the processing liquid nozzle 41 toward the substrate W. On the other hand, when the valve 423 is closed, the discharge of the processing liquid L stops.
  • the flow rate of the processing liquid L flowing downstream of the valve 423 is adjusted according to the opening degree of the valve 423. Therefore, the discharge flow rate of the processing liquid L is adjusted according to the opening degree of the valve 423. Further, the rising characteristic of the discharge flow rate of the processing liquid L is adjusted according to the speed at which the valve 423 is opened, and the falling characteristic of the discharge flow rate of the processing liquid L is adjusted according to the speed at which the valve 423 is closed.
  • the valve 423 is, for example, a motor valve.
  • the mixing valve 424 is disposed in the processing liquid supply pipe 42. When the mixing valve 424 is opened, pure water flows into the processing liquid supply pipe 42 to dilute the first processing liquid concentration.
  • the flow meter 425 detects the flow rate of the processing liquid L flowing through the processing liquid supply pipe 42. In other words, the discharge flow rate of the processing liquid L is detected.
  • the heater 426 heats the processing liquid L flowing through the processing liquid supply pipe 42.
  • the suck back valve 427 is disposed in the processing liquid supply pipe 42.
  • the suck back valve 427 is provided downstream of the valve 423 to change the volume of the processing liquid supply flow path. More specifically, the suck back valve 427 has a diaphragm, and changes the volume of the processing liquid supply flow path by deforming the diaphragm by flowing pressurized air.
  • the volume of the processing liquid supply channel increases due to the inflow of the pressurized air, the pressure of the processing liquid nozzle 41 and the pressure of the processing liquid supply channel instantaneously decrease, and the vicinity of the opening of the processing liquid nozzle 41 A suction force acts on the processing liquid L remaining in the substrate.
  • the control unit 10 controls the suck-back valve 427 to add the suck-back valve 427. Inlet compressed air. As a result, the processing liquid L is sucked from the processing liquid nozzle 41 toward the upstream side of the processing liquid supply pipe 42.
  • FIG. 7 is a schematic diagram of the gas supply unit 70.
  • the substrate processing apparatus 100 includes a gas supply unit 70.
  • the gas supply unit 70 includes a regulator 721, a temperature sensor 722, a pressure sensor 723, a concentration sensor 724, a valve 725, a flow meter 726, in addition to the gas supply pipe 72 described with reference to FIG.
  • a heater 727 is further provided.
  • the regulator 721 is arranged in the gas supply pipe 72.
  • the regulator 721 adjusts the pressure of the gas supply channel.
  • the regulator 721 is, for example, an electropneumatic regulator.
  • the temperature sensor 722 detects the temperature of the gas G flowing through the gas supply pipe 72.
  • the pressure sensor 723 detects the pressure of the gas supply channel.
  • the concentration sensor 724 detects the concentration of the inert component contained in the gas G.
  • the temperature of the gas G flowing through the gas supply pipe 72 may be described as “the temperature of the gas G”.
  • the concentration of the inert component contained in the gas G may be described as “the concentration of the gas G”.
  • the valve 725 is disposed on the gas supply pipe 72.
  • the valve 725 controls the ejection flow rate of the gas G ejected from the gas nozzle 71. Further, the valve 725 controls a rising characteristic and a falling characteristic of the ejection flow rate of the gas G. More specifically, the ejection flow rate of the gas G is adjusted according to the opening of the valve 725. The rising characteristic of the gas G ejection flow is adjusted according to the speed at which the valve 725 is opened, and the falling characteristic of the gas G ejection flow is adjusted according to the speed at which the valve 725 is closed.
  • the valve 725 is, for example, a motor valve.
  • the flow meter 726 detects the flow rate of the gas G flowing through the gas supply pipe 72. In other words, the ejection flow rate of the gas G is detected.
  • the heater 727 heats the gas G flowing through the gas supply pipe 72.
  • FIG. 8 is a schematic diagram illustrating the processing liquid circulation unit 300, the first processing liquid component supply unit 510, the second processing liquid component supply unit 520, and the processing liquid recovery unit 600 according to the present embodiment.
  • the substrate processing apparatus 100 further includes a processing liquid circulation unit 300, a first processing liquid component supply unit 510, a second processing liquid component supply unit 520, and a processing liquid recovery unit 600.
  • the processing liquid circulation unit 300 circulates the processing liquid L.
  • the processing liquid circulation unit 300 includes a preparation tank 301, a circulation pipe 302, a heater 303, a pump 304, a valve 305, a relief valve 306, a relief pipe 307, a temperature sensor 308, A concentration sensor 309, a pressure sensor 310, and a flow meter 311 are provided.
  • the preparation tank 301 stores the processing liquid L.
  • the circulation pipe 302 forms a circulation flow path through which the processing liquid L circulates.
  • the processing liquid supply pipe 42 is connected to the circulation pipe 302.
  • the heater 303 heats the processing liquid L flowing through the circulation pipe 302.
  • Pump 304 is arranged in circulation pipe 302. The pump 304 sucks up the processing liquid L from the mixing tank 301 and sends the processing liquid L to the circulation pipe 302.
  • the valve 305 is disposed in the circulation pipe 302.
  • the valve 305 controls the flow rate of the processing liquid L flowing through the circulation pipe 302. Specifically, the flow rate of the processing liquid L flowing through the circulation pipe 302 is adjusted according to the opening of the valve 305.
  • the valve 305 is, for example, a motor valve.
  • the flow rate of the processing liquid L flowing through the circulation pipe 302 may be referred to as “processing liquid circulation flow rate”.
  • the relief valve 306 is arranged in the circulation pipe 302.
  • the relief pipe 307 is connected to the relief valve 306.
  • the processing liquid L flows from the circulation pipe 302 to the relief pipe 307.
  • the relief pipe 307 guides the processing liquid L flowing from the relief valve 306 to the preparation tank 301.
  • the pressure in the circulation channel is adjusted according to the opening of the relief valve 306.
  • the temperature sensor 308 detects the temperature of the processing liquid L flowing through the circulation pipe 302.
  • the concentration sensor 309 detects the concentration of the etching component contained in the processing liquid L flowing through the circulation pipe 302.
  • the pressure sensor 310 detects the pressure in the circulation channel.
  • the flow meter 311 detects the processing liquid circulation flow rate.
  • the temperature of the processing liquid L flowing through the circulation pipe 302 may be referred to as “second processing liquid temperature”.
  • the concentration of the etching component contained in the processing liquid L flowing through the circulation pipe 302 may be referred to as “second processing liquid concentration”.
  • the first processing liquid component supply unit 510 supplies the first processing liquid component L1 to the preparation tank 301.
  • the second processing liquid component supply unit 520 supplies the second processing liquid component L2 to the preparation tank 301.
  • the first processing liquid component L1 and the second processing liquid component L2 are mixed to generate the processing liquid L.
  • the first processing liquid component L1 is phosphoric acid, hydrofluoric acid, nitric acid, or ammonium hydroxide
  • the second processing liquid component L2 is pure water.
  • the first processing liquid component L1 is hydrofluoric acid
  • the second processing liquid component L2 is a nitric acid aqueous solution.
  • the first processing liquid component L1 is a nitric acid aqueous solution
  • the second processing liquid component L2 is hydrofluoric acid
  • the first processing liquid component L1 is ammonium hydroxide
  • the second processing liquid component L2 is hydrogen peroxide
  • the first processing liquid component L1 is a hydrogen peroxide solution
  • the second processing liquid component L2 is an ammonium hydroxide.
  • the first processing liquid component supply unit 510 includes a pipe 511, a regulator 512, a pressure sensor 513, and a fixed-rate discharge pump 514.
  • the pipe 511 forms a first processing liquid component supply channel through which the first processing liquid component L1 flows.
  • the pipe 511 guides the first processing liquid component L1 to the preparation tank 301.
  • the regulator 512 is arranged in the pipe 511.
  • the regulator 512 adjusts the pressure of the first processing liquid component supply flow path.
  • the regulator 512 is, for example, an electropneumatic regulator.
  • the pressure sensor 513 detects the pressure of the first processing liquid component supply flow path.
  • the fixed-rate discharge pump 514 is disposed on the pipe 511.
  • the constant discharge pump 514 discharges the first processing liquid component L1 by a constant amount.
  • the second processing liquid component supply unit 520 includes a pipe 521, a regulator 522, and a pressure sensor 523.
  • the pipe 521 forms a second processing liquid component supply channel through which the second processing liquid component L2 flows.
  • the pipe 521 guides the second processing liquid component L2 to the preparation tank 301.
  • the regulator 522 is disposed in the pipe 521.
  • the regulator 522 adjusts the pressure of the second processing liquid component supply flow path.
  • the regulator 522 is, for example, an electropneumatic regulator.
  • the pressure sensor 523 detects the pressure of the second processing liquid component supply flow path.
  • the processing liquid recovery unit 600 supplies the used processing liquid L sent from the processing chamber 2 to the preparation tank 301.
  • the processing liquid collecting unit 600 includes a collecting tank 601, a first collecting pipe 602, a second collecting pipe 603, and a pump 604.
  • the first recovery pipe 602 guides the used processing liquid L from the processing chamber 2 to the recovery tank 601.
  • the collection tank 601 stores the used processing liquid L.
  • the second recovery pipe 603 guides the used processing liquid L from the recovery tank 601 to the preparation tank 301.
  • the pump 604 is disposed on the second recovery pipe 603. The pump 604 sucks up the used processing liquid L from the recovery tank 601 and sends the used processing liquid L to the second recovery pipe 603.
  • FIG. 9 is a block diagram of the substrate processing apparatus 100.
  • the processor 11 executes a computer program stored in the storage unit 12 and executes a processing liquid supply unit 40, a gas supply unit 70, a processing liquid circulation unit 300, a first processing liquid component supply unit.
  • the control unit 510 controls the second processing liquid component supply unit 520 and the processing liquid recovery unit 600.
  • the processor 11 controls the valve 423, the mixing valve 424, the heater 426, and the suckback valve 427 included in the processing liquid supply unit 40.
  • the processor 11 can control the valve 423 and the mixing valve 424 to adjust the concentration of the etching component (first processing liquid concentration) contained in the processing liquid L flowing through the processing liquid supply pipe 42.
  • the first processing solution concentration is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can adjust the discharge flow rate of the processing liquid L discharged from the processing liquid nozzle 41 by controlling the valve 423. Further, the processor 11 can control the rising and falling characteristics of the discharge flow rate of the processing liquid L by controlling the valve 423.
  • the discharge flow rate of the processing liquid L, the rise characteristic of the discharge flow rate of the processing liquid L, and the fall characteristic of the discharge flow rate of the processing liquid L are set conditions of the substrate processing apparatus 100.
  • the processor 11 can adjust the generation timing of the signal for starting the discharge of the processing liquid L from the processing liquid nozzle 41 to adjust the discharge start timing of the processing liquid L.
  • the signal for starting the discharge of the processing liquid L is a signal for opening the valve 423, and the timing for generating the signal for opening the valve 423 can be adjusted to adjust the timing for starting the discharge of the processing liquid L.
  • the generation timing of the signal for opening the valve 423 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can adjust the generation timing of the signal for stopping the discharge of the processing liquid L from the processing liquid nozzle 41 to adjust the timing of stopping the discharge of the processing liquid L.
  • the signal for stopping the discharge of the processing liquid L is a signal for closing the valve 423, and the timing for generating the signal for closing the valve 423 can be adjusted to adjust the timing for stopping the discharge of the processing liquid L.
  • the generation timing of the signal for closing the valve 423 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can adjust the generation timing of the signal for changing the flow rate of the processing liquid L discharged from the processing liquid nozzle 41 to adjust the discharge flow rate change timing of the processing liquid L.
  • the signal for changing the flow rate of the processing liquid L is a signal for changing the opening of the valve 423
  • the generation timing of the signal for changing the opening of the valve 423 is adjusted to adjust the processing liquid L.
  • the generation timing of the signal for changing the opening of the valve 423 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can control the temperature of the processing liquid L flowing through the processing liquid supply pipe 42 by controlling the heater 426.
  • the temperature of the processing liquid L flowing through the processing liquid supply pipe 42 may be referred to as “first processing liquid temperature”.
  • the first processing liquid temperature is a setting condition of the substrate processing apparatus 100.
  • the processor 11 controls the suckback valve 427 to adjust the suckback speed and the suckback stop position described with reference to FIGS. 1 and 3.
  • the suck back speed and the suck back stop position are set conditions of the substrate processing apparatus 100.
  • the processor 11 receives signals from the temperature sensor 421, the concentration sensor 422, and the flow meter 425 included in the processing liquid supply unit 40.
  • the signal output from the temperature sensor 421 indicates the first processing liquid temperature.
  • the signal output from the concentration sensor 422 indicates the concentration of the first processing liquid.
  • the signal output from the flow meter 425 indicates the discharge flow rate of the processing liquid L.
  • the first processing liquid temperature, the first processing liquid concentration, and the discharge flow rate of the processing liquid L are execution conditions when performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the first processing liquid temperature, the first processing liquid concentration, and the discharge flow rate of the processing liquid L. Further, the processor 11 detects the purity of the processing liquid L based on the signal output from the concentration sensor 422.
  • the purity of the processing liquid L is an execution condition at the time of performing the etching, and the processor 11 causes the storage unit 12 to store information indicating the purity of the processing liquid L.
  • the processor 11 controls the regulator 721, the valve 725, and the heater 727 included in the gas supply unit 70.
  • the processor 11 can control the regulator 721 to adjust the pressure of the gas supply channel.
  • the pressure of the gas supply channel is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can control the valve 725 to adjust the ejection flow rate of the gas G ejected from the gas nozzle 71. In addition, the processor 11 can control the valve 725 to adjust the rising characteristic and the falling characteristic of the ejection flow rate of the gas G.
  • the ejection rate of the gas G, the rising characteristic of the ejection rate of the gas G, and the falling property of the ejection rate of the gas G are set conditions of the substrate processing apparatus 100.
  • the processor 11 can adjust the generation timing of the signal for starting the ejection of the gas G from the gas nozzle 71 to adjust the ejection start timing of the gas G.
  • the signal for starting the ejection of the gas G is a signal for opening the valve 725
  • the generation timing of the signal for opening the valve 725 can be adjusted to adjust the timing for starting the ejection of the gas G.
  • the generation timing of the signal for opening the valve 725 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can adjust the generation timing of the signal for stopping the ejection of the gas G from the gas nozzle 71 to adjust the timing of stopping the ejection of the gas G.
  • the signal for stopping the ejection of the gas G is a signal for closing the valve 725, and the timing for generating the signal for closing the valve 725 can be adjusted to adjust the timing for stopping the ejection of the gas G.
  • the generation timing of the signal for closing the valve 725 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can adjust the timing at which the signal for changing the flow rate at which the gas G is ejected from the gas nozzle 71 is generated to adjust the timing at which the gas G is ejected.
  • the signal for changing the flow rate at which the gas G is ejected is a signal for changing the opening of the valve 725, and the generation timing of the signal for changing the opening of the valve 725 is adjusted so that the ejection of the gas G is adjusted.
  • the flow rate change timing can be adjusted.
  • the generation timing of the signal for changing the opening of the valve 725 is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can control the temperature of the gas G flowing through the gas supply pipe 72 by controlling the heater 727.
  • the temperature of the gas G is a setting condition of the substrate processing apparatus 100.
  • the processor 11 receives signals from the temperature sensor 722, the pressure sensor 723, the concentration sensor 724, and the flow meter 726 included in the processing liquid supply unit 40.
  • the signal output from the temperature sensor 722 indicates the temperature of the gas G flowing through the gas supply pipe 72.
  • the signal output from the pressure sensor 723 indicates the pressure of the gas supply channel.
  • the signal output from the concentration sensor 724 indicates the concentration of the inert component contained in the gas G (the concentration of the gas G).
  • the signal output from the flow meter 726 indicates the ejection flow rate of the gas G.
  • the temperature of the gas G, the pressure of the gas supply flow path, the concentration of the gas G, and the ejection flow rate of the gas G are execution conditions at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the temperature of the gas G, the pressure of the gas supply channel, the concentration of the gas G, and the flow rate of the gas G ejected. Further, the processor 11 detects the purity of the gas G based on the signal output from the concentration sensor 724. The purity of the gas G is an execution condition at the time of performing the etching, and the processor 11 causes the storage unit 12 to store information indicating the purity of the gas G.
  • the processor 11 controls the heater 303, the pump 304, the valve 305, and the relief valve 306 provided in the processing liquid circulation unit 300.
  • the processor 11 controls the heater 303 to adjust the temperature of the processing liquid L flowing through the circulation pipe 302 (second processing liquid temperature).
  • the second processing liquid temperature is a setting condition of the substrate processing apparatus 100.
  • the processor 11 controls the valve 305 to adjust the flow rate of the processing liquid L flowing through the circulation pipe 302 (processing liquid circulation flow rate).
  • the processing liquid circulation flow rate is a setting condition of the substrate processing apparatus 100.
  • the processor 11 can control the pressure in the circulation flow path by controlling the relief valve 306.
  • the pressure of the circulation channel is a setting condition of the substrate processing apparatus 100.
  • the processor 11 receives signals from the temperature sensor 308, the concentration sensor 309, the pressure sensor 310, and the flow meter 311 provided in the processing liquid circulation unit 300.
  • the signal output from the temperature sensor 308 indicates the temperature of the processing liquid L flowing through the circulation pipe 302 (second processing liquid temperature).
  • the signal output from the concentration sensor 309 indicates the concentration of the etching component contained in the processing liquid L flowing through the circulation pipe 302 (second processing liquid concentration).
  • the signal output by the pressure sensor 310 indicates the pressure of the circulation flow path.
  • the signal output from the flow meter 311 indicates the processing liquid circulation flow rate.
  • the second processing liquid temperature, the second processing liquid concentration, the pressure of the circulation flow path, and the processing liquid circulating flow rate are execution conditions at the time of performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the second processing liquid temperature, the second processing liquid concentration, the pressure of the circulation flow path, and the processing liquid circulation flow rate.
  • the processor 11 controls the regulator 512 and the fixed-rate discharge pump 514 provided in the first processing liquid component supply unit 510.
  • the processor 11 can control the regulator 512 to adjust the pressure of the first processing liquid component supply flow path.
  • the processor 11 can control the constant discharge pump 514 to adjust the concentration of the second processing liquid.
  • the pressure of the first processing liquid component supply channel and the concentration of the second processing liquid are set conditions of the substrate processing apparatus 100.
  • the processor 11 receives a signal from the pressure sensor 513 provided in the first processing liquid component supply unit 510.
  • the signal output from the pressure sensor 513 indicates the pressure of the first processing liquid component supply channel.
  • the pressure of the first processing liquid component supply flow path is an execution condition when performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the pressure of the first processing liquid component supply flow path.
  • the processor 11 controls the regulator 522 included in the second processing liquid component supply unit 520 to adjust the pressure of the second processing liquid component supply flow path.
  • the pressure of the second processing liquid component supply channel is a setting condition of the substrate processing apparatus 100.
  • the processor 11 receives a signal from the pressure sensor 523 provided in the second processing liquid component supply unit 520.
  • the signal output from the pressure sensor 523 indicates the pressure of the second processing liquid component supply channel.
  • the pressure of the second processing liquid component supply flow path is an execution condition when performing the etching.
  • the processor 11 causes the storage unit 12 to store information indicating the pressure of the second processing liquid component supply flow path.
  • FIG. 10 is a schematic diagram of a substrate processing system 1000 of the present embodiment.
  • the substrate processing system 1000 includes a substrate processing apparatus 100 and an inspection apparatus 200.
  • the substrate processing apparatus 100 etches the substrate W as described with reference to FIGS.
  • the substrate W before being etched (the substrate W before being carried into the processing chamber 2) may be referred to as “unprocessed substrate Wb”.
  • the substrate W after the etching may be referred to as “processed substrate Wa”.
  • the inspection apparatus 200 inspects the processed substrate Wa and creates inspection result data of the processed substrate Wa.
  • the inspection result data indicates an etching execution result.
  • the inspection device 200 measures the film thickness at each radial position of the processed substrate Wa.
  • the inspection apparatus 200 creates data indicating the etching amount for each radial position of the processed substrate Wa based on the measured thickness data and the data of the thickness distribution of the unprocessed substrate Wb.
  • FIG. 11 is a diagram illustrating an example of an etching amount for each radial position of the processed substrate Wa.
  • FIG. 11 shows an example of the etching profile.
  • the etching profile is created by plotting the etching amount for each radial position of the processed substrate Wa.
  • the vertical axis indicates the etching amount
  • the horizontal axis indicates the radial position of the processed substrate Wa.
  • the etching amount is equal to the target value in the entire area of the processed substrate Wa, but as shown in FIG. 11, the actual etching amount varies. Therefore, the etching amount is an index of the performance or state of the substrate processing apparatus 100. In other words, the amount of etching in the entire area of the processed substrate Wa is a characteristic amount as a result of performing the etching.
  • the uniformity (dispersion) of the etching amount is an index of the state or performance of the substrate processing apparatus 100.
  • the uniformity of the etching amount is a characteristic amount of an etching execution result.
  • the data indicating the uniformity of the etching amount is not limited to the dispersion.
  • the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount also indicate the uniformity of the etching amount. Therefore, the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount are also characteristic amounts of the etching execution result.
  • the etching profile shows the uniformity of the etching amount. Therefore, the etching profile is also a feature amount of the execution result of the etching.
  • FIG. 12 is a block diagram of the substrate processing apparatus 100 of the present embodiment. As shown in FIG. 12, the substrate processing apparatus 100 further includes an input unit 13.
  • the input unit 13 is a user interface device operated by an operator.
  • the input unit 13 inputs data according to the operation of the worker to the processor 11.
  • the input unit 13 includes a keyboard and a mouse.
  • the input unit 13 may include a touch display.
  • the operator operates the input unit 13 to input the feature amount of the etching execution result to the processor 11.
  • the processor 11 causes the storage unit 12 to store the feature amount of the execution result of the etching.
  • the operator operates the input unit 13 to input data indicating the etching amount in the entire area of the processed substrate Wa and data indicating the uniformity of the etching amount.
  • the data indicating the etching amount in the entire area of the processed substrate Wa may be an etching profile.
  • the operator may input one of the etching amount in the entire region of the processed substrate Wa and the uniformity (dispersion) of the etching amount.
  • the operator may input at least one of the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount instead of or in addition to the dispersion.
  • the uniformity (dispersion) of the etching amount may be calculated by an operator or may be calculated by the inspection apparatus 200.
  • the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount may be calculated by the operator or may be calculated by the inspection apparatus 200.
  • the processor 11 causes the storage unit 12 to store the various execution conditions described with reference to FIGS. 3, 5, and 9 and the feature amount of the etching execution result.
  • the storage unit 12 includes, as execution conditions, data indicating the type of film included in the unprocessed substrate Wb, data indicating the film thickness distribution of the unprocessed substrate Wb, data indicating the thickness of the unprocessed substrate Wb, Data indicating the surface state of the unprocessed substrate Wb is stored in advance.
  • the type of the film includes, for example, at least one of a silicon oxide film and a silicon nitride film.
  • the processor 11 corrects at least one of the various setting conditions described with reference to FIGS. 3 and 9 based on the various execution conditions and the feature amount of the etching execution result. Generate
  • FIG. 13 is a flowchart illustrating the correction method according to the present embodiment. As shown in FIG. 13, the correction method according to the present embodiment includes steps S11 to S13.
  • the processor 11 When correcting the setting condition, the processor 11 first stores the execution condition described with reference to FIGS. 3, 5, 9, and 12, and the feature amount described with reference to FIG. (Step S11).
  • the processor 11 reads out and acquires the execution condition and the characteristic amount from the storage unit 12, and based on the acquired execution condition and the characteristic amount, among the various setting conditions described with reference to FIGS. Correction data for correcting at least one setting condition is generated (step S12).
  • the processor 11 corrects the corresponding setting condition based on the correction data (step S13), and ends the processing shown in FIG.
  • the processor 11 of the present embodiment generates correction data using a learned model generated by machine learning. Specifically, the processor 11 inputs the execution conditions and the feature amounts read and acquired from the storage unit 12 to the learned model. As a result, correction data is output from the learned model.
  • the machine learning is, for example, any one of supervised learning, unsupervised learning, semi-supervised learning, reinforcement learning, and deep learning.
  • FIG. 14 is a schematic diagram of the learned model 130.
  • the learned model 130 is a neural network.
  • the processor 11 generates correction data using a neural network.
  • the learned model 130 may be referred to as a “neural network 130”.
  • the neural network 130 has an input layer 131, an intermediate layer 132, and an output layer 133.
  • the processor 11 inputs the execution conditions and the characteristic amounts read and acquired from the storage unit 12 to the input layer 131.
  • the correction data is output from the output layer 133.
  • the setting condition to be corrected may be determined in advance, or the neural network 130 may determine the setting condition to be corrected.
  • the neural network 130 shown in FIG. 14 has one intermediate layer 132, the neural network 130 may have a multilayer structure.
  • FIG. 15 is a flowchart illustrating the learning method according to the present embodiment. As shown in FIG. 15, the learning method according to the present embodiment includes steps S21 to S23.
  • teacher information (teacher data) is input to the processor 11 (step S21).
  • the processor 11 causes the storage unit 12 to store the input teacher information.
  • the teacher information is information obtained when the feature amount described with reference to FIG. 12 indicates an optimal value. That is, the teacher information includes the execution condition obtained when the feature value indicates the optimum value, and the feature value indicating the optimum value. Further, the teacher information includes a setting condition obtained when the feature value indicates an optimum value.
  • the processor 11 reads and acquires teacher information (execution conditions, feature amounts, and setting conditions) from the storage unit 12, executes machine learning based on the acquired teacher information (step S22), and acquires the learned model 130 Is generated (step S23), and the processing shown in FIG. 15 ends. Specifically, the processor 11 measures a change in the etching amount according to the execution condition and the setting condition, and a change in the uniformity of the etching amount according to the execution condition and the setting condition, from a plurality of pieces of teacher information. The weight coefficient is updated based on.
  • the embodiment 1 has been described above. According to the present embodiment, the setting condition can be corrected (adjusted) without the operator manually changing the setting condition. Therefore, the burden on the worker can be reduced.
  • the setting conditions may be a part of the setting conditions described in the present embodiment.
  • the environmental conditions of the factory where the substrate processing apparatus 100 is installed may be added to the execution conditions.
  • information indicating the temperature, humidity, oxygen concentration, ammonia concentration, VOC concentration, and atmospheric pressure of the atmosphere in which the substrate processing apparatus 100 is installed, and the altitude of the location where the factory is installed are used as execution conditions by the processor 11. May be entered.
  • temperature data, humidity data, oxygen concentration data, ammonia concentration data, VOC concentration are obtained from temperature sensors, humidity sensors, oxygen concentration sensors, ammonia concentration sensors, VOC concentration sensors, barometric pressure sensors, and altitude sensors installed in the factory. Data, pressure data, and altitude data are input to the processor 11.
  • FIG. 16 is a schematic diagram of a substrate processing system 1000 according to the second embodiment.
  • a substrate processing system 1000 according to the second embodiment includes a substrate processing apparatus 100, an inspection apparatus 200, and a correction data generation apparatus 1100.
  • the substrate processing apparatus 100 includes the communication interface 14.
  • the communication interface 14 controls communication with the correction data generation device 1100. Specifically, the communication interface 14 transmits data indicating the execution condition to the correction data generation device 1100. Further, the communication interface 14 receives the correction data from the correction data generation device 1100.
  • the communication interface 14 is, for example, a LAN board or a wireless LAN board.
  • the substrate processing apparatus 100 corrects (adjusts) the setting condition of the correction target based on the correction data received from the correction data generation apparatus 1100.
  • the inspection device 200 includes the communication interface 201.
  • the communication interface 201 controls communication with the correction data generation device 1100. Specifically, the communication interface 201 transmits data indicating the feature amount to the correction data generation device 1100.
  • the communication interface 201 is, for example, a LAN board or a wireless LAN board.
  • the correction data generation device 1100 includes a communication interface 1101 and a control unit 1110.
  • the correction data generation device 1100 is, for example, a server device.
  • the communication interface 1101 controls communication with the substrate processing apparatus 100 and communication with the inspection apparatus 200. Specifically, the communication interface 1101 receives data indicating an execution condition from the substrate processing apparatus 100. Further, the communication interface 1101 receives data indicating the feature amount from the inspection device 200. Further, the communication interface 1101 transmits correction data to the substrate processing apparatus 100.
  • the control unit 1110 generates correction data based on the execution condition received from the substrate processing apparatus 100 and the feature amount from the inspection apparatus 200.
  • the control unit 1110 includes a processor 1111 and a storage unit 1112.
  • the processor 1111 is, for example, a central processing unit (CPU).
  • the processor 1111 is a general-purpose computer.
  • the storage unit 1112 stores data and a computer program.
  • Storage unit 1112 includes a main storage device and an auxiliary storage device.
  • the main storage device is constituted by, for example, a semiconductor memory.
  • the auxiliary storage device includes, for example, a semiconductor memory and / or a hard disk drive.
  • the storage unit 1112 may include a removable medium.
  • the processor 1111 generates the correction data based on the execution conditions and the characteristic amounts, similarly to the processor 11 described in the first embodiment. After generating the correction data, the processor 1111 transmits the correction data to the substrate processing apparatus 100 via the communication interface 1101.
  • the processor 1111 generates the learned model 130 based on teacher information (teacher data), similarly to the processor 11 described in the first embodiment. Note that, among the teacher information, the data indicating the execution condition and the data indicating the setting condition are transmitted from the substrate processing apparatus 100 to the correction data generation apparatus 1100.
  • the inspection device 200 transmits data indicating the feature amount to the correction data generation device 1100 in the teacher information.
  • the setting condition can be corrected (adjusted) without the operator manually changing the setting condition. Therefore, the burden on the worker can be reduced.
  • the inspection apparatus 200 measures the film thickness
  • the substrate processing apparatus 100 may include a film thickness measurement sensor for measuring the film thickness.
  • the etching profile is prepared by plotting the etching amount for each radial position of the processed substrate Wa.
  • the etching profile may be prepared based on the measurement result of the thickness of the processed substrate Wa. Good.
  • the processor 11 determines the temperature of the processing liquid L at the tip of the processing liquid nozzle 41 and the gas at the tip of the gas nozzle 71.
  • the processor 11 detects the temperature of the processing liquid L at the tip of the processing liquid nozzle 41 and the temperature of the gas G at the tip of the gas nozzle 71 based on the output signals of the temperature sensor 421 and the temperature sensor 722. May be detected.
  • the processor 11 starts the discharge timing of the processing liquid L, stops the discharge of the processing liquid L, changes the discharge flow rate of the processing liquid L, The discharge flow rate rising characteristic of the processing liquid L, the discharge flow falling characteristic of the processing liquid L, the gas G ejection start timing, the gas G ejection stop timing, the gas G ejection flow change timing, the gas G ejection flow rising property, and Although the ejection flow fall characteristic of the gas G is detected, the processor 11 may detect the discharge start timing of the processing liquid L based on the output signals of the flow meter 425 and the flow meter 726.
  • the purity of the processing liquid L is detected using the concentration sensor 422.
  • the purity of the processing liquid L may be detected using a resistivity meter.
  • the purity of the gas G is detected using the concentration sensor 724, but the purity of the gas G may be detected using a resistivity meter.
  • the eccentricity of the substrate W and the surface runout of the substrate W are detected by using the video camera 102, but the eccentricity of the substrate W and the surface runout of the substrate W are detected by using the displacement sensor. It may be detected.
  • the correction data may be generated using a part of the execution conditions described in the embodiment of the present invention.
  • the execution conditions used are: exhaust wind speed, exhaust air volume, substrate W rotational speed, substrate W rotational acceleration, substrate W rotational speed change timing, radial position of the processing liquid nozzle 41, processing liquid
  • the execution conditions to be used are: exhaust air speed, exhaust air volume, rotation speed of the substrate W, rotation acceleration of the substrate W, change timing of the rotation speed of the substrate W, radial position of the processing liquid nozzle 41, processing liquid nozzle
  • the substrate surface temperature Of the gas G at the tip of the substrate, the substrate surface temperature, the timing of starting the discharge of the processing liquid L, the timing of stopping the discharge of the processing liquid L, the timing of changing the discharge flow rate of the processing liquid L, and the processing liquid L
  • Rise characteristics of discharge flow rate, fall characteristics of discharge flow rate of processing liquid L timing of starting discharge of gas G, timing of stopping discharge of gas G, timing of changing discharge rate of gas G, rise characteristic of discharge rate of gas G, discharge rate of gas G Fall characteristics, suckback speed of the processing liquid L, stop position of suckback of the processing liquid L, presence / absence of dripping of the processing liquid L, film thickness distribution of the processing liquid L, processing liquid on the upper and outer surfaces of the liquid receiving portion 8 Presence / absence of L, amount of processing liquid L adhering to the upper surface and outer surface of liquid receiving unit 8, amount of eccentricity of substrate W, amount of runout of substrate W, supply air velocity, supply air flow, first processing It includes at least one of a liquid concentration, a discharge flow
  • the substrate W is a semiconductor wafer, but the substrate W is a substrate for a liquid crystal display, a substrate for a field emission display (Field Emission Display: FED), a substrate for an optical disk, and a substrate for a magnetic disk. Or a substrate for a magneto-optical disk, a substrate for a photomask, a ceramic substrate, or a substrate for a solar cell.
  • FED Field Emission Display
  • the spin chuck 3 is a sandwich type chuck in which the plurality of chuck pins 32 are brought into contact with the peripheral end surface of the substrate W.
  • a vacuum-type chuck that holds the substrate W horizontally by adsorbing the back surface (lower surface) of the substrate to the upper surface of the spin base 31 may be used.
  • the substrate processing apparatus 100 is of a single-wafer type that processes one substrate at a time, but the substrate processing apparatus 100 may be of a batch type that simultaneously processes a plurality of substrates W. Good.
  • the present invention is suitably used in a substrate processing apparatus for processing a substrate.
  • processing chamber 8 liquid receiving unit 10
  • control unit 40 processing liquid supply unit 41 processing liquid nozzle 70 gas supply unit 71 gas nozzle 72 gas supply pipe 100 substrate processing device 200 inspection device 231 exhaust fan 232 exhaust duct 233 valve 300 processing liquid circulation unit 510 First processing liquid component supply unit 520 Second processing liquid component supply unit 1000 Substrate processing system 1100 Correction data generation device 1110 Control unit W Substrate

Abstract

The purpose of the present invention is to provide a correction method that can lighten the burden of a worker. The correction method of the present invention includes an acquisition step, a generation step, and a correction step. With the acquisition step, at least one execution condition of the execution conditions during etching execution, and at least one feature value indicating the etching execution results are acquired. With the generation step, based on the at least one execution condition and the at least one feature value, correction data is generated that corrects at least one setting condition among the setting conditions of a substrate-processing device. With the correction step, based on the correction data, the substrate-processing device corrects the at least one setting condition.

Description

補正方法、基板処理装置、及び基板処理システムCorrection method, substrate processing apparatus, and substrate processing system
 本発明は、補正方法、基板処理装置、及び基板処理システムに関する。 The present invention relates to a correction method, a substrate processing apparatus, and a substrate processing system.
 基板をエッチングする基板処理装置が知られている。基板処理装置の状態は、基板処理装置を構成する部品の経年劣化や、基板処理装置を構成する部品の交換に起因する部品の位置のバラツキ等に基づいて変動する。このため、最適なエッチングが実行されるように、基板処理装置の各種の設定条件を適宜補正する必要がある。具体的には、エッチング処理した基板の膜厚を測定し、エッチング量が所期の値を示さない場合に、設定条件を補正する必要がある。基板の膜厚は、膜厚測定装置を用いて測定される(例えば、特許文献1参照)。 基板 A substrate processing apparatus for etching a substrate is known. The state of the substrate processing apparatus fluctuates based on aging of components constituting the substrate processing apparatus, variations in the positions of components resulting from replacement of the components constituting the substrate processing apparatus, and the like. Therefore, it is necessary to appropriately correct various setting conditions of the substrate processing apparatus so that optimal etching is performed. Specifically, it is necessary to measure the film thickness of the substrate subjected to the etching process, and to correct the setting condition when the etching amount does not show an expected value. The film thickness of the substrate is measured using a film thickness measuring device (for example, see Patent Document 1).
特開2013-134065号公報JP 2013-1340065 A
 しかしながら、設定条件の補正は、長い時間を費やして作業者が手動で行っており、作業者の負担となっていた。 However, the correction of the setting conditions is manually performed by the operator over a long time, which is a burden on the operator.
 本発明は上記課題に鑑みてなされたものであり、その目的は、作業者の負担を軽減することができる補正方法、基板処理装置、及び基板処理システムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a correction method, a substrate processing apparatus, and a substrate processing system that can reduce a burden on an operator.
 本発明の補正方法は、基板をエッチングする基板処理装置の設定条件を補正する補正方法であって、前記エッチング実行時の実行条件のうちの少なくとも1つの実行条件と、前記エッチングの実行結果を示す少なくとも1つの特徴量とを取得する取得ステップと、前記少なくとも1つの実行条件と前記少なくとも1つの特徴量とに基づいて、前記設定条件のうちの少なくとも1つの設定条件を補正する補正データを生成する生成ステップと、前記基板処理装置が前記補正データに基づいて前記少なくとも1つの設定条件を補正する補正ステップとを含む。 A correction method according to the present invention is a correction method for correcting a setting condition of a substrate processing apparatus for etching a substrate, wherein the correction method indicates at least one execution condition among the execution conditions at the time of performing the etching and an execution result of the etching. An acquisition step of acquiring at least one characteristic amount; and generating correction data for correcting at least one of the setting conditions based on the at least one execution condition and the at least one characteristic amount. A generating step; and a correcting step in which the substrate processing apparatus corrects the at least one setting condition based on the correction data.
 ある実施形態では、前記取得ステップにおいて、機械学習によって生成された学習済みモデルに、前記少なくとも1つの実行条件と前記少なくとも1つの特徴量とが入力される。 In one embodiment, in the acquiring step, the at least one execution condition and the at least one feature amount are input to a learned model generated by machine learning.
 ある実施形態では、前記生成ステップにおいて、前記学習済みモデルから前記補正データが出力される。 In one embodiment, in the generation step, the correction data is output from the learned model.
 ある実施形態では、補正方法は、教師情報を機械学習させて前記学習済みモデルを生成する学習ステップを更に含む。 In one embodiment, the correction method further includes a learning step of generating the learned model by machine learning the teacher information.
 ある実施形態では、前記教師情報は、前記少なくとも1つの特徴量が最適な値を示す場合に得た情報であり、前記少なくとも1つの特徴量と、前記少なくとも1つの実行条件と、前記少なくとも1つの設定条件とを含む。 In one embodiment, the teacher information is information obtained when the at least one feature value indicates an optimum value, and includes the at least one feature value, the at least one execution condition, and the at least one And setting conditions.
 ある実施形態では、前記少なくとも1つの特徴量は、エッチング量と、エッチング量の均一性とのうちの少なくとも一方を含む。 In one embodiment, the at least one feature amount includes at least one of an etching amount and a uniformity of the etching amount.
 ある実施形態では、前記基板処理装置は、処理室と、第1ノズルと、供給流路と、液受け部と、第2ノズルと、ファンフィルタユニットと、排気ファンとを備える。前記処理室は、前記基板を収容する。前記第1ノズルは、前記基板をエッチングする処理液を前記基板に向けて吐出する。前記供給流路は、前記第1ノズルに前記処理液を供給する。前記液受け部は、前記基板から飛散した前記処理液を受ける。前記第2ノズルは、前記基板に向けてガスを噴出する。前記ファンフィルタユニットは、前記処理室内へ空気を送る。前記排気ファンは、前記処理室から気体を排気する。 In one embodiment, the substrate processing apparatus includes a processing chamber, a first nozzle, a supply channel, a liquid receiving unit, a second nozzle, a fan filter unit, and an exhaust fan. The processing chamber accommodates the substrate. The first nozzle discharges a processing liquid for etching the substrate toward the substrate. The supply channel supplies the processing liquid to the first nozzle. The liquid receiving unit receives the processing liquid scattered from the substrate. The second nozzle ejects a gas toward the substrate. The fan filter unit sends air into the processing chamber. The exhaust fan exhausts gas from the processing chamber.
 ある実施形態では、前記エッチング実行時の実行条件は、前記第1ノズルの先端における前記処理液の温度と、前記第2ノズルの先端における前記ガスの温度と、前記第1ノズルから前記処理液が吐出する流量と、前記第2ノズルから前記ガスが噴出する流量と、前記第1ノズルから前記処理液が吐出を開始するタイミングと、前記第2ノズルから前記ガスが噴出を開始するタイミングと、前記第1ノズルからの前記処理液の吐出が停止するタイミングと、前記第2ノズルからの前記ガスの噴出が停止するタイミングと、前記第1ノズルから前記処理液が吐出する流量の変更タイミングと、前記第2ノズルから前記ガスが噴出する流量の変更タイミングと、前記第1ノズルから前記処理液が吐出する流量の立ち上がり特性と、前記第2ノズルから前記ガスが噴出する流量の立ち上がり特性と、前記第1ノズルから前記処理液が吐出する流量の立ち下がり特性と、前記第2ノズルから前記ガスが噴出する流量の立ち下がり特性と、前記第1ノズルの先端から前記処理液がボタ落ちしているか否かを示す情報と、前記供給流路を流れる前記処理液の濃度と、前記処理液の吐出が停止した後に前記第1ノズルから前記供給流路の上流側に向けて前記処理液が吸い込まれる速度と、吸い込まれた前記処理液が停止する位置と、前記基板を覆う前記処理液の膜厚分布と、前記第1ノズルの位置と、前記第1ノズルの移動速度と、前記第1ノズルの加速度と、前記第1ノズルの位置の変更タイミングと、前記第1ノズルの移動速度の変更タイミングと、前記液受け部への前記処理液の付着の有無を示す情報と、前記液受け部に付着している前記処理液の量と、前記基板の回転速度と、前記基板の加速度と、前記基板の回転速度の変更タイミングと、前記基板の表面温度と、前記基板の偏心量と、前記基板の面振れ量と、前記液受け部の位置と、前記液受け部の移動速度と、前記液受け部の加速度と、前記液受け部の位置の変更タイミングと、前記液受け部の移動速度の変更タイミングと、前記ファンフィルタユニットが前記処理室内に送る空気の風速と、前記ファンフィルタユニットが前記処理室内に送る空気の風量と、前記処理室から排気される気体の風速と、前記処理室から排気される気体の風量とのうちの少なくとも1つを含む。 In one embodiment, the execution conditions at the time of performing the etching include a temperature of the processing liquid at a tip of the first nozzle, a temperature of the gas at a tip of the second nozzle, and a temperature of the processing liquid from the first nozzle. A flow rate at which the gas is ejected from the second nozzle, a flow rate at which the processing liquid starts to be ejected from the first nozzle, a timing at which the gas starts to be ejected from the second nozzle, A timing at which the discharge of the processing liquid from the first nozzle is stopped, a timing at which the ejection of the gas from the second nozzle is stopped, a timing of changing a flow rate at which the processing liquid is discharged from the first nozzle, The timing of changing the flow rate at which the gas is ejected from the second nozzle, the rising characteristic of the flow rate at which the processing liquid is ejected from the first nozzle, and the second nozzle. A rising characteristic of a flow rate at which the gas is ejected from the first nozzle, a falling characteristic of a flow rate of the processing liquid ejected from the first nozzle, a falling characteristic of a flow rate at which the gas is ejected from the second nozzle, and the first characteristic. Information indicating whether or not the processing liquid is dripping from the tip of the nozzle, the concentration of the processing liquid flowing through the supply flow path, and the supply flow from the first nozzle after the discharge of the processing liquid is stopped. A speed at which the processing liquid is sucked toward an upstream side of a path, a position at which the sucked processing liquid stops, a film thickness distribution of the processing liquid covering the substrate, a position of the first nozzle, A moving speed of the first nozzle, an acceleration of the first nozzle, a change timing of the position of the first nozzle, a change timing of the moving speed of the first nozzle, and adhesion of the processing liquid to the liquid receiving unit. No Information indicating the amount of the treatment liquid attached to the liquid receiving portion, the rotation speed of the substrate, the acceleration of the substrate, the timing of changing the rotation speed of the substrate, the surface temperature of the substrate, The amount of eccentricity of the substrate, the amount of surface runout of the substrate, the position of the liquid receiving portion, the moving speed of the liquid receiving portion, the acceleration of the liquid receiving portion, and the timing of changing the position of the liquid receiving portion The timing of changing the moving speed of the liquid receiver, the wind speed of the air that the fan filter unit sends into the processing chamber, the air volume of the air that the fan filter unit sends into the processing chamber, and the air exhausted from the processing chamber. At least one of a wind speed of a gas discharged from the processing chamber and a flow rate of a gas exhausted from the processing chamber.
 ある実施形態では、前記基板処理装置は、処理室と、第1ノズルと、第1供給流路と、循環流路と、第2供給流路と、加熱部と、液受け部と、第2ノズルと、第3供給流路と、ファンフィルタユニットと、排気ファンと、排気ダクトと、バルブとを備える。前記処理室は、前記基板を収容する。前記第1ノズルは、前記基板をエッチングする処理液を前記基板に向けて吐出する。前記第1供給流路は、前記第1ノズルに前記処理液を供給する。前記循環流路は、前記第1供給流路に接続し、前記処理液が循環する。前記第2供給流路は、前記循環流路に前記処理液を供給する。前記加熱部は、前記基板を加熱する。前記液受け部は、前記基板から飛散した前記処理液を受け止める。前記第2ノズルは、前記基板に向けてガスを噴出する。前記第3供給流路は、前記第2ノズルに前記ガスを供給する。前記ファンフィルタユニットは、前記処理室内へ空気を送る。前記排気ファンは、前記処理室から気体を排気する。前記排気ダクトには、前記処理室から排気される気体が流れる。前記バルブは、前記排気ダクトに設置される。 In one embodiment, the substrate processing apparatus includes a processing chamber, a first nozzle, a first supply channel, a circulation channel, a second supply channel, a heating unit, a liquid receiving unit, A nozzle, a third supply channel, a fan filter unit, an exhaust fan, an exhaust duct, and a valve are provided. The processing chamber accommodates the substrate. The first nozzle discharges a processing liquid for etching the substrate toward the substrate. The first supply channel supplies the processing liquid to the first nozzle. The circulation flow path is connected to the first supply flow path, and the processing liquid circulates. The second supply channel supplies the processing liquid to the circulation channel. The heating unit heats the substrate. The liquid receiving section receives the processing liquid scattered from the substrate. The second nozzle ejects a gas toward the substrate. The third supply channel supplies the gas to the second nozzle. The fan filter unit sends air into the processing chamber. The exhaust fan exhausts gas from the processing chamber. Gas exhausted from the processing chamber flows through the exhaust duct. The valve is installed in the exhaust duct.
 ある実施形態では、前記基板処理装置の設定条件は、前記循環流路における前記処理液の温度と、前記第1供給流路における前記処理液の温度と、前記第3供給流路における前記ガスの温度と、前記循環流路における前記処理液の濃度と、前記第1供給流路における前記処理液の濃度と、前記第2供給流路の圧力と、前記第3供給流路の圧力と、前記循環流路の圧力と、前記循環流路を流れる前記処理液の流量と、前記第1ノズルから前記処理液が吐出する流量と、前記第2ノズルから前記ガスが噴出する流量と、前記第1ノズルからの前記処理液の吐出を開始させる信号の発生タイミングと、前記第2ノズルからの前記ガスの噴出を開始させる信号の発生タイミングと、前記第1ノズルからの前記処理液の吐出を停止させる信号の発生タイミングと、前記第2ノズルからの前記ガスの噴出を停止させる信号の発生タイミングと、前記第1ノズルから前記処理液が吐出する流量を変更する信号の発生タイミングと、前記第2ノズルから前記ガスが噴出する流量を変更する信号の発生タイミングと、前記第1ノズルから前記処理液が吐出する流量の立ち上がり特性と、前記第2ノズルから前記ガスが噴出する流量の立ち上がり特性と、前記第1ノズルから前記処理液が吐出する流量の立ち下がり特性と、前記第2ノズルから前記ガスが噴出する流量の立ち下がり特性と、前記処理液の吐出が停止した後に前記第1ノズルから前記第1供給流路の上流側に向けて前記処理液が吸い込まれる速度と、吸い込まれた前記処理液が停止する位置と、前記基板の回転速度と、前記基板の加速度と、前記基板の回転速度の変更タイミングと、前記第1ノズルの位置と、前記第1ノズルの移動速度と、前記第1ノズルの加速度と、前記第1ノズルの位置の変更タイミングと、前記第1ノズルの移動速度の変更タイミングと、前記基板を加熱する温度と、前記液受け部の位置と、前記液受け部の移動速度と、前記液受け部の加速度と、前記液受け部の位置の変更タイミングと、前記液受け部の移動速度の変更タイミングと、前記ファンフィルタユニットの差圧と、前記バルブの差圧と、前記処理室から排気される気体の風速と、前記処理室から排気される気体の風量と、前記処理室内の光量とのうちの少なくとも1つを含む。 In one embodiment, the setting conditions of the substrate processing apparatus include a temperature of the processing liquid in the circulation flow path, a temperature of the processing liquid in the first supply flow path, and a temperature of the gas in the third supply flow path. A temperature, a concentration of the processing liquid in the circulation flow path, a concentration of the processing liquid in the first supply flow path, a pressure in the second supply flow path, a pressure in the third supply flow path, A pressure of the circulation flow path, a flow rate of the processing liquid flowing through the circulation flow path, a flow rate of the processing liquid discharged from the first nozzle, a flow rate of the gas ejected from the second nozzle, A timing for generating a signal for starting discharge of the processing liquid from the nozzle, a timing for generating a signal for starting jetting of the gas from the second nozzle, and stopping the discharge of the processing liquid from the first nozzle Signal generator And a timing of generating a signal for stopping ejection of the gas from the second nozzle, a timing of generating a signal for changing a flow rate of the processing liquid discharged from the first nozzle, and a timing of generating the signal from the second nozzle. The timing of generating a signal for changing the flow rate of gas ejected, the rising characteristics of the flow rate of the processing liquid ejected from the first nozzle, the rising properties of the flow rate of the gas ejected from the second nozzle, and the first nozzle. And the falling characteristic of the flow rate at which the processing liquid is discharged from the second nozzle, the falling characteristic of the flow rate at which the gas is ejected from the second nozzle, and the first supply flow from the first nozzle after the discharge of the processing liquid is stopped. The speed at which the processing liquid is sucked toward the upstream side of the road, the position at which the sucked processing liquid stops, the rotational speed of the substrate, and the acceleration of the substrate A change timing of the rotation speed of the substrate, a position of the first nozzle, a moving speed of the first nozzle, an acceleration of the first nozzle, a change timing of a position of the first nozzle, Timing for changing the moving speed of the nozzle, the temperature for heating the substrate, the position of the liquid receiving portion, the moving speed of the liquid receiving portion, the acceleration of the liquid receiving portion, and the change of the position of the liquid receiving portion Timing, timing for changing the moving speed of the liquid receiving portion, differential pressure of the fan filter unit, differential pressure of the valve, wind speed of gas exhausted from the processing chamber, and exhausted gas from the processing chamber At least one of a gas flow rate and a light quantity in the processing chamber is included.
 本発明の基板処理装置は、基板をエッチングする。前記基板処理装置は、制御部を備える。前記制御部は、前記エッチング実行時の実行条件のうちの少なくとも1つの実行条件と、前記エッチングの実行結果を示す少なくとも1つの特徴量とに基づいて、前記基板処理装置の設定条件のうちの少なくとも1つの設定条件を補正する補正データを生成する。前記制御部は、前記補正データに基づいて前記少なくとも1つの設定条件を補正する。 基板 The substrate processing apparatus of the present invention etches a substrate. The substrate processing apparatus includes a control unit. The control unit is configured to execute at least one of execution conditions of the substrate processing apparatus based on at least one of execution conditions during the execution of the etching and at least one feature amount indicating an execution result of the etching. Correction data for correcting one set condition is generated. The control unit corrects the at least one setting condition based on the correction data.
 本実施形態の基板処理システムは、基板処理装置と、補正データ生成装置とを備える。前記基板処理装置は、基板をエッチングする。前記補正データ生成装置は、前記基板処理装置の設定条件を補正する補正データを出力する。前記補正データ生成装置は、制御部を備える。前記制御部は、前記エッチング実行時の実行条件のうちの少なくとも1つの実行条件と、前記エッチングの実行結果を示す少なくとも1つの特徴量とに基づいて、前記基板処理装置の設定条件のうちの少なくとも1つの設定条件を補正する補正データを生成する。前記基板処理装置は、前記補正データに基づいて前記少なくとも1つの設定条件を補正する。 基板 The substrate processing system of the present embodiment includes a substrate processing apparatus and a correction data generation device. The substrate processing apparatus etches a substrate. The correction data generation device outputs correction data for correcting a setting condition of the substrate processing apparatus. The correction data generation device includes a control unit. The control unit is configured to execute at least one of execution conditions of the substrate processing apparatus based on at least one of execution conditions during the execution of the etching and at least one feature amount indicating an execution result of the etching. Correction data for correcting one set condition is generated. The substrate processing apparatus corrects the at least one setting condition based on the correction data.
 本発明によれば、作業者の負担を軽減することができる。 According to the present invention, the burden on the worker can be reduced.
本発明の実施形態1における基板処理装置の模式図である。FIG. 1 is a schematic diagram of a substrate processing apparatus according to a first embodiment of the present invention. 本発明の実施形態1における基板処理方法を示すフローチャートである。4 is a flowchart illustrating a substrate processing method according to the first embodiment of the present invention. 本発明の実施形態1における基板処理装置のブロック図である。It is a block diagram of a substrate processing device in Embodiment 1 of the present invention. エッチング処理時における処理液ノズルの位置の変化及び移動速度の変化の一例を示す図である。FIG. 4 is a diagram illustrating an example of a change in the position of a processing liquid nozzle and a change in a moving speed during an etching process. 本発明の実施形態1における基板処理装置のブロック図である。It is a block diagram of a substrate processing device in Embodiment 1 of the present invention. 本発明の実施形態1における処理液供給部の模式図である。FIG. 2 is a schematic diagram of a processing liquid supply unit according to the first embodiment of the present invention. 本発明の実施形態1におけるガス供給部の模式図である。It is a schematic diagram of a gas supply unit in Embodiment 1 of the present invention. 本発明の実施形態1における処理液循環部、第1処理液成分供給部、第2処理液成分供給部、及び処理液回収部を示す模式図である。FIG. 2 is a schematic diagram illustrating a processing liquid circulation unit, a first processing liquid component supply unit, a second processing liquid component supply unit, and a processing liquid recovery unit according to the first embodiment of the present invention. 本発明の実施形態1における基板処理装置のブロック図である。It is a block diagram of a substrate processing device in Embodiment 1 of the present invention. 本発明の実施形態1における基板処理システムの模式図である。FIG. 1 is a schematic diagram of a substrate processing system according to a first embodiment of the present invention. 処理済み基板の半径位置ごとのエッチング量の一例を示す図である。It is a figure showing an example of the amount of etching for every radial position of a processed substrate. 本発明の実施形態1における基板処理装置のブロック図である。It is a block diagram of a substrate processing device in Embodiment 1 of the present invention. 本発明の実施形態1における補正方法を示すフローチャートである。5 is a flowchart illustrating a correction method according to the first embodiment of the present invention. 本発明の実施形態1における学習済みモデルの模式図である。FIG. 3 is a schematic diagram of a learned model according to the first embodiment of the present invention. 本発明の実施形態1における学習方法を示すフローチャートである。5 is a flowchart illustrating a learning method according to the first embodiment of the present invention. 本発明の実施形態2における基板処理システムの模式図である。It is a schematic diagram of a substrate processing system in Embodiment 2 of the present invention.
 以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。なお、説明が重複する箇所については、適宜説明を省略する場合がある。また、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments. In addition, about the part which description overlaps, description may be abbreviate | omitted suitably. In the drawings, the same or corresponding portions are denoted by the same reference characters, and description thereof will not be repeated.
[実施形態1]
 図1を参照して、本実施形態の基板処理装置100を説明する。図1は、本実施形態の基板処理装置100の模式図である。基板処理装置100は、基板Wに処理液Lを供給して処理液Lで基板Wをエッチングする。本実施形態の基板処理装置100は、基板Wを一枚ずつエッチングする枚葉式の装置である。また、本実施形態において、基板Wは半導体ウエハである。基板Wは略円板状である。
[Embodiment 1]
With reference to FIG. 1, a substrate processing apparatus 100 of the present embodiment will be described. FIG. 1 is a schematic diagram of a substrate processing apparatus 100 according to the present embodiment. The substrate processing apparatus 100 supplies the processing liquid L to the substrate W and etches the substrate W with the processing liquid L. The substrate processing apparatus 100 of the present embodiment is a single-wafer type apparatus that etches substrates W one by one. In the present embodiment, the substrate W is a semiconductor wafer. The substrate W has a substantially disk shape.
 図1に示すように、基板処理装置100は、箱型の隔壁21と、ファンフィルタユニット(FFU)22と、排気部23とを備える。隔壁21は、基板Wを収容する処理室2(チャンバー)を区画する。 As shown in FIG. 1, the substrate processing apparatus 100 includes a box-shaped partition 21, a fan filter unit (FFU) 22, and an exhaust unit 23. The partition 21 partitions the processing chamber 2 (chamber) that accommodates the substrate W.
 FFU22は、隔壁21の上部から処理室2に清浄空気を送る。具体的には、FFU22は、給気ファンと、フィルタとを有する。FFU22は、フィルタによってろ過された空気を処理室2に送る。 The FFU 22 sends clean air from above the partition 21 to the processing chamber 2. Specifically, the FFU 22 includes an air supply fan and a filter. The FFU 22 sends the air filtered by the filter to the processing chamber 2.
 排気部23は、処理室2の下部に配置される。排気部23は、処理室2内の気体を排気する。FFU22及び排気部23によって、処理室2内を上方から下方に流れるダウンフロー(下降流)が形成される。基板Wのエッチングは、処理室2内にダウンフローが形成されている状態で行われる。 (4) The exhaust part 23 is disposed below the processing chamber 2. The exhaust unit 23 exhausts the gas in the processing chamber 2. The FFU 22 and the exhaust unit 23 form a downflow (downflow) flowing from above to below in the processing chamber 2. The etching of the substrate W is performed in a state where a downflow is formed in the processing chamber 2.
 排気部23は、排気ファン231と、排気ダクト232と、バルブ233とを備える。排気ファン231は、排気ダクト232に配置される。排気ファン231は、処理室2から気体を排気する。具体的には、排気ファン231が駆動することにより、処理室2内の気体が排気ダクト232に流入する。この結果、処理室2から排気される気体が排気ダクト232を流れる。 The exhaust unit 23 includes an exhaust fan 231, an exhaust duct 232, and a valve 233. The exhaust fan 231 is arranged in the exhaust duct 232. The exhaust fan 231 exhausts gas from the processing chamber 2. Specifically, when the exhaust fan 231 is driven, the gas in the processing chamber 2 flows into the exhaust duct 232. As a result, gas exhausted from the processing chamber 2 flows through the exhaust duct 232.
 排気ダクト232は、基板処理装置100が設置される工場に設けられた排気設備に気体を案内する。したがって、排気ファン231が駆動することにより、処理室2内の気体が排気ダクト232を介して排気設備に案内される。 (4) The exhaust duct 232 guides gas to exhaust equipment provided in a factory where the substrate processing apparatus 100 is installed. Therefore, when the exhaust fan 231 is driven, the gas in the processing chamber 2 is guided to the exhaust equipment via the exhaust duct 232.
 バルブ233は、排気ダクト232に設置される。詳しくは、バルブ233は、気体が排気ダクト232を流れる方向に対して排気ファン231よりも下流側に配置される。バルブ233は、排気ダクト232によって形成される気体の流路(排気流路)の圧力(排気圧)を制御する。バルブ233は、例えば、オートバルブである。 The valve 233 is installed in the exhaust duct 232. Specifically, the valve 233 is disposed downstream of the exhaust fan 231 with respect to the direction in which gas flows through the exhaust duct 232. The valve 233 controls the pressure (exhaust pressure) of a gas flow path (exhaust flow path) formed by the exhaust duct 232. The valve 233 is, for example, an automatic valve.
 図1に示すように、基板処理装置100は、スピンチャック3を更に備える。スピンチャック3は基板Wを水平に保持する。また、スピンチャック3は、基板Wを保持した状態で、鉛直方向に延びる回転軸線AX1を中心に基板Wを回転させる。具体的には、スピンチャック3は、スピンベース31と、複数のチャックピン32と、回転軸33と、スピンモータ34、モータエンコーダ35とを備える。 基板 As shown in FIG. 1, the substrate processing apparatus 100 further includes a spin chuck 3. The spin chuck 3 holds the substrate W horizontally. Further, the spin chuck 3 rotates the substrate W about the rotation axis AX1 extending in the vertical direction while holding the substrate W. Specifically, the spin chuck 3 includes a spin base 31, a plurality of chuck pins 32, a rotating shaft 33, a spin motor 34, and a motor encoder 35.
 本実施形態のスピンベース31は、円板状である。スピンベース31は水平な姿勢で保持される。複数のチャックピン32のそれぞれは、スピンベース31の上方で基板Wを水平な姿勢で保持する。回転軸33は、スピンベース31の中央部から下方に延びる。スピンモータ34は、回転軸33を回転方向Drに回転させることにより、回転軸線AX1を中心に基板W及びスピンベース31を回転させる。モータエンコーダ35は、スピンモータ34の回転速度を示す信号を生成する。換言すると、モータエンコーダ35は、基板Wの回転速度を示す信号を生成する。 ス ピ ン The spin base 31 of the present embodiment has a disk shape. The spin base 31 is held in a horizontal posture. Each of the plurality of chuck pins 32 holds the substrate W in a horizontal posture above the spin base 31. The rotation shaft 33 extends downward from the center of the spin base 31. The spin motor 34 rotates the substrate W and the spin base 31 about the rotation axis AX1 by rotating the rotation shaft 33 in the rotation direction Dr. The motor encoder 35 generates a signal indicating the rotation speed of the spin motor 34. In other words, the motor encoder 35 generates a signal indicating the rotation speed of the substrate W.
 図1に示すように、基板処理装置100は、処理液ノズル41と、処理液供給配管42と、ノズルアーム43と、ノズル移動部44とを更に備える。 As shown in FIG. 1, the substrate processing apparatus 100 further includes a processing liquid nozzle 41, a processing liquid supply pipe 42, a nozzle arm 43, and a nozzle moving unit 44.
 処理液ノズル41は、スピンチャック3に保持されている基板Wに向けて処理液Lを吐出する。基板Wに処理液Lが供給されることで、基板Wがエッチングされる。処理液Lは、例えば、燐酸(エッチング成分)を主成分とする水溶液、フッ酸(エッチング成分)を主成分とする水溶液、硝酸(エッチング成分)を主成分とする水溶液、フッ酸(エッチング成分)と硝酸(エッチング成分)とを混合した水溶液、水酸化アンモニウム(エッチング成分)を主成分とする水溶液、及び、水酸化アンモニウム(エッチング成分)と過酸化水素水(エッチング成分)とを混合した水溶液のいずれかである。 The processing liquid nozzle 41 discharges the processing liquid L toward the substrate W held by the spin chuck 3. When the processing liquid L is supplied to the substrate W, the substrate W is etched. The treatment liquid L is, for example, an aqueous solution mainly containing phosphoric acid (etching component), an aqueous solution mainly containing hydrofluoric acid (etching component), an aqueous solution mainly containing nitric acid (etching component), and hydrofluoric acid (etching component). And nitric acid (etching component), an aqueous solution containing ammonium hydroxide (etching component) as a main component, and an aqueous solution mixing ammonium hydroxide (etching component) and hydrogen peroxide solution (etching component). Either.
 処理液供給配管42は、処理液ノズル41に処理液Lを供給する。処理液供給配管42は、処理液ノズル41に向けて処理液Lが流れる処理液供給流路を形成する。 The processing liquid supply pipe 42 supplies the processing liquid L to the processing liquid nozzle 41. The processing liquid supply pipe 42 forms a processing liquid supply flow path through which the processing liquid L flows toward the processing liquid nozzle 41.
 ノズルアーム43は、処理液ノズル41を支持する。具体的には、処理液ノズル41は、ノズルアーム43の先端部に取り付けられる。ノズル移動部44は、スピンチャック3の周囲で鉛直方向に延びる回転軸線AX2を中心にノズルアーム43を回動させる。この結果、処理液ノズル41が、回転軸線AX2を中心に回動する。処理液ノズル41は、回転軸線AX2を中心に回動しながら、基板Wに向けて処理液Lを吐出する。換言すると、処理液ノズル41は、スキャンノズルである。 The nozzle arm 43 supports the processing liquid nozzle 41. Specifically, the processing liquid nozzle 41 is attached to the tip of the nozzle arm 43. The nozzle moving unit 44 rotates the nozzle arm 43 about a rotation axis AX2 extending in the vertical direction around the spin chuck 3. As a result, the processing liquid nozzle 41 rotates around the rotation axis AX2. The processing liquid nozzle 41 discharges the processing liquid L toward the substrate W while rotating about the rotation axis AX2. In other words, the processing liquid nozzle 41 is a scan nozzle.
 図1に示すように、基板処理装置100は、加熱部5を更に備える。加熱部5は、基板Wを加熱する。具体的には、加熱部5は、赤外線ヒータ51と、ヒータアーム52と、ヒータ移動部53とを備える。 基板 As shown in FIG. 1, the substrate processing apparatus 100 further includes a heating unit 5. The heating unit 5 heats the substrate W. Specifically, the heating unit 5 includes an infrared heater 51, a heater arm 52, and a heater moving unit 53.
 赤外線ヒータ51は、赤外線を基板Wに照射する。より詳しくは、赤外線ヒータ51は、赤外線ランプ51aを有する。赤外線ランプ51aは、赤外線を発生する。 The infrared heater 51 irradiates the substrate W with infrared light. More specifically, the infrared heater 51 has an infrared lamp 51a. The infrared lamp 51a generates infrared light.
 ヒータアーム52は、赤外線ヒータ51を支持する。具体的には、赤外線ヒータ51は、ヒータアーム52の先端部に取り付けられる。ヒータ移動部53は、スピンチャック3の周囲で鉛直方向に延びる回転軸線AX3を中心にヒータアーム52を回動させる。この結果、赤外線ヒータ51が、回転軸線AX3を中心に回動する。赤外線ヒータ51は、回転軸線AX3を中心に回動しながら、基板Wを加熱する。 The heater arm 52 supports the infrared heater 51. Specifically, the infrared heater 51 is attached to the tip of the heater arm 52. The heater moving section 53 rotates the heater arm 52 about a rotation axis AX3 extending in a vertical direction around the spin chuck 3. As a result, the infrared heater 51 rotates around the rotation axis AX3. The infrared heater 51 heats the substrate W while rotating about the rotation axis AX3.
 図1に示すように、基板処理装置100は、リンス液供給部6を更に備える。リンス液供給部6は、基板Wにリンス液を供給する。基板Wにリンス液が供給されることで、基板Wがリンス処理される。リンス液は、例えば、純水(脱イオン水:Deionzied Water)である。なお、リンス液は、純水に限らず、炭酸水、電解イオン水、水素水、オゾン水、IPA(イソプロピルアルコール)、及び希釈濃度(例えば、10~100ppm程度)の塩酸水のいずれかであってもよい。 As shown in FIG. 1, the substrate processing apparatus 100 further includes a rinsing liquid supply unit 6. The rinsing liquid supply unit 6 supplies a rinsing liquid to the substrate W. By supplying the rinsing liquid to the substrate W, the substrate W is rinsed. The rinsing liquid is, for example, pure water (deionized water: Deionized Water). The rinsing liquid is not limited to pure water, but may be any of carbonated water, electrolytic ionized water, hydrogen water, ozone water, IPA (isopropyl alcohol), and hydrochloric acid water having a dilute concentration (for example, about 10 to 100 ppm). You may.
 具体的には、リンス液供給部6は、リンス液ノズル61と、リンス液供給配管62と、リンス液バルブ63とを備える。リンス液ノズル61は、スピンチャック3に保持されている基板Wに向けてリンス液を吐出する。リンス液供給配管62は、リンス液ノズル61にリンス液を供給する。本実施形態のリンス液ノズル61は、リンス液ノズル61の吐出口が静止された状態でリンス液を吐出する固定ノズルである。なお、リンス液ノズル61は、スキャンノズルであってもよい。 Specifically, the rinsing liquid supply unit 6 includes a rinsing liquid nozzle 61, a rinsing liquid supply pipe 62, and a rinsing liquid valve 63. The rinsing liquid nozzle 61 discharges a rinsing liquid toward the substrate W held by the spin chuck 3. The rinse liquid supply pipe 62 supplies a rinse liquid to the rinse liquid nozzle 61. The rinsing liquid nozzle 61 of the present embodiment is a fixed nozzle that discharges the rinsing liquid with the discharge port of the rinsing liquid nozzle 61 stopped. Note that the rinsing liquid nozzle 61 may be a scan nozzle.
 リンス液バルブ63は、リンス液ノズル61へのリンス液の供給及び供給停止を切り替える。詳しくは、リンス液バルブ63が開くと、リンス液ノズル61から基板Wに向けてリンス液が吐出される。一方、リンス液バルブ63が閉じると、リンス液の吐出が停止する。リンス液バルブ63は、例えば、モータバルブである。 (4) The rinsing liquid valve 63 switches between supplying and stopping supply of the rinsing liquid to the rinsing liquid nozzle 61. Specifically, when the rinse liquid valve 63 is opened, the rinse liquid is discharged from the rinse liquid nozzle 61 toward the substrate W. On the other hand, when the rinse liquid valve 63 is closed, the discharge of the rinse liquid is stopped. The rinse liquid valve 63 is, for example, a motor valve.
 図1に示すように、基板処理装置100は、ガスノズル71と、ガス供給配管72と、液受け部8とを更に備える。 As shown in FIG. 1, the substrate processing apparatus 100 further includes a gas nozzle 71, a gas supply pipe 72, and a liquid receiving unit 8.
 ガスノズル71は、基板Wに向けてガスGを噴出する。ガスGは、窒素のような不活性成分を含む不活性ガスである。詳しくは、ガスノズル71は、基板Wを乾燥させる際に、基板Wに向けてガスGを噴出する。 The gas nozzle 71 jets the gas G toward the substrate W. The gas G is an inert gas containing an inert component such as nitrogen. Specifically, the gas nozzle 71 ejects the gas G toward the substrate W when drying the substrate W.
 ガス供給配管72は、ガスノズル71にガスGを供給する。ガス供給配管72は、ガスノズル71に向けてガスGが流れるガス供給流路を形成する。 The gas supply pipe 72 supplies the gas G to the gas nozzle 71. The gas supply pipe 72 forms a gas supply passage through which the gas G flows toward the gas nozzle 71.
 液受け部8は、スピンチャック3に保持されている基板Wよりも外方に配置される。液受け部8は略筒形状を有する。液受け部8は、鉛直方向に移動可能である。液受け部8は、基板Wから飛散した処理液Lを受け止める。詳しくは、スピンチャック3が基板Wを回転させている状態で、処理液Lが基板Wに供給されると、基板Wに供給された処理液Lが基板Wの周囲に振り切られる。この結果、基板Wの周囲に処理液Lが飛散して、基板Wから飛散した処理液Lが液受け部8によって受け止められる。液受け部8に受け止められた処理液Lは、図8を参照して説明する処理液回収部600に送られる。なお、液受け部8は、基板Wから飛散するリンス液も、処理液Lと同様に受け止める。 The liquid receiving section 8 is disposed outside the substrate W held by the spin chuck 3. The liquid receiving portion 8 has a substantially cylindrical shape. The liquid receiver 8 is movable in the vertical direction. The liquid receiving unit 8 receives the processing liquid L scattered from the substrate W. Specifically, when the processing liquid L is supplied to the substrate W while the spin chuck 3 is rotating the substrate W, the processing liquid L supplied to the substrate W is shaken off around the substrate W. As a result, the processing liquid L scatters around the substrate W, and the processing liquid L scattered from the substrate W is received by the liquid receiving unit 8. The processing liquid L received by the liquid receiving unit 8 is sent to a processing liquid collecting unit 600 described with reference to FIG. The liquid receiving unit 8 also receives the rinsing liquid scattered from the substrate W in the same manner as the processing liquid L.
 ここで、図1及び図2を参照して、本実施形態の基板処理装置100が実行する基板処理方法を説明する。図2は、本実施形態の基板処理方法を示すフローチャートである。図2に示すように、本実施形態の基板処理方法は、ステップS1~ステップS5を含む。 Here, a substrate processing method executed by the substrate processing apparatus 100 of the present embodiment will be described with reference to FIGS. FIG. 2 is a flowchart illustrating the substrate processing method of the present embodiment. As shown in FIG. 2, the substrate processing method according to the present embodiment includes steps S1 to S5.
 基板処理装置100が基板Wを処理する場合、まず、基板Wが処理室2に搬入される(ステップS1)。詳しくは、搬送ロボットが基板Wを処理室2に搬入する。搬入された基板Wは、スピンチャック3によって保持される。なお、基板Wを処理室2に搬入する際、液受け部8は退避位置に位置する。液受け部8が退避位置に位置する場合、液受け部8の上端部8a(図1)は、スピンベース31よりも下方に位置する。スピンチャック3が基板Wを保持すると、液受け部8は、基板Wから飛散する処理液L及びリンス液を受け止めることができる液受け位置まで上方に移動する。液受け部8が液受け位置に位置する場合、液受け部8の上端部8aはスピンベース31よりも上方に位置する。 When the substrate processing apparatus 100 processes the substrate W, the substrate W is first loaded into the processing chamber 2 (Step S1). Specifically, the transfer robot loads the substrate W into the processing chamber 2. The loaded substrate W is held by the spin chuck 3. When the substrate W is carried into the processing chamber 2, the liquid receiving section 8 is located at the retracted position. When the liquid receiver 8 is located at the retracted position, the upper end 8a (FIG. 1) of the liquid receiver 8 is located below the spin base 31. When the spin chuck 3 holds the substrate W, the liquid receiving unit 8 moves upward to a liquid receiving position where the processing liquid L and the rinsing liquid scattered from the substrate W can be received. When the liquid receiving portion 8 is located at the liquid receiving position, the upper end 8 a of the liquid receiving portion 8 is located above the spin base 31.
 スピンチャック3が基板Wを保持した後に、基板Wが処理液Lでエッチングされる(ステップS2)。具体的には、基板Wに処理液Lを供給する前に、スピンチャック3が基板Wを回転させる。基板Wの回転速度が規定の回転速度に達した後に、処理液Lの供給が開始される。 (4) After the spin chuck 3 holds the substrate W, the substrate W is etched with the processing liquid L (Step S2). Specifically, the spin chuck 3 rotates the substrate W before supplying the processing liquid L to the substrate W. After the rotation speed of the substrate W reaches the specified rotation speed, the supply of the processing liquid L is started.
 詳しくは、処理液ノズル41が、回転軸線AX2を中心に回動しながら、処理液Lを吐出する。処理液ノズル41は、少なくとも基板Wの上面全域が処理液Lで覆われまで、処理液Lを吐出する。なお、本実施形態では、処理液Lの吐出が停止した後、処理液ノズル41から処理液供給配管42の上流側に向けて処理液Lが吸い込まれる(サックバック)。 Specifically, the processing liquid nozzle 41 discharges the processing liquid L while rotating about the rotation axis AX2. The processing liquid nozzle 41 discharges the processing liquid L until at least the entire upper surface of the substrate W is covered with the processing liquid L. In this embodiment, after the discharge of the processing liquid L is stopped, the processing liquid L is sucked from the processing liquid nozzle 41 toward the upstream side of the processing liquid supply pipe 42 (suck back).
 処理液ノズル41による処理液Lの吐出が停止すると、加熱部5が基板W及び処理液Lを加熱する。具体的には、赤外線ヒータ51が、回転軸線AX3を中心に回動しながら、基板W及び処理液Lを加熱する。 When the discharge of the processing liquid L from the processing liquid nozzle 41 is stopped, the heating unit 5 heats the substrate W and the processing liquid L. Specifically, the infrared heater 51 heats the substrate W and the processing liquid L while rotating about the rotation axis AX3.
 基板W及び処理液Lの加熱後、基板Wにリンス液が供給される(ステップS3)。基板Wにリンス液を供給することにより、基板Wの表面上の処理液Lが除去される。具体的には、処理液Lはリンス液によって基板Wの外方に押し流され、基板Wの周囲に排出される。この結果、基板W上の処理液Lの液膜が、基板Wの上面全域を覆うリンス液の液膜に置換される。 After the substrate W and the processing liquid L are heated, a rinsing liquid is supplied to the substrate W (Step S3). By supplying the rinsing liquid to the substrate W, the processing liquid L on the surface of the substrate W is removed. Specifically, the processing liquid L is flushed out of the substrate W by the rinsing liquid, and is discharged around the substrate W. As a result, the liquid film of the processing liquid L on the substrate W is replaced with a liquid film of the rinsing liquid covering the entire upper surface of the substrate W.
 基板Wの表面上の処理液Lをリンス液に置換した後、基板Wを乾燥させる(ステップS4)。具体的には、基板Wの回転速度を、エッチング処理時及びリンス処理時の回転速度よりも増大させる。この結果、基板W上のリンス液に大きな遠心力が付与され、基板Wに付着しているリンス液が基板Wの周囲に振り切られる。このようにして、基板Wからリンス液を除去し、基板Wを乾燥させる。また、基板Wを乾燥させる際には、ガスノズル71から基板Wに向けてガスGを噴出させる。この結果、基板Wの表面に向かう不活性ガスの気流が形成されて、基板Wの乾燥が促進される。また、基板Wの乾燥が促進されることで、ウォーターマークの発生を抑制することができる。スピンチャック3は、例えば、基板Wの高速回転を開始してから規定の時間が経過した後、基板Wの回転を停止させる。 (4) After replacing the processing liquid L on the surface of the substrate W with a rinsing liquid, the substrate W is dried (Step S4). Specifically, the rotation speed of the substrate W is set higher than the rotation speed during the etching process and the rinsing process. As a result, a large centrifugal force is applied to the rinsing liquid on the substrate W, and the rinsing liquid attached to the substrate W is shaken off around the substrate W. Thus, the rinse liquid is removed from the substrate W, and the substrate W is dried. When the substrate W is dried, the gas G is ejected from the gas nozzle 71 toward the substrate W. As a result, an inert gas flow toward the surface of the substrate W is formed, and drying of the substrate W is promoted. In addition, since the drying of the substrate W is promoted, the generation of the watermark can be suppressed. The spin chuck 3 stops the rotation of the substrate W, for example, after a predetermined time has elapsed since the high-speed rotation of the substrate W was started.
 基板Wの回転を停止させた後、処理室2から基板Wを搬出して(ステップS5)、図2に示す処理を終了する。具体的には、基板Wの回転が停止した後、液受け部8が液受け位置から退避位置まで移動する。また、スピンチャック3による基板Wの保持が解除される。液受け部8が退避位置まで移動し、かつスピンチャック3による基板Wの保持が解除されると、搬送ロボットが基板Wを処理室2から搬出する。この結果、基板処理装置100による1枚の基板Wの処理が終了する。 (4) After the rotation of the substrate W is stopped, the substrate W is unloaded from the processing chamber 2 (Step S5), and the processing shown in FIG. 2 ends. Specifically, after the rotation of the substrate W is stopped, the liquid receiving unit 8 moves from the liquid receiving position to the retracted position. Further, the holding of the substrate W by the spin chuck 3 is released. When the liquid receiving unit 8 moves to the retreat position and the holding of the substrate W by the spin chuck 3 is released, the transfer robot unloads the substrate W from the processing chamber 2. As a result, the processing of one substrate W by the substrate processing apparatus 100 ends.
 続いて、再び図1を参照して、本実施形態の基板処理装置100を説明する。図1に示すように、基板処理装置100は、サーモグラフィカメラ101と、ビデオカメラ102と、調光ランプ103とを更に備える。 Next, the substrate processing apparatus 100 according to the present embodiment will be described with reference to FIG. 1 again. As shown in FIG. 1, the substrate processing apparatus 100 further includes a thermographic camera 101, a video camera 102, and a dimming lamp 103.
 サーモグラフィカメラ101は、処理室2内の温度分布を検出する。処理室2内の温度分布は、処理液ノズル41の先端における処理液Lの温度、ガスノズル71の先端におけるガスGの温度、基板Wの表面の温度、隔壁21の温度、液受け部8の温度、ノズルアーム43の温度、及びスピンベース31の温度等を示す。 The thermographic camera 101 detects a temperature distribution in the processing chamber 2. The temperature distribution in the processing chamber 2 includes the temperature of the processing liquid L at the tip of the processing liquid nozzle 41, the temperature of the gas G at the tip of the gas nozzle 71, the temperature of the surface of the substrate W, the temperature of the partition wall 21, and the temperature of the liquid receiving unit 8. , The temperature of the nozzle arm 43, the temperature of the spin base 31, and the like.
 ビデオカメラ102は、処理室2内を撮像する。具体的には、ビデオカメラ102は、処理液ノズル41、処理液供給配管42、ノズルアーム43、チャックピン32、液受け部8、及び基板W等を撮像する。調光ランプ103は、処理室2を照らす光を発生する。 The video camera 102 captures an image of the inside of the processing room 2. Specifically, the video camera 102 images the processing liquid nozzle 41, the processing liquid supply pipe 42, the nozzle arm 43, the chuck pin 32, the liquid receiving unit 8, the substrate W, and the like. The dimming lamp 103 generates light for illuminating the processing chamber 2.
 続いて図1及び図3を参照して、本実施形態の基板処理装置100を説明する。図3は、基板処理装置100のブロック図である。図3に示すように、基板処理装置100は、液受け移動部81と、制御部10とを更に備える。 Next, a substrate processing apparatus 100 according to the present embodiment will be described with reference to FIGS. FIG. 3 is a block diagram of the substrate processing apparatus 100. As shown in FIG. 3, the substrate processing apparatus 100 further includes a liquid receiving and moving unit 81 and a control unit 10.
 制御部10は、プロセッサ11及び記憶部12を備える。プロセッサ11は、例えば、中央処理演算機(CPU)である。あるいは、プロセッサ11は、汎用演算機である。記憶部12は、データ及びコンピュータープログラムを記憶する。記憶部12は、主記憶装置と、補助記憶装置とを含む。主記憶装置は、例えば、半導体メモリーによって構成される。補助記憶装置は、例えば、半導体メモリー及び/又はハードディスクドライブによって構成される。記憶部12は、リムーバブルメディアを含んでいてもよい。 The control unit 10 includes a processor 11 and a storage unit 12. The processor 11 is, for example, a central processing unit (CPU). Alternatively, the processor 11 is a general-purpose computer. The storage unit 12 stores data and a computer program. Storage unit 12 includes a main storage device and an auxiliary storage device. The main storage device is constituted by, for example, a semiconductor memory. The auxiliary storage device includes, for example, a semiconductor memory and / or a hard disk drive. The storage unit 12 may include a removable medium.
 プロセッサ11は、記憶部12が記憶しているコンピュータープログラムを実行して、FFU22と、排気部23と、スピンチャック3と、ノズル移動部44と、加熱部5と、リンス液供給部6と、液受け移動部81と、調光ランプ103と、サーモグラフィカメラ101と、ビデオカメラ102とを制御する。 The processor 11 executes the computer program stored in the storage unit 12, and executes the FFU 22, the exhaust unit 23, the spin chuck 3, the nozzle moving unit 44, the heating unit 5, the rinsing liquid supply unit 6, It controls the liquid receiver moving unit 81, the dimming lamp 103, the thermographic camera 101, and the video camera 102.
 具体的には、プロセッサ11は、FFU22が備える給気ファンを制御する。プロセッサ11は、給気ファンを制御して、FFU22の差圧を調整することができる。FFU22の差圧は、基板処理装置100の設定条件である。 Specifically, the processor 11 controls the air supply fan provided in the FFU 22. The processor 11 can control the air supply fan and adjust the differential pressure of the FFU 22. The differential pressure of the FFU 22 is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、排気部23が備える排気ファン231及びバルブ233を制御する。プロセッサ11は、排気ファン231を制御して、排気ダクト232を流れる気体の風速(排気風速)、及び排気ダクト232を流れる気体の風量(排気風量)を調整することができる。また、プロセッサ11は、バルブ233を制御して、排気圧を調整することができる。排気風速、排気風量及び排気圧は、基板処理装置100の設定条件である。 The processor 11 controls the exhaust fan 231 and the valve 233 provided in the exhaust unit 23. The processor 11 can control the exhaust fan 231 to adjust the wind speed of the gas flowing through the exhaust duct 232 (exhaust wind speed) and the flow rate of the gas flowing through the exhaust duct 232 (exhaust air flow rate). In addition, the processor 11 can control the valve 233 to adjust the exhaust pressure. The exhaust air speed, the exhaust air volume, and the exhaust pressure are set conditions of the substrate processing apparatus 100.
 プロセッサ11は、スピンチャック3が備えるチャックピン32及びスピンモータ34を制御する。プロセッサ11は、スピンモータ34を制御して、基板Wの回転速度、基板Wの回転加速度、及び基板Wの回転速度の変更タイミングを調整することができる。基板Wの回転速度等は、基板処理装置100の設定条件である。 The processor 11 controls the chuck pin 32 and the spin motor 34 provided in the spin chuck 3. The processor 11 can control the spin motor 34 to adjust the rotational speed of the substrate W, the rotational acceleration of the substrate W, and the timing of changing the rotational speed of the substrate W. The rotation speed of the substrate W is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、スピンチャック3が備えるモータエンコーダ35から信号を受信する。図1を参照して説明したように、モータエンコーダ35は、基板Wの回転速度を示す信号を出力する。プロセッサ11は、モータエンコーダ35から受信した信号に基づいて、基板Wの回転速度、基板Wの回転加速度、及び基板Wの回転加速度の変更タイミングを検出する。検出された基板Wの回転速度等は、エッチング実行時の実行条件である。プロセッサ11は、検出した基板Wの回転速度等を示す情報を記憶部12に記憶させる。 The processor 11 receives a signal from the motor encoder 35 provided in the spin chuck 3. As described with reference to FIG. 1, the motor encoder 35 outputs a signal indicating the rotation speed of the substrate W. The processor 11 detects a rotation speed of the substrate W, a rotation acceleration of the substrate W, and a change timing of the rotation acceleration of the substrate W based on a signal received from the motor encoder 35. The detected rotation speed or the like of the substrate W is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the detected rotation speed of the substrate W and the like.
 ノズル移動部44は、モータ441及びモータエンコーダ442を備える。以下、モータ441を「ノズルモータ441」と記載する。ノズルモータ441が駆動することにより、処理液ノズル41が回転軸線A2を中心に回動する。モータエンコーダ442は、ノズルモータ441の回転速度及び回転位置を示す信号を生成する。換言すると、モータエンコーダ442は、処理液ノズル41の移動速度及び半径方向の位置を示す信号を生成する。 The nozzle moving unit 44 includes a motor 441 and a motor encoder 442. Hereinafter, the motor 441 is referred to as a “nozzle motor 441”. When the nozzle motor 441 is driven, the processing liquid nozzle 41 rotates around the rotation axis A2. The motor encoder 442 generates a signal indicating the rotation speed and the rotation position of the nozzle motor 441. In other words, the motor encoder 442 generates a signal indicating the moving speed and the radial position of the processing liquid nozzle 41.
 プロセッサ11は、ノズルモータ441を制御する。プロセッサ11は、ノズルモータ441を制御して、処理液ノズル41の半径方向の位置、処理液ノズル41の移動速度、処理液ノズル41の加速度、処理液ノズル41の位置の変更タイミング、及び処理液ノズル41の移動速度の変更タイミングを調整することができる。処理液ノズル41の半径方向の位置等は、基板処理装置100の設定条件である。 The processor 11 controls the nozzle motor 441. The processor 11 controls the nozzle motor 441 to change the position of the processing liquid nozzle 41 in the radial direction, the moving speed of the processing liquid nozzle 41, the acceleration of the processing liquid nozzle 41, the timing of changing the position of the processing liquid nozzle 41, and the processing liquid. The timing for changing the moving speed of the nozzle 41 can be adjusted. The position of the processing liquid nozzle 41 in the radial direction is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、モータエンコーダ442から、ノズルモータ441の回転速度及び回転位置を示す信号を受信する。プロセッサ11は、モータエンコーダ442から受信した信号に基づいて、処理液ノズル41の半径方向の位置、処理液ノズル41の移動速度、処理液ノズル41の加速度、処理液ノズル41の位置の変更タイミング、及び処理液ノズル41の移動速度の変更タイミングを検出する。検出された処理液ノズル41の半径方向の位置等は、エッチング実行時の実行条件である。プロセッサ11は、検出した処理液ノズル41の半径方向の位置等を示す情報を記憶部12に記憶させる。 The processor 11 receives a signal indicating the rotation speed and the rotation position of the nozzle motor 441 from the motor encoder 442. Based on the signal received from the motor encoder 442, the processor 11 changes the position of the processing liquid nozzle 41 in the radial direction, the moving speed of the processing liquid nozzle 41, the acceleration of the processing liquid nozzle 41, the timing of changing the position of the processing liquid nozzle 41, And the change timing of the moving speed of the processing liquid nozzle 41 is detected. The detected position of the processing liquid nozzle 41 in the radial direction is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the detected position of the processing liquid nozzle 41 in the radial direction and the like.
 プロセッサ11は、リンス液供給部6が備えるリンス液バルブ63を制御する。また、プロセッサ11は、加熱部5が備える赤外線ランプ51a及びヒータ移動部53を制御する。プロセッサ11は、赤外線ランプ51aを制御して、基板Wを加熱する温度(基板加熱温度)を調整することができる。基板加熱温度は、基板処理装置100の設定条件である。 The processor 11 controls the rinsing liquid valve 63 provided in the rinsing liquid supply unit 6. Further, the processor 11 controls the infrared lamp 51 a and the heater moving unit 53 included in the heating unit 5. The processor 11 can control the temperature at which the substrate W is heated (substrate heating temperature) by controlling the infrared lamp 51a. The substrate heating temperature is a setting condition of the substrate processing apparatus 100.
 液受け移動部81は、液受け部8を鉛直方向に移動させる。液受け移動部81は、モータ811及びモータエンコーダ812を備える。以下、モータ811を「液受けモータ811」と記載する。液受けモータ811が駆動することにより、液受け部8が鉛直方向に移動する。モータエンコーダ812は、液受けモータ811の回転速度及び回転位置を示す信号を生成する。換言すると、モータエンコーダ812は、液受け部8の移動速度及び鉛直方向の位置を示す信号を生成する。 The liquid receiving moving section 81 moves the liquid receiving section 8 in the vertical direction. The liquid receiving and moving unit 81 includes a motor 811 and a motor encoder 812. Hereinafter, the motor 811 is referred to as a “liquid receiving motor 811”. When the liquid receiving motor 811 is driven, the liquid receiving section 8 moves in the vertical direction. Motor encoder 812 generates a signal indicating the rotation speed and rotation position of liquid receiving motor 811. In other words, the motor encoder 812 generates a signal indicating the moving speed and the vertical position of the liquid receiver 8.
 プロセッサ11は、液受けモータ811を制御する。プロセッサ11は、液受けモータ811を制御して、液受け部8の鉛直方向の位置、液受け部8の移動速度、液受け部8の加速度、液受け部8の位置の変更タイミング、及び液受け部8の移動速度の変更タイミングを調整することができる。液受け部8の鉛直方向の位置等は、基板処理装置100の設定条件である。 The processor 11 controls the liquid receiving motor 811. The processor 11 controls the liquid receiving motor 811 to change the position of the liquid receiving unit 8 in the vertical direction, the moving speed of the liquid receiving unit 8, the acceleration of the liquid receiving unit 8, the timing of changing the position of the liquid receiving unit 8, and the liquid. The timing for changing the moving speed of the receiving portion 8 can be adjusted. The vertical position and the like of the liquid receiving section 8 are set conditions of the substrate processing apparatus 100.
 プロセッサ11は、モータエンコーダ812から、液受けモータ811の回転速度及び回転位置を示す信号を受信する。プロセッサ11は、モータエンコーダ812から受信した信号に基づいて、液受け部8の鉛直方向の位置、液受け部8の移動速度、液受け部8の加速度、液受け部8の位置の変更タイミング、及び液受け部8の移動速度の変更タイミングを検出する。検出された液受け部8の鉛直方向の位置等は、エッチング実行時の実行条件である。プロセッサ11は、検出した液受け部8の鉛直方向の位置等を示す情報を記憶部12に記憶させる。 The processor 11 receives a signal indicating the rotation speed and the rotation position of the liquid receiving motor 811 from the motor encoder 812. The processor 11, based on the signal received from the motor encoder 812, determines the position of the liquid receiver 8 in the vertical direction, the moving speed of the liquid receiver 8, the acceleration of the liquid receiver 8, the timing of changing the position of the liquid receiver 8, And a change timing of the moving speed of the liquid receiving unit 8 is detected. The detected position of the liquid receiving portion 8 in the vertical direction is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the detected vertical position and the like of the liquid receiving unit 8.
 プロセッサ11は、調光ランプ103を制御して、処理室2内の光量を調整することができる。処理室2内の光量は、基板処理装置100の設定条件である。 The processor 11 can control the dimming lamp 103 to adjust the amount of light in the processing chamber 2. The amount of light in the processing chamber 2 is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、サーモグラフィカメラ101から、処理室2内の温度分布を示す画像信号を受信する。プロセッサ11は、サーモグラフィカメラ101から受信した画像信号に基づいて、処理液ノズル41の先端における処理液Lの温度、ガスノズル71の先端におけるガスGの温度、基板Wの表面の温度、隔壁21の温度、液受け部8の温度、ノズルアーム43の温度、及びスピンベース31の温度等を検出する。検出された温度は、エッチング実行時の実行条件である。プロセッサ11は、検出した温度を示す情報を記憶部12に記憶させる。 The processor 11 receives an image signal indicating the temperature distribution in the processing room 2 from the thermography camera 101. Based on the image signal received from the thermographic camera 101, the processor 11 calculates the temperature of the processing liquid L at the tip of the processing liquid nozzle 41, the temperature of the gas G at the tip of the gas nozzle 71, the temperature of the surface of the substrate W, and the temperature of the partition 21. , The temperature of the liquid receiver 8, the temperature of the nozzle arm 43, the temperature of the spin base 31, and the like. The detected temperature is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the detected temperature.
 プロセッサ11は、ビデオカメラ102から撮像信号を受信する。以下、プロセッサ11が撮像信号に基づいて検出する情報について説明する。 The processor 11 receives an image pickup signal from the video camera 102. Hereinafter, information detected by the processor 11 based on the imaging signal will be described.
 プロセッサ11は、撮像信号に基づいて、処理液ノズル41から処理液Lが吐出を開始するタイミング(処理液Lの吐出開始タイミング)と、処理液ノズル41からの処理液Lの吐出が停止するタイミング(処理液Lの吐出停止タイミング)と、処理液ノズル41から処理液Lが吐出する流量の変更タイミング(処理液Lの吐出流量変更タイミング)と、処理液ノズル41から処理液Lが吐出する流量の立ち上がり特性(処理液Lの吐出流量立ち上がり特性)と、処理液ノズル41から処理液Lが吐出する流量の立ち下がり特性(処理液Lの吐出流量立ち下がり特性)と、ガスノズル71からガスGが噴出を開始するタイミング(ガスGの噴出開始タイミング)と、ガスノズル71からのガスGの噴出が停止するタイミング(ガスGの噴出停止タイミング)と、ガスノズル71からガスGが噴出する流量の変更タイミング(ガスGの噴出流量変更タイミング)と、ガスノズル71からガスGが噴出する流量の立ち上がり特性(ガスGの噴出流量立ち上がり特性)と、ガスノズル71からガスGが噴出する流量の立ち下がり特性(ガスGの噴出流量立ち下がり特性)とを検出する。検出された処理液Lの吐出開始タイミング等は、エッチング実行時の実行条件である。プロセッサ11は、検出した処理液Lの吐出開始タイミング等を示す情報を記憶部12に記憶させる。 The processor 11 starts the timing at which the processing liquid L is started to be discharged from the processing liquid nozzle 41 based on the imaging signal (the timing at which the processing liquid L is started to be discharged) and the timing at which the processing liquid L is stopped being discharged from the processing liquid nozzle 41. (Timing for stopping the discharge of the processing liquid L), timing for changing the flow rate of the processing liquid L discharged from the processing liquid nozzle 41 (timing for changing the discharge flow rate of the processing liquid L), and flow rate for discharging the processing liquid L from the processing liquid nozzle 41 (The rising characteristic of the discharge flow rate of the processing liquid L), the falling characteristic of the flow rate of the processing liquid L discharged from the processing liquid nozzle 41 (the falling characteristic of the discharge flow rate of the processing liquid L), and the gas G from the gas nozzle 71. Timing of starting the jetting (timing of starting the jetting of gas G) and timing of stopping jetting of the gas G from the gas nozzle 71 (spouting of the gas G) Stop timing), the change timing of the flow rate at which the gas G is ejected from the gas nozzle 71 (timing of changing the ejection rate of the gas G), the rising characteristic of the flow rate at which the gas G is ejected from the gas nozzle 71 (the rising characteristic of the ejection rate of the gas G), and And the falling characteristic of the flow rate at which the gas G is ejected from the gas nozzle 71 (the falling characteristic of the gas G ejection flow rate). The detected discharge start timing of the processing liquid L is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the detected discharge start timing of the processing liquid L and the like.
 プロセッサ11は、撮像信号に基づいて、処理液ノズル41から処理液供給配管42の上流側に向けて吸い込まれる処理液Lの移動速度(サックバック速度)と、吸い込まれた処理液Lの停止位置(サックバック停止位置)とを検出する。検出されたサックバック速度及びサックバック停止位置は、エッチング実行時の実行条件である。プロセッサ11は、検出したサックバック速度及びサックバック停止位置を示す情報を記憶部12に記憶させる。 The processor 11 moves the processing liquid L sucked from the processing liquid nozzle 41 toward the upstream side of the processing liquid supply pipe 42 (suck back speed) based on the imaging signal, and determines the stop position of the sucked processing liquid L. (Suck back stop position) is detected. The detected suckback speed and suckback stop position are execution conditions at the time of performing etching. The processor 11 causes the storage unit 12 to store information indicating the detected suckback speed and the suckback stop position.
 プロセッサ11は、撮像信号に基づいて、処理液ノズル41の先端から処理液Lがボタ落ちしているか否か(ボタ落ちの有無)を検出する。ボタ落ちの有無は、エッチング実行時の実行条件である。プロセッサ11は、ボタ落ちの有無を示す情報を記憶部12に記憶させる。 The processor 11 detects whether or not the processing liquid L is dripping from the tip of the processing liquid nozzle 41 based on the image pickup signal (whether or not dripping has occurred). The presence or absence of the drop is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating presence / absence of dropping.
 プロセッサ11は、撮像信号に基づいて、基板Wの表面全域を覆う処理液Lの膜厚分布を検出する。処理液Lの膜厚分布は、エッチング実行時の実行条件である。プロセッサ11は、処理液Lの膜厚分布を示す情報を記憶部12に記憶させる。 The processor 11 detects a film thickness distribution of the processing liquid L covering the entire surface of the substrate W based on the imaging signal. The film thickness distribution of the processing liquid L is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the film thickness distribution of the processing liquid L.
 プロセッサ11は、撮像信号に基づいて、液受け部8の上面及び外側面における処理液Lの付着の有無を検出する。液受け部8の上面及び外側面における処理液Lの付着の有無は、エッチング実行時の実行条件である。プロセッサ11は、液受け部8の上面及び外側面における処理液Lの付着の有無を示す情報を記憶部12に記憶させる。 The processor 11 detects whether or not the processing liquid L has adhered to the upper surface and the outer surface of the liquid receiving unit 8 based on the imaging signal. The presence or absence of the treatment liquid L on the upper surface and the outer surface of the liquid receiving unit 8 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the presence or absence of the treatment liquid L on the upper surface and the outer surface of the liquid receiving unit 8.
 プロセッサ11は、撮像信号に基づいて、液受け部8の上面及び外側面に付着している処理液Lの量を検出する。液受け部8の上面及び外側面に付着している処理液Lの量は、エッチング実行時の実行条件である。プロセッサ11は、液受け部8の上面及び外側面に付着している処理液Lの量を示す情報を記憶部12に記憶させる。 The processor 11 detects the amount of the processing liquid L adhering to the upper surface and the outer surface of the liquid receiver 8 based on the imaging signal. The amount of the processing liquid L adhering to the upper surface and the outer surface of the liquid receiving unit 8 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the amount of the processing liquid L attached to the upper surface and the outer surface of the liquid receiving unit 8.
 プロセッサ11は、撮像信号に基づいて、処理液ノズル41の位置と、ノズルアーム43の形状と、ヒータアーム52の形状と、リンス液ノズル61の位置と、ガスノズル71の位置とを検出する。更に、プロセッサ11は、撮像信号に基づいて検出した処理液ノズル41の位置と、記憶部12に記憶されている処理液ノズル41の規定位置とに基づいて、処理液ノズル41の位置の規定位置からのずれ量を検出する。換言すると、処理液ノズル41の位置の変化を検出する。同様に、プロセッサ11は、撮像信号に基づいて検出したノズルアーム43の形状、ヒータアーム52の形状、リンス液ノズル61の位置、及びガスノズル71の位置と、記憶部12に記憶されているノズルアーム43の規定形状、ヒータアーム52の規定形状、リンス液ノズル61の規定位置、及びガスノズル71の規定位置とに基づいて、ノズルアーム43の形状の変化、ヒータアーム52の形状の変化、リンス液ノズル61の位置の変化、及びガスノズル71の位置の変化を検出する。処理液ノズル41の位置の変化等は、エッチング実行時の実行条件である。プロセッサ11は、処理液ノズル41の位置の変化等を示す情報を記憶部12に記憶させる。 The processor 11 detects the position of the processing liquid nozzle 41, the shape of the nozzle arm 43, the shape of the heater arm 52, the position of the rinsing liquid nozzle 61, and the position of the gas nozzle 71 based on the imaging signal. Further, the processor 11 determines the specified position of the processing liquid nozzle 41 based on the position of the processing liquid nozzle 41 detected based on the imaging signal and the specified position of the processing liquid nozzle 41 stored in the storage unit 12. Is detected. In other words, a change in the position of the processing liquid nozzle 41 is detected. Similarly, the processor 11 detects the shape of the nozzle arm 43, the shape of the heater arm 52, the position of the rinsing liquid nozzle 61, the position of the gas nozzle 71 detected based on the imaging signal, and the nozzle arm stored in the storage unit 12. A change in the shape of the nozzle arm 43, a change in the shape of the heater arm 52, a change in the rinse liquid nozzle, based on the specified shape of the nozzle 43, the specified shape of the heater arm 52, the specified position of the rinsing liquid nozzle 61, and the specified position of the gas nozzle 71. A change in the position of the gas nozzle 61 and a change in the position of the gas nozzle 71 are detected. The change in the position of the processing liquid nozzle 41 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating a change in the position of the processing liquid nozzle 41 and the like.
 プロセッサ11は、撮像信号に基づいて、液受け部8の位置と、液受け部8の形状とを検出する。更に、プロセッサ11は、撮像信号に基づいて検出した液受け部8の位置と、記憶部12に記憶されている液受け部8の規定位置とに基づいて、液受け部8の位置の規定位置からのずれ量、すなわち液受け部8の位置の変化を検出する。同様に、プロセッサ11は、撮像信号に基づいて検出した液受け部8の形状と、記憶部12に記憶されている液受け部8の規定形状とに基づいて、液受け部8の形状の変化を検出する。液受け部8の位置の変化、及び液受け部8の形状の変化は、エッチング実行時の実行条件である。プロセッサ11は、液受け部8の位置の変化、及び液受け部8の形状の変化を示す情報を記憶部12に記憶させる。 The processor 11 detects the position of the liquid receiver 8 and the shape of the liquid receiver 8 based on the image signal. Further, the processor 11 determines the specified position of the liquid receiver 8 based on the position of the liquid receiver 8 detected based on the imaging signal and the specified position of the liquid receiver 8 stored in the storage unit 12. , That is, a change in the position of the liquid receiving portion 8 is detected. Similarly, the processor 11 changes the shape of the liquid receiving unit 8 based on the shape of the liquid receiving unit 8 detected based on the imaging signal and the specified shape of the liquid receiving unit 8 stored in the storage unit 12. Is detected. The change in the position of the liquid receiving portion 8 and the change in the shape of the liquid receiving portion 8 are execution conditions at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating a change in the position of the liquid receiving unit 8 and a change in the shape of the liquid receiving unit 8.
 プロセッサ11は、撮像信号に基づいて、チャックピン32の形状を検出する。更に、プロセッサ11は、撮像信号に基づいて検出したチャックピン32の形状と、記憶部12に記憶されているチャックピン32の規定形状とに基づいて、チャックピン32の形状の規定形状からの変化量、すなわちチャックピン32の形状の変化を検出する。プロセッサ11は更に、チャックピン32の形状の変化から、チャックピン32の摩耗度を検出する。チャックピン32の形状の変化、及びチャックピン32の摩耗度は、エッチング実行時の実行条件である。プロセッサ11は、チャックピン32の形状の変化、及びチャックピン32の摩耗度を示す情報を記憶部12に記憶させる。 The processor 11 detects the shape of the chuck pin 32 based on the imaging signal. Further, the processor 11 changes the shape of the chuck pin 32 from the specified shape based on the shape of the chuck pin 32 detected based on the imaging signal and the specified shape of the chuck pin 32 stored in the storage unit 12. The amount, that is, a change in the shape of the chuck pin 32 is detected. The processor 11 further detects a degree of wear of the chuck pin 32 from a change in the shape of the chuck pin 32. The change in the shape of the chuck pin 32 and the degree of wear of the chuck pin 32 are execution conditions at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the change in the shape of the chuck pin 32 and the degree of wear of the chuck pin 32.
 プロセッサ11は、撮像信号に基づいて、処理室2内を流れる気体の気流の分布(気流分布)を検出する。気流分布は、エッチング実行時の実行条件である。プロセッサ11は、気流分布を示す情報を記憶部12に記憶させる。 The processor 11 detects the distribution of the gas flow (air flow distribution) flowing in the processing chamber 2 based on the imaging signal. The airflow distribution is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the airflow distribution.
 プロセッサ11は、撮像信号に基づいて、基板Wの偏心量と、基板Wの面振れ量とを検出する。基板Wの偏心量、及び基板Wの面振れ量は、エッチング実行時の実行条件である。プロセッサ11は、基板Wの偏心量、及び基板Wの面振れ量を示す情報を記憶部12に記憶させる。 The processor 11 detects the amount of eccentricity of the substrate W and the amount of runout of the substrate W based on the imaging signal. The amount of eccentricity of the substrate W and the amount of runout of the substrate W are execution conditions when performing etching. The processor 11 causes the storage unit 12 to store information indicating the amount of eccentricity of the substrate W and the amount of runout of the substrate W.
 以上、図1及び図3を参照して基板処理装置100を説明した。続いて、図4を参照して、エッチング処理時における処理液ノズル41の移動について説明する。図4は、エッチング処理時における処理液ノズル41の位置の変化及び移動速度の変化の一例を示す図である。図4において、縦軸は処理液ノズル41の移動速度を示し、横軸は基板Wの半径位置を示す。 The substrate processing apparatus 100 has been described above with reference to FIGS. 1 and 3. Next, the movement of the processing liquid nozzle 41 during the etching process will be described with reference to FIG. FIG. 4 is a diagram illustrating an example of a change in the position of the processing liquid nozzle 41 and a change in the moving speed during the etching process. 4, the vertical axis indicates the moving speed of the processing liquid nozzle 41, and the horizontal axis indicates the radial position of the substrate W.
 図4に示すように、エッチング処理時に、処理液ノズル41は、基板Wの中心から半径位置cまで移動する。具体的には、処理液ノズル41は、基板Wの中心から半径位置aまで加速しながら移動する。半径位置aに到達したときの処理液ノズル41の移動速度は「Va」である。その後、処理液ノズル41は、半径位置aから半径位置bまで減速しながら移動する。半径位置bに到達したときの処理液ノズル41の移動速度は「Vb」である。処理液ノズル41は、半径位置bに到達すると、半径位置bから半径位置cまで更に減速しながら移動して、半径位置cにおいて停止する。このように、処理液ノズル41は、エッチング処理時に加速し、且つ減速する。 (4) As shown in FIG. 4, during the etching process, the processing liquid nozzle 41 moves from the center of the substrate W to a radial position c. Specifically, the processing liquid nozzle 41 moves while accelerating from the center of the substrate W to the radial position a. The moving speed of the processing liquid nozzle 41 when reaching the radial position a is “Va”. Thereafter, the processing liquid nozzle 41 moves while decelerating from the radial position a to the radial position b. The moving speed of the processing liquid nozzle 41 when reaching the radial position b is “Vb”. When reaching the radial position b, the processing liquid nozzle 41 moves while further decelerating from the radial position b to the radial position c, and stops at the radial position c. Thus, the processing liquid nozzle 41 accelerates and decelerates during the etching process.
 続いて図1及び図5を参照して、本実施形態の基板処理装置100を説明する。図5は、基板処理装置100のブロック図である。図5に示すように、基板処理装置100は、表面温度センサ104と、表面電位センサ105とを更に備える。 Next, a substrate processing apparatus 100 according to the present embodiment will be described with reference to FIGS. FIG. 5 is a block diagram of the substrate processing apparatus 100. As shown in FIG. 5, the substrate processing apparatus 100 further includes a surface temperature sensor 104 and a surface potential sensor 105.
 表面温度センサ104は、赤外線ヒータ51が基板Wを加熱する温度を検出する。具体的には、表面温度センサ104は、赤外線ヒータ51の表面温度を検出する。プロセッサ11は、表面温度センサ104から、赤外線ヒータ51が基板Wを加熱する温度(基板加熱温度)を示す信号を受信する。基板加熱温度は、エッチング実行時の実行条件である。プロセッサ11は、基板加熱温度を示す情報を記憶部12に記憶させる。 (4) The surface temperature sensor 104 detects the temperature at which the infrared heater 51 heats the substrate W. Specifically, the surface temperature sensor 104 detects the surface temperature of the infrared heater 51. The processor 11 receives from the surface temperature sensor 104 a signal indicating the temperature at which the infrared heater 51 heats the substrate W (substrate heating temperature). The substrate heating temperature is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the substrate heating temperature.
 表面電位センサ105は、基板Wの表面の電位を検出する。プロセッサ11は、表面電位センサ105から、基板Wの表面の電位(基板表面電位)を示す信号を受信する。基板表面電位は、エッチング実行時の実行条件である。プロセッサ11は、基板表面電位を示す情報を記憶部12に記憶させる。 (4) The surface potential sensor 105 detects the surface potential of the substrate W. The processor 11 receives a signal indicating the potential of the surface of the substrate W (substrate surface potential) from the surface potential sensor 105. The substrate surface potential is an execution condition when performing the etching. The processor 11 causes the storage unit 12 to store information indicating the substrate surface potential.
 図5に示すように、基板処理装置100は、第1差圧計106と、給気風速計107と、給気風量計108とを更に備える。 As shown in FIG. 5, the substrate processing apparatus 100 further includes a first differential pressure gauge 106, a supply air velocity meter 107, and a supply air flow meter 108.
 第1差圧計106は、FFU22の差圧を検出する。第1差圧計106は、例えば、微差圧計である。プロセッサ11は、第1差圧計106から、FFU22の差圧を示す信号を受信する。FFU21の差圧は、エッチング実行時の実行条件である。プロセッサ11は、FFU22の差圧を示す情報を記憶部12に記憶させる。 The first differential pressure gauge 106 detects the differential pressure of the FFU 22. The first differential pressure gauge 106 is, for example, a fine differential pressure gauge. The processor 11 receives a signal indicating the differential pressure of the FFU 22 from the first differential pressure gauge 106. The differential pressure of the FFU 21 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the pressure difference of the FFU 22.
 給気風速計107は、FFU22が処理室2内に送る空気の風速(給気風速)を検出する。プロセッサ11は、給気風速計107から、給気風速を示す信号を受信する。給気風速は、エッチング実行時の実行条件である。プロセッサ11は、給気風速を示す情報を記憶部12に記憶させる。 The air supply anemometer 107 detects the air velocity (air supply air velocity) of the air that the FFU 22 sends into the processing chamber 2. The processor 11 receives a signal indicating the supply air velocity from the supply air velocity meter 107. The supply air velocity is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the supply air velocity.
 給気風量計108は、FFU22が処理室2内に送る空気の風量(給気風量)を検出する。プロセッサ11は、給気風量計108から、給気風量を示す信号を受信する。給気風量は、エッチング実行時の実行条件である。プロセッサ11は、給気風量を示す情報を記憶部12に記憶させる。 (4) The air supply air flow meter 108 detects the air flow (air supply air flow) of the air that the FFU 22 sends into the processing chamber 2. The processor 11 receives a signal indicating the supply air flow from the supply air flow meter 108. The supply air volume is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the supply air volume.
 図5に示すように、基板処理装置100は、第2差圧計109と、排気風速計110と、排気風量計111とを更に備える。 基板 As shown in FIG. 5, the substrate processing apparatus 100 further includes a second differential pressure gauge 109, an exhaust anemometer 110, and an exhaust air flow meter 111.
 第2差圧計109は、バルブ233の差圧を検出する。第2差圧計109は、例えば、微差圧計である。プロセッサ11は、第2差圧計109から、バルブ233の差圧を示す信号を受信する。バルブ233の差圧は、排気圧に対応する。排気圧は、エッチング実行時の実行条件である。プロセッサ11は、バルブ233の差圧(排気圧)を示す情報を記憶部12に記憶させる。 The second differential pressure gauge 109 detects the differential pressure of the valve 233. The second differential pressure gauge 109 is, for example, a fine differential pressure gauge. The processor 11 receives, from the second differential pressure gauge 109, a signal indicating the differential pressure of the valve 233. The differential pressure of the valve 233 corresponds to the exhaust pressure. The exhaust pressure is an execution condition when performing the etching. The processor 11 causes the storage unit 12 to store information indicating the differential pressure (exhaust pressure) of the valve 233.
 排気風速計110は、処理室2から排気される気体の風速(排気風速)を検出する。プロセッサ11は、排気風速計110から、排気風速を示す信号を受信する。排気風速は、エッチング実行時の実行条件である。プロセッサ11は、排気風速を示す情報を記憶部12に記憶させる。 (4) The exhaust gas anemometer 110 detects the wind velocity (exhaust wind velocity) of the gas exhausted from the processing chamber 2. The processor 11 receives a signal indicating the exhaust wind speed from the exhaust anemometer 110. The exhaust air velocity is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the exhaust wind speed.
 排気風量計111は、処理室2から排気される気体の風量(排気風量)を検出する。プロセッサ11は、排気風量計111から、排気風量を示す信号を受信する。排気風量は、エッチング実行時の実行条件である。プロセッサ11は、排気風量を示す情報を記憶部12に記憶させる。 (4) The exhaust air flow meter 111 detects the air volume of the gas exhausted from the processing chamber 2 (the exhaust air volume). The processor 11 receives a signal indicating the exhaust air volume from the exhaust air volume meter 111. The exhaust air volume is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the exhaust air volume.
 図5に示すように、基板処理装置100は、光量センサ112と、雰囲気濃度センサ113と、湿度センサ114と、酸素濃度センサ115と、アンモニア濃度センサ116と、VOC濃度センサ117とを更に備える。 As shown in FIG. 5, the substrate processing apparatus 100 further includes a light quantity sensor 112, an atmosphere concentration sensor 113, a humidity sensor 114, an oxygen concentration sensor 115, an ammonia concentration sensor 116, and a VOC concentration sensor 117.
 光量センサ112は、処理室2内の光量を検出する。プロセッサ11は、光量センサ112から、処理室2内の光量を示す信号を受信する。処理室2内の光量は、エッチング実行時の実行条件である。プロセッサ11は、処理室2内の光量を示す情報を記憶部12に記憶させる。 The light quantity sensor 112 detects the light quantity in the processing chamber 2. The processor 11 receives a signal indicating the amount of light in the processing chamber 2 from the light amount sensor 112. The light amount in the processing chamber 2 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the amount of light in the processing chamber 2.
 雰囲気濃度センサ113は、処理室2内で気体となった処理液Lの濃度(処理液雰囲気濃度)を検出する。プロセッサ11は、雰囲気濃度センサ113から、処理液雰囲気濃度を示す信号を受信する。処理液雰囲気濃度は、エッチング実行時の実行条件である。プロセッサ11は、処理液雰囲気濃度を示す情報を記憶部12に記憶させる。 (4) The atmosphere concentration sensor 113 detects the concentration of the processing liquid L gasified in the processing chamber 2 (processing liquid atmospheric concentration). The processor 11 receives a signal indicating the processing solution atmosphere concentration from the atmosphere concentration sensor 113. The processing solution atmosphere concentration is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the processing solution atmosphere concentration.
 湿度センサ114は、処理室2内の湿度を検出する。プロセッサ11は、湿度センサ114から、処理室2内の湿度を示す信号を受信する。処理室2内の湿度は、エッチング実行時の実行条件である。プロセッサ11は、処理室2内の湿度を示す情報を記憶部12に記憶させる。 (4) The humidity sensor 114 detects the humidity in the processing chamber 2. The processor 11 receives a signal indicating the humidity in the processing chamber 2 from the humidity sensor 114. The humidity in the processing chamber 2 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the humidity in the processing room 2.
 酸素濃度センサ115は、処理室2内の酸素濃度を検出する。プロセッサ11は、酸素濃度センサ115から、処理室2内の酸素濃度を示す信号を受信する。処理室2内の酸素濃度は、エッチング実行時の実行条件である。プロセッサ11は、処理室2内の酸素濃度を示す情報を記憶部12に記憶させる。 The oxygen concentration sensor 115 detects the oxygen concentration in the processing chamber 2. The processor 11 receives a signal indicating the oxygen concentration in the processing chamber 2 from the oxygen concentration sensor 115. The oxygen concentration in the processing chamber 2 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the oxygen concentration in the processing chamber 2.
 アンモニア濃度センサ116は、処理室2内のアンモニア濃度を検出する。プロセッサ11は、アンモニア濃度センサ116から、処理室2内のアンモニア濃度を示す信号を受信する。処理室2内のアンモニア濃度は、エッチング実行時の実行条件である。プロセッサ11は、処理室2内のアンモニア濃度を示す情報を記憶部12に記憶させる。 (4) The ammonia concentration sensor 116 detects the ammonia concentration in the processing chamber 2. The processor 11 receives a signal indicating the ammonia concentration in the processing chamber 2 from the ammonia concentration sensor 116. The ammonia concentration in the processing chamber 2 is an execution condition at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the ammonia concentration in the processing chamber 2.
 VOC濃度センサ117は、処理室2内の揮発性有機化合物(VOC)の濃度(VOC濃度)を検出する。プロセッサ11は、VOC濃度センサ117から、処理室2内のVOC濃度を示す信号を受信する。処理室2内のVOC濃度は、エッチング実行時の実行条件である。プロセッサ11は、処理室2内のVOC濃度を示す情報を記憶部12に記憶させる。 The VOC concentration sensor 117 detects the concentration of volatile organic compounds (VOC) in the processing chamber 2 (VOC concentration). The processor 11 receives a signal indicating the VOC concentration in the processing chamber 2 from the VOC concentration sensor 117. The VOC concentration in the processing chamber 2 is an execution condition when performing the etching. The processor 11 causes the storage unit 12 to store information indicating the VOC concentration in the processing chamber 2.
 続いて図6を参照して、本実施形態の処理液供給部40を説明する。図6は、本実施形態の処理液供給部40の模式図である。図6に示すように、基板処理装置100は処理液供給部40を備える。処理液供給部40は、処理液ノズル41に処理液Lを供給する。処理液供給部40は、図1を参照して説明した処理液供給配管42に加えて、温度センサ421と、濃度センサ422と、バルブ423と、ミキシングバルブ424と、流量計425と、加熱ヒータ426と、サックバックバルブ427とを更に備える。 Next, the processing liquid supply unit 40 of the present embodiment will be described with reference to FIG. FIG. 6 is a schematic diagram of the processing liquid supply unit 40 of the present embodiment. As shown in FIG. 6, the substrate processing apparatus 100 includes a processing liquid supply unit 40. The processing liquid supply unit 40 supplies the processing liquid L to the processing liquid nozzle 41. The processing liquid supply unit 40 includes a temperature sensor 421, a concentration sensor 422, a valve 423, a mixing valve 424, a flow meter 425, and a heater in addition to the processing liquid supply pipe 42 described with reference to FIG. 426 and a suck back valve 427 are further provided.
 温度センサ421は、処理液供給配管42を流れる処理液Lの温度を検出する。濃度センサ422は、処理液供給配管42を流れる処理液Lに含まれるエッチング成分の濃度を検出する。以下、処理液供給配管42を流れる処理液Lに含まれるエッチング成分の濃度を「第1処理液濃度」と記載する場合がある。 (4) The temperature sensor 421 detects the temperature of the processing liquid L flowing through the processing liquid supply pipe 42. The concentration sensor 422 detects the concentration of the etching component contained in the processing liquid L flowing through the processing liquid supply pipe 42. Hereinafter, the concentration of the etching component contained in the processing liquid L flowing through the processing liquid supply pipe 42 may be referred to as “first processing liquid concentration”.
 バルブ423は、処理液供給配管42に配置される。バルブ423は、処理液ノズル41への処理液Lの供給及び供給停止を切り替える。また、バルブ423は、処理液供給配管42においてバルブ423よりも下流へ流れる処理液Lの流量を制御する。更に、バルブ423は、処理液ノズル41から吐出する処理液Lの吐出流量を制御する。また、バルブ423は、処理液Lの吐出流量の立ち上がり特性及び立ち下がり特性を制御する。詳しくは、バルブ423が開くと、処理液ノズル41から基板Wに向けて処理液Lが吐出される。一方、バルブ423が閉じると、処理液Lの吐出が停止する。また、バルブ423の開度に応じて、バルブ423よりも下流へ流れる処理液Lの流量が調整される。したがって、バルブ423の開度に応じて、処理液Lの吐出流量が調整される。また、バルブ423を開く速度に応じて、処理液Lの吐出流量の立ち上がり特性が調整され、バルブ423を閉じる速度に応じて、処理液Lの吐出流量の立ち下がり特性が調整される。バルブ423は、例えば、モータバルブである。 The valve 423 is disposed in the processing liquid supply pipe 42. The valve 423 switches between supplying and stopping the supply of the processing liquid L to the processing liquid nozzle 41. The valve 423 controls the flow rate of the processing liquid L flowing downstream of the valve 423 in the processing liquid supply pipe 42. Further, the valve 423 controls the discharge flow rate of the processing liquid L discharged from the processing liquid nozzle 41. Further, the valve 423 controls a rising characteristic and a falling characteristic of the discharge flow rate of the processing liquid L. Specifically, when the valve 423 is opened, the processing liquid L is discharged from the processing liquid nozzle 41 toward the substrate W. On the other hand, when the valve 423 is closed, the discharge of the processing liquid L stops. The flow rate of the processing liquid L flowing downstream of the valve 423 is adjusted according to the opening degree of the valve 423. Therefore, the discharge flow rate of the processing liquid L is adjusted according to the opening degree of the valve 423. Further, the rising characteristic of the discharge flow rate of the processing liquid L is adjusted according to the speed at which the valve 423 is opened, and the falling characteristic of the discharge flow rate of the processing liquid L is adjusted according to the speed at which the valve 423 is closed. The valve 423 is, for example, a motor valve.
 ミキシングバルブ424は、処理液供給配管42に配置される。ミキシングバルブ424が開くと、処理液供給配管42に純水が流入して、第1処理液濃度が希釈される。 The mixing valve 424 is disposed in the processing liquid supply pipe 42. When the mixing valve 424 is opened, pure water flows into the processing liquid supply pipe 42 to dilute the first processing liquid concentration.
 流量計425は、処理液供給配管42を流れる処理液Lの流量を検出する。換言すると、処理液Lの吐出流量を検出する。加熱ヒータ426は、処理液供給配管42を流れる処理液Lを加熱する。 The flow meter 425 detects the flow rate of the processing liquid L flowing through the processing liquid supply pipe 42. In other words, the discharge flow rate of the processing liquid L is detected. The heater 426 heats the processing liquid L flowing through the processing liquid supply pipe 42.
 サックバックバルブ427は、処理液供給配管42に配置される。サックバックバルブ427は、バルブ423よりも下流側に設けられて処理液供給流路の容積を変化させる。より具体的には、サックバックバルブ427は、ダイヤフラムを有し、加圧空気を流入させてダイヤフラムを変形させることで、処理液供給流路の容積を変化させる。加圧空気の流入により処理液供給流路の容積が大きくなると、処理液ノズル41が有する流路の圧力、及び処理液供給流路の圧力が瞬間的に小さくなり、処理液ノズル41の開口付近に残留している処理液Lに対して吸引力が作用する。本実施形態では、処理液Lの吐出が停止した後、図3及び図5を参照して説明した制御部10(プロセッサ11)が、サックバックバルブ427を制御して、サックバックバルブ427に加圧空気を流入させる。この結果、処理液ノズル41から処理液供給配管42の上流側に向けて処理液Lが吸い込まれる。 The suck back valve 427 is disposed in the processing liquid supply pipe 42. The suck back valve 427 is provided downstream of the valve 423 to change the volume of the processing liquid supply flow path. More specifically, the suck back valve 427 has a diaphragm, and changes the volume of the processing liquid supply flow path by deforming the diaphragm by flowing pressurized air. When the volume of the processing liquid supply channel increases due to the inflow of the pressurized air, the pressure of the processing liquid nozzle 41 and the pressure of the processing liquid supply channel instantaneously decrease, and the vicinity of the opening of the processing liquid nozzle 41 A suction force acts on the processing liquid L remaining in the substrate. In the present embodiment, after the discharge of the processing liquid L is stopped, the control unit 10 (processor 11) described with reference to FIGS. 3 and 5 controls the suck-back valve 427 to add the suck-back valve 427. Inlet compressed air. As a result, the processing liquid L is sucked from the processing liquid nozzle 41 toward the upstream side of the processing liquid supply pipe 42.
 続いて図7を参照して、ガス供給部70を説明する。図7は、ガス供給部70の模式図である。図7に示すように、基板処理装置100はガス供給部70を備える。ガス供給部70は、図1を参照して説明したガス供給配管72に加えて、レギュレータ721と、温度センサ722と、圧力センサ723と、濃度センサ724と、バルブ725と、流量計726と、加熱ヒータ727とを更に備える。 Next, the gas supply unit 70 will be described with reference to FIG. FIG. 7 is a schematic diagram of the gas supply unit 70. As shown in FIG. 7, the substrate processing apparatus 100 includes a gas supply unit 70. The gas supply unit 70 includes a regulator 721, a temperature sensor 722, a pressure sensor 723, a concentration sensor 724, a valve 725, a flow meter 726, in addition to the gas supply pipe 72 described with reference to FIG. A heater 727 is further provided.
 レギュレータ721は、ガス供給配管72に配置される。レギュレータ721は、ガス供給流路の圧力を調整する。レギュレータ721は、例えば、電空レギュレータである。 The regulator 721 is arranged in the gas supply pipe 72. The regulator 721 adjusts the pressure of the gas supply channel. The regulator 721 is, for example, an electropneumatic regulator.
 温度センサ722は、ガス供給配管72を流れるガスGの温度を検出する。圧力センサ723は、ガス供給流路の圧力を検出する。濃度センサ724は、ガスGに含まれる不活性成分の濃度を検出する。以下、ガス供給配管72を流れるガスGの温度を「ガスGの温度」と記載する場合がある。また、ガスGに含まれる不活性成分の濃度を「ガスGの濃度」と記載する場合がある。 The temperature sensor 722 detects the temperature of the gas G flowing through the gas supply pipe 72. The pressure sensor 723 detects the pressure of the gas supply channel. The concentration sensor 724 detects the concentration of the inert component contained in the gas G. Hereinafter, the temperature of the gas G flowing through the gas supply pipe 72 may be described as “the temperature of the gas G”. In addition, the concentration of the inert component contained in the gas G may be described as “the concentration of the gas G”.
 バルブ725は、ガス供給配管72に配置される。バルブ725は、ガスノズル71から噴出するガスGの噴出流量を制御する。また、バルブ725は、ガスGの噴出流量の立ち上がり特性及び立ち下がり特性を制御する。詳しくは、バルブ725の開度に応じて、ガスGの噴出流量が調整される。また、バルブ725を開く速度に応じて、ガスGの噴出流量の立ち上がり特性が調整され、バルブ725を閉じる速度に応じて、ガスGの噴出流量の立ち下がり特性が調整される。バルブ725は、例えば、モータバルブである。 The valve 725 is disposed on the gas supply pipe 72. The valve 725 controls the ejection flow rate of the gas G ejected from the gas nozzle 71. Further, the valve 725 controls a rising characteristic and a falling characteristic of the ejection flow rate of the gas G. More specifically, the ejection flow rate of the gas G is adjusted according to the opening of the valve 725. The rising characteristic of the gas G ejection flow is adjusted according to the speed at which the valve 725 is opened, and the falling characteristic of the gas G ejection flow is adjusted according to the speed at which the valve 725 is closed. The valve 725 is, for example, a motor valve.
 流量計726は、ガス供給配管72を流れるガスGの流量を検出する。換言すると、ガスGの噴出流量を検出する。加熱ヒータ727は、ガス供給配管72を流れるガスGを加熱する。 The flow meter 726 detects the flow rate of the gas G flowing through the gas supply pipe 72. In other words, the ejection flow rate of the gas G is detected. The heater 727 heats the gas G flowing through the gas supply pipe 72.
 続いて図8を参照して、処理液循環部300と、第1処理液成分供給部510と、第2処理液成分供給部520と、処理液回収部600とを説明する。図8は、本実施形態の処理液循環部300、第1処理液成分供給部510、第2処理液成分供給部520、及び処理液回収部600を示す模式図である。図8に示すように、基板処理装置100は、処理液循環部300、第1処理液成分供給部510、第2処理液成分供給部520、及び処理液回収部600を更に備える。 Next, the processing liquid circulation unit 300, the first processing liquid component supply unit 510, the second processing liquid component supply unit 520, and the processing liquid recovery unit 600 will be described with reference to FIG. FIG. 8 is a schematic diagram illustrating the processing liquid circulation unit 300, the first processing liquid component supply unit 510, the second processing liquid component supply unit 520, and the processing liquid recovery unit 600 according to the present embodiment. As shown in FIG. 8, the substrate processing apparatus 100 further includes a processing liquid circulation unit 300, a first processing liquid component supply unit 510, a second processing liquid component supply unit 520, and a processing liquid recovery unit 600.
 処理液循環部300は、処理液Lを循環させる。具体的には、処理液循環部300は、調合槽301と、循環配管302と、加熱ヒータ303と、ポンプ304と、バルブ305と、リリーフバルブ306と、リリーフ配管307と、温度センサ308と、濃度センサ309と、圧力センサ310と、流量計311とを備える。 The processing liquid circulation unit 300 circulates the processing liquid L. Specifically, the processing liquid circulation unit 300 includes a preparation tank 301, a circulation pipe 302, a heater 303, a pump 304, a valve 305, a relief valve 306, a relief pipe 307, a temperature sensor 308, A concentration sensor 309, a pressure sensor 310, and a flow meter 311 are provided.
 調合槽301は、処理液Lを収容する。循環配管302は、処理液Lが循環する循環流路を形成する。循環配管302に、処理液供給配管42が接続する。 (4) The preparation tank 301 stores the processing liquid L. The circulation pipe 302 forms a circulation flow path through which the processing liquid L circulates. The processing liquid supply pipe 42 is connected to the circulation pipe 302.
 加熱ヒータ303は、循環配管302を流れる処理液Lを加熱する。ポンプ304は、循環配管302に配置される。ポンプ304は、調合槽301から処理液Lを吸い上げて、循環配管302に処理液Lを送る。 The heater 303 heats the processing liquid L flowing through the circulation pipe 302. Pump 304 is arranged in circulation pipe 302. The pump 304 sucks up the processing liquid L from the mixing tank 301 and sends the processing liquid L to the circulation pipe 302.
 バルブ305は、循環配管302に配置される。バルブ305は、循環配管302を流れる処理液Lの流量を制御する。詳しくは、バルブ305の開度に応じて、循環配管302を流れる処理液Lの流量が調整される。バルブ305は、例えば、モータバルブである。以下、循環配管302を流れる処理液Lの流量を「処理液循環流量」と記載する場合がある。 The valve 305 is disposed in the circulation pipe 302. The valve 305 controls the flow rate of the processing liquid L flowing through the circulation pipe 302. Specifically, the flow rate of the processing liquid L flowing through the circulation pipe 302 is adjusted according to the opening of the valve 305. The valve 305 is, for example, a motor valve. Hereinafter, the flow rate of the processing liquid L flowing through the circulation pipe 302 may be referred to as “processing liquid circulation flow rate”.
 リリーフバルブ306は、循環配管302に配置される。リリーフ配管307は、リリーフバルブ306に接続する。リリーフバルブ306が開くと、循環配管302からリリーフ配管307に処理液Lが流入する。リリーフ配管307は、リリーフバルブ306から流入した処理液Lを調合槽301へ案内する。リリーフバルブ306の開度に応じて、循環流路の圧力が調整される。 The relief valve 306 is arranged in the circulation pipe 302. The relief pipe 307 is connected to the relief valve 306. When the relief valve 306 is opened, the processing liquid L flows from the circulation pipe 302 to the relief pipe 307. The relief pipe 307 guides the processing liquid L flowing from the relief valve 306 to the preparation tank 301. The pressure in the circulation channel is adjusted according to the opening of the relief valve 306.
 温度センサ308は、循環配管302を流れる処理液Lの温度を検出する。濃度センサ309は、循環配管302を流れる処理液Lに含まれるエッチング成分の濃度を検出する。圧力センサ310は、循環流路の圧力を検出する。流量計311は、処理液循環流量を検出する。以下、循環配管302を流れる処理液Lの温度を「第2処理液温度」と記載する場合がある。また、循環配管302を流れる処理液Lに含まれるエッチング成分の濃度を「第2処理液濃度」と記載する場合がある。 The temperature sensor 308 detects the temperature of the processing liquid L flowing through the circulation pipe 302. The concentration sensor 309 detects the concentration of the etching component contained in the processing liquid L flowing through the circulation pipe 302. The pressure sensor 310 detects the pressure in the circulation channel. The flow meter 311 detects the processing liquid circulation flow rate. Hereinafter, the temperature of the processing liquid L flowing through the circulation pipe 302 may be referred to as “second processing liquid temperature”. In addition, the concentration of the etching component contained in the processing liquid L flowing through the circulation pipe 302 may be referred to as “second processing liquid concentration”.
 第1処理液成分供給部510は、調合槽301に第1処理液成分L1を供給する。第2処理液成分供給部520は、調合槽301に第2処理液成分L2を供給する。調合槽301において、第1処理液成分L1と第2処理液成分L2とが調合されて、処理液Lが生成される。例えば、第1処理液成分L1は燐酸、フッ酸、硝酸、又は水酸化アンモニウムであり、第2処理液成分L2は純水である。あるいは、第1処理液成分L1はフッ酸であり、第2処理液成分L2は硝酸水溶液である。あるいは、第1処理液成分L1は硝酸水溶液であり、第2処理液成分L2はフッ酸である。あるいは、第1処理液成分L1は水酸化アンモニウムであり、第2処理液成分L2は過酸化水素水である。あるいは、第1処理液成分L1は過酸化水素水であり、第2処理液成分L2は水酸化アンモニウムである。 The first processing liquid component supply unit 510 supplies the first processing liquid component L1 to the preparation tank 301. The second processing liquid component supply unit 520 supplies the second processing liquid component L2 to the preparation tank 301. In the mixing tank 301, the first processing liquid component L1 and the second processing liquid component L2 are mixed to generate the processing liquid L. For example, the first processing liquid component L1 is phosphoric acid, hydrofluoric acid, nitric acid, or ammonium hydroxide, and the second processing liquid component L2 is pure water. Alternatively, the first processing liquid component L1 is hydrofluoric acid, and the second processing liquid component L2 is a nitric acid aqueous solution. Alternatively, the first processing liquid component L1 is a nitric acid aqueous solution, and the second processing liquid component L2 is hydrofluoric acid. Alternatively, the first processing liquid component L1 is ammonium hydroxide, and the second processing liquid component L2 is hydrogen peroxide. Alternatively, the first processing liquid component L1 is a hydrogen peroxide solution, and the second processing liquid component L2 is an ammonium hydroxide.
 第1処理液成分供給部510は、配管511と、レギュレータ512と、圧力センサ513と、定量吐出ポンプ514とを備える。配管511は、第1処理液成分L1が流れる第1処理液成分供給流路を形成する。配管511は、第1処理液成分L1を調合槽301まで案内する。 The first processing liquid component supply unit 510 includes a pipe 511, a regulator 512, a pressure sensor 513, and a fixed-rate discharge pump 514. The pipe 511 forms a first processing liquid component supply channel through which the first processing liquid component L1 flows. The pipe 511 guides the first processing liquid component L1 to the preparation tank 301.
 レギュレータ512は、配管511に配置される。レギュレータ512は、第1処理液成分供給流路の圧力を調整する。レギュレータ512は、例えば、電空レギュレータである。 The regulator 512 is arranged in the pipe 511. The regulator 512 adjusts the pressure of the first processing liquid component supply flow path. The regulator 512 is, for example, an electropneumatic regulator.
 圧力センサ513は、第1処理液成分供給流路の圧力を検出する。定量吐出ポンプ514は、配管511に配置される。定量吐出ポンプ514は、第1処理液成分L1を一定量ずつ吐出する。 The pressure sensor 513 detects the pressure of the first processing liquid component supply flow path. The fixed-rate discharge pump 514 is disposed on the pipe 511. The constant discharge pump 514 discharges the first processing liquid component L1 by a constant amount.
 第2処理液成分供給部520は、配管521と、レギュレータ522と、圧力センサ523とを備える。配管521は、第2処理液成分L2が流れる第2処理液成分供給流路を形成する。配管521は、第2処理液成分L2を調合槽301まで案内する。 The second processing liquid component supply unit 520 includes a pipe 521, a regulator 522, and a pressure sensor 523. The pipe 521 forms a second processing liquid component supply channel through which the second processing liquid component L2 flows. The pipe 521 guides the second processing liquid component L2 to the preparation tank 301.
 レギュレータ522は、配管521に配置される。レギュレータ522は、第2処理液成分供給流路の圧力を調整する。レギュレータ522は、例えば、電空レギュレータである。圧力センサ523は、第2処理液成分供給流路の圧力を検出する。 The regulator 522 is disposed in the pipe 521. The regulator 522 adjusts the pressure of the second processing liquid component supply flow path. The regulator 522 is, for example, an electropneumatic regulator. The pressure sensor 523 detects the pressure of the second processing liquid component supply flow path.
 処理液回収部600は、処理室2から送られてくる使用後の処理液Lを調合槽301へ供給する。処理液回収部600は、回収槽601と、第1回収配管602と、第2回収配管603と、ポンプ604とを備える。 (4) The processing liquid recovery unit 600 supplies the used processing liquid L sent from the processing chamber 2 to the preparation tank 301. The processing liquid collecting unit 600 includes a collecting tank 601, a first collecting pipe 602, a second collecting pipe 603, and a pump 604.
 第1回収配管602は、処理室2から回収槽601まで使用後の処理液Lを案内する。回収槽601は、使用後の処理液Lを収容する。第2回収配管603は、回収槽601から調合槽301まで使用後の処理液Lを案内する。ポンプ604は、第2回収配管603に配置される。ポンプ604は、回収槽601から使用後の処理液Lを吸い上げて、第2回収配管603に使用後の処理液Lを送る。 The first recovery pipe 602 guides the used processing liquid L from the processing chamber 2 to the recovery tank 601. The collection tank 601 stores the used processing liquid L. The second recovery pipe 603 guides the used processing liquid L from the recovery tank 601 to the preparation tank 301. The pump 604 is disposed on the second recovery pipe 603. The pump 604 sucks up the used processing liquid L from the recovery tank 601 and sends the used processing liquid L to the second recovery pipe 603.
 続いて図6~図9を参照して、本実施形態の基板処理装置100を説明する。図9は基板処理装置100のブロック図である。図9に示すように、プロセッサ11は、記憶部12に記憶されているコンピュータープログラムを実行して、処理液供給部40、ガス供給部70、処理液循環部300、第1処理液成分供給部510、第2処理液成分供給部520、及び処理液回収部600を制御する。 Next, the substrate processing apparatus 100 according to the present embodiment will be described with reference to FIGS. FIG. 9 is a block diagram of the substrate processing apparatus 100. As shown in FIG. 9, the processor 11 executes a computer program stored in the storage unit 12 and executes a processing liquid supply unit 40, a gas supply unit 70, a processing liquid circulation unit 300, a first processing liquid component supply unit. The control unit 510 controls the second processing liquid component supply unit 520 and the processing liquid recovery unit 600.
 具体的には、プロセッサ11は、処理液供給部40が備えるバルブ423、ミキシングバルブ424、加熱ヒータ426、及びサックバックバルブ427を制御する。 Specifically, the processor 11 controls the valve 423, the mixing valve 424, the heater 426, and the suckback valve 427 included in the processing liquid supply unit 40.
 プロセッサ11は、バルブ423及びミキシングバルブ424を制御して、処理液供給配管42を流れる処理液Lに含まれるエッチング成分の濃度(第1処理液濃度)を調整することができる。第1処理液濃度は、基板処理装置100の設定条件である。更に、プロセッサ11は、バルブ423を制御して、処理液ノズル41から吐出する処理液Lの吐出流量を調整することができる。また、プロセッサ11は、バルブ423を制御して、処理液Lの吐出流量の立ち上がり特性及び立ち下がり特性を調整することができる。処理液Lの吐出流量、処理液Lの吐出流量の立ち上がり特性、及び処理液Lの吐出流量の立ち下がり特性は、基板処理装置100の設定条件である。 The processor 11 can control the valve 423 and the mixing valve 424 to adjust the concentration of the etching component (first processing liquid concentration) contained in the processing liquid L flowing through the processing liquid supply pipe 42. The first processing solution concentration is a setting condition of the substrate processing apparatus 100. Further, the processor 11 can adjust the discharge flow rate of the processing liquid L discharged from the processing liquid nozzle 41 by controlling the valve 423. Further, the processor 11 can control the rising and falling characteristics of the discharge flow rate of the processing liquid L by controlling the valve 423. The discharge flow rate of the processing liquid L, the rise characteristic of the discharge flow rate of the processing liquid L, and the fall characteristic of the discharge flow rate of the processing liquid L are set conditions of the substrate processing apparatus 100.
 また、プロセッサ11は、処理液ノズル41からの処理液Lの吐出を開始させる信号の発生タイミングを調整して、処理液Lの吐出開始タイミングを調整することができる。具体的には、処理液Lの吐出を開始させる信号は、バルブ423を開く信号であり、バルブ423を開く信号の発生タイミングを調整して、処理液Lの吐出開始タイミングを調整することができる。バルブ423を開く信号の発生タイミングは、基板処理装置100の設定条件である。 {Circle around (4)} The processor 11 can adjust the generation timing of the signal for starting the discharge of the processing liquid L from the processing liquid nozzle 41 to adjust the discharge start timing of the processing liquid L. Specifically, the signal for starting the discharge of the processing liquid L is a signal for opening the valve 423, and the timing for generating the signal for opening the valve 423 can be adjusted to adjust the timing for starting the discharge of the processing liquid L. . The generation timing of the signal for opening the valve 423 is a setting condition of the substrate processing apparatus 100.
 また、プロセッサ11は、処理液ノズル41からの処理液Lの吐出を停止させる信号の発生タイミングを調整して、処理液Lの吐出停止タイミングを調整することができる。具体的には、処理液Lの吐出を停止させる信号は、バルブ423を閉じる信号であり、バルブ423を閉じる信号の発生タイミングを調整して、処理液Lの吐出停止タイミングを調整することができる。バルブ423を閉じる信号の発生タイミングは、基板処理装置100の設定条件である。 (4) The processor 11 can adjust the generation timing of the signal for stopping the discharge of the processing liquid L from the processing liquid nozzle 41 to adjust the timing of stopping the discharge of the processing liquid L. Specifically, the signal for stopping the discharge of the processing liquid L is a signal for closing the valve 423, and the timing for generating the signal for closing the valve 423 can be adjusted to adjust the timing for stopping the discharge of the processing liquid L. . The generation timing of the signal for closing the valve 423 is a setting condition of the substrate processing apparatus 100.
 また、プロセッサ11は、処理液ノズル41から処理液Lが吐出する流量を変更させる信号の発生タイミングを調整して、処理液Lの吐出流量変更タイミングを調整することができる。具体的には、処理液Lが吐出する流量を変更させる信号は、バルブ423の開度を変更する信号であり、バルブ423の開度を変更する信号の発生タイミングを調整して、処理液Lの吐出流量変更タイミングを調整することができる。バルブ423の開度を変更する信号の発生タイミングは、基板処理装置100の設定条件である。 {Circle around (4)} The processor 11 can adjust the generation timing of the signal for changing the flow rate of the processing liquid L discharged from the processing liquid nozzle 41 to adjust the discharge flow rate change timing of the processing liquid L. Specifically, the signal for changing the flow rate of the processing liquid L is a signal for changing the opening of the valve 423, and the generation timing of the signal for changing the opening of the valve 423 is adjusted to adjust the processing liquid L. Of the discharge flow rate can be adjusted. The generation timing of the signal for changing the opening of the valve 423 is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、加熱ヒータ426を制御して、処理液供給配管42を流れる処理液Lの温度を調整することができる。以下、処理液供給配管42を流れる処理液Lの温度を「第1処理液温度」と記載する場合がある。第1処理液温度は、基板処理装置100の設定条件である。 The processor 11 can control the temperature of the processing liquid L flowing through the processing liquid supply pipe 42 by controlling the heater 426. Hereinafter, the temperature of the processing liquid L flowing through the processing liquid supply pipe 42 may be referred to as “first processing liquid temperature”. The first processing liquid temperature is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、サックバックバルブ427を制御して、図1及び図3を参照して説明したサックバック速度及びサックバック停止位置を調整することができる。サックバック速度及びサックバック停止位置は、基板処理装置100の設定条件である。 The processor 11 controls the suckback valve 427 to adjust the suckback speed and the suckback stop position described with reference to FIGS. 1 and 3. The suck back speed and the suck back stop position are set conditions of the substrate processing apparatus 100.
 また、プロセッサ11は、処理液供給部40が備える温度センサ421、濃度センサ422、及び流量計425から信号を受信する。温度センサ421が出力する信号は、第1処理液温度を示す。濃度センサ422が出力する信号は、第1処理液濃度を示す。流量計425が出力する信号は、処理液Lの吐出流量を示す。第1処理液温度、第1処理液濃度、及び処理液Lの吐出流量は、エッチング実行時の実行条件である。プロセッサ11は、第1処理液温度、第1処理液濃度、及び処理液Lの吐出流量を示す情報を記憶部12に記憶させる。更に、プロセッサ11は、濃度センサ422が出力する信号に基づいて、処理液Lの純度を検出する。処理液Lの純度は、エッチング実行時の実行条件であり、プロセッサ11は、処理液Lの純度を示す情報を記憶部12に記憶させる。 The processor 11 receives signals from the temperature sensor 421, the concentration sensor 422, and the flow meter 425 included in the processing liquid supply unit 40. The signal output from the temperature sensor 421 indicates the first processing liquid temperature. The signal output from the concentration sensor 422 indicates the concentration of the first processing liquid. The signal output from the flow meter 425 indicates the discharge flow rate of the processing liquid L. The first processing liquid temperature, the first processing liquid concentration, and the discharge flow rate of the processing liquid L are execution conditions when performing the etching. The processor 11 causes the storage unit 12 to store information indicating the first processing liquid temperature, the first processing liquid concentration, and the discharge flow rate of the processing liquid L. Further, the processor 11 detects the purity of the processing liquid L based on the signal output from the concentration sensor 422. The purity of the processing liquid L is an execution condition at the time of performing the etching, and the processor 11 causes the storage unit 12 to store information indicating the purity of the processing liquid L.
 プロセッサ11は、ガス供給部70が備えるレギュレータ721、バルブ725、及び加熱ヒータ727を制御する。 The processor 11 controls the regulator 721, the valve 725, and the heater 727 included in the gas supply unit 70.
 プロセッサ11は、レギュレータ721を制御して、ガス供給流路の圧力を調整することができる。ガス供給流路の圧力は、基板処理装置100の設定条件である。 (4) The processor 11 can control the regulator 721 to adjust the pressure of the gas supply channel. The pressure of the gas supply channel is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、バルブ725を制御して、ガスノズル71から噴出するガスGの噴出流量を調整することができる。また、プロセッサ11は、バルブ725を制御して、ガスGの噴出流量の立ち上がり特性及び立ち下がり特性を調整することができる。ガスGの噴出流量、ガスGの噴出流量の立ち上がり特性、及びガスGの噴出流量の立ち下がり特性は、基板処理装置100の設定条件である。 The processor 11 can control the valve 725 to adjust the ejection flow rate of the gas G ejected from the gas nozzle 71. In addition, the processor 11 can control the valve 725 to adjust the rising characteristic and the falling characteristic of the ejection flow rate of the gas G. The ejection rate of the gas G, the rising characteristic of the ejection rate of the gas G, and the falling property of the ejection rate of the gas G are set conditions of the substrate processing apparatus 100.
 また、プロセッサ11は、ガスノズル71からのガスGの噴出を開始させる信号の発生タイミングを調整して、ガスGの噴出開始タイミングを調整することができる。具体的には、ガスGの噴出を開始させる信号は、バルブ725を開く信号であり、バルブ725を開く信号の発生タイミングを調整して、ガスGの噴出開始タイミングを調整することができる。バルブ725を開く信号の発生タイミングは、基板処理装置100の設定条件である。 {Circle around (4)} The processor 11 can adjust the generation timing of the signal for starting the ejection of the gas G from the gas nozzle 71 to adjust the ejection start timing of the gas G. Specifically, the signal for starting the ejection of the gas G is a signal for opening the valve 725, and the generation timing of the signal for opening the valve 725 can be adjusted to adjust the timing for starting the ejection of the gas G. The generation timing of the signal for opening the valve 725 is a setting condition of the substrate processing apparatus 100.
 また、プロセッサ11は、ガスノズル71からのガスGの噴出を停止させる信号の発生タイミングを調整して、ガスGの噴出停止タイミングを調整することができる。具体的には、ガスGの噴出を停止させる信号は、バルブ725を閉じる信号であり、バルブ725を閉じる信号の発生タイミングを調整して、ガスGの噴出停止タイミングを調整することができる。バルブ725を閉じる信号の発生タイミングは、基板処理装置100の設定条件である。 {Circle around (4)} The processor 11 can adjust the generation timing of the signal for stopping the ejection of the gas G from the gas nozzle 71 to adjust the timing of stopping the ejection of the gas G. Specifically, the signal for stopping the ejection of the gas G is a signal for closing the valve 725, and the timing for generating the signal for closing the valve 725 can be adjusted to adjust the timing for stopping the ejection of the gas G. The generation timing of the signal for closing the valve 725 is a setting condition of the substrate processing apparatus 100.
 また、プロセッサ11は、ガスノズル71からガスGが噴出する流量を変更させる信号の発生タイミングを調整して、ガスGの噴出流量変更タイミングを調整することができる。具体的には、ガスGが噴出する流量を変更させる信号は、バルブ725の開度を変更する信号であり、バルブ725の開度を変更する信号の発生タイミングを調整して、ガスGの噴出流量変更タイミングを調整することができる。バルブ725の開度を変更する信号の発生タイミングは、基板処理装置100の設定条件である。 {Circle around (4)} The processor 11 can adjust the timing at which the signal for changing the flow rate at which the gas G is ejected from the gas nozzle 71 is generated to adjust the timing at which the gas G is ejected. Specifically, the signal for changing the flow rate at which the gas G is ejected is a signal for changing the opening of the valve 725, and the generation timing of the signal for changing the opening of the valve 725 is adjusted so that the ejection of the gas G is adjusted. The flow rate change timing can be adjusted. The generation timing of the signal for changing the opening of the valve 725 is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、加熱ヒータ727を制御して、ガス供給配管72を流れるガスGの温度を調整することができる。ガスGの温度は、基板処理装置100の設定条件である。 The processor 11 can control the temperature of the gas G flowing through the gas supply pipe 72 by controlling the heater 727. The temperature of the gas G is a setting condition of the substrate processing apparatus 100.
 また、プロセッサ11は、処理液供給部40が備える温度センサ722、圧力センサ723、濃度センサ724、及び流量計726から信号を受信する。温度センサ722が出力する信号は、ガス供給配管72を流れるガスGの温度を示す。圧力センサ723が出力する信号は、ガス供給流路の圧力を示す。濃度センサ724が出力する信号は、ガスGに含まれる不活性成分の濃度(ガスGの濃度)を示す。流量計726が出力する信号は、ガスGの噴出流量を示す。ガスGの温度、ガス供給流路の圧力、ガスGの濃度、及びガスGの噴出流量は、エッチング実行時の実行条件である。プロセッサ11は、ガスGの温度、ガス供給流路の圧力、ガスGの濃度、及びガスGの噴出流量を示す情報を記憶部12に記憶させる。更に、プロセッサ11は、濃度センサ724が出力する信号に基づいて、ガスGの純度を検出する。ガスGの純度は、エッチング実行時の実行条件であり、プロセッサ11は、ガスGの純度を示す情報を記憶部12に記憶させる。 {Circle around (4)} The processor 11 receives signals from the temperature sensor 722, the pressure sensor 723, the concentration sensor 724, and the flow meter 726 included in the processing liquid supply unit 40. The signal output from the temperature sensor 722 indicates the temperature of the gas G flowing through the gas supply pipe 72. The signal output from the pressure sensor 723 indicates the pressure of the gas supply channel. The signal output from the concentration sensor 724 indicates the concentration of the inert component contained in the gas G (the concentration of the gas G). The signal output from the flow meter 726 indicates the ejection flow rate of the gas G. The temperature of the gas G, the pressure of the gas supply flow path, the concentration of the gas G, and the ejection flow rate of the gas G are execution conditions at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the temperature of the gas G, the pressure of the gas supply channel, the concentration of the gas G, and the flow rate of the gas G ejected. Further, the processor 11 detects the purity of the gas G based on the signal output from the concentration sensor 724. The purity of the gas G is an execution condition at the time of performing the etching, and the processor 11 causes the storage unit 12 to store information indicating the purity of the gas G.
 プロセッサ11は、処理液循環部300が備える加熱ヒータ303、ポンプ304、バルブ305、リリーフバルブ306を制御する。 The processor 11 controls the heater 303, the pump 304, the valve 305, and the relief valve 306 provided in the processing liquid circulation unit 300.
 プロセッサ11は、加熱ヒータ303を制御して、循環配管302を流れる処理液Lの温度(第2処理液温度)を調整することができる。第2処理液温度は、基板処理装置100の設定条件である。 The processor 11 controls the heater 303 to adjust the temperature of the processing liquid L flowing through the circulation pipe 302 (second processing liquid temperature). The second processing liquid temperature is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、バルブ305を制御して、循環配管302を流れる処理液Lの流量(処理液循環流量)を調整することができる。処理液循環流量は、基板処理装置100の設定条件である。 The processor 11 controls the valve 305 to adjust the flow rate of the processing liquid L flowing through the circulation pipe 302 (processing liquid circulation flow rate). The processing liquid circulation flow rate is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、リリーフバルブ306を制御して、循環流路の圧力を調整することができる。循環流路の圧力は、基板処理装置100の設定条件である。 The processor 11 can control the pressure in the circulation flow path by controlling the relief valve 306. The pressure of the circulation channel is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、処理液循環部300が備える温度センサ308、濃度センサ309、圧力センサ310、及び流量計311から信号を受信する。温度センサ308が出力する信号は、循環配管302を流れる処理液Lの温度(第2処理液温度)を示す。濃度センサ309が出力する信号は、循環配管302を流れる処理液Lに含まれるエッチング成分の濃度(第2処理液濃度)を示す。圧力センサ310が出力する信号は、循環流路の圧力を示す。流量計311が出力する信号は、処理液循環流量を示す。第2処理液温度、第2処理液濃度、循環流路の圧力、及び処理液循環流量は、エッチング実行時の実行条件である。プロセッサ11は、第2処理液温度、第2処理液濃度、循環流路の圧力、及び処理液循環流量を示す情報を記憶部12に記憶させる。 The processor 11 receives signals from the temperature sensor 308, the concentration sensor 309, the pressure sensor 310, and the flow meter 311 provided in the processing liquid circulation unit 300. The signal output from the temperature sensor 308 indicates the temperature of the processing liquid L flowing through the circulation pipe 302 (second processing liquid temperature). The signal output from the concentration sensor 309 indicates the concentration of the etching component contained in the processing liquid L flowing through the circulation pipe 302 (second processing liquid concentration). The signal output by the pressure sensor 310 indicates the pressure of the circulation flow path. The signal output from the flow meter 311 indicates the processing liquid circulation flow rate. The second processing liquid temperature, the second processing liquid concentration, the pressure of the circulation flow path, and the processing liquid circulating flow rate are execution conditions at the time of performing the etching. The processor 11 causes the storage unit 12 to store information indicating the second processing liquid temperature, the second processing liquid concentration, the pressure of the circulation flow path, and the processing liquid circulation flow rate.
 プロセッサ11は、第1処理液成分供給部510が備えるレギュレータ512及び定量吐出ポンプ514を制御する。プロセッサ11は、レギュレータ512を制御して、第1処理液成分供給流路の圧力を調整することができる。また、プロセッサ11は、定量吐出ポンプ514を制御して、第2処理液濃度を調整することができる。第1処理液成分供給流路の圧力、及び第2処理液濃度は、基板処理装置100の設定条件である。 The processor 11 controls the regulator 512 and the fixed-rate discharge pump 514 provided in the first processing liquid component supply unit 510. The processor 11 can control the regulator 512 to adjust the pressure of the first processing liquid component supply flow path. In addition, the processor 11 can control the constant discharge pump 514 to adjust the concentration of the second processing liquid. The pressure of the first processing liquid component supply channel and the concentration of the second processing liquid are set conditions of the substrate processing apparatus 100.
 プロセッサ11は、第1処理液成分供給部510が備える圧力センサ513から信号を受信する。圧力センサ513が出力する信号は、第1処理液成分供給流路の圧力を示す。第1処理液成分供給流路の圧力は、エッチング実行時の実行条件である。プロセッサ11は、第1処理液成分供給流路の圧力を示す情報を記憶部12に記憶させる。 The processor 11 receives a signal from the pressure sensor 513 provided in the first processing liquid component supply unit 510. The signal output from the pressure sensor 513 indicates the pressure of the first processing liquid component supply channel. The pressure of the first processing liquid component supply flow path is an execution condition when performing the etching. The processor 11 causes the storage unit 12 to store information indicating the pressure of the first processing liquid component supply flow path.
 プロセッサ11は、第2処理液成分供給部520が備えるレギュレータ522を制御して、第2処理液成分供給流路の圧力を調整することができる。第2処理液成分供給流路の圧力は、基板処理装置100の設定条件である。 The processor 11 controls the regulator 522 included in the second processing liquid component supply unit 520 to adjust the pressure of the second processing liquid component supply flow path. The pressure of the second processing liquid component supply channel is a setting condition of the substrate processing apparatus 100.
 プロセッサ11は、第2処理液成分供給部520が備える圧力センサ523から信号を受信する。圧力センサ523が出力する信号は、第2処理液成分供給流路の圧力を示す。第2処理液成分供給流路の圧力は、エッチング実行時の実行条件である。プロセッサ11は、第2処理液成分供給流路の圧力を示す情報を記憶部12に記憶させる。 The processor 11 receives a signal from the pressure sensor 523 provided in the second processing liquid component supply unit 520. The signal output from the pressure sensor 523 indicates the pressure of the second processing liquid component supply channel. The pressure of the second processing liquid component supply flow path is an execution condition when performing the etching. The processor 11 causes the storage unit 12 to store information indicating the pressure of the second processing liquid component supply flow path.
 続いて図10を参照して、本実施形態の基板処理システム1000を説明する。図10は本実施形態の基板処理システム1000の模式図である。図10に示すように、基板処理システム1000は、基板処理装置100と、検査装置200とを備える。 Next, a substrate processing system 1000 according to the present embodiment will be described with reference to FIG. FIG. 10 is a schematic diagram of a substrate processing system 1000 of the present embodiment. As shown in FIG. 10, the substrate processing system 1000 includes a substrate processing apparatus 100 and an inspection apparatus 200.
 基板処理装置100は、図1及び図2を参照して説明したように、基板Wをエッチングする。以下、エッチングされる前の基板W(処理室2に搬入される前の基板W)を「未処理基板Wb」と記載する場合がある。また、エッチングされた後の基板Wを「処理済み基板Wa」と記載する場合がある。 (4) The substrate processing apparatus 100 etches the substrate W as described with reference to FIGS. Hereinafter, the substrate W before being etched (the substrate W before being carried into the processing chamber 2) may be referred to as “unprocessed substrate Wb”. The substrate W after the etching may be referred to as “processed substrate Wa”.
 検査装置200は、処理済み基板Waを検査して、処理済み基板Waの検査結果データを作成する。検査結果データは、エッチングの実行結果を示す。具体的には、検査装置200は、処理済み基板Waの半径位置ごとに膜厚を測定する。また、検査装置200は、測定した膜厚のデータと、未処理基板Wbの膜厚分布のデータとに基づいて、処理済み基板Waの半径位置ごとのエッチング量を示すデータを作成する。 The inspection apparatus 200 inspects the processed substrate Wa and creates inspection result data of the processed substrate Wa. The inspection result data indicates an etching execution result. Specifically, the inspection device 200 measures the film thickness at each radial position of the processed substrate Wa. In addition, the inspection apparatus 200 creates data indicating the etching amount for each radial position of the processed substrate Wa based on the measured thickness data and the data of the thickness distribution of the unprocessed substrate Wb.
 続いて図11を参照して、処理済み基板Waの半径位置ごとのエッチング量について説明する。図11は、処理済み基板Waの半径位置ごとのエッチング量の一例を示す図である。換言すると、図11は、エッチングプロファイルの一例を示す。エッチングプロファイルは、処理済み基板Waの半径位置ごとのエッチング量をプロットして作製される。図11において、縦軸はエッチング量を示し、横軸は処理済み基板Waの半径位置を示す。 Next, with reference to FIG. 11, the amount of etching at each radial position of the processed substrate Wa will be described. FIG. 11 is a diagram illustrating an example of an etching amount for each radial position of the processed substrate Wa. In other words, FIG. 11 shows an example of the etching profile. The etching profile is created by plotting the etching amount for each radial position of the processed substrate Wa. In FIG. 11, the vertical axis indicates the etching amount, and the horizontal axis indicates the radial position of the processed substrate Wa.
 エッチング量は、処理済み基板Waの全域において目標値と一致していることが望ましいが、図11に示すように、実際のエッチング量にはバラツキがある。したがって、エッチング量は、基板処理装置100の性能又は状態の指標となる。換言すると、処理済み基板Waの全域におけるエッチング量は、エッチングの実行結果の特徴量である。 (4) It is desirable that the etching amount is equal to the target value in the entire area of the processed substrate Wa, but as shown in FIG. 11, the actual etching amount varies. Therefore, the etching amount is an index of the performance or state of the substrate processing apparatus 100. In other words, the amount of etching in the entire area of the processed substrate Wa is a characteristic amount as a result of performing the etching.
 また、エッチング量は、処理済み基板Waの全域において均一であることが望ましい。したがって、エッチング量の均一性(分散)は、基板処理装置100の状態又は性能の指標となる。換言すると、エッチング量の均一性は、エッチングの実行結果の特徴量である。 (4) It is desirable that the etching amount is uniform over the entire area of the processed substrate Wa. Therefore, the uniformity (dispersion) of the etching amount is an index of the state or performance of the substrate processing apparatus 100. In other words, the uniformity of the etching amount is a characteristic amount of an etching execution result.
 なお、エッチング量の均一性を示すデータは、分散に限定されない。例えば、エッチング量の最大値Emax及び最小値Emin、並びにエッチング量の平均値も、エッチング量の均一性を示す。したがって、エッチング量の最大値Emax及び最小値Emin、並びにエッチング量の平均値も、エッチングの実行結果の特徴量である。また、エッチングプロファイルもエッチング量の均一性を示す。したがって、エッチングプロファイルも、エッチングの実行結果の特徴量である。 デ ー タ The data indicating the uniformity of the etching amount is not limited to the dispersion. For example, the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount also indicate the uniformity of the etching amount. Therefore, the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount are also characteristic amounts of the etching execution result. Also, the etching profile shows the uniformity of the etching amount. Therefore, the etching profile is also a feature amount of the execution result of the etching.
 続いて図12を参照して本実施形態の基板処理装置100を説明する。図12は本実施形態の基板処理装置100のブロック図である。図12に示すように基板処理装置100は入力部13を更に備える。 Next, the substrate processing apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 12 is a block diagram of the substrate processing apparatus 100 of the present embodiment. As shown in FIG. 12, the substrate processing apparatus 100 further includes an input unit 13.
 入力部13は、作業者が操作するユーザインタフェース装置である。入力部13は、作業者の操作に応じたデータをプロセッサ11に入力する。例えば、入力部13は、キーボード及びマウスを含む。なお、入力部13は、タッチディスプレイを含んでもよい。本実施形態において、作業者は、入力部13を操作して、エッチングの実行結果の特徴量をプロセッサ11に入力する。プロセッサ11は、エッチングの実行結果の特徴量を記憶部12に記憶させる。 The input unit 13 is a user interface device operated by an operator. The input unit 13 inputs data according to the operation of the worker to the processor 11. For example, the input unit 13 includes a keyboard and a mouse. Note that the input unit 13 may include a touch display. In the present embodiment, the operator operates the input unit 13 to input the feature amount of the etching execution result to the processor 11. The processor 11 causes the storage unit 12 to store the feature amount of the execution result of the etching.
 具体的には、作業者は、入力部13を操作して、処理済み基板Waの全域におけるエッチング量を示すデータと、エッチング量の均一性を示すデータとを入力する。処理済み基板Waの全域におけるエッチング量を示すデータは、エッチングプロファイルであり得る。なお、作業者は、処理済み基板Waの全域におけるエッチング量と、エッチング量の均一性(分散)とのうちの一方を入力してもよい。また、作業者は、分散に替えて、あるいは分散に加えて、エッチング量の最大値Emax及び最小値Eminと、エッチング量の平均値とのうちの少なくとも一方を入力してもよい。エッチング量の均一性(分散)は、作業者が算出してもよいし、検査装置200が算出してもよい。同様に、エッチング量の最大値Emax及び最小値Emin、並びにエッチング量の平均値は、作業者が算出してもよいし、検査装置200が算出してもよい。 Specifically, the operator operates the input unit 13 to input data indicating the etching amount in the entire area of the processed substrate Wa and data indicating the uniformity of the etching amount. The data indicating the etching amount in the entire area of the processed substrate Wa may be an etching profile. The operator may input one of the etching amount in the entire region of the processed substrate Wa and the uniformity (dispersion) of the etching amount. Further, the operator may input at least one of the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount instead of or in addition to the dispersion. The uniformity (dispersion) of the etching amount may be calculated by an operator or may be calculated by the inspection apparatus 200. Similarly, the maximum value Emax and the minimum value Emin of the etching amount and the average value of the etching amount may be calculated by the operator or may be calculated by the inspection apparatus 200.
 プロセッサ11は、図3、図5及び図9を参照して説明した各種の実行条件と、エッチングの実行結果の特徴量とを記憶部12に記憶させる。また、記憶部12には、実行条件として、未処理基板Wbが有する膜の種類を示すデータと、未処理基板Wbの膜厚分布を示すデータと、未処理基板Wbの厚みを示すデータと、未処理基板Wbの表面状態を示すデータとが予め記憶されている。膜の種類は、例えば、シリコン酸化膜、及びシリコン窒化膜のうちの少なくとも一方を含む。 The processor 11 causes the storage unit 12 to store the various execution conditions described with reference to FIGS. 3, 5, and 9 and the feature amount of the etching execution result. The storage unit 12 includes, as execution conditions, data indicating the type of film included in the unprocessed substrate Wb, data indicating the film thickness distribution of the unprocessed substrate Wb, data indicating the thickness of the unprocessed substrate Wb, Data indicating the surface state of the unprocessed substrate Wb is stored in advance. The type of the film includes, for example, at least one of a silicon oxide film and a silicon nitride film.
 プロセッサ11は、各種の実行条件と、エッチングの実行結果の特徴量とに基づいて、図3及び図9を参照して説明した各種の設定条件のうちの少なくとも1つ設定条件を補正する補正データを生成する。 The processor 11 corrects at least one of the various setting conditions described with reference to FIGS. 3 and 9 based on the various execution conditions and the feature amount of the etching execution result. Generate
 続いて図13を参照して、本実施形態の基板処理装置100が実行する設定条件の補正方法について説明する。図13は、本実施形態の補正方法を示すフローチャートである。図13に示すように、本実施形態の補正方法は、ステップS11~ステップS13を含む。 Next, with reference to FIG. 13, a description will be given of a method of correcting the setting conditions executed by the substrate processing apparatus 100 of the present embodiment. FIG. 13 is a flowchart illustrating the correction method according to the present embodiment. As shown in FIG. 13, the correction method according to the present embodiment includes steps S11 to S13.
 設定条件を補正する場合、プロセッサ11は、まず、図3、図5、図9、及び図12を参照して説明した実行条件と、図12を参照して説明した特徴量とを記憶部12に記憶させる(ステップS11)。 When correcting the setting condition, the processor 11 first stores the execution condition described with reference to FIGS. 3, 5, 9, and 12, and the feature amount described with reference to FIG. (Step S11).
 次に、プロセッサ11は、記憶部12から実行条件及び特徴量を読み出して取得し、取得した実行条件及び特徴量に基づき、図3及び図9を参照して説明した各種の設定条件のうちの少なくとも1つ設定条件を補正する補正データを生成する(ステップS12)。 Next, the processor 11 reads out and acquires the execution condition and the characteristic amount from the storage unit 12, and based on the acquired execution condition and the characteristic amount, among the various setting conditions described with reference to FIGS. Correction data for correcting at least one setting condition is generated (step S12).
 次に、プロセッサ11は、補正データに基づいて、対応する設定条件を補正して(ステップS13)、図13に示す処理を終了する。 Next, the processor 11 corrects the corresponding setting condition based on the correction data (step S13), and ends the processing shown in FIG.
 本実施形態のプロセッサ11は、機械学習によって生成された学習済みモデルを用いて、補正データを生成する。具体的には、プロセッサ11は、記憶部12から読み出して取得した実行条件及び特徴量を学習済みモデルに入力する。この結果、学習済みモデルから補正データが出力される。機械学習は、例えば、教師あり学習、教師なし学習、半教師あり学習、強化学習、及び深層学習のうちのいずれかである。 プ ロ セ ッ サ The processor 11 of the present embodiment generates correction data using a learned model generated by machine learning. Specifically, the processor 11 inputs the execution conditions and the feature amounts read and acquired from the storage unit 12 to the learned model. As a result, correction data is output from the learned model. The machine learning is, for example, any one of supervised learning, unsupervised learning, semi-supervised learning, reinforcement learning, and deep learning.
 続いて図14を参照して、本実施形態の学習済みモデル130を説明する。図14は学習済みモデル130の模式図である。図14に示すように、学習済みモデル130は、ニューラルネットワークである。プロセッサ11は、ニューラルネットワークを用いて補正データを生成する。以下、学習済みモデル130を「ニューラルネットワーク130」と記載する場合がある。 Next, the learned model 130 of this embodiment will be described with reference to FIG. FIG. 14 is a schematic diagram of the learned model 130. As shown in FIG. 14, the learned model 130 is a neural network. The processor 11 generates correction data using a neural network. Hereinafter, the learned model 130 may be referred to as a “neural network 130”.
 図14に示すように、ニューラルネットワーク130は、入力層131と、中間層132と、出力層133とを有する。プロセッサ11は、記憶部12から読み出して取得した実行条件及び特徴量を入力層131に入力する。この結果、出力層133から補正データが出力される。なお、補正対象となる設定条件は予め定められてもよいし、ニューラルネットワーク130が補正対象となる設定条件を決定してもよい。また、図14に示すニューラルネットワーク130は中間層132が1層であるが、ニューラルネットワーク130は多層構造であってもよい。 よ う As shown in FIG. 14, the neural network 130 has an input layer 131, an intermediate layer 132, and an output layer 133. The processor 11 inputs the execution conditions and the characteristic amounts read and acquired from the storage unit 12 to the input layer 131. As a result, the correction data is output from the output layer 133. The setting condition to be corrected may be determined in advance, or the neural network 130 may determine the setting condition to be corrected. Although the neural network 130 shown in FIG. 14 has one intermediate layer 132, the neural network 130 may have a multilayer structure.
 続いて図15を参照して、本実施形態の基板処理装置100が実行する機械学習について説明する。図15は、本実施形態の学習方法を示すフローチャートである。図15に示すように、本実施形態の学習方法は、ステップS21~ステップS23を含む。 Next, machine learning executed by the substrate processing apparatus 100 according to the present embodiment will be described with reference to FIG. FIG. 15 is a flowchart illustrating the learning method according to the present embodiment. As shown in FIG. 15, the learning method according to the present embodiment includes steps S21 to S23.
 機械学習を実行する場合、プロセッサ11に教師情報(教師データ)が入力される(ステップS21)。プロセッサ11は、入力された教師情報を記憶部12に記憶させる。教師情報は、図12を参照して説明した特徴量が最適な値を示す場合に得られる情報である。すなわち、教師情報は、特徴量が最適な値を示す場合に得た実行条件と、最適な値を示す特徴量とを含む。更に、教師情報は、特徴量が最適な値を示す場合に得た設定条件を含む。 When executing machine learning, teacher information (teacher data) is input to the processor 11 (step S21). The processor 11 causes the storage unit 12 to store the input teacher information. The teacher information is information obtained when the feature amount described with reference to FIG. 12 indicates an optimal value. That is, the teacher information includes the execution condition obtained when the feature value indicates the optimum value, and the feature value indicating the optimum value. Further, the teacher information includes a setting condition obtained when the feature value indicates an optimum value.
 次に、プロセッサ11は、記憶部12から教師情報(実行条件、特徴量及び設定条件)を読み出して取得し、取得した教師情報に基づいて機械学習を実行し(ステップS22)、学習済みモデル130を生成して(ステップS23)、図15に示す処理を終了する。具体的には、プロセッサ11は、複数の教師情報から、実行条件及び設定条件に応じたエッチング量の変化、並びに実行条件及び設定条件に応じたエッチング量の均一性の変化を測定し、測定結果に基づいて重み係数を更新する。 Next, the processor 11 reads and acquires teacher information (execution conditions, feature amounts, and setting conditions) from the storage unit 12, executes machine learning based on the acquired teacher information (step S22), and acquires the learned model 130 Is generated (step S23), and the processing shown in FIG. 15 ends. Specifically, the processor 11 measures a change in the etching amount according to the execution condition and the setting condition, and a change in the uniformity of the etching amount according to the execution condition and the setting condition, from a plurality of pieces of teacher information. The weight coefficient is updated based on.
 以上、実施形態1について説明した。本実施形態によれば、作業者が手動で設定条件を変更することなく、設定条件を補正(調整)することができる。したがって、作業者の負担を軽減することができる。 The embodiment 1 has been described above. According to the present embodiment, the setting condition can be corrected (adjusted) without the operator manually changing the setting condition. Therefore, the burden on the worker can be reduced.
 なお、設定条件は、本実施形態において説明した設定条件のうちの一部であってもよい。 The setting conditions may be a part of the setting conditions described in the present embodiment.
 また、実行条件に、基板処理装置100が設置される工場の環境条件を加えてもよい。具体的には、基板処理装置100が設置される雰囲気の温度、湿度、酸素濃度、アンモニア濃度、VOC濃度及び気圧、並びに工場が設置されている場所の高度を示す情報を、実行条件としてプロセッサ11に入力してもよい。この場合、工場に設置された温度センサ、湿度センサ、酸素濃度センサ、アンモニア濃度センサ、VOC濃度センサ、気圧センサ、及び高度センサから、温度データ、湿度データ、酸素濃度データ、アンモニア濃度データ、VOC濃度データ、気圧データ、及び高度データがプロセッサ11に入力される。 環境 In addition, the environmental conditions of the factory where the substrate processing apparatus 100 is installed may be added to the execution conditions. Specifically, information indicating the temperature, humidity, oxygen concentration, ammonia concentration, VOC concentration, and atmospheric pressure of the atmosphere in which the substrate processing apparatus 100 is installed, and the altitude of the location where the factory is installed are used as execution conditions by the processor 11. May be entered. In this case, temperature data, humidity data, oxygen concentration data, ammonia concentration data, VOC concentration are obtained from temperature sensors, humidity sensors, oxygen concentration sensors, ammonia concentration sensors, VOC concentration sensors, barometric pressure sensors, and altitude sensors installed in the factory. Data, pressure data, and altitude data are input to the processor 11.
[実施形態2]
 続いて図16を参照して、本発明の実施形態2について説明する。但し、実施形態1と異なる事項を説明し、実施形態1と同じ事項についての説明は割愛する。実施形態2は、補正データ生成装置1100が補正データを生成する点で実施形態1と異なる。
[Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIG. However, items different from the first embodiment will be described, and description of the same items as the first embodiment will be omitted. The second embodiment is different from the first embodiment in that the correction data generation device 1100 generates correction data.
 図16は、実施形態2に係る基板処理システム1000の模式図である。図16に示すように、実施形態2に係る基板処理システム1000は、基板処理装置100と、検査装置200と、補正データ生成装置1100とを備える。 FIG. 16 is a schematic diagram of a substrate processing system 1000 according to the second embodiment. As shown in FIG. 16, a substrate processing system 1000 according to the second embodiment includes a substrate processing apparatus 100, an inspection apparatus 200, and a correction data generation apparatus 1100.
 基板処理装置100は、通信インターフェイス14を備える。通信インターフェイス14は、補正データ生成装置1100との間の通信を制御する。具体的には、通信インターフェイス14は、実行条件を示すデータを補正データ生成装置1100に送信する。また、通信インターフェイス14は、補正データを補正データ生成装置1100から受信する。通信インターフェイス14は、例えば、LANボード又は無線LANボードである。基板処理装置100は、補正データ生成装置1100から受信した補正データに基づいて、補正対象の設定条件を補正(調整)する。 The substrate processing apparatus 100 includes the communication interface 14. The communication interface 14 controls communication with the correction data generation device 1100. Specifically, the communication interface 14 transmits data indicating the execution condition to the correction data generation device 1100. Further, the communication interface 14 receives the correction data from the correction data generation device 1100. The communication interface 14 is, for example, a LAN board or a wireless LAN board. The substrate processing apparatus 100 corrects (adjusts) the setting condition of the correction target based on the correction data received from the correction data generation apparatus 1100.
 検査装置200は、通信インターフェイス201を備える。通信インターフェイス201は、補正データ生成装置1100との間の通信を制御する。具体的には、通信インターフェイス201は、特徴量を示すデータを補正データ生成装置1100に送信する。通信インターフェイス201は、例えば、LANボード又は無線LANボードである。 The inspection device 200 includes the communication interface 201. The communication interface 201 controls communication with the correction data generation device 1100. Specifically, the communication interface 201 transmits data indicating the feature amount to the correction data generation device 1100. The communication interface 201 is, for example, a LAN board or a wireless LAN board.
 補正データ生成装置1100は、通信インターフェイス1101と、制御部1110とを備える。補正データ生成装置1100は、例えば、サーバ装置である。 The correction data generation device 1100 includes a communication interface 1101 and a control unit 1110. The correction data generation device 1100 is, for example, a server device.
 通信インターフェイス1101は、基板処理装置100との間の通信、及び検査装置200との間の通信を制御する。具体的には、通信インターフェイス1101は、基板処理装置100から実行条件を示すデータを受信する。また、通信インターフェイス1101は、検査装置200から特徴量を示すデータを受信する。更に、通信インターフェイス1101は、基板処理装置100に対して補正データを送信する。 The communication interface 1101 controls communication with the substrate processing apparatus 100 and communication with the inspection apparatus 200. Specifically, the communication interface 1101 receives data indicating an execution condition from the substrate processing apparatus 100. Further, the communication interface 1101 receives data indicating the feature amount from the inspection device 200. Further, the communication interface 1101 transmits correction data to the substrate processing apparatus 100.
 制御部1110は、基板処理装置100から受信した実行条件と、検査装置200から特徴量とに基づいて補正データを生成する。具体的には、制御部1110は、プロセッサ1111と、記憶部1112とを備える。プロセッサ1111は、例えば、中央処理演算機(CPU)である。あるいは、プロセッサ1111は、汎用演算機である。記憶部1112は、データ及びコンピュータープログラムを記憶する。記憶部1112は、主記憶装置と、補助記憶装置とを含む。主記憶装置は、例えば、半導体メモリーによって構成される。補助記憶装置は、例えば、半導体メモリー及び/又はハードディスクドライブによって構成される。記憶部1112は、リムーバブルメディアを含んでいてもよい。 The control unit 1110 generates correction data based on the execution condition received from the substrate processing apparatus 100 and the feature amount from the inspection apparatus 200. Specifically, the control unit 1110 includes a processor 1111 and a storage unit 1112. The processor 1111 is, for example, a central processing unit (CPU). Alternatively, the processor 1111 is a general-purpose computer. The storage unit 1112 stores data and a computer program. Storage unit 1112 includes a main storage device and an auxiliary storage device. The main storage device is constituted by, for example, a semiconductor memory. The auxiliary storage device includes, for example, a semiconductor memory and / or a hard disk drive. The storage unit 1112 may include a removable medium.
 プロセッサ1111は、実施形態1において説明したプロセッサ11と同様に、実行条件及び特徴量に基づいて補正データを生成する。プロセッサ1111は、補正データを生成すると、通信インターフェイス1101を介して、基板処理装置100に補正データを送信する。また、プロセッサ1111は、実施形態1において説明したプロセッサ11と同様に、教師情報(教師データ)に基づいて、学習済みモデル130を生成する。なお、教師情報のうち、実行条件を示すデータ及び設定条件を示すデータは、基板処理装置100が補正データ生成装置1100に送信する。また、教師情報のうち、特徴量を示すデータは、検査装置200が補正データ生成装置1100に送信する。 The processor 1111 generates the correction data based on the execution conditions and the characteristic amounts, similarly to the processor 11 described in the first embodiment. After generating the correction data, the processor 1111 transmits the correction data to the substrate processing apparatus 100 via the communication interface 1101. The processor 1111 generates the learned model 130 based on teacher information (teacher data), similarly to the processor 11 described in the first embodiment. Note that, among the teacher information, the data indicating the execution condition and the data indicating the setting condition are transmitted from the substrate processing apparatus 100 to the correction data generation apparatus 1100. The inspection device 200 transmits data indicating the feature amount to the correction data generation device 1100 in the teacher information.
 以上、実施形態2について説明した。本実施形態によれば、実施形態1と同様に、作業者が手動で設定条件を変更することなく、設定条件を補正(調整)することができる。したがって、作業者の負担を軽減することができる。 The embodiment 2 has been described above. According to the present embodiment, as in the first embodiment, the setting condition can be corrected (adjusted) without the operator manually changing the setting condition. Therefore, the burden on the worker can be reduced.
 以上、本発明の実施形態について図面を参照しながら説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。 The embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the gist of the present invention.
 例えば、本発明の実施形態では、検査装置200が膜厚を測定したが、基板処理装置100が、膜厚を測定する膜厚測定センサを備えてもよい。 For example, in the embodiment of the present invention, the inspection apparatus 200 measures the film thickness, but the substrate processing apparatus 100 may include a film thickness measurement sensor for measuring the film thickness.
 また、本発明の実施形態では、処理済み基板Waの半径位置ごとのエッチング量をプロットしてエッチングプロファイルを作製したが、処理済み基板Waの厚みの測定結果に基づいてエッチングプロファイルを作製してもよい。 In the embodiment of the present invention, the etching profile is prepared by plotting the etching amount for each radial position of the processed substrate Wa. However, the etching profile may be prepared based on the measurement result of the thickness of the processed substrate Wa. Good.
 また、本発明の実施形態では、サーモグラフィカメラ101が生成する画像信号(温度分布データ)に基づいて、プロセッサ11が、処理液ノズル41の先端における処理液Lの温度と、ガスノズル71の先端におけるガスGの温度とを検出したが、プロセッサ11は、温度センサ421及び温度センサ722の出力信号に基づいて、処理液ノズル41の先端における処理液Lの温度と、ガスノズル71の先端におけるガスGの温度とを検出してもよい。 Further, in the embodiment of the present invention, based on the image signal (temperature distribution data) generated by the thermographic camera 101, the processor 11 determines the temperature of the processing liquid L at the tip of the processing liquid nozzle 41 and the gas at the tip of the gas nozzle 71. The processor 11 detects the temperature of the processing liquid L at the tip of the processing liquid nozzle 41 and the temperature of the gas G at the tip of the gas nozzle 71 based on the output signals of the temperature sensor 421 and the temperature sensor 722. May be detected.
 また、本発明の実施形態では、プロセッサ11は、ビデオカメラ102が生成する撮像信号に基づいて、処理液Lの吐出開始タイミング、処理液Lの吐出停止タイミング、処理液Lの吐出流量変更タイミング、処理液Lの吐出流量立ち上がり特性、処理液Lの吐出流量立ち下がり特性、ガスGの噴出開始タイミング、ガスGの噴出停止タイミング、ガスGの噴出流量変更タイミング、ガスGの噴出流量立ち上がり特性、及びガスGの噴出流量立ち下がり特性を検出したが、プロセッサ11は、流量計425及び流量計726の出力信号に基づいて、処理液Lの吐出開始タイミング等を検出してもよい。 Further, in the embodiment of the present invention, based on the imaging signal generated by the video camera 102, the processor 11 starts the discharge timing of the processing liquid L, stops the discharge of the processing liquid L, changes the discharge flow rate of the processing liquid L, The discharge flow rate rising characteristic of the processing liquid L, the discharge flow falling characteristic of the processing liquid L, the gas G ejection start timing, the gas G ejection stop timing, the gas G ejection flow change timing, the gas G ejection flow rising property, and Although the ejection flow fall characteristic of the gas G is detected, the processor 11 may detect the discharge start timing of the processing liquid L based on the output signals of the flow meter 425 and the flow meter 726.
 また、本発明の実施形態では、濃度センサ422を用いて処理液Lの純度を検出したが、比抵抗計を用いて処理液Lの純度を検出してもよい。同様に、本発明の実施形態では、濃度センサ724を用いてガスGの純度を検出したが、比抵抗計を用いてガスGの純度を検出してもよい。 Also, in the embodiment of the present invention, the purity of the processing liquid L is detected using the concentration sensor 422. However, the purity of the processing liquid L may be detected using a resistivity meter. Similarly, in the embodiment of the present invention, the purity of the gas G is detected using the concentration sensor 724, but the purity of the gas G may be detected using a resistivity meter.
 また、本発明の実施形態では、ビデオカメラ102を用いて基板Wの偏心量及び基板Wの面振れ量を検出したが、変位センサを用いて基板Wの偏心量及び基板Wの面振れ量を検出してもよい。 Further, in the embodiment of the present invention, the eccentricity of the substrate W and the surface runout of the substrate W are detected by using the video camera 102, but the eccentricity of the substrate W and the surface runout of the substrate W are detected by using the displacement sensor. It may be detected.
 また、本発明の実施形態において説明した実行条件のうちの一部を用いて補正データを生成してもよい。なお、好ましくは、使用する実行条件は、排気風速、排気風量、基板Wの回転速度、基板Wの回転加速度、基板Wの回転速度の変更タイミング、処理液ノズル41の半径方向の位置、処理液ノズル41の移動速度、処理液ノズル41の加速度、処理液ノズル41の半径方向の位置の変更タイミング、処理液ノズル41の移動速度の変更タイミング、液受け部8の鉛直方向の位置、液受け部8の移動速度、液受け部8の加速度、液受け部8の鉛直方向の位置の変更タイミング、液受け部8の移動速度の変更タイミング、処理液ノズル41の先端における処理液Lの温度、ガスノズル71の先端におけるガスGの温度、基板表面温度、処理液Lの吐出開始タイミング、処理液Lの吐出停止タイミング、処理液Lの吐出流量変更タイミング、処理液Lの吐出流量立ち上がり特性、処理液Lの吐出流量立ち下がり特性、ガスGの噴出開始タイミング、ガスGの噴出停止タイミング、ガスGの噴出流量変更タイミング、ガスGの噴出流量立ち上がり特性、ガスGの噴出流量立ち下がり特性、処理液Lのサックバック速度、処理液Lのサックバック停止位置、処理液Lのボタ落ちの有無、処理液Lの膜厚分布、液受け部8の上面及び外側面における処理液Lの付着の有無、液受け部8の上面及び外側面に付着している処理液Lの量、基板Wの偏心量、基板Wの面振れ量、給気風速、給気風量、第1処理液濃度、処理液Lの吐出流量、ガスGの噴出流量、FFU21の差圧、基板加熱温度、処理室2内の光量、液受け部8の温度、ノズルアーム43の温度、スピンベース31の温度、隔壁21の温度、処理液Lの純度、ガスGの純度、処理液ノズル41の位置の変化、ノズルアーム43の形状の変化、ヒータアーム52の形状の変化、リンス液ノズル61の位置の変化、ガスノズル71の位置の変化、液受け部8の位置の変化、液受け部8の形状の変化、チャックピン32の形状の変化、チャックピン32の摩耗度、気流分布、基板表面電位、バルブ233の差圧、処理液雰囲気濃度、処理室2内の湿度、処理室2内の酸素濃度、処理室2内のアンモニア濃度、処理室2内のVOC濃度、及び循環流路の圧力のうちの少なくとも1つを含む。より好ましくは、使用する実行条件は、排気風速、排気風量、基板Wの回転速度、基板Wの回転加速度、基板Wの回転速度の変更タイミング、処理液ノズル41の半径方向の位置、処理液ノズル41の移動速度、処理液ノズル41の加速度、処理液ノズル41の半径方向の位置の変更タイミング、処理液ノズル41の移動速度の変更タイミング、液受け部8の鉛直方向の位置、液受け部8の移動速度、液受け部8の加速度、液受け部8の鉛直方向の位置の変更タイミング、液受け部8の移動速度の変更タイミング、処理液ノズル41の先端における処理液Lの温度、ガスノズル71の先端におけるガスGの温度、基板表面温度、処理液Lの吐出開始タイミング、処理液Lの吐出停止タイミング、処理液Lの吐出流量変更タイミング、処理液Lの吐出流量立ち上がり特性、処理液Lの吐出流量立ち下がり特性、ガスGの噴出開始タイミング、ガスGの噴出停止タイミング、ガスGの噴出流量変更タイミング、ガスGの噴出流量立ち上がり特性、ガスGの噴出流量立ち下がり特性、処理液Lのサックバック速度、処理液Lのサックバック停止位置、処理液Lのボタ落ちの有無、処理液Lの膜厚分布、液受け部8の上面及び外側面における処理液Lの付着の有無、液受け部8の上面及び外側面に付着している処理液Lの量、基板Wの偏心量、基板Wの面振れ量、給気風速、給気風量、第1処理液濃度、処理液Lの吐出流量、ガスGの噴出流量のうちの少なくとも1つを含む。 The correction data may be generated using a part of the execution conditions described in the embodiment of the present invention. Preferably, the execution conditions used are: exhaust wind speed, exhaust air volume, substrate W rotational speed, substrate W rotational acceleration, substrate W rotational speed change timing, radial position of the processing liquid nozzle 41, processing liquid The moving speed of the nozzle 41, the acceleration of the processing liquid nozzle 41, the change timing of the radial position of the processing liquid nozzle 41, the changing timing of the moving speed of the processing liquid nozzle 41, the vertical position of the liquid receiving part 8, the liquid receiving part 8, the acceleration of the liquid receiving portion 8, the timing of changing the position of the liquid receiving portion 8 in the vertical direction, the timing of changing the moving speed of the liquid receiving portion 8, the temperature of the processing liquid L at the tip of the processing liquid nozzle 41, the gas nozzle The temperature of the gas G at the tip of the substrate 71, the substrate surface temperature, the timing of starting the discharge of the processing liquid L, the timing of stopping the discharge of the processing liquid L, the timing of changing the discharge flow rate of the processing liquid L, the processing liquid Flow rate rise characteristics, discharge flow fall characteristics of processing liquid L, gas G ejection start timing, gas G ejection stop timing, gas G ejection flow change timing, gas G ejection flow rise characteristics, gas G ejection Flow rate fall characteristics, suck-back speed of the processing liquid L, suck-back stop position of the processing liquid L, presence or absence of dripping of the processing liquid L, film thickness distribution of the processing liquid L, processing on the upper surface and outer surface of the liquid receiver 8 The presence or absence of the liquid L, the amount of the processing liquid L adhering to the upper surface and the outer surface of the liquid receiving portion 8, the amount of eccentricity of the substrate W, the amount of surface deflection of the substrate W, the supply air velocity, the supply air amount, The concentration of the processing liquid, the flow rate of the processing liquid L, the flow rate of the gas G, the pressure difference of the FFU 21, the substrate heating temperature, the amount of light in the processing chamber 2, the temperature of the liquid receiving section 8, the temperature of the nozzle arm 43, and the temperature of the spin base 31 Temperature, temperature of partition 21 The purity of the processing liquid L, the purity of the gas G, the change in the position of the processing liquid nozzle 41, the change in the shape of the nozzle arm 43, the change in the shape of the heater arm 52, the change in the position of the rinsing liquid nozzle 61, the position of the gas nozzle 71 Change, position change of the liquid receiving portion 8, change in the shape of the liquid receiving portion 8, change in the shape of the chuck pin 32, degree of wear of the chuck pin 32, air flow distribution, substrate surface potential, differential pressure of the valve 233, processing It includes at least one of a liquid atmosphere concentration, a humidity in the processing chamber 2, an oxygen concentration in the processing chamber 2, an ammonia concentration in the processing chamber 2, a VOC concentration in the processing chamber 2, and a pressure in the circulation flow path. More preferably, the execution conditions to be used are: exhaust air speed, exhaust air volume, rotation speed of the substrate W, rotation acceleration of the substrate W, change timing of the rotation speed of the substrate W, radial position of the processing liquid nozzle 41, processing liquid nozzle The moving speed of the processing liquid nozzle 41, the acceleration of the processing liquid nozzle 41, the changing timing of the radial position of the processing liquid nozzle 41, the changing timing of the moving speed of the processing liquid nozzle 41, the vertical position of the liquid receiving section 8, the liquid receiving section 8 Moving speed, acceleration of the liquid receiving portion 8, timing of changing the position of the liquid receiving portion 8 in the vertical direction, timing of changing the moving speed of the liquid receiving portion 8, temperature of the processing liquid L at the tip of the processing liquid nozzle 41, gas nozzle 71. Of the gas G at the tip of the substrate, the substrate surface temperature, the timing of starting the discharge of the processing liquid L, the timing of stopping the discharge of the processing liquid L, the timing of changing the discharge flow rate of the processing liquid L, and the processing liquid L Rise characteristics of discharge flow rate, fall characteristics of discharge flow rate of processing liquid L, timing of starting discharge of gas G, timing of stopping discharge of gas G, timing of changing discharge rate of gas G, rise characteristic of discharge rate of gas G, discharge rate of gas G Fall characteristics, suckback speed of the processing liquid L, stop position of suckback of the processing liquid L, presence / absence of dripping of the processing liquid L, film thickness distribution of the processing liquid L, processing liquid on the upper and outer surfaces of the liquid receiving portion 8 Presence / absence of L, amount of processing liquid L adhering to the upper surface and outer surface of liquid receiving unit 8, amount of eccentricity of substrate W, amount of runout of substrate W, supply air velocity, supply air flow, first processing It includes at least one of a liquid concentration, a discharge flow rate of the processing liquid L, and a discharge flow rate of the gas G.
 また、本発明の実施形態において、基板Wは半導体ウエハであったが、基板Wは、液晶表示装置用基板、電界放出ディスプレイ(Field Emission Display:FED)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板及び太陽電池用基板のうちのいずれかであってもよい。 In the embodiment of the present invention, the substrate W is a semiconductor wafer, but the substrate W is a substrate for a liquid crystal display, a substrate for a field emission display (Field Emission Display: FED), a substrate for an optical disk, and a substrate for a magnetic disk. Or a substrate for a magneto-optical disk, a substrate for a photomask, a ceramic substrate, or a substrate for a solar cell.
 また、本発明の実施形態において、スピンチャック3は、複数のチャックピン32を基板Wの周端面に接触させる挟持式のチャックであったが、スピンチャック3は、非デバイス形成面である基板Wの裏面(下面)をスピンベース31の上面に吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。 Further, in the embodiment of the present invention, the spin chuck 3 is a sandwich type chuck in which the plurality of chuck pins 32 are brought into contact with the peripheral end surface of the substrate W. A vacuum-type chuck that holds the substrate W horizontally by adsorbing the back surface (lower surface) of the substrate to the upper surface of the spin base 31 may be used.
 また、本発明の実施形態において、基板処理装置100は、基板Wを1枚ずつ処理する枚葉型であったが、基板処理装置100は複数の基板Wを同時に処理するバッチ型であってもよい。 Further, in the embodiment of the present invention, the substrate processing apparatus 100 is of a single-wafer type that processes one substrate at a time, but the substrate processing apparatus 100 may be of a batch type that simultaneously processes a plurality of substrates W. Good.
 本発明は、基板を処理する基板処理装置に好適に用いられる。 The present invention is suitably used in a substrate processing apparatus for processing a substrate.
2    処理室
8    液受け部
10   制御部
40   処理液供給部
41   処理液ノズル
70   ガス供給部
71   ガスノズル
72   ガス供給配管
100  基板処理装置
200  検査装置
231  排気ファン
232  排気ダクト
233  バルブ
300  処理液循環部
510  第1処理液成分供給部
520  第2処理液成分供給部
1000 基板処理システム
1100 補正データ生成装置
1110 制御部
W    基板
2 processing chamber 8 liquid receiving unit 10 control unit 40 processing liquid supply unit 41 processing liquid nozzle 70 gas supply unit 71 gas nozzle 72 gas supply pipe 100 substrate processing device 200 inspection device 231 exhaust fan 232 exhaust duct 233 valve 300 processing liquid circulation unit 510 First processing liquid component supply unit 520 Second processing liquid component supply unit 1000 Substrate processing system 1100 Correction data generation device 1110 Control unit W Substrate

Claims (8)

  1.  基板をエッチングする基板処理装置の設定条件を補正する補正方法であって、
     前記エッチング実行時の実行条件のうちの少なくとも1つの実行条件と、前記エッチングの実行結果を示す少なくとも1つの特徴量とを取得する取得ステップと、
     前記少なくとも1つの実行条件と前記少なくとも1つの特徴量とに基づいて、前記設定条件のうちの少なくとも1つの設定条件を補正する補正データを生成する生成ステップと、
     前記基板処理装置が前記補正データに基づいて前記少なくとも1つの設定条件を補正する補正ステップと
     を含む補正方法。
    A correction method for correcting a setting condition of a substrate processing apparatus that etches a substrate,
    An acquisition step of acquiring at least one execution condition among the execution conditions at the time of performing the etching, and at least one feature amount indicating an execution result of the etching;
    A generation step of generating correction data for correcting at least one of the setting conditions based on the at least one execution condition and the at least one feature amount;
    A correction step in which the substrate processing apparatus corrects the at least one setting condition based on the correction data.
  2.  前記取得ステップにおいて、機械学習によって生成された学習済みモデルに、前記少なくとも1つの実行条件と前記少なくとも1つの特徴量とが入力され、
     前記生成ステップにおいて、前記学習済みモデルから前記補正データが出力される、請求項1に記載の補正方法。
    In the acquiring step, the at least one execution condition and the at least one feature amount are input to a learned model generated by machine learning,
    The correction method according to claim 1, wherein in the generation step, the correction data is output from the learned model.
  3.  教師情報を機械学習させて前記学習済みモデルを生成する学習ステップを更に含み、
     前記教師情報は、前記少なくとも1つの特徴量が最適な値を示す場合に得た情報であり、前記少なくとも1つの特徴量と、前記少なくとも1つの実行条件と、前記少なくとも1つの設定条件とを含む、請求項2に記載の補正方法。
    Further comprising a learning step of generating the learned model by machine learning the teacher information,
    The teacher information is information obtained when the at least one feature value indicates an optimal value, and includes the at least one feature value, the at least one execution condition, and the at least one setting condition. The correction method according to claim 2.
  4.  前記少なくとも1つの特徴量は、エッチング量と、エッチング量の均一性とのうちの少なくとも一方を含む、請求項1から請求項3のいずれか1項に記載の補正方法。 4. The correction method according to claim 1, wherein the at least one feature amount includes at least one of an etching amount and a uniformity of the etching amount. 5.
  5.  前記基板処理装置は、
     前記基板を収容する処理室と、
     前記基板をエッチングする処理液を前記基板に向けて吐出する第1ノズルと、
     前記第1ノズルに前記処理液を供給する供給流路と、
     前記基板から飛散した前記処理液を受ける液受け部と、
     前記基板に向けてガスを噴出する第2ノズルと、
     前記処理室内へ空気を送るファンフィルタユニットと、
     前記処理室から気体を排気する排気ファンと
     を備え、
     前記エッチング実行時の実行条件は、
     前記第1ノズルの先端における前記処理液の温度と、
     前記第2ノズルの先端における前記ガスの温度と、
     前記第1ノズルから前記処理液が吐出する流量と、
     前記第2ノズルから前記ガスが噴出する流量と、
     前記第1ノズルから前記処理液が吐出を開始するタイミングと、
     前記第2ノズルから前記ガスが噴出を開始するタイミングと、
     前記第1ノズルからの前記処理液の吐出が停止するタイミングと、
     前記第2ノズルからの前記ガスの噴出が停止するタイミングと、
     前記第1ノズルから前記処理液が吐出する流量の変更タイミングと、
     前記第2ノズルから前記ガスが噴出する流量の変更タイミングと、
     前記第1ノズルから前記処理液が吐出する流量の立ち上がり特性と、
     前記第2ノズルから前記ガスが噴出する流量の立ち上がり特性と、
     前記第1ノズルから前記処理液が吐出する流量の立ち下がり特性と、
     前記第2ノズルから前記ガスが噴出する流量の立ち下がり特性と、
     前記第1ノズルの先端から前記処理液がボタ落ちしているか否かを示す情報と、
     前記供給流路を流れる前記処理液の濃度と、
     前記処理液の吐出が停止した後に、前記第1ノズルから前記供給流路の上流側に向けて前記処理液が吸い込まれる速度と、
     吸い込まれた前記処理液が停止する位置と、
     前記基板を覆う前記処理液の膜厚分布と、
     前記第1ノズルの位置と、
     前記第1ノズルの移動速度と、
     前記第1ノズルの加速度と、
     前記第1ノズルの位置の変更タイミングと、
     前記第1ノズルの移動速度の変更タイミングと、
     前記液受け部への前記処理液の付着の有無を示す情報と、
     前記液受け部に付着している前記処理液の量と、
     前記基板の回転速度と、
     前記基板の加速度と、
     前記基板の回転速度の変更タイミングと、
     前記基板の表面温度と、
     前記基板の偏心量と、
     前記基板の面振れ量と、
     前記液受け部の位置と、
     前記液受け部の移動速度と、
     前記液受け部の加速度と、
     前記液受け部の位置の変更タイミングと、
     前記液受け部の移動速度の変更タイミングと、
     前記ファンフィルタユニットが前記処理室内に送る空気の風速と、
     前記ファンフィルタユニットが前記処理室内に送る空気の風量と、
     前記処理室から排気される気体の風速と、
     前記処理室から排気される気体の風量と
     のうちの少なくとも1つを含む、請求項1から請求項4のいずれか1項に記載の補正方法。
    The substrate processing apparatus includes:
    A processing chamber for housing the substrate,
    A first nozzle for discharging a processing liquid for etching the substrate toward the substrate,
    A supply flow path for supplying the processing liquid to the first nozzle,
    A liquid receiving portion for receiving the processing liquid scattered from the substrate,
    A second nozzle for ejecting gas toward the substrate;
    A fan filter unit that sends air into the processing chamber;
    An exhaust fan for exhausting gas from the processing chamber,
    Execution conditions at the time of performing the etching are:
    A temperature of the processing liquid at a tip of the first nozzle,
    The temperature of the gas at the tip of the second nozzle;
    A flow rate of the processing liquid discharged from the first nozzle;
    A flow rate at which the gas is ejected from the second nozzle,
    A timing at which the processing liquid starts discharging from the first nozzle,
    A timing at which the gas starts jetting from the second nozzle,
    Timing when the discharge of the processing liquid from the first nozzle is stopped,
    Timing at which ejection of the gas from the second nozzle stops,
    Changing timing of the flow rate of the processing liquid discharged from the first nozzle;
    Changing timing of the flow rate at which the gas is ejected from the second nozzle,
    A rising characteristic of a flow rate of the processing liquid discharged from the first nozzle,
    A rising characteristic of a flow rate at which the gas is ejected from the second nozzle;
    Falling characteristics of the flow rate of the processing liquid discharged from the first nozzle;
    A falling characteristic of a flow rate at which the gas is ejected from the second nozzle,
    Information indicating whether or not the processing liquid is dripping from the tip of the first nozzle;
    A concentration of the processing liquid flowing through the supply flow path,
    After the discharge of the processing liquid is stopped, a speed at which the processing liquid is sucked from the first nozzle toward an upstream side of the supply flow path,
    A position where the sucked processing liquid stops,
    A film thickness distribution of the processing solution covering the substrate,
    The position of the first nozzle,
    A moving speed of the first nozzle;
    The acceleration of the first nozzle;
    Timing for changing the position of the first nozzle;
    Changing timing of the moving speed of the first nozzle;
    Information indicating the presence or absence of the treatment liquid on the liquid receiver,
    The amount of the treatment liquid attached to the liquid receiving portion,
    Rotation speed of the substrate,
    Acceleration of the substrate;
    Timing of changing the rotation speed of the substrate,
    Surface temperature of the substrate,
    The amount of eccentricity of the substrate,
    Surface runout of the substrate,
    The position of the liquid receiver,
    The moving speed of the liquid receiver,
    Acceleration of the liquid receiver,
    Timing of changing the position of the liquid receiving portion,
    Timing of changing the moving speed of the liquid receiving portion,
    Wind speed of the air that the fan filter unit sends into the processing chamber,
    An air volume of the air that the fan filter unit sends into the processing chamber,
    Wind speed of gas exhausted from the processing chamber;
    The correction method according to any one of claims 1 to 4, further comprising at least one of: a flow rate of gas exhausted from the processing chamber.
  6.  前記基板処理装置は、
     前記基板を収容する処理室と、
     前記基板をエッチングする処理液を前記基板に向けて吐出する第1ノズルと、
     前記第1ノズルに前記処理液を供給する第1供給流路と、
     前記第1供給流路に接続し、前記処理液が循環する循環流路と、
     前記循環流路に前記処理液を供給する第2供給流路と、
     前記基板を加熱する加熱部と、
     前記基板から飛散した前記処理液を受け止める液受け部と、
     前記基板に向けてガスを噴出する第2ノズルと、
     前記第2ノズルに前記ガスを供給する第3供給流路と、
     前記処理室内へ空気を送るファンフィルタユニットと、
     前記処理室から気体を排気する排気ファンと、
     前記処理室から排気される気体が流れる排気ダクトと、
     前記排気ダクトに設置されたバルブと
     を備え、
     前記基板処理装置の設定条件は、
     前記循環流路における前記処理液の温度と、
     前記第1供給流路における前記処理液の温度と、
     前記第3供給流路における前記ガスの温度と、
     前記循環流路における前記処理液の濃度と、
     前記第1供給流路における前記処理液の濃度と、
     前記第2供給流路の圧力と、
     前記第3供給流路の圧力と、
     前記循環流路の圧力と、
     前記循環流路を流れる前記処理液の流量と、
     前記第1ノズルから前記処理液が吐出する流量と、
     前記第2ノズルから前記ガスが噴出する流量と、
     前記第1ノズルからの前記処理液の吐出を開始させる信号の発生タイミングと、
     前記第2ノズルからの前記ガスの噴出を開始させる信号の発生タイミングと、
     前記第1ノズルからの前記処理液の吐出を停止させる信号の発生タイミングと、
     前記第2ノズルからの前記ガスの噴出を停止させる信号の発生タイミングと、
     前記第1ノズルから前記処理液が吐出する流量を変更する信号の発生タイミングと、
     前記第2ノズルから前記ガスが噴出する流量を変更する信号の発生タイミングと、
     前記第1ノズルから前記処理液が吐出する流量の立ち上がり特性と、
     前記第2ノズルから前記ガスが噴出する流量の立ち上がり特性と、
     前記第1ノズルから前記処理液が吐出する流量の立ち下がり特性と、
     前記第2ノズルから前記ガスが噴出する流量の立ち下がり特性と、
     前記処理液の吐出が停止した後に、前記第1ノズルから前記第1供給流路の上流側に向けて前記処理液が吸い込まれる速度と、
     吸い込まれた前記処理液が停止する位置と、
     前記基板の回転速度と、
     前記基板の加速度と、
     前記基板の回転速度の変更タイミングと、
     前記第1ノズルの位置と、
     前記第1ノズルの移動速度と、
     前記第1ノズルの加速度と、
     前記第1ノズルの位置の変更タイミングと、
     前記第1ノズルの移動速度の変更タイミングと、
     前記基板を加熱する温度と、
     前記液受け部の位置と、
     前記液受け部の移動速度と、
     前記液受け部の加速度と、
     前記液受け部の位置の変更タイミングと、
     前記液受け部の移動速度の変更タイミングと、
     前記ファンフィルタユニットの差圧と、
     前記バルブの差圧と、
     前記処理室から排気される気体の風速と、
     前記処理室から排気される気体の風量と、
     前記処理室内の光量と
     のうちの少なくとも1つを含む、請求項1から請求項5のいずれか1項に記載の補正方法。
    The substrate processing apparatus includes:
    A processing chamber for housing the substrate,
    A first nozzle for discharging a processing liquid for etching the substrate toward the substrate,
    A first supply channel for supplying the processing liquid to the first nozzle,
    A circulation flow path connected to the first supply flow path and circulating the processing liquid;
    A second supply channel for supplying the processing liquid to the circulation channel,
    A heating unit for heating the substrate,
    A liquid receiving unit for receiving the processing liquid scattered from the substrate,
    A second nozzle for ejecting gas toward the substrate;
    A third supply channel for supplying the gas to the second nozzle,
    A fan filter unit that sends air into the processing chamber;
    An exhaust fan that exhausts gas from the processing chamber;
    An exhaust duct through which gas exhausted from the processing chamber flows;
    And a valve installed in the exhaust duct,
    The setting conditions of the substrate processing apparatus are as follows:
    A temperature of the processing liquid in the circulation flow path,
    A temperature of the processing liquid in the first supply channel;
    A temperature of the gas in the third supply channel;
    A concentration of the treatment liquid in the circulation flow path,
    A concentration of the processing liquid in the first supply channel;
    The pressure of the second supply channel;
    The pressure of the third supply channel;
    Pressure of the circulation channel,
    A flow rate of the processing liquid flowing through the circulation flow path,
    A flow rate of the processing liquid discharged from the first nozzle;
    A flow rate at which the gas is ejected from the second nozzle,
    Generation timing of a signal for starting discharge of the processing liquid from the first nozzle;
    Generation timing of a signal for starting ejection of the gas from the second nozzle,
    Timing of generating a signal for stopping the discharge of the processing liquid from the first nozzle,
    Generation timing of a signal for stopping the ejection of the gas from the second nozzle,
    Generation timing of a signal for changing a flow rate of the processing liquid discharged from the first nozzle;
    Generation timing of a signal for changing a flow rate at which the gas is ejected from the second nozzle;
    A rising characteristic of a flow rate of the processing liquid discharged from the first nozzle,
    A rising characteristic of a flow rate at which the gas is ejected from the second nozzle;
    Falling characteristics of the flow rate of the processing liquid discharged from the first nozzle;
    A falling characteristic of a flow rate at which the gas is ejected from the second nozzle,
    A speed at which the processing liquid is sucked from the first nozzle toward an upstream side of the first supply flow path after the discharge of the processing liquid is stopped;
    A position where the sucked processing liquid stops,
    Rotation speed of the substrate,
    Acceleration of the substrate;
    Timing of changing the rotation speed of the substrate,
    The position of the first nozzle,
    A moving speed of the first nozzle;
    The acceleration of the first nozzle;
    Timing for changing the position of the first nozzle;
    Changing timing of the moving speed of the first nozzle;
    A temperature for heating the substrate,
    The position of the liquid receiver,
    The moving speed of the liquid receiver,
    Acceleration of the liquid receiver,
    Timing of changing the position of the liquid receiving portion,
    Timing of changing the moving speed of the liquid receiving portion,
    A differential pressure of the fan filter unit,
    A differential pressure of the valve;
    Wind speed of gas exhausted from the processing chamber;
    An air volume of gas exhausted from the processing chamber;
    The correction method according to any one of claims 1 to 5, further comprising at least one of: a light amount in the processing chamber.
  7.  基板をエッチングする基板処理装置であって、
     前記エッチング実行時の実行条件のうちの少なくとも1つの実行条件と、前記エッチングの実行結果を示す少なくとも1つの特徴量とに基づいて、前記基板処理装置の設定条件のうちの少なくとも1つの設定条件を補正する補正データを生成する制御部を備え、
     前記制御部は、前記補正データに基づいて前記少なくとも1つの設定条件を補正する、基板処理装置。
    A substrate processing apparatus for etching a substrate,
    Setting at least one of the setting conditions of the substrate processing apparatus based on at least one of the execution conditions at the time of performing the etching and at least one feature amount indicating the execution result of the etching; A control unit for generating correction data to be corrected,
    The substrate processing apparatus, wherein the control unit corrects the at least one setting condition based on the correction data.
  8.  基板をエッチングする基板処理装置と、前記基板処理装置の設定条件を補正する補正データを出力する補正データ生成装置とを備える基板処理システムであって、
     前記補正データ生成装置は、前記エッチング実行時の実行条件のうちの少なくとも1つの実行条件と、前記エッチングの実行結果を示す少なくとも1つの特徴量とに基づいて、前記基板処理装置の設定条件のうちの少なくとも1つの設定条件を補正する補正データを生成する制御部を備え、
     前記基板処理装置は、前記補正データに基づいて前記少なくとも1つの設定条件を補正する、基板処理システム。
    A substrate processing system comprising: a substrate processing apparatus that etches a substrate; and a correction data generation apparatus that outputs correction data for correcting setting conditions of the substrate processing apparatus.
    The correction data generation device may be configured to execute at least one of execution conditions at the time of performing the etching and at least one feature amount indicating an execution result of the etching. A control unit that generates correction data for correcting at least one setting condition of
    The substrate processing system, wherein the substrate processing apparatus corrects the at least one setting condition based on the correction data.
PCT/JP2019/025597 2018-06-27 2019-06-27 Correction method, substrate-processing device, and substrate-processing system WO2020004547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018121963A JP7184547B2 (en) 2018-06-27 2018-06-27 Correction method, substrate processing apparatus, and substrate processing system
JP2018-121963 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020004547A1 true WO2020004547A1 (en) 2020-01-02

Family

ID=68986382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025597 WO2020004547A1 (en) 2018-06-27 2019-06-27 Correction method, substrate-processing device, and substrate-processing system

Country Status (3)

Country Link
JP (2) JP7184547B2 (en)
TW (1) TWI742392B (en)
WO (1) WO2020004547A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032946A (en) * 2022-06-21 2022-09-09 浙江同发塑机有限公司 Blow molding control method and system of blow molding machine
WO2023182064A1 (en) * 2022-03-23 2023-09-28 株式会社Screenホールディングス Substrate treatment device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408421B2 (en) 2020-01-30 2024-01-05 株式会社Screenホールディングス Processing condition specifying method, substrate processing method, substrate product manufacturing method, computer program, storage medium, processing condition specifying device, and substrate processing device
JP7444701B2 (en) * 2020-05-28 2024-03-06 株式会社Screenホールディングス Substrate processing device, substrate processing method, learning data generation method, learning method, learning device, learned model generation method, and learned model
USD977504S1 (en) 2020-07-22 2023-02-07 Applied Materials, Inc. Portion of a display panel with a graphical user interface
US11688616B2 (en) 2020-07-22 2023-06-27 Applied Materials, Inc. Integrated substrate measurement system to improve manufacturing process performance
US20220066411A1 (en) * 2020-08-31 2022-03-03 Applied Materials, Inc. Detecting and correcting substrate process drift using machine learning
KR20220092345A (en) 2020-12-24 2022-07-01 세메스 주식회사 Apparatus for processing substrate and method for processing substrate
KR102616914B1 (en) * 2021-03-24 2023-12-21 세메스 주식회사 Method and apparatus for treating substrate
WO2022256194A1 (en) * 2021-06-01 2022-12-08 Lam Research Corporation In situ sensor and logic for process control
JP2023042255A (en) * 2021-09-14 2023-03-27 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2023120961A (en) * 2022-02-18 2023-08-30 株式会社Screenホールディングス Substrate processing condition-setting method, substrate-processing method, substrate processing condition-setting system and substrate processing system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220005A (en) * 1997-11-26 1999-08-10 Dainippon Screen Mfg Co Ltd Wafer processing system
JP2005252137A (en) * 2004-03-08 2005-09-15 Shin Etsu Chem Co Ltd Cleaning method for substrate, and apparatus for substrate
JP2006090901A (en) * 2004-09-24 2006-04-06 Fujitsu Ltd Treatment evaluation method and device in manufacturing process of semiconductor product, and semiconductor product manufacturing system
JP2007123734A (en) * 2005-10-31 2007-05-17 Dainippon Screen Mfg Co Ltd Substrate processing device
JP2011077243A (en) * 2009-09-30 2011-04-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, inspection apparatus for substrate processing apparatus, computer program for inspection, and recording medium recorded with the same
JP2016039352A (en) * 2014-08-11 2016-03-22 東京エレクトロン株式会社 Substrate liquid-processing device, substrate liquid-processing method, and computer-readable storage medium with substrate liquid processing program stored therein
JP2017183512A (en) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 Wafer processing apparatus, liquid processing method and storage medium
JP2017536584A (en) * 2014-11-25 2017-12-07 ストリーム モザイク,インコーポレイテッド Improved process control technology for semiconductor manufacturing processes.
JP2018065212A (en) * 2016-10-18 2018-04-26 株式会社荏原製作所 Substrate processing control system, substrate processing control method and program

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220004A (en) * 1997-11-26 1999-08-10 Dainippon Screen Mfg Co Ltd Wafer processing system
JPH11251289A (en) * 1998-02-27 1999-09-17 Dainippon Screen Mfg Co Ltd Apparatus and method for treating substrate
US6686270B1 (en) * 2002-08-05 2004-02-03 Advanced Micro Devices, Inc. Dual damascene trench depth monitoring
US20090095422A1 (en) * 2007-09-06 2009-04-16 Hitachi Kokusai Electric Inc. Semiconductor manufacturing apparatus and substrate processing method
JP5373498B2 (en) 2009-07-27 2013-12-18 芝浦メカトロニクス株式会社 Substrate processing apparatus and processing method
US9698062B2 (en) 2013-02-28 2017-07-04 Veeco Precision Surface Processing Llc System and method for performing a wet etching process
JP6522915B2 (en) 2014-09-26 2019-05-29 倉敷紡績株式会社 Method of measuring liquid component on substrate and substrate processing apparatus
JP2017536692A (en) 2014-10-31 2017-12-07 ビーコ プリジション サーフェイス プロセシング エルエルシー Apparatus and method for performing a wet etch process

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220005A (en) * 1997-11-26 1999-08-10 Dainippon Screen Mfg Co Ltd Wafer processing system
JP2005252137A (en) * 2004-03-08 2005-09-15 Shin Etsu Chem Co Ltd Cleaning method for substrate, and apparatus for substrate
JP2006090901A (en) * 2004-09-24 2006-04-06 Fujitsu Ltd Treatment evaluation method and device in manufacturing process of semiconductor product, and semiconductor product manufacturing system
JP2007123734A (en) * 2005-10-31 2007-05-17 Dainippon Screen Mfg Co Ltd Substrate processing device
JP2011077243A (en) * 2009-09-30 2011-04-14 Dainippon Screen Mfg Co Ltd Substrate processing apparatus, inspection apparatus for substrate processing apparatus, computer program for inspection, and recording medium recorded with the same
JP2016039352A (en) * 2014-08-11 2016-03-22 東京エレクトロン株式会社 Substrate liquid-processing device, substrate liquid-processing method, and computer-readable storage medium with substrate liquid processing program stored therein
JP2017536584A (en) * 2014-11-25 2017-12-07 ストリーム モザイク,インコーポレイテッド Improved process control technology for semiconductor manufacturing processes.
JP2017183512A (en) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 Wafer processing apparatus, liquid processing method and storage medium
JP2018065212A (en) * 2016-10-18 2018-04-26 株式会社荏原製作所 Substrate processing control system, substrate processing control method and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182064A1 (en) * 2022-03-23 2023-09-28 株式会社Screenホールディングス Substrate treatment device
CN115032946A (en) * 2022-06-21 2022-09-09 浙江同发塑机有限公司 Blow molding control method and system of blow molding machine
CN115032946B (en) * 2022-06-21 2022-12-06 浙江同发塑机有限公司 Blow molding control method and system of blow molding machine

Also Published As

Publication number Publication date
JP7439221B2 (en) 2024-02-27
JP7184547B2 (en) 2022-12-06
TWI742392B (en) 2021-10-11
JP2020004817A (en) 2020-01-09
TW202006594A (en) 2020-02-01
JP2023010956A (en) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2020004547A1 (en) Correction method, substrate-processing device, and substrate-processing system
US20110209560A1 (en) Substrate processing method, storage medium storing program for executing the same, substrate processing apparatus, and fault detection method for differential pressure flowmeter
JP6268469B2 (en) Substrate processing apparatus, control method for substrate processing apparatus, and recording medium
US11260436B2 (en) Substrate processing apparatus and substrate processing method
US20220152780A1 (en) Substrate processing apparatus and substrate processing method
KR20230169296A (en) Substrate processing apparatus, substrate processing system, and data processing method
KR102374403B1 (en) Substrate conveying module and substrate conveying method
US20180236510A1 (en) Substrate processing apparatus and substrate processing method
JP5434329B2 (en) Treatment liquid supply apparatus and treatment liquid supply method
US8075698B2 (en) Substrate processing unit, method of detecting end point of cleaning of substrate processing unit, and method of detecting end point of substrate processing
JP2012038968A (en) Spin coating method
JP2013149934A (en) Substrate processing method and substrate processing apparatus
WO2020145002A1 (en) Substrate processing device and substrate processing method
CN110226216B (en) Substrate processing apparatus and substrate processing method
KR20070093696A (en) Vacuum system for manufacturing semiconductor device equipment
JP2021034561A (en) Semiconductor manufacturing device
JP2004096089A (en) Substrate treatment equipment and substrate treatment method
JP2010239013A (en) Substrate treatment apparatus and substrate treatment method
JP2008078501A (en) Drying device and drying method for semiconductor substrate
JP2017118049A (en) Substrate processing apparatus, substrate processing method and storage medium
WO2023182064A1 (en) Substrate treatment device
US20230205235A1 (en) Apparatus for treating substrate and method for treating a substrate
WO2023167064A1 (en) Substrate treatment method and substrate treatment device
JP2018142676A (en) Substrate processing device and substrate processing method
US20240103462A1 (en) Support device, support method, substrate processing system, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826832

Country of ref document: EP

Kind code of ref document: A1